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ABSTRACT

The general theory encapsulating the relationship between classical theory of theta
functions and representation of integers by positive definite quadratic forms is well
established. Indeed, it is the finiteness of the set of representations of a given positive
integer by a fixed quadratic form forces the convergence of the corresponding theta
function. These theta functions also possess certain symmetries with respect to both

of their variables.

In this thesis with the aim of generalizing the theory of theta functions to the
indefinite case we consider the analogous question for the case of indefinite binary
quadratic forms. By the classical theory of indefinite binary quadratic forms it
is well known that the cardinality of the set of number of representations of any
integer is infinite unless empty. It was S. Zwegers who defined the corresponding
theta functions. The convergence and symmetries of these new theta functions

corresponding to indefinite binary quadratic forms are investigated.

The thesis is organized as follows: the first part discusses 1-1 correspondences be-
tween equivalence classes of rank 2 lattices and positive definite binary quadratic
forms. Second chapter is devoted to recalling basic facts around theta functions
(their convergence and symmetries) and then discusses two classical uses of theta
functions : in obtaining elliptic functions and in obtaining modular forms. The final
chapter of thesis is devoted to the definition of theta functions corresponding to

indefinite binary quadratic forms and their symmetries.

Keywords : theta functions, lattices, indefinite binary quadratic forms



OZET

Bu calismada, pozitif belirli ikili kuadratik formlarin tamsay: temsilleri ile klasik
theta fonksiyonlar1 arasindaki iliskiyi kapsayan genel teori aciklanmigtir. Bilindigi
iizere, sabitlenmis bir pozitif tamsayinin verilen pozitif beliri ikili kuadratik form
ile farkl temsillerinin sayisinin sonlu olusu, bu kuadratik forma kargilik gelen theta
fonksiyonunun yakinsamasimi zorunlu hale getirir. Aym1 zamanda bu theta fonksi-

yonlari, degiskenlerinin her ikisine gére belli bir simetriye sahiptir.

Theta fonksiyonlar: teorisini, belirsiz kuadratik formlarda genellemeyi amaclayan
bu tezde, belirsiz ikili kuadratik formlarda da benzer soruyu goz oniinde bulundu-
ruyoruz. Bilindigi iizere, klasik ikili kuadratik formlar teorisine gore, herhangi bir
tamsayimin temsil sayisi kiimesinin eleman sayisi bog degilse sonsuzdur. S.Zwegers,
belirsiz ikili kuadratik formlar i¢in theta fonksiyonlarini tanimlamistir. Bu calis-
mada, belirsiz ikili kuadratik formlara kargilik gelen bu yeni theta fonksiyonlarinin

yvakinsakliklar: ve simetrileri aragtirilmigtir.

Bu tezde, birinci boliimde iki boyutlu kafeslerdeki denklik siniflariyla, pozitif belirli
ikili kuadratik formlar arasindaki birebir iligki tartigilmistir. Tkinci bélimde theta
fonksiyonlarina iligkin temel kurallar (bunlarin yakinsakliklar1 ve simetrilerini) ha-
tirlatilmig ve daha sonra theta fonksiyonlarinin iki klasik uygulamasi olan eliptik
fonksiyonlarin elde edilmesi ve modiiler formlarin elde edilmesi tartigilmigtir. Son
boliimde ise, belirsiz ikili kuadratik formlar ve simetrilere karsihik gelen theta fonk-

siyonlarinin tanimina deginilmigtir.

Anahtar Kelimeler : theta fonksiyonlari, kafesler, belirisiz ikili kuadratik formlar
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1 INTRODUCTION

In this chapter, we will define orthogonal transformations and give examples, then
we will define lattices and finally we will mention quadratic forms which have very

important role for theta functions.

1.1 Orthogonal Transformations

A linear transformation 7' : V' — V on a real inner product space (V, (-,-)) is called
an orthogonal transformation, if it preserves the inner product. In particular,
for each pair (u,v) of elements of V', an orthogonal transformation preserves lengths

of vectors and angles between vectors, that is we have;
(u,v) = (Tu, Tv).

In finite-dimensional spaces, the matrix of an orthogonal transformation is called
an orthogonal matrix with columns being orthogonal vectors with unit norm. The
determinant of any orthogonal matrix is either 1 or -1. The product of two orthogonal
matrices and the inverse of an orthogonal matrix is also an orthogonal matrix. So,
we have proved :

Proposition 1.1. The set of orthogonal matrices form a group denoted by Q(n),

where n denotes the dimension of the ambient vector space V.

In two dimensional vector spaces (which will be identified with R? henceforth) we
may classify orthogonal transformations into two groups : reflections and rotations.
The image of a figure by a reflection is its mirror image in the axis of reflection. For
example, the mirror image of the letter b, for a reflection with respect to a vertical
-1 0

0 1
for a horizontal axis would be p and the transformation matrix of this reflection

1
is Ry = . The reflection matrix has a determinant -1 and it fixes all the

0 -1
points on its axis of reflection.

axis would be d and the transformation matrix of this reflection is R =

Rotations are orthogonal transformations that rotate points of R? about a fixed



cos(¢) —sin(¢)

point by angle ¢. In this case, the matrix Ay = rotates points

sin(¢)  cos(¢)
in the vector space R? counter-clockwise by ¢ about the origin. For instance, if we

rotate the vector u = (1,2) counter-clockwise by an angle 7 about the origin, we

get :
T _ cosy —sing 1
Yy sing  cosg 2
x:cosz—2siniz—2
2 2

in T 4 2cost =1
= S1n — COS — = 1.
y 2 2

So the rotation of u around origin by an angle 7 is v = (—2,1). Rotation matrices
have a determinant 1 and they fix the origin.
Theorem 1.1. All orthogonal transformations of a two dimensional vector space V

can be written as a composition of reflections and rotations.

Proof. Let T : R? — R? be an arbitrary element of O(2). T(0,0) = (0,0).

Say A = " and e; = (1,0), e = (0,1) are the unit vectors of R?. Then

P q Ly |(»p
s 0 r
P q 0y  [q
s 1 s

Since orthogonal transformations preserve length; p? + 12 = 1 and ¢*> + s*> = 1. So
(p,r) and (g, s) are the elements of the unit circle S*. (i.e.(p,r) = (cos(6),sin(6;))
and (g, s) = (cos(6y), sin(6y)) for some 61, 6, € (0, 27].).

Orthogonal transformations preserve dot product, since e; L ey then (p,r) L (g, s).
Thus pg+7rs = cos(6y) cos(f2)+sin(6,) sin(fy) = cos(6;—06) = 0. So 61—, = forr 4+~

2
for some k € Z. So

)
)

T
g cos(fh) cos(fa) | cos(f1) cos(fy — (km + 5
sin(f;) sin(6s) sin(fy) sin(6) — (k7 + g

There are two cases;



cos(#y) —sin(b,)

— If k is odd, then the matrix S = . So, S'is a rotation.

sin(f;)  cos(6q)

. . cos(fy)  sin(6;)
— 1If k is even, then the matrix S = . If we compose S with

sin(fy) — cos(f,)

_ _ 1 0 cos( sin(6;)
the reflection matrix Ry = , we get ; (R0S) =
0 —1 8111(9 ) —cos(6q)

This composition is also a rotation.

1.2 Lattices in C

Definition 1.1. A lattice A of rank 2 is Z— submodule of R? generated by two

R—linearly independent vectors :
A = {au+ ay | (ay,as) € Z%}

where {u, v} is a basis for A. We write IL(2) for the set of lattices in R2.

Example 1.2.1. The lattice obtained from unit vectors e; = (1,0) and e = (0,1)
is 7?

Let u = (u1,us) and v = (v1,v2) be two vectors of R? and A be a lattice obtained

from these vectors. The group O(2) acts on A producing another lattice defined as

e:02)xL — L

(7,A) = yeA

where ;

= {Z(p(ur +v1) + q(ua + v2), r(us +v1) + s(u2 +v2)) }
Theorem 1.2. The above map e defines an action of Q(2) on L(2).

10 1 0
Proof. [oAz( u>Z+< v)Z:uZ—i—vZ:Aforallu,vinA.
0 1 01



Let v; = b V2 = p/ q/ be two orthogonal transformations.
r
pur + quy pur + q'v
Te(rpel) =y 7. + 7
r'u; + d'us r'v; + d'vy
'uy + q'u 'v1 + q'v
_ P q pur T~ qug 74 P q pv1rTqU 7
r s r'up + d'us r s r'vy + d'vy

— (Pplul +pquz + qriuy + qslu2> 74 (pplvl + pq'va + gr'vi + qs’vZ) 7

rp'uy + rq’ us + sr’'uy + 55U rp'vy + rq've + sr’vy + s5'vg

/+ ,r,/ /+ 8/ U /_'_ 7,.,/ /+ 8/ v
b pp q bq q 1 74 pp q bq q 1 7
rp' + sr' rq + ss’ Uy rp' + sr’ rq + ss’ Uy
— (o) oA

O
We obtain an equivalence relation on the set of lattices. Namely two lattices A and
A’ are equivalent if and only if there exists an element v € O(2) such that A = ye A’
For convenience we will denote the equivalance class of a lattice A in C again by A.
That is, we will denote elements of the set L.(2) by elements of L(2)/O(2).
Definition 1.2. A homothety is a transformation of a space with respect to a point
S that takes any point M in a one-to-one correspondence with a point M’ on the
straight line SM in accordance with the rule SM’ = kESM where k is constant real
number, which is called homothety ratio and the point S is said to be homothety

center. Homoteties are similarities that fix a point and either preserve (if £ > 0) or

reverse (if k£ < 0) the direction of all vectors.

Figure 1.1: A Transformation with Homothety Center S



We fix the origin of C as the homothety center. Then a homothety in C is determined
uniquely by a real non zero number zy in the sense that homotheties in this case
are given by maps from C to C of the form 2z — x( 2. This homothety is denoted by
My, With this notation, two lattices A and A’ are called homothetic if there is a
zg € R* so that A =m,, e A

Theorem 1.3. Homothety defines an equivalence relation on the set 1L(2).

Proof. If we choose zy = 1 then we have A ~ A. For some m,,, we have A ~ A" if
and only if A = m,, e A’. If we choose xio then we have A’ = my e A. Thus A" ~ A.
For some zy and x; in R* we have A = m,, # A’ and A’ = m,, ¢ A”. This implies

A =mgm,, o A”. So A ~ A" if we choose my,y, - O

1.3 Quadratic Forms

A quadratic form on R” to R is a real-valued function of the form
n n
QX) =) aim;
i=1 j=1
where X = (21,22, ...,x,) € R" and a;; € R. Note that each monomial in this finite

set is of degree two. This formula may be rewritten by using the symmetric matrix

bip big - by
e bas 52'72 bg‘J
bir biz -+ b
such that,
QX) = XTAX;
where b, ; = b;; = % Whenever n = 2 the quadratic form is called a binary
quadratic form.
x 1 —
Example 1.3.1. Let X = "] be a vector in R? and A = be a2 x2

i) -1 -3
symmetric matrix. So the quadratic form represented by A can be written as

Q(X) = (x1 x9) = 2% — 27115 — 373,



Definition 1.3. A quadratic form is called positive definite if Q(X) > 0, and
negative definite if Q(X) < 0 for all X € R™. Q(X) is called indefinite if Q(X) is
attains both negative and positive values, that is Q(X) is positive for some X € R"
and negative for some X € R".

Proposition 1.2. The binary quadratic form Q) determined by the symmetric matriz

a1 a
A= T g positive (respectively negative) definite if det(A) > 0 and the
Qi2 Q22

upper left entry a1 > 0 (respectively a1 1 < 0). Q is indefinite if det(A) < 0.

aypi Aai2

Proof. Let A = be symmetric matrix. For any X = (71, 1,) € R?

G12 A22
quadratic form associated with the matrix A is

QX) = a1,1($1)2 + 2a1 01179 + a1,2($2)2

2a a
== al,l((x1)2 + 1721‘11’2 -+ £($2)2)
a1 11
9 . 2a12 ag 2 9 a%,z 9 a2 2 9
= al’l((acl) + T1Te + —=(x9) ) — =5 ((22)7) + —(22)
a1 11 a1 29
a T9)?
= a1 <($1 + £$2)2 + ( 22) (ag0a11 — (lig) .
Q1,1 aiq
2 2
Since @ < 0and @ <0, Q(X) is positive definite when a; ; > 0 and (ag 2011 —
ars ary
at,) > 0, respectively Q(X) is negative definite when ay; < 0 and (ag2a11 —af,) >
0. On the other hand Q(X) is indefinite if (ag2a11 — af,) < 0. O

Corollary 1.1. The binary quadratic form ) determined by the symmetric matrix

aia

A — )

air2 22

a
B s definite (respectively indefinite) when det(A) = agga11 —af,y <

0 (respectively azsa11 — ay2 > 0)
Example 1.3.2. A quadratic form Q(X) = 23 — 2x179 + 323 can be rewritten as
Q(X) = (x1 — x2)? + 4x3. So that the quadratic form Q(X) is positive definite.

-1 0

0 -1

is Q(x) = —2? — 2. For any x € R?, Q(z) is always non-positive so the quadratic

Example 1.3.3. The quadratic form in R? defined by the matrix A =

form Q(z) is negative definite.



Definition 1.4. A bilinear form on R? is a map
B: R xR — R

such that

— B(X; + X5,y) = B(X1,Y) + B(X,,Y) for all X, X,V € R?

— B(X,Y1+Y3,) = B(X,Y]) + B(X,Y3) for all X,Y7,Y; € R?

— B(aX,Y) =aB(X,Y) for all X|Y € R?

— B(X,aY) =aB(X,Y) for all X,Y € R?
Remark 1.1. Given a quadratic form (), consider the form

Bo(X.Y) = QX +Y) - Q(X) - Q).
Then, for any X;, X,,Y € R?, we have
B(X;+ X5,Y) = %(Q(Xl +Xo +Y) - Q(X1 + Xo) — Q(Y)).

If we calculate value of ) by definition, then we get

1
= (0 + X + V)AL + X0 +Y) = (X0 4+ Xa) AKX + Xo) = YT AY)

(XTAX; + XTAX, + XTAY + XJAX, + X5 AXo + X5 AY + YT AX,

N | —

YTAX, +YTAY) — XTAX) — XTAXo — X5 AXy — X5 AX, — YTAY

QX1 +Y)+Q(Xp+Y) — Q(Xy) — Q(Xz) —2Q(Y))
2

= B(X.,Y)+ B(Xy,Y).

Second equation holds from same method.

For third equation @ € R and X,Y € R%

BX.Y) = S(QX +Y)~Q(aX)-Q(Y))

(aX +Y)"A(aX +Y) — (aX)"(aX) — YTAY)

N | =

((aX)"A(aX) +aXTAY + YT A(aX) + YTAY

DN —

—(aX)"A(aX) — y"AY)



=aB(X,Y)

Fourth equation holds from same method above. We say the B is a bilinear form
associated to Q).

Example 1.3.4. The binary quadratic form which appareared in Example [[.3.1]is

B(X,Y) = —((@1+uy1)* —2(z1 + 1) (22 4+ 22) — 3(22 + 12)* — (@1 + 22)°

N | —

—2(21 4 x2) — 3(x1 +22)> — (1 + v2)* — 2(Y1y2) — 3(y1 + v2)?)
= T1Y1 — T1Y2 — T2Y1 — 3T2Y2.

The type of @ is defined as the pair (2 — s, s) where s is the largest dimension of a
linear subspace of R? on which @ is negative definite. If Q has type (2,0) then by
definition, the dimension of a linear subspace on which @) is negative definite is 0,
hence is {0}. This means simply that @ is positive definite. Similarly, if @) has type
(0,2) then by definition, the dimension of a linear subspace on which @ is negative

definite is 2, hence is R%. This means simply that () is negative definite.



2 THETA FUNCTIONS AND QUADRATIC FORMS : DEFINITE
CASE

In this chapter, we will mention quadratic forms associated to lattices, theta func-
tions, elliptic funtions and modular forms. First, we will show how to obtain definite
quadratic forms from lattices and then we will define theta functions associated to
these quadratic forms. This will be followed by the definition of we will define elliptic
funtions and their relation between theta functions. Finally, we will define modular
forms and observe that Riemann theta function gives rise to a modular form of level

4.

2.1 Quadratic Forms Associated to Lattices

Let A be a lattice generated by the vectors u = (uy,us) and v = (v1,v2). We have a

new symmetric matrix A, with the dot products of the vectors u, v such that

Ay = ueU UV _ (u1)2—|—(u2)2 (ur) (v1) + (us)(v2)

uev Ve (u1)(v1) + (uz2)(v2) (v1)% 4 (v2)?

The matrix A, represents a quadratic form.

Proposition 2.1. Given any element v € My(R), we have A,n =7 - Ap -7,

b
Proof. Lety = ¢ be an element of My(R), @ = (uy,us) and ¥ = (vy,vs) be
c d

bases of the lattice A. We denote yA, the lattice obtained from ~ transformation of
A. So,

A a b\ (u at + bv ((awr + buy), (aus + b))
"y . fr— = pr—
c d) \v ctd + dv ((cuy + dvy), (cus + duv))

The quadratic form obtained from this lattice is

A (aur + bv1)? + (aug + bvg)? (au1 + bur)(cu1 + dvi) + (auz + buz)(cuz + dva)
A pu—
v (au1 + bv1)(cur + dv1) + (auz + bv)(cuz + dva) (cur + dv1)? + (cuz + dvs)?
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Now we calculate v - Ay - y7.

2 2
A AT a b (u1)? + (u2) (u1)(v1) + (u2)(v2) | [a
YA =
2 2
c d (ul)(vl) + (Ug)(Ug) (’Ul) + (’Ug) b d
— a(u1)? + a(u2)? + b(u1)(v1) + b(uz2)(v2)  a(u1)(v1) + a(uz)(v2) + b(v1)? + b(va)? a ¢
c(u1)? + c(uz)? + d(u1)(v1) + d(uz)(va)  c(ur)(v1) + e(uz)(v2) + d(v1)? + d(v2)? b d
_ (aur + bv1)? + (aug + bug)? (auy + bvy)(cur + dvy) + (auz + bva)(cuz + dvsg)
(auy + bvi)(cur + dvi) + (auz + bvz)(cuz + dvz) (cur + dvi)? + (cug + dvg)?
= AW'A
r T
So, for any element y of M,(R) we have A, =y Ax-7". O

Theorem 2.1. Let A be a lattice in C and v € My(R). Then v- A = A if and only
if v € SLy(Z).

Proof. Let A bein lattice in C with the base vectors u and v. So we have A = (u, v).

Suppose that ~ is any element of SLy(Z) such that v = b . Base vectors of
r s
v-Ais
U U+ qU
b _ | = (pu + qu,ru + sv)
r S v TU + SU

Since p,q,7r, s € Z, pu+ qu € (u,v) and ru + sv € (u,v). So (pu + qu,ru + Sv)
C (u,v). So given any matrix 7, we have v-A C A. Asy € SLy(Z), v is an invertible

1

matrix with its inverse v~ € SLy(Z). By changing A — v- A and v — v71, we get

A — ~A

So this relation forces A to be equal to v - A.
For the other direction, suppose v - A = A.

Suppose that v = b with components p, q,r, s € R. Let A = (u,v) for v and v
ros

two vectors of C. So v-A = (pu+ qu,ru+ sv). Since - A = A then for a,b, k,[ € Z,
we have a(pu + qv) + b(ru + sv) = ku + lv.
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This equations shows us ap + br = k and aq + bs = [. If we translate this equation

a
into the matrix equation we get for all € R?, there exists one and only one

b
k 2
€ R* such that
[
p T a k
s b l
. . pr . . . .
First, if det = 0, the equation would have infinitly many solutions but we
s
. . pr . v . . .
have unique solution. So det # 0. This means the matrix is invertible.
q s

Secondly, since the equation holds for all (a,b), we can choose (a,b) = (1,0). Then we

get (p, q) = (k,1). Due to the fact that k and [ are integers, p and ¢ should be integers,

too. On the other hand, if we choose (a,b) = (0,1), we get (r,s) = (k,[), as we saw

in previous sentence, r and s should be integers. This is a contradiction and since
r

det P # 0 and p,q,r,s € Z, det(M) must be F1. It means v € SLy(Z). O
q s

A does not have any canonical set of generators. This is to say we may choose

many different elements (u, v) of A which generate and we don’t have any particular
preference. The association A — A, depends on the choice of generators of A. This

forces us to define an equivalence relation on the set of symmetric matrices with

a
elements M = with a,b,c € R. To overcome this difficulty, we define two
b c

symmetric matrices M and M’ to be equivalent if there is some v € SLy(Z) such
that
T /

Proposition 2.2. This is an equivalence relation and we write M ~ M.

Proof. Let M, M’ and M" be symmetric matrices and let v and ¢ be elements of
SLy(Z). Since ~y,5 € SLy(Z), their transposes 47,67 and their inverses y=1, 6! are
also elements of SL,7Z.
We know that identity matrix is an element of SLy(Z). So if we choose v = I, we
get

M-y =1,-M- 1] = M.
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So this relation is reflexive. If v - M - 4T = M’, then by multiplying left hand side
with 4~! and right hand side (y7)~!, we get

Yy My ()T = M ()

M = 4yt M-y

Since 7! and (77)~! are elements of SLy(Z). So this relation is symmetric.

Ify- M-+ =M and 6 - M’ - 67 = M”, then we get
veb- M-~y 6T =M,

As «y and 0 are elements of SLy(Z), v -4 and (- d)7 are also elements of SLy(Z).
Note 7 - = . Then we have

N'M',UT:M”-

So this relation is transitive. O

Thus, we obtain a map from set of lattices L(2) to the set of symmetric matrices with

a b
the equivalance relation in [2.1} Now given a symmetric matrix M = , we

b c

will find a lattice Ay, (i.e. an element of L(2)). So the symmetric matrix associated

to Ay is M. We must have

ueu = a,
uev = b, (2.1)
vev = c.

Let u = (u1,us) and v = (v1,v2). We have equation system [2.1] this means

2 2 —
uy + uj = a,
u1vy + ugue = b, (2.2)
2 2 —
V] + U35 = C

Since wuyq, ug, v1, vy are elements of R, there are infinitely many solutions for 2.2 Let

-1 0
Ry = be reflection matrix. By multiplying v and v with R; we get
0 1
-1 0 U —U
Ri-u — 1) _ 1
0 1 U9 U9
-1 0 v —v
Ri-v = ) 1
0 1 (%) (%)
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These new vectors are also a solution of 2.2

(—u1)? + u3 = u? + u3 = q,
(—u1)(—v1) + ugve = ugvy + ugvy = b,
(—v1)? +v3 = v} +0v3 = c

If we multiply two vectors with Ry, we’ll find new vectors. It is obvious that these

cos(¢) —sin(¢)

vectors are also a solution for 2.2, On the other hand, let v =
sin(¢)  cos(¢)
be rotation matrix with ¢ € (0, 27|. By multiplying v and v with -, we get we get

cos(9) —sin(@)) () [ cos(@)ur —sin(@)us
sin(¢)  cos(¢) Uz sin(¢)u; + cos(p)us

cos(¢p) —sin(¢) U1 cos(¢p)vy — sin(p)vy
Rl VU = =

sin(¢)  cos(¢) Vg sin(¢)vy + cos(¢)vs

These new vectors are also a solution of 2.2

(cos(@)ur — sin(@)uz)? + (sin(@)ur + cos(P)uz)? = u? + u3 = a,
(cos(@)u1 — sin(@p)uz)(sin(p)u1 + cos(¢p)uz) + (cos(p)vi — sin(¢)vz)(sin(¢)v1 + cos(¢)va) = uivy + ugve = b,
(cos(@)v1 — sin(¢)v2)? (sin(@)v1 + cos(¢)v2)? = vi 4 v3 = .

This gives rise to the equivalence relation defined by action of @(2) on L(2).

On the other hand, for one of these solutions we can start by choosing u = (1/a, 0),
with respect to this choise by using , we can see that v = (\/iav \/ “C;lﬂ ). This base

vectors make us to see that, the system given in does not have any solutions for

a
any symmetric matrix M = . First, a must be positive and ac — b* must

b ¢

be non negative. Since b? is non negative, ¢ must also be non negative. We see that
ac — b* is determinant of M.
These properties are valid for one choice of bases vectors but as Q(2) acts on L(2),

the properties must be valid for all choices. So denote Sym(2) for the symmetric

a
matrices M = with a being positive, ¢ being non negative and determinant
b c

of M being also non negative.
Theorem 2.2. There is a one to one correspondence between 1L(2)/O(2) and
Sym(2) /SLy(Z).
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Proof. At the beginning of this chapter, for each basis of a lattice we find new
symmetric matrix. Since a lattice can have infinitly many bases, by dividing these
bases by the action of @(2), we can say that these two lattices are identic with
respect to this division. On the other hand, we see that the group SLs(Z) acts on
the set of symmetric matrices. So we can say that some symmetric matrices are
identic with respect to this group effect.

So we have a map, say ¢, from IL(2)/O(2) to Sym(2)/SLy(Z), which sends a lattice

ueu uev

A to Ap, which is an element of Sym(2). If A = (u,v) then Ay =
veu vVev

That is to say ¢(A) = A,.
On the other hand, we have also a map, say v, from Sym(2)/0(2) to L(2)/SLy(Z),

which sends M to the lattice denoted by Aj,; with the base vectors uy; and vy, so

b
we have Ay, = (upr,vp). Thus (M) = Ay where M = ¢ € Sym(2) with
b ¢

a=ueu,b=uevand c=vew.

a
For any element M = in Sym(2), we have
c

(@ o) (M) = ¢(b(M)) = ¢(Anr) = ¢((unr, var))

where uy; ® ups = a, upy @ vy = b and vy @ vy = c.

Upr @ Uy Ups ® Vg a b
d((unr, o)) = Any, = =M
Uy @ Upr Upr @ Uy b C
Thus, ¢ o 1) is identity, which means both phz and ¢ are 1 — 1 and onto. O

2.2 Theta Functions Associated to Quadratic Forms

A holomorphic function § : C — C is called a theta function with respect to a
lattice A (or corresponding quadratic form A,) if, for any A € A, there exists a

holomorphic function ey(z) which is invertible such that
O(z+ X)) =ex(2)0(z), VzeC.

Each element of the set of functions {e)(z)} is called the theta factor of 6.
Example 2.2.1. Let A = Z7 + 7Z, where 7 € §). Set
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9(27 7_) _ Z eiw(n27—+2zn)'

neL

This function is holomorphic on C. To check the convergence of this function, we

calculate its absolute value :

Z eiw(n27+2zn)

neL

6(=,7)| =

< Z (|€i7m2(a+bi) | |627rinz|)

ne”

IN

Z (|€i7rn2a| |6—7rbn2 | |627rinz|) )

nezZ

Since a is a real number, |e””2“| = 1. Thus we should only check the convergence of

- - 2 ; . ..
the series > |e=™""||e2™"2|, If we fix z € C, then there exists a positive real number
neZ

M such that |e*™™*| < M. So we have

07 <MY le™

nez
o
— 2 _ 2
E le™™™ | =1+ 2. g le7™m.
nez n=1
According to d’Alembert’s ratio test,
—mb(n+1)?
e T
. 1 —mb(2n+1)
lim a2 lim e .
n—oo € n—o00

Since 7 is an element of ), the integer b is positive. So lim,,_, e~ ™*+1) = 0. This

calculation shows us |0(z, 7)| < 3 M|e ™| < oo. Thus 6(z, 7) is convergent, when
nez
z is fixed.

Now, let us fix 7 € $. For any z € C, there exists a positive real number M
such that |z| < M, as a result of this inequality, we have [e*™™%| < |e*™M]| .| So

6,7 < 3 Jem e
neL

—mbn? 2mnM = —mbn? ’627mM|2 + 1
0, DI < D JeT™ et =143 |27 ==
=1

ne”Z n=
According to d’Alembert’s ratio test,
2w (n+1)M |2
2, le [*+1
i ’26—7rb(n+1) ’ [2n(nF DM |
im

A, e I
|627r(n)]\/1|
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If we simplify expression above, we get

|€—27r(n+1)b| |€47r(n+1)M| +1

!
nl_)Igo |627rM| |647rnM| + 1
|€47r(n+1)M| +1 Y
. . . o . . ..
It is obvious that lim,, e =e and since b is positive,
lim,, o0 |e727*+D8| = 0. Thus 6(z,7) is convergent, when 7 is fixed. So 0(z,7) is

convergent for all z € C and 7 € .
Consider A € A, i.e. A\ =pr +q for p,q € Z
9(,2 + )\’ 7_) _ 9(2 +pr + q) — Ze(iﬂn27+27rinz+27riin+27rinq)'
nel
If we complete the square and rearrange the summands then

E : e(winZT+2m'np7-+7rip2T—7rip27+27rinz+27ripz—27ripz+27rinq)

ne”

o o ) 2 y )
— e TPT 2Tipz § 67rz(n+p) 7'627r7,(n+p)ze27rznq
nez
We know that €2 = 1 for all n € Z, and if we make a index shift m = n + p, then
we get
_ —mip?T—2mipz § (mim2r+2mwimz)
= € (& .
meZ

For any A = pt + q € A, we have
Q(Z—I— )\’7_) _ 6—7rip27——27ripz(9(277_)‘

So 6(z,7) is a theta function with the theta factor

Cprig (Z) — e—ﬂip27—27ripz )

This theta function is called the Riemann theta function.

Riemann theta function can be also rewritten as :

0(z,7) = 14+2e™7 cos(22) +2e*™7 cos(4z) + 27" cos(62) + ... + 2¢™ ™7 cos(2nz) + ...

(2n+1)2

Example 2.2.2. v(z,7) = 2ed cos(z)—i—Qe% cos(3z) +2e% cos(5z)+...4+2e 4 cos((2n+1)z)+....

v is also a theta function. We invite the reader to check that the conditions.

Lemma 2.1. There are two relations between functions 6 and v.

0(z,7) = 5 vz + %,7),

(2.3)

v(z,7) =T e 0(z + %, 7).
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Proof. For the equation (2.3), calculate the v(z + %, 7)

3 5
1/(2—%%,7’) = Qeicos(z+%)+Qe%cos(32+%)4—26%005(524—%)4—---
TiT iz4 TiT 71‘277771'7' gmiT 3iz+ 3mit —3iz— 3mit
T R G T P

By multiplying both sides with eﬁTiT, we get

TiT Smit 3mit 3mit

3 )‘I‘@ 5 (63iz+ 5 +€—3iz— 5 )

TiT TiT

= ez (eiz—i- 3 4 e—iz—

13miT : 3miT _ Qs 3miT
> (6322—4—2 +63zz 5 )

+e

— (eiz+m'7'_|_efiz)_|_(€3iz+47ri7'+ef3iz+7ri7'> + (eSiz+97riT+€f5iz+4piiT) 4o

Now mutliply both sides with €%, then finally we get

1 + e?zz—HrzT + e4zz+47rz7' + 6—212+7r7,7' + 6622-‘1-97'(27' =+ e—4zz+47r7,7'

_ 1+€7ri7'(62iz+e—2iz)+64ﬁi7(€4iz+6—4iz>_’_'“

= 142" cos(22) + 2e*™7 cos(42) + ...

T

eﬁT”eizy(z + 7,7) = 0(z,71).
]
Proposition 2.3. Riemann theta function have some transformations.
1) O(z+1,7)=0(z71),
1) O(z+mi,7)=060(z,7), (2.4)

ii1) 0(z + 77, 7) = e " Te 0 (2, 7).
Proof. It is easy to check first equation.

Q(Z +1, 7_) _ Z eni(n2r+2n(z+1)) _ Z em‘(n27—+2nz)e2n7ri _ 0(2,7 7_>‘

nez neE”L

For the second equation, we have
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0(z,7) = Z TP TR gy gomiT cos(2z) + 2™ cos(4z) + 2¢”™7 cos(6z) + ... + 2¢" T cos(2nz) + ...
ne”

From this equality we get

0(z+m71) = 142" cos(2z + 27) + 2™ cos(4z + 4w) + ... + 2em i cos(2nz + 2nm) + ...
= 1427 (cos(2z) cos(2m) — sin(2z) sin(27)) + 2e*'T (cos(4z) cos(4m) — sin(4z) sin(4m))
2 .
+2e" ™7 (cos(2nz) cos(2nm) — sin(2nz) sin(2nm)) + ...

= 0(z,71).

For the third equation, first we should start with the first equation of the equation
system We have

0(z,7) = eWT”eizu(z + %)

By changing > with z + 77, then we get

vz + %, 7) =TTz + 17, 7).

Finally multiplying both sides with e e%, we get

TIT T miT LT
e+ er(z+ 7,7) = e+ e%ed

e (z + 77, 7).
Finally using the second equation of the equation system we have

0(z,7) = e”TJrZiZH(z—l—WT, 7).

Example 2.2.3. Let A = Zn + Zn1, where 7 € §. Set

1 . ) .
Q(Z,T) — 5 Zezwn27<62mz + 6_2”12).

nez

This function is holomorphic on C. If we calculate |0(z, 7)|, we get

1 2 (a-+bi) || 2mi —2i
< 5% (lemrn (a+ 1)“6 minz | o znz’)
n

'5 Z ezwn27(62mz + e—21nz)

neL

IN

1 .2 _ 2 €4mz—|—1
§Z(|emn a||6 mbn ||W|)

neL

. . ; 2
Since a is a real number, |e"™ | = 1.
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4inz
. et 41
Thus we should only check the convergence of the serie > \e‘”b”2]|2—.\. If we
nez esn
4znz +1
fix z € C, then there exists a positive real number M such that |—| < M. So

we have

M _bn?
0,7 < - Dl

neL

Z|€—7rbn | =142 Z|e—7rbn |

nez
If we apply the d’Alembert’s ratio test, same as example (3.4.1), we’ll see that 0(z, 7)
converges, when z is fixed.

On the other hand, if we fix 7 € §, for any z € C, there exists a positive real number
4znz danM
+1 < e +1
2znz | — | eQinM |

M such that |z| < M, as a result of this inequality, we have ]

4mM + 1
€2inM | :

S0 [0(z,7)| < X fem™| |5

neEZ

—mbn? —7rbn2 €4WLM + 1
ZT|<Z| || e2inz |_1+ZZ| e?an '

nez

Same as exapmple (3.4.1), if we apply the d’Alembert’s ratio test, we get 0(z,7)
converges when 7 is fixed. Thus 6(z, ) is convergent.
To find theta factor of this function, first we should calculate 6(z + am,7) where am

is an element of A.

1 , . .
9(2 + arm, 7-) — 5 Z ezwn2r(627rzn(z+a7r) + e—2m(z+a7r))
nez

1 . o
— E et 7'(62mz62ma7r te 2mz6 2mmr)’

nez
Since n and a are integers, ™™ and e~2"" are equal to (—1)®. So we have
9(z+a7r,7') — _Z a z7rn 7' anz +6—2inz)
nez
= (=1)%(z,7). (2.5)

Now we calculate 6(z + 77) where 77 is an element of A.

1 X . .
9(2 + 77, 7_) _ 5 Z 67,7rn27(627rm(z+7r7) + e—2zn(z+7r7))
neZ

1 P . .
— 5 § :ewm 7'(62mz€2m7r7 +e sze 2m7rfr>.
neL
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If we multiply both sides with (e™7)e?*, we get

efrm'e?zze(Z 4 T, 7_) — 5 E :€Z7T77, ‘refrm'eanz(eZmzeanﬂ‘r Te 2mz€ 2m7r7')

neL

1 0 i o o i i
— 5 Z 6Mrn 7'(6 nz+2inTT+miT+202 +e Nz—2iNTT+TIT+ zze lnTl’T)‘
neL
If we simplify the equation we get
0(z+n7,7) = e e (2, 7). (2.6)

Finally, to find the theta factor, for any element \ = an + brr of A, we calculate

0(z + ar + b7, 7). Using equation 2.5 we can see that

0(z+ ar + brr,7) = (=1)%0(z + brr, T)

= (=1D)(z+ (- 1)nr + 77, 7).
Using the equation [2.6] we get

0(z +am +brr,7) = (=1)% ™ *0(z+ (b— 1)77)

= (=1)% e (2 + (b — 2)7T + 7T, T)
= (=) (e e )20(2 + (b — 2)7T, T).
If we simplify this equation b times with the same method, we get
O(z 4 arm + brr, 7) = (=1)*T (e ™ T2E)G( 2, 7).
So theta factor of this theta function is (—1)2+°(e=™Te=2%)b,
We invite the reader to check that for A = Zn + Zn7, where 7 € .

1 ) .
01(277_) _ 5 Ze(n+%)2m—(e(2n+l)zz + e—(2n+1)zz)
neEZ

1 . , ,
92(2,’7_) _ 5Z(_1>n€7rzn27'(e2mz +€—2mz).

nel

are also theta functions with theta factors ey, = (—1)%(e ™7e %) and e, =

(—e ™e=22)b regpectively, see (Bellman) 1961).
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Remark 2.1. Theta factor e)(z) of Riemann theta function satisfies the following

condition :

extan(2) = ex(z 4+ Nen(2).
Indeed ; let A = pr + ¢ and X = p'7 + ¢’ be two elements of A. We have

exsn (2) :e(p+p’)r+(q+q’)<z) — e milpHp) T 2mi(p )2

_ e*ﬂ'iPQT*Qﬂipp/T*ﬂ'i(p/)2T727Tip27271‘ip/2

6—7rip27'—27ripz—27ripp’7' e—’fl'i(pl)27'—27'riplz

Since p,q € Z then e 2774 = 1. If we multiply both sides of equation with e=27%4,

then we get

_ efTrin7'727ripz727ripp/7'727ripq e*ﬂ"i(p/)QT72ﬂ‘ip/Z

e—ﬂip27—27rip(z+p’7'+q) e—ﬂi(p’)27—27rip’z

= ex(z+ N).ex(2).

More generally, we have the following :
Lemma 2.2. All theta factors with respect to the lattice A, satisfies the following

condition

exty (2) = ex(z + Nea(z).

Proof. Let 6 be theta function with theta factor ey. So 6(z + \) = e)(2)0(z) for
any A € A.
For any X' € A, we can find 0(z+ (A+ X)) = exyn(2)0(2) and also 0((z+ \) + ) =

ex(z+ AN)0(z + A). If we equalize two equations then we have
6)\+)\/<Z)Q(Z> = 6)\/(2 + /\)9(2 + )\)
extn(2)0(z) = ex(z + Nex(2)0(z)

6>\+>\/(Z) = 6)((2 + )\)6)\<Z).

[
Theorem 2.3. Let ¢(z) € O*(C) be holomorphic invertible function on C. For any
theta function 0(z) with theta factor ex(z), the function f(2)¢(2) is also theta func-
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tion with theta factor M.
()

Proof. Denote g(z) = f(2)0(2). Then for any A € A we have

glz+ ) = flz+N0(z+N)
= ex(2)f(2)8(z + A)
= ex(2)f(z + N 122

ex(2)o(z 4+ N)g(2)
¢(2) '

ex(z)0(z + )
Definition 2.1. Two theta functions of {e,} are called equivalent if they either

Thus ¢g(z) = f(2)¢(z) is a theta function with the theta factor O
related by some holomorphic invertible function ¢(z) or are obtained from each
other by translation of the argument z — z 4+ .

Theorem 2.4. This is an equivalance relation.
Proof. Let e)(2) and é,(2) two theta factors of {e,}. We say ey ~ €,(2), if either

i P(z+A)

ex(z) = o) (2.7)

éx(z) = ex(z+a). (2.8)

To show this is an equivalence relation, we must check three conditions. In [2.7] pick
¢(z) = c for all ¢ € C* then we have €,(z) = ex(2).
pick a = 0, then we have €,(2z) = e,(2). So this relation is reflexive.

.7} if we choose a holomorphic invertible function ¥(z) = , then we have

b
¢(2)

é)\(Z) P(z+A) ey = w(’z) €y
¢(1z) P(z+ )
[ Mz(——;M6A<2)

In éx(z + (—a)) = ex(z + (—a) + a) = ex(z). If we denote (—a) = b, then we
have é(z + b) = ex(2).

To check transitivity, we’ll investigate four different cases.
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If éx(z) = ex(z+a) and €)(z) = éx(z + b), then we have

ex(z+0b) =er(z+a+b) =e\(2).

If éx(2) = ex(z + a) and €\(z) = %@(z), then €\ (z) = gb(;(—;/\@(z + a).
Choose a = 0, then we have
A
A6 = L)
If éx(z) = €\(z+a) and é5(z) = %@(z), then €} (z+a) = gb(;(——;)\)e)\(z—l—a).
Also choose a = 0, then we have
A
) = o)
For the last case, if éz) = Me,\(z) and e(z) = M@(z). If we use two
) ®
equations, we hive e’(z) = (b(g(—;)\) (b(;(—;)\)
Set 0(z) = ¢(z)p(z) a holomorphic invertible function, then
e\(z) = 5(2(——2))\)6)\(2).
O

2.3 Elliptic Functions via Theta Function

Definition 2.2. Let f be a meromorphic function on C. We say f is elliptic if
it is periodic in two R-linearly independent directions. Formally, f is an elliptic
function on C, if there exist two complex numbers v and v with v ¢ R, such that
f(z4+u) = f(z) and f(z+v) = f(z) for all z € C. If u and v are ;eriods of f, then
all other periods of f, say w, can be written as mu -+ nv where m and n are integers.
Herein v and v are called fundamental periods of f and all elliptic functions have
fundamental periods, but they are not unique. Thus we can denote lattice of periods
of f by A = {mu+muv | (m,n) € Z*}, it follows that f(z) = f(z+w) for all w € A.
Example 2.3.1. Let A = (1, 7) be lattice with 7 € §. For all z € C, the Weiers-

trals’s p function written as

1 1 1
o=l =5+ 3 | ;- 3
z e (0.0) (z+m+nr1) (m + nT)
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is an elliptic function.
Example 2.3.2. Derivative of Weierstrak’s elliptic function

—2 2
Y= 2 %

3
(m,n)eA\(0,0) (Z Tm TLT)

is also an elliptic function.

Theorem 2.5. (Jones and Singerman, 1987) Given any elliptic function f on C
periodic with respect to the lattice A = (1,7) (i.e. given any meromorphic function
f periodic with respect to 1 and ), there are rational functions Ry and Ry in C(t)

such that f can be written as

f=Ri(p) + ¢'Ra(p).
Remark 2.2. Suppose F' and G are two theta functions with respect to lattice

A = (1,7), with the same theta factors. Then by definition for any A € A we have

Flz+ A1) = ex(2)F(2,7)

Glz+ A1) = exz)G(z,71).
By dividing two equations we get

g(z+)\,7):g(z,7) forall z€ C and X € A.

F
Denote f = o % f is periodic with respect to A. By the theorem , there must

exist some rational functions R; and R, in C such that

= Rulo) + 9 Ralp).

Theorem 2.6. We define new function 0@ = 6(z — (3) — (%) — x) where 6 is

Riemann theta function. Fix a positive integer r and choose any two sets of r complex

numbers {z;} and {y;} such that > x; — > y; is an integer. Then the ratio of
i J

translated theta functions

[T
Riz) = ﬁ Yj

J

15 a meromorphic A-periodic function on C.

Proof. The function §®)(z) has zeroes at points z + A. Note that
0@ (z4+1)=0(2) and 09 (z+7)=—*C"20(2)
Define a new function R(z) of the ratio



25

It is clear that this function is meromorphic and periodic on C, i.e. R(z+1) = R(z).

So it must be A-periodic if and only if R(z + 7) = R(z). But

[10) (> + 1)
R(z+71) = —n——
[1

0Wi) (2 + 7)
J
H 6—271'1'(2—:51-)&(131-)(2)
(i
H 6_277i(z_yj)9(yj)(z)

j=1

—2mi[(m—n)z4+3 y;—3 i
J 7

= (=)™ "e z).

—27ri[(m—n)z+z Yj—> T
j

Thus extra factor (—1)™ "e ©  have to be 1 for all zin C so m

must be equal to n and if so, this factor is 1 if and only if

in —Zyj €.
i J

2.4 Modular Forms and Theta Functions

Definition 2.3. A modular form of weight & for the modular group SLs(Z) is a
complex function f on $) such that :
1) f is holomorphic on $.

a b b
2) For any z in $ and any matrix v = in SLy(Z), the equation f(azj_—d
c cz

) =

(cz +d)* f(z) is required to hold.

3) f is holomorphic at z = occ.

2miz 2miz __

To define holomorphicity at oo, we introduce ¢ = e“™*, and note that ¢ = ¢
e2rilety) — emize=2my  And if we compute |q| = [eZ"T|e72™| = 2. If y — oo
(i.e. Im(z) — 00), then ¢ — 0. This means ogm(z) — 00. We say that a function
f : $ — Cis holomorphic at oo, if f(z) = Z a,e*™ is holomorphic at ¢ = 0.

n=0
Example 2.4.1. For any ¢ € C, the constant function f(z) = ¢ is a modular form.
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Indeed :
of
FER
az +b
JELD = e= 1),
lim f(z) = c¢<o0.

Im(z)—o0

So f is a modular form of weight 0.

Remark 2.3. Let f is a modular form of weight k.

1
€ SLy(Z), so we have f(z) = f(z+ 1). We denote T for this matrix.
01
0 -1 _
€ SLy(Z), so we have f(=t) = 2" f(z). We denote S for this matrix.

1 0
B € SLy(Z), so we have f(z) = (—1)¥f(z). This equality shows uS if
0 -1

weight of modular form is odd, then it is equal to 0.

Theorem 2.7. The group SLy(7Z) is generated by ;

0 -1 11
S = and T =
1 0 01
Example 2.4.2. Consider Eisenstein Series G, (z) = > @ -
(a,b)€Z2\(0,0)
For v = Py e SLy(Z)
ros
Pz +4q 1
Gnl ) = )
rz+s (@b)ez\0,0) (a(ErL) +b)
_ D (rz+s)"
(ap)ez@\(0,0) (a(pz + ) + b(rz + s))"
= (rz+s)" >

(a,b)€Z™\ (0,0) (a(pz +q) + b(rz + s))»

Set pa + rb = A and qa + sb = B. Now we define a function ¢ such that :

¢ = 22/{(0.0)} — Z?/{(0.0)}
(c,d) — (pa—i—rb,qa—i—sb).

We know b € SLy(Z). Suppose that ged(p,r)=g. It means g/p and g/r and
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ps—qr =gp's—gr'g=g(p's—1'q) =1 .50 g/1 = g = 1. It is same for q and s
ged(q,s)=1. So ¢ is surjective.
Let (z,y) and (2/,y') two elements of Z?/{(0.0)}. Suppose ¢(z,y) = ¢(2/,y)

(pz +ry, gz + sy) (pz’ + 1y, g2’ + sy'),

A =pr+ry=px+ry & B =qr+sy=qx' + sy,
plz —2')=r(y —y) & gz —2")=s(y —v),
ged(p,r) =1 & ged(q,s) =1,

ply—y & rjr—a,

q/y -y & s/z—a,

Thusrl=x—2',sn=x—2,pk=y—y,gn =y — 3 for k,[,m,n € R

A =p +rl)+rpk+vy) = px'+ry +prl+prk =px’ +ry. So rp(k +1) = 0.
B =q(sn+2')+ s(gm+y') = gsn+ qx' + sqm+ sy’ = g’ + sy’. So gs(m+n) = 0.
Ifl+k=0,then | = —k and pk = y — ¢/, —rk = x — 2. It means p and r are
divisible by k. It is contradiction, because ged(p,r)=1. So [+ k # 0. Similar method
can be applied to m and n gives m + n # 0. These results show that pr = 0 and
qs = 0.

Ifp=0,theny=9"and ¢ #0=s=0=2x=2a2".

Ifr=0,thenzx=2"and s20=q=0=y =1y

Thus ¢ is injective.

Gn<pz +4q 1

y=(rz+s)? >

rz4+s (amez (Az+ B)*
So G, (z) is modular form of weight n.

Remark 2.4. To check f: $ — C is modular form of weight k, it suffices to check
flz+1) = f(2) and f(5) = 2"f(2).

In example [2.4.2] to show that Eisenstein Series is modular form, it would be enough
to check two transformations by using

First check Gp(z + 1) = m
(a,b)€Z2\(0,0)
variables (k,l) — (a,a +b). Then we get;

. Since (a,b) € Z?, we can change the

1
(k,1)€z2\(0,0)
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Secondly, we check G, (=).

-1 1
S R @D T

(a,b)€Z2\(0,0)

n

= 2 ety

(a,b)€Z2\(0,0)

n 1
- Z (bz —a)™

(a,b)€Z2\(0,0)
Also changing variables (k,[) — (b, —a) then we get
-1

. 1
) =" D G

(k,1)€22\(0,0)
= 2"Gp(2)

Theorem 2.8. Fisenstein series G, (z) = >
(a,b)€Z2\(0,0)
uniformly on upper half plane, when k > 2.

m converge absolutely and

Proof. Let z = x + yi be an element of §), such that |z| < p,y > r. Then we have
the inequality

[(az + b)*| = (ax +b)* + a*y* > (ax + b)* + a’¢>.

If we fix a and b, we’ll analyse two cases; the first case is |b| < 2p|ajand the second
is |b] > 2p|a|. From the first case, we have

b2 > 22>q22 7’ > i ¢ ¢ 2 p2
laz + b|* > a”q 2 5a +2(2p)2 _mm{;,g—pz}(a + b%).

From the second case, if we apply triangle inequality, then we have

b 1
a2+ > (Jarl — 10)? +a%¢* > (0)? 02?2 min{  ¢?}a® + 17).

Associating both cases and putting
2 2
gL 1
C= mzn{ 2 I 8]72’ 47q }7
we get the inequality
laz + b| > cla® + b?)2 forall a,b € Z, z € H.

This inequality implies that for any z € §, we have
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1 1
|Gu(2)] < o Z (a® + b2)1/2

(a,b)€Z2\(0,0)
We rearrange the sum by grouping together for each fixed £ = 1,2,3,... all pairs
(a,b) with max = {|al, |b|} = k. Note that for each k pairs, there are 8k pairs (a, b),
each of which satisfies

k* < (a® + )2

From this inequality we get

A
NE
Q| =

|G (2)]

i
I

I
Q] oo
(]
5
3\’_‘
o

B
Il
—_

which is finite and independent of z. O
So far, in this chapter, we have been occupied with the behaviour of 0(z, 1) for its
first component. But, it has also a behaviour as a function of 7. € is periodic up to a
factor for a group acting z and 7. If we have two generators of A, = (1, 7), written
as at + b and ¢t + d, we could have made theta functions. They were periodic
with respect to z — 2z + ¢7 4+ d and up to a factor for z — 2z + ar + b which is

exponential. Then the new theta functions don’t be very different from originals.

a
Fix any € SLy(Z) and assume that multiplication of each columns are

c d
even. That is to say ab and cd are even.

Now, we consider the function 6((ct + d)w, 7). When we replace w by w + 1, the
function does not change except for a factor which is exponential. It is easy to
find out an factor e4*”. This factor corrects 7((cr 4+ d)w, ) to a periodic function

w — w ~+ 1. Actually, let
v(w, ) = TV Y((er + d)w, 7).
Then if we make some simple calculations, we would have
v(w+1,7) =v(w, 7).

On the other hand, the periodic behaviour of 6 for z — z+ 7 gives the second period

for v,
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at + b cat+b

77_) — e*ﬂzCTerfZﬂiw
cT +d

v(w

This time we make some calculations, by definition we have

v(w, T)

(w + or +b )
v(w -
cr +d’ eWiC(CT'f‘d)uﬂ+2ﬂicw(ar+b)+wi6%
O((cm + d)w + at + b, 7)
and
O((ct +d)w+ar +b,7) e=riatr=2miaw(er+d) g (o7 4 d)w, 7)
U(w7 7_) F 67T’L'c(c7—+d)29((c7_ + d)w, 7_)

_ e*TI'i(J,QT*Qﬂ'Z'aw(CTﬁ*d)77l'iC(CT+d)2

We know that determinant of a matrix in SLy(Z) is 1, so we have ad — bc = 1, by

multiplying two equations above, we get ;

( at +0b )
v(w T b
CT + d’ - e—27riw(ad—bc)+7ric<ac:_i’2 —mia?T
v(w, )

_ e—27riw— c:—li»d (a7 (ct+d)—c(aT+b)?)

_ e—m’w— c:j—d (a2dT—2aber—b2c)

If we factorise the exponent, we get
a’dr — 2aber — b*c = a(ad — be)T — ab(er + d) + b(ad — be)

= (a1 + b) — ab(cr + d).

We assumed that ab is even so we had what we want. On the other hand, for

_CLT+b

! 5 the unique function invariant under A, is #(w, 7). Thus, we have

cT +

ar +b
ct +d

v(w, 1) = P(1)f(w, ( )

for some function (7). Say it differently, if w = , then

ct +d

—micz? T4+b
0z, 7) = (r)e T 6( (c7‘z+ d)’ EZT id;

).
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For evaluating (1), note that the property "zeroth term in Fourier expansion of

0(z,7) is 1" is normalised 0(z, 7). That is to say

1
/ O(w,7)dy = 1.
0
From here
1 1 .
P(r) = / v(w,7)dy = / eric(er+dw O((cr + d)y, 7)dy.
0 0

If we continue calculating, finally we will find that

o) = s

c(— é 1<n<ec

a b
Theorem 2.9. (Mumford, 2007) For all T € §, given v = , with ab and
c d

cd are even, there exists a function n which is eighth root of 1, then we have

z ar +b

- d)be 55102, 7).
CT—i—d’CT—i-d) nler +d)zer+76(z,7)

(Er) - 6(

By assuming ¢ > 0 and d > 0, we get Im(ct +d) > 0 and choose (et + d)2. We

evaluate two cases, to fir n, ¢ >0

— If d is odd and c is even, then n = i%(dﬂ)(i).

— If d is even and c is odd, then n = e_zic(gl).
c

Definition 2.4. We call level of a an elliptic modular form f to an integer N such

that

b
Iy = { ¢ ©| €8L(2) | bo=0(mod N) a,d = 1(modN) }

C

here the set of 'y is a subgroup of SLy(Z).
Theorem 2.10. (Mumford, 2007) The square of Riemann Theta function 0(z,T)

15 a modular form with weight 1 and level 4.



3 THETA FUNCTIONS ASSOCIATED TO QUADRATIC FORMS :
INDEFINITE CASE

In previous chapter, we worked on definite theta functions and their properties. In
addition there are indefinite theta functions. To obtain these functions, we should
define new sets. At the first section, we’ll define these new sets and obtain indefinite

theta functions, and then we’ll mention their properties.

3.1 Basic Definitions

Let A be symmetric 2 x 2 matrix with integer coefficients. We consider the quadratic

1
form @ : R?* — R, and the associated bilinear form B(x,y) = §(Q(x +y) —

Qz) — Q(y)) with Q(z) = %(x, Az). Now we assume that @ has type (1, 1), ie., Q
is negative definite on 1 dimensional linear subspace of R%. Then the set of vectors
c € R? with Q(c) < 0 has two components. If B(cy,cy) < 0, then ¢; and ¢y belong
to the same component, if not then ¢; and ¢y belong to opposite components. Let
Cg be one of the two components. If ¢, is a vector in that component, then Cy is
given by : Cog ={ceR? : Q(c) <0, B(c,cp) < 0}. We further define

So ={c=(c1,0) €Z* : pged(cy,c2) =1, Q(c) =0, B(c,cp) < 0}.

Example 3.1.1. In previous example, we see that the bilinear form associated to
the quadratic form () which is defined by the matrix A in the Example is
B(X,Y) = z1y1 — 1192 — Tay1 — 3Talp.

P L L L L L L L L

L]
T
1

-15 -10 =05 00 0.5 1.0 1.5

L]

X

Figure 3.1: Negative Definite Areas of Q(c)
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Q)(c) is negative definite for ¢ € A or ¢ € B where A is the set of following system
of inequalities

{r+y>0, -3y <0}

and B is the set of solutions of the
{r+y<0, z—3y >0}

Set A and set B to be the shaded areas in Figure .1} Let ¢; = (0,2) and ¢5 = (0, —1),
then we get B(cy,ce) = 6 > 0. It is clear to see in the picture, ¢; € A and ¢y € B so
they belong to opposite components. And if we choose ¢; = (0,2) and ¢; = (0, 3),
then we get B(cy,cy) = —18 < 0. Both ¢; and ¢, belong to same component A. Thus
we get Cp = AU B.

Let ¢g € Cg and Q(c) = 0, so c¢ is the boundary point. For this example there

are only four boundary vectors which are primitive and satisfy B(c,co) < 0. So
SQ = {(17 _1>7 (_17 1)7 (37 1)7 (_37 _1)}-

10 _
For some cases Sy can be empty, for example A = . Farther we put C¢ :=
3

Cg U Sg and for c € 6Q we define

R? if ce CQ;

R(c) = .
{a € R?: B(c,a) ¢ Z} if c € Sg.

and
D(c) :={(z,7) € C* xH : (I[Z:L((?)), 1}7:711((?))) € R(c)},

where z = (z1, 22) is an element of C.
Example 3.1.2. In example|3.1.1] if we choose ¢ € AU B, then we have R(c) = R>.
On the other hand, if we choose ¢ € Sy, for instance ¢ = (3, 1), then

R((3,1)) = {a=(a1,a2) € R*: B((3,1), (a1,as)) ¢ Z}

= {a=(a1,a2) € R*: B((3,1), (a1, a)) = (2a; — 6ay) ¢ Z}.

2
So, all elements in Z? is not an element of R((3,1)), however (3, ?) is an element of

R((3,1)).
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Definition 3.1. Let ¢, ¢y € Cg. For (z,7) € D(cy) N D(ca), we say 0,4(2,7) theta

function of the indefenite quadratic form Q, with respect to (c1,co), such that

9(2’ 7_) _ 921;(:2 (Z, ,7_) — efZWiQ(a)TfQM'B(a,b)ea’b

_ Z p(n +a, 7_)62m'Q(n)7'+27r7LB(n,z)’

n€z?

where p(v,T) is defined by

plv.) = p (. 7) o= 7 (. 7) — 2 (v.7)

with
B(v, T/ Im(T) g
E(——=——) ifce Cy;
() = (o ) Yeela
sgn(B(c,v)) if c € Sg.

~

where E(z) =2 [ o= g,

And with a,b € R? defined by z = ar + b, so a = Zﬂ”gi; and b = I[";f(z:))

Example 3.1.3. For all X = (z1,7) € Z?, consider the indefinite quadratic form
Q(X) = 22 — xywy — x3. For all Y = (y1,y2) € Z?, the bilinear form associated to
this quadratic form is B(X,Y) = 2x1y; — 2x9ys — x1Y2 — T2y1. Let ¢; = (0,2) and
c2 = (3,0) be two elements of C. By definition

pr2mn+a,T) = pntar7)-p*(n+a,rT)

B(cr,n+ ah/Im(r)

e = B

)

B(ea,n+ a)/Im(T)
—Q(c2)

Since the function FE is defined as an integral, p“ are real valued functions with

F(n+a7) = B

).

respect to n and ¢; with i = 1,2. So say p (n+a,7) = A, ¢, and p?(n+a,7) = Ay, .
Since ¢; and ¢y are elements of Cg, D(c) = C* x . Let (2,7) = (21, 29;7) be an
element of D(c), then theta function of quadratic form @ with respect to ¢; and ¢
is
92}1;02 _ Z (An,cl . Anvc2)627TiQ(n)T+27riB(n,z).
nez?

If we calculate () and B we get
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ci1,c2 27Ti(n2fn1n27n%)‘r+27ri(2n12172n2227n1x27n221)
ea,b - E : (An701 - An,cz)e ! :

n=(n1,n2)€Z?

3.2 Properties of Indefinite Theta Function

In this section, we will give some properties and some transformations of indefinite
theta functions. To be able to prove them, first we will give a lemma.
Lemma 3.1. Let f be any holomorphic function. foz flu)du = — fofz f(u)du if fis

even.

Proof. Denote F(z) = [/ f(u).du so F(—z) = [, f(u)du. By replacing u with
—t, we get . 4

F(=2) = [ f(-t)-d) = [ ~fwat=-F(2),
So since F(z) = —F(—z), we have proved the lemma. O
Proposition 3.1. The indefinite theta functions satisfy :
1) For (z,7) € D(c1) N D(c2) N D(c3) and ci,ca,c3 are elements of Cg, we have
gve2 + 62 =0 and 0 4 03 + 1 = (.
2)For allv € A7YZ% and \ € 7%, we have 0(z+AT+v, 7) = e 2MQNT=2mBENg (5 1),
3)0(—z,7) =—0(z,7).
4) 0% is continuous function on Cg x Cg.
5) Let c1,¢0 € Cq, c3 € Sg and (z,7) € D(c3). Set c(t) = c3+tca. Then c(t) =€ Cyg.
6) Let D'(c) := {(z,7) € D(c)|] (£,—-1) € D(c)} = {(ar +b,7)] T € 9, a,b €

T T

R? B(c,a) ¢ Z, B(c,b) ¢ Z}. If (2,7) € D'(c1) N D'(cy) then

z 1 l ,
0= —2) = ——=(ir)* > TGz pr7),
T T /—detA peA T2 /22
Proof. Proof of (1) follows from relations of p°.
For (2), it is easy to see that 0(z + v,7) = 6(z,7) for v € A'Z and by replacing n
by n+ A we get 0(z + A7, 7) = e 2mQNT=2mBEA (4 7).
For the proof of (3), the function f(u) = e~ is even we can clearly see this in power

series of f(u)
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is even function. By using Lemma we know that E(z) is an odd function. On
the other hand, it is obvious that sgn function is odd function. Thus, as p is also an

odd function.
0(_2’ 7_) _ Z p(n —a, T)GZWiQ(n)T+27riB(n,—z)

nez?

by replacing n to —n we get

9(_27 7_) — Z p(_n —a, ,7_)627riQ(—n)7'+27riB(—n,—z)‘

Since Q(—n) = =(—n,—An) = Q(n), B(—n,—z) = B(n, z) and we showed that p

is odd function so we have

9(_27 7_) — Z p<_n —a, T)GQWiQ(fn)TJerB(fn,fz)
—n€eZ?
_ Z _p(n +a, 7_)627riQ(n)‘r+27riB(n,z)
nez?
= 0(z,71).

O
Corollary 3.1. (Zwegers, |2012) The indefinite theta function 0, satisfies following
transformation properties ;
1) Ouirp = Oap for all X € R%.
2) Oy = 2B, for all v € A2,
3)0_g_t=—04p.
4) Oup(T+1) = G*QWiQ(“)*“iB(A_lA*’A)0a7a+b+%A71A*(T) with A* the vector of diagonal
elements of A.
5) If a,b € R(c1) N R(cy) then
7

1 .
Ha,b(__> _ —(_i7_>r/2€2mB(a,b) 9b+ ’_a<7_>‘
T —det A pefl—;modz2 ’



4 CONCLUSION

In this thesis, theta functions corresponding to positive definite binary quadratic
forms is investigated. As is well known, these theta functions are convergent with
respect to both of its variables z and ¢, whose convergence is a consequence of the
finiteness of the number of representations of a given positive integer by the given
positive definite binary quadratic form. Due to the symmetry properties of these
functions, these theta functions play a key role in both producing elliptic functions
and modular forms.

Whenever the binary quadratic form is indefinite however a word for word definition
does lead to a divergent theta function. We observe that the factor (introduced by
S.Zwegers) forces the infinite sum to converge yet this new series does not converge
absolutely. Therefore, we obtain a function of two complex variables and another
variable in the upper half space. The symmetries of these new theta functions with
respect to both variables are studied.

In the light of the results obtained concerning the symmetry relations of these new
theta functions we believe that it should be possible to use these new family of theta

functions in producing :
— functions defined on abelian surfaces, and

— modular forms.
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APPENDIX A UPPER HALF-PLANE

The upper half plane is defined as the set of all complex numbers with positive

imaginary part, and denoted $):
$H = {z€C | Im(z) > 0}.

The set D ={z € C | |z| <1} is called unit disk.
Let U and V be two subsets of C and f : U — V be a holomorphic function. We

call f is biholomorphic, if f is bijective and its inverse omoromorphic.

imaginary axis

»
e >
e h
/ \
/ \
| | X
‘ 1) 0 '
real axis % J
"\ %
<
N - 4

Figure APPENDIX A.1: Upper Half Plane and Unit Disk

The Cayley Transformation is the mapping of the upper half plane to the unit
disk, given by

kK :$9H — D
z—1
z = -.
z+1
It is clear to see that F(n(z)) = 0. So k is a holomorphic. & is surjective because
Z
. , 1
any element y of D can be written y = : n Z Indeed, we get z = M This
z41 -
' 1 1 1
is an element of §) because M‘ = i H+ ‘ = :yi—i_ :, since y € D, |y + 1
- - Y - Y

ly + 1]
11—yl

never vanishes, so > (0. K is surjective.
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To show & is bijective function, we should find its inverse.

k1D - 9

s iz + 1).
—z+1
Now we compute ko £~ 1(2).
. iz + 1)
vort(s) = w2

i(z+1) _4
_ —z+1
T i(241) .
—z+1 +
12+ 1+12 —1
1Z2+1—12+1
= 2.

Thus $ and D are biholomorphic.
Lemma(Schwarz Lemma). If ' : D — D is a holomorphic function and if
F(0) =0, then

[F() < [z[ and  [F(O)] <1.

If either |F'(z)| = |z| for some z # 0 or [F'(0)] = 1, then F is a rotation. (i.e
F(z) = €% for some 0 € [0.27].) We’ll use Schwarz’s Lemma to determine all auto-
morphisme of . First note that pg : D — DD sends z to €z is an automorphism
of the unit disk. In addition, a € C with |a| < 1, we define a function ¢,, from D to

itself, given by;

Go: D — D
. zZ—a
z )
1—az

Let zy € 0D, then |z,| = 1 and z, = %

eiGO 0o

1 — aeio

—al| | —ad

o |€i60||€—i90 _ d|'

|¢a<ZO) =
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Set €% — a = w, so we get w =e"% —q

ba(z0)] = % —1

According to maximum modulus principle, |¢| attains its maximum on the boundary.

S0 [04(20)] < 1in D.

The inverse of ¢, is (¢,)"'(2) : D — D such that (¢,)"'(z) = fjaaz.
-1 1Z:‘a —a
$a(2) 0 (¢a) ' (2) = %(@)

z4+a—a—aaz

14+ az—az—aa
z(1 —al)

1—|a|
According to definiton |a| < 1, (1 —|a|) # 0 thus ¢,(z) o (¢a) ' (2) = 2. This shows
that ¢, is bijective and since 5(@5@(2’)) =0, ¢, is also holomorphic function.

z

So ¢, : D — D is a holomorphic automorphism.
If F: D — D is any holomorphic automorphism, then there exist ¢ € D and

0 € [0,27) such that F = ¢, o py.

Figure APPENDIX A.2: Automorphism of the Unit Disk
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Since ¢, and f are biholomorphic functions F' = ¢, o f is also biholomorphic, thus
F~!: D — D is biholomorphic function too. F~!(0) = 0, according to Schwarz
Lemma |(F~1)(0)] <1

F :D—>D , F0)=0=|F(0) <1,

F':D—=D , Fl=0=|F10)<1,

If we use the equations above, it is easy to see that |F'(0)| = 1, according to Schwarz
Lemma, F is a rotation. Thus F(z) = €™z = ¢ 0 f ie.  (0p0) " = d—p0) =
$_f(0) © pg = f. This shows us any biholomorphic function of I is a composition of
¢, and py. Conversely, any composition of ¢, and py is a biholomorphism of D. So

we proved:

Theorem APPENDIX A.1. For any biholomorphism f : $ — $, there are
some a € D and some 0 € [0.27] such that f = k' o (¢, 0 fp) o k.

The special linear group SLy(Z) is the group of all integer 2 x 2 matrices with

determinant one.

b
SLy(Z) = ¢ | ad — bc| =1
c d

More specially, we denote PSLy(R), the group of SLy(R)/{£1} PSLy(Z) is a sub-
group of PSLy(R).

Two particular elements of PSLy(Z) are

0 -1 11
S = , T =
1 0 01
1 n 0 —
The matrix 5% = I, T" = and (ST)? = I, with ST = .S and
0 1 1 1

T generates SLo(Z).
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