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ABSTRACT 

 

 

 

Electricity can be produced from fossil fuels, from nuclear energy, from bio-fuels or 

from renewable energy resources. As a matter of fact, energy suppliers and managers 

face the energy management problem. Concerning electricity generation based on solar 

radiation, it is very important to know precisely the amount of electricity available for 

the different sources and at different horizons: minutes, hours and days. Depending on 

the horizon, two main classes of methods can be used to forecast the solar radiation: 

statistical time series forecasting methods for short to midterm horizons and numerical 

weather prediction methods for medium to long-term horizons. In this thesis we focus 

on statistical time series forecasting methods. The aim of this study is to assess if deep 

learning can be suitable and competitive for solar radiation data time series forecasting. 

In this context, Recurrent Neural Network variations, namely Long Short-Term 

Memory (LSTM) and Gated Recurrent Unit (GRU) models are used for time series 

forecasting on solar radiation data. With an experimental approach, the performance of 

single layer and two layered LSTM and GRU models are investigated. By hyper-

parameter tuning optimal parameters are found in order to construct best model that fits 

the global solar radiation data. In further experiments, the data are divided into the 

seasons. Seasonal performance of constructed RNN models and other machine learning 

methods are compared and a hybrid model is proposed according to the experimental 

results. Finally, the effect of additional meteorological parameters on solar radiation 

forecasting is investigated. The results show that the LSTM and GRU models can be 

suitable and competitive for 1 hour horizon time series forecasting on the solar radiation 

data. Experiments showed that hybrid approach and additional meteorological 

parameters improve the performance of model. 



 

 
 

ÖZET 

 

 

 

Elektrik, fosil yakıtlardan, nükleer enerjiden, biyoyakıtlardan veya yenilenebilir enerji 

kaynaklarından üretilebilir. Nitekim enerji tedarikçileri ve yöneticileri, enerji yönetimi 

problemiyle karşılaşmaktadır. Güneş ışığı kaynaklı elektrik üreten sistemlerde, dakika, 

saat ve gün gibi farklı periyotlarda üretilecek elektriğin miktarını tam olarak bilmek 

oldukça önemlidir. Güneş ışınımı tahmininde, periyoda bağlı olarak iki ana yöntem 

kullanılmaktadır. Bu yöntemler kısa ve orta dönemlik periyotlar için istatiksel zaman 

serileri tahmini ve orta ve uzun dönemlik periyotlar için ise sayısal hava durumu 

tahminidir. Bu çalışmada istatiksel zaman serileri tahmini yöntemleri odaklanılmıştır. 

Çalışmanın hedefi, güneş ışınımı verisi üzerinde derin öğrenmeile zaman serileri 

tahmini yöntemlerinin uygunluğu ve rekabet edebilirliğini araştırmaktır. Bu kapsamda, 

Yenilemeli Sinir Ağı varyasyonu olan Long Short-Term Memory (LSTM) ve Gated 

Recurrent Unit (GRU) modelleri kullanılarak güneş ışınımı üzerinde zaman serileri 

tahmini yapılmıştır. Parametreler optimize edilerek güneş ışınımı verisini en iyi temsil 

eden modeli oluşturacak değerler bulunmuştur. Kurulan RNN modellerinin ve diğer 

makine öğrenmesi yöntemlerinin mevsimsel performansları karşılaştırılmış ve deneysel 

sonuçlara göre bir hibrit model önerilmiştir. Son olarak, güneş ışınımı tahmini üzerine 

ilave meteorolojik parametrelerin etkisi araştırılmıştır. Sonuçlar, LSTM ve GRU 

modellerinin güneş ışınımı verileri üzerinde 1 saatlik ufuktaki zaman serileri tahmini 

için uygun ve rekabet edebilir olduğunu göstermektedir. Deneyler, hibrit yaklaşımın ve 

ilave meteorolojik parametrelerin modelin performansını iyileştirdiğini göstermiştir.
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1. INTRODUCTION 

 

 

 

While the energy demand on the earth increases day by day, the resources on the earth 

are inadequate to meet this demand. The reserves of non-renewable energy sources such 

as coal, oil and natural gas are steadily declining. That is why; the trend towards 

renewable energy sources in the global sense has emerged. When it can be used 

efficiently, solar energy has the highest potential among these resources. The 

development of technology and the reduction of the infrastructure costs required to 

make use of solar energy are reinforcing the trend towards this area. Depending on this 

trend, it is becoming more and more important to forecast the solar radiation precisely. 

 

The handicap of solar energy based systems is that the amount of solar radiation cannot 

be easily estimated since it depends on many variables. At this point time series 

forecasting can play a key role in short horizon prediction, such as a couple of hours. 

There are a number of models being conducted to forecast solar radiation with time 

series, such as combination of Autoregressive and Dynamical System models (Huang et 

al., 2013), autoregressive integrated moving average (ARIMA) model (Yang et al., 

2012),  Nonlinar Autoregresive (NAR) neural network (Benmouiza & Cheknane, 2013) 

and Multi-layer Perceptrons (MLP) (Mihalakakou et al., 2000; Paoli et al., 2010). In 

(Reikard, 2009), Regression, ARIMA, neural network and unobserved component 

models are compared. 

 

The disappearance of the hardware boundaries and the production of large volumes of 

data have led to the widespread use of deep learning models. In the literature, there are 

many deep learning models applied for time series forecasting. These include: Deep 

Belief Networks (DBN) (Kuremoto et. al, 2014; Qiu et. al., 2014; Lv et al., 2015), 

Stacked Auto Encoders (Lv et al., 2015; Bao et al., 2017) and Long Short-Term 

Memory (LSTM) units (Fischer & Krauß, 2017; Hsu, 2017; Bao et al., 2017).  
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In this study, two Recurrent Neural Network (RNN) variations, namely LSTM and 

Gated Recurrent Unit (GRU) models are used for time series forecasting on solar 

radiation data. With an experimental approach, the performance of single layer and two 

layer LSTM and GRU models are investigated. By hyper-parameter tuning optimal 

parameters are found in order to construct best models that fit the global solar radiation 

data. In further experiments, the data are divided into the seasons. Seasonal performance 

of constructed RNN models and other machine learning methods are compared and a 

hybrid model is proposed according to the experimental results. Finally, the effect of 

additional meteorological parameters on solar radiation forecasting is investigated. 

 

This thesis exposes the performance of recurrent neural network models on solar 

radiation forecast. The thesis has 3 main contributions. First, we proposed single and 

double layered LSTM and GRU models with optimized hyper-parameters. Second, we 

proposed a hybrid model that combines seasonally predictive models. Finally, we 

proposed a multivariate forecast model using a combination of different meteorological 

data. 

 

This study is organized as follows. Section 2 introduces time series forecasting 

concepts. Different forecasting methods and performance metrics are described in this 

section. Deep Learning methods are introduced in Section 3. Section 4 contains 

univariate and multivariate experiments using Deep Learning methods on time series 

forecasting. Finally, Section 5 concludes the findings and includes some information 

towards future works. 
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2. TIME SERIES FORCASTING 

 

 

 

2.1 Introduction 

 

Time series are sequential data that are measured at certain intervals with respect to any 

process. The intervals used in the time series may be of different sizes, provided that 

they are equally divided. They are usually measured at intervals such as hourly, daily, 

monthly, and yearly. The annual population, the daily number of passengers on the 

metro and the hourly exchange rate are examples of time series. In the time series, 

records must be ordered chronologically. Each record may contain information about 

one or more features. Univariate term is used for time series data containing single 

information, and multivariate is used for data containing more than one information. 

 

In this context, time series forecasting can be defined as the prediction of the future data 

using time series data of the past. Time series data are used for creating model by 

different methods. The process of creating the model by formulating the data is called 

time series analysis. Forecasting is carried out through these models. In this section, 

concepts of time series, prediction models and performance measurement methods are 

explained. 

 

 

2.2 Time Series Concepts 

 

In order to better understand the characteristics of the time series, some concepts are 

used. By analyzing the behavior of the time series through these concepts, it is possible 

to select appropriate preprocessing methods and the model. This section examines the 

concepts of time series. 
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2.2.1 Trend 

 

The long-term increase or decrease in the time series is called trend. Increasing trends 

are termed uptrend, decreasing trends are termed downtrend. These changes can occur 

linearly or non-linearly. According to the trend tendency, different analyzes are made 

and trend-related models are formed (Zhang, 2001; Wu & Chang, 2012). Figure 2.1 

shows a downtrend example. 

 

 

 

Figure 2.1: Downtrend Example 

 

 

 

2.2.2 Seasonality 

 

In the time series, as a result of seasonal factors, the short repeated and incremental 

increases and decreases are called seasonality. Although it is generally used for four 

seasons, which are quarters of the year, seasonality can be found in different periods 

such as annual, monthly and daily. In the seasonal time series, the length of the period is 

fixed. Figure 2.2 shows a seasonal time series example. 

 

 

 

Figure 2.2: Seasonality Example 

 

 

 



5 
 

 
 

2.2.3 Stationarity 

 

It is important to know that the time series is stationary in order to estimate a stable 

future forecasting. Time series are considered stationary if they have equal probability 

distributions at every point in time (Jeffrey, 2015). This means that statistical data such 

as mean and variance are not time dependent. Figure 2.3 shows a stationary time series 

example. 

 

 

 

Figure 2.3: Stationarity Example 

 

 

2.3 Forecasting Methods 

 

A lot of research has been done on the time series forecasting and many studies are still 

ongoing. In these studies, many different methods have been used for forecasting. 

Different methods for time series in different characteristics can be successful. In this 

section, commonly used forecasting methods in the literature are introduced. 

 

 

2.3.1 Naïve Method 

 

The simplest and cost-effective method that can be used in time series is the naive 

approach. This method uses the last observed data as the next prediction. Naïve method 

just ignores the historical data as it uses only the last instance. Although it can achieve 

successful results over low variance time series, it does not yield reliable results. 

Generally, it is used as a reference to compare with other methods (Stergiou & Chirtou, 

1996; Balkin & Ord, 2000; Conejo et al., 2002). 
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2.3.2 Linear Models 

 

Linear models try to predict future data with a linear function using past time series 

data. The most commonly used linear methods are Auto Regressive (AR), Mean 

Average (MA), and hybrid methods. In this section, traditional linear time series models 

using these methods are introduced. 

 

ARMA is a linear model that combines AR and MA models. It is used to estimate 

stationary and univariate time series. In an AR model the future value of a variable is 

assumed to be a linear combination of p past observations and a random error together 

with a constant (Adhikari & Agrawal, 2013). The MA model predicts the future by 

taking the average of the nearest number of data from the past data. 

 

The ARIMA model is a more generalized version of the ARMA model. The ARIMA 

model can also be applied on non-stationary time series with differencing method. It is 

the most widely used linear model and has been used as a comparison reference in many 

studies (More & Deo, 2003; Vengertsev, 2014). 

 

The Box-Jenkins method is an approach applied to ARMA and ARIMA linear models. 

The goal is to choose the best fit model for the time series in 3 steps. These 3 stages are 

model selection, parametric estimation and model checking. 

 

 

2.3.3 Nonlinear Models 

 

When time series show a linear structure, linear prediction models can be used. 

However, many time series have a nonlinear structure. Many nonlinear models have 

been proposed in the literature in order to come up to the limitations of linear models. In 

this section, nonlinear models used in time series forecasting are examined. 
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2.3.3.1 Support Vector Machines 

 

Support Vector Machine (SVM) is a supervised learning algorithm that has been 

successfully implemented on classification, approximation, and time series forecasting 

problems. It is possible to separate two groups by drawing a border between two groups 

in the plane. The place where this boundary can be drawn is that the two groups must be 

the most distant and apart from each other. The SVM determines how this boundary is 

drawn. SVM models generated for multiple inputs can produce nonlinear solutions. 

SVM is used in many studies that forecast time series. Qiu et al. (2014) proposed 

ensemble deep learning method consist of deep belief network and support vector 

regression for time series forecast on three different electricity load demand datasets. 

Vengertsev (2014) applied support vector regression to compare their proposed deep 

neural network model. 

 

 

2.3.3.2 Artificial Neural Networks 

 

Artificial neural network (ANN) is a model inspired from the architecture of the human 

brain. ANN provides complex quadratic and polynomial functions to be easily 

represented. It is one of the most commonly used models for predicting nonlinear time 

series. Feed forward neural networks (FNN) are commonly used on time series 

forecasting. The FNN architecture consists of three layers, the input layer, the hidden 

layer and the output layer. More than one hidden layer can be found. In the input layer, 

there are as many nodes as the number of input features. In the output layer, there are as 

many nodes as the number of outputs. In the hidden layer, there can be different number 

of nodes according to the model. Each node in each layer contains the connection called 

weight to the nodes in the next layer. These weights are calculated by backpropagation 

method. There are many studies in the literature on time series forecasting using ANN. 

Allende et al. (2002) reviewed ANN implementations on time series forecasting and 

applied ANN on two different datasets. Zhang and Qi (2005) applied ANN to forecast 

seasonal and trend time series. 

 

 

 



8 
 

 
 

2.3.3.2 Random Forest 

 

Another structure that is often used in forecasting time series is decision trees. As a 

result of the training of decision trees, the learned information is modeled on a tree. 

Random Forest is an ensemble decision tree method in which multiple prediction trees 

are constructed with different random variables (Breiman, 2001). Random Forest is a 

fast and extremely resistant method to over fitting problem. The system can be created 

using as many trees as desired. There are many time series forecasting studies in the 

literature using Random Forest. Juban et al. (2007) applied Random Forest model to 

forecast short-term wind power. Dudek (2015) implemented Random Forest model for 

short-term electricity load forecasting.  

 

 

2.3.4 Conclusion 

 

In the literature, many different methods have been proposed for estimating time series. 

Linear or nonlinear models can be used depending on the time series used. In addition, 

studies using linear and nonlinear models as hybrids have been carried out (Zhang, 

2001). 

 

 

2.4 Performance Measurement 

 

Performance measurement metrics are used to measure and compare the success of the 

predictions made. There are many performance measures suggested in the literature. 

These measurements have advantages and disadvantages. This section describes the 

most commonly used performance measures. 

 

 

2.4.1 Mean Absolute Error 

 

Mean absolute error (MAE) is one of the most frequently used performance measures in 

time series forecasting. The measurement, also termed as Mean absolute deviation 

(MAD), calculates the absolute mean deviation between the estimated value and the 

actual data. Calculation of MAE is as shown below. MAE does not distinguish between 
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negative and positive error. Extreme errors are not penalized. The MAE value should be 

kept as small as possible so that the estimates can be considered successful. The 

equation used to calculate the MAE is as follows:  

 

𝑀𝐴𝐸 =  
1

𝑛
 ∑  |𝑒𝑖|

𝑛

𝑖=1

 (1) 

 

where 𝑛 is the number of instances and 𝑒 is the error of each forecast. 

 

 

2.4.2 Mean Absolute Percentage Error 

 

Mean absolute percentage error (MAPE) calculates the absolute percent difference 

between the estimated value and the actual data. Calculation of MAPE is as shown 

below. MAPE does not distinguish between negative and positive error. Extreme errors 

are not penalized. The MAPE value should be kept as small as possible so that the 

estimates can be considered successful. The equation used to calculate the MAPE is as 

follows: 

 

 

𝑀𝐴𝑃𝐸 =  
1

𝑛
 ∑  |

𝑒𝑖

𝑦𝑖
|

𝑛

𝑖=1

 × 100 (2) 

 

where 𝑛 is the number of instances, 𝑦 is the actual value of instance and 𝑒 is the error of 

each forecast. 

 

 

2.4.3 Mean Squared Error 

 

Mean squared error (MSE) calculates the average squared deviation between the 

estimated value and the actual data. Calculation of MSE is as shown below. MSE does 

not distinguish between negative and positive error. Extreme errors are penalized by 

MSE. The MSE value should be kept as small as possible so that the estimates can be 

considered successful. The equation used to calculate the MSE is as follows: 
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𝑀𝑆𝐸 =  
1

𝑛
 ∑ 𝑒𝑖

2 

𝑛

𝑖=1

 (3) 

 

where 𝑛 is the number of instances and 𝑒 is the error of each forecast. 

 

 

2.4.4 Root Mean Squared Error 

 

Root mean squared error (RMSE) calculates the square root of average squared 

deviation between the estimated value and the actual data. Calculation of RMSE is as 

shown below. RMSE does not distinguish between negative and positive error. Extreme 

errors are penalized by RMSE. The RMSE value should be kept as small as possible so 

that the estimates can be considered successful. The equation used to calculate the 

RMSE is as follows: 

 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑ 𝑒𝑖

2 

𝑛

𝑖=1

 (4) 

 

where 𝑛 is the number of instances and 𝑒 is the error of each forecast. 

 

 

2.4.5 Normalized Root Mean Squared Error 

 

Normalized root mean squared error (NRMSE) is a normalized version of RMSE. 

NRMSE can be calculated in several different ways. The most common of these is 

dividing the result obtained by RMSE by the average observed value. Calculation of 

NRMSE is as shown below. NRMSE does not distinguish between negative and 

positive error. Extreme errors are penalized by NRMSE. The NRMSE value should be 

kept as small as possible so that the estimates can be considered successful. The 

equation used to calculate the NRMSE is as follows: 
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𝑁𝑅𝑀𝑆𝐸 =  
√

1

𝑛
 ∑ 𝑒𝑖

2 𝑛
𝑖=1

1

𝑛
 ∑ 𝑦𝑖 

𝑛
𝑖=1

 (5) 

 

where 𝑛 is the number of instances, 𝑦 is the actual value of instance and 𝑒 is the error of 

each forecast. 

 

 

2.4.6 Conclusion 

 

Performance metrics used in the time series have different characteristics. Knowing 

these characteristics allows understanding how accurate forecasting performance is. 

When performance measures are compared, it is seen that MSE, RMSE and NRMSE 

penalize, while MAE and MAPE do not penalize extreme errors. None of the metrics 

provide information about the direction of the error and none make a positive or 

negative difference. Mean forecast error (MFE) and Signed mean squared error (SMSE) 

performance measures can be used when the sign and direction information is 

important.  



 
 

 
 

3. DEEP LEARNING 

 

 

 

3.1 Introduction 

 

Deep Learning (DL) is a machine learning method using multi-layer deep ANN 

architectures. As specified in Section 2.3.3.2, ANN consists of three layers, the input 

layer, the hidden layer and the output layer. DL is the ANN model with multiple hidden 

layers. The first study involving the DL structure was carried out by Ivakhnenko and 

Lapa (1965). Even if the DL concept was based on the 1960s, the rise took place in 

recent years. This is because there is no processor power to train the deep architects, and 

there is no sufficient amount of data. Nowadays, with the increase of processor power 

and reaching enormous dimensions of data generated by digitization in many areas has 

provided the necessary infrastructure for the DL. These developments have enabled DL 

to become widely used in the field, such as computer vision, text processing, translation, 

time series prediction. 

 

DL structures have been shaped according to different needs and different models have 

been put forward. In this section, commonly used DL models and application areas will 

be explained. 

 

 

3.2 Convolutional Neural Networks 

 

The basis of Convolutional Neural Networks (CNN) has been investigated on the 

functional architecture of cat's visual cortex (Hubel & Wiesel, 1962). This work has 

inspired an entire image to be divided into small pieces and to apply filters on these 

pieces. LeNet architecture was one of the first CNN architects and was proposed by 

Yann LeCun (1998). Until now, this architecture is being developed and new 

approaches are proposed. CNN are mainly used for object recognition and 
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classification, but other areas such as voice recognition and natural language processing 

are also being studied. 

 

 

 

Figure 3.1: Convolutional Neural Network Architecture (LeCun, 1998) 

 

 

CNN are an FNN architecture composed of many different layers. It will split the image 

into small pieces. CNN try to find patterns with different filters and distinguishes these 

patterns.. The LeNet architecture, which includes the layers that make up CNN, is 

shown in figure-x. The first layer of CNN is the Convolution Layer. In the Convolution 

layer, the image is scanned by separating the sub-regions of a certain size. Each sub-

region is scanned by more than one filter. Weights that create the filters is used as 

shared. Each filter looks for a different pattern. At the end of each filter a feature map is 

formed. The resulting feature maps are passed through an activation function. The most 

frequently used activation function is Rectified Linear Unit (ReLU) function. The 

characteristic of the ReLU function is that it only passes positive values, shown in 

Figure 3.2. Other nonlinear activation functions such as sigmoid and tanh can also be 

used, but studies have shown that ReLU is better on the vanishing gradient problem 

(Mishkin et al., 2016). 

 

 

Figure 3.2: Rectified Linear Unit Function 
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The second layer of CNN is the Pooling Layer. In this layer, dimensional reduction is 

performed on feature maps passing through the activation function. After the 

convolution process, a large number of possible patterns arise. In the pooling layer, the 

most relevant ones of these patterns are selected and continued. The most commonly 

used pooling method is max-pooling, which is a non-linear down-sampling method. 

Max-pooling feature maps separate square windows of a certain size. For example, for a 

pooling of 2x2 window sizes, it takes the largest of the 4 values in the cells. This is done 

for windows in all feature maps. Convolution and pooling layers can be repeated many 

times. 

 

The last layer is the fully connected layer. Fully connected layer consists of a multi-

layer perceptron that uses the softmax activation function. Each element of the matrices 

that occur after the repeated operations in the first two layers is connected to this layer 

as an input. The classification operation takes place via this layer. CNN are trained with 

backpropagation algorithm. The most common problem in the training process is the 

vanishing gradient problem. As CNN are used in supervised learning, it needs a very 

large amount of labeled data to get effective results. 

 

 

3.3 Restricted Boltzmann Machines 

 

Recurrent Restricted Boltzmann Machines (RBM) are neural networks that represent 

probabilistic distributions. Initial work on RBMs with original name Harmonium was 

made in 1986 (Smolensky et al.). As shown in Fig. 3.3, RBMs are composed of two 

layers, visible layer and hidden layer. It is called Restricted because there is no 

connection between the neurons in the layers. RBMs are trained by trying to recreate the 

entered inputs so they can operate as unsupervised. In addition to being a successful 

feature extraction engine, it is also used in classification and regression processes. 
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Figure 3.3: Restricted Boltzmann Machine 

 

 

The RBM training process consists of 3 phases; forward pass, backward pass, and 

contrastive divergence. In the forward pass phase, the output from the visible layer is 

multiplied by the stochastic weights, and reaches the nodes in the hidden layer, where 

the outputs are generated by passing through the activation function. A logistic function 

is used as the activation function. In the backward pass, which is the second phase, the 

generated outputs are sent to the visible layer in the reverse direction. Although shared 

weights are used in the forward pass and backward pass processes, different bias values 

are used. In the last stage, the input values and the backward pass results are compared. 

To minimize the difference, weights are updated and this process is repeated many 

times. The Contrastive Divergence algorithm is used in the training process of RBMs 

(Hinton, 2002). 

 

Consecutive stacking of multiple RBMs results in Deep Belief Networks (DBN). A 

sample DBN model is shown in Figure 3.4. In this network, the output of the previous 

RBM forms the input values of the next. Each RBM that forms the DBN is trained 

independently. There are studies in the literature that use RBM and DBN for time series 

forecasting. Qiu et al. (2014) proposed ensemble deep learning method consist of deep 

belief network and support vector regression for time series forecast on three different 

electricity load demand datasets. Kuremoto et al. (2014) used a 3-layer deep network of 

RBM to capture feature of input space of time series data. Terren-Serrano (2016) 

constructed various RBM structures to forecast global solar radiation. 
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Figure 3.4: Deep Belief Network 

 

 

3.4 Recurrent Neural Networks 

 

Recurrent Neural Network (RNN) is a special kind of neural network developed to 

process sequential data. First studies were conducted in the 1980s (Hopfield, 1984; 

Rumelhart et al., 1986). In traditional structures, each sample is trained independently 

of each other, but this training is not a sufficient method for text, sound, image, and 

other data related to time. Independent training is not enough to preserve this 

knowledge because sequence information is also contained within sequence data. RNN 

offers this probing solution by taking inputs sequentially. 

 

Unlike other FNNs, the RNN has feedback connections in the hidden layer units. With 

this feature, it can perform temporal processing and learn sequences. The hidden layer 

acts as a memory and can store sequential information. The RNN architecture can be 

transformed into an FNN structure by spreading over time. On this track, the RNN can 

be trained with a backpropagation version, a Backpropagation Through Time (BPTT) 

learning algorithm. 
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Figure 3.5: Unfolding RNN over Time 

 

 

In addition to the inputs from the previous layer, each unit in the hidden layer receives 

as input the output value of the previous phase result. This feedback value is multiplied 

by its own weight, just like other inputs, and sent to the activation function. The 

function for the output calculation in the units in the hidden layer is as follows: 

 

 

ℎ(𝑡) = 𝑓𝐻( 𝑊𝐻𝐻 ∗ 𝑥(𝑡) + 𝑊𝐼𝐻 ∗ ℎ(𝑡 − 1)) (6) 

 

 

where 𝑓𝐻 is the activation function of the hidden layer, 𝑥(𝑡) is the input from the 

previous layer, 𝑊𝐼𝐻 is the weight of the links from previous layer, ℎ(𝑡 − 1) is the 

feedback output calculated in the previous time step and 𝑊𝐻𝐻 is the weight of this 

feedback output. 

 

Studies have shown that Simple RNN can store limited historical data (Bengio et al., 

1994). Some data may be dependent on remote history data, which has led to a long-

term dependency problem. To solve this problem, a customized RNN structure has been 

developed with a Long Short-Term Memory Unit (LSTM) and a Gated Recurrent Unit 

(GRU). 
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3.4.1 Long Short-Term Memory Unit 

 

LSTM is a customized RNN model developed by Hochreiter and Schmidhuber (1997). 

LSTMs can keep track of long-term information through the gates they contain. In an 

LSTM unit there are basically three gates, which determine what information to store, 

which are input gate, forget gate and output gate. The input gate specifies which of the 

incoming input values will be stored in the next state. Forget gate determines which of 

the previous state information will no longer be stored. The output gate specifies which 

of the information in the new state will be sent as output. The gates that make up the 

LSTM unit are shown in Figure 3.6, where i, f and o represent input gate, forget gate 

and output gate, respectively, C represents the unit state, and Ĉ represents the next 

candidate state. 

 

 

Figure 3.6: LSTM Unit (Chung, 2014) 

 

 

The equations used to calculate the next output and state values in the LSTM unit are as 

follows:  

 

 

𝑓𝑡 = σ( 𝑊𝑓 ∗ [𝑥(𝑡), 𝐶(𝑡 − 1), ℎ(𝑡 − 1)]  +  𝑏𝑓) (7) 

𝑖𝑡 = σ( 𝑊𝑖 ∗ [𝑥(𝑡), 𝐶(𝑡 − 1), ℎ(𝑡 − 1)]  + 𝑏𝑖) (8) 

𝑜𝑡 = σ( 𝑊𝑜 ∗ [𝑥(𝑡), 𝐶(𝑡), ℎ(𝑡 − 1)]  +  𝑏𝑜) (9) 

𝐶(𝑡) =  𝐶(𝑡 − 1) ∗ 𝑓𝑡 + Ĉ ∗ 𝑖𝑡 (10) 
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where σ is the activation function, 𝑥(𝑡) is the input, ℎ(𝑡 − 1) is the previous output, 𝑊𝑖, 

𝑊𝑓, 𝑊𝑜 and 𝑏𝑖,  𝑏𝑓, 𝑏𝑜 are the weights and biases of input gate, forget gate and output 

gate, respectively. 

 

 

3.4.2 Gated Recurrent Unit 

 

GRU is another gated recurrent unit that can learn the long-term dependencies proposed 

by Bahdanau et al. (2014). Unlike the LSTM, as shown in Figure 3.7, there is no 

memory unit and there are 2 gates instead of 3 gates. Having a simpler architecture 

requires less computation and can be trained faster. Despite having a less complex 

structure, studies have shown that performance is comparable to LSTM (Chung et al., 

2014).  

 

 

Figure 3.7: Gated Recurrent Unit (Chung, 2014) 

 

 

GRU unit contains update z and reset r gates. The update gate specifies what 

information to keep in the next state. The reset gate specifies how information from the 

previous state and the new input are to be combined. The equations used to calculate the 

next output and state values in the GRU unit are as follows:  

 

 

𝑧𝑡 = σ( 𝑊𝑧 ∗ [𝑥(𝑡), ℎ(𝑡 − 1)] ) (11) 

𝑟𝑡 = σ( 𝑊𝑟 ∗ [𝑥(𝑡), ℎ(𝑡 − 1)] ) (12) 
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ĥ(𝑡) = σ( 𝑊ℎ ∗ [𝑥(𝑡), (𝑟𝑡 ∗ ℎ(𝑡 − 1))] ) (13) 

ℎ(𝑡) =  (1 − 𝑧𝑡) ∗ ℎ(𝑡 − 1) + 𝑧𝑡 ∗ ĥ(𝑡) (14) 

 
 

 

where σ is the activation function, 𝑥(𝑡) is the input, ℎ(𝑡 − 1) is the previous output, 𝑊𝑧, 

𝑊𝑟 and 𝑊ℎ are the weights of update gate, reset gate and candidate output, respectively. 

 

 

3.4.3 Backpropagation Through Time 

 

Traditional neural networks are trained via the backpropagation algorithm (Rumelhart et 

al.; 1985). The backpropagation algorithm aims to minimize the cost function by 

updating the weights between layers. The algorithm consists of two repetitive phases, 

propagation and weight update. In the first phase, input vector propagated forward 

through layers and output vector is obtained. In the second stage, the error value is 

calculated through the cost function by comparing the expected output values with the 

output value obtained. The error values are propagated backwards and the weights are 

updated to minimize the cost function. This operation is repeated until the error function 

reaches the desired small size. 

 

BPTT is a customized backpropagation algorithm used to train RNNs. Since RNNs use 

sequenced data, it is necessary to unfold them over time as illustrated in Figure 3.5 to 

train them. After unfolding, each time step that occurs corresponds to a layer. This 

structure is then trained by backpropagation like traditional FNNs. As the number of 

time steps used in RNN increases, the training time also increase because the 

represented network is getting deeper. 



 

 
 

4. EXPERIMENTS 

 

 

 

4.1 Introduction 

 

The aim of the experiments presented in this section is to investigate the performance of 

RNN structures introduced in Section 3.4 on forecasting 1 hour horizon for solar 

radiation. For this purpose, different RNN structures are configured to process both 

univariate and multivariate data. Results are compared with traditional RNN structure 

and naïve method.  

 

 

4.2 Univariate Experiments 

 

In this section, experiments are conducted using univariate data (historical solar 

radiation). First, effect of depth is investigated on LSTM and GRU models. For this 

purpose 4 different structures are proposed by optimizing the hyper-parameters. Second, 

effect of seasonality is investigated and different machine learning models are 

experimented on seasonal data. According to the results of first and second experiments 

the hybrid model is proposed.  

 

 

4.2.1 The Data 

 

In this study, hourly global horizontal solar radiation data is used. The data covers 

87600 instances for the 10-year period from January 1998 to December 2007. 

Measurements of data provided by French meteorological organization (Météo-France) 

were carried out at the meteorological station of Ajaccio (Corsica Island, France, 41° 

55'N, 8° 44'E, 4 m above mean sea level) as demonstrated in Figure 4.1. The station is 

located between the Mediterranean Sea and the mountains. Sensors used in the station 

can work in the range of 0 - 90000 J / m² and annual maintenance is done regularly.
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Location has 'Mediterranean' climate, hot summers with abundant sunshine and mild, 

dry, clear winters. 

 

 

 

Figure 4.1: Meteorological Station of Ajaccio 

 

 

The data has a yearly seasonal pattern as shown in Figure 4.2. The daily average 

horizontal solar radiation per hour is demonstrated in Figure 4.3. 

 

  

Figure 4.2: Daily Horizontal Solar Radiation 
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Figure 4.3: Average Horizontal Solar Radiation per Hour 

 

 

4.2.2 RNN Models 

 

In this section, LSTM and GRU models were used for 1 hour horizon time series 

forecasting on the data mentioned in Section 4.2. 1. Single layer and two layer 

structures were formed and the effect of the depth was investigated. Hyper-parameters 

are tuned to optimize the models. The obtained optimized single layer and two layer 

models were compared with naive method and simple RNN models. 

 

There is no golden method known to optimize artificial neural networks. In order to 

optimize the models constructed in this study, the effect of the parameters through the 

experiments on the model performance was observed. Examined parameters are 

window size, number of neurons and number of epochs. Each parameter has been 

increased by doubling until there is no improvement in order to obtain best value that 

satisfies the most successful result. The experiments were run 6 times for the same 

configuration in order to avoid local minimums. Best and mean results are obtained. 

Data are normalized between 0 and 1, then all zero values are removed. RMSProp was 

used as an optimizer with 0.001 learning rate for all experiments (Hinton et al.; 2012).  
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4.2.2.1 Single Layer LSTM Structure 

 

This structure consists of 1 hidden LSTM layer with 64 neurons. After the hyper-

parameters are optimized, best model is obtained at 40 epochs with batch size of 32. 

Best window size (sequenced previous instances used as an input) is found as 64. 

Experimental details for hyper-parameter tuning are demonstrated in Appendix A. 

Figures that show training and testing losses are given in Appendix B. Figure 4.4 

illustrates the single layer LSTM structure. 

 

 

 

Figure 4.4: Single Layer LSTM Structure 

 

 

4.2.2.2 Single Layer GRU Structure 

 

This structure is consists of 1 hidden GRU layer with 64 neurons. After the hyper-

parameters are optimized, best model obtained at 64 epochs with batch size of 32. Best 

window size is found as 64. Experimental details for hyper-parameter tuning are 

demonstrated in Appendix A. Figures that show training and testing losses are given in 

Appendix B. Figure 4.5 illustrates the single layer GRU structure. 

 

 

 

Figure 4.5: Single Layer GRU Structure 
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4.2.2.3 Two Layer LSTM Structure  

 

This structure consists of 2 hidden LSTM layers with 128 and 4 neurons respectively. 

After the hyper-parameters are optimized, best model obtained at 32 epochs with batch 

size of 32. Best window size is found as 64. Experimental details for hyper-parameter 

tuning are demonstrated in Appendix A. Figures that show training and testing losses 

are given in Appendix B. Figure 4.6 illustrates the two layer LSTM structure. 

 

 

 

Figure 4.6: Two Layer LSTM Structure 

 

 

4.2.2.4 Two Layer GRU Structure 

 

This structure consists of 2 hidden LSTM layers with 128 and 8 neurons respectively. 

After the hyper-parameters are optimized, best model obtained at 32 epochs with batch 

size of 32. Best window size is found as 64. Experimental details for hyper-parameter 

tuning are demonstrated in Appendix A. Figures that show train and test losses are 

given in Appendix B. Figure 4.7 illustrates the two layer GRU structure.  

 

 

 

Figure 4.7: Two Layer GRU Structure 
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4.2.2.5 Results 

 

Optimization results are compared with Naive method and simple RNN model in Table 

4.1. According to the results, LSTM and GRU models are not superior to each other. 

We observed that LSTM and GRU models are more successful than conventional 

simple RNN architectures. Two layer architectures have shown slight success compared 

to single layer architectures. 

 

 

Table 4.1: Comparison of RNN Models 

 

Model Number of 

Layers 

Result (NRMSE) 

Naïve Method - 0.37 

Simple RNN 1 0.222499 

Simple RNN 2 0.219836 

LSTM 1 0.213652 

LSTM 2 0.211575 

GRU 1 0.214065 

GRU 2 0.211165 

 

 

4.2.3 Hybrid Model 

 

Solar radiation is strongly dependent on clouds in the sky. Cloud density and speed on 

the sky may change depending on the season. For example, at the summer season, sky is 

very clear and radiation shows linear pattern, however at the other seasons cloud density 

on the sky is higher and radiation shows nonlinear pattern. 

 

In this section, seasonal behavior of the solar radiation data is investigated. For this 

purpose we divided the data into four seasons (Table 4.2). Hybrid model is constructed 

according to the result of experiments using various models on seasonal data. 
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Table 4.2: Seasonal Data 

 

Season Start Date End Date Number of 

Instances 

Standard 

Deviation 

Winter December 1 February 28 9316 60.14 

Spring March 1 May 31 12750 104.49 

Summer June 1 August 31 14104 111.77 

Fall September 1 November 30 10626 83.13 

 

 

4.2.3.1 Hybrid Structure 

 

As the solar radiation data shows different patterns depending on the season, using 

hybrid models may increase the forecast accuracy. Various hybrid approaches and 

algorithms have been applied in the literature on solar radiation forecast. Benmouiza 

and Cheknane (2013) combined k-means and NAR neural network models to forecast 

hourly solar radiation in their study. Bhardwaj et al. (2013) proposed a hybrid technique 

by combining HMM and Fuzzy models. Voyant et al. (2012) present a hybrid model 

(ARMA and ANN) on their study. Ji and Chee (2011) are used ARMA and Time Delay 

Neural Network to build hybrid model. Chen et al. (2013) hybridized fuzzy and neural 

network methods on their study. Finally, Reikard (2009) compared time series forecast 

methods on solar radiation, and found that hybrid approach shows better results 

compared to the singular models especially on high resolution time series. 

 

As shown in the Table 4.2 the data are divided into 4 seasons, then are reshaped using 

previous 10 hours as the input values. Training set consists of 80% of data and 

remaining is used as the test set. We applied different linear and non-linear models for 

each seasonal data to find suitable model that fits the seasonal pattern. In addition to the 

RNN models presented in Section 4.2.2, Random Forest, SVM, MLP, Decision Tree, 

Linear Regression methods are applied. Each experiment is conducted 6 times and best 

values are used on comparison. Errors are calculated as NRMSE. The results of the 

experiments for each season are demonstrated in Table 4.3. 
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Table 4.3: Seasonal Experiments 

 

Model Winter Spring Summer Fall 

RandomForest 0.293523 0.213966 0.149608 0.233139 

SVM 0.363425 0.258853 0.185519 0.274522 

MLP 0.323508 0.235358 0.157793 0.252952 

Decision Tree 0.305215 0.225275 0.155196 0.245034 

Linear Regression 0.349531 0.248440 0.178668 0.268115 

LSTM (2-layer) 0.320697 0.220746 0.170390 0.217725 

GRU (2-layer) 0.321263 0.224668 0.173381 0.215438 

 

 

Hybrid model is constructed according to seasonal experimental results. Random Forest 

method is used for winter, spring and summer models and 2 layered GRU is used for 

fall model. Combined structure is illustrated in Figure 4.8. 

 

 

 

Figure 4.8: Hybrid Model 

 

 

Error rate of hybrid model is calculated by combining the error of each seasonal model. 

Single models were calculated in NRMSE. To combine these errors, first each error rate 

is converted to MSE metric then total error value is calculated with multiplying by 

weights (sizes). The calculated values are summed and divided by the total size. The 

equations used to calculate the next output and state values in the LSTM unit are as 

follows:  
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𝑀𝑆𝐸𝑠 = ( 
1

𝑛𝑠
 ∑ 𝑦𝑖

𝑛𝑠

𝑖=1

∗ 𝑁𝑅𝑀𝑆𝐸𝑠 )2  (15) 

 

𝑁𝑅𝑀𝑆𝐸𝑡  =
√ 

1

𝑛𝑡
 ∑ 𝑀𝑆𝐸𝑖 ∗ 𝑛𝑖

𝑛
𝑖=1

1

𝑛𝑡
 ∑ 𝑦𝑖  

𝑛𝑡

𝑖=1

  (16) 

 

 

where 𝑀𝑆𝐸𝑠 and 𝑁𝑅𝑀𝑆𝐸𝑠 are seasonal errors, 𝑛𝑠 is number of  instance in the season, 

𝑁𝑅𝑀𝑆𝐸𝑡 is total error and 𝑛𝑡 is total number of instance.  

 

 

4.2.3.2 Results 

 

According the Seasonal experiments, Random Forest method outperform in all seasons 

except Fall. LSTM and GRU models have better results on Fall data. Hybrid structure is 

constructed using Random Forest and GRU models as shown in the Figure 4.8. Hybrid 

model shows significantly better performance compared to the experiments in Section 

4.2.2. Table 4.4 shows the comparison of Hybrid model and RNN models.  

 

Table 4.4: Comparison of Hybrid and RNN Models 

 

Model Result (NRMSE) 

Naïve Method 0.37 

Hybrid Model 0.199626 

LSTM (1 Layer) 0.213652 

LSTM (2 Layers) 0.211575 

GRU (1 Layer) 0.214065 

GRU (2 Layers) 0.211165 
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4.3 Multivariate Experiments 

 

Magnitude of solar radiation can be affected from other meteorological variables. Many 

studies are conducted to reveal relation between solar radiation and other 

meteorological variables. Most of them found that there is a strong dependency. Sfetsos 

and Coonick (2000) compared univariate and multivariate approach on solar radiation 

forecasting on their study. They used temperature, pressure, wind speed, and wind 

direction as additional parameters in their models. They reported that extra parameters 

improve the performance of adaptive neuro-fuzzy inference and ANN models. Yadav et 

al. (2014) investigated the most relevant parameters for solar radiation prediction 

models. They identified temperature, altitude and sunshine hours as the effective 

parameters. Chen and Li (2014) used sunshine duration, temperature, humidity, and 

pressure as the attributes in their SVM model. They observed that sunshine duration and 

temperature significantly improves the model. Sun et al. (2015) examined the 

relationships between solar radiation and meteorological variables in their study and 

they found strong correlation between them. They also observed higher correlation 

between solar radiation and sunshine duration than temperature. Finally, Voyant et al. 

(2011) conducted multivariate experiments using the same dataset used in our study for 

forecasting daily solar radiation with an ANN model. They observed that using 

multivariable decrease the error rate between 0.5% and 1% (NRMSE). 

 

In this section, additional meteorological variables (given in Table 4.5) are used in 

addition to solar radiation data to train models. Experiments are conducted using one 

layer LSTM structure. First, effect of each parameter is investigated. For this purpose 7 

different structures (for each parameter) are proposed and their hyper-parameters are 

optimized. Second, most effective parameters are selected and used to train new model. 

Finally, all parameters are used to train the obtained optimized model from previous 

experiments. Results are compared with univariate and hybrid models. 

 

 

 



31 
 

 
 

4.3.1 The Data 

 

In addition to the solar radiation (GLO) data given in section 4.2.1, 8 extra 

meteorological parameters collected from the same meteorological station at the same 

period are used. Table 4.5 shows the explanations, units, and abbreviations of the 

parameters. 

 

 

Table 4.5: Explanation of Meteorological Parameters 

 

Parameter Explanation Measurement 

Unit 

Abbreviation 

Temperature Temperature under shelter °C TEMP 

Pressure Atmospheric pressure Pa PRES 

Humidity Relative humidity % HUM 

Nebulosity Total nebulosity Octas NEB 

Wind Speed Mean wind speed at 10 meters m/s WS 

Wind Direction Wind direction at 10 meters 360° WD 

Insolation Sunshine duration (120 W.m²) min INS 

Rain The height of rain mm RAIN 

 

 

In the preprocessing step, missing data are filled with mean of previous and next value 

except pressure (between 1-30 instances). Pressure data are filled with global mean (750 

instances). To understand the behavior of parameters and correlations between them 

data are analyzed. Table 4.6 and Table 4.7 show the analysis results.  

 

 

Table 4.6: Analysis of Meteorological Parameters 

 

Parameter Minimum Maximum Mean Standard Deviation 

TEMP -4.2 38.4 15.597 6.88 

PRES 981.5 1039 1014.881 6.567 

HUM 8 99 73.543 14.122 

NEB 0 9 3.63 2.825 

WS 0 21 3.426 1.766 

WD 0 360 131.298 95.251 

INS 0 60 19.125 26.084 

RAIN 0 30 0.065 0.534 

GLO 0 369 66.258 96.349 
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Table 4.7: Correlation Matrix of Meteorological Parameters 

 

 TEMP PRES HUM NEB WS WD INS RAIN GLO 

TEMP   1      -0.14   -0.45   -0.12    0.11    0.47    0.53   -0.04    0.58  

PRES  -0.14    1       0.02   -0.3    -0.13   -0.15    0.09   -0.15    0.01  

HUM  -0.45    0.02    1      0.13   -0.19   -0.47   -0.55    0.14   -0.52  

NEB  -0.12   -0.3     0.13    1      -0.05    0.06   -0.27    0.17   -0.15  

WS   0.11   -0.13   -0.19   -0.05    1       0.31    0.18    0.03    0.35  

WD   0.47   -0.15   -0.47    0.06    0.31    1       0.58    0.01    0.64  

INS   0.53    0.09   -0.55   -0.27    0.18    0.58    1      -0.09    0.85  

RAIN  -0.04   -0.15    0.14    0.17    0.03    0.01   -0.09    1      -0.07  

GLO   0.58    0.01   -0.52   -0.15    0.35    0.64    0.85   -0.07    1   

 

 

According to correlation matrix results global solar radiation has; strong positive 

correlation with insolation, intermediate positive correlation with temperature, wind 

speed and wind direction, intermediate negative correlation with humidity and weak 

correlation with pressure, nebulosity  pressure and rain.  Figure 4.9, Figure 4.10, and 

Figure 4.11 illustrate pattern of each parameters for 10 days, 1 year, and 10 years, 

respectively. 

 

 

Figure 4.9: Patterns of Meteorological Parameters for 10 days 
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Figure 4.10: Patterns of Meteorological Parameters for 1 year 

 

 

 

Figure 4.11: Patterns of Meteorological Parameters for 10 years 
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4.3.2 LSTM Structure 

 

First set of experiments are conducted to investigate effect of each parameter. For this 

purpose 7 different models are trained using each couple, for example solar radiation 

and temperature. Only wind speed and wind direction data are used together. Each 

model is optimized through hyper-parameters tuning. Single layer LSTM is used for 

experiments. Best structure is obtained with 64 neurons and 64 window size at 32 

epochs with batch size of 32 for all models. Results of experiments are shown in Table 

4.8. Experimental details for hyper-parameter tuning are demonstrated in Appendix A. 

Figures that show training and testing losses are given in Appendix B. 

 

 

Table 4.8: Effect of each Meteorological Parameter 

 

Input Parameters Best  (NRMSE) Mean  (NRMSE) 

GLO, TEMP 0.180151 0.182558 

GLO, PRES 0.204260 0.206099 

GLO, HUM 0.200067 0.201434 

GLO, NEB 0.179581 0.179787 

GLO, WS, WD 0.205194 0.206534 

GLO, INS 0.201077 0.201685 

GLO, RAIN 0.202923 0.203737 

 

 

After effect of each parameter is found, new set of experiments are conducted using 

most effective parameters. As shown in Table 4.8 TEMP and NEB are the most 

effective parameters and HUM and INS are the secondary effective parameters. First, 

effect of TEMP and NEB parameters together is experimented. Second, secondary 

effective parameters are added individually to the most effective parameters. Finally, all 

parameters are used to train the model. Results of the experiments are shown in Table 

4.9. The structure used in the experiments consists of 1 hidden layer with 128 GRU 

neurons. Models are trained with 64 epochs at 64 as window size and 32 as batch size. 

Figure 4.12 illustrates the best configured single layer LSTM structure on multivariate 

experiments. Figures that show training and testing losses are given in Appendix B. 
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Table 4.9: Effect of Multivariate Inputs 

 

Input Parameters Best  

(NRMSE) 

Mean  

(NRMSE) 

GLO, TEMP, NEB 0.160376 0.162538 

GLO, TEMP, NEB, HUM 0.159261 0.161425 

GLO, TEMP, NEB, INS 0.162142 0.163072 

GLO, TEMP, NEB, HUM, INS 0.160638 0.163214 

ALL 0.160397 0.160789 

 

 

  

Figure 4.12: Multivariate Single Layer LSTM Structure 

 

 

4.3.3 Results 

 

According the results of multivariate experiments, TEMP and NEB parameters 

significantly improve the performance of the model. Other parameters slightly 

contribute to the performance. We obtain the best performance with using GLO, TEMP, 

NEB, and HUM parameters.  Table 4.10 shows the comparison of multivariate model 

with the previous experiments.  

 

 

 

Table 4.10: Comparison of Multivariate Model and Previous Models 

 

Model Result (NRMSE) 

Naïve Method 0.37 

Hybrid Model 0.199626 

Single Layer LSTM (univariate) 0.213652 

Single Layer LSTM (multivariate) 0.159261 

 



 

  
 

5. CONCLUSION AND PERSPECTIVES 

 

 

 

In this study, we applied RNN models for time series forecasting on solar radiation data 

for 1 hour horizon. Experiments are conducted for univariate and multivariate models.  

 

In univariate experiments, LSTM and GRU models are constructed and the effect of the 

depth is investigated and hyper-parameters are tuned. According to the results, LSTM 

and GRU models are not superior to one another. We observed that LSTM and GRU 

models are more successful than conventional simple RNN architectures. Two layer 

architectures have shown slightly better performance compared to single layer 

architectures. After the best structure is found, the seasonal performance of model is 

investigated and compared with other machine learning methods. According to seasonal 

experimental results, a new hybrid model is proposed using a two layer GRU model and 

random forest model. This hybrid model showed better performance compared to the 

LSTM and GRU models. 

 

In multivariate experiments, the effect of additional meteorological parameters is 

investigated. According the results of multivariate experiments, Temperature and 

Nebulosity parameters significantly improved the performance of the model. Other 

parameters contribute very slightly. We obtain the best performance using Global Solar 

Radiation, Temperature, Nebulosity, and Humidity parameters.   

 

Since the training of the multivariate models takes a very long time, the experiments 

were carried out only for the LSTM model. As a result of this limitation the effect of 

additional parameters on the GRU model and two layer architectures have not been 

explored Also the seasonal performances of multivariate models have not been studied. 

Because of the longevity of the experiments, in hyper-parameter tuning, the number of 
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neurons, the number of epochs and the window size are optimized, the optimization of 

other parameters such as; learning rate, batch size, and activation function are 

considered as future work.   

 

The results show that the LSTM and GRU models can be suitable and competitive for 1 

hour horizon time series forecasting on the solar radiation data. Seasonal experiments 

showed that hybrid approaches improve the performance. Multivariate experiments 

proved that solar radiation is strongly dependent on other meteorological parameters. 

 

This study can be extended with possible future work: 

 Construction of deep architectures using multivariate data; 

 Construction of hybrid architectures using multivariate data; 

 Implementation of Hidden Markov Models for comparison; 

 Investigation to the effect of different activation functions and optimizers; 

 Optimization of parameters (learning rate and batch size);  

 Testing proposed model with the data from different locations. 
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APPENDICES 

 

 

 

Appendix A. 

 

The optimization experiments for the single-layer LSTM model are shown in Table A.1, 

Table A.2, and Table A.3, respectively. 

 

 

Table A.1: Single-layer LSTM window size tuning 

 

Number of 

Neurons 

Number of 

Epochs 

Window Size Best  

(NRMSE) 

Mean  

(NRMSE) 

30 40 1 0.363870 0.364279 

30 40 2 0.276411 0.277801 

30 40 4 0.249072 0.247460 

30 40 8 0.236184 0.242810 

30 40 16 0.224898 0.228282 

30 40 32 0.216498 0.218615 

30 40 64 0.214726 0.218280 

30 40 128 0.217557 0.219357 

 

 

Table A.2: Single-layer LSTM number of neurons tuning 

 

Number of 

Neurons 

Number of 

Epochs 

Window Size Best  

(NRMSE) 

Mean  

(NRMSE) 

1 40 64 0.236154 0.241564 

2 40 64 0.226201 0.227503 

4 40 64 0.220388 0.222954 

8 40 64 0.217480 0.220124 

16 40 64 0.214506 0.217394 

40 40 64 0.214726 0.218280 

64 40 64 0.213652 0.219843 

128 40 64 0.222160 0.248149 
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Table A.3: Single-layer LSTM number of epochs tuning 

 

Number of 

Neurons 

Number of 

Epochs 

Window Size Best  

(NRMSE) 

Mean  

(NRMSE) 

64 8 64 0.220850 0.229908 

64 16 64 0.217642 0.223031 

64 32 64 0.217799 0.225571 

64 40 64 0.213652 0.219843 

64 64 64 0.214807 0.216060 

 

 

The optimization experiments for the single-layer LSTM model are shown in Table A.4, 

Table A.5, and Table A.6, respectively. 

 

 

Table A.4: Single-layer GRU window size tuning 

 

Number of 

Neurons 

Number of 

Epochs 

Window Size Best  

(NRMSE) 

Mean  

(NRMSE) 

30 40 1 0.363895 0.364815 

30 40 2 0.275833 0.278855 

30 40 4 0.245283 0.246137 

30 40 8 0.233821 0.236621 

30 40 16 0.225712 0.227785 

30 40 32 0.218613 0.219963 

30 40 64 0.217462 0.221839 

30 40 128 0.238937 0.242157 

 

 

Table A.5: Single-layer GRU number of neurons tuning 

 

Number of 

Neurons 

Number of 

Epochs 

Window Size Best  

(NRMSE) 

Mean  

(NRMSE) 

1 40 64 0.238937 0.242157 

2 40 64 0.233123 0.236277 

4 40 64 0.224325 0.229378 

8 40 64 0.219325 0.222661 

16 40 64 0.217503 0.225403 

30 40 64 0.217462 0.221839 

64 40 64 0.214736 0.218363 

128 40 64 0.216583 0.226974 
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Table A.6: Single-layer GRU number of epochs tuning 

 

Number of 

Neurons 

Number of 

Epochs 

Window Size Best  

(NRMSE) 

Mean  

(NRMSE) 

64 8 64 0.221328 0.230129 

64 16 64 0.217834 0.219597 

64 32 64 0.214682 0.218709 

64 64 64 0.214065 0.218143 

64 128 64 0.216983 0.220124 

 

 

The optimization experiments for the two-layer LSTM model are shown in Table A.7, 

Table A.8, and Table A.9, respectively. 

 

 

Table A.7: Two-layer LSTM window size tuning 

 

Num. of 

Neurons (L1) 

Num. of 

Neurons (L2) 

Number 

of Epochs 

Window 

Size 

Best  

(NRMSE) 

Mean  

(NRMSE) 

32 8 32 1 0.363869 0.365237 

32 8 32 2 0.257817 0.260344 

32 8 32 4 0.243725 0.245013 

32 8 32 8 0.233748 0.237458 

32 8 32 16 0.224112 0.225946 

32 8 32 32 0.217160 0.219650 

32 8 32 64 0.214083 0.217465 

32 8 32 128 0.215939 0.217726 

 

 

Table A.8: Two-layer LSTM number of neurons tuning 

 

Num. of 

Neurons (L1) 

Num. of 

Neurons (L2) 

Number 

of Epochs 

Window 

Size 

Best  

(NRMSE) 

Mean  

(NRMSE) 

16 8 32 64 0.214445 0.219393 

32 8 32 64 0.214083 0.217465 

64 8 32 64 0.213144 0.216074 

128 8 32 64 0.212346 0.216435 

256 8 32 64 0.211936 0.214954 

128 4 32 64 0.211575 0.214416 

128 16 32 64 0.214556 0.217934 

256 4 32 64 0.212674 0.218435 
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Table A.9: Two-layer LSTM number of epochs tuning 

 

Num. of 

Neurons (L1) 

Num. of 

Neurons (L2) 

Number 

of Epochs 

Window 

Size 

Best  

(NRMSE) 

Mean  

(NRMSE) 

128 4 8 64 0.218595 0.221475 

128 4 16 64 0.213716 0.216859 

128 4 32 64 0.211575 0.214416 

128 4 64 64 0.214511 0.216623 

 

 

The optimization experiments for the two-layer GRU model are shown in Table A.10, 

Table A.11, and Table A.12, respectively. 

 

 

Table A.10: Two-layer GRU window size tuning 

 

 

Num. of 

Neurons (L1) 

Num. of 

Neurons (L2) 

Number 

of Epochs 

Window 

Size 

Best  

(NRMSE) 

Mean  

(NRMSE) 

32 8 32 1 0.363925 0.364898 

32 8 32 2 0.257033 0.258891 

32 8 32 4 0.239896 0.246458 

32 8 32 8 0.231609 0.234364 

32 8 32 16 0.224348 0.229706 

32 8 32 32 0.215713 0.219995 

32 8 32 64 0.213180 0.217890 

32 8 32 128 0.217072 0.223187 

 

 

Table A.11: Two-layer GRU number of neurons tuning 

 

Num. of 

Neurons (L1) 

Num. of 

Neurons (L2) 

Number 

of Epochs 

Window 

Size 

Best  

(NRMSE) 

Mean  

(NRMSE) 

16 8 32 64 0.215808 0.217407 

32 8 32 64 0.213180 0.217890 

64 8 32 64 0.214060 0.220389 

128 8 32 64 0.211165 0.216483 

256 8 32 64 0.213687 0.216021 

128 4 32 64 0.213095 0.219377 

128 16 32 64 0.213457 0.228449 

128 32 32 64 0.214144 0.218405 

256 16 32 64 0.214766 0.216510 
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Table A.12: Two-layer GRU number of epochs tuning 

 

Num. of 

Neurons (L1) 

Num. of 

Neurons (L2) 

Number 

of Epochs 

Window 

Size 

Best  

(NRMSE) 

Mean  

(NRMSE) 

128 8 8 64 0.216992 0.218789 

128 8 16 64 0.213552 0.217332 

128 8 32 64 0.211165 0.216483 

128 8 64 64 0.216251 0.221794 

 

 

 

The optimization experiments for each additional parameter on the single-layer LSTM 

model are shown in Table A.13, Table A.14, Table A.15, Table A.16, Table A.17, Table 

A.18, and Table A.19, respectively. 

 

 

Table A.13: Effect of temperature - Single-layer LSTM hyper-parameters tuning 

 

Number of 

Neurons 

Number of 

Epochs 

Window Size Best  

(NRMSE) 

Mean  

(NRMSE) 

16 16 1 0.363311 0.364340 

16 16 2 0.251451 0.253735 

16 16 4 0.225124 0.227863 

16 16 8 0.211028 0.214515 

16 16 16 0.205737 0.209124 

16 16 32 0.203789 0.209114 

4 16 32 0.223622 0.224808 

8 16 32 0.212922 0.215250 

32 16 32 0.192241 0.195718 

64 16 32 0.190752 0.191547 

64 4 32 0.209618 0.213008 

64 8 32 0.201242 0.201866 

64 32 32 0.186055 0.188991 

64 64 32 0.184857 0.185768 

64 128 32 0.188852 0.192043 

64 32 64 0.180151 0.182558 
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Table A.14: Effect of pressure - Single-layer LSTM hyper-parameters tuning 

 

Number of 

Neurons 

Number of 

Epochs 

Window Size Best  

(NRMSE) 

Mean  

(NRMSE) 

16 16 1 0.363669 0.363968 

16 16 2 0.275123 0.276769 

16 16 4 0.244368 0.246037 

16 16 8 0.232290 0.235710 

16 16 16 0.225132 0.225886 

16 16 32 0.213965 0.216785 

4 16 32 0.231727 0.233618 

8 16 32 0.222771 0.225194 

32 16 32 0.212845 0.213338 

64 16 32 0.209519 0.211350 

64 4 32 0.217831 0.219996 

64 8 32 0.211022 0.215780 

64 32 32 0.206514 0.208251 

64 64 32 0.209160 0.210872 

64 32 64 0.204260 0.206099 

 

 

 

Table A.15: Effect of humidity - Single-layer LSTM hyper-parameters tuning 

 

Number of 

Neurons 

Number of 

Epochs 

Window Size Best  

(NRMSE) 

Mean  

(NRMSE) 

16 16 1 0.363469 0.364831 

16 16 2 0.270261 0.271118 

16 16 4 0.240462 0.244287 

16 16 8 0.231596 0.231979 

16 16 16 0.221716 0.235797 

16 16 32 0.211066 0.215217 

4 16 32 0.229444 0.234037 

8 16 32 0.224230 0.225946 

32 16 32 0.207207 0.208249 

64 16 32 0.205082 0.207706 

64 4 32 0.216737 0.221553 

64 8 32 0.208018 0.209430 

64 32 32 0.201093 0.201513 

64 64 32 0.204859 0.207934 

64 32 64 0.200067 0.201434 
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Table A.16: Effect of nebulosity - Single-layer LSTM hyper-parameters tuning 

 

Number of 

Neurons 

Number of 

Epochs 

Window Size Best  

(NRMSE) 

Mean  

(NRMSE) 

16 16 1 0.360358 0.360450 

16 16 2 0.246786 0.247881 

16 16 4 0.225443 0.227574 

16 16 8 0.212332 0.213902 

16 16 16 0.203267 0.206268 

16 16 32 0.193451 0.195393 

4 16 32 0.216532 0.218519 

8 16 32 0.201421 0.205542 

32 16 32 0.188164 0.189882 

64 16 32 0.184978 0.187300 

64 4 32 0.199013 0.201283 

64 8 32 0.189622 0.192185 

64 32 32 0.182640 0.187287 

64 64 32 0.182544 0.183532 

64 32 64 0.179581 0.179787 

 

 

 

Table A.17: Effect of insolation - Single-layer LSTM hyper-parameters tuning 

 

Number of 

Neurons 

Number of 

Epochs 

Window Size Best  

(NRMSE) 

Mean  

(NRMSE) 

16 16 1 0.363367 0.363685 

16 16 2 0.232657 0.233004 

16 16 4 0.221680 0.222228 

16 16 8 0.215752 0.220351 

16 16 16 0.210573 0.214115 

16 16 32 0.207011 0.209415 

4 16 32 0.212666 0.217349 

8 16 32 0.211012 0.211930 

32 16 32 0.207440 0.209335 

16 4 32 0.218466 0.222132 

16 8 32 0.212833 0.214291 

16 32 32 0.204696 0.206536 

16 64 32 0.202771 0.203186 

16 64 64 0.201077 0.201685 
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Table A.18: Effect of wind - Single-layer LSTM hyper-parameters tuning 

 

Number of 

Neurons 

Number of 

Epochs 

Window Size Best  

(NRMSE) 

Mean  

(NRMSE) 

16 16 1 0.353687 0.354155 

16 16 2 0.269787 0.270315 

16 16 4 0.244531 0.249973 

16 16 8 0.234594 0.237008 

16 16 16 0.225131 0.227632 

16 16 32 0.215414 0.221502 

4 16 32 0.228492 0.232483 

8 16 32 0.227567 0.227824 

32 16 32 0.212512 0.216422 

64 16 32 0.215104 0.209526 

32 4 32 0.225321 0.227798 

32 8 32 0.219678 0.225127 

32 32 32 0.207562 0.211713 

32 64 32 0.207213 0.208513 

32 32 64 0.205194 0.206534 

 

 

 

Table A.19: Effect of rain - Single-layer LSTM hyper-parameters tuning 

 

Number of 

Neurons 

Number of 

Epochs 

Window Size Best  

(NRMSE) 

Mean  

(NRMSE) 

16 16 1 0.363437 0.363592 

16 16 2 0.273091 0.273780 

16 16 4 0.243712 0.246456 

16 16 8 0.234794 0.235523 

16 16 16 0.224182 0.227605 

16 16 32 0.214572 0.220914 

4 16 32 0.229604 0.233192 

8 16 32 0.224452 0.225170 

32 16 32 0.210155 0.213180 

64 16 32 0.206708 0.209617 

64 4 32 0.219430 0.222762 

64 8 32 0.212522 0.214641 

64 32 32 0.204403 0.206282 

64 64 32 0.208317 0.209562 

64 32 64 0.202923 0.203737 
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Appendix B 

 

In this section representation of test and train performances of models are given In 

figures, blue lines represent the training losses and yellow lines represent the test losses. 

 

 

Figure B.1: Train and Test Losses of Single Layer LSTM 

 

 

Figure B.2: Train and Test Losses of Single-layer GRU 
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Figure B.3: Train and Test Losses of Two-layer LSTM 

 

 

Figure B.4: Train and Test Losses of Two-layer GRU 
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Figure B.5: Train and Test Losses of Model (GLO, TEMP data) 

 

 

Figure B.6: Train and Test Losses of Model (GLO, PRES data) 
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Figure B.7: Train and Test Losses of Model (GLO, HUM data) 

 

 

Figure B.8: Train and Test Losses of Model (GLO, NEB data) 
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Figure B.9: Train and Test Losses of Model (GLO, INS data) 

 

 

Figure B.10: Train and Test Losses of Model (GLO, WS, WD data) 
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Figure B.11: Train and Test Losses of Model (GLO, RAIN data) 

 

 

Figure B.12: Train and Test Losses of Model (GLO, TEMP, HUM data) 
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Figure B.13: Train and Test Losses of Model (GLO, TEMP, NEB, HUM data) 

 

 

Figure B.14: Train and Test Losses of Model (GLO, TEMP, NEB, INS data) 
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Figure B.15: Train and Test Losses of Model (GLO, TEMP, NEB, HUM, INS data) 

 

 

Figure B.16: Train and Test Losses of Model (Full data) 
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