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ABSTRACT 

 

 

 

The software industry is growing rapidly and gaining importance all over the world. 

Nearly all companies and institutions from various industries have software projects to 

develop new applications and platforms.  As required with every project, accurate effort 

estimation has become a crucial problem for the companies, especially for project 

managers.  

 

Since 1970s different methods and models have been developed for estimating software 

projects’ efforts.  The first milestone model was COCOMO, which is a constructive 

method proposed in the late 1970s.  Many different models followed, the most popular 

and usable models being Function Point and Use Case Point.  After 2000s, due to 

advances in technology, Artificial Neural Networks has gained in importance especially 

among the problem domains that benefit from data analysis and self-learning.  Software 

development effort estimation also share similar characteristics as there is typically old 

projects’ data on hand that should help foresee new projects’ efforts.  

 

Therefore, in this study we build a software estimation model by using neural network 

methodology.  The features for the network were chosen as a result of an extensive 

survey.  The applicability of the methodology is demonstrated via real-life software 

project data provided by one of the largest banks in Turkey. 

 

 

 

 

 

 



 

 

ÖZET 

 

 

 

 

 

Yazılım endüstrisi gün geçtikçe hızla büyümekte ve tüm dünyada önem kazanmaktadır. 

Hemen hemen tüm sektörlerden şirketler ve kurumlar yeni uygulama ve platform 

geliştirmek için yazılım geliştirme projeleri yapmaktadır. Bununla beraber yazılım 

projelerinin eforunun doğru tahminlenmesi şirketler için önemli bir sorun haline 

gelmektedir. 

 

1970'lerden bu yana yazılım projelerinin eforunun doğru tahminlenmesi için çeşitli 

çalışmalar yapılmaktadır. Bu çalışmalara öncü olan ilk model COCOMO olarak bilinir. 

COCOMO modelini Kullanım Senaryosu bazlı model UCP ve Fonksiyon bazlı model 

FPA takip etmiştir. 2000'lerden sonra ise, teknolojinin gelişimi ile beraber, Yapay Sinir 

Ağları önem kazandı ve data analizlerinde sıklıkla kullanılmaya başlandı. Yazılım 

projelerinin eforunun tahminlenmesi de tamamlanmış proje datalarının kullanılabilecek 

olması nedeniyle Yapay Sinir Ağları'nı kullanmaya uygun karakteristik özelliklere 

sahiptir. 

 

Bu çalışmada yazılım projelerinin eforunun tahmin edilebileceği bir yapay sinir ağı 

oluşturulmuştur. Çalışma kapsamında kullanılan datalar Türkiye'nin en büyük 

bankalarından birinden elde edilmiştir. 



  

 

1. INTRODUCTION 

 

 

A project is a temporary endeavor with a beginning and an end which creates a unique 

product or service (Mulcahy, 2013).  Effort estimation is a prediction of how long a 

development activity will take to finish (Leinoen, 2016).   

 

Since software industry and digitalization gained in importance, software effort 

estimation is the most important problem for IT companies.  McKinsey and Oxford 

University’s study showed that 66 percent of the large software project is over budget 

and 33 percent is over schedule, also 17 percent of the IT projects go so bad so the 

existence of the company is threatened (Chandrasekaran et al., 2014). 

 

Both under estimation and over estimation causes the waste of time, resource, money 

and even prestige lost.  According to Borade and Khalkar (2013) underestimating the 

costs is characterized by budget overruns, under developed functions and poor quality 

end-product.  Overestimation commits too many resources to the projects and could 

lead to lost contracts could mean lost jobs.  Mulhacy (2013) defines the term “padding”, 

which is related with overestimating, as a sign of poor project management which can 

damage reputation of a project manager.   

 

Since 1970s many studies and methods have been publised to overcome software 

project effort estimation problems.  All the methods aim to estimate efforts accurately. 

Here, estimation accuracy simply defines the comparison of the estimate to the actual 

effort that is known after the task has been finished (Leinonen, 2016).  COCOMO is the 

one of the first algortihmic effort estimation models studied in late 1970s.  After 

COCOMO, Use Case Point and Function Point methods have become the de facto 

standard for accurate software efforts estimation. 
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Since 2000s, artificial intelligence and especially neural networks are noticed by the 

software industry for their ability to handle complex relationships between inputs 

(factors/features) and outputs (estimated effort).  Neural networks in this context define 

a supervised learning model which uses historical data to explain the relationship 

between inputs and outputs with the help of so called training algorithms and produce 

outputs for the new scenarios without subjective manual calculations and adjustments. 

The model potentially improves itself by each new data added to retrain the network.  

 

In this thesis, a feed forward neural network model will be proposed to estimate 

software projects’ efforts accurately for the software project department at one of the 

largest banks in Turkey.  Two different learning algorithms will be applied to obtain the 

best output with the minimum error.  The findings will be compared with the current 

approaches applied by the organization.  

 

The remainder of the thesis is organized as follows: in Section 2, related work is 

summarized.  Section 3 presents the methodologies that form the proposed model.  The 

data gathering process and obtained results as part of model evaluation are given in 

Section 4.  Section 5 concludes the study discussing the findings and further study 

possibilities.



 

 

 

2.  LITERATURE REVIEW 

 

 

 

Since 1950, project management and software development have become an important 

issue due to complex requirements of the companies and gaining acceleration in 

technology industry.  Over than 30 years, there is a significant challenge for effective 

resource prediction (Santani et al., 2014). 

 

In the beginning of the studies, researchers had focused on algorithmic models and 

quantative based techniques for effort estimation process.  In 1979, Allan Albrecht 

published a parametric based model, Function Point Analysis (FPA).  At about the same 

time, in late 1970s, The Constructive Cost Model (COCOMO) had been released by 

Barry W. Boehm and improved version of the model had been developed in 1997.  

Another parametric effort estimation model, Use Case Point (UCP) has been developed 

by Gustav Karner. 

 

In 1990s, clustering, case-based reasoning and ANN became effective for predicting 

software effort estimation.  ESTOR, a cased based approach, was developed by 

Vicinanza et al. and it has been claimed that ESTOR performs better than FPA and 

COCOMO on restricted samples.  

 

In 1994, Witting and Finnie applied back propagation algorithm on a multilayer 

perceptron by using ANN.  Similarly, in 1997, they used ANN to produce more 

accurate resource estimation for software projects.  The compared ANN with cased-

based reasoning and FPA models.  As a result, ANN was slightly better than cased-

based reasoning model and much better than FPA (Finnie & Wittig, 1997).  

 

Also, in 1992, Karuannitthi used ANN to predict software reliability and Samson et al. 

(1997) used an Albus multiplayer perceptron in order to predict software effort on the 
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Boehm’s COCOMO dataset and compared linear regression with a neural networks 

approach (Santani et al., 2014). 

 

Khoshgoftaar et al. (2000) presented a case study considering real time software to 

predict the testability of each module from source code static measures.  They consider 

ANNs as promising techniques to build predictive models, because they are capable of 

modeling nonlinear relationships (Santani et al., 2014). 

 

Apart from algorithmic methods, expert judgement based methods are used and 

preffered since they are easy to apply.  In 1950, Delphi Method is conceived by Olaf 

Helmer and Norman Dalkey.  This method attempts to capture expert opinion through a 

group of experts (Rush & Roy, 2001). 

 

As some of them detailed above, there are many effort estimation methods.  Although 

different groupings are found in the literature, three categories are usually used to 

classify estimation methodologies: Expert judgement, algorithmic estimation and 

learning based estimation.   

 

In the following chapters these three categories will be detailed and different methods 

will be discussed including Neural Network Model.   

 

 

 

Figure 1: Effort Estimaton Methods
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2.  1 Expert Judgement Based Methods 

 

The most common used estimation approaches are expert judgement based methods in 

software industry (Jorgensen & Shepperd, 2007).  Since, at the beginning of the 

projects, project team does not have a proper data to estimate the cost, expertise based 

methods are preferred by companies.  Expert judgement based methods generate cost 

estimations based on experts’ or project team’s opinions.  According to Leinonen 

(2016), expert judgement estimation can be used if there is no quantified data for the 

project. 

 

Also lack of time is another reason to choose expert judgement based approaches.  

Thus, taking less time and without gathering detailed data are the main advantages of 

expert judgement methods.  The main disadvantage is, as Boehm et al. (2000) states, 

even if a person has experience, this does not mean that his/her estimates are accurate.  

Furthermore, in real life scenarios, there are many unknowns about project team 

members, who are estimators, make the assumption and double it.  This is usually 

considered as a sign of padding which indicates poor project management (Mulcahy, 

2013). 

 

In the next subchapters three mainly used expert based methods will be detailed which 

are One Point Estimation, Three Point Estimation and Delphi methods.   

 

 

2.1.1 One Point Estimation 

 

In One Point Estimation, the estimator submits one estimate per activity (Mulcahy, 

2013).  For example; the estimator says for one activity the cost will be 5 days.  By 

summing up each activities’ costs, the final number will be the project’s cost.   

 

Rita Mulhacy stated that One Point estimation can be problematic because it can force 

the estimator into padding, also important points like risk and uncertainties can be 

hidden in this method (Mulcahy, 2013). 
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2.1.2 Three Point Estimation 

 

In Three Point Estimation estimators give an optimistis (O), pesimistic (P) and most 

likely (M) estimate for each activity (Mulcahy, 2013).  Three Point estimation can be 

calculated in two different ways according to risk factors of projects.   

 

In Triangular Distribution, a simple avagare formula is applied to estimates.  The 

formula is;  

 

                                                      𝐶𝑜𝑠𝑡 =  
(𝑃+𝑂+𝑀)

3
                                                      (1) 

 

 

Optimistic, pesimistic and most likely estimates have equal weight on triangular 

distribution.   

 

In Beta Distribution, a weighted avarage formula is applied to estimations which give 

stronger consideration to the most likely estimate (Mulcahy, 2013).  The formula is, 

 

 

                                                      𝐶𝑜𝑠𝑡 =  
(𝑃+4𝑂+𝑀)

6
                                                     (2) 

 

 

According to Rita Mulhacy, when a good risk management process is followed, 

generally the most likely estimation occurs.  So that the Beta Distrubiton is advantegous 

in such a case.  

 

2.1.3 Delphi Technique 

 

Delphi Technique is an estimation approach which allows estimators share their 

estimations with others and calibrate their estimations by exchanging the necessary 

information (Kumari & Pushkar, 2013).  Delphi technique steps are as follows; 
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1. Coordinator provides an estimation form with spesification of project to each 

estimator.  

2. Estimators fill out the forms by themselves.   

3. Coordinator sets up a group meeting which estimators can share and discuss their 

estimations. 

4. Coordinator prepares and distributes an iteration form which is a summary of 

estimations.   

5. Step 2 and 3 are applied again until a consensual estimation is obtained.   

 

Although Delphi Technique is good because of interactive aspects, there are some 

drawbacks.  As Sadhu (2014) stated, the tendency in a group is to aggree with the 

majority eventhough individual feels that majority is wrong.   

 

2.2 Algortihmic Models 

 

Algorithmic effort estimation methods consist of mathematical models or calculations 

to provide effort estimation (Usharani et al., 2016).  Most of the algorithmic estimation 

models use project size, environmental and/or technical factors to calculate projects’ 

costs.  Depending on the model, calculation procedure varies. In some models, source of 

line codes (SLOC) is used, whereas others use function or use case points.  Also, factors 

and cost drivers are not common among different methods.  COCOMO and Use Case 

Point are the most acknowledged methods in algorithmic effort estimation models. 

 

COCOMO and Use Case Point are the most known methods in algorithms effort 

estimation models.  In the following subchapters these models will be detailed.   

 

2.2.1 The Constructive Cost Model 

 

The Constructive Cost Model (COCOMO) is an algorithmic effort estimaton model 

developed by Barry W. Boehm in the late 1970s.  The model is based on project size in 

SLOC and factors which are obtained from 63 projects data.  In 1997 COOMO II was 
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developed as a successor of COCOMO and 161 project data are used to obtain factors.  

‘COCOMO II is a parametric cost estimation model that requires size, product and 

personnel attributes as inputs and outputs the estimated effort in Person-Months (PM)’ 

(Boehm et al, 2016).   

 

In COCOMO II, software projects are classified into three groups as organic, semi-

detached and embeded projects.  Organic projects are the projects which have small 

teams or few domains with good experience.  Semi-detached projects are made of 

medium teams and mixed experience team members.  Embeded projects are the projects 

which have strict constraints, many domains and hardware, software and operational 

needs.  Each project type has different coefficients for effort estimation. 

 

Moreover, in COCOMO II there are four types of cost drivers with different multipliers; 

product attributes, platform attributes, personnel attributes and project attributes, see 

Table 1.   

 

Table 1: COCOMO II Effort Multipliers 

 

Effort Multipliers 

Rating Levels and Multipliers 

Very 

Low 
Low Nominal High 

Very 

High 

Extra 

High 

Product 

Factor 

Software Reliability 0.82 0.92 1.00 1.10 1.26 n/a 

Data Base Size n/a 0.90 1.00 1.14 1.28 n/a 

Product Complexity 0.73 0.87 1.00 1.17 1.34 1.74 

Developed for Reusability n/a 0.95 1.00 1.07 1.15 1.24 

Documentation Needs 0.81 0.91 1.00 1.11 1.23 n/a 

Platform 

Factor 

Execution Time Constraint n/a n/a 1.00 1.11 1.29 1.63 

Main Storage Constraint n/a n/a 1.00 1.05 1.17 1.46 

Platform Volatility n/a 0.87 1.00 1.15 1.30 n/a 

Personn

el Factor 

Analyst Capability 1.42 1.19 1.00 0.85 0.71 n/a 

Programmer Capability 1.34 1.15 1.00 0.88 0.76 n/a 

Personnel Continuity 1.29 1.12 1.00 0.90 0.81 n/a 

Applications Experience 1.22 1.10 1.00 0.88 0.81 n/a 

Platform Experience 1.19 1.09 1.00 0.91 0.85 n/a 

Language and Tool 

Experience 1.20 1.09 1.00 0.91 0.84 n/a 

Project 

Factors 

Use of software Tools 1.17 1.09 1.00 0.90 0.78 n/a 

Multisite Development 1.22 1.09 1.00 0.93 0.86 0.80 

Required Development 

Schedule 1.43 1.14 1.00 1.00 1.00 n/a 
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These cost drivers also called as effort multipliers have scale factors from very low to 

very high.  According to scaling, each attribute has a unique coefficient just like project 

types.  Finally, to calculate a software project effort, the given formula is applied; 

 

 

                                     𝐸𝑓𝑓𝑜𝑟𝑡 (𝑃𝑀) = 𝐴 ∗ 𝑆𝑖𝑧𝑒𝐸 ∗ ∏ 𝐸𝑓𝑓𝑜𝑟𝑡 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟𝑖
17
İ=1               (3) 

 

 

The constant A is initially set when the model is calibrated to the project database 

reflecting a global productivity average.  The COCOMO model should be calibrated to 

local data which then reflects the local productivity and improves the model's accuracy 

(Abts et al., 2000).  Size is the lines of codes in thousands (KLOC).  Effort Multipliers 

are the coefficients of attributes which is obtained from Table 1.  The exponent E is a 

collection of five scale factors which is shown in Table 2.  

 

Table 2: COCOMO II Scale Factors 

Scale Factors 

Values 

Very 

Low 
Low Nominal High 

Veryh 

High 

Extra 

High 

Precedentedness 6.20 4.96 3.72 2.48 1.24 0.00 

Development Flexibity 5.07 4.05 3.04 2.03 1.01 0.00 

Architecture Risk Resolution 7.07 5.65 4.24 2.83 1.41 0.00 

Team Cohesion 5.48 4.38 3.29 2.19 1.10 0.00 

Process Maturity 7.80 6.24 4.68 3.12 1.56 0.00 

 

 

Equation 4 defines the exponent E.  In the equation, B is equal to 0.91 which is obtained 

from historical data of COCOMO II.  As mentioned before, COCOMO parameters 

including B, should be calibrated to the local organization for better results. SF is the 

values of each scale factor. 

 

 

                                                   𝐸 = 𝐵 + 0.01 ∗ ∑ 𝑆𝐹𝐽
5
𝐽=1                                             (4) 
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Even though COCOMO is one of the oldest software project estimation models and has 

many versions, it is not used in real life.  Since code lines are not available in early life 

cycle and estimation is based KLOC, COCOMO model has an important disadvantage.  

Also as Ren and Yun (2013) indicated that estimation results vary greatly due to 

different languages and algortihms. 

 

As a result, use of COCOMO in software industry remains ‘marginal’ (Trendowicz et 

al., 2011). 

 

 

2.2.2 Use Case Point Method 

 

Use Case Point (UCP) method is an effort estimation model based on use cases, actors, 

technical and environmental factors.  ‘A use case captures a contract between the 

stakeholders of a system about its behaviour.  The use case describes the system’s 

behaviour under various conditions as the system responds to a request from one of the 

stakeholders, called primary actor’ (Cockburn, 2011). 

 

The main input of UCP method is use cases.  Generally, in medium and large size 

projects there are many use cases and each use case has different number of steps.  In 

UCP method, to calculate Unadjusted Use Case Weight (UUCW), the use cases of the 

projects are groupped into simple, avarage and complex groups according to their step 

numbers.  If transaction number of a use case is smaller than 4 than use case is 

classified as Simple, if transaction number is between 4 and 7 than use case is classified 

as Avarage, if transaction number is bigger than 7 than use is complex. Each complexity 

group has different weights as shown in Table 3. 

 

Table 3: UCP Use Case Complexity Weights 

Use Case Complexity Weight 

Simple 5 

Avarage 10 

Complex 15 
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After classifying use cases of the project, UUCW can be calculated as in Equation 5.  In 

the equation weight is the use case complexity weight in the Table.  Cardinality is the 

number of use cases assigned to complexity class C, as simple, avarage or complex. 

 

 

                                  𝑈𝑈𝐶𝑊 = ∑ 𝑊𝑒𝑖𝑔ℎ𝑡 (𝐶) ∗ 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 (𝐶)𝑖 ∈𝐶                          (5) 

 

 

After calculating UUCW, Unadjusted Actor Weight (UAW) is calculated.  In a software 

project, there can be many different type of actors like client, customer, database, GUI 

etc.  Similar to UUCW calculation, actors are groupped into three categories; simple, 

avarage and complex.  Each group has different weights as shown in Table 4. Simple 

actor is a system actor which communicates with other system by API.  Avarage actor is 

a system actor communicates via a protocol like HTTP or a person who interacts with a 

system via a terminal console.  Complex actor is a person actor uses User Interface to 

interact with system.  

 

Table 4: UCP Actor Complexity Weights 

Actor Complexity Weight 

Simple 1 

Avarage 2 

Complex 3 

 

 

After classifying actors, UAW can be calculated as in Equation 6.  In the equation 

weight is the actor complexity weight in the Table.  Cardinality is the number of actors 

assigned to complexity class C, as simple, avarage or complex. 

 

 

                              𝑈𝐴𝑊 = ∑ 𝑊𝑒𝑖𝑔ℎ𝑡 (𝐶) ∗ 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 (𝐶)𝑖 ∈𝐶                                 (6) 
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As the last two steps of UCP calculation, technical (TCF) and environmental (EF) 

complexity factors are calculated.  There are 13 technical and 8 environmental factors.  

Each factor has a different weight as shown in the Table 5. 

 

 

Table 5: UCP Technical and Environmental Factors 

 

Factor Type No Factor Name Weight 

Technical 

TF1 Distributed system 2 

TF2 Response time/performance objectives 1 

TF3 End-user efficiency 1 

TF4 Internal processing complexity 1 

TF5 Code reusability  1 

TF6 Easy to install 0.5 

TF7 Easy to use 0.5 

TF8 Portability to other platforms 2 

TF9 Easy to change 1 

TF10 Concurrent/parallel processing 1 

TF11 Security features 1 

TF12 Access/Dependence for third parties 1 

TF13 End user training 1 

Environmental 

EF1 Familiarity with development process used 1.5 

EF2 Application experience 0.5 

EF3 Object-oriented experience of team 1 

EF4 Lead analyst capability 0.5 

EF5 Motivation of the team 1.5 

EF6 Stability of requirements 2 

EF7 Part-time staff -1 

EF8 Difficult programming language -1 

 

 

To calculate TCF and EF Equation 7 and 8 are used.  TFWeight and EFWeight refer to 

the factor weights in the table above.  Value is the predicted degree of influence for each 

factor which can be between 0 and 5.  If value is 0 that means this factor has no effect or 

relationship with the project.  On the contrary, if the value is 5 that mean this factor has 

a strong effect or relation ship with the project.  
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                             𝑇𝐶𝐹 = 0.6 + (0.01 ∗ ∑ 𝑇𝐹𝑊𝑒𝑖𝑔ℎ𝑡𝑖 ∗ 𝑉𝑎𝑙𝑢𝑒𝑖
13
𝑖=1 )                            (7) 

 

                              𝐸𝐹 = 1.4 + (−0.03 ∗ ∑ 𝐸𝐹𝑊𝑒𝑖𝑔ℎ𝑡𝑖 ∗ 𝑉𝑎𝑙𝑢𝑒𝑖
8
𝑖=1 )                          (8) 

 

 

Finally, UCP is calculated as follows; 

 

 

                             𝑈𝐶𝑃 = (𝑈𝑈𝐶𝑊 + 𝑈𝐴𝑊) ∗  𝑇𝐶𝐹 ∗ 𝐸𝐹                                             (9) 

 

 

To calculate project’s effort in man hours, UCP is multiplied by 20 hours as Karner 

proposed (Banerjee, 2001). 

 

 

                                                𝐸𝑓𝑓𝑜𝑟𝑡 = 𝑈𝐶𝑃 ∗ 20                                                     (10) 

  

 

As Kirsten Ribu stated, per UCP hours can range from 15 hours to 30 hours as field 

experience shows (Ribu, 2001).  Eventhough adjusting hours per use case point 

according to companys’ history can be an advantage, UCP method has important 

drawbacks.  The effort estimation can not be arrived before all use cases are written 

(Cohn, 2005).  And writing all use cases means analysis phase is completed for a 

software project, which is quite late for effort estimation.  Additionally, counting use 

case steps can be a problem, especially for large size projects.   

 

As a conclusion, UCP is an easy to calculate method as a mathematical formula but it 

has important disadvantages to apply in real life.   
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2.3 Learning Based Models 

 

Learning based effort estimation models use current knowledge and historical data of 

the projects.  As Gabrani and Saini stated, learning based methods are trying to imitate 

natural evolution and they are refining until finding and optimal solution, so 

evolutionary learning based methods became popular in last years (Gabrani & Saini, 

2016). 

 

Machine learning can be defined as a set of mechanisms which enable computers learn 

from experiences (Negnevitsky, 2002).  Artificial neural network (ANN) is the most 

widely applied model under the umbrella terms Artificial Intelligence and Machine 

Learning.  In the next subchapter artificial neural network model will be detailed.  

 

2.3.1 Artificial Neural Networks 

 

ANN is a “reasoning based human brain model” which uses interconnected neurons to 

learn and execute transactions or functions just like human brain does with 10 billion 

neurons and 60 trillion connections (Negnevitsky, 2002).  ANNs are preferred as they 

enable to model even complex non-linear relationships and are pretty much capable of 

approximating any measurable function without an explicit model of the system (Finnie 

& Wittig, 1997).   

 

A typical ANN as is made up from nodes in three layers; input layer, hidden layer(s) 

and output layer as shown in Figure 2.   
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Figure 2: Multilayer Perceptron ANN with one hidden layer 

 

Each input layer node is connected to the next hidden layer nodes and each hidden layer 

node is connected to the next one ending with the output layer node.  Nodes in the input 

layer, hidden layers and output layer and hidden layer numbers may change depending 

on the problem.  Each connection between nodes represents a weight. Input layer 

represents the input data for learning algorithm.  

 

Hidden layer and output layer use the data from previous layer and combine them with 

the corresponding weights to trigger a so called activation function.  The output layer 

combines all the outputs generated by the activation functions and outputs a value once 

again using an activation function.  There are various activation functions used in the 

literature, linear, sigmoid, Gaussian, etc.   As Michael Negnevitsky stated, “weights are 

the basic means of long-term memory in ANNs.  They express the strength, or in other 

words importance, of each neuron input.  A neural network ‘learns’ through repeated 

adjustments of these weights.” (Negnevitsky, 2002). 

 

If there ise a linear relationship between input and output layer, then it means there is no 

need for a hidden layer.  This kind of ANN is called as a perceptron.  In contrast, if 



16 
 

 

there is a non linear relationship between input and output layer, one or more hidden 

layers are needed to solve the problem.  In these cases, ANN is called as Multi Layer 

Perceptron.  

 

There are two main types of ANN architecture called as Feed Forward and Feed Back 

networks.  Feed forward network progresses only one way from input neurons to output.  

Feed-forward networks tend to be straightforward networks that associate inputs with 

outputs.  They are extensively used in pattern recognition.  

 

Feed Back networks have feedback connections from the output layer to the input layer 

or from the hidden layer to the input layer.  In other words, a feedback architecture 

distinguishes itself from a feedforward architecture, in that it has at least one feedback 

link (Chiang & Li-Chiu Chang, 2004). 

 

 

  

 

Figure 3: Feed Forward and Feed Back Networks 

(Agatonovic-Kustrin & Beresford, 2000) 

 

There are different types of learning algorithms for ANNs.  One of the most popular 

types is multi-layer perceptron with the combination of feed-forward and back-

propagation algorithms.  In feed forward backpropagation algorithm there are two 

phases to reach the results.  The first phase is called as Forward Phase.  In this phase, 

input signals go through the network from input nodes to outputs until an error signal is 

computed. Error signal is difference between desired and the actual output.  And the 

second phase ise backward phase.  In this phase, error signal moves in the backward 
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direction for the adjustments until minimizing error and obtaining an acceptable value.  

The aim of the feed forward back propagation is to minimize cost function to find the 

best result with minimum error margin. As cost function, generally a quadratic function 

is used to figure out how to make small changes in weights so as to get an improvement 

the quadratic cost (Nielsen, 2017). To solve quadratic cost function, gradient descent 

technique is used since the problem that ANN is trying to solve is a minimization 

problem. 

The ideal solution is to find a global minimum for the problem but in real life, ANN 

may have to solve problems with millions of inputs and outputs. In such cases, finding a 

global minimum could not be possible. So with gradient descent, ANN chooses a 

starting point randomly, with random weights and tries to find a local minimum. While 

trying to find a local minimum, a learning rate is used. Learning rate should be small 

enough to address the inputs to correct outputs and to minimize cost function. But also 

it should not be very small. Because with a very small learning rates, gradient descent 

works very slowly and also correct input-output match up problems may occur. 

The process of feed forward back propagation is summarized iteratively below; 

 Cost function is defined as; 𝐸 =
1

2
∑ 𝑒𝑖

2
𝑖 (𝑘) 

 In this function; 𝑒𝑖(𝑘) is the error for the 𝑖𝑡ℎ neuron for the 𝑘𝑡ℎ iteration.  

 𝑒𝑖(𝑘) is defined as; 𝑒𝑖 = 𝑑𝑖 − 𝑦𝑖(𝑘) . Here, 𝑑𝑖 is the desired output for 𝑖𝑡ℎ 

neuron and 𝑦𝑖(𝑘) is the actual output. 

 So cost function can be also written like; 𝐸 =
1

2
∑ (𝑑𝑖 − 𝑦𝑖(𝑘))2

𝑖  

 Cost function depends on the weights, since ANN learns by adjusting weights of 

the neurons. At the beginning, weights are assigned randomly. Changes of the 

each neuron is found by Gradient Descent Algorithm, which can be represented 

as ∆𝑤𝑖𝑗 = −𝜇
𝜕𝐸(

𝑤
→)

𝜕𝑤𝑖𝑗
 . Here 𝜇 is the learning coefficient. 

 In forward phase, output values are obtained according to the weights which are 

applied during the forward process. In backward phase, weights are reassigned 

according to the errors on outputs. 
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 Each change on the weights are calculated as; ∆𝑤𝑖𝑗 = 𝜇 ∗ 𝛿𝑗 ∗ 𝑦𝑖.  

 𝛿𝑗 is defined as 𝑒𝑗(𝑘) ∗ 𝑓𝑗
′ for output layer neurons and 𝑓𝑗

′ ∑ 𝛿𝑚𝑤𝑚𝑗𝑚  for hidden 

layers. 

 𝑓𝑗 is the activation function of 𝑗𝑡ℎ neuron. 

 

In this context, ANNs are used to calculate estimated software project efforts. Since it is 

a learning based model, with enough previous project data and feature set, the model 

can predict accurately project efforts. 

Compared to other effort estimation models, ANNs have an important advantage, as 

they are trained using a company’s own data, they can estimate project cost more 

accurately for a specific company then a generic model with a standard set rules. 

Moreover, ANNs do not need an implicit or complete programming as required by 

regression based methods.  In this work, selected historical projects’ data will be used to 

build an ANN model.  



 

 

 

3.  MATERIALS AND METHODS 

 

 

The aim of this study is to build an ANN and use the network to estimate software 

projects’ efforts.  As detailed in previous sections, an ANN depend on input variables to 

make the estimation.  In order to build an ANN, five input variables are identified 

through preliminary data analysis using expert interviews, focus group and surveys.  

 

This initial step is required as ANNs actually mimic the decision making process of 

experts by replacing the expert opinion with a black-box approach.  Therefore, software 

project managers of one of the largest bank in Turkey are consulted in order to define 

the basic information that is needed for software effort estimation.  The relationship 

between these inputs and the corresponding effort estimation is handled by the trained 

ANN.  For training purposes, 77 IT projects’ data is obtained from the bank’s Project 

Management department. 

 

In the next subchapters input variable selection, data collection, generating ANN and 

obtaining valuable estimation topics will be detailed.   

 

 

3.1 Input Variable Selection 

 

‘The choice of input variables is a fundamental, and yet crucial consideration in 

identifying the optimal functional form of statistical models.’ (May et al., 2011).  

Similarly input variable selection has a crucial importance to create ANN on a sound 

basis.   

 

As detailed in Literature Review, there are many different methods for effort estimation.  

Each method has different cost drivers and input parameters.  In this study, existing 
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effort estimation models’ inputs and the bank’s IT experts’ opinions are considered to 

obtain the most effective input variables on effort estimation.  

 

3.1.1 Input Variable Alternatives 

 

Input variables (parameter) selection is one of the most important tasks to estimate 

software projects’ efforts accurately.  In literature, for algorithmic models, different 

factor groups and variables are used.  Generally, they are grouped into two categories as 

‘Technical Factors’ and ‘Environmental Factors’.  In this study, Use Case Point, 

Function Point Analysis and Jensen Model’s factors are considered to be used as input 

to our proposed ANN model. 

 

In UCP method, there are two types of factors categorized as technical and 

environmental.  Technical factors define 13 parameters and environmental factors 

consists of 8 parameters. 

 

Table 6: UCP Technical Factor Descriptions 

No Technical Factor 

Name 

Description 

TF1 Distributed system Refers to a single and integrated coherent network 

requirement to share different resources and capabilities to 

provide users. 

TF2 Response 

time/performance 

objectives 

Refers to response time requirements for the desired 

system.  Some system transactions are needed to have 

very short response time as money exchange transactions.   

TF3 End-user efficiency Refers to system needs for end users.  End user of the 

desired system can be an external client or internal client.  

End-user efficiency weight changes depend on client type 

and requirements.   

TF4 Internal processing 

complexity 

Refers to system’s dependency to each other and multiple 

system integration needs.   

TF5 Code reusability  Refers to reusable, parametric code requirements.   

TF6 Easy to install Refers to accessibility and installability of desired system 

or application.   

TF7 Easy to use Refers to usability requirements including system-human 

interaction. 
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TF8 Portability to other 

platforms 

Refers to usability of the same software in different 

environments. 

TF9 Easy to change Refers to easy code changing requirements. 

TF10 Concurrent/parallel 

processing 

Refers to simultaneous access requirements.   

TF11 Security features Refers to special security requirements.  As an example, 

developing a login system for an application or system 

may need very complex security requirements.   

TF12 Access/Dependence 

for third parties 

Refers to third party access needs for desired systems.  For 

example the application that will be developed may need 

to access government database to take client’s identity 

information.   

TF13 End user training Refers to end user training needs.  As an example, for call 

center system/transaction changes, call center staff may 

need to be trained to use new system.   

 

 

Table 7: UCP Environmental Factor Descriptions 

No Environmental 

Factor Name 

Description 

EF1 Familiarity with 

development process 

used 

Refers to familiarity with life cycle model used for the 

project team.  Agile, Waterfall or any other development 

life cycles may be used for the development projects.   

EF2 Application 

experience 

Refers to application experience of project team.   

EF3 Object-oriented 

experience of team 

Refers to object oriented experience of project team, 

especially for the developers.   

EF4 Lead analyst 

capability 

Refers to lead analyst capability to identify, understand 

requirements accurately.   

EF5 Motivation of the 

team 

Refers to project team’s motivation.   

EF6 Stability of 

requirements 

Refers to stability level of requirements.  Requirements of 

a project would not be clear at the beginning of the project.   

EF7 Part-time staff Refers to part time staff of the project team.   

EF8 Difficult 

programming 

language 

Refers to programming language’s use of difficulty.   

 

 

Similar to UCP method, to build an effort estimation model, 14 ‘General System 

Characteristics’ (GSCs) are used in Function Point Analysis (FPA) (Lokan, 2000).  
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General system characteristics are also known as technical factors.  GSCs have some 

common factors with UCP technical factors.   

 

Table 8: FPA General System Characteristics Descriptions 

 

No 
General System 

Characteristics Name 

Description 

GSC1 Data Communications 
Refers to data transfer needs by using communication 

technologies. 

GSC2 
Distrubuted Data 

Processing 

Refers to a single and integrated coherent network 

requirement to share different resources and capabilities 

to provide users. 

GSC3 Performance 
Refers to system performance needs including response 

times. 

GSC4 
Heavily Used 

Configuration 

Refers to degree of computer resource restrictions 

which effects the development of the application 

GSC5 Transaction Rate 
Refers to the rate of business transactions needs which 

influences the development of the application 

GSC6 Online Data Entry 
Refers to online data entry requirements through 

interactive transactions. 

GSC7 End User Efficiency 
Refers to human-application interaction and usability 

needs. 

GSC8 Online Update 
Refers to internal logical files’ online update 

requirements. 

GSC9 Complex Processing 
Refers to complex processing logic requirements which 

effects development of the application. 

GSC10 Reusability Refers to reusable, parametric code requirements.   

GSC11 Installation Ease 
Refers to accessibility and installability of desired 

system or application.   

GSC12 Operational Ease 
Refers to easy operational usage needs of the system in 

such processes like recovery, back up or start up. 

GSC13 Multiple Sites 
Refers to multiple different hardware and software 

environmental needs for the application. 

GSC14 Facilitate Change 
Refers to easy modification of processing logic or data 

structure requirements. 

 

Jensen model is a software development schedule/effort estimation model which 

incorporates the effects of any of the environmental factors impacting the software 

development cost and schedule (Baik, 2000). This model is an empirical model and 

related to the effective size of the system and the technology to the implementation of 
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the system. Since Jensen model’s environmental factors are considere as candidate 

factors since they seem suitable for the bank’s organization. Jensen model defines 13 

environmental factors. 

 

Table 9: Jensen Model Environmental Factor Descriptions 

 

No 
Environmental Factors 

for Jensen Model 

Description 

JEF1 
Special Display 

Requirements 

Refers to human-application interaction and 

usability needs including front end designs. 

JEF2 
Operational Requirement 

Detail and Stability 

Refers to operational usage needs of the system in 

such processes like recovery, back up or start up. 

JEF3 Real Time Operation Refers to time-constrained operation requirements. 

JEF4 CPU Time Constraint 
Refers to system performance needs including 

response times. 

JEF5 Memory Constraint Refers to memory, storage requirements. 

JEF6 
Virtual Machine 

Experience 

Refers to developers virtual machine experience. 

JEF7 
Concurrent ADP 

Development 

Refers to concurrent Automatic Data Processing 

(ADP) development requirements like complex 

logical processes. 

JEF8 
Developer Using Remote 

Computer 

Refers to developer’s remote computer experience. 

JEF9 
Development at 

Operational Site 

Refers to development needs at the operational site 

which means according to operation systems. 

JEF10 

Development Computer 

Different than Target 

Computer 

Refers to rehosting needs which means 

protecting business logic and data trapped in 

proprietary hardware and software, while 

opening paths to future modernization by 

moving to a more extensible architecture. 

JEF11 
Development at Multiple 

Sites 

Refers to multiple different hardware and software 

environmental needs for the application’s 

development process. 

JEF12 
Programming Language 

Experience 

Refers to developer’s programming language 

experience which will be used in the project. 

JEF13 System Reliability 
Refers to system’s ability requirements to perform 

as it is intented to design. 
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In our case, besides UCP, FPA and Jensen Model parameters, 5 additional parameters 

are considered to have an effect on project effort estimation as they are already used by 

the experts of the selected bank’s IT department.  These parameters are shown in Table 

10.   

 

Table 10: The Bank’s Expert Opinion Input Descriptions 

 

No Expert Opinion Inputs Description 

EO1 Domain Number Refers to number of the IT domains which will 

involve to the project as a stakeholder. 

EO2 Software Development 

Project Methodology 

Refers to methodogy type which project will get 

on. Methodology can be Agile or Waterfall or any 

other. 

EO3 Team Characteristics Refers to project team characteristics as 

experience, taking part in the same project before 

etc. 

EO4 Key Turn Project  Refers to a project which will done by outsource 

project team from beginning to the end. 

EO5 Business Unit Efficiency Refers to businnes units efficiency on the project. 

 

 

In total, 53 factors from UCP, FPA, Jensen Model and expert opinions are considered as 

candidate inputs to the ANN model.  As this list was too comprehensive and it would 

require a lot of project data to train the ANN, we consulted 6 expert project managers to 

evaluate the importance of these factors.  As a result, 22 factors are identified as having 

a considerable effect on software project effort. 

 

Table 11: Choosen Factors by Focus Group 

No Factor Name 

F1 Well-defined and stable requirements 

F2 Access/Dependence on 3rd party company's code 

F3 Multiple domain integration 

F4 Reusable code 

F5 Complex security requirements 

F6 Developer's application experience 



 

 

25 

F7 Easy to change (parametric design) 

F8 Team's familiarity with the project 

F9 System reliability 

F10 Performance requirements 

F11 Real time operation needs 

F12 Business unit/client attendance 

F13 Team characteristics 

F14 Lead analyst's capability 

F15 Outsource analysts/developers 

F16 Operational ease 

F17 Object-Oriented experience 

F18 Team motivation 

F19 Installation (deployment) ease 

F20 Methodology (Waterfall, Agile etc.  ) 

F21 Part time staff 

F22 Programming language 

 

 

3.1.2 Conducting Survey and Analayzing Survey Results 

 

After preselection, a survey is conducted on 19 IT experts to analyze the effect of the 

parameters according to expert opinions and to select the most relevant factors as input 

to ANN model.  22 preselected factors are asked to scale from “1-Irrelevant” to “5-

Relevant” according to the effect on software development effort estimation.  Scaling 

range is listed in the Table 12.   

 

Table 12: Factor Scaling Ranges 

No Scaling Range Description 

1 Irrelevant 

2 Slightly Relevant 

3 Relevant 

4 Fairly Relevant 

5 Highly Relevant 
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An ‘effect level’ is calculated based on the ratings of factors by IT experts. Weights are 

assigned to each scale range and by multiplying scale weight and experts’ choices, 

effect level is obtained. 

  

 

                                              𝐸𝑓𝑓𝑒𝑐𝑡 𝐿𝑒𝑣𝑒𝑙 = ∑ 𝑤𝑖
5
𝑖=1 ∗ 𝑐𝑖                                         (11) 

 

 

Where i is the number of scale range from irrelevant to highly relevant, w is the weight 

of scale range and c is the number of choice for the factor.  According to the effect level 

calculation, top 5 factors with the highest effect level are selected as the input factors to 

ANN model which are; “well defined and stable requirements”, “dependence in 3rd 

party company’s code”, “multiple domain integration”, “reusable code” and “complex 

security requirements”. Survey’s effect level results are shown in table 13 where I is 

Irrelevant, SR is Slightly Relevant, R is Relevant, FR is Fairly Relevant and HR is 

Highly Relevant. Also w is the weight of each scale. 

 

Table 13: Survey Results for Choosen Factors 

Factor 
I 

(w=1) 

SR 

(w=2) 

R 

(w=3) 

FR 

(w=4) 

HR 

(w=5) 

Effect 

Level 

Well-defined and stable 

requirements 0 0 0 6 13 89 

Dependence on 3rd party 

company's code 0 1 3 5 10 81 

Multiple domain integration 0 0 3 8 8 81 

Reusable code 0 0 2 12 5 79 

Complex security requirements 0 2 3 8 6 75 

Developer's application experience 0 2 6 8 4 74 

Easy to change  0 1 3 13 2 73 

Team's familiarity with the project 0 2 4 8 5 73 

System reliability 1 0 5 8 5 73 

Performance requirements 0 1 7 6 5 72 

Real time operation needs 0 2 6 6 5 71 

Business unit/client attendance 1 1 5 9 3 69 

Team characteristics 1 2 5 7 4 68 
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3.2 Data Collection 

 

Similar to human brain ANN learns and when it is learning it needs the historical data to 

create the complex non linear relationships between input variables.  In this study, ANN 

has been created for software development projects’ effort estimations.  To create ANN, 

77 completed software project data is handled from one of the Turkey’s biggest bank’s 

Project and Program Management Office.   

 

During the project period, each project team member is required to fill timesheets to 

show how many man day a team member has spended.  At the end of the projects, all 

projects’ accumulated actual effort information calculated from each resource’s time 

sheets.  For the proposed ANN, actual effort is set as the target value.  For these 77 

projects actual efforts are shown in Table 14.   

 

Table 14: 77 Projects’ Actual Efforts 

Project No 
Actual 

Effort (m/d) 
Project No 

Actual 

Effort (m/d) 
Project No 

Actual 

Effort (m/d) 

Project 1 359 Project 27 673 Project 53 1690 

Project 2 344 Project 28 579 Project 54 655 

Project 3 292 Project 29 280 Project 55 366 

Project 4 205 Project 30 270 Project 56 1429 

Project 5 202 Project 31 183 Project 57 2996 

Project 6 171 Project 32 75 Project 58 1651 

Lead analyst's capability 0 2 8 7 2 66 

Outsource analysts/developers 0 4 7 6 2 63 

Operational ease 0 5 7 5 2 61 

Object-Oriented experience 1 3 8 6 1 60 

Team motivation 1 3 8 6 1 60 

Installation (deployment) ease 0 6 6 5 2 60 

Methodology (Waterfall, Agile 

etc.) 1 7 4 4 3 58 

Part time staff 0 6 8 4 1 57 

Programming language 0 5 9 5 0 57 



 

 

28 

Project 7 170 Project 33 68 Project 59 1899 

Project 8 148 Project 34 68 Project 60 1925 

Project 9 84 Project 35 62 Project 61 2477 

Project 10 45 Project 36 251 Project 62 211 

Project 11 429 Project 37 238 Project 63 692 

Project 12 363 Project 38 745 Project 64 119 

Project 13 348 Project 39 541 Project 65 189 

Project 14 208 Project 40 287 Project 66 100 

Project 15 80 Project 41 266 Project 67 223 

Project 16 503 Project 42 407 Project 68 449 

Project 17 488 Project 43 1594 Project 69 243 

Project 18 238 Project 44 1085 Project 70 823 

Project 19 185 Project 45 636 Project 71 158 

Project 20 114 Project 46 453 Project 72 195 

Project 21 67 Project 47 275 Project 73 226 

Project 22 65 Project 48 2463 Project 74 138 

Project 23 429 Project 49 598 Project 75 155 

Project 24 219 Project 50 283 Project 76 240 

Project 25 115 Project 51 630 Project 77 110 

Project 26 854 Project 52 1902     

 

 

Well defined and stable requirements”, “dependence in 3rd party company’s code”, 

“multiple domain integration”, “reusable code and complex security requirements” are 

the chosen input factors for the ANN model as mentioned before.  Each factor is scaled 

to obtain input parameter values for the projects as shown in Table 15.   
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Table 15: Factor Scale Definitions and Ranges 

Factor Name Scale Definition Range of Values 

Well-defined and stable 

requirements 

From 1 to 5.  1 for weak defining/no 

stability, 5 for well-defined and stable 

requirements 1 2 3 4 5 

Dependence on 3rd 

party company's code 

1 if there is a dependence on 3rd party 

code, 0 if not.   
1 0       

Multiple domain 

integration 

Domain number.  From 1 to n.   

1 .   .   .   n 

Reusable code 

1 if projects needs to be developed with 

reusable code, 0 if not.   
1 0       

Complex security 

requirements 

From 1 to 5.  1 if the project doesnt need 

any security developments, 5 for highly 

complex security needs.   
1 2 3 4 5 

 

 

77 projects’ project manager is asked to give a grade for each project’s factors. For 

having a consistent grading, sample case projects’ gradings are shown to be based on.  

As a result, each historical project data has been graded for the 5 selected input 

variables and historical project data with actual effort is obtained. shown in Table 16. 

 

 

Table 16: 77 Projects’ Input Data Set 

Project 

No 

Well-defined 

and stable 

requirements 

Dependence 

on 3rd 

party 

company's 

code 

Multiple 

domain 

integration 

Reusable 

code 

Complex 

security 

requirements 

Actual 

Effort 

(m/d) 

Project 1 4 0 2 1 4 359 

Project 2 3 1 4 1 3 344 

Project 3 3 0 2 0 3 292 

Project 4 3 1 2 1 3 205 

Project 5 4 0 2 0 3 202 

Project 6 3 0 2 1 3 171 

Project 7 4 1 2 1 3 170 

Project 8 5 1 2 0 3 148 

Project 9 3 0 2 0 2 84 

Project 10 4 1 4 1 2 45 

Project 11 2 1 4 1 3 429 

Project 12 5 0 10 1 2 363 
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Project 13 3 0 6 1 3 348 

Project 14 3 1 2 1 3 208 

Project 15 2 1 6 1 1 80 

Project 16 2 1 4 0 3 503 

Project 17 1 1 4 0 2 488 

Project 18 5 1 4 1 3 238 

Project 19 4 0 4 0 2 185 

Project 20 5 1 4 0 2 114 

Project 21 2 0 6 1 1 67 

Project 22 3 0 4 1 2 65 

Project 23 5 1 6 0 3 429 

Project 24 2 1 6 0 1 219 

Project 25 4 0 4 0 2 115 

Project 26 2 0 6 1 5 854 

Project 27 2 0 8 1 3 673 

Project 28 2 0 4 1 4 579 

Project 29 4 0 6 0 2 280 

Project 30 3 1 6 1 2 270 

Project 31 5 0 6 0 2 183 

Project 32 4 0 6 0 1 75 

Project 33 5 0 4 0 2 68 

Project 34 4 1 4 1 2 68 

Project 35 5 0 4 0 2 62 

Project 36 2 1 6 0 1 251 

Project 37 3 1 7 0 1 238 

Project 38 4 0 8 1 4 745 

Project 39 1 1 8 1 2 541 

Project 40 4 1 8 1 2 287 

Project 41 2 0 6 1 2 266 

Project 42 5 1 7 1 3 407 

Project 43 1 1 16 0 4 1594 

Project 44 4 0 10 1 5 1085 

Project 45 4 1 10 0 2 636 

Project 46 5 0 12 0 2 453 

Project 47 5 0 13 1 1 275 

Project 48 1 1 26 1 5 2463 

Project 49 4 0 14 1 2 598 

Project 50 2 0 10 1 1 283 

Project 51 4 1 16 1 1 630 

Project 52 3 0 22 1 5 1902 
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Project 53 4 0 18 0 5 1690 

Project 54 4 0 18 1 1 655 

Project 55 5 0 12 0 1 366 

Project 56 1 1 22 1 2 1429 

Project 57 1 1 34 1 5 2996 

Project 58 3 0 30 1 2 1651 

Project 59 3 1 24 1 4 1899 

Project 60 1 1 18 1 5 1925 

Project 61 4 1 32 1 5 2477 

Project 62 4 1 10 1 1 211 

Project 63 5 0 20 1 1 692 

Project 64 2 1 6 1 1 119 

Project 65 3 0 6 1 2 189 

Project 66 5 1 6 1 2 100 

Project 67 5 0 12 1 1 223 

Project 68 5 0 16 1 1 449 

Project 69 4 0 8 1 2 243 

Project 70 5 0 20 0 1 823 

Project 71 5 0 4 1 3 158 

Project 72 1 0 4 1 2 195 

Project 73 5 0 12 1 1 226 

Project 74 4 0 8 0 1 138 

Project 75 5 0 1 1 4 155 

Project 76 3 1 2 1 3 240 

Project 77 5 1 4 0 2 110 

 

 

3.3 Creating Artificial Neural Network 

 

Effort estimation using ANNs defines parameters in order to find the optimal solution 

based on the input parameters as part of the training process.  Complex relationships can 

be reproduced by ANNs based using appropriate weight calculation techniques 

(Aljahdali et al., 2015).  The learning process within artificial neural networks is a result 

of changes in the network’s weights.  The objective is to find a set of weights, which 

should map any input to a correct output (Jacobson, 2014).  
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To create a proper ANN; learning type, learning algortihm, hidden layer and neuron 

number selection tasks are very important.  In the next subchapters these tasks will be 

detailed and explained which one is choosen for which reason.   

 

3.3.1 Learning Type Selection 

 

Artificial Neural Network aims to find the optimal solution (output) according to input 

variables and values.  To find the optimal solution weight assignment to each neuron is 

very important.  Before finding the best weight assignment way, the problem which 

ANN will deal with must be determined carefully.  In some kind of problems, both 

input and ideal or actual output values can be obtained to find the best solution and train 

ANN.  On the contrary, in some different cases only the input variable values can be 

obtained and an ideal solution is trying to be predicted by obtaining the relationships of 

the data sets.  According to problem and obtained data type, there are three main 

learning types; Supervised Learning, Unsupervised Learning and Reinforcement 

Learning.   

 

Supervised learning is a form of regression that relies on example pairs of data: inputs 

and outputs of the training set.  One or more target values are predicted from input 

variable(s) (Agatonovic & Beresford, 2000).  When both input and output variables are 

provided in the neural network, and error based calculation is possible based on target 

output and actual output (Jacobson, 2014).  In supervised learning, the input layer 

neurons receive data from a data file and the output neurons provide ANN’s response to 

the input data.  Hidden neurons communicate only with other neurons.  Supervised 

network with the back propagation learning algorithm is a frequently used ANN which 

is excellent at prediction and classification tasks (Agatonovic & Beresford, 2000).   

 

In Unsupervised Learning, there is only a given set input variables and no desirable 

output variable.  Unsupervised learning is able to find the structure or relationships 

between complex input data sets.  To group input variables, the system itself must 

decide the features which will be used.  This is often referred to as self-organization or 
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adaption. (Agatonovic & Beresford, 2000).  The widely known examples for 

unsupervised learning are clustering, anomaly detection and blind signal seperation.   

 

The third popular learning type is Reinforcement Learning which is very similar to 

Supervised Learning.  ‘Reinforcement learning is the problem of getting an agent to act 

in the world so as to maximize its rewards.’ (Murphy, 1998).  In this learning type, 

instead of actual outputs a reward is given to neural network.   

 

Each learning type is suitable for some specific problems. Supervised learning is 

generally used for curve fitting problems. Unsupervised learning is suitable for 

clustering cases. Reinforcement learning can be used in different problems like blind 

signal separation. For our study, supervised learning is suitable as the learning type 

since 77 completed project data with input and actual output variables are provided.  

Also our aim is to predict output efforts on completion for the software projects. 

 

 

3.3.2 Learning Algortihm Selection 

 

Learning algorithms are used to obtain weights of each neuron and relationships 

between neurons and layers while traning the ANN.  The most widely known learning 

algorithm for supervised learning is multi-layer perceptron with feed-forward network 

and back-propagation learning as mentioned in section 2.3.1. 

 

When feed forward network and back propagation is combined, ANN can progress in 

both directions from input to output and/or from output to input.  Also, feed forward 

back propagation can have relationships between the neurons in the same layer.   So that 

neurons in the same layer can have linear or non linear relationships.  The goal of this 

algorithm is to decrease global error (Chiang & Chang, 2004).  Since Feed Forward 

Back Propagation provides complex, non linear relationships between neurons to reach 

the goal and to find the optimal solution, in our thesis study, ANN will be trained by 

Feed Forward Back Propagation learning algorithm. 
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There are many different types of Back Propagation functions which can be used for 

supervised learnings.  Bayesian Regularization Back Propagation and Levenberg-

Marquardt Back Propagation are the mostly adapted functions for back propagation 

algorithms. 

 

3.3.2.1 Levenberg-Marquardt 

 

The Levenberg–Marquardt algorithm blends the steepest descent method and the 

Gauss–Newton algorithm.  Fortunately, it inherits the speed advantage of the Gauss–

Newton algorithm and the stability of the steepest descent method (Yu & Wilamowski, 

2010).  The update rule of Levenberg-Marquardt (LM) algortihm is as in the Equation 

12 (Yu & Wilamowski, 2010). 

 

 

                                         ∆𝑤 = (𝐽𝑇𝐽 +  𝜇Ι)−1𝐽𝑇𝑒                                                       (12) 

 

 

In the equation, w is the weight factor, I is the identity matrix.  𝝁 is the combination 

coefficient which is always positive, generally starts as a small value like 0.1.  J is the 

Jacobian Matrix (P X M) X M.  𝐽𝑇𝐽 is also known as Hessian Matrix.  e is the error 

vector (P X M) X 1. J and e are defined as; 
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                                       (13) 

 

 

where P is the number of training patterns, M is the number of outputs, and N is the 

number of weights.  Elements in error vector e are calculated by; 
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                                                    𝑒𝑃𝑀 = 𝑑𝑃𝑀 − 𝑜𝑃𝑀                                                     (14) 

 

 

 

where 𝑑𝑃𝑀 is the desired output and 𝑜𝑃𝑀 is the actual output, respectively, at network 

output M when training pattern P.  

 

The training process using Levenberg–Marquardt algorithm is designed as follows (Yu 

& Wilamowski, 2010); 

 

1. The total error (SSE) is evaluated with the initial weights which are randomly 

generated. 

2. Updates in the LM algorithm are done to adjust weights.  

As the combination of the steepest descent algorithm and the Gauss–Newton 

algorithm, the LM algorithm switches between the two algorithms during the 

training process. When the combination coefficient μ is very small (nearly zero), 

LM algorithm approaches to Gauss–Newton algorithm where 𝐻 = 𝐽𝑇𝐽 .  When 

combination coefficient μ is very large, LM algorithm approaches to the steepest 

descent method where 𝐻 = 𝐽𝑇𝐽 + 𝜇𝐼 . 

3. The total error is evaluated with the new weights. 

4. If the current total error is increased as a result of the update, then the step is 

retracted (such as reset the weight vector to the precious value) and combination 

coefficient μ is increased by a factor of 10 or by some other factors. Then step 2 

is applied and another update is tried again.  

5. If the current total error is decreased as a result of the update, then the step is 

accepted (such as keep the new weight vector as the current one) and the 

combination coefficient μ is decresed by a factor of 10 or by the same factor as 

step 4.  

6. Step 2 is applied with the new weights until the current total error is smaller than 

the required value. 
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3.3.2.2 Bayesian Regularization 

 

Bayesian regularization is implemented in the Levenberg - Marquardt algorithm to 

minimize a liner combination of squared errors and weights.  This implementation is 

one of the approaches to stop over-fitting a problem.  It also reduces the need to test a 

different number of hidden neurons for a problem (Pandya et al., 2017) 

 

Like Levenberg- Marquardt algorithm, Bayesian Regularization, training function 

obtains all the weights of neurons by using Levenberg-Marquardt optimization.  In 

addition to Levenberg-Marquardt optimization, squared errors and weights are 

minimized by Bayesian Regularization function and then function determines the 

correct combination to provide an ANN which generalizes well.  The process is called 

Bayesian regularization. Bayesian Regularization obtains a well-defined statistical 

problem from a nonlinear regression in the manner of ridge regression (Burden & 

Winkler, 2008).  The benefit of Bayesian Regularization is that all available data can be 

used as training data, which means no test or validation set is needed (Hirschen & 

Schafer, 2005).  Also it can be a solution for the ‘over fitting’ problems.  Bayesian cost 

function is as follows; 

 

 

                                             𝐶(𝑤) =  𝛽 ∗ 𝐸𝑑 + 𝛼 ∗ 𝐸𝑤                                              (15) 

 

 

In the equation 15, C(w) is the cost function. 𝛼 and 𝛽 are the hyperparameters of 

Bayesian Regularization that shows which direction must be seek by learning process.  

Directions can be minimum error or minimum weight.  𝐸𝑑 is the sum of squared erros 

and 𝐸𝑤 is the sum of squared weights. A third variable, gamma 𝛾, indicates the number 

of effective weights being used by the network, thus giving an indication on how 

complex the network should be (Souza, 2009).  Bayesian Regularization works as 

follows; 
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1. Jacobian J is computed. 

2. Error gradient 𝑔 = 𝐽𝑇𝑒 is computed. 

3. Hessian matrix is computed. 

4. Cost function C(w) is calculated. 

5. (𝐽𝑡𝐽 +  𝜆Ι)𝜎 equation is solved to find 𝜎. 

6. Using 𝜎 network weights are updated. 

7. Cost function C(w) is recalculated using the updated weights. 

7.1 If the cost has not decreased new weights are discarded, 𝜆 is increased. After 

that algorithm begins again from step number 5. 

7.2 If the sum squared errors has decreased, 𝜆 is decreased. 

8. Bayesian hyperparameters are updated by using MacKay’S or Poland’s 

formulae. 

8.1 𝛾 = 𝑤 − (𝛼 ∗ 𝑡𝑟(𝐻−1))       

8.2 𝛽 =
𝑁−𝛾

2∗𝐸𝑑
  

8.3 𝛼 = 𝑤/(2 ∗ 𝐸𝑤 + 𝑡𝑟(𝐻−1)) [modified Poland’s update], or 

𝛼 = 𝛾/(2 ∗ 𝐸𝑤) [original MacKay’s update], where: 

8.3.1 w is the number of network parameters (number of weights and 

biases) 

8.3.2 N is the number of entries in the training set 

8.3.3 𝑡𝑟(𝐻−1) is the trace of the inverse Hessian matrix 

 

Another simple flow for Bayesian Regularization Back Propagation is (Yue et al., 

2011); 
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Figure 4: Bayesian Regularization Back Propagation process 

 

Since ANN algorithm and nonlinear relationships are produced as a ‘black box’, it is not 

possible before hand to correctly identify which method will be superior, choose 

Bayesian Regularization or Levenberg-Marquardt Optimization.  In this work, both 

training functions will be applied to the ANN to train the network. 

 

 

3.3.3 Hidden Layer and Neuron Number Selection 

 

In addition to learning type, learning algortihm and training algortihm selection; number 

of hidden layers and neurons is another parameter for the ANN model.  As Karsoliya 

(2012) mentioned; ‘The hidden layer is the collection of neurons which has activation 

function applied on it as well as provide an intermediate layer between the input layer 

and the output layer’.  If the relationship between input data and results is linear then 

there is no need for a non-linear complex relationship and so there ise no need for a 
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hidden layer.  In contrast, if the relationship is complex or unknown; then at least one 

hidden layer is needed to solve the problem. 

 

There is no certain formula for the number of hidden layers. Generally, a single layer is 

adequate with optimum number of neurons for creating an ANN for many problems 

(Bugmann et al., 2001).  In contrast for deep neural networks with many inputs and 

outputs, like face recognition, generally two or even much more hidden layers is 

needed.  In our study, ANNs will be created by using one hidden layer. Since we have 5 

inputs and 1 output, there is no need 2 or more hidden layers. 

 

Similarly, there is no way to choose hidden layer neuron number.  There are some rule 

of thumb methods which forge a bond between input layer neuron number and output 

layer neuron number, as an example; the number of hidden layer neurons should be less 

than twice of the number of neurons in input layer.  But these kind of methods can not 

be generalized since the ideal neuron number changes depend of the problem.  

 

Additionally, hidden layer neuron number is very important parameter for the ANN 

model because it can cause over fitting or under fitting. ‘If the number of neurons are 

less as compared to the complexity of the problem data then “Underfitting” may occur. 

Underfitting occurs when there are too few neurons in the hidden layers to adequately 

detect the signals in a complicated data set.  If unnecessary more neurons are present in 

the network, then “Overfitting” may occur.’ (Karsoliya, 2012).   In our study, different 

number of neurons will be applied to the model from 1 to 100 to see which neuron 

number gives the better result.  



 

 

 

4. RESULTS 

 

 

 

As detailed in chapter 3.3, learning type, learning algortihm, algorithm type, hidden 

layer and neuron number selection are the crucial tasks to create a proper ANN.   In our 

study, learning type is chosen as ‘supervised learning’ since 77 completed software 

project data and these projects’ input variable values are obtained.  As learning 

algorithm, feed forward back propogation will be applied since it can provide complex 

non-linear relationships between input variables to achieve the optimum results.  Also, 

one hidden layer will be used for ANN. 

 

In the next subchapters Bayesian Regularization Back Propagation and Levenberg-

Marquardt Back Propagation will be applied to the ANN model with different neuron 

numbers by using Matlab.  These two algorithms’ estimation results will be compared 

by their Mean Magnitude Relative Error (MMRE) which measures avarage estimation 

accuracy.  The Magnitude Relative Error (MRE) of each project’s estimate is defined 

as; 

 

 

                                𝑀𝑅𝐸 =
|𝑎𝑐𝑡𝑢𝑎𝑙 𝑒𝑓𝑓𝑜𝑟𝑡−𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑒𝑓𝑓𝑜𝑟𝑡|

𝑎𝑐𝑡𝑢𝑎𝑙 𝑒𝑓𝑓𝑜𝑟𝑡
                                         (16) 

 

 

Additionally, besides Bayesian Regularization Back Propagation and Levenberg-

Marquardt Back Propagation, the bank’s first estimations and actual efforts will be 

compared to compare ANN with the real life scenarios. 
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4.1 Levenberg-Marquardt Back Propagation 

 

In this study, neural network architecture is created on Matlab program by using data 

analysis features, especially Neural Network toolbox.  Also, a spesific code is used to 

create ANN to find the ideal neuron number for the hidden layer.  Code can be found in 

the appendix. Additionally, all project data is normalized by Neural Network Toolbox 

automatically. 

  

Trainlm function is used as Levenberg-Marquardt Back Propagation training algortihm. 

%70 of the completed project data is used as training data, %15 of the completed 

project data is used as validation data and similarly %15 of the completed project data is 

used as test data set.  Finally, as noticed before MRE is used find the error ratio of each 

project estimation and the best result is obtained with 10 neurons as shown in the Table 

17. 

 

Table 17: Levenberg-Marquardt Back Propagation ANN Results 

 

Project 

No 

Actual Effort on 

Completion (m/d) 

ANN Results with 

Trainlm (m/d) 
MRE 

1 45 56,53797307 25,63994015 

2 62 70,80007183 14,19366425 

3 65 65,2196452 0,337915699 

4 67 67,08557295 0,127720827 

5 68 70,80007183 4,117752695 

6 68 56,53797307 16,85592196 

7 75 73,23965852 2,347121978 

8 80 80,6576506 0,822063248 

9 84 86,4456566 2,911495957 

10 100 101,4535833 1,453583282 

11 110 114,0596731 3,69061191 

12 114 114,0596731 0,052344826 

13 115 144,5462057 25,69235278 

14 119 80,6576506 32,22046168 

15 138 144,2760976 4,547896817 

16 148 380,9015512 157,365913 
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17 155 169,8075498 9,553257913 

18 158 151,8566416 3,888201519 

19 170 181,9308698 7,018158727 

20 171 170,1692297 0,485830568 

21 183 183,0279477 0,015271953 

22 185 144,5462057 21,86691584 

23 189 78,42173829 58,50701678 

24 195 194,7031287 0,15224169 

25 202 203,6528837 0,818259276 

26 205 209,3596201 2,126643944 

27 208 209,3596201 0,653663503 

28 211 211,0948401 0,044947908 

29 219 235,2453029 7,417946515 

30 223 221,3515537 0,739213601 

31 226 221,3515537 2,056834659 

32 238 238,0749363 0,031485826 

33 238 237,6811236 0,133981682 

34 240 209,3596201 12,76682496 

35 243 251,2371012 3,389753582 

36 251 235,2453029 6,276771766 

37 266 268,5301725 0,95119267 

38 270 271,0017357 0,371013234 

39 275 286,3460033 4,125819375 

40 280 288,746181 3,12363607 

41 283 281,9557697 0,368985959 

42 287 284,7407249 0,78720388 

43 292 287,6292505 1,496832018 

44 344 343,2784847 0,209742833 

45 348 348,0150786 0,00433294 

46 359 290,740555 19,01377297 

47 363 364,9186949 0,528566078 

48 366 359,8501545 1,680285648 

49 407 405,8337655 0,286544099 

50 429 429,5014932 0,116898193 

51 429 452,9295502 5,577983729 

52 449 450,1336305 0,252478959 

53 453 673,2346017 48,61690986 

54 488 487,6417129 0,073419496 

55 503 645,9804616 28,42553909 

56 541 539,9577917 0,192644794 
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57 579 578,9934435 0,001132386 

58 598 597,0298297 0,162235839 

59 630 629,7167462 0,044960924 

60 636 636,0804048 0,012642258 

61 655 653,8721487 0,172191033 

62 673 472,8498001 29,73999999 

63 692 762,4122108 10,17517498 

64 745 744,8464449 0,020611418 

65 823 823,9177239 0,111509583 

66 854 2686,90309 214,6256546 

67 1085 1273,146488 17,34069017 

68 1429 1429,095656 0,006693943 

69 1594 1594,006492 0,000407281 

70 1651 1550,61249 6,080406429 

71 1690 1690,269499 0,015946716 

72 1899 1900,377159 0,072520211 

73 1902 5521,816293 190,316314 

74 1925 1923,733761 0,065778646 

75 2463 2463,410339 0,016660125 

76 2477 3380,769629 36,4864606 

77 2996 2996,0405 0,001351817 

 

 

As a result of ANN with trainlm training function, MMRE is calculated as 13,66224842 

by using formula X where n is project number.  

 

                                                   𝑀𝑀𝑅𝐸 =
∑ 𝑀𝑅𝐸𝑖

𝑛
𝑖=1

𝑛
                                                     (17) 

 

Additionaly, ‘Neural Network Training Regression’ diagrams are used to analyze the 

relationships between output and target results.  For our study, target result is the 

completed projects’ actual efforts and output is the result from ANN.  If the R is equals 

to 1, this indicates that there is a perfect linear relationship between outputs and targets. 

On the contrary, when R is close to 0, then there is no linear relationship.  

 

In the diagram, it is obvious that there is a nearly perfect linear relationship between 

output and target data for the training set since R is 0,99992.  Automatic normalization 
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has also an effect on R value.  Similarly, R is 0,98764 for validation set, which is also 

very close to linear relationship.  But in the test set R is 0,86946, which is getting close 

to non-linear relationship.  These values can be a foreshow for a possible over fitting 

problem.  For training set, there is nearly a perfect fit between target and output results, 

but when new data is added like test data set, fitting is getting poor. 

 

 

 

Figure 5: Neural Network Training Regression for Levenberg-Marquardt Algortihm 
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4.2 Bayesian Regularization Back Propagation 

 

As Bayesian Regularization Back Propagation training algortihm Trainbr function is 

used. %70 of the completed project data is used as training data, %15 of the completed 

project data is used as validation data and similarly %15 of the completed project data is 

used as test data set.  To compare Levenberg-Marquardt Back Propagation, MRE and 

MMRE is used to find error ratio. 

 

As noticed different neuron numbers from 1 to 100 have been tried to find the optimum 

results and the best result is obtained with 86 neurons as shown in the Table 18. MMRE 

is calculated from MRE results, and found as 8,661127888. 

 

 

Table 18: Bayesian Regularization Back Propagation ANN Results 

 

Project 

No 

Actual Effort on 

Completion (m/d) 

ANN Results with 

Trainbr (m/d) 
MRE 

1 45 57,62967209 28,06593799 

2 62 62,02423948 0,03909593 

3 65 77,72991904 19,58449083 

4 67 62,60849647 6,55448288 

5 68 62,02423948 8,787883123 

6 68 57,62967209 15,25048222 

7 75 58,70231467 21,73024711 

8 80 99,56125324 24,45156655 

9 84 111,0246125 32,17215778 

10 100 122,3250729 22,32507294 

11 110 97,17949555 11,65500404 

12 114 97,17949555 14,75482846 

13 115 135,0863715 17,46641004 

14 119 99,56125324 16,33508131 

15 138 161,5858246 17,09117723 

16 148 186,7728613 26,19787926 

17 155 193,6078396 24,90828359 

18 158 163,159314 3,265388602 
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19 170 152,3094605 10,40619968 

20 171 162,5340565 4,950844138 

21 183 169,3965617 7,433572832 

22 185 135,0863715 26,9803397 

23 189 191,300907 1,217411112 

24 195 213,9985554 9,742848923 

25 202 214,3018872 6,090043191 

26 205 216,2538358 5,489676019 

27 208 216,2538358 3,968190307 

28 211 212,0965322 0,519683504 

29 219 249,8165354 14,07147736 

30 223 223,7057422 0,316476309 

31 226 223,7057422 1,015158332 

32 238 219,8520901 7,625172231 

33 238 221,7092836 6,84483882 

34 240 216,2538358 9,894235067 

35 243 249,1312768 2,523159163 

36 251 249,8165354 0,471499835 

37 266 256,1740635 3,693961091 

38 270 245,7152779 8,994341508 

39 275 285,0131794 3,641156145 

40 280 241,2768318 13,82970293 

41 283 284,6708258 0,590397822 

42 287 309,9167991 7,984947418 

43 292 290,7336411 0,433684568 

44 344 342,9041087 0,318573058 

45 348 400,208444 15,00242644 

46 359 310,6945223 13,45556481 

47 363 316,2238911 12,88598042 

48 366 309,1568471 15,5309161 

49 407 416,1026972 2,236534943 

50 429 409,7623531 4,484299978 

51 429 432,7967803 0,885030375 

52 449 473,4376027 5,442673214 

53 453 515,8255205 13,86876833 

54 488 419,399666 14,05744549 

55 503 536,8730937 6,734213464 

56 541 509,3516666 5,849969208 

57 579 556,8579155 3,824194216 

58 598 625,2146772 4,550949368 
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59 630 604,6991779 4,016003505 

60 636 533,5649493 16,10614005 

61 655 656,643127 0,250859081 

62 673 586,8694426 12,79800258 

63 692 732,795657 5,895326156 

64 745 692,8144676 7,004769447 

65 823 796,3994026 3,232150355 

66 854 913,8148994 7,004086579 

67 1085 1060,890765 2,222049342 

68 1429 1456,281499 1,909132207 

69 1594 1621,620095 1,732753757 

70 1651 1753,037881 6,180368319 

71 1690 1682,039759 0,471020183 

72 1899 1917,32962 0,96522487 

73 1902 1922,528584 1,079315654 

74 1925 1909,865408 0,786212595 

75 2463 2417,081211 1,864343836 

76 2477 2490,676357 0,552133927 

77 2996 2865,825967 4,344927657 

 

 

‘Neural Network Training Regression’ results are shown below.  Comparing to 

Levenberg-Marquardt Back Propagation R values are for all data sets are very close 1, 

which indicates a nearly linear relationship between target and output data sets. 

Automatic normalization has also an effect on R value.  Also, it can be said that, there is 

no spesific overfitting or underfitting problems, since R values for test and validation 

data sets are nearly similar with the R value of training data set. 
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Figure 6: Neural Network Training Regression for Bayesian Regularization 

 

 

4.2.1 Bayesian Regularization Back Propagation Results According to Project Size 

 

As detailed in previous section, the best result with minimum MMRE is found with 

Bayesian Regularization Back Propagation algorithm. Since project data set includes 77 

projects with different sizes (m/d), MMRE is calculated for different project sizes, to 

see if Bayesian Regularization estimates more accurately on a specific project size.  
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77 projects have differents efforts on completion which ranges between 45 m/d to 2996 

m/d.  45 m/d to 100 m/d projects are grouped as “small project”, 101 m/d to 1000 m/d 

projects are grouped as “medium project” and 1001 m/d to 3000 m/d projects are 

groped as “large project”. 

Based on Table 18, for each group MMRE is calculated again. As a result; as given in 

Table 19, for small projects, MMRE is 17,8961417. For medium projects, MMRE is 

8,31853478. And for the large projects, MMRE is 2,00977112.  It is obvious that, the 

existing ANN with Bayesian Regularization Back Propagation gives better estimation 

with large projects. 

According to the results; it can be said that ANN performance shows a change depend 

on project size.  As a future work, different ANNs can be created according to the 

project size.  Also domain number is another important indicator of project size which 

is used in real-life scenerios.  In this sense, project size and domain number relationship 

can be studied and new ANNs can be created within this context.  

 

Table 19: MMRE Results According to Project Size 

 

Type Definition MMRE 

Small Project Actual effort at completion is between 45 

m/d and 100 m/d. 
17,8961417 

Medium Project Actual effort at completion is between 

101 m/d and 1000 m/d. 
8,31853478 

Large Project Actual effort at completion is between 

1001 m/d and 3000 m/d. 
2,00977112 

 

4.2.2 Sensitivity Analysis 

 

5 input variables are selected according to expert opinion survey results as valuable to 

estimate software project effort accurately. As detailed in previous sections, ANN with 

Bayesian Regularization Back Propagation gives the best result with minimum MMRE 

for estimations.   
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In sensitivity analysis, an ANN is created with the top 4 input variables to see if ANN 

can estimate more accurately or same with less variables.  These variables are “well-

defined and stable requirements”, “dependency on 3rd party company’s code”, “multiple 

domain integration” and “reusable code”.  

ANN is created with Bayesian Regularization Back Propagation algorithm and 1 hidden 

layer. ANN gave the best results with 27 neurons. In Table 20, the estimations and 

MRE values are shown. As a result, ANN made estimation with 0,70274273 MMRE 

which is significantly higher error margin than the main ANN with 5 input variables.  

 

Table 20: MRE values for the ANN with 4 input variables 

Project No 
Actual Effort on 

Completion (m/d) 

ANN Results with 4 

Input Variables (m/d) 
MRE 

1 359 242,0867316 0,3256637 

2 344 180,0120917 0,476709036 

3 292 141,0432109 0,516975305 

4 205 109,9355507 0,463729021 

5 202 84,51858176 0,581591179 

6 171 233,5423411 0,365744685 

7 170 146,6761717 0,13719899 

8 148 98,1159214 0,337054585 

9 84 141,0432109 0,679085844 

10 45 210,7937027 3,684304505 

11 429 224,8168113 0,475951489 

12 363 403,9540546 0,112821087 

13 348 399,1101361 0,146868207 

14 208 109,9355507 0,471463698 

15 80 312,0710374 2,900887968 

16 503 239,1974985 0,524458254 

17 488 458,9901451 0,059446424 

18 238 261,2929683 0,097869615 

19 185 182,4884854 0,013575755 

20 114 175,038386 0,535424439 

21 67 406,2790251 5,063866046 
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22 65 311,3036219 3,789286492 

23 429 261,4345923 0,390595356 

24 219 381,6294953 0,742600435 

25 115 182,4884854 0,586856395 

26 854 406,2790251 0,524263437 

27 673 527,6115666 0,216030362 

28 579 300,9720439 0,480186453 

29 280 294,8299631 0,052964154 

30 270 259,4549882 0,039055599 

31 183 173,5946856 0,051395161 

32 75 294,8299631 2,931066174 

33 68 89,18871215 0,311598708 

34 68 210,7937027 2,099907393 

35 62 89,18871215 0,438527615 

36 251 381,6294953 0,520436236 

37 238 332,2622961 0,396060068 

38 745 447,9706864 0,398697065 

39 541 580,7662086 0,073505007 

40 287 359,6054559 0,252980683 

41 266 406,2790251 0,527364756 

42 407 349,7033741 0,140777951 

43 1594 1647,6724 0,033671518 

44 1085 534,9429876 0,506964988 

45 636 503,4993453 0,208334363 

46 453 513,6365584 0,133855537 

47 275 517,1021182 0,880371339 

48 2463 2324,647024 0,056172544 

49 598 748,6052585 0,251848258 

50 283 666,951028 1,356717413 

51 630 784,5553473 0,245325948 

52 1902 1662,303988 0,12602314 

53 1690 1337,193803 0,208761063 

54 655 1028,68506 0,570511542 

55 366 513,6365584 0,403378575 

56 1429 1896,830519 0,327383148 

57 2996 2988,870715 0,002379601 

58 1651 2543,337445 0,540483007 

59 1899 1663,262365 0,124137775 

60 1925 1454,302278 0,244518297 

61 2477 2352,036889 0,050449379 
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62 211 447,1557281 1,11922146 

63 692 905,2989529 0,308235481 

64 119 312,0710374 1,622445693 

65 189 399,1101361 1,111693842 

66 100 319,0140474 2,190140474 

67 223 476,5650577 1,137063039 

68 449 658,974137 0,467648412 

69 243 447,9706864 0,843500767 

70 823 1215,50113 0,476915103 

71 158 236,3516264 0,49589637 

72 195 334,6148778 0,715973732 

73 226 476,5650577 1,108694946 

74 138 423,6250019 2,069746391 

75 155 171,2266961 0,104688362 

76 240 109,9355507 0,541935205 

77 110 175,038386 0,591258055 

 

 

‘Neural Network Training Regression’ results are shown below. R value is 0,93443 and 

lower than Bayesian Back Back Propagation with 5 input variables. For training set, R 

is 0,95095 which is close to 1 that means a nearly linear relationship between target and 

output data sets. In test set R value is 0,92305 and in validation set R value is 0,91845 

which indicates a possible fitting problem comparing to training set.  

 

As a result, for software effort estimation, ANN with 5 input variables gives much 

better results with less error margin comparing to ANN with 4 variables. For future 

work, ANN variable number may be increased to see if ANN would estimate better 

comparing to ANN with less variables.  
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Figure 7: Neural Network Training Regression for Sensitivity Analysis 

 

4.3 The Bank’s Estimations 

 

The Bank which provides the completed projects’ data uses a custom estimation 

method, based on the number of the components that will be developed in the projects. 

These components can be interfaces, services, batches or reports and each component 

has a specific coefficient for the estimation according to their complexity group as 

simple, average or complex.  At the beginning of the project, these components are 

estimated by the domain managers and experts and then project estimation is obtained.  
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In Table 21 baseline estimations for the completed projects and MRE values are shown. 

As a result, MMRE is found as 25,92084985 which is very high comparing to ANN 

results both for Levenberg-Marquardt Back Propagation and Bayesian Regularization 

Back Propagation. 

 

The bank which we gathered data, spent 160.000 m/d (actual effort) for IT projects in 

2016.  By using the bank’s existing effort estimation model, the estimations at 

beginning of the projects were like ∓ %25, which means approximately 120.000 m/d or 

200.000 m/d.  By using ANN model which is created, the estimation could be 172.800 

m/d or 147.200 m/d based on ∓ %8,6 MMRE of Bayesian Regularization.  That means 

27.200 m/d resources saving for the bank annually.  As we assume that 1 person 

(resource) works 250 m/d in a year, 27.200 m/d means 109 resources will be saved 

which is very critical for the annual budget. 

 

Table 21: MRE values for the bank’s estimation 

Project No 
Actual Effort on Completion 

(m/d) 

Baseline Estimation 

(m/d) 
MRE 

1 45 69 53,33333333 

2 62 80 29,03225806 

3 65 65 0 

4 67 50 25,37313433 

5 68 77 13,23529412 

6 68 44 35,29411765 

7 75 47 37,33333333 

8 80 90 12,5 

9 84 87 3,571428571 

10 100 100 0 

11 110 110 0 

12 114 100 12,28070175 

13 115 117 1,739130435 

14 119 120 0,840336134 

15 138 124 10,14492754 

16 148 110 25,67567568 

17 155 144 7,096774194 

18 158 167 5,696202532 
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19 170 135 20,58823529 

20 171 60 64,9122807 

21 183 195 6,557377049 

22 185 191 3,243243243 

23 189 150 20,63492063 

24 195 143 26,66666667 

25 202 90 55,44554455 

26 205 244 19,02439024 

27 208 250 20,19230769 

28 211 290 37,44075829 

29 219 259 18,26484018 

30 223 200 10,31390135 

31 226 231 2,212389381 

32 238 250 5,042016807 

33 238 430 80,67226891 

34 240 290 20,83333333 

35 243 275 13,16872428 

36 251 270 7,569721116 

37 266 350 31,57894737 

38 270 149 44,81481481 

39 275 272 1,090909091 

40 280 300 7,142857143 

41 283 250 11,66077739 

42 287 382 33,1010453 

43 292 290 0,684931507 

44 344 415 20,63953488 

45 348 570 63,79310345 

46 359 300 16,43454039 

47 363 368 1,377410468 

48 366 442 20,76502732 

49 407 373 8,353808354 

50 429 444 3,496503497 

51 429 780 81,81818182 

52 449 560 24,72160356 

53 453 807 78,14569536 

54 488 380 22,13114754 

55 503 275 45,32803181 

56 541 462 14,6025878 

57 579 100 82,72884283 

58 598 738 23,41137124 
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59 630 710 12,6984127 

60 636 829 30,34591195 

61 655 700 6,870229008 

62 673 802 19,1679049 

63 692 600 13,29479769 

64 745 661 11,27516779 

65 823 1384 68,16524909 

66 854 600 29,74238876 

67 1085 2000 84,33179724 

68 1429 1898 32,82015395 

69 1594 805 49,49811794 

70 1651 2000 21,13870382 

71 1690 2277 34,73372781 

72 1899 1040 45,23433386 

73 1902 1178 38,06519453 

74 1925 2740 42,33766234 

75 2463 1970 20,01624036 

76 2477 2010 18,85345176 

77 2996 5200 73,564753 



 

 

 

5. CONCLUSION  

 

 

 

Software projects are essential tools of a typical organization to develop new 

applications and platforms.  However, mostly due to inherent complexities of these 

projects combined with limited resources and time constraints, projects tend to 

overshoot initial resource estimations.  Moreover, as software projects continually are 

added to the list of current tasks or changed to respond to changing customer needs 

and/or competitors’ offerings, accurate effort estimations are needed to manage 

resources efficiently/effectively.  In literature, different methods and models have been 

proposed to calculate software projects’ efforts.  Though, these approaches tend to fail 

in real life scenarios due to the fact that own organization based tailored solutions are 

usually required to correctly estimate teams’ efforts.  

 

Artificial neural networks with the ability to handle complex relationships and to adapt 

to changing conditions seems to attract a lot of attention recently.  Software 

development effort estimation is one the areas that will benefit from adaptable and 

learning frameworks.  Therefore, in this thesis we build a software estimation model by 

using neural network methodology.  The features for the network were chosen as a 

result of a survey realized at one of the largest banks in Turkey.  The findings suggest 

that current approaches used at the bank mostly lack accuracy and ANN based 

methodology is handling the uncertainties and complexities pretty effectively and 

therefore is a superior approach than the classical algorithmic estimation models at least 

for the current scenario.  

 

As future work, historical project data set could be extended to handle possible 

overfitting issues of the neural network model.  In addition, different ANNs can be 

created for different size of projects for effort estimation by grouping projects based on 
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domain number. Also, input variable set could be augmented by using other preselected 

factors.  Similarly, to generalize effort estimation model, input variable selection 

surveys can be realized with IT experts from different sectors like telecom or insurance. 
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APPENDICES 

 

 

Appendix A 

 

% Solve an Input-Output Fitting problem with a Neural Network 
% Script generated by Neural Fitting app 
% Created 29-Dec-2016 15:39:43 
% 
% This script assumes these variables are defined: 
% 
%   Input - input data. 
%   Output - target data. 
  
x = Input; 
t = Output; 
performance_history =  []; 
trainPerformance_history = []; 
testPerformance_history = []; 
network_performance_history = []; 
error_percentage_history = []; 
% Choose a Training Function 
% For a list of all training functions type: help nntrain 
% 'trainlm' is usually fastest. 
% 'trainbr' takes longer but may be better for challenging problems. 
% 'trainscg' uses less memory. Suitable in low memory situations. 
trainFcn = 'trainbr';  % Bayesian Regularization backpropagation. 
  
% Create a Fitting Network 
  
hiddenLayerSize = [86]; 
net = feedforwardnet(hiddenLayerSize,trainFcn); 
net.layers{1}.transferFcn = 'tansig'; 
% net.layers{2}.transferFcn = 'purelin'; 
% net.layers{3}.transferFcn = 'purelin'; 
% net.layers{4}.transferFcn = 'logsig'; 
% % Choose Input and Output Pre/Post-Processing Functions 
% For a list of all processing functions type: help nnprocess 
net.input.processFcns = {'removeconstantrows','mapminmax'}; 
net.output.processFcns = {'removeconstantrows','mapminmax'}; 
% Setup Division of Data for Training, Validation, Testing 
% For a list of all data division functions type: help nndivide 
net.divideFcn = 'dividerand';  % Divide data randomly 
net.divideMode = 'sample';  % Divide up every sample 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 
net.trainParam.max_fail=1000; 
net.trainParam.epochs=10000; 
net.trainParam.lr=0.05; 
net.trainParam.mc=0.9; 
% net.trainParam.mu_max = 1e20; 
% Choose a Performance Function 



 

 

% For a list of all performance functions type: help nnperformance 
net.performFcn = 'mse';  % Mean Squared Error 
  
% Choose Plot Functions 
% For a list of all plot functions type: help nnplot 
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 
    'plotregression', 'plotfit'}; 
  
% Train the Network 
[net,tr] = train(net,x,t); 
  
% Test the Network 
y = net(x); 
e = gsubtract(t,y); 
error_percentage = sum(abs(e./t))/length(t); 
performance = perform(net,t,y); 
  
% Recalculate Training, Validation and Test Performance 
trainTargets = t .* tr.trainMask{1}; 
valTargets = t .* tr.valMask{1}; 
testTargets = t .* tr.testMask{1}; 
trainPerformance = perform(net,trainTargets,y) 
valPerformance = perform(net,valTargets,y) 
testPerformance = perform(net,testTargets,y) 
  
network_performance_history = [network_performance_history; hiddenLayerSize performance]; 
trainPerformance_history = [trainPerformance_history trainPerformance]; 
testPerformance_history = [testPerformance_history testPerformance]; 
error_percentage_history = [error_percentage_history; hiddenLayerSize error_percentage]; 
% View the Network 
% view(net) 
  
% Plots 
% Uncomment these lines to enable various plots. 
%figure, plotperform(tr) 
%figure, plottrainstate(tr) 
%figure, ploterrhist(e) 
%figure, plotregression(t,y) 
%figure, plotfit(net,x,t) 
  
% Deployment 
% Change the (false) values to (true) to enable the following code blocks. 
% See the help for each generation function for more information. 
if (false) 
    % Generate MATLAB function for neural network for application 
    % deployment in MATLAB scripts or with MATLAB Compiler and Builder 
    % tools, or simply to examine the calculations your trained neural 
    % network performs. 
    genFunction(net,'myNeuralNetworkFunction'); 
    y = myNeuralNetworkFunction(x); 
end 
if (false) 
    % Generate a matrix-only MATLAB function for neural network code 
    % generation with MATLAB Coder tools. 
    genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes'); 
    y = myNeuralNetworkFunction(x); 
end 



 

 

if (false) 
    % Generate a Simulink diagram for simulation or deployment with. 
    % Simulink Coder tools. 
    gensim(net); 
end 
  
trainPerformance_avg = mean(trainPerformance_history); 
testPerformance_avg = mean(testPerformance_history); 
performance_history = [performance_history; hiddenLayerSize trainPerformance_avg 
testPerformance_avg]; 
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