

SOFTWARE DEVELOPMENT EFFORT ESTIMATION BY USING

ARTIFICIAL NEURAL NETWORKS

(YAPAY SİNİR AĞLARI İLE YAZILIM PROJELERİNİN

EFORUNUN TAHMİNLENMESİ)

by

T u ğ ç e U Ğ U R L U , B . S .

Thesis

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

in

INDUSTRIAL ENGINEERING

in the

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

of

GALATASARAY UNIVERSITY

June 2017

This is to certify that the thesis entitled

SOFTWARE DEVELOPMENT EFFORT ESTIMATION BY USING

ARTIFICIAL NEURAL NETWORKS

prepared by Tuğçe UĞURLU in partial fulfillment of the requirements for the degree

of Master of Science in Industrial Engineering at the Galatasaray University is

approved by the

Examining Committee:

Assoc. Prof. Dr. S. Emre ALPTEKİN (Supervisor)

Department of Industrial Engineering

Galatasaray University -------------------------

Assoc. Prof. Dr. Müjde GENEVOIS

Department of Industrial Engineering

Galatasaray University -------------------------

Assoc. Prof. Dr. Seda YANIK

Department of Industrial Engineering

İstanbul Technical University -------------------------

Date: -------------------------

iii

ACKNOWLEDGEMENTS

I have learned a lot and really enjoyed while working on this thesis. I would like to

sincerely thank to all those who helped me with their valuable support during the entire

process of this thesis.

I am deeply grateful to my superviser, Associate Professor S. Emre Alptekin for his

helpful guidance, support and contribution. The completion of this thesis could not

have been possible without his endless support.

I want to thank Emrah Yayıcı for his encouragement and helpful advices. I also want to

thank Yapı Kredi Bank Project Management Departmant for their generous support

during data gathering process.

Finally, I would like to offer my special thanks to my husband Onur Altuntaş. He has

been extraordinarily tolerant and supportive during my studies.

June 2017

Tuğçe UĞURLU

TABLE OF CONTENTS

LIST OF SYMBOLS ... vi

LIST OF FIGURES .. vii

LIST OF TABLES ... viii

ABSTRACT .. ix

ÖZET ... x

1. INTRODUCTION .. 1

2. LITERATURE REVIEW .. 3

2.1 Expert Judgement Based Methods .. 5

2.1.1. One Point Estimation ... 5

3.2.1. Three Point Estimation ... 6

3.2.2. Delphi Technique .. 6

2.2 Algorithmic Methods .. 7

2.2.1. Constructive Cost Model ... 7

2.2.2. Use Case Point Method ... 10

2.3 Learning Based Models .. 14

2.2.1. Artifical Neural Network ... 14

3. MATERIALS AND METHODS ... 19

3.1 Input Variable Selection ... 19

 3.1.1. Input Variable Alternatives ... 20

 3.1.2. Conducting Survey and Analyzing Survey Results 25

3.2 Data Collection ... 27

3.3 Creating Artificial Neural Network .. 31

3.3.1. Learning Type Selection ... 32

3.3.2. Learning Algortihm Selection ... 33

 3.2.2.1 Levenberg – Marquardt Algorithm ... 34

 3.2.2.2 Bayesian Regularization .. 36

 3.3.3 Hidden Layer and Neuron Number Selection .. 38

4. RESULTS .. 40

4.1 Levenberg – Marquardt Back Propagation ... 41

4.2 Bayesian Regularization Back Propagation .. 45

4.2.1 Bayesian Regularization Back Propagation Results According to Project

Size .. 48

4.2.2 Sensitivity Analysis .. 49

4.3 The Bank’s Estimation .. 53

5. CONCLUSION ... 57

REFERENCES .. 59

APPENDICES ... 63

BIOGRAPHICAL SKETCH ... 66

LIST OF SYMBOLS

ANN : Artificial Neural Network

BP : Back Propagation

COCOMO : The Constructive Cost Model

ECF : Environmental Complexity Factors

FP : Function Point

FPA : Function Point Analysis

GSC : General System Characteristics

SLOC : Source Lines of Code

KLOC : Lines of codes in thousands

LM : Levenberg - Marquardt

 m/d : Man day

 MRE : Magnitude of Relative Error

MMRE : Mean Magnitude of Relative Error

TCF : Technical Complexity Factors

UAW : Unadjusted Actor Weight

 UCP : Use Case Point

UUCW : Unadjusted Use Case Weight

LIST OF FIGURES

Figure 1: Effort Estimation Methods ... 4

Figure 2: Multilayer Perceptron ANN with One Hidden Layer 15

Figure 3: Feed Forward and Feed Back Networks .. 16

Figure 4: Bayesian Regularization Back Propagation Process 38

Figure 5: Neural Network Training Regression for Levenberg-Marquardt Algortihm . 44

Figure 6: Neural Network Training Regression for Bayesian Regularization 48

Figure 7: Neural Network Training Regression for Sensitivity Analysis 53

LIST OF TABLES

Table 1: COCOMO II Effort Multipliers ... 8

Table 2: COCOMO II Scale Factors .. 9

Table 3: UCP Use Case Complexity Weights ... 10

Table 4: UCP Actor Complexity Weights ... 11

Table 5: UCP Technical and Environmental Factors .. 12

Table 6: UCP Technical Factor Descriptions .. 20

Table 7: UCP Environmental Factor Descriptions .. 21

Table 8: FPA General System Characteristics Descriptions .. 22

Table 9: Jensen Model Environmental Factor Descriptions .. 23

Table 10: The Bank’s Expert Opinion Input Descriptions .. 24

Table 11: Chosen Factors by Focus Group .. 24

Table 12: Factor Scaling Ranges ... 25

Table 13: Survey Results for Chosen Factors ... 26

Table 14: 77 Projects’ Actual Efforts .. 27

Table 15: Factor Scale Definitions and Ranges ... 29

Table 16: 77 Projects’ Input Data Set .. 29

Table 17: Levenberg-Marquardt Back Propagation ANN Results 41

Table 18: Bayesian Regularization Back Propagation ANN Results 45

Table 19: MMRE Results According to Project Size .. 49

Table 20: MRE values for the ANN with 4 input variables ... 50

Table 21: MRE Results for the Bank’s Estimations .. 54

ABSTRACT

The software industry is growing rapidly and gaining importance all over the world.

Nearly all companies and institutions from various industries have software projects to

develop new applications and platforms. As required with every project, accurate effort

estimation has become a crucial problem for the companies, especially for project

managers.

Since 1970s different methods and models have been developed for estimating software

projects’ efforts. The first milestone model was COCOMO, which is a constructive

method proposed in the late 1970s. Many different models followed, the most popular

and usable models being Function Point and Use Case Point. After 2000s, due to

advances in technology, Artificial Neural Networks has gained in importance especially

among the problem domains that benefit from data analysis and self-learning. Software

development effort estimation also share similar characteristics as there is typically old

projects’ data on hand that should help foresee new projects’ efforts.

Therefore, in this study we build a software estimation model by using neural network

methodology. The features for the network were chosen as a result of an extensive

survey. The applicability of the methodology is demonstrated via real-life software

project data provided by one of the largest banks in Turkey.

ÖZET

Yazılım endüstrisi gün geçtikçe hızla büyümekte ve tüm dünyada önem kazanmaktadır.

Hemen hemen tüm sektörlerden şirketler ve kurumlar yeni uygulama ve platform

geliştirmek için yazılım geliştirme projeleri yapmaktadır. Bununla beraber yazılım

projelerinin eforunun doğru tahminlenmesi şirketler için önemli bir sorun haline

gelmektedir.

1970'lerden bu yana yazılım projelerinin eforunun doğru tahminlenmesi için çeşitli

çalışmalar yapılmaktadır. Bu çalışmalara öncü olan ilk model COCOMO olarak bilinir.

COCOMO modelini Kullanım Senaryosu bazlı model UCP ve Fonksiyon bazlı model

FPA takip etmiştir. 2000'lerden sonra ise, teknolojinin gelişimi ile beraber, Yapay Sinir

Ağları önem kazandı ve data analizlerinde sıklıkla kullanılmaya başlandı. Yazılım

projelerinin eforunun tahminlenmesi de tamamlanmış proje datalarının kullanılabilecek

olması nedeniyle Yapay Sinir Ağları'nı kullanmaya uygun karakteristik özelliklere

sahiptir.

Bu çalışmada yazılım projelerinin eforunun tahmin edilebileceği bir yapay sinir ağı

oluşturulmuştur. Çalışma kapsamında kullanılan datalar Türkiye'nin en büyük

bankalarından birinden elde edilmiştir.

1. INTRODUCTION

A project is a temporary endeavor with a beginning and an end which creates a unique

product or service (Mulcahy, 2013). Effort estimation is a prediction of how long a

development activity will take to finish (Leinoen, 2016).

Since software industry and digitalization gained in importance, software effort

estimation is the most important problem for IT companies. McKinsey and Oxford

University’s study showed that 66 percent of the large software project is over budget

and 33 percent is over schedule, also 17 percent of the IT projects go so bad so the

existence of the company is threatened (Chandrasekaran et al., 2014).

Both under estimation and over estimation causes the waste of time, resource, money

and even prestige lost. According to Borade and Khalkar (2013) underestimating the

costs is characterized by budget overruns, under developed functions and poor quality

end-product. Overestimation commits too many resources to the projects and could

lead to lost contracts could mean lost jobs. Mulhacy (2013) defines the term “padding”,

which is related with overestimating, as a sign of poor project management which can

damage reputation of a project manager.

Since 1970s many studies and methods have been publised to overcome software

project effort estimation problems. All the methods aim to estimate efforts accurately.

Here, estimation accuracy simply defines the comparison of the estimate to the actual

effort that is known after the task has been finished (Leinonen, 2016). COCOMO is the

one of the first algortihmic effort estimation models studied in late 1970s. After

COCOMO, Use Case Point and Function Point methods have become the de facto

standard for accurate software efforts estimation.

2

Since 2000s, artificial intelligence and especially neural networks are noticed by the

software industry for their ability to handle complex relationships between inputs

(factors/features) and outputs (estimated effort). Neural networks in this context define

a supervised learning model which uses historical data to explain the relationship

between inputs and outputs with the help of so called training algorithms and produce

outputs for the new scenarios without subjective manual calculations and adjustments.

The model potentially improves itself by each new data added to retrain the network.

In this thesis, a feed forward neural network model will be proposed to estimate

software projects’ efforts accurately for the software project department at one of the

largest banks in Turkey. Two different learning algorithms will be applied to obtain the

best output with the minimum error. The findings will be compared with the current

approaches applied by the organization.

The remainder of the thesis is organized as follows: in Section 2, related work is

summarized. Section 3 presents the methodologies that form the proposed model. The

data gathering process and obtained results as part of model evaluation are given in

Section 4. Section 5 concludes the study discussing the findings and further study

possibilities.

2. LITERATURE REVIEW

Since 1950, project management and software development have become an important

issue due to complex requirements of the companies and gaining acceleration in

technology industry. Over than 30 years, there is a significant challenge for effective

resource prediction (Santani et al., 2014).

In the beginning of the studies, researchers had focused on algorithmic models and

quantative based techniques for effort estimation process. In 1979, Allan Albrecht

published a parametric based model, Function Point Analysis (FPA). At about the same

time, in late 1970s, The Constructive Cost Model (COCOMO) had been released by

Barry W. Boehm and improved version of the model had been developed in 1997.

Another parametric effort estimation model, Use Case Point (UCP) has been developed

by Gustav Karner.

In 1990s, clustering, case-based reasoning and ANN became effective for predicting

software effort estimation. ESTOR, a cased based approach, was developed by

Vicinanza et al. and it has been claimed that ESTOR performs better than FPA and

COCOMO on restricted samples.

In 1994, Witting and Finnie applied back propagation algorithm on a multilayer

perceptron by using ANN. Similarly, in 1997, they used ANN to produce more

accurate resource estimation for software projects. The compared ANN with cased-

based reasoning and FPA models. As a result, ANN was slightly better than cased-

based reasoning model and much better than FPA (Finnie & Wittig, 1997).

Also, in 1992, Karuannitthi used ANN to predict software reliability and Samson et al.

(1997) used an Albus multiplayer perceptron in order to predict software effort on the

4

Boehm’s COCOMO dataset and compared linear regression with a neural networks

approach (Santani et al., 2014).

Khoshgoftaar et al. (2000) presented a case study considering real time software to

predict the testability of each module from source code static measures. They consider

ANNs as promising techniques to build predictive models, because they are capable of

modeling nonlinear relationships (Santani et al., 2014).

Apart from algorithmic methods, expert judgement based methods are used and

preffered since they are easy to apply. In 1950, Delphi Method is conceived by Olaf

Helmer and Norman Dalkey. This method attempts to capture expert opinion through a

group of experts (Rush & Roy, 2001).

As some of them detailed above, there are many effort estimation methods. Although

different groupings are found in the literature, three categories are usually used to

classify estimation methodologies: Expert judgement, algorithmic estimation and

learning based estimation.

In the following chapters these three categories will be detailed and different methods

will be discussed including Neural Network Model.

Figure 1: Effort Estimaton Methods

5

2. 1 Expert Judgement Based Methods

The most common used estimation approaches are expert judgement based methods in

software industry (Jorgensen & Shepperd, 2007). Since, at the beginning of the

projects, project team does not have a proper data to estimate the cost, expertise based

methods are preferred by companies. Expert judgement based methods generate cost

estimations based on experts’ or project team’s opinions. According to Leinonen

(2016), expert judgement estimation can be used if there is no quantified data for the

project.

Also lack of time is another reason to choose expert judgement based approaches.

Thus, taking less time and without gathering detailed data are the main advantages of

expert judgement methods. The main disadvantage is, as Boehm et al. (2000) states,

even if a person has experience, this does not mean that his/her estimates are accurate.

Furthermore, in real life scenarios, there are many unknowns about project team

members, who are estimators, make the assumption and double it. This is usually

considered as a sign of padding which indicates poor project management (Mulcahy,

2013).

In the next subchapters three mainly used expert based methods will be detailed which

are One Point Estimation, Three Point Estimation and Delphi methods.

2.1.1 One Point Estimation

In One Point Estimation, the estimator submits one estimate per activity (Mulcahy,

2013). For example; the estimator says for one activity the cost will be 5 days. By

summing up each activities’ costs, the final number will be the project’s cost.

Rita Mulhacy stated that One Point estimation can be problematic because it can force

the estimator into padding, also important points like risk and uncertainties can be

hidden in this method (Mulcahy, 2013).

6

2.1.2 Three Point Estimation

In Three Point Estimation estimators give an optimistis (O), pesimistic (P) and most

likely (M) estimate for each activity (Mulcahy, 2013). Three Point estimation can be

calculated in two different ways according to risk factors of projects.

In Triangular Distribution, a simple avagare formula is applied to estimates. The

formula is;

 𝐶𝑜𝑠𝑡 =
(𝑃+𝑂+𝑀)

3
 (1)

Optimistic, pesimistic and most likely estimates have equal weight on triangular

distribution.

In Beta Distribution, a weighted avarage formula is applied to estimations which give

stronger consideration to the most likely estimate (Mulcahy, 2013). The formula is,

 𝐶𝑜𝑠𝑡 =
(𝑃+4𝑂+𝑀)

6
 (2)

According to Rita Mulhacy, when a good risk management process is followed,

generally the most likely estimation occurs. So that the Beta Distrubiton is advantegous

in such a case.

2.1.3 Delphi Technique

Delphi Technique is an estimation approach which allows estimators share their

estimations with others and calibrate their estimations by exchanging the necessary

information (Kumari & Pushkar, 2013). Delphi technique steps are as follows;

7

1. Coordinator provides an estimation form with spesification of project to each

estimator.

2. Estimators fill out the forms by themselves.

3. Coordinator sets up a group meeting which estimators can share and discuss their

estimations.

4. Coordinator prepares and distributes an iteration form which is a summary of

estimations.

5. Step 2 and 3 are applied again until a consensual estimation is obtained.

Although Delphi Technique is good because of interactive aspects, there are some

drawbacks. As Sadhu (2014) stated, the tendency in a group is to aggree with the

majority eventhough individual feels that majority is wrong.

2.2 Algortihmic Models

Algorithmic effort estimation methods consist of mathematical models or calculations

to provide effort estimation (Usharani et al., 2016). Most of the algorithmic estimation

models use project size, environmental and/or technical factors to calculate projects’

costs. Depending on the model, calculation procedure varies. In some models, source of

line codes (SLOC) is used, whereas others use function or use case points. Also, factors

and cost drivers are not common among different methods. COCOMO and Use Case

Point are the most acknowledged methods in algorithmic effort estimation models.

COCOMO and Use Case Point are the most known methods in algorithms effort

estimation models. In the following subchapters these models will be detailed.

2.2.1 The Constructive Cost Model

The Constructive Cost Model (COCOMO) is an algorithmic effort estimaton model

developed by Barry W. Boehm in the late 1970s. The model is based on project size in

SLOC and factors which are obtained from 63 projects data. In 1997 COOMO II was

8

developed as a successor of COCOMO and 161 project data are used to obtain factors.

‘COCOMO II is a parametric cost estimation model that requires size, product and

personnel attributes as inputs and outputs the estimated effort in Person-Months (PM)’

(Boehm et al, 2016).

In COCOMO II, software projects are classified into three groups as organic, semi-

detached and embeded projects. Organic projects are the projects which have small

teams or few domains with good experience. Semi-detached projects are made of

medium teams and mixed experience team members. Embeded projects are the projects

which have strict constraints, many domains and hardware, software and operational

needs. Each project type has different coefficients for effort estimation.

Moreover, in COCOMO II there are four types of cost drivers with different multipliers;

product attributes, platform attributes, personnel attributes and project attributes, see

Table 1.

Table 1: COCOMO II Effort Multipliers

Effort Multipliers

Rating Levels and Multipliers

Very

Low
Low Nominal High

Very

High

Extra

High

Product

Factor

Software Reliability 0.82 0.92 1.00 1.10 1.26 n/a

Data Base Size n/a 0.90 1.00 1.14 1.28 n/a

Product Complexity 0.73 0.87 1.00 1.17 1.34 1.74

Developed for Reusability n/a 0.95 1.00 1.07 1.15 1.24

Documentation Needs 0.81 0.91 1.00 1.11 1.23 n/a

Platform

Factor

Execution Time Constraint n/a n/a 1.00 1.11 1.29 1.63

Main Storage Constraint n/a n/a 1.00 1.05 1.17 1.46

Platform Volatility n/a 0.87 1.00 1.15 1.30 n/a

Personn

el Factor

Analyst Capability 1.42 1.19 1.00 0.85 0.71 n/a

Programmer Capability 1.34 1.15 1.00 0.88 0.76 n/a

Personnel Continuity 1.29 1.12 1.00 0.90 0.81 n/a

Applications Experience 1.22 1.10 1.00 0.88 0.81 n/a

Platform Experience 1.19 1.09 1.00 0.91 0.85 n/a

Language and Tool

Experience 1.20 1.09 1.00 0.91 0.84 n/a

Project

Factors

Use of software Tools 1.17 1.09 1.00 0.90 0.78 n/a

Multisite Development 1.22 1.09 1.00 0.93 0.86 0.80

Required Development

Schedule 1.43 1.14 1.00 1.00 1.00 n/a

9

These cost drivers also called as effort multipliers have scale factors from very low to

very high. According to scaling, each attribute has a unique coefficient just like project

types. Finally, to calculate a software project effort, the given formula is applied;

 𝐸𝑓𝑓𝑜𝑟𝑡 (𝑃𝑀) = 𝐴 ∗ 𝑆𝑖𝑧𝑒𝐸 ∗ ∏ 𝐸𝑓𝑓𝑜𝑟𝑡 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟𝑖
17
İ=1 (3)

The constant A is initially set when the model is calibrated to the project database

reflecting a global productivity average. The COCOMO model should be calibrated to

local data which then reflects the local productivity and improves the model's accuracy

(Abts et al., 2000). Size is the lines of codes in thousands (KLOC). Effort Multipliers

are the coefficients of attributes which is obtained from Table 1. The exponent E is a

collection of five scale factors which is shown in Table 2.

Table 2: COCOMO II Scale Factors

Scale Factors

Values

Very

Low
Low Nominal High

Veryh

High

Extra

High

Precedentedness 6.20 4.96 3.72 2.48 1.24 0.00

Development Flexibity 5.07 4.05 3.04 2.03 1.01 0.00

Architecture Risk Resolution 7.07 5.65 4.24 2.83 1.41 0.00

Team Cohesion 5.48 4.38 3.29 2.19 1.10 0.00

Process Maturity 7.80 6.24 4.68 3.12 1.56 0.00

Equation 4 defines the exponent E. In the equation, B is equal to 0.91 which is obtained

from historical data of COCOMO II. As mentioned before, COCOMO parameters

including B, should be calibrated to the local organization for better results. SF is the

values of each scale factor.

 𝐸 = 𝐵 + 0.01 ∗ ∑ 𝑆𝐹𝐽
5
𝐽=1 (4)

10

Even though COCOMO is one of the oldest software project estimation models and has

many versions, it is not used in real life. Since code lines are not available in early life

cycle and estimation is based KLOC, COCOMO model has an important disadvantage.

Also as Ren and Yun (2013) indicated that estimation results vary greatly due to

different languages and algortihms.

As a result, use of COCOMO in software industry remains ‘marginal’ (Trendowicz et

al., 2011).

2.2.2 Use Case Point Method

Use Case Point (UCP) method is an effort estimation model based on use cases, actors,

technical and environmental factors. ‘A use case captures a contract between the

stakeholders of a system about its behaviour. The use case describes the system’s

behaviour under various conditions as the system responds to a request from one of the

stakeholders, called primary actor’ (Cockburn, 2011).

The main input of UCP method is use cases. Generally, in medium and large size

projects there are many use cases and each use case has different number of steps. In

UCP method, to calculate Unadjusted Use Case Weight (UUCW), the use cases of the

projects are groupped into simple, avarage and complex groups according to their step

numbers. If transaction number of a use case is smaller than 4 than use case is

classified as Simple, if transaction number is between 4 and 7 than use case is classified

as Avarage, if transaction number is bigger than 7 than use is complex. Each complexity

group has different weights as shown in Table 3.

Table 3: UCP Use Case Complexity Weights

Use Case Complexity Weight

Simple 5

Avarage 10

Complex 15

11

After classifying use cases of the project, UUCW can be calculated as in Equation 5. In

the equation weight is the use case complexity weight in the Table. Cardinality is the

number of use cases assigned to complexity class C, as simple, avarage or complex.

 𝑈𝑈𝐶𝑊 = ∑ 𝑊𝑒𝑖𝑔ℎ𝑡 (𝐶) ∗ 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 (𝐶)𝑖 ∈𝐶 (5)

After calculating UUCW, Unadjusted Actor Weight (UAW) is calculated. In a software

project, there can be many different type of actors like client, customer, database, GUI

etc. Similar to UUCW calculation, actors are groupped into three categories; simple,

avarage and complex. Each group has different weights as shown in Table 4. Simple

actor is a system actor which communicates with other system by API. Avarage actor is

a system actor communicates via a protocol like HTTP or a person who interacts with a

system via a terminal console. Complex actor is a person actor uses User Interface to

interact with system.

Table 4: UCP Actor Complexity Weights

Actor Complexity Weight

Simple 1

Avarage 2

Complex 3

After classifying actors, UAW can be calculated as in Equation 6. In the equation

weight is the actor complexity weight in the Table. Cardinality is the number of actors

assigned to complexity class C, as simple, avarage or complex.

 𝑈𝐴𝑊 = ∑ 𝑊𝑒𝑖𝑔ℎ𝑡 (𝐶) ∗ 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 (𝐶)𝑖 ∈𝐶 (6)

12

As the last two steps of UCP calculation, technical (TCF) and environmental (EF)

complexity factors are calculated. There are 13 technical and 8 environmental factors.

Each factor has a different weight as shown in the Table 5.

Table 5: UCP Technical and Environmental Factors

Factor Type No Factor Name Weight

Technical

TF1 Distributed system 2

TF2 Response time/performance objectives 1

TF3 End-user efficiency 1

TF4 Internal processing complexity 1

TF5 Code reusability 1

TF6 Easy to install 0.5

TF7 Easy to use 0.5

TF8 Portability to other platforms 2

TF9 Easy to change 1

TF10 Concurrent/parallel processing 1

TF11 Security features 1

TF12 Access/Dependence for third parties 1

TF13 End user training 1

Environmental

EF1 Familiarity with development process used 1.5

EF2 Application experience 0.5

EF3 Object-oriented experience of team 1

EF4 Lead analyst capability 0.5

EF5 Motivation of the team 1.5

EF6 Stability of requirements 2

EF7 Part-time staff -1

EF8 Difficult programming language -1

To calculate TCF and EF Equation 7 and 8 are used. TFWeight and EFWeight refer to

the factor weights in the table above. Value is the predicted degree of influence for each

factor which can be between 0 and 5. If value is 0 that means this factor has no effect or

relationship with the project. On the contrary, if the value is 5 that mean this factor has

a strong effect or relation ship with the project.

13

 𝑇𝐶𝐹 = 0.6 + (0.01 ∗ ∑ 𝑇𝐹𝑊𝑒𝑖𝑔ℎ𝑡𝑖 ∗ 𝑉𝑎𝑙𝑢𝑒𝑖
13
𝑖=1) (7)

 𝐸𝐹 = 1.4 + (−0.03 ∗ ∑ 𝐸𝐹𝑊𝑒𝑖𝑔ℎ𝑡𝑖 ∗ 𝑉𝑎𝑙𝑢𝑒𝑖
8
𝑖=1) (8)

Finally, UCP is calculated as follows;

 𝑈𝐶𝑃 = (𝑈𝑈𝐶𝑊 + 𝑈𝐴𝑊) ∗ 𝑇𝐶𝐹 ∗ 𝐸𝐹 (9)

To calculate project’s effort in man hours, UCP is multiplied by 20 hours as Karner

proposed (Banerjee, 2001).

 𝐸𝑓𝑓𝑜𝑟𝑡 = 𝑈𝐶𝑃 ∗ 20 (10)

As Kirsten Ribu stated, per UCP hours can range from 15 hours to 30 hours as field

experience shows (Ribu, 2001). Eventhough adjusting hours per use case point

according to companys’ history can be an advantage, UCP method has important

drawbacks. The effort estimation can not be arrived before all use cases are written

(Cohn, 2005). And writing all use cases means analysis phase is completed for a

software project, which is quite late for effort estimation. Additionally, counting use

case steps can be a problem, especially for large size projects.

As a conclusion, UCP is an easy to calculate method as a mathematical formula but it

has important disadvantages to apply in real life.

14

2.3 Learning Based Models

Learning based effort estimation models use current knowledge and historical data of

the projects. As Gabrani and Saini stated, learning based methods are trying to imitate

natural evolution and they are refining until finding and optimal solution, so

evolutionary learning based methods became popular in last years (Gabrani & Saini,

2016).

Machine learning can be defined as a set of mechanisms which enable computers learn

from experiences (Negnevitsky, 2002). Artificial neural network (ANN) is the most

widely applied model under the umbrella terms Artificial Intelligence and Machine

Learning. In the next subchapter artificial neural network model will be detailed.

2.3.1 Artificial Neural Networks

ANN is a “reasoning based human brain model” which uses interconnected neurons to

learn and execute transactions or functions just like human brain does with 10 billion

neurons and 60 trillion connections (Negnevitsky, 2002). ANNs are preferred as they

enable to model even complex non-linear relationships and are pretty much capable of

approximating any measurable function without an explicit model of the system (Finnie

& Wittig, 1997).

A typical ANN as is made up from nodes in three layers; input layer, hidden layer(s)

and output layer as shown in Figure 2.

15

Figure 2: Multilayer Perceptron ANN with one hidden layer

Each input layer node is connected to the next hidden layer nodes and each hidden layer

node is connected to the next one ending with the output layer node. Nodes in the input

layer, hidden layers and output layer and hidden layer numbers may change depending

on the problem. Each connection between nodes represents a weight. Input layer

represents the input data for learning algorithm.

Hidden layer and output layer use the data from previous layer and combine them with

the corresponding weights to trigger a so called activation function. The output layer

combines all the outputs generated by the activation functions and outputs a value once

again using an activation function. There are various activation functions used in the

literature, linear, sigmoid, Gaussian, etc. As Michael Negnevitsky stated, “weights are

the basic means of long-term memory in ANNs. They express the strength, or in other

words importance, of each neuron input. A neural network ‘learns’ through repeated

adjustments of these weights.” (Negnevitsky, 2002).

If there ise a linear relationship between input and output layer, then it means there is no

need for a hidden layer. This kind of ANN is called as a perceptron. In contrast, if

16

there is a non linear relationship between input and output layer, one or more hidden

layers are needed to solve the problem. In these cases, ANN is called as Multi Layer

Perceptron.

There are two main types of ANN architecture called as Feed Forward and Feed Back

networks. Feed forward network progresses only one way from input neurons to output.

Feed-forward networks tend to be straightforward networks that associate inputs with

outputs. They are extensively used in pattern recognition.

Feed Back networks have feedback connections from the output layer to the input layer

or from the hidden layer to the input layer. In other words, a feedback architecture

distinguishes itself from a feedforward architecture, in that it has at least one feedback

link (Chiang & Li-Chiu Chang, 2004).

Figure 3: Feed Forward and Feed Back Networks

(Agatonovic-Kustrin & Beresford, 2000)

There are different types of learning algorithms for ANNs. One of the most popular

types is multi-layer perceptron with the combination of feed-forward and back-

propagation algorithms. In feed forward backpropagation algorithm there are two

phases to reach the results. The first phase is called as Forward Phase. In this phase,

input signals go through the network from input nodes to outputs until an error signal is

computed. Error signal is difference between desired and the actual output. And the

second phase ise backward phase. In this phase, error signal moves in the backward

17

direction for the adjustments until minimizing error and obtaining an acceptable value.

The aim of the feed forward back propagation is to minimize cost function to find the

best result with minimum error margin. As cost function, generally a quadratic function

is used to figure out how to make small changes in weights so as to get an improvement

the quadratic cost (Nielsen, 2017). To solve quadratic cost function, gradient descent

technique is used since the problem that ANN is trying to solve is a minimization

problem.

The ideal solution is to find a global minimum for the problem but in real life, ANN

may have to solve problems with millions of inputs and outputs. In such cases, finding a

global minimum could not be possible. So with gradient descent, ANN chooses a

starting point randomly, with random weights and tries to find a local minimum. While

trying to find a local minimum, a learning rate is used. Learning rate should be small

enough to address the inputs to correct outputs and to minimize cost function. But also

it should not be very small. Because with a very small learning rates, gradient descent

works very slowly and also correct input-output match up problems may occur.

The process of feed forward back propagation is summarized iteratively below;

 Cost function is defined as; 𝐸 =
1

2
∑ 𝑒𝑖

2
𝑖 (𝑘)

 In this function; 𝑒𝑖(𝑘) is the error for the 𝑖𝑡ℎ neuron for the 𝑘𝑡ℎ iteration.

 𝑒𝑖(𝑘) is defined as; 𝑒𝑖 = 𝑑𝑖 − 𝑦𝑖(𝑘) . Here, 𝑑𝑖 is the desired output for 𝑖𝑡ℎ

neuron and 𝑦𝑖(𝑘) is the actual output.

 So cost function can be also written like; 𝐸 =
1

2
∑ (𝑑𝑖 − 𝑦𝑖(𝑘))2

𝑖

 Cost function depends on the weights, since ANN learns by adjusting weights of

the neurons. At the beginning, weights are assigned randomly. Changes of the

each neuron is found by Gradient Descent Algorithm, which can be represented

as ∆𝑤𝑖𝑗 = −𝜇
𝜕𝐸(

𝑤
→)

𝜕𝑤𝑖𝑗
 . Here 𝜇 is the learning coefficient.

 In forward phase, output values are obtained according to the weights which are

applied during the forward process. In backward phase, weights are reassigned

according to the errors on outputs.

18

 Each change on the weights are calculated as; ∆𝑤𝑖𝑗 = 𝜇 ∗ 𝛿𝑗 ∗ 𝑦𝑖.

 𝛿𝑗 is defined as 𝑒𝑗(𝑘) ∗ 𝑓𝑗
′ for output layer neurons and 𝑓𝑗

′ ∑ 𝛿𝑚𝑤𝑚𝑗𝑚 for hidden

layers.

 𝑓𝑗 is the activation function of 𝑗𝑡ℎ neuron.

In this context, ANNs are used to calculate estimated software project efforts. Since it is

a learning based model, with enough previous project data and feature set, the model

can predict accurately project efforts.

Compared to other effort estimation models, ANNs have an important advantage, as

they are trained using a company’s own data, they can estimate project cost more

accurately for a specific company then a generic model with a standard set rules.

Moreover, ANNs do not need an implicit or complete programming as required by

regression based methods. In this work, selected historical projects’ data will be used to

build an ANN model.

3. MATERIALS AND METHODS

The aim of this study is to build an ANN and use the network to estimate software

projects’ efforts. As detailed in previous sections, an ANN depend on input variables to

make the estimation. In order to build an ANN, five input variables are identified

through preliminary data analysis using expert interviews, focus group and surveys.

This initial step is required as ANNs actually mimic the decision making process of

experts by replacing the expert opinion with a black-box approach. Therefore, software

project managers of one of the largest bank in Turkey are consulted in order to define

the basic information that is needed for software effort estimation. The relationship

between these inputs and the corresponding effort estimation is handled by the trained

ANN. For training purposes, 77 IT projects’ data is obtained from the bank’s Project

Management department.

In the next subchapters input variable selection, data collection, generating ANN and

obtaining valuable estimation topics will be detailed.

3.1 Input Variable Selection

‘The choice of input variables is a fundamental, and yet crucial consideration in

identifying the optimal functional form of statistical models.’ (May et al., 2011).

Similarly input variable selection has a crucial importance to create ANN on a sound

basis.

As detailed in Literature Review, there are many different methods for effort estimation.

Each method has different cost drivers and input parameters. In this study, existing

20

effort estimation models’ inputs and the bank’s IT experts’ opinions are considered to

obtain the most effective input variables on effort estimation.

3.1.1 Input Variable Alternatives

Input variables (parameter) selection is one of the most important tasks to estimate

software projects’ efforts accurately. In literature, for algorithmic models, different

factor groups and variables are used. Generally, they are grouped into two categories as

‘Technical Factors’ and ‘Environmental Factors’. In this study, Use Case Point,

Function Point Analysis and Jensen Model’s factors are considered to be used as input

to our proposed ANN model.

In UCP method, there are two types of factors categorized as technical and

environmental. Technical factors define 13 parameters and environmental factors

consists of 8 parameters.

Table 6: UCP Technical Factor Descriptions

No Technical Factor

Name

Description

TF1 Distributed system Refers to a single and integrated coherent network

requirement to share different resources and capabilities to

provide users.

TF2 Response

time/performance

objectives

Refers to response time requirements for the desired

system. Some system transactions are needed to have

very short response time as money exchange transactions.

TF3 End-user efficiency Refers to system needs for end users. End user of the

desired system can be an external client or internal client.

End-user efficiency weight changes depend on client type

and requirements.

TF4 Internal processing

complexity

Refers to system’s dependency to each other and multiple

system integration needs.

TF5 Code reusability Refers to reusable, parametric code requirements.

TF6 Easy to install Refers to accessibility and installability of desired system

or application.

TF7 Easy to use Refers to usability requirements including system-human

interaction.

21

TF8 Portability to other

platforms

Refers to usability of the same software in different

environments.

TF9 Easy to change Refers to easy code changing requirements.

TF10 Concurrent/parallel

processing

Refers to simultaneous access requirements.

TF11 Security features Refers to special security requirements. As an example,

developing a login system for an application or system

may need very complex security requirements.

TF12 Access/Dependence

for third parties

Refers to third party access needs for desired systems. For

example the application that will be developed may need

to access government database to take client’s identity

information.

TF13 End user training Refers to end user training needs. As an example, for call

center system/transaction changes, call center staff may

need to be trained to use new system.

Table 7: UCP Environmental Factor Descriptions

No Environmental

Factor Name

Description

EF1 Familiarity with

development process

used

Refers to familiarity with life cycle model used for the

project team. Agile, Waterfall or any other development

life cycles may be used for the development projects.

EF2 Application

experience

Refers to application experience of project team.

EF3 Object-oriented

experience of team

Refers to object oriented experience of project team,

especially for the developers.

EF4 Lead analyst

capability

Refers to lead analyst capability to identify, understand

requirements accurately.

EF5 Motivation of the

team

Refers to project team’s motivation.

EF6 Stability of

requirements

Refers to stability level of requirements. Requirements of

a project would not be clear at the beginning of the project.

EF7 Part-time staff Refers to part time staff of the project team.

EF8 Difficult

programming

language

Refers to programming language’s use of difficulty.

Similar to UCP method, to build an effort estimation model, 14 ‘General System

Characteristics’ (GSCs) are used in Function Point Analysis (FPA) (Lokan, 2000).

22

General system characteristics are also known as technical factors. GSCs have some

common factors with UCP technical factors.

Table 8: FPA General System Characteristics Descriptions

No
General System

Characteristics Name

Description

GSC1 Data Communications
Refers to data transfer needs by using communication

technologies.

GSC2
Distrubuted Data

Processing

Refers to a single and integrated coherent network

requirement to share different resources and capabilities

to provide users.

GSC3 Performance
Refers to system performance needs including response

times.

GSC4
Heavily Used

Configuration

Refers to degree of computer resource restrictions

which effects the development of the application

GSC5 Transaction Rate
Refers to the rate of business transactions needs which

influences the development of the application

GSC6 Online Data Entry
Refers to online data entry requirements through

interactive transactions.

GSC7 End User Efficiency
Refers to human-application interaction and usability

needs.

GSC8 Online Update
Refers to internal logical files’ online update

requirements.

GSC9 Complex Processing
Refers to complex processing logic requirements which

effects development of the application.

GSC10 Reusability Refers to reusable, parametric code requirements.

GSC11 Installation Ease
Refers to accessibility and installability of desired

system or application.

GSC12 Operational Ease
Refers to easy operational usage needs of the system in

such processes like recovery, back up or start up.

GSC13 Multiple Sites
Refers to multiple different hardware and software

environmental needs for the application.

GSC14 Facilitate Change
Refers to easy modification of processing logic or data

structure requirements.

Jensen model is a software development schedule/effort estimation model which

incorporates the effects of any of the environmental factors impacting the software

development cost and schedule (Baik, 2000). This model is an empirical model and

related to the effective size of the system and the technology to the implementation of

23

the system. Since Jensen model’s environmental factors are considere as candidate

factors since they seem suitable for the bank’s organization. Jensen model defines 13

environmental factors.

Table 9: Jensen Model Environmental Factor Descriptions

No
Environmental Factors

for Jensen Model

Description

JEF1
Special Display

Requirements

Refers to human-application interaction and

usability needs including front end designs.

JEF2
Operational Requirement

Detail and Stability

Refers to operational usage needs of the system in

such processes like recovery, back up or start up.

JEF3 Real Time Operation Refers to time-constrained operation requirements.

JEF4 CPU Time Constraint
Refers to system performance needs including

response times.

JEF5 Memory Constraint Refers to memory, storage requirements.

JEF6
Virtual Machine

Experience

Refers to developers virtual machine experience.

JEF7
Concurrent ADP

Development

Refers to concurrent Automatic Data Processing

(ADP) development requirements like complex

logical processes.

JEF8
Developer Using Remote

Computer

Refers to developer’s remote computer experience.

JEF9
Development at

Operational Site

Refers to development needs at the operational site

which means according to operation systems.

JEF10

Development Computer

Different than Target

Computer

Refers to rehosting needs which means

protecting business logic and data trapped in

proprietary hardware and software, while

opening paths to future modernization by

moving to a more extensible architecture.

JEF11
Development at Multiple

Sites

Refers to multiple different hardware and software

environmental needs for the application’s

development process.

JEF12
Programming Language

Experience

Refers to developer’s programming language

experience which will be used in the project.

JEF13 System Reliability
Refers to system’s ability requirements to perform

as it is intented to design.

24

In our case, besides UCP, FPA and Jensen Model parameters, 5 additional parameters

are considered to have an effect on project effort estimation as they are already used by

the experts of the selected bank’s IT department. These parameters are shown in Table

10.

Table 10: The Bank’s Expert Opinion Input Descriptions

No Expert Opinion Inputs Description

EO1 Domain Number Refers to number of the IT domains which will

involve to the project as a stakeholder.

EO2 Software Development

Project Methodology

Refers to methodogy type which project will get

on. Methodology can be Agile or Waterfall or any

other.

EO3 Team Characteristics Refers to project team characteristics as

experience, taking part in the same project before

etc.

EO4 Key Turn Project Refers to a project which will done by outsource

project team from beginning to the end.

EO5 Business Unit Efficiency Refers to businnes units efficiency on the project.

In total, 53 factors from UCP, FPA, Jensen Model and expert opinions are considered as

candidate inputs to the ANN model. As this list was too comprehensive and it would

require a lot of project data to train the ANN, we consulted 6 expert project managers to

evaluate the importance of these factors. As a result, 22 factors are identified as having

a considerable effect on software project effort.

Table 11: Choosen Factors by Focus Group

No Factor Name

F1 Well-defined and stable requirements

F2 Access/Dependence on 3rd party company's code

F3 Multiple domain integration

F4 Reusable code

F5 Complex security requirements

F6 Developer's application experience

25

F7 Easy to change (parametric design)

F8 Team's familiarity with the project

F9 System reliability

F10 Performance requirements

F11 Real time operation needs

F12 Business unit/client attendance

F13 Team characteristics

F14 Lead analyst's capability

F15 Outsource analysts/developers

F16 Operational ease

F17 Object-Oriented experience

F18 Team motivation

F19 Installation (deployment) ease

F20 Methodology (Waterfall, Agile etc.)

F21 Part time staff

F22 Programming language

3.1.2 Conducting Survey and Analayzing Survey Results

After preselection, a survey is conducted on 19 IT experts to analyze the effect of the

parameters according to expert opinions and to select the most relevant factors as input

to ANN model. 22 preselected factors are asked to scale from “1-Irrelevant” to “5-

Relevant” according to the effect on software development effort estimation. Scaling

range is listed in the Table 12.

Table 12: Factor Scaling Ranges

No Scaling Range Description

1 Irrelevant

2 Slightly Relevant

3 Relevant

4 Fairly Relevant

5 Highly Relevant

26

An ‘effect level’ is calculated based on the ratings of factors by IT experts. Weights are

assigned to each scale range and by multiplying scale weight and experts’ choices,

effect level is obtained.

 𝐸𝑓𝑓𝑒𝑐𝑡 𝐿𝑒𝑣𝑒𝑙 = ∑ 𝑤𝑖
5
𝑖=1 ∗ 𝑐𝑖 (11)

Where i is the number of scale range from irrelevant to highly relevant, w is the weight

of scale range and c is the number of choice for the factor. According to the effect level

calculation, top 5 factors with the highest effect level are selected as the input factors to

ANN model which are; “well defined and stable requirements”, “dependence in 3rd

party company’s code”, “multiple domain integration”, “reusable code” and “complex

security requirements”. Survey’s effect level results are shown in table 13 where I is

Irrelevant, SR is Slightly Relevant, R is Relevant, FR is Fairly Relevant and HR is

Highly Relevant. Also w is the weight of each scale.

Table 13: Survey Results for Choosen Factors

Factor
I

(w=1)

SR

(w=2)

R

(w=3)

FR

(w=4)

HR

(w=5)

Effect

Level

Well-defined and stable

requirements 0 0 0 6 13 89

Dependence on 3rd party

company's code 0 1 3 5 10 81

Multiple domain integration 0 0 3 8 8 81

Reusable code 0 0 2 12 5 79

Complex security requirements 0 2 3 8 6 75

Developer's application experience 0 2 6 8 4 74

Easy to change 0 1 3 13 2 73

Team's familiarity with the project 0 2 4 8 5 73

System reliability 1 0 5 8 5 73

Performance requirements 0 1 7 6 5 72

Real time operation needs 0 2 6 6 5 71

Business unit/client attendance 1 1 5 9 3 69

Team characteristics 1 2 5 7 4 68

27

3.2 Data Collection

Similar to human brain ANN learns and when it is learning it needs the historical data to

create the complex non linear relationships between input variables. In this study, ANN

has been created for software development projects’ effort estimations. To create ANN,

77 completed software project data is handled from one of the Turkey’s biggest bank’s

Project and Program Management Office.

During the project period, each project team member is required to fill timesheets to

show how many man day a team member has spended. At the end of the projects, all

projects’ accumulated actual effort information calculated from each resource’s time

sheets. For the proposed ANN, actual effort is set as the target value. For these 77

projects actual efforts are shown in Table 14.

Table 14: 77 Projects’ Actual Efforts

Project No
Actual

Effort (m/d)
Project No

Actual

Effort (m/d)
Project No

Actual

Effort (m/d)

Project 1 359 Project 27 673 Project 53 1690

Project 2 344 Project 28 579 Project 54 655

Project 3 292 Project 29 280 Project 55 366

Project 4 205 Project 30 270 Project 56 1429

Project 5 202 Project 31 183 Project 57 2996

Project 6 171 Project 32 75 Project 58 1651

Lead analyst's capability 0 2 8 7 2 66

Outsource analysts/developers 0 4 7 6 2 63

Operational ease 0 5 7 5 2 61

Object-Oriented experience 1 3 8 6 1 60

Team motivation 1 3 8 6 1 60

Installation (deployment) ease 0 6 6 5 2 60

Methodology (Waterfall, Agile

etc.) 1 7 4 4 3 58

Part time staff 0 6 8 4 1 57

Programming language 0 5 9 5 0 57

28

Project 7 170 Project 33 68 Project 59 1899

Project 8 148 Project 34 68 Project 60 1925

Project 9 84 Project 35 62 Project 61 2477

Project 10 45 Project 36 251 Project 62 211

Project 11 429 Project 37 238 Project 63 692

Project 12 363 Project 38 745 Project 64 119

Project 13 348 Project 39 541 Project 65 189

Project 14 208 Project 40 287 Project 66 100

Project 15 80 Project 41 266 Project 67 223

Project 16 503 Project 42 407 Project 68 449

Project 17 488 Project 43 1594 Project 69 243

Project 18 238 Project 44 1085 Project 70 823

Project 19 185 Project 45 636 Project 71 158

Project 20 114 Project 46 453 Project 72 195

Project 21 67 Project 47 275 Project 73 226

Project 22 65 Project 48 2463 Project 74 138

Project 23 429 Project 49 598 Project 75 155

Project 24 219 Project 50 283 Project 76 240

Project 25 115 Project 51 630 Project 77 110

Project 26 854 Project 52 1902

Well defined and stable requirements”, “dependence in 3rd party company’s code”,

“multiple domain integration”, “reusable code and complex security requirements” are

the chosen input factors for the ANN model as mentioned before. Each factor is scaled

to obtain input parameter values for the projects as shown in Table 15.

29

Table 15: Factor Scale Definitions and Ranges

Factor Name Scale Definition Range of Values

Well-defined and stable

requirements

From 1 to 5. 1 for weak defining/no

stability, 5 for well-defined and stable

requirements 1 2 3 4 5

Dependence on 3rd

party company's code

1 if there is a dependence on 3rd party

code, 0 if not.
1 0

Multiple domain

integration

Domain number. From 1 to n.

1 . . . n

Reusable code

1 if projects needs to be developed with

reusable code, 0 if not.
1 0

Complex security

requirements

From 1 to 5. 1 if the project doesnt need

any security developments, 5 for highly

complex security needs.
1 2 3 4 5

77 projects’ project manager is asked to give a grade for each project’s factors. For

having a consistent grading, sample case projects’ gradings are shown to be based on.

As a result, each historical project data has been graded for the 5 selected input

variables and historical project data with actual effort is obtained. shown in Table 16.

Table 16: 77 Projects’ Input Data Set

Project

No

Well-defined

and stable

requirements

Dependence

on 3rd

party

company's

code

Multiple

domain

integration

Reusable

code

Complex

security

requirements

Actual

Effort

(m/d)

Project 1 4 0 2 1 4 359

Project 2 3 1 4 1 3 344

Project 3 3 0 2 0 3 292

Project 4 3 1 2 1 3 205

Project 5 4 0 2 0 3 202

Project 6 3 0 2 1 3 171

Project 7 4 1 2 1 3 170

Project 8 5 1 2 0 3 148

Project 9 3 0 2 0 2 84

Project 10 4 1 4 1 2 45

Project 11 2 1 4 1 3 429

Project 12 5 0 10 1 2 363

30

Project 13 3 0 6 1 3 348

Project 14 3 1 2 1 3 208

Project 15 2 1 6 1 1 80

Project 16 2 1 4 0 3 503

Project 17 1 1 4 0 2 488

Project 18 5 1 4 1 3 238

Project 19 4 0 4 0 2 185

Project 20 5 1 4 0 2 114

Project 21 2 0 6 1 1 67

Project 22 3 0 4 1 2 65

Project 23 5 1 6 0 3 429

Project 24 2 1 6 0 1 219

Project 25 4 0 4 0 2 115

Project 26 2 0 6 1 5 854

Project 27 2 0 8 1 3 673

Project 28 2 0 4 1 4 579

Project 29 4 0 6 0 2 280

Project 30 3 1 6 1 2 270

Project 31 5 0 6 0 2 183

Project 32 4 0 6 0 1 75

Project 33 5 0 4 0 2 68

Project 34 4 1 4 1 2 68

Project 35 5 0 4 0 2 62

Project 36 2 1 6 0 1 251

Project 37 3 1 7 0 1 238

Project 38 4 0 8 1 4 745

Project 39 1 1 8 1 2 541

Project 40 4 1 8 1 2 287

Project 41 2 0 6 1 2 266

Project 42 5 1 7 1 3 407

Project 43 1 1 16 0 4 1594

Project 44 4 0 10 1 5 1085

Project 45 4 1 10 0 2 636

Project 46 5 0 12 0 2 453

Project 47 5 0 13 1 1 275

Project 48 1 1 26 1 5 2463

Project 49 4 0 14 1 2 598

Project 50 2 0 10 1 1 283

Project 51 4 1 16 1 1 630

Project 52 3 0 22 1 5 1902

31

Project 53 4 0 18 0 5 1690

Project 54 4 0 18 1 1 655

Project 55 5 0 12 0 1 366

Project 56 1 1 22 1 2 1429

Project 57 1 1 34 1 5 2996

Project 58 3 0 30 1 2 1651

Project 59 3 1 24 1 4 1899

Project 60 1 1 18 1 5 1925

Project 61 4 1 32 1 5 2477

Project 62 4 1 10 1 1 211

Project 63 5 0 20 1 1 692

Project 64 2 1 6 1 1 119

Project 65 3 0 6 1 2 189

Project 66 5 1 6 1 2 100

Project 67 5 0 12 1 1 223

Project 68 5 0 16 1 1 449

Project 69 4 0 8 1 2 243

Project 70 5 0 20 0 1 823

Project 71 5 0 4 1 3 158

Project 72 1 0 4 1 2 195

Project 73 5 0 12 1 1 226

Project 74 4 0 8 0 1 138

Project 75 5 0 1 1 4 155

Project 76 3 1 2 1 3 240

Project 77 5 1 4 0 2 110

3.3 Creating Artificial Neural Network

Effort estimation using ANNs defines parameters in order to find the optimal solution

based on the input parameters as part of the training process. Complex relationships can

be reproduced by ANNs based using appropriate weight calculation techniques

(Aljahdali et al., 2015). The learning process within artificial neural networks is a result

of changes in the network’s weights. The objective is to find a set of weights, which

should map any input to a correct output (Jacobson, 2014).

32

To create a proper ANN; learning type, learning algortihm, hidden layer and neuron

number selection tasks are very important. In the next subchapters these tasks will be

detailed and explained which one is choosen for which reason.

3.3.1 Learning Type Selection

Artificial Neural Network aims to find the optimal solution (output) according to input

variables and values. To find the optimal solution weight assignment to each neuron is

very important. Before finding the best weight assignment way, the problem which

ANN will deal with must be determined carefully. In some kind of problems, both

input and ideal or actual output values can be obtained to find the best solution and train

ANN. On the contrary, in some different cases only the input variable values can be

obtained and an ideal solution is trying to be predicted by obtaining the relationships of

the data sets. According to problem and obtained data type, there are three main

learning types; Supervised Learning, Unsupervised Learning and Reinforcement

Learning.

Supervised learning is a form of regression that relies on example pairs of data: inputs

and outputs of the training set. One or more target values are predicted from input

variable(s) (Agatonovic & Beresford, 2000). When both input and output variables are

provided in the neural network, and error based calculation is possible based on target

output and actual output (Jacobson, 2014). In supervised learning, the input layer

neurons receive data from a data file and the output neurons provide ANN’s response to

the input data. Hidden neurons communicate only with other neurons. Supervised

network with the back propagation learning algorithm is a frequently used ANN which

is excellent at prediction and classification tasks (Agatonovic & Beresford, 2000).

In Unsupervised Learning, there is only a given set input variables and no desirable

output variable. Unsupervised learning is able to find the structure or relationships

between complex input data sets. To group input variables, the system itself must

decide the features which will be used. This is often referred to as self-organization or

33

adaption. (Agatonovic & Beresford, 2000). The widely known examples for

unsupervised learning are clustering, anomaly detection and blind signal seperation.

The third popular learning type is Reinforcement Learning which is very similar to

Supervised Learning. ‘Reinforcement learning is the problem of getting an agent to act

in the world so as to maximize its rewards.’ (Murphy, 1998). In this learning type,

instead of actual outputs a reward is given to neural network.

Each learning type is suitable for some specific problems. Supervised learning is

generally used for curve fitting problems. Unsupervised learning is suitable for

clustering cases. Reinforcement learning can be used in different problems like blind

signal separation. For our study, supervised learning is suitable as the learning type

since 77 completed project data with input and actual output variables are provided.

Also our aim is to predict output efforts on completion for the software projects.

3.3.2 Learning Algortihm Selection

Learning algorithms are used to obtain weights of each neuron and relationships

between neurons and layers while traning the ANN. The most widely known learning

algorithm for supervised learning is multi-layer perceptron with feed-forward network

and back-propagation learning as mentioned in section 2.3.1.

When feed forward network and back propagation is combined, ANN can progress in

both directions from input to output and/or from output to input. Also, feed forward

back propagation can have relationships between the neurons in the same layer. So that

neurons in the same layer can have linear or non linear relationships. The goal of this

algorithm is to decrease global error (Chiang & Chang, 2004). Since Feed Forward

Back Propagation provides complex, non linear relationships between neurons to reach

the goal and to find the optimal solution, in our thesis study, ANN will be trained by

Feed Forward Back Propagation learning algorithm.

34

There are many different types of Back Propagation functions which can be used for

supervised learnings. Bayesian Regularization Back Propagation and Levenberg-

Marquardt Back Propagation are the mostly adapted functions for back propagation

algorithms.

3.3.2.1 Levenberg-Marquardt

The Levenberg–Marquardt algorithm blends the steepest descent method and the

Gauss–Newton algorithm. Fortunately, it inherits the speed advantage of the Gauss–

Newton algorithm and the stability of the steepest descent method (Yu & Wilamowski,

2010). The update rule of Levenberg-Marquardt (LM) algortihm is as in the Equation

12 (Yu & Wilamowski, 2010).

 ∆𝑤 = (𝐽𝑇𝐽 + 𝜇Ι)−1𝐽𝑇𝑒 (12)

In the equation, w is the weight factor, I is the identity matrix. 𝝁 is the combination

coefficient which is always positive, generally starts as a small value like 0.1. J is the

Jacobian Matrix (P X M) X M. 𝐽𝑇𝐽 is also known as Hessian Matrix. e is the error

vector (P X M) X 1. J and e are defined as;

 𝐽 =

[

𝜕𝑒11

𝜕𝑤1
⋯

𝜕𝑒11

𝜕𝑤𝑁

⋮ ⋱ ⋮
𝜕𝑒𝑃𝑀

𝜕𝑤1
⋯

𝜕𝑒𝑃𝑀

𝜕𝑤𝑁]

 𝑒 =

[

𝑒11

𝑒12

…
𝑒1𝑀

…
𝑒𝑃1

…
𝑒𝑃𝑀]

 (13)

where P is the number of training patterns, M is the number of outputs, and N is the

number of weights. Elements in error vector e are calculated by;

35

 𝑒𝑃𝑀 = 𝑑𝑃𝑀 − 𝑜𝑃𝑀 (14)

where 𝑑𝑃𝑀 is the desired output and 𝑜𝑃𝑀 is the actual output, respectively, at network

output M when training pattern P.

The training process using Levenberg–Marquardt algorithm is designed as follows (Yu

& Wilamowski, 2010);

1. The total error (SSE) is evaluated with the initial weights which are randomly

generated.

2. Updates in the LM algorithm are done to adjust weights.

As the combination of the steepest descent algorithm and the Gauss–Newton

algorithm, the LM algorithm switches between the two algorithms during the

training process. When the combination coefficient μ is very small (nearly zero),

LM algorithm approaches to Gauss–Newton algorithm where 𝐻 = 𝐽𝑇𝐽 . When

combination coefficient μ is very large, LM algorithm approaches to the steepest

descent method where 𝐻 = 𝐽𝑇𝐽 + 𝜇𝐼 .

3. The total error is evaluated with the new weights.

4. If the current total error is increased as a result of the update, then the step is

retracted (such as reset the weight vector to the precious value) and combination

coefficient μ is increased by a factor of 10 or by some other factors. Then step 2

is applied and another update is tried again.

5. If the current total error is decreased as a result of the update, then the step is

accepted (such as keep the new weight vector as the current one) and the

combination coefficient μ is decresed by a factor of 10 or by the same factor as

step 4.

6. Step 2 is applied with the new weights until the current total error is smaller than

the required value.

36

3.3.2.2 Bayesian Regularization

Bayesian regularization is implemented in the Levenberg - Marquardt algorithm to

minimize a liner combination of squared errors and weights. This implementation is

one of the approaches to stop over-fitting a problem. It also reduces the need to test a

different number of hidden neurons for a problem (Pandya et al., 2017)

Like Levenberg- Marquardt algorithm, Bayesian Regularization, training function

obtains all the weights of neurons by using Levenberg-Marquardt optimization. In

addition to Levenberg-Marquardt optimization, squared errors and weights are

minimized by Bayesian Regularization function and then function determines the

correct combination to provide an ANN which generalizes well. The process is called

Bayesian regularization. Bayesian Regularization obtains a well-defined statistical

problem from a nonlinear regression in the manner of ridge regression (Burden &

Winkler, 2008). The benefit of Bayesian Regularization is that all available data can be

used as training data, which means no test or validation set is needed (Hirschen &

Schafer, 2005). Also it can be a solution for the ‘over fitting’ problems. Bayesian cost

function is as follows;

 𝐶(𝑤) = 𝛽 ∗ 𝐸𝑑 + 𝛼 ∗ 𝐸𝑤 (15)

In the equation 15, C(w) is the cost function. 𝛼 and 𝛽 are the hyperparameters of

Bayesian Regularization that shows which direction must be seek by learning process.

Directions can be minimum error or minimum weight. 𝐸𝑑 is the sum of squared erros

and 𝐸𝑤 is the sum of squared weights. A third variable, gamma 𝛾, indicates the number

of effective weights being used by the network, thus giving an indication on how

complex the network should be (Souza, 2009). Bayesian Regularization works as

follows;

37

1. Jacobian J is computed.

2. Error gradient 𝑔 = 𝐽𝑇𝑒 is computed.

3. Hessian matrix is computed.

4. Cost function C(w) is calculated.

5. (𝐽𝑡𝐽 + 𝜆Ι)𝜎 equation is solved to find 𝜎.

6. Using 𝜎 network weights are updated.

7. Cost function C(w) is recalculated using the updated weights.

7.1 If the cost has not decreased new weights are discarded, 𝜆 is increased. After

that algorithm begins again from step number 5.

7.2 If the sum squared errors has decreased, 𝜆 is decreased.

8. Bayesian hyperparameters are updated by using MacKay’S or Poland’s

formulae.

8.1 𝛾 = 𝑤 − (𝛼 ∗ 𝑡𝑟(𝐻−1))

8.2 𝛽 =
𝑁−𝛾

2∗𝐸𝑑

8.3 𝛼 = 𝑤/(2 ∗ 𝐸𝑤 + 𝑡𝑟(𝐻−1)) [modified Poland’s update], or

𝛼 = 𝛾/(2 ∗ 𝐸𝑤) [original MacKay’s update], where:

8.3.1 w is the number of network parameters (number of weights and

biases)

8.3.2 N is the number of entries in the training set

8.3.3 𝑡𝑟(𝐻−1) is the trace of the inverse Hessian matrix

Another simple flow for Bayesian Regularization Back Propagation is (Yue et al.,

2011);

38

Figure 4: Bayesian Regularization Back Propagation process

Since ANN algorithm and nonlinear relationships are produced as a ‘black box’, it is not

possible before hand to correctly identify which method will be superior, choose

Bayesian Regularization or Levenberg-Marquardt Optimization. In this work, both

training functions will be applied to the ANN to train the network.

3.3.3 Hidden Layer and Neuron Number Selection

In addition to learning type, learning algortihm and training algortihm selection; number

of hidden layers and neurons is another parameter for the ANN model. As Karsoliya

(2012) mentioned; ‘The hidden layer is the collection of neurons which has activation

function applied on it as well as provide an intermediate layer between the input layer

and the output layer’. If the relationship between input data and results is linear then

there is no need for a non-linear complex relationship and so there ise no need for a

39

hidden layer. In contrast, if the relationship is complex or unknown; then at least one

hidden layer is needed to solve the problem.

There is no certain formula for the number of hidden layers. Generally, a single layer is

adequate with optimum number of neurons for creating an ANN for many problems

(Bugmann et al., 2001). In contrast for deep neural networks with many inputs and

outputs, like face recognition, generally two or even much more hidden layers is

needed. In our study, ANNs will be created by using one hidden layer. Since we have 5

inputs and 1 output, there is no need 2 or more hidden layers.

Similarly, there is no way to choose hidden layer neuron number. There are some rule

of thumb methods which forge a bond between input layer neuron number and output

layer neuron number, as an example; the number of hidden layer neurons should be less

than twice of the number of neurons in input layer. But these kind of methods can not

be generalized since the ideal neuron number changes depend of the problem.

Additionally, hidden layer neuron number is very important parameter for the ANN

model because it can cause over fitting or under fitting. ‘If the number of neurons are

less as compared to the complexity of the problem data then “Underfitting” may occur.

Underfitting occurs when there are too few neurons in the hidden layers to adequately

detect the signals in a complicated data set. If unnecessary more neurons are present in

the network, then “Overfitting” may occur.’ (Karsoliya, 2012). In our study, different

number of neurons will be applied to the model from 1 to 100 to see which neuron

number gives the better result.

4. RESULTS

As detailed in chapter 3.3, learning type, learning algortihm, algorithm type, hidden

layer and neuron number selection are the crucial tasks to create a proper ANN. In our

study, learning type is chosen as ‘supervised learning’ since 77 completed software

project data and these projects’ input variable values are obtained. As learning

algorithm, feed forward back propogation will be applied since it can provide complex

non-linear relationships between input variables to achieve the optimum results. Also,

one hidden layer will be used for ANN.

In the next subchapters Bayesian Regularization Back Propagation and Levenberg-

Marquardt Back Propagation will be applied to the ANN model with different neuron

numbers by using Matlab. These two algorithms’ estimation results will be compared

by their Mean Magnitude Relative Error (MMRE) which measures avarage estimation

accuracy. The Magnitude Relative Error (MRE) of each project’s estimate is defined

as;

 𝑀𝑅𝐸 =
|𝑎𝑐𝑡𝑢𝑎𝑙 𝑒𝑓𝑓𝑜𝑟𝑡−𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑒𝑓𝑓𝑜𝑟𝑡|

𝑎𝑐𝑡𝑢𝑎𝑙 𝑒𝑓𝑓𝑜𝑟𝑡
 (16)

Additionally, besides Bayesian Regularization Back Propagation and Levenberg-

Marquardt Back Propagation, the bank’s first estimations and actual efforts will be

compared to compare ANN with the real life scenarios.

41

4.1 Levenberg-Marquardt Back Propagation

In this study, neural network architecture is created on Matlab program by using data

analysis features, especially Neural Network toolbox. Also, a spesific code is used to

create ANN to find the ideal neuron number for the hidden layer. Code can be found in

the appendix. Additionally, all project data is normalized by Neural Network Toolbox

automatically.

Trainlm function is used as Levenberg-Marquardt Back Propagation training algortihm.

%70 of the completed project data is used as training data, %15 of the completed

project data is used as validation data and similarly %15 of the completed project data is

used as test data set. Finally, as noticed before MRE is used find the error ratio of each

project estimation and the best result is obtained with 10 neurons as shown in the Table

17.

Table 17: Levenberg-Marquardt Back Propagation ANN Results

Project

No

Actual Effort on

Completion (m/d)

ANN Results with

Trainlm (m/d)
MRE

1 45 56,53797307 25,63994015

2 62 70,80007183 14,19366425

3 65 65,2196452 0,337915699

4 67 67,08557295 0,127720827

5 68 70,80007183 4,117752695

6 68 56,53797307 16,85592196

7 75 73,23965852 2,347121978

8 80 80,6576506 0,822063248

9 84 86,4456566 2,911495957

10 100 101,4535833 1,453583282

11 110 114,0596731 3,69061191

12 114 114,0596731 0,052344826

13 115 144,5462057 25,69235278

14 119 80,6576506 32,22046168

15 138 144,2760976 4,547896817

16 148 380,9015512 157,365913

42

17 155 169,8075498 9,553257913

18 158 151,8566416 3,888201519

19 170 181,9308698 7,018158727

20 171 170,1692297 0,485830568

21 183 183,0279477 0,015271953

22 185 144,5462057 21,86691584

23 189 78,42173829 58,50701678

24 195 194,7031287 0,15224169

25 202 203,6528837 0,818259276

26 205 209,3596201 2,126643944

27 208 209,3596201 0,653663503

28 211 211,0948401 0,044947908

29 219 235,2453029 7,417946515

30 223 221,3515537 0,739213601

31 226 221,3515537 2,056834659

32 238 238,0749363 0,031485826

33 238 237,6811236 0,133981682

34 240 209,3596201 12,76682496

35 243 251,2371012 3,389753582

36 251 235,2453029 6,276771766

37 266 268,5301725 0,95119267

38 270 271,0017357 0,371013234

39 275 286,3460033 4,125819375

40 280 288,746181 3,12363607

41 283 281,9557697 0,368985959

42 287 284,7407249 0,78720388

43 292 287,6292505 1,496832018

44 344 343,2784847 0,209742833

45 348 348,0150786 0,00433294

46 359 290,740555 19,01377297

47 363 364,9186949 0,528566078

48 366 359,8501545 1,680285648

49 407 405,8337655 0,286544099

50 429 429,5014932 0,116898193

51 429 452,9295502 5,577983729

52 449 450,1336305 0,252478959

53 453 673,2346017 48,61690986

54 488 487,6417129 0,073419496

55 503 645,9804616 28,42553909

56 541 539,9577917 0,192644794

43

57 579 578,9934435 0,001132386

58 598 597,0298297 0,162235839

59 630 629,7167462 0,044960924

60 636 636,0804048 0,012642258

61 655 653,8721487 0,172191033

62 673 472,8498001 29,73999999

63 692 762,4122108 10,17517498

64 745 744,8464449 0,020611418

65 823 823,9177239 0,111509583

66 854 2686,90309 214,6256546

67 1085 1273,146488 17,34069017

68 1429 1429,095656 0,006693943

69 1594 1594,006492 0,000407281

70 1651 1550,61249 6,080406429

71 1690 1690,269499 0,015946716

72 1899 1900,377159 0,072520211

73 1902 5521,816293 190,316314

74 1925 1923,733761 0,065778646

75 2463 2463,410339 0,016660125

76 2477 3380,769629 36,4864606

77 2996 2996,0405 0,001351817

As a result of ANN with trainlm training function, MMRE is calculated as 13,66224842

by using formula X where n is project number.

 𝑀𝑀𝑅𝐸 =
∑ 𝑀𝑅𝐸𝑖

𝑛
𝑖=1

𝑛
 (17)

Additionaly, ‘Neural Network Training Regression’ diagrams are used to analyze the

relationships between output and target results. For our study, target result is the

completed projects’ actual efforts and output is the result from ANN. If the R is equals

to 1, this indicates that there is a perfect linear relationship between outputs and targets.

On the contrary, when R is close to 0, then there is no linear relationship.

In the diagram, it is obvious that there is a nearly perfect linear relationship between

output and target data for the training set since R is 0,99992. Automatic normalization

44

has also an effect on R value. Similarly, R is 0,98764 for validation set, which is also

very close to linear relationship. But in the test set R is 0,86946, which is getting close

to non-linear relationship. These values can be a foreshow for a possible over fitting

problem. For training set, there is nearly a perfect fit between target and output results,

but when new data is added like test data set, fitting is getting poor.

Figure 5: Neural Network Training Regression for Levenberg-Marquardt Algortihm

45

4.2 Bayesian Regularization Back Propagation

As Bayesian Regularization Back Propagation training algortihm Trainbr function is

used. %70 of the completed project data is used as training data, %15 of the completed

project data is used as validation data and similarly %15 of the completed project data is

used as test data set. To compare Levenberg-Marquardt Back Propagation, MRE and

MMRE is used to find error ratio.

As noticed different neuron numbers from 1 to 100 have been tried to find the optimum

results and the best result is obtained with 86 neurons as shown in the Table 18. MMRE

is calculated from MRE results, and found as 8,661127888.

Table 18: Bayesian Regularization Back Propagation ANN Results

Project

No

Actual Effort on

Completion (m/d)

ANN Results with

Trainbr (m/d)
MRE

1 45 57,62967209 28,06593799

2 62 62,02423948 0,03909593

3 65 77,72991904 19,58449083

4 67 62,60849647 6,55448288

5 68 62,02423948 8,787883123

6 68 57,62967209 15,25048222

7 75 58,70231467 21,73024711

8 80 99,56125324 24,45156655

9 84 111,0246125 32,17215778

10 100 122,3250729 22,32507294

11 110 97,17949555 11,65500404

12 114 97,17949555 14,75482846

13 115 135,0863715 17,46641004

14 119 99,56125324 16,33508131

15 138 161,5858246 17,09117723

16 148 186,7728613 26,19787926

17 155 193,6078396 24,90828359

18 158 163,159314 3,265388602

46

19 170 152,3094605 10,40619968

20 171 162,5340565 4,950844138

21 183 169,3965617 7,433572832

22 185 135,0863715 26,9803397

23 189 191,300907 1,217411112

24 195 213,9985554 9,742848923

25 202 214,3018872 6,090043191

26 205 216,2538358 5,489676019

27 208 216,2538358 3,968190307

28 211 212,0965322 0,519683504

29 219 249,8165354 14,07147736

30 223 223,7057422 0,316476309

31 226 223,7057422 1,015158332

32 238 219,8520901 7,625172231

33 238 221,7092836 6,84483882

34 240 216,2538358 9,894235067

35 243 249,1312768 2,523159163

36 251 249,8165354 0,471499835

37 266 256,1740635 3,693961091

38 270 245,7152779 8,994341508

39 275 285,0131794 3,641156145

40 280 241,2768318 13,82970293

41 283 284,6708258 0,590397822

42 287 309,9167991 7,984947418

43 292 290,7336411 0,433684568

44 344 342,9041087 0,318573058

45 348 400,208444 15,00242644

46 359 310,6945223 13,45556481

47 363 316,2238911 12,88598042

48 366 309,1568471 15,5309161

49 407 416,1026972 2,236534943

50 429 409,7623531 4,484299978

51 429 432,7967803 0,885030375

52 449 473,4376027 5,442673214

53 453 515,8255205 13,86876833

54 488 419,399666 14,05744549

55 503 536,8730937 6,734213464

56 541 509,3516666 5,849969208

57 579 556,8579155 3,824194216

58 598 625,2146772 4,550949368

47

59 630 604,6991779 4,016003505

60 636 533,5649493 16,10614005

61 655 656,643127 0,250859081

62 673 586,8694426 12,79800258

63 692 732,795657 5,895326156

64 745 692,8144676 7,004769447

65 823 796,3994026 3,232150355

66 854 913,8148994 7,004086579

67 1085 1060,890765 2,222049342

68 1429 1456,281499 1,909132207

69 1594 1621,620095 1,732753757

70 1651 1753,037881 6,180368319

71 1690 1682,039759 0,471020183

72 1899 1917,32962 0,96522487

73 1902 1922,528584 1,079315654

74 1925 1909,865408 0,786212595

75 2463 2417,081211 1,864343836

76 2477 2490,676357 0,552133927

77 2996 2865,825967 4,344927657

‘Neural Network Training Regression’ results are shown below. Comparing to

Levenberg-Marquardt Back Propagation R values are for all data sets are very close 1,

which indicates a nearly linear relationship between target and output data sets.

Automatic normalization has also an effect on R value. Also, it can be said that, there is

no spesific overfitting or underfitting problems, since R values for test and validation

data sets are nearly similar with the R value of training data set.

48

Figure 6: Neural Network Training Regression for Bayesian Regularization

4.2.1 Bayesian Regularization Back Propagation Results According to Project Size

As detailed in previous section, the best result with minimum MMRE is found with

Bayesian Regularization Back Propagation algorithm. Since project data set includes 77

projects with different sizes (m/d), MMRE is calculated for different project sizes, to

see if Bayesian Regularization estimates more accurately on a specific project size.

49

77 projects have differents efforts on completion which ranges between 45 m/d to 2996

m/d. 45 m/d to 100 m/d projects are grouped as “small project”, 101 m/d to 1000 m/d

projects are grouped as “medium project” and 1001 m/d to 3000 m/d projects are

groped as “large project”.

Based on Table 18, for each group MMRE is calculated again. As a result; as given in

Table 19, for small projects, MMRE is 17,8961417. For medium projects, MMRE is

8,31853478. And for the large projects, MMRE is 2,00977112. It is obvious that, the

existing ANN with Bayesian Regularization Back Propagation gives better estimation

with large projects.

According to the results; it can be said that ANN performance shows a change depend

on project size. As a future work, different ANNs can be created according to the

project size. Also domain number is another important indicator of project size which

is used in real-life scenerios. In this sense, project size and domain number relationship

can be studied and new ANNs can be created within this context.

Table 19: MMRE Results According to Project Size

Type Definition MMRE

Small Project Actual effort at completion is between 45

m/d and 100 m/d.
17,8961417

Medium Project Actual effort at completion is between

101 m/d and 1000 m/d.
8,31853478

Large Project Actual effort at completion is between

1001 m/d and 3000 m/d.
2,00977112

4.2.2 Sensitivity Analysis

5 input variables are selected according to expert opinion survey results as valuable to

estimate software project effort accurately. As detailed in previous sections, ANN with

Bayesian Regularization Back Propagation gives the best result with minimum MMRE

for estimations.

50

In sensitivity analysis, an ANN is created with the top 4 input variables to see if ANN

can estimate more accurately or same with less variables. These variables are “well-

defined and stable requirements”, “dependency on 3rd party company’s code”, “multiple

domain integration” and “reusable code”.

ANN is created with Bayesian Regularization Back Propagation algorithm and 1 hidden

layer. ANN gave the best results with 27 neurons. In Table 20, the estimations and

MRE values are shown. As a result, ANN made estimation with 0,70274273 MMRE

which is significantly higher error margin than the main ANN with 5 input variables.

Table 20: MRE values for the ANN with 4 input variables

Project No
Actual Effort on

Completion (m/d)

ANN Results with 4

Input Variables (m/d)
MRE

1 359 242,0867316 0,3256637

2 344 180,0120917 0,476709036

3 292 141,0432109 0,516975305

4 205 109,9355507 0,463729021

5 202 84,51858176 0,581591179

6 171 233,5423411 0,365744685

7 170 146,6761717 0,13719899

8 148 98,1159214 0,337054585

9 84 141,0432109 0,679085844

10 45 210,7937027 3,684304505

11 429 224,8168113 0,475951489

12 363 403,9540546 0,112821087

13 348 399,1101361 0,146868207

14 208 109,9355507 0,471463698

15 80 312,0710374 2,900887968

16 503 239,1974985 0,524458254

17 488 458,9901451 0,059446424

18 238 261,2929683 0,097869615

19 185 182,4884854 0,013575755

20 114 175,038386 0,535424439

21 67 406,2790251 5,063866046

51

22 65 311,3036219 3,789286492

23 429 261,4345923 0,390595356

24 219 381,6294953 0,742600435

25 115 182,4884854 0,586856395

26 854 406,2790251 0,524263437

27 673 527,6115666 0,216030362

28 579 300,9720439 0,480186453

29 280 294,8299631 0,052964154

30 270 259,4549882 0,039055599

31 183 173,5946856 0,051395161

32 75 294,8299631 2,931066174

33 68 89,18871215 0,311598708

34 68 210,7937027 2,099907393

35 62 89,18871215 0,438527615

36 251 381,6294953 0,520436236

37 238 332,2622961 0,396060068

38 745 447,9706864 0,398697065

39 541 580,7662086 0,073505007

40 287 359,6054559 0,252980683

41 266 406,2790251 0,527364756

42 407 349,7033741 0,140777951

43 1594 1647,6724 0,033671518

44 1085 534,9429876 0,506964988

45 636 503,4993453 0,208334363

46 453 513,6365584 0,133855537

47 275 517,1021182 0,880371339

48 2463 2324,647024 0,056172544

49 598 748,6052585 0,251848258

50 283 666,951028 1,356717413

51 630 784,5553473 0,245325948

52 1902 1662,303988 0,12602314

53 1690 1337,193803 0,208761063

54 655 1028,68506 0,570511542

55 366 513,6365584 0,403378575

56 1429 1896,830519 0,327383148

57 2996 2988,870715 0,002379601

58 1651 2543,337445 0,540483007

59 1899 1663,262365 0,124137775

60 1925 1454,302278 0,244518297

61 2477 2352,036889 0,050449379

52

62 211 447,1557281 1,11922146

63 692 905,2989529 0,308235481

64 119 312,0710374 1,622445693

65 189 399,1101361 1,111693842

66 100 319,0140474 2,190140474

67 223 476,5650577 1,137063039

68 449 658,974137 0,467648412

69 243 447,9706864 0,843500767

70 823 1215,50113 0,476915103

71 158 236,3516264 0,49589637

72 195 334,6148778 0,715973732

73 226 476,5650577 1,108694946

74 138 423,6250019 2,069746391

75 155 171,2266961 0,104688362

76 240 109,9355507 0,541935205

77 110 175,038386 0,591258055

‘Neural Network Training Regression’ results are shown below. R value is 0,93443 and

lower than Bayesian Back Back Propagation with 5 input variables. For training set, R

is 0,95095 which is close to 1 that means a nearly linear relationship between target and

output data sets. In test set R value is 0,92305 and in validation set R value is 0,91845

which indicates a possible fitting problem comparing to training set.

As a result, for software effort estimation, ANN with 5 input variables gives much

better results with less error margin comparing to ANN with 4 variables. For future

work, ANN variable number may be increased to see if ANN would estimate better

comparing to ANN with less variables.

53

Figure 7: Neural Network Training Regression for Sensitivity Analysis

4.3 The Bank’s Estimations

The Bank which provides the completed projects’ data uses a custom estimation

method, based on the number of the components that will be developed in the projects.

These components can be interfaces, services, batches or reports and each component

has a specific coefficient for the estimation according to their complexity group as

simple, average or complex. At the beginning of the project, these components are

estimated by the domain managers and experts and then project estimation is obtained.

54

In Table 21 baseline estimations for the completed projects and MRE values are shown.

As a result, MMRE is found as 25,92084985 which is very high comparing to ANN

results both for Levenberg-Marquardt Back Propagation and Bayesian Regularization

Back Propagation.

The bank which we gathered data, spent 160.000 m/d (actual effort) for IT projects in

2016. By using the bank’s existing effort estimation model, the estimations at

beginning of the projects were like ∓ %25, which means approximately 120.000 m/d or

200.000 m/d. By using ANN model which is created, the estimation could be 172.800

m/d or 147.200 m/d based on ∓ %8,6 MMRE of Bayesian Regularization. That means

27.200 m/d resources saving for the bank annually. As we assume that 1 person

(resource) works 250 m/d in a year, 27.200 m/d means 109 resources will be saved

which is very critical for the annual budget.

Table 21: MRE values for the bank’s estimation

Project No
Actual Effort on Completion

(m/d)

Baseline Estimation

(m/d)
MRE

1 45 69 53,33333333

2 62 80 29,03225806

3 65 65 0

4 67 50 25,37313433

5 68 77 13,23529412

6 68 44 35,29411765

7 75 47 37,33333333

8 80 90 12,5

9 84 87 3,571428571

10 100 100 0

11 110 110 0

12 114 100 12,28070175

13 115 117 1,739130435

14 119 120 0,840336134

15 138 124 10,14492754

16 148 110 25,67567568

17 155 144 7,096774194

18 158 167 5,696202532

55

19 170 135 20,58823529

20 171 60 64,9122807

21 183 195 6,557377049

22 185 191 3,243243243

23 189 150 20,63492063

24 195 143 26,66666667

25 202 90 55,44554455

26 205 244 19,02439024

27 208 250 20,19230769

28 211 290 37,44075829

29 219 259 18,26484018

30 223 200 10,31390135

31 226 231 2,212389381

32 238 250 5,042016807

33 238 430 80,67226891

34 240 290 20,83333333

35 243 275 13,16872428

36 251 270 7,569721116

37 266 350 31,57894737

38 270 149 44,81481481

39 275 272 1,090909091

40 280 300 7,142857143

41 283 250 11,66077739

42 287 382 33,1010453

43 292 290 0,684931507

44 344 415 20,63953488

45 348 570 63,79310345

46 359 300 16,43454039

47 363 368 1,377410468

48 366 442 20,76502732

49 407 373 8,353808354

50 429 444 3,496503497

51 429 780 81,81818182

52 449 560 24,72160356

53 453 807 78,14569536

54 488 380 22,13114754

55 503 275 45,32803181

56 541 462 14,6025878

57 579 100 82,72884283

58 598 738 23,41137124

56

59 630 710 12,6984127

60 636 829 30,34591195

61 655 700 6,870229008

62 673 802 19,1679049

63 692 600 13,29479769

64 745 661 11,27516779

65 823 1384 68,16524909

66 854 600 29,74238876

67 1085 2000 84,33179724

68 1429 1898 32,82015395

69 1594 805 49,49811794

70 1651 2000 21,13870382

71 1690 2277 34,73372781

72 1899 1040 45,23433386

73 1902 1178 38,06519453

74 1925 2740 42,33766234

75 2463 1970 20,01624036

76 2477 2010 18,85345176

77 2996 5200 73,564753

5. CONCLUSION

Software projects are essential tools of a typical organization to develop new

applications and platforms. However, mostly due to inherent complexities of these

projects combined with limited resources and time constraints, projects tend to

overshoot initial resource estimations. Moreover, as software projects continually are

added to the list of current tasks or changed to respond to changing customer needs

and/or competitors’ offerings, accurate effort estimations are needed to manage

resources efficiently/effectively. In literature, different methods and models have been

proposed to calculate software projects’ efforts. Though, these approaches tend to fail

in real life scenarios due to the fact that own organization based tailored solutions are

usually required to correctly estimate teams’ efforts.

Artificial neural networks with the ability to handle complex relationships and to adapt

to changing conditions seems to attract a lot of attention recently. Software

development effort estimation is one the areas that will benefit from adaptable and

learning frameworks. Therefore, in this thesis we build a software estimation model by

using neural network methodology. The features for the network were chosen as a

result of a survey realized at one of the largest banks in Turkey. The findings suggest

that current approaches used at the bank mostly lack accuracy and ANN based

methodology is handling the uncertainties and complexities pretty effectively and

therefore is a superior approach than the classical algorithmic estimation models at least

for the current scenario.

As future work, historical project data set could be extended to handle possible

overfitting issues of the neural network model. In addition, different ANNs can be

created for different size of projects for effort estimation by grouping projects based on

58

domain number. Also, input variable set could be augmented by using other preselected

factors. Similarly, to generalize effort estimation model, input variable selection

surveys can be realized with IT experts from different sectors like telecom or insurance.

REFERENCES

Abts, C., Horowitz, E., Brown, A.W., Madachy, R., Chulani, S., Reifer, D., Clark B.,

Steece B. (2000). COCOMO II Model Definition Manual. URL:

http://csse.usc.edu/csse/research/COCOMOII/cocomo2000.0/CII_modelman2000.0.pdf

Agatonovic-Kustrin, S., Beresford, R. (2000). Basic concepts of artificial neural

network (ANN) modeling, Journal of Pharmaceutical and Biomedical Analysis: 22 (5) :

717–727.

Aljahdali, S., Sheta, A.F., Debnath, N.C. (2015). Estimating Software Effort and

Function Point Using Regression, Support Vector Machine and Artificial Neural

Networks Models, 12th International Conference of Computer Systems and

Applications, Marrakech, Morocco, pp. 1-8.

Baik, J. (2000). The Effects of Case Tools on Software Development Effort, Doctoral

dissertation, University of Southern California.

Banerjee, G. (2001). Use Case Points - An Estimated Approach.

URL: http://www2.fiit.stuba.sk/~bielik/courses/msi-slov/reporty/use_case_points.pdf

Borade, J.G., Khalkar, V. (2013). Software Project Effort and Cost Estimation

Techniques. IJARCSSE [online]. 3 (8).

URL: http://www.ijarcsse.com/docs/papers/Volume_3/8_August2013/V3I7-0468.pdf

Burden, F., Winkler, D. (2008). Bayesian regularization of neural networks. URL:

https://www.ncbi.nlm.nih.gov/pubmed/19065804

Chandrasekaran, S., Gudlavalleti, S., Kaniyar S. (2014). Achieving success in large,

complex software projects. URL: http://www.mckinsey.com/business-functions/digital-

mckinsey/our-insights/achieving-success-in-large-complex-software-projects

Chiang, Y.-M., Li-Chiu Chang, F.-J. C. (2004). Comparison of static-feedforward and

dynamic-feedback, Journal of Hydrology: 290 (3-4) : 297–311.

Cockburn A. (2011). Writing Effective Use Cases, 23rd edn, Addison-Wesley US.

Cohn, M. (2015). Estimating with Use Case Points. URL:

https://www.mountaingoatsoftware.com/articles/estimating-with-use-case-points

http://csse.usc.edu/csse/research/COCOMOII/cocomo2000.0/CII_modelman2000.0.pdf
http://www2.fiit.stuba.sk/~bielik/courses/msi-slov/reporty/use_case_points.pdf
http://www.ijarcsse.com/docs/papers/Volume_3/8_August2013/V3I7-0468.pdf
https://www.ncbi.nlm.nih.gov/pubmed/19065804
http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/achieving-success-in-large-complex-software-projects
http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/achieving-success-in-large-complex-software-projects
https://www.mountaingoatsoftware.com/articles/estimating-with-use-case-points

Finnie, G.R., Wittig, G.E. (1997). A comparison of software effort estimation

techniques: Using function points with neural networks, case-based reasoning and

regression models. Journal of Systems and Software [online]. 39 (3), pp. 281-289. URL:

http://www.sciencedirect.com/science/article/pii/S0164121297000551 [accessed 24

March 2017].

Gabrani, G. and Saini, N. (2016). Effort Estimation Models Using Evolutionary

Learning Algorithms for Software Development, Symposium on Colossal Data Analysis

and Networking, CDAN'16, Indore, India, pp. 1-6.

Hira, A. , Sharma, S. Boehm, B. (2016). Calibrating COCOMO® II for Projects with

High Personnel

Turnover, Proceedings of the International Conference on Software and Systems

Process, ICSSP '16 , ACM New York, NY, USA, pp. 51-55.

Hirschen, K. and Schafer, M. (2005). Bayesian regularization neural networks for

optimizing

fluid flow processes. Comput. Methods Appl. Mech. Engrg. [online]. 195 (7-8), pp.

481-500. URL: http://www.sciencedirect.com/science/article/pii/S0045782505000617

[accessed March 26, 2017].

Jacobson, L. (2014). Introduction to Artificial Neural Networks Part 2 - Learning. URL:

http://www.theprojectspot.com/tutorial-post/introduction-to-artificial-neural-networks-

part-2-learning/8

Jorgensen M., Shepperd M., (2007). A Systematic Review Of Software Development

Cost Estimation Studies, IEEE Transactions on Software Engineering [online]. 33 (1),

pp. 33-53. URL: http://ieeexplore.ieee.org/document/4027147/ [accessed 1 May 2017].

Karsoliya, S. (2012). Approximating Number of Hidden layer neurons in Multiple

Hidden Layer BPNN Architecture, International Journal of Engineering Trends and

Technology [online]. 3 (6), pp. 717-717. URL: http://ijettjournal.org/volume-3/issue-

6/IJETT-V3I6P206.pdf [accessed 1 May 2017].

Kumari, W. and Pushkar, S. (2013). Performance Analysis of the Software Cost

Estimation Methods: A Review. IJARCSSE [online]. 3 (7). URL:

http://www.ijarcsse.com/docs/papers/Volume_3/7_July2013/V3I7-0247.pdf

Leinonen, J. (2016). Evaluating Software Development Effort Estimation Process in

Agile Software Development Context, Master’s Thesis, University of Oulu.

http://www.sciencedirect.com/science/article/pii/S0045782505000617
http://www.theprojectspot.com/tutorial-post/introduction-to-artificial-neural-networks-part-2-learning/8
http://www.theprojectspot.com/tutorial-post/introduction-to-artificial-neural-networks-part-2-learning/8
http://ieeexplore.ieee.org/document/4027147
http://www.ijarcsse.com/docs/papers/Volume_3/7_July2013/V3I7-0247.pdf

Lokan, C.J. (2000). An empirical analysis of function point adjustment factors.

Information and Software Technology [online]. 42 (9), pp. 649–659. URL:

http://www.sciencedirect.com/science/article/pii/S0950584900001087 [accessed March

26, 2017].

Mathworks (2016): trainbr. URL:

https://www.mathworks.com/help/nnet/ref/trainbr.html

May, R., Dandy, G., Maier, H. (2011). Review of Input Variable Selection Methods for

Artificial Neural Networks, Artificial Neural Networks - Methodological Advances and

Biomedical Application, InTech, Chapter 3.

Mulcahy R. (2015). Rita Mulcahy's PMP Exam Prep, eight edn, RMC Publications US.

Murphy, K. (1998). A brief introduction to reinforcement learning. URL:

http://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html

Negnevitsky M. (2002). Artificial Intelligence A Guide to Intelligent Systems, second

edn, Pearson England

Nielsen M. (2017): Using Neural Nets to Recognize Handwritten Digits. URL:

http://neuralnetworksanddeeplearning.com/chap1.html

Pandya, D.A., Dennis, B.H., Russell, R.D. (2017). A computational fluid dynamics

based artificial neural network model to predict solid particle erosion, WEAR [online].

Vol 378-379, pp. 198-210. URL: http://dx.doi.org/10.1016/j.wear.2017.02.028

[accessed 1 May 2017]

Rafiq, M.Y., Bugmann, G., Easterbrook, D.J. (2001). Neural network design for

engineering applications, Computers and Structures [online]. 79 (17), pp. 1541-1552.

URL: http://www.sciencedirect.com/science/article/pii/S0045794901000396 [accessed

1 May 2017].

Ren, A. and Yun C. (2013). Research of Software Size Estimation Method,

International Conference on Cloud and Service Computing, CSC 2013, Beijing, China,

pp. 154-155.

Ribu, K. (2001). Estimating Object-Oriented Software Projects with Use Cases, Master

of Science Thesis, University of Oslo.

Rush, C., Roy, R. (2001). Expert judgement in cost estimating: Modelling the reasoning

process, Concurrent Engineering [online]. 9 (4), pp. 271-284. URL:

https://doi.org/10.1177/1063293X0100900404 [accessed 1 May 2017].

https://www.mathworks.com/help/nnet/ref/trainbr.html
http://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
http://neuralnetworksanddeeplearning.com/chap1.html

Sadhu, A.K. (2014). DELPHI TECHNIQUE FOR TECHNOLOGY FORECASTING.

URL: http://managementversity.com/delphi-technique/

Santani, D., Bundele, M., Rijwani, P. (2014). Artificial Neural Networks for Software

Effort Estimation: A Review, IJAEST [online]. V3/N3, pp. 193-200. URL:

http://www.ijaestonline.com/admin/post_image/1419591344_Artificial_Neural_Networ

ks_for_Software_Effort_Estimation_A_Review.pdf [accessed 1 May 2017].

Souza, C. (2009). Neural Network Learning by the Levenberg-Marquardt Algorithm

with Bayesian Regularization (part 2). URL: http://crsouza.com/2009/11/18/neural-

network-learning-by-the-levenberg-marquardt-algorithm-with-bayesian-regularization-

part-2/

Trendowicz, A., Münch, J., Jeffery, R. (2011). State of the Practice in Software Effort

Estimation: A Survey and Literature, Central and East European Conference on

Software Engineering Techniques, CEE-SET 2008, Brno, Czech Republic, pp. 232-245.

Usharani, K., Vignaraj Ananth, V., Velmurugan, D. (2016). A Survey on Software

Effort Estimation,

International Conference on Electrical, Electronics, and Optimization Techniques,

ICEEOT 2016, Chennai, India pp. 505-509

Wilamowski, B.M., Yu, H. (2010). Improved Computation for Levenberg–Marquardt

Training, IEEE [online]. 21 (6), pp. 930-937. URL:

http://ieeexplore.ieee.org/document/5451114/ [accessed 1 May 2017].

Wilamowski, B.M., Yu, H. (2011). Levenberg–Marquardt Training, Industrial

Electronics Handbook, vol. 5 – Intelligent Systems, CRC Press US, pp. 12-1 to 12-15.

Yue, Z., Songzheng, Z., Tianshi, L. (2011). Bayesian Regularization BP Neural

Network Model for Predicting Oil-gas Drilling Cost, 2011 International Conference on

Business Management and Electronic Information, Guangzhou, pp. 483-487.

http://managementversity.com/delphi-technique/
http://crsouza.com/2009/11/18/neural-network-learning-by-the-levenberg-marquardt-algorithm-with-bayesian-regularization-part-2/
http://crsouza.com/2009/11/18/neural-network-learning-by-the-levenberg-marquardt-algorithm-with-bayesian-regularization-part-2/
http://crsouza.com/2009/11/18/neural-network-learning-by-the-levenberg-marquardt-algorithm-with-bayesian-regularization-part-2/

APPENDICES

Appendix A

% Solve an Input-Output Fitting problem with a Neural Network
% Script generated by Neural Fitting app
% Created 29-Dec-2016 15:39:43
%
% This script assumes these variables are defined:
%
% Input - input data.
% Output - target data.

x = Input;
t = Output;
performance_history = [];
trainPerformance_history = [];
testPerformance_history = [];
network_performance_history = [];
error_percentage_history = [];
% Choose a Training Function
% For a list of all training functions type: help nntrain
% 'trainlm' is usually fastest.
% 'trainbr' takes longer but may be better for challenging problems.
% 'trainscg' uses less memory. Suitable in low memory situations.
trainFcn = 'trainbr'; % Bayesian Regularization backpropagation.

% Create a Fitting Network

hiddenLayerSize = [86];
net = feedforwardnet(hiddenLayerSize,trainFcn);
net.layers{1}.transferFcn = 'tansig';
% net.layers{2}.transferFcn = 'purelin';
% net.layers{3}.transferFcn = 'purelin';
% net.layers{4}.transferFcn = 'logsig';
% % Choose Input and Output Pre/Post-Processing Functions
% For a list of all processing functions type: help nnprocess
net.input.processFcns = {'removeconstantrows','mapminmax'};
net.output.processFcns = {'removeconstantrows','mapminmax'};
% Setup Division of Data for Training, Validation, Testing
% For a list of all data division functions type: help nndivide
net.divideFcn = 'dividerand'; % Divide data randomly
net.divideMode = 'sample'; % Divide up every sample
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;
net.trainParam.max_fail=1000;
net.trainParam.epochs=10000;
net.trainParam.lr=0.05;
net.trainParam.mc=0.9;
% net.trainParam.mu_max = 1e20;
% Choose a Performance Function

% For a list of all performance functions type: help nnperformance
net.performFcn = 'mse'; % Mean Squared Error

% Choose Plot Functions
% For a list of all plot functions type: help nnplot
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ...
 'plotregression', 'plotfit'};

% Train the Network
[net,tr] = train(net,x,t);

% Test the Network
y = net(x);
e = gsubtract(t,y);
error_percentage = sum(abs(e./t))/length(t);
performance = perform(net,t,y);

% Recalculate Training, Validation and Test Performance
trainTargets = t .* tr.trainMask{1};
valTargets = t .* tr.valMask{1};
testTargets = t .* tr.testMask{1};
trainPerformance = perform(net,trainTargets,y)
valPerformance = perform(net,valTargets,y)
testPerformance = perform(net,testTargets,y)

network_performance_history = [network_performance_history; hiddenLayerSize performance];
trainPerformance_history = [trainPerformance_history trainPerformance];
testPerformance_history = [testPerformance_history testPerformance];
error_percentage_history = [error_percentage_history; hiddenLayerSize error_percentage];
% View the Network
% view(net)

% Plots
% Uncomment these lines to enable various plots.
%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, ploterrhist(e)
%figure, plotregression(t,y)
%figure, plotfit(net,x,t)

% Deployment
% Change the (false) values to (true) to enable the following code blocks.
% See the help for each generation function for more information.
if (false)
 % Generate MATLAB function for neural network for application
 % deployment in MATLAB scripts or with MATLAB Compiler and Builder
 % tools, or simply to examine the calculations your trained neural
 % network performs.
 genFunction(net,'myNeuralNetworkFunction');
 y = myNeuralNetworkFunction(x);
end
if (false)
 % Generate a matrix-only MATLAB function for neural network code
 % generation with MATLAB Coder tools.
 genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes');
 y = myNeuralNetworkFunction(x);
end

if (false)
 % Generate a Simulink diagram for simulation or deployment with.
 % Simulink Coder tools.
 gensim(net);
end

trainPerformance_avg = mean(trainPerformance_history);
testPerformance_avg = mean(testPerformance_history);
performance_history = [performance_history; hiddenLayerSize trainPerformance_avg
testPerformance_avg];

BIOGRAPHICAL SKETCH

Tuğçe Uğurlu was born in 1988. She attended Gaziantep Anatolian High School in

2002. She studied Mathematics Engineering in Istanbul Technical University between

2005 – 2009. After bachelor, she entered Galatasaray University Industrial Engineering

Master Program in 2009.

In 2010, Uğurlu started working at Yapı Kredi Bank Information Technologies

Department as Business Analyst in Digital Banking Channels division. Currently she is

working as Project Manager at Project and Program Management Office.

