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ABSTRACT

In this thesis, multiple-object vehicle tracking system that generates tracklets by solv-

ing the min-cost max �ow problem of a�nity between detected objects of consecutive

frames are proposed. Recent performance enhancement in runtime and detection accu-

racy of Convolutional Neural Networks and their capability is object detection created

the tracking-by-detection paradigm.

Tracking-by-detection is the approach of data i.e. identity, association between indi-

vidual frames of a sequence. The proposed tracking system is targeted to autonomous

driving applications, with being able to track on non-stationary scene recordings, i.e.

from a moving ego vehicle. Object detection task is performed using an Neural Net-

work Ensemble consisting of 3 Faster R-CNN Inception ResNet v2 networks, that are

trained on ImageNet dataset and �ne-tuned for KITTI Object Detection Dataset.

A method is proposed for combining the bounding boxes generated from each of the

Convolutional Neural Network. E�cient usage of the processing resources for au-

tonomous driving that should satisfying the requirements of computationally complex

tasks such as localization, object detection, occupancy grid update, sensor-fusion, tra-

jectory planning etc. are respected by generating tracklets on a temporal window of

three frames.

Also data association is done by solving min-cost �ow of sparse a�nity network rather

than considering all possible assignments, that solves memory and computational con-

straints. Lighter version of the method is also presented where the temporal window

is reduced to two consecutive frames and data association is done by solving linear

sum assignment problem, minimum weight matching of a bipartite graph introduced

by the Hungarian Algorithm. For evaluation of the trackers KITTI Object Tracking

Evaluation 2012 dataset and `Car' class is used. KITTI Object Tracking dataset con-

sists of 21 training sequences with 8.008 frames and 29 testing sequences with 11.095

frames. Frames were recorded at 10 FPS from a camera mounted on the ego vehicle.

All sequences have varying number of objects and lengths with their unique motion

scenarios. In our evaluation study, the following metrics are adopted: Recall, Preci-



sion, F1-Measure, False Alarm Rate, False Positives, False Negatives relating to the

object detection task and Runtime, widely used CLEAR MOT metrics like Multiple

Object Tracking Accuracy (MOTA) and also Fragmentation (FRAG),ID-switch (IDS),

Mostly-Tracked (MT) and Mostly-Lost (ML) for MOT evaluation. with our model

performing second on MOTA, MT, ML metrics compared to the state-of-the-art online

MOT methods. It showed less than half of the reported IDS from the best MOTA

metric and lower FRAG, while working 6 times faster, with mean runtime at 20 Hz.

Keywords : object detection, graph theory, multiple object tracking, intelligent trans-

portation systems



ÖZET

Bu tezde görüntü üzerinde çoklu nesne araç takip sistemi önerilmi³tir. Ard�³�k çerçe-

velerde nesnenin birim pozisyon de§i³ikli§ini nesnelerin aidiyetleri uzerine minimum

maliyet maksimum ak�³ problemini çözerek olu³turulmaktad�r. Son y�llardaki Evri³imli

Sinir A§lar� i³leyi³ süresi ve nesne tespiti performans art�³lar� "tespit-ederek-takip"

yakla³�m�n� olu³turmu³tur. "Tespit-ederek-takip" yakla³�m� ard�³�k çerçevelerde tespit

edilmi³ nesneler uzerinden data veya kimlik ca§r�³�mlar� yap�lmas� yöntemidir. One-

rilen takip sistemi otonom surus uygulamalar�n� hedef almaktadir; hareketli ³ekilde

kaydedilmi³ sahne kay�tlar�, hareket eden merkez araçtan, üzerinde çal�³ma kabiliyeti

bulunmaktadir. Nesne tan�mlama görevi 3 adet ImageNet veri seti üzerinde e§itilmi³

daha sonras�nda ise KITTI nesne tanimlama veri seti uzerinde son katman ayarlar�

yap�lm�s Faster R-CNN Inception ResNet v2 a§�ndan olu³an Sinir A§lar� Toplulu§u

ile gerçekle³tirilmektedir. Ayr�ca Sinir A§lar� Toplulu§unun üretti§i s�n�rlay�c� nesne

pozisyon kutularini bir³eltirilmesi icin yeni bir metod önerilmi³tir. Otonom sürü³ için

gerekli say�sal olarak karma³�k gereksinimler, konumland�rma, doluluk kafesleme gun-

cellemesi, al�c� füzyonu, yörünge planlama vb., gereksinimlerle onem duyularak hesap-

lama kaynaklar� iki veya üç görüntü çerçevesinde geçici zaman aral�§�na odaklan�larak

efektif bir sekilde kullan�lm�³t�r. Geçici penceredeki olas� bütün ca§r�³�mlar yerine sey-

rek yak�nl�k a§� olu³turularak minimum maliyet maksimum ak�³ problemi çözülmü³tür.

Hesaplama bak�m�ndan daha ha�f bir versiyonda denenmi³tir, ard�³�k iki görüntü çerçe-

vesinde tespit edilmi³ nesneler için ikili graf benzerlik a§�rl�klar� do§rusal toplam atama

problemi, Macar Algorithmasi ile çözülmü³tür. Önerilen yöntemlerin de§erlendirilmesi

KITTI Nesne Takibi De§erlendirme 2012 veri setinde 'Araba' s�n�f� ile gerçekle³tiril-

mi³tir. KITTI Nesne Takibi veri seti 8.008 görüntü çerçevesinden olu³an 21 e§itim ve

11.095 görüntü çerçevesinden olu³an 29 test sekans� içermektedir. Çerçeveler saniyede

10 defa ile ölçümlenip kaydedilmi³, her sekansin birbirinden farkl� uzunlu§u ve de§er-

lendirdi§i hareket senaryolar� içermektedir. Önerilen model ortalama olarak 20 hertz

frekans ile çal�³makta olup cevrimiçi modeller ile k�yaland�§�nda KITTI siralamasinda

MOTA, MT ve ML metriklerinde ikinci olup, IDS metri§inde en iyi performans� gös-

termi³tir.



Anahtar Kelimeler : nesne tanima, graf teorisi, coklu nesne takibi, akilli ulasim

sistemleri
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1 INTRODUCTION

It has been stated that multiple object tracking with its prediction capability about

surrounding dynamic tra�c scene plays a crucial role in autonomous driving subject to

safety-critical tasks such as trajectory planning and decision making (Petrovskaya and

Thrun, 2009; Geiger et al., 2012; Urmson et al., 2008). Due to the image classi�cation

and object detection results attained by Convolutional Neural Networks (CNN) (Kriz-

hevsky et al., 2012), and more recently their performance enhancement in runtime and

detection accuracy has created the tracking-by-detection paradigm (Ren et al., 2015;

He et al., 2016; Szegedy et al., 2016). A network delivering higher accurate proposals

and lower number of false negatives needs to embed more complexity with a high num-

ber of �oating point operations per seconds according to the number of parameters of

the backbone network, increased number of convolutional layers or lower strides and

smaller sized �lters, with greater processing requirements (Huang et al., 2016). Consi-

dering localization, object detections, sensor-fusion, occupancy grid update, trajectory

planning, dynamical modelling and control alike tasks used in modern autonomous

driving applications (Urmson et al., 2008; Levinson et al., 2011), both computationally

e�cient and accurate solutions are required due to the safety critical nature of autono-

mous driving. Multiple-Object Tracking methods are divided according to the type of

sensors (Darms et al., 2008) whether RADAR, LIDAR point clouds, stereo-pair image,

monocular camera image are used and whether an online, i.e. incoming stream or data,

or batch processing approach is adopted.

In this thesis an computationally e�cient online multiple object vehicle tracking me-

thod regarding the memory and processing constraints, that focuses on a temporal

window of three consecutive frames is presented. Tracklets of the detected objects at

time ti for the temporal window are generated by solving min-cost max �ow problem

of a sparse network with limited number of edges that are created due to strong de-

tection a�nities from times ti−1 and ti−2. Figure 1.1 shows a general block diagram

representation of the proposed method.

Rest of the work is organized as follows : Firstly literature review on MOT applications

are given in, followed by the object proposal extraction from convolutional neural net-
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Figure 1.1: Block diagram of the proposed Multiple Object Tracking method. With

low detection threshold object proposals are extracted from the convolutional neural
network Ensemble for the current frame. Ensemble detections are �ltered using inter-
section over union connectivity approach, which resulting detections dissimilarity are
extracted with the previous two frames. Tracklet Generation is achieved by solving
min-cost max �ow of the a�nity graph.

work Ensemble of the proposed method. Data association by a�nity measurements of

detected objects in the temporal window are explained. That is followed by explanation

of the tracklet generation solving the min-cost max �ow is explained and reports on

experimental evaluation on KITTI Tracking Benchmark and runtime analysis. Finally,

some conclusions are given.



2 LITERATURE REVIEW

Online Multi-Object Tracking (MOT) has been widely studied, with most of the me-

thods adopting tracking-by-detection paradigm. An ensemble of convolutional neural

network based object detection and Lucas-Kanede Tracker based motion detector is

employed in (Lee et al., 2016) to compute the likelihood of foreground regions as the

detection responses. Where the detections are assigned to tracklets according to their

position changes that are formulated by a Bayesian �ltering framework. Pairwise costs

for objects tracks using 3D cues including object pose, shape and motion are used in

(Sharma et al., 2018). Where it reported state-of-the-art results by bipartite matching

the detected objects of two consecutive frames using Hungarian algorithm. In (Choi,

2015) a�nity measure to associate detections are done using extracted keypoints from

the image. Detections bounding boxes are grided and location of the keypoints are used

for a�nity measure which is followed by a "near-online" hypotheses generation. Tra-

cklet assignment is done using Successive Shortest-Path in (Lenz et al., 2015), which is

solved using a leveraged Dijkstra's algorithm, that focuses on the fact that only a small

part of the graph is changed. Conditional Random Field is used in (Osep et al., 2017)

to score the pairwise potential of each pair of hypotheses. Association a�nity is linear

combination of appearance score, motion models and projection model of observations.

Minimum cost multi-cut formulation has been used in (Keuper et al., 2016)

Min-cost Flow has been used in (Wang and Fowlkes, 2017) for Multiple Object Tracking

tracking. Collection of tracks that maximizes the posterior probability (MAP) are de-

�ned as transitions between objects of successive frames. Markov Decision Process has

been used in (Xiang et al., 2015) with similarity between detections are encoding using

optical �ow quality, bounding box height ratio, bounding box overlap, detection score

and euclidean distance between centers. Global camera movements has been studied in

(Hong Yoon et al., 2016), where structural movement and position constraints are used

to analyze detections relating to assigned anchors. Assignment is done according the

minimum aggregated cost of the structural constraints. Online similarity learning is

performed in (Yang et al., 2017) with local temporal window associations solving min-

cost �ow. Target speci�c metric learning and min-cost �ow is also applied in (Wang

et al., 2017) with ability to recover missed detections.
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Tracking related to convolutional neural network properties has been also studied.

Features from convolutional layers has been used for calculating a�nity probabilities

of detected objects in (Chen et al., 2017; Chu et al., 2017). Quadruplet convolutional

neural network are used in that inputs frames from a temporal window of four frames

(Son et al., 2017), which quadruplet loss enforcing temporally adjacent detections more

closely located than the ones with large temporal gap. For a temporal window bounding

boxes of the compared objects are input in CNNs and a�nity is established by output

feature vectors are examined using Long Short-Term Memory networks in (Sadeghian

et al., 2017).



3 NEURAL NETWORK ENSEMBLE

Tracking-by detection approach detects independent objects in each frame than an

a�nity measure, i.e. data association, step is performed. Presence of occlusions, noisy

detections consisting of false negatives and/or false positives makes the association

problem di�cult. A Multiple Object Tracking application is expected to perform better

with increased detection recall and precision. Trade o� between recall and precision

has been widely studied (Rothe et al., 2014; Szegedy et al., 2014; Sun et al., 2012).

As the threshold of an object proposal to be accepted decreases, a precision trade

o� occurs. A high recall value on the test data can be achieved by lower detection

threshold, but would result with higher number of false positives. Additionally split of

the convolutional neural network training data e�ects generalization performance. In

our work to increase generalization we deployed an ensemble of three Faster R-CNN

(Ren et al., 2015) with Inception-ResNet-v2 (Szegedy et al., 2016; He et al., 2016)

backbones that has been �ne tuned on KITTI Object Tracking dataset using a 0.8-0.2

train and validation splits. With an aim of proposing a bounding box selection method

that maximises both recall and precision. Non-Maximum Suppression (NMS) (Girshick

et al., 2014; Ren et al., 2015; Redmon et al., 2016; Hosang et al., 2017)is an integral part

of detection approaches that ideally outputs a single bounding-box for each detection,

if present merging multiple bounding boxes for an object. Challenges with NMS has

been studied in (Rothe et al., 2014) where it can be summarized as the proposal with

the highest con�dence may not be the best �t, that it might suppress nearby object

and lastly it does not provides insight about false positives. KITTI dataset consists of

crowded scenes with high bounding box overlap.

Clustering methods can be an alternative for NMS bounding box combination, but

challenges like whether to use clustering methods with even or uneven cluster size

and deciding on the number of clusters emerge. Choosing the optimal number of clus-

ters have been widely studied, like 'Elbow Method' (Tibshirani et al., 2001) which

increments number of clusters until cluster intertia decrease reaches a platoon and

examining Silhoutte Score of a cluster (Rousseeuw, 1987). However these approaches

bring computational expenses by means of iterating over a range of possible clusters

and does not perform well due to low number of data points and to the fact that only
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Figure 3.1: Finding optimal number of clusters relating to Silhoutte score. N represents

the number of clusters and distinct colors represents clusters. Optimal cluster number
is achieved for N = 18.
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two dimensional position of the object is known, i.e. not available depth information.

Clustering becomes problematic relating to scenes with high number of distant objects.

We present a method for bounding box combination from multiple convolutional neural

network detections alternative to detection con�dence based methods like NMS or

clustering approaches. Our method favours proposal bounding box agreement of CNNs

over detection con�dence, for each detection over threshold td1 Intersection over Union

(IoU) metric is extracted for the remaining detections. Any intersection over union

smaller than the threshold tIoU is set to zero and an intersection over union connectivity

graph between proposed bounding boxes are acquired. Next step is to �nd the number

of connected components of the graph. If any component consists of a single detection

than it is only accepted if the detection con�dence is higher than threshold td2 . For

each found component mean values of the bounding box coordinates it is formed of is

taken to produce a single detection. In 3.2 from top to bottom, all object proposals

from the convolutional neural network Ensemble, ground truth kitti labels for classes

'Car' and 'DontCare' and extracted proposals from our method for KITTI Tracking

Dataset, training sequence 11 frame 154 can be seen. Figure 3.1 show cluster analysis

using Silhoutte Score for the same frame, that reports optimal number of clusters as

18 while our method produces 16 proposals, with less computation.
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Figure 3.2: Top row shows all 'Car' class detections with con�dence higher than 0.05

from convolutional neural network ensemble. Middle row represents the ground-truth
bounding boxes provided by the KITTI dataset. Third row is the resulting object
bounding boxes from the proposed method.)



4 AFFINITY MEASUREMENTS

Data association of detections from framet and framet+1 is established using a�nity

measurements extracted from bounding box geometric, appearance based and relating

to the changing scene properties. Each a�nity property serves useful in speci�c scena-

rios and the aim is to establish if available a strong a�nity by weighing according to

the agreement of them all. For dense regions with multiple object proposals that are

both far away from the camera and occlude each other, bounding box properties show

similarity. In such situation however inspecting the color distribution of the detection

produces more knowledge. While for a nearby object with relatively high width, as the

object get occluded as a results the color distribution of the bounding box changes

but its bounding box properties establish the strong a�nity. Last a�nity measurement

used for data association is objects 's position relating to the changing scene. For a

dynamic environment an objects position vector to the common keypoints detected is

expected to be similar for the examined short amount of time, that strengths bounding

box position similarity in case of high velocity objects or camera position changes.

Situation speci�c problems are faced with some of the features. Keypoint descriptors

can be unavailable for occluded objects, or that are far away with small bounding box

area. Using distance information looks intuitive but Figure 4.1 shows how an detected

object which is partially occluded by the environment, shows various disparity mea-

sures. Top row represents frames the left camera images, and bottom row is disparity

map extracted from the work of (Mayer et al., 2016). Even for low rates of occlusion

mean disparity measure shows inconsistencies, where both the minimum and maximum

disparity measure of the bounding box decreases the tracker performance. Further pro-

cessing methods like occlusion-pose estimation (Wang et al., 2016), occlusion classi�ers

(Mathias et al., 2013) or histogram comparisons are required.

4.0.1 Bounding Box Geometry

For the set of extracted proposalsDT for frame T , bounding box features are extracted :

DTi = {xmid, ymid, xwidth, yheight},∀i ∈ DT ( 4.1)
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Figure 4.1: Top row shows detected vehicles and bottom row stereo disparity map

for KITTI Object Tracking Training Sequence 0001, Frames 160 through 164. Mean
disparity values of the area marked by the bounding box is shown in yellow. Even low
rates of occlusion causes mean disparity measure of the detected object to �uctuate
through the sequence, and does not provide a stable a�nity feature.

Each feature is compared with the detections DT+1 of the next frame T +1 using Bray-

Curtis Dissimilarity (BCD). For n variables with k as variable index, BCD is de�ned

as :

BCD(i,j) =
n−1∑
k=0

|nik − njk|
(nik + njk)

( 4.2)

Bounding box geometry dissimilarity matrixDSBB for two consecutive frames is formed

as :

DSBBi,j = BCDi,j,∀i ∈ DT ,∀j ∈ DT+1 ( 4.3)

4.0.2 Apperance Comparison

For a�nity measure extraction based on appearance, 3-dimensional RGB histograms

similarities are compared. Each channel is segmented into 5-bins with uniform ranges.

The RGB histogram is normalized and �atten into one dimension, resulting an histo-

gram of length 5× 5× 5, that is normalized using l2-norm. For the image patch Ii that

is the de�ned by the bounding box of detection i, color histogram Hi is de�ned as :
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Hi =
(
(IiR[0,1],G[0,1],B[0,1])

), (IiR[1,2],G[0,1],B[0,1])
), . . . ,

(IiR[1,2],G[1,2],B[0,1])
), (IiR[1,2],G[2,3],B[0,1])

), . . . ,

(IiR[3,4],G[3,4],B[2,3])
), (IiR[3,4],G[3,4],B[3,4])

)
)

( 4.4)

Where R[k,k+1], G[l,l+1] and B[m,m+1] denotes the number of pixels founds in the corres-

ponding channel bins. Similarity of color histograms of the object proposals between

consecutive frames are compared using Chi-square test. For two color histograms Hi

and Hj Chi-square test is de�ned as :

DSAi,j =χ
2(Hi, Hj) =

∑
I

(Hi(I)−Hj(I))
2

Hi(I)

∀i ∈ DT ,∀j ∈ DT+1

( 4.5)

Where DSA is the �nal appearance based dissimilarity matrix.

4.0.3 Changing Scene

Characteristics that separates Multiple Object Tracking applications for autonomous

driving from traditional Multiple Object Tracking applications is that the camera is not

stationary. For dynamic scenes with high velocity objects and/or camera orientation

changes using the changing scene information enhances data association by providing

better a�nity measurement between detected objects of consecutive frames. Changing

scene is analyzed using the objects topology according to the shared keypoints from

in the temporal window. For each frame ORB (Rublee et al., 2011) desciptors, which

determine keypoints according to (Rosten and Drummond, 2006) and uses binary des-

criptors explained in (Calonder et al., 2010), are extracted. ORB descriptor extraction

is faster relative to other methods like SIFT and SURF, with matching performance.

ORB descriptors are suitable to our application due to the fact that a high number of

desciptors are needed to ensure avaibility of shared ones in the temporal window.

For three consecutive frames in the temporal window and orb descriptors extracted

from them kpT , kpT+1 and kpT+2, the set of matching keypoints kp∩ are extracted :
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kp∩ = (kpT ∩ kpT+1 ∩ kpT+2) ( 4.6)

and for all detections i,j,k belonging to frames T , T +1 and T +2 respectively, distance

of bounding box vertices to each of the keypoint in kp∩ are extracted :

di,kpm = {|ximin − xkm|+ |yimin − ykm|, ( 4.7)

|ximax − xkm|+ |yimin − ykm|, ( 4.8)

|ximin − xkm|+ |yimax − ykm|, ( 4.9)

|ximax − xkm|+ |yimax − ykm|}, kpm ∈ kpT ( 4.10)

where di, dj, dk are vectors of length 4×||k∩|| representing the distance of bounding box
vertices of objects i, j, k to the positions of all common keypoints in their respective

frames T ,T + 1 and T + 2 :

di = {di,kpα |∀kpα ∈ kp∩T } ( 4.11)

dj = {dj,kpβ |∀kpβ ∈ kp∩T+1} ( 4.12)

dk = {dk,kpγ |∀kpγ ∈ kp∩T+2} ( 4.13)

Detected objects dissimilarity matrix relating to the changing scene, DSCS, for two

consecutive frames and for detections i ∈ T , j ∈ T + 1 is than :

DSCSi,j =

∑
|di − dj|
||kp∩||

( 4.14)
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Figure 4.2: A�nity measures for KITTI training sequence 0020, frames 0000 and 0001.

First row shows the detected 'Car' class objects denoted 'A' to 'L' for the �rst frame.
Second row are the next frames detections with objects 'M' to 'X'. Third row represents
DSBB, DSA, DSCS dissimilarity matrices and the �nal a�nity cost matrix between
objects.
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4.1 Data Association

4.1.1 Bipartite matching

Once the cost matrix is established, row and column minimums are extracted in order

to determine whether the previously tracked object is disappeared or a new object

is appeared. In such a case, an a�nity cost is computed greater than determined

threshold, disappeared vehicles are cached and then new objects are cross checked and

compated versus the cached ones. When similarity is below a certain threshold, then

the cached ID is re-assigned otherwise a new ID is created. Figure 4.3 shows the

feature distance matrix, chi-squared histogram distance and the cost matrix from top

to bottom, respectively. Both the disappeared vehicle columns and new appeared rows

are removed from the cost matrix.

Remaining vehicles present in the cost matrix are assigned solving a linear sum as-

signment problem, minimum weight matching of a bipartite graph introduced by the

Hungarian Algorithm (Kuhn, 1955). If X is a boolean matrix and X(i, j) = 1 if and

only if row i is assigned to the column j, optimal assignment is determined by solving :

min
∑
i

∑
j

Ci,jXi,j ( 4.15)

Assignment is done for the square matrix of order min(i, j), so if an object is not

assigned to any previous detection or not determined similar to the cached objects, a

new tracklet is assigned.

4.1.2 Min-Cost Network Flow

Mostly min-cost �ow formulations assume a batch setting, where the globally optimal

solution is achieved. However it is also possible to use a sliding temporal window of

�xed length, that would remove abiguities resulting from bipartite matching, i.e. data

association between only two frames and perform online Multiple Object Tracking. In

our work data association is performed by solving the min-cost �ow problem of the

temporal windows's a�nity network. When dissimilarity matrices of detected objects

are created for three consecutive frames T − 2, T − 1 and T an a�nity network is
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Figure 4.3: Feature cosine distance matrix, chi-squared RGB color histogram similarity

and cost matrix is represented from top to bottom respectively. Row indexes represents
detections of objects at frame t and columns indexes those of the previous frame, t−1.
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initiated in order to associate the objects in T and decide on whether a tracked entitiy

disappered. Decision is done whether an existing tracklet is preserved, terminated or

whether a new tracklet is started. Network is composed of a directed graph with :

� "Tracklet Start" that is connected to all the object detection nodes with positive

cost, initializing a tracklet, with positive cost.

� "Tracklet Terminate" that is connected to all the object detection nodes with

positive cost, terminating a tracklet.

� "Object Detection Nodes", composed of two nodes with a single �ow capacity

� "A�nity Edges", that connects object detection nodes of consecutive frames,

with single �ow capacity and negative cost.

For two detected objects i, j from two consecutives frames, an a�nity edge Ei,j with a

negative cost ci,j is added to the graph if the dissimilarity Ai,j is smaller than or equal

to the edge threshold tE :

Ai,j = DSCSi,j ×DSBBi,j ×DSAi,j ( 4.16)

Ai,j ≤ tE → Ei,j = ci,j =
−1
Ai,j

( 4.17)

Also threshold tN is set so that an object detection node has at most an out-degree

of tN + 1, limiting the number of edges to make the network sparser. Figure 4.4

shows an example a�nity network for the detections of the temporal window. Green

nodes represent object detection nodes that ensure a single �ow is passed through any

detected object, blue edges represents "a�nity edges", while red node S "Tracklet

Start" initializes tracklets and black node T terminates them.

Min-cost max �ow problem on the established network structure decides on the detected

objects at time T by either : assigning to an existing track if they are connected to

any objects from T − 1 or if not a new track is started. Any existing track that is not

connected to objects of T are de�ned inactive and cached.

4.1.3 Cached Vehicles

When the tracklet assignments of the current frame are completed both the cached and

active vehicles features are predicted for the next frame. This task serves three pur-

poses : adjustment of the cost matrix, identi�cation of a previously tracked object that
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Figure 4.4: Network diagram, where green nodes represents object detection nodes, S

Tracklet Start and T Tracklet Terminate node. Blue edges are "a�nity edges" with
negative costs that are between detected objects of two consecutive frames.

has disappeared but reappearing in the following frames, and adjustment of bounding

box behaviour for near objects, which may also displace with high velocity. The object

features are predicted for the frame at time index t + 1 by applying the least squares

method to �t the line at time index t. For all objects that are either active or cached, if

data have been provided for number of frames higher than the given threshold, �tted

value at t+1 for each of the features is extracted. Extrapolated feature value is replaced

by the observed one and used for feature vector distance comparison in the next frame.

In Figure 4.6, a tracked object is approaching from the opposite direction with respect

to the ego vehicle. Due to the high relative speed between the camera and detected

object, bounding box features show considerable change. If such considerable feature

distance is accepted by the a�nity model, the prediction performance can be signi-

�cantly degraded in crowded tracking scenarios. However, extrapolating the feature

vector toward the following frame gives insight about the next possible bounding box

and also whether if vehicle is only partially visible. If the bounding box is extrapo-

lated outside the frame limits, the part expected to be out of the frame is excluded.
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Figure 4.5: KITTI Object Tracking Testing Sequence 0007, Frames 73 through 78. Top

right image shows the last detection of a vehicle, where red horizontal and vertical
lines represents the bounding box coordinates. For frames 74-77 purple bounding box
is the predicted movement of the same vehicle. Left most �gure, Frame 78 shows the
bounding box when the same vehicle is detected.

The frame placed in the bottom left of Figure 4.6 shows the cosine distances between

bounding box of the detection at frame 97 and predicted bounding box for frame 97

and observed bounding box in frame 96.

Also a previously tracked vehicle can not be observed due to occlusions or false negatives

by the convolutional neural network. An illustrative example is shown at Figure 4.5.

Same vehicle is last detected by the convolutional neural network at frame 73, which is

plotted in the rightmost of the �rst row, and is not re-detected until frame 78, plotted

in the leftmost of the second row. During this period of disappearance, the cached

vehicles features are extrapolated for minimizing the feature distance on reappearing.

Objects with terminated tracks are cached for a number of frames. For each frame they

are not detected, the line of best �t, least squares method, is generated for the last 5

bounding box features known. And for each cached object current frame bounding box

features are extrapolated. Before a new track is started the detected object that has

not been associated with the detections of T − 1, is compared to the cached ones with

just respect to DSBB and if the dissimilarity is smaller or equal to dC than the object

is assigned to the cached track.
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Table 4.1: List of optimized parameters.

Parameter Range

td1 [0.06,0.15] Threshold for object detec-
tion.

td2 [0.1,0.9] Threshold for acceptance of
connected components with
single proposal.

tIoU [0.4,0.9] Threshold for minimum in-
tersection over union value
to create connected com-
ponent.

tE [0.001,0.8] Maximum dissimilarity for
a possible edge threshold.

dC [0.09, 0.2] Maximum acceptance dis-
tance with cached tracklets.

tN [1,3] Maximum number of edges
an object detection node
can have.
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Figure 4.6: The sequence of frames numbered 94 through 97 belonging to Tracking

Training Sequence 0008 represents considerable bounding box size changes between
consecutive frames. For a�nity matching, bounding box of a tracked object that is
expected to be partially visible the following frame is adjusted.

4.2 Experimental Evaluation

Proposed Multiple Object Tracking method is evaluated on KITTI Object Tracking

Evaluation 2012 dataset for the `Car' class. KITTI Object Tracking dataset consists of

21 training sequences with 8.008 frames and 29 testing sequences with 11.095 frames.

Frames were recorded at 10 FPS from a camera mounted on the ego vehicle. All se-

quences have varying number of objects and lengths with their unique motion sce-

narios. In our evaluation study, the following metrics are adopted : Recall, Precision,

F1-Measure, False Alarm Rate, False Positives, False Negatives relating to the object

detection task and Runtime, widely used CLEAR MOT (Bernardin and Stiefelhagen,

2008) metrics like Multiple Object Tracking Accuracy (MOTA) and also Fragmenta-

tion (FRAG),ID-switch (IDS), Mostly-Tracked (MT) and Mostly-Lost (ML) de�ned in

(Li et al., 2009) for Multiple Object Tracking evaluation.

To give a brief summary of the metrics, MOTA is the ratio of the total sum of FN,

FP and mismatches computed over the benchmark versus the total number of ground

truth objects, Multiple Object Tracking Precision (MOTP) illustrates the precise object
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Figure 4.7: MOTA, MT, Recall and F1 metrics evaluated on training dataset for a�nity

measure subsets of DSBB, DSA and DSCS. For MOTA metric using just bounding box
a�nity performs the best. It is enhanced when combined with relating to the changing
scene while best MOTA is achieved when all three features are used on data association.

position estimation ability of the tracke. MT is de�ned as the percentage of output

trajectories that cover more than 80% of ground truth trajectories, ML is the percentage

of output trajectories that cover less than 20% of the ground truth trajectories, IDS is

the number of times a tracked GT trajectory changed its identity and FRAG de�nes

the number of times a ground truth trajectory is interrupted.

Di�erential Evolution (DE) (Price et al., 2006) has been used to optimize and learn

the previously explained parameters on the training dataset. Table 4.1 shows de�ned

minimum and maximum ranges for the parameters. A population size of 50 were crea-

ted using latin-hypercube sampling (Stein, 1987) and using DE notation best/2/bin,

further information is availible at (Price et al., 2006). In Figure 4.7 how the subset

of three a�nity measure performed on training set relating to the MOTA, MT, Recall

and F1 metrics. When used individually DSBB reported the highest MOTA and MT

values followed by DSCS while DSA performed worse. When DSBB and DSCS are used

together, denoted by DSBB+CS, they report a higher MOTA value by 0.925218, but the

best result is achieved when all three a�nity measures are used together that reported

a MOTA value of 0.925675.

Table 4.5 shows state-of-the-art tracker evaluation results for "Car" class of KITTI

Tracking Benchmark. Results are sorted for the MOTA metric, online methods are

shown in bold and our method SASN-MCF is highlighted in blue ; Remaining methods

adopt batch processing approaches. Our method ranks second on MOTA, MT, ML

metrics within online methods with 83.10 %, 70.92 % and 3.85% respectively. While
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Table 4.2: Mean runtimes and standard deviations of tracker components.

IoUC KPE KPM MCF EC Total

Mean 0.0028 s 0.0113 s 0.0045 s 0.0068 s 0.0068 s 0.0474 s
Std. 0.0019 s 0.0018 s 0.0005 s 0.0034 s 0.0119 s 0.0145 s

reporting lower IDS of 213 and FRAG of 702 values compared to the best MOTA

performing method. While having a mean running time that is 6 times faster, at 20Hz.

Mean runtime and standart deviations of each tracker component for continious pro-

cessing of the KITTI tracking sequences can be seen in Table 4.2, which are reported

on an Intel i7-6820HK @ 2.7GHz CPU. IoUC represents ensemble bounding box selec-

tion process, KPE key point extraction, KPM key point match, MCF solving min-cost

�ow, EC feature extrapolation of cached tracklets and Total is total process including

all the components and remaining tasks like frame retrival. Even though a brute-force

keypoint matching is performed KPM is relatively fast, while most computation is re-

quired for the extracting of the high number of keypoint objects. Runtime of IoUC

and MCF are also fast due to the sparse nature of the created network, with stable

deviations. However EC component shows high variation for scenes with large number

of inactive tracks.
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Figure 4.8: Runtime of tracker components. IoUC represents ensemble bounding box

selection process, KPE key point extraction, KPM key point match, MCF solving
min-cost �ow, EC feature extrapolation of cached tracklets and Total is total process
including all the components and remaining tasks like frame retrival.
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Method Setting MOTA MOTP MT ML IDS FRAG
iDST-VT 88.93 % 84.30 % 76.31 % 4.77 % 134 289
youtu 88.48 % 84.85 % 76.77 % 3.54 % 181 550

TuSimple 86.62 % 83.97 % 72.46 % 6.77 % 293 501
NECMA 84.98 % 83.14 % 70.77 % 9.08 % 33 162

RRC-IIITH on 84.24 % 85.73 % 73.23 % 2.77 % 468 944
SASN-MCF on 83.10 % 81.87 % 70.92 % 3.85 % 213 702
IMMDP on 83.04 % 82.74 % 60.62 % 11.38 % 172 365

DF-PC_CNN la on 80.74 % 84.72 % 61.08 % 6.31 % 155 983
JCSTD on 80.57 % 81.81 % 56.77 % 7.38 % 61 643

3D-CNN/PMBM gp on 80.39 % 81.26 % 62.77 % 6.15 % 121 613
extraCK on 79.99 % 82.46 % 62.15 % 5.54 % 343 938

MCMOT-CPD 78.90 % 82.13 % 52.31 % 11.69 % 228 536
NOMT* 78.15 % 79.46 % 57.23 % 13.23 % 31 207

LP-SSVM* 77.63 % 77.80 % 56.31 % 8.46 % 62 539
MDP on 76.59 % 82.10 % 52.15 % 13.38 % 130 387
DSM 76.15 % 83.42 % 60.00 % 8.31 % 296 868
SCEA* on 75.58 % 79.39 % 53.08 % 11.54 % 104 448
CIWT* st on 75.39 % 79.25 % 49.85 % 10.31 % 165 660

NOMT-HM* on 75.20 % 80.02 % 50.00 % 13.54 % 105 351
SSP* 72.72 % 78.55 % 53.85 % 8.00 % 185 932

mbodSSP* on 72.69 % 78.75 % 48.77 % 8.77 % 114 858
MTCCF 71.27 % 81.38 % 48.31 % 5.85 % 537 1018
TENSOR 71.18 % 79.15 % 47.85 % 11.69 % 418 947
MBKF on 69.77 % 83.03 % 41.23 % 11.38 % 410 971

Table 4.3: 'Car' class MOTA, MOTP, MT, ML, IDS and FRAG metrics for submitted

methods on KITTI Object Tracking Evaluation 2012 benchmark.

Method Setting MOTA MOTP MT ML IDS FRAG
MBKF on 69.77 % 83.03 % 41.23 % 11.38 % 410 971
DCO-X* 68.11 % 78.85 % 37.54 % 14.15 % 318 959
NOMT 66.60 % 78.17 % 41.08 % 25.23 % 13 150
RMOT* on 65.83 % 75.42 % 40.15 % 9.69 % 209 727
LP-SSVM 61.77 % 76.93 % 35.54 % 21.69 % 16 422
NOMT-HM on 61.17 % 78.65 % 33.85 % 28.00 % 28 241
ODAMOT on 59.23 % 75.45 % 27.08 % 15.54 % 389 1274

SSP 57.85 % 77.64 % 29.38 % 24.31 % 7 704
SCEA on 57.03 % 78.84 % 26.92 % 26.62 % 17 461

mbodSSP on 56.03 % 77.52 % 23.23 % 27.23 % 0 699
TBD 55.07 % 78.35 % 20.46 % 32.62 % 31 529
RMOT on 52.42 % 75.18 % 21.69 % 31.85 % 50 376
CEM 51.94 % 77.11 % 20.00 % 31.54 % 125 396
MCF 45.92 % 78.25 % 14.92 % 37.23 % 21 581
HM on 43.85 % 78.34 % 12.46 % 39.54 % 12 571

DP-MCF 38.33 % 78.41 % 18.00 % 36.15 % 2716 3225
DCO 37.28 % 74.36 % 15.54 % 30.92 % 220 612

FMMOVT 31.88 % 77.68 % 21.38 % 34.92 % 511 930

Table 4.4: Remaining 'Car' class MOTA, MOTP, MT, ML, IDS and FRAG metrics for

submitted methods on KITTI Object Tracking Evaluation 2012 benchmark.
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5 CONCLUSION

In this work we have proposed an Multiple Object Tracking application that is speci�ed

for the needs of autonomous driving : computational e�ciency, being able to perform

Multiple Object Tracking on data acquired from non-stationary camera and most im-

portantly track object from a stream of data, i.e. being an online method. E�cieny

was established using strong a�nity between the detected objects from the temporal

window relating to a number of dissimilarity metrics that each has its purpose for rela-

ting scenarios ; where the strong a�nity made possible to create a sparse network that

min-cost max �ow problem could be e�cienty solved.

The proposed method was validated on KITTI Tracking 'Car' class benchmark and

reported state-of-the-art performance on online methods category. While having a mean

running time of 0.0474 s and a standard deviation of 0.0145 that could assist tasks

like motion planning of autonomous driving applications, while performing second on

MOTA, MT, ML metrics and best of IDS and FRAG on online methods.
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