

GALATASARAY UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

MULTICLASS ANALYSIS OF AUTOMATIC TEXT

CLASSIFICATION TECHNIQUES

S e m u e l F R A N K O

June 2018

MULTICLASS ANALYSIS OF AUTOMATIC TEXT CLASSIFICATION

TECHNIQUES

(OTOMATİK METİN SINIFLANDIRMA TEKNİKLERİNİN ÇOK SINIFLI

ANALİZİ)

by

SEMUEL FRANKO, B.S.

Thesis

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

in the

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

of

GALATASARAY UNIVERSITY

June 2018

This is to certify that the thesis entitled

MULTICLASS ANALYSIS OF AUTOMATIC TEXT CLASSIFICATION
TECHNIQUES

prepared by SEMUEL FRANKO in partial fulfillment of the requirements for the de-
gree of Master of Science in Computer Engineering at the Galatasaray University
is approved by the,

Examining Committee:

Assist. Prof. Dr. İsmail Burak PARLAK (Supervisor)
Department of Computer Engineering
Galatasaray University

Assist. Prof. Dr. Murat AKIN
Department of Computer Engineering
Galatasaray University

Assist. Prof. Dr. İlker ÜSTOĞLU
Department of Control and Automation Engineering
Yildiz Technical University

Date:

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor İ. Burak Parlak for the con-

tinuous guidance and efforts throughout my Master study and my thesis research. His

guidance helped me in all phases of the research and writing of this thesis.

I would like to thank my parents for supporting me in every step of my life and making

everything look easier.

I am also grateful to my professors and friends in Master’s program for supporting me.

This research has been financially supported by the Galatasaray University Scientific

Research Projects (BAP) under the grant agreement number 18.401.001.

June 2018

Semuel Franko

iii

TABLE OF CONTENTS

LIST OF SYMBOLS . vi

LIST OF FIGURES . vii

LIST OF TABLES . x

ABSTRACT . xii

RÉSUMÉ . xiii

ÖZET . xiv

1. INTRODUCTION . 1

2. LITERATURE REVIEW . 3

3. METHODOLOGY . 8

3.1 Text Classification . 8

3.2 Learning Machines . 8

3.3 Naïve Bayes . 9

3.4 Decision Trees . 12

3.5 Maximum Entropy . 14

3.6 Support Vector Machines . 16

4. CORPUS ARCHITECTURE . 18

4.1 Content of Spanish Corpus . 18

4.2 Processing of Spanish Corpus . 19

4.3 Implementation and Requirement for Software Technologies 22

5. EVALUATION PROCEDURE . 24

5.1 Feature Extraction . 24

5.2 Design of Datasets . 26

5.3 Cross Validation and Evaluation . 26

5.4 Precision-Recall Curve . 29

5.5 ROC Curve . 29

5.6 Confusion Matrix . 30

5.7 Optimization . 31

6. EXPERIMENTS AND RESULTS . 32

6.1 Test cases . 32

6.2 Naive Bayes . 33

6.3 Decision Trees . 39

6.4 Maximum Entropy . 44

6.5 Support Vector Machines . 49

6.6 Comparative Analysis . 55

7. CONCLUSION . 60

REFERENCES . 62

BIOGRAPHICAL SKETCH . 66

v

LIST OF SYMBOLS

CV : Cross Validation
HTML : Hypertext Markup Language
JSON : JavaScript Object Notation
NB : Naive Bayes
NLP : Natural Language Processing
NLTK : Natural Language Toolkit
ROC : Receiver Operating Characteristic
SEPLN : Spanish Society for Natural Language Processing
SVM : Support Vector Machines
TFIDF : Term Frequency-Inverse Document Frequency
XML : Extensible Markup Language

vi

LIST OF FIGURES

Figure 3.1 Naïve Bayes probability contributions. 10

Figure 3.2 Decision tree flow chart. 12

Figure 3.3 Underfit and overfit for data points. 13

Figure 3.4 SVM margin. 16

Figure 4.1 Difference of the normalization process. 22

Figure 5.1 Evaluation procedure work flow. 25

Figure 5.2 Train and test sets for evaluation. 26

Figure 5.3 Cross validation test structure. 27

Figure 5.4 Retrieved and related documents in collection. 28

Figure 5.5 Precision-recall curves for two algorithms. 29

Figure 5.6 ROC curves for multiple algorithms. 30

Figure 5.7 Confusion matrix for a three class model. 31

Figure 6.1 Naive Bayes alpha-accuracy graph for all tests. 35

Figure 6.2 Naive Bayes alpha-accuracy graph for each vectorizer. 36

Figure 6.3 Naive Bayes duration-accuracy graph for each vectorizer. 36

Figure 6.4 Naive Bayes fscore-accuracy graph for each vectorizer. 37

Figure 6.5 Naive Bayes kappa-accuracy graph for each vectorizer. 37

Figure 6.6 Naive Bayes best accuracy values for each vectorizer, k-fold and ngram

case. 38

Figure 6.7 Naive Bayes alpha parameter for the optimal classifier. 38

Figure 6.8 Decision Trees maximum depth-accuracy graph for all tests. 41

Figure 6.9 Decision Trees maximum depth-accuracy graph for each vectorizer. . . 42

Figure 6.10 Decision Trees duration-accuracy graph for each vectorizer. 42

Figure 6.11 Decision Trees best accuracy values for each vectorizer, k-fold and

ngram case. 43

Figure 6.12 Decision Trees maximum depth parameter for the optimal classifier. . . 43

Figure 6.13 Maximum Entropy C-accuracy graph for all tests. 46

Figure 6.14 Maximum Entropy C-accuracy graph for each vectorizer. 47

Figure 6.15 Maximum Entropy duration-accuracy graph for each vectorizer. 47

Figure 6.16 Maximum Entropy best accuracy values for each vectorizer, k-fold and

ngram case. 48

Figure 6.17 Maximum Entropy C parameter for the optimal classifier. 48

Figure 6.18 Support Vector Machines C-accuracy graph for all tests. 51

Figure 6.19 Support Vector Machines C-accuracy graph for each vectorizer. 52

Figure 6.20 Support Vector Machines duration-accuracy graph for each vectorizer. . 52

Figure 6.21 Support Vector Machines fscore-accuracy graph for each vectorizer. . . 53

Figure 6.22 Support Vector Machines kappa-accuracy graph for each vectorizer. . . 53

Figure 6.23 Support Vector Machines best accuracy values for each vectorizer, k-

fold and ngram case. 54

Figure 6.24 Support Vector Machines C parameter for the optimal classifier. 54

Figure 6.25 Precision-recall graph for top classifiers. 56

Figure 6.26 Receiver Operating Characteristics (ROC) curve for top classifiers. . . 57

LIST OF TABLES

Table 3.1 Decision tree rule chart. 12

Table 4.1 Number of articles by category. 19

Table 5.1 Optimized parameter list for classifiers. 31

Table 6.1 Test case distribution. 32

Table 6.2 Naive Bayes top 15 results. 33

Table 6.3 Naive Bayes middle 15 results. 34

Table 6.4 Naive Bayes bottom 15 results. 34

Table 6.5 Decision Trees top 15 results. 39

Table 6.6 Decision Trees middle 15 results. 40

Table 6.7 Decision Trees bottom 15 results. 40

Table 6.8 Maximum Entropy top 15 results. 44

Table 6.9 Maximum Entropy middle 15 results. 45

Table 6.10 Maximum Entropy bottom 15 results. 45

Table 6.11 Support Vector Machines top 15 results. 49

Table 6.12 Support Vector Machines middle 15 results. 50

Table 6.13 Support Vector Machines bottom 15 results. 50

Table 6.14 Main performance outputs for all classifiers. 55

Table 6.15 Top results for each classifier. 56

Table 6.16 F1-scores of the best classifiers for each class. 57

Table 6.17 Confusion matrix for Naive Bayes classifier. 58

Table 6.18 Confusion matrix for Decision Trees classifier. 58

Table 6.19 Confusion matrix for Maximum Entropy classifier. 58

Table 6.20 Confusion matrix for Support Vector Machines classifier. 59

ABSTRACT

Text classification and clustering; are one of the most popular areas of research in nat-

ural language processing applications. These areas offer different possibilities to the re-

searchers for determining the metrics that can measure corpora dynamics in the automatic

text analysis applications. It is observed that English-based systems developed for the

text analysis applications were not studied extensively for Spanish, which is the second

most spoken language. In particular, it seems that the number of studies on multi-class

text classification is very small compared to English language. The purpose of this work

is to develop classifiers with machine learning methods on a corpus that can be used for

Spanish text classification and to perform comparative analysis over different parameters.

It is also aimed to calculate the optimum performance effects by measuring the critical

parameter values in the methods by applying sensitivity analysis. Spanish corpus was

created by preparing a set of 10 different topics from texts of electronic newspapers and

magazines. The indexing was achieved according to the topics where the pre-processing

steps were completed for the machine learning methods. Naive Bayes, Decision Trees,

Maximum Entropy and Decision Support Vector Machines are used. The basic parame-

ters affecting the performance of the classifiers were examined and analyzed. The results

of more than 1800 tests indicate that the methods can successfully classify the topics.

Sensitivity analysis improves the accuracy of the classifier from 2% to 16%. The meth-

ods that yield the best performance have reached an accuracy of 89%, 88% and 87%,

respectively. In addition to the accuracy, precision and recall of the test results, the com-

putation time has been integrated to the analysis where the classifier models have been

computed.

Keywords : natural language processing, machine learning, text classification, spanish

language, sensitivity analysis

RÉSUMÉ

Classification de texte et regroupement; est l’un des domaines de recherche les plus popu-

laires dans les applications de traitement du langage naturel. Ces deux domaines offrent

des possibilités différentes pour les chercheurs, avec des métriques déterminées pour

mesurer la dynamique des corpus dans les applications sous la rubrique de l’analyse au-

tomatique de texte. Le but de ce travail est de développer des classificateurs avec des

méthodes d’apprentissage automatique sur une compilation qui peut être utilisée pour

la classification des textes en espagnol et d’effectuer une analyse comparative sur dif-

férents paramètres. Il vise également à calculer les effets de performance optimaux en

mesurant les valeurs de paramètres critiques dans les méthodes en appliquant une ana-

lyse de sensibilité. La compilation du corpus espagnol est effectuée en préparant une

base de 10 sujets différents dans des journaux électroniques et des textes dans les maga-

zines. Les étapes de prétraitement préliminaires, ils sont complétés pour l’apprentissage

automatique en ayant indexé selon les sujets. Les méthodes suivants; Naive Bayes, les

arbres de décision, l’entropie maximale et les machines vectorielles d’aide à la décision

sont utilisés. Les paramètres de base affectant la performance des classificateurs ont été

examinés et analysés sur des effets les plus influents. Les résultats de plus de 1800 tests

indiquent que les méthodes peuvent classer le sujet avec succès. L’analyse de sensibilité

a amélioré la précision du classificateur de 2% à 16%. Les méthodes qui donnent les

meilleures performances ont atteint une précision de 89%, 88% et 87%, respectivement.

En plus de la précision, de l’exactitude et de l’exactitude des résultats des tests, on a éga-

lement examiné le temps de calcul pour le traitement requis à fin de préparer le modèle

de classificateur et le classificateur optimal.

Mots Clés : traitement du langage naturel, apprentissage automatique, classification de

texte, langue espagnol, analyse de sensibilité

ÖZET

Metin sınıflandırma ve kümeleme; doğal dil işleme uygulamaları içerisindeki en popüler

araştırma alanlarındandır. Bu iki alan, otomatik metin analizi başlığındaki uygulamalarda

derlem dinamiklerini ölçecek metriklerin belirlenmesinde araştırmacılara farklı olanaklar

sunmaktadır. Metin analizi uygulamalarında geliştirilen İngilizce tabanlı sistemlerin en

çok konuşulan ikinci dil olarak gösterilen İspanyolca için yeteri kadar incelenmediği göz-

lemlenmektedir. Özellikle, çok sınıflı metin sınıflandırması konusunda yapılan çalışma

sayılarının İngilizce ile karşılaştırıldığında oldukça az olduğu görülmektedir. Bu çalışma-

nın amacı, İspanyolca metin sınıflandırma için kullanılabilecek bir derlem üzerinde, ma-

kine öğrenmesi yöntemleri ile sınıflandırıcılar geliştirmek ve farklı parametreler üzerin-

den karşılaştırmalı analizini gerçekleştirmektir. Bunun yanında duyarlılık analizi uygu-

lanarak yöntemler içerisindeki kritik parametre değerleri ölçülerek optimum performans

etkilerinin hesaplanması da amaçlanmıştır. 10 farklı konudan oluşan bir derlem hazırla-

narak oluşturulan İspanyolca derlem içerisinde; elektronik gazete ve dergilerdeki metin-

ler, gerekli ön işlem adımları uygulandıktan sonra konularına göre dizinlenerek makine

öğrenmesi için hazırlanmıştır. Naive Bayes, Karar Ağaçları (Decision Trees), Maksimum

Entropi ve Karar Destek Vektör Makineleri kullanılmıştır. Sınıflandırıcıların performansa

etki eden temel parametreleri incelenmiş ve en çok etki edenler üzerinde analiz yapılmış-

tır. Yapılan 1800’den fazla testin sonuçları ilgili metotların başarıyla konu sınıflandırma

yapabildiğini göstermektedir. Duyarlılık analizi sınıflandırıcının doğruluk değerinde %2

ile %16 arasında iyileşme sağlamaktadır. En iyi performansı veren metotlar konu tahmin

konusunda %89, %88 ve %87 gibi bir doğruluğa ulaşmaktadır. Test sonuçları doğruluk,

kesinlik ve anmanın yanında, sınıflandırıcı modeli hazırlanması için gerekli işlem süresi

yönünden de incelenerek optimum sınıflandırıcı için yorum yapılmıştır.

Anahtar Kelimeler : doğal dil işleme, makine öğrenmesi, metin sınıflandırma, ispan-

yolca dili, duyarlılık analizi

1. INTRODUCTION

Over last decades, the digitalization of textual information has revealed several tasks

related to the available online knowledge. The clustering, classification, knowledge ex-

traction and mining which represent different steps of text processing need robust infor-

mation models due to irregularities and non standard noise in digitized texts. In natural

language processing (NLP), text classification is considered as a challenging task due to

the complexity of knowledge representation. Text processing is highly correlated with the

information characterized by the entities or the tokens represented by language models.

These models are considered as generic that can be applied to natural languages.

In this thesis, text analysis refers to cutting edge classification of multiclass documents.

The multiclass analysis points out the process of label assignment to a document. Docu-

ments arising from different sources like ; news reports, blogs, emails and other online

documents would contain similar topics. In these cases, an appropriate label set should

be initialized in order to form a correct extraction and management of knowledge repre-

sentation.

In text classification, several methods are in use through the behavior of document na-

ture. The collection stage of a corpus is the first step for text based studies. A relevant

representation of the corpus is crucial in order to set a scalable and language independent

algorithms. Thus, machine learning methods are preferred in highly flexible corpus to

understand the essential features from the prior sets and to guess posterior knowledge

carrying out the dynamic representation of the document classification (Srivastava and

Sahami, 2009).

Multiclass document classification is a cutting-edge problem of machine learning where

supervised techniques are applied to identify the target class among predefined categories

to which the considered text will be assigned (Berry and Castellanos, 2008). There are

two important stages of this procedure ; training and testing.

2

In this thesis, the Spanish corpus has been created by preparing a set of 10 different

topics from texts of electronic newspapers and magazines. The observation has been ini-

tialized by the setup of relevant datasets by downloading and parsing HTML contents

from online documents. After the download of HTML content from online newspaper

and magazines, these documents have been parsed to extract text and category data. Fur-

thermore, the documents have been filtered out in the preprocessing stage to analyze raw

text data and to normalize them. (tokenization, removing stop words and non alphabetic

characters, stemming). The language models such as document vector model or hashing

functions have been defined to prepare classifiers. The feature selection has been perfor-

med to initialize the document classifiers. The ultimate part was the assignment and the

evaluation process in order to reveal the performance of classification results. The aim of

this thesis would be summarized as the benchmark analysis of popular machine learning

techniques for a multiclass corpus. The optimized classifiers are designed for language

models derived from digitized texts by using Python language and related toolboxes such

natural language toolbox : NLTK and machine learning toolbox : Scikit. Naive Bayes,

Decision Tree, Maximum Entropy and Support Vector Machines have been integrated to

the language models. The optimized classifiers have been compared by the classification

metrics like accuracy, precision, recall and F-score. During the development of the classi-

fiers, sensitivity analysis has been achieved where the classifiers were examined for their

most significant parameters that improve the performance. After multiple tests to obtain

the best parameters the optimum classifiers have been set. Also, computation time scores

have been recorded and discussed in the comparative analysis of the classifiers.

Chapter 1, presents a brief introduction about the study. Chapter 2 reviews existing stu-

dies from the literature. Chapter 3 is devoted to the background of the classifier metho-

dologies that were used. Chapter 4 presents how to create digital documents, obtain a

corpus and normalize the texts. Chapter 5 comprises the evaluation procedures which in-

clude language features for splitting the documents and evaluation metrics of the results.

Chapter 6 covers the experiments and results for each type of classifier and a comparative

analysis. Finally, Chapter 7 concludes this thesis by discussing the outcomes.

2. LITERATURE REVIEW

In this section, the survey about the recent studies has been performed from the viewpoint

of text classification through Spanish language. Robust text classification is a challenging

task for Internet based document analysis. Even if reliable routines are available for En-

glish language, automatic text classification is still a cutting edge in Spanish world wide

web. (Wu et al., 2008) characterized SVM, Naive Bayes, Decision Trees and Maximum

Entropy measures among top 10 data mining algorithms. Saez et al.studied the effects of

different levels and types of noise in multi-class datasets. (Pla and Hurtado, 2017) obser-

ved multi-class problems for the identification of Iberian languages through social media

texts. Multiclass text classification in English draws the challenge behind the heteroge-

neous effect in corpus through the conceptual match.

As one of these successful methods, Nave Bayes is popular in text classification due to

its computational efficiency and relatively good predictive performance. In recent years,

there are many studies about the Naive Bayes classifier applied in text classification

((Frank and Bouckaert, 2006) ; (Kim et al., 2006) ; (Lewis, 1998) ; (McCallum and Ni-

gam, 1998) ; (Mladenic and Grobelnik, 1999) ;(Mladenić and Grobelnik, 2003)). For text

classification, a major problem is the high dimensionality of the feature space. It is very

often that a text domain has several tens of thousands of features. Most of these features

are not relevant and beneficial for text classification task. Even some noise features may

sharply reduce the classification accuracy. Furthermore, a high number of features can

slow down the classification process or even make some classifiers inapplicable.

The analysis of social media especially Twitter messages becomes a popular tool to mea-

sure linguistic properties and to classify tweets to different topics (Vilares et al., 2015).

In their feature models different approaches have been used such as, Unigrams and Bi-

grams of words, lemmas, Psychometric properties and Part of speech tags. For the clas-

sier, they have used Sequential Minimal Optimization technique which is a variant of

4

Support Vector Machines. Their results show that relating NLP-extracted features add

complementary knowledge over pure lexical models. So it becomes possible to outper-

form them on standard classification metrics. Morevover, graph based techniques have

been used to classify topics in Spanish tweets (Cordobés et al., 2014). In their study, they

have proposed a system where very short text classification is possible by using vector

classification model. The basic principle is that every piece of text can be represented

as a graph. For each topic, a preclassified graph has been constructed. In case of new

tweets, its graph is generated and compared with reference graphs where the following

text attributes are used, PageRank, HITS, Graph Density and modifications. In both stu-

dies ((Cordobés et al., 2014), (Vilares et al., 2015)), TASS 2013 general corpus of tweets

of SEPLN (Spanish Society for Natural Language Processing) has been used Moreover,

the binary maximum entropy classifiers for sentiment analysis and topic classification of

Spanish written tweets have been implemented by (Batista and Ribeiro, 2013). Their sys-

tem gave better results on topic classification then the sentiment analysis. The maximum

entropy classifier has been used for both approaches. In terms of polarity, six values,

None, Negative and Negative Plus, Positive and Positive Plus, Neutral have been set. For

the topic classification 10 different sets have been defined and for their best combination,

test set gave 64.9% and 63.4% accuracy for topic classification and sentiment analysis

respectively.

The multilingual studies reveal the performance of language models according to dif-

ferent parameters. The conventional classification approaches that have been proved to

be effective for English text were also found effective in Spanish texts in the study of

(Anta et al., 2013). In the same study, they have focused on the processing of Spanish

tweets. Although they have used stemmers and lemmatizers, n-grams, word types, ne-

gations, valence shifters and different methods, none of them made a clear difference in

their algorithms. Also, they have underlined the complexity of tweets due to their short

structures and the lack of content. 58% accuracy for topic classification and 42% accu-

racy for sentiment analysis have been reached with the best parameter sets. The opinion

classification has been studied by (Martínez-Cámara et al., 2011) used machine learning

techniques. They have used the data of the website Muchocine which has summary and

reviews of the movies. Opinions have been rated between 1 and 5. Support Vector Ma-

chines (SVR), Nave Bayes, Bayesian Logistic Regression (BRR), K Nearest Neighbors

5

and C4.5 Decision Trees have been used. In the test step, best results have been obtained

when both of the summary and reviews were integrated in the implementation.

Naive Bayes method is considered as a popular technique in NLP problems. (Escudero

et al., 2000) has studied the word sense disambiguation problem where the appropriate

meaning is chosen for a given word. They have used Naive Bayes and Exemplar-based

classification techniques. Regarding final results, Naive Bayes with standard parameters

had given the general accuracy of 67.1%. The exemplar-based classifier was modified to

two variants. Example/attribute weighted version had the accuracy of 67.2%, Modified

value difference matrix version had the accuracy of 68.6%. Moreover, (Gamallo et al.,

2013) has studied sentiment analysis for the TASS 2013 corpus with 7216 Spanish tweets

to detect the polarity. Although best performance was achieved when there are only two

polarity categories like positive and negative, they have also studied additional polarities

like strong positive, neutral, strong negative and no sentiment. It was shown that 4 pola-

rity level system had 66% accuracy and 6 polarity level system had 55% accuracy. During

the SemEval 2014 workshop, (Gamallo and Garcia, 2014) have presented their study for

sentiment analysis for English tweets. That corpus had 6408 tweets and they were tagged

with five different polarity levels, positive, neutral, negative, objective and neutral-or-

objective. They have created 6 variants of Naive Bayes classifiers, where best one had

the accuracy of 63%. (Juan and Ney, 2002) have implemented both types of Naive Bayes

classifiers ; Bernoulli model and multinomial model. They have considered the effect of

smoothing on the parameters and the normalization of document length which improved

slightly the classifier performance. The multinomial model has been found as the success-

ful technique regarding the empirical results. The default value of smoothing parameter

gave the error rate of 15.4%. Best smoothing value gave the error rate of 14.9% and ab-

solute discounting improved it to 14.6%. The multilabeled learning problem, where each

document belongs to two or more predefined categories is another application area for

Naive Bayes (Zhang et al., 2009). The methods have been tested with both synthetical

and real-world (natural scene and gene functional classes) data sets. They have obtained

highly competitive performance for classifying this high-dimensional data.

Decision trees is a common machine learning tool which is applied on several NLP rou-

tines. Optimized rule base induction methods have been studied by (Apté et al., 1994).

Their aim was to discover automatically created pattern for text classification, rather than

6

using systems that have human-engineered rules. Their results showed that these auto-

mated rules are comparable to human generated rules. Their algorithms were tested with

Reuters collection and the performance was improved from 67% to 80.5% from a pre-

vious work.

The maximum entropy is characterized as another classification tool in machine learning.

The classification of the email messages whether or not they have certain email acts has

been studied by (Carvalho and Cohen, 2005). These acts can be a request, commitment,

meeting etc. For each act, a maximum entropy classifier has been defined and has been

compared through Kappa statistics. It is shown that for most of the acts they had sta-

tistically significant improvements with respect to baseline algorithm. (Fleischman et al.,

2003) has built a statistically based semantic classifier and has analyzed it with a database

called FrameNet, This structure includes semantically annotated sentences. The same

structure has been extended with Maximum Entropy models and sentence-level syntactic

patterns have been added into the feature set. Regarding the experiments, a statistically

significant improvement has been obtained, 70.6% as F-score. The extraction of semantic

relationships between entities has been studied by (Kambhatla, 2004). The paucity of the

annotated data and the errors created by the model that is used for entity detection have

caused new challenges in the problem. Maximum Entropy models have been employed.

Competitive results have been obtained in the Automatic Content Extraction, which is

an evaluation organized by National Institute of Standards and Technology. In a similar

way, sentence extraction problem has been examined by (Osborne, 2002). In that study,

Naive Bayes and Maximum Entropy classifiers were used. The latter gave marginally

better results, where F2 score difference was 16%.

Finally, the support vectors machines become a standard in machine learning where there

is big challenge in classifier separation in hyperspaces Text categorization on Reuters and

Ohsumed corpora has been analyzed by (Joachims, 1998) studied. Among other classi-

fiers, SVM has been identified as the best method. For the precision/recall-breakeven

point it gave 86.4%, while the nearest classifier was k-NN which obtained 82.3%. Opi-

nion mining can be defined as determining whether an opinion in a document is negative

or positive. (Saleh et al., 2011) developed an SVM model for that problem. They have

started to use Pang and Tobado corpora. Also they have created their own corpus called

SINAI. Regarding the experiments, trigram gave generally better results. For Pang cor-

7

pus, the accuracy of binary occurrences was about 84.9%. For Topado and SINAI, the

performance of TFIDF models has been found better with the accuracy values of 73%

and 91% respectively. They have concluded that this result can be affected by the domain

of their corpus, where review comments are easily identifiable.

In a similar way, (Wang and Manning, 2012) examined subjectivity dataset ; MPQA,

IMDB and RT-2k datasets for sentiment and topic classification. In their study, it is men-

tioned that, although Naive Bayes and SVM used as baseline methods, their performance

have changed due to the model variance using features and datasets. Including bigrams in

feature set constantly increases the performance of sentiment analysis. For short snippets

Naive Bayes performs better, however, SVM outperforms in long texts. They have also

proposed another method called NBSVM (SVM with Naive Bayes features). Both for

snippets and for long documents NBSVM seemed to be a strong baseline.

3. METHODOLOGY

In this section main areas of text classification will be introduced. Machine learning tech-

niques are classified through the use of language models and the features. The methods

that are used in the experiments are detailed with their brief characteristics in NLP.

3.1 Text Classification

The aim of the text classification is assigning documents to one or more categories. Do-

cuments might be long as articles, news, blog posts or short as tweets, product reviews

and comments. Categories can be binary like spam-not spam, fraud-not fraud. Besides,

news stories can be tagged by topics like politics, general culture, sports etc. Movie re-

views can be assigned to categories like comedy, drama etc. The last two examples are

categorized as multiclass text classification which is examined during this thesis. Other

main topics of text classification are sentiment analysis, text summarization and author

detection. Recently, machine learning techniques gained a momentum in this process.

In this chapter, four different methods will be discussed as learning machines in NLP

domain.

3.2 Learning Machines

Learning machines studies how to automatically learn from data, whether than explicitly

programming. In a broad perspective machine learning tasks can be divided into : Su-

pervised learning, Unsupervised learning, semi-supervised learning and reinforcement

learning.

— Supervised learning : During the training phase, correct-input output pairs are avai-

lable.

9

— Semi-supervised learning : Supervised and unsupervised techniques are used toge-

ther.

— Unsupervised learning : During training phase, correct answers does not exist.

These techniques find patterns. One of the most used application is clustering.

In this study the following supervised classification techniques have been studied : Naïve

Bayes, Decision Trees, Maximum Entropy, Support Vector Machines.

3.3 Naïve Bayes

Naive Bayes algorithm uses Bayes Theorem to predict the probability of a label for a

given feature set. In Bayes theorem equation 3.1 is used :

(3.1)

In the formula, P(label) shows the prior probability of the label in documents. Also

P(f eatures | label) shows the probability of a given feature to be classified as that label,

which is also known as likelihood. This is based on the feature and label matches in

training data. P(f eatures) shows the probability of a feature to exist in training data. It

can be predicted the probability of given features with P(label | f eatures) that should

have that label.

Given a class variable y and a dependent feature vector (x1, ...,xn). Regarding to Bayes

theorem the relationship in 3.2 exists(Zhang, 2004) :

(3.2)

In this algorithm naive aspect arises from the assumption of independence between every

pair of futures. Naive independence assumption can be seen in 3.3 for all i.

(3.3)

10

The relationship in 3.2 can be simplified to 3.4

(3.4)

Because of the P(x1, ...,xn) is constant given the input, the classification rule in 3.5 can

be used.

(3.5)

P(y) and P(xi|y) can be estimated by maximum a posteriori estimation.

(3.6)

Figure 3.1: Naïve Bayes probability contributions.

Mainly there exist three variants of Naive Bayes. Bernoulli Naive Bayes assumes that

all features are binary. Multinomial Naive Bayes is used when data is discrete. Gaussian

Naive Bayes is used when all features are continuous. In this thesis, Multinomial Naive

Bayes has been implemented.

In Multinomial Naive Bayes, the distribution is parametrized by vectors θy =(θy1, ...,θyn)

for each class y, where n shows the number of features, where in text classification it

11

signifies the size of vocabulary and θyi is the probability P(xi|y) of feature i appearing in

a sample belonging to class y (Manning et al., 2008).

The parameters θy is estimated by the smoothed version of maximum likelihood.

(3.7)

In 3.7 Nyi = ∑x∈T xi shows the feature count of i in a sample of class y in training set T .

Ny = ∑
|T |
i=1 Nyi is the total count of all features for class y.

In order to improve the performance of Naive Bayes classifier α parameter can be opti-

mized. A word that does not appear in training data, but can be in use within the test data.

This case results in zero probabilities. In order to handle this problem, additional smoo-

thing is usually preferred. Additive smoothing, so called Laplace smoothing or Lidstone

smoothing, is a technique used to smooth categorical data. The smoothing priors α ≥ 0

accounts for features not present in the learning samples and prevents zero probabilities

in further computations. Laplace smoothing indicates that α = 1. If α < 1 it is called

Lidstone smoothing.

Naive Bayes algorithm could give relevant results in real applications where the compu-

tation time is lower and the design of language model becomes simpler. In a nutshell, it

is scalable to train big data, efficient for fast training and requires modest storage. On the

other hand, it ignores the word order due to the bag of words model and would not be

suitable if the dependency between the variables is strong.

Main advantages :

— Very easy to implement

— Can easily scale to a big training data

— Very efficient and fast training phase

— Modest storage need

Main disadvantages are :

— Order of the words are ignored, due to the bag of words model

12

— Words are not independent of each other. Mountain is more likely to occur in a

context of nature, rather than health

— Naive Bayes algorithm is not suitable if there is a strong dependency between the

variables

3.4 Decision Trees

Decision tree is a flowchart that selects labels for feature values. The goal is to create a

classifier that predicts the label by learning simple decision rules from the training data.

Let’s assume that we have following rules in Table 3.1 to decide the category of the text.

Table 3.1: Decision tree rule chart.

Pelicula Libro Film Album Deporte Gira Category
Rule 1 true true true - - - Cine
Rule 2 true true false - - - Literaria
Rule 3 true false - true - - Musica
Rule 4 true false - false - - Tecnologia
Rule 5 false - - - true true Musica
Rule 6 false - - - true false Tecnologia
Rule 7 false - - - false - Tecnologia

A flow chart is constructed by using these rules. In that chart, decision nodes check

feature values and leaf nodes assign labels. So for the features, decision trees are created.

Figure 3.2: Decision tree flow chart.

While constructing decision trees, we should take into consideration the over fitting. If

the tree depth becomes more than we need, the over fitting might occur. Although the

results seem relevant for the train sets, prediction capabilities of the classifier would be

13

worse. Let’s assume that we need to create a curve for our data points. If we increase the

degree of our computations over fitting can occur as seen in Figure 3.3.

Figure 3.3: Underfit and overfit for data points.

For the construction of decision trees, a top-down approach is generally used. At each

step, a variable is selected that best splits the set of items (Rokach and Maimon, 2005).

Different algorithms utilize different metric functions to find the best. These algorithms

generally measure the homogeneity of the target variable in the subsets. CART (Classi-

fication and Regression Trees) use Gini split algorithm and Gini index as the criterion.

ID3 (Iterative Dichotomiser 3) type trees use Information gain algorithm uses Entropy

criterion.

Gini impurity measures the probability of a randomly chosen element from the set would

be erroneously labeled if it was randomly labeled according to the distribution of labels

in the subset. It can be calculated by summing the square of probability pi of an item

with label i. In a data set of n classes, suppose i ∈ {1,2, ...,n} and let pi be the fraction of

items labeled with class i in the set (Gron, 2017).

(3.8)

(3.9)

(3.10)

14

Gini impurity is zero when all of the elements of data are from the same class, due to

the selecting an element of that class has the probability of one. Gini impurity value is

greatest when each class has an equal probability. The maximum value of Gini impurity

depends to the total number of classes (Garreta et al., 2017).

(3.11)

Main advantages of decision trees :

— Simple to understand the structure, because it can easily be visualized

— It can handle both continuous and categorical values

— To train the tree cost is logarithmic

— It is suitable for multi output problems

Main disadvantages are :

— Over fitting can occur, on design process we should make pruning to prevent over

fitting

— Results can be unstable, because a small change in the inputs can create a different

result

— If some classes dominate the training data, the decision tree can create biased trees

In order to optimize decision trees classifier, the maximum depth parameter was used

which is the most significant parameter that changes the performance. Although, it is not

possible to set the depth of the tree, maximum depth can be set.

3.5 Maximum Entropy

Maximum entropy classifier is another robust tool in learning machines for text classifi-

cation. It is likewise a probabilistic classifier whose output is a probability distribution.

However, the features are not considered conditionally independent from each other.

The algorithm is based on the principle of maximum entropy. The procedure is the se-

lection of models that fit the training data with the largest entropy. Due to the complex

15

interactions between the effects of related features, it is not possible to calculate model

parameters directly. Thus, this algorithm calculates them by using iterative optimization

techniques.

As an optimization problem, cost function given in equation 3.12 should be minimized

where L2 penalization is used.

min
w,c

1
2

wT w+C
n

∑
i=1

log(1+ e−yiwT xi) (3.12)

where, w, x, y and c represent weights, inputs, outputs and regularization parameter res-

pectively. In order to solve this cost function Liblinear solver was used which is designed

for large-scale classification problems (Fan et al., 2008). It uses coordinate descent (CD)

algorithm. However, CD algorithm in liblinear cannot solve a multinomial classifier. This

optimization problem is decomposed in a "one-vs-rest" method, where for each class a

classifier is developed (learn developers, 2017).

Main advantages are :

— Estimates probability distribution from data

— Performs well with dependent features

Main disadvantages are :

— Feature selection could be a complex procedure

— Computations can be slow

Maximum entropy performs better with dependent features. However, feature selection

would be complex and computation time is quite slower. In order to improve the mo-

del, the inverse of regularization parameter (C) can be optimized. Smaller values specify

stronger regularization where a penalty is applied to increase the magnitude of parameter

values.

In a logistic regression model, the best fit to the data depicts the error minimization

between the predicted and the actual dependent variable. When the number of parameters

increases in a limited corpus, the error minimization problem is solved with the following

function that penalizes larger values. The function is λ ∑θ 2
j , which is some constant λ

times the sum of the squared parameter values θ 2
j . The larger λ is the less likely it is that

the parameters will be increased in magnitude simply to adjust for small perturbations

16

in the data. However, C = 1
λ

is also used rather than λ . The regularization parameter λ

controls how well the training data fits while keeping the weights small.

3.6 Support Vector Machines

Support Vector Machine (SVM) algorithms construct one or more hyperplanes for the

classification and the regression of data. In order to obtain optimum performance, hy-

perplanes are created regarding to the nearest training data of any class. Increasing the

margin between these data points and hyperplane creates a smaller error for classifica-

tion. In other words, SVM algorithms try to find maximum margin hyperplanes as seen

in Figure 3.4.

Figure 3.4: SVM margin.

For training vectors of xi ∈ Rp, i = 1, ...,n and yi ∈ {−1,+1}, Support Vector Classifier

(SVC) solves primal problem in 3.13 and 3.14. Both equations are L2-regularized, but

former has L1-loss latter has L2-loss function.

(3.13)

17

(3.14)

Their dual forms in 3.15.

min
α

1
2

α
T Q̄α− eT

α (3.15)

subject to 0 ≤ αi ≤U, i = 1, ...,n. Where e is the vector of all ones, Q̄ = Q+D, D is a

diagonal matrix, and Qi j = yiy jxT
i x j. For L1-loss SVC, U =C and Dii = 0, ∀i. For L2-loss

SVC, U = ∞ and Dii =
1

2C , ∀i.

Hence decision function is (Fan et al., 2008) :

sgn(wT x+b) (3.16)

Main advantages of SVMs :

— Gives an effective solution for high dimensional spaces

— It uses a subset of training data in the decision function (support vectors) so uses

less memory

— For the decision function, different Kernel functions can be specified

— Over fitting is less common, robust to noise

— Works well with fewer training samples (number of vectors doesn’t matter much)

Main disadvantages are :

— Selecting appropriate kernel function can be tricky

— Computationally expensive, calculations can take long time

To optimize SVM classifier one of the most significant parameters is called C. C is a

regularization parameter which determines how much misclassification will be allowed

in the result. For large values of C, the optimization method will choose a small margin

hyperplane, so it can correctly predict most training points as possible. But for small

values of C optimizer will create a large margin hyperplane, in that case, more points can

be misclassified.

4. CORPUS ARCHITECTURE

In NLP, corpus is a large collection of the structured set of texts. A corpus can comprise

texts from a single language or multiple languages. Its plural form is called corpora.

Some best known text corpora are Gutenberg Corpus, which contains free electronic

books, Brown Corpus which contains more than one million words and created in 1961 at

Brown University. Also, Reuters corpus is very popular among NLP studies. It includes

more than ten thousand news documents which are classified into 90 topics. A recent

corpus is Google Books ngram corpus.

For the Spanish language some corpora are publicly available. WikiCorpus which is a

trilingual corpus that contains articles from Wikipedia in Spanish. Europarl corpus in-

cludes European Parliament Proceedings and primarily created for statistical translation

systems. Also, news commentary corpus exists which is created for the statistical ma-

chine translation and includes 12 languages including Spanish. Spanish Society for Na-

tural Language Processing (SEPLN) organizes workshops and publishes every year a

new corpus for researchers to analyze, but mainly its purpose is sentiment analysis. The

main goal of this thesis is the topic classification in Spanish articles. Due to the absence

of such a corpus, it was created by the author of this thesis.

4.1 Content of Spanish Corpus

The content of this study is taken from the electronic newspapers and magazines that pu-

blish articles in Spanish language. These articles are categorized in classes like cinema,

music, technology, health etc. Most of the articles are medium to long size. For the cor-

pus, 2576 different articles were downloaded and they were annotated to 10 different

categories. , The prepared corpus is mostly homogeneous due to their categories. The

total number of tokens is 608k. Articles do not overlap with each other, each article has

only one category. The overall distribution of our corpus is detailed in Table 4.1.

19

Table 4.1: Number of articles by category.

Category Number of Articles

A-donde-vamos (where to go) 287
Cine (cinema) 231
Deportes (sports) 216
Economia (economy) 205
Estilo (style) 319
Medio-ambiente (nature) 337
Musica (music) 124
Recomendacion-literaria (literature) 272
Salud (health) 282
Tecnologia (technology) 303

Total 2576

4.2 Processing of Spanish Corpus

Although the web site content was freely available, it was not always possible to reach

all articles from a database with an XML (Extensible Markup Language) feed. Firstly,

the downloaded articles were lexically parsed by using Beautiful Soup library version

4.5.1 with Python language. Beautiful Soup is a library that parses HTML (Hypertext

Markup Language) and XML files. It creates a tree representation of the document and

also provides methods to navigate, search and modify the tree. After the parsing process,

a JSON (JavaScript Object Notation) file was created and saved to data folder for each

category.

The second stage of corpus processing was the normalization. In this stage, the raw do-

cument was firstly converted to tokens, upper cases, non alphanumeric attributes. The

stop words were removed, stems were obtained. This process was done for all texts of

the corpus.

— Total documents : 2576

— Total number of tokens : approx. 608000

— Average number of tokens in a document : 236

— Average character length of a token : 5.4

20

The raw data in NLP applications should be preprocessed to be handled efficiently by ma-

chine learning algorithms. This process can significantly improve results. In this section,

a text portion was processed by using NLP techniques.

Let’s assume that we have following raw text :

El asombro ante lo que el hombre puede pensar y avanzar tecnológicamente, permite

que la imaginación vaya aún más lejos de lo posible. La ficción en la literatura siempre

ha presentado infinitas posibilidades de realidades alternas. Diferentes autores se han

destacado por ser capaces de crear mundos con sus propias reglas, personajes, hasta

naturaleza y tiempo nuevos. Los más talentosos son los que pueden contar una historia

y hacer que los lectores se conviertan en parte de ese universo. Pero, ¿qué es la cien-

cia ficción? En pocas palabras, es una manera de llamarle a un modo imaginativo, en

ocasiones futurista, que existe a partir de los avances tecnológicos que se presentaron a

principios del siglo XX.

The text content was split to small chunks and tokenized by using Natural Language Tool-

kit (NLTK). So the following tokens were obtained. Note that dot, comma and question

marks are also identified as a token.

El, asombro, ante, lo, que, el, hombre, puede, pensar, y, avanzar, tecnológicamente, „

permite, que, la, imaginación, vaya, aún, más, lejos, de, lo, posible, ., La, ficción, en,

la, literatura, siempre, ha, presentado, infinitas, posibilidades, de, realidades, alternas,

., Diferentes, autores, se, han, destacado, por, ser, capaces, de, crear, mundos, con, sus,

propias, reglas, „ personajes, „ hasta, naturaleza, y, tiempo, nuevos, ., Los, más, talento-

sos, son, los, que, pueden, contar, una, historia, y, hacer, que, los, lectores, se, conviertan,

en, parte, de, ese, universo, ., Pero, „ ¿qué, es, la, ciencia, ficción,?, En, pocas, palabras,

„ es, una, manera, de, llamarle, a, un, modo, imaginativo, „ en, ocasiones, futurista, „

que, existe, a, partir, de, los, avances, tecnológicos, que, se, presentaron, a, principios,

del, siglo, XX, ..

Punctuation marks, non-alphanumeric content were removed and text content was conver-

ted to lowercase.

21

el, asombro, ante, lo, que, el, hombre, puede, pensar, y, avanzar, tecnológicamente, per-

mite, que, la, imaginación, vaya, aún, más, lejos, de, lo, posible, la, ficción, en, la, litera-

tura, siempre, ha, presentado, infinitas, posibilidades, de, realidades, alternas, diferentes,

autores, se, han, destacado, por, ser, capaces, de, crear, mundos, con, sus, propias, re-

glas, personajes, hasta, naturaleza, y, tiempo, nuevos, los, más, talentosos, son, los, que,

pueden, contar, una, historia, y, hacer, que, los, lectores, se, conviertan, en, parte, de, ese,

universo, pero, es, la, ciencia, ficción, en, pocas, palabras, es, una, manera, de, llamarle,

a, un, modo, imaginativo, en, ocasiones, futurista, que, existe, a, partir, de, los, avances,

tecnológicos, que, se, presentaron, a, principios, del, siglo, xx

Next step is removing stop words. Stop words are language specific words that are used

extensively in texts. However, they do not have great impact on text classification. As an

example some stop words for Spanish are : "el, lo, en, que". After the removal of Spanish

stopwords, resulting tokens were obtained as follows :

asombro, hombre, puede, pensar, avanzar, tecnológicamente, permite, imaginación, vaya,

aún, lejos, posible, ficción, literatura, siempre, presentado, infinitas, posibilidades, reali-

dades, alternas, diferentes, autores, destacado, ser, capaces, crear, mundos, propias, re-

glas, personajes, naturaleza, tiempo, nuevos, talentosos, pueden, contar, historia, hacer,

lectores, conviertan, parte, universo, ciencia, ficción, pocas, palabras, manera, llamarle,

modo, imaginativo, ocasiones, futurista, existe, partir, avances, tecnológicos, presenta-

ron, principios, siglo, xx

Stemmers are the tools that are frequently used to reduce inflected words to their stems

or to their root form. For example pienso, piensas, pensamos can symbolize same verb

pensar which has a stem of pens. Although Porter stemmer is a convenient stemmer

for English, a suitable stemmer for Romance language is Snowball stemmer. By using

Snowball’s algorithm 15 languages including English, French, German, Spanish, Italian

etc. can be processed efficiently.

After the removal of stop words, Snowball stemmer was used and the final tokens became

as follows. Note that both stems were obtained and accent marks were removed from

tokens.

22

asombr, hombr, pued, pens, avanz, tecnolog, permit, imagin, vay, aun, lej, posibl, ficcion,

literatur, siempr, present, infinit, posibil, realidad, altern, diferent, autor, destac, ser, ca-

pac, cre, mund, propi, regl, personaj, naturalez, tiemp, nuev, talent, pued, cont, histori,

hac, lector, conviert, part, univers, cienci, ficcion, poc, palabr, maner, llam, mod, imagin,

ocasion, futur, exist, part, avanc, tecnolog, present, principi, sigl, xx

Thus, the result of the normalization process can be seen from the Figure 4.1. Blue parts

indicate the change or the removal from the raw text after the normalization.

Figure 4.1: Difference of the normalization process.

During the normalization process, it is noted that there exist words with the length of one

and two characters. Although one character tokens are not meaningful for classification

process, two character words aren’t removed from the corpus. Because some of the most

used verbs in Spanish has stemmed tokens like : da (to give), ir (to go), vi (to see).

4.3 Implementation and Requirement for Software Technologies

In this study, Python programming language has been preferred for NLP and Machine

Learning steps. The main Python libraries used in this project are enlisted as follows ;

— Python’s HTML (Hypertext Markup Language) downloader and Beautiful Soup

for XML (Extensible Markup Language) and JSON (JavaScript Object Notation)

parsing.

— Natural Language Toolkit (NLTK) for preprocessing of the documents.

— Scikit-learn for the development of machine learning classifiers and analysis.

23

— Matplotlib for the visualization.

— NumPy and SciPy for scientific computing.

— Pandas for data manipulation and analysis.

— Multiprocessing libraries of Python.

5. EVALUATION PROCEDURE

Natural Language processing is a field of artificial intelligence that provides computers to

analyze and understand the language of humans. The development of NLP application is

a challenging task because computers need data in a structured, precise and unambiguous

way in a traditional manner. Generally, human texts might be ambiguous, including slang

and regional words.

NLP comprises different techniques to handle texts and convert them in a structured way.

Some of the methods are as follows :

— Tokenization : Task of chopping document or text into pieces called tokens.

— Stop words : Extremely used words that have a little value on classifying texts.

These words are language specific.

— Stemming : Due to grammatical rules the same word can be found with different

forms. Those forms are reduced to one form by removing postfixes.

— Lemmatization : Inflected forms of a word are grouped together and presented with

one word.

5.1 Feature Extraction

In order to make Spanish corpus more suitable for computer algorithms, tokenized and

normalized text should be encoded as integers or floating point values. They should be

presented as feature vectors. This process is known as feature extraction or vectorization.

The common vectorizers are count, hash and tf-idf methods.

— Count vectorizer : It is known as the bag of words. It focuses on the number of

occurrences of the word in a document.

25

— Hash vectorizer : Token occurrences are used for the efficiency of memory usage.

Tokens are not stored as strings, hashing trick is applied and encoded as numerical

indexes. It is fast to pickle or unpickle them

— Tf-idf (Term frequency-inverse document frequency) vectorizer : Weights in fea-

ture sets are taken into consideration. Both number of occurrences in document and

how recurrent that token in entire corpus are combined to calculate the final value.

Although, it is common to use one word tokens in document vectors, adding n-grams

might increase model performance. N-grams are the contiguous sequence of n tokens

that exist in a document. When n is set to 1 it can be referred as unigram. 2 and 3 are

called as bigrams and trigrams, respectively. In the experiments of this thesis, all these

three models were used.

Feature sets include basic information about each input. Choosing correct features has

a big effect on classification process. Features should be selected regarding the nature

of the problem. Obviously, the features of a text are different than other medias such as

sound or image. Then, it is common to use the kitchen sink approach where all features

are added to the classifier. The unneeded features with small effects on output could be

discarded by using trial and error steps

Figure 5.1: Evaluation procedure work flow.

26

5.2 Design of Datasets

After the preparation of feature sets, these sets should be sampled according to the corpus.

The total set should be divided into train and test sets. The classifier is designed by train

sets and further tests should be done with test sets.

The idea of the sampling approach is summarized as the prevention of overfitting. If

the classifier is designed and tested with same data, results will be very good. However,

the accuracy would be much lower and results will not be robust in future uses of the

classifier.

Recommended values for the train and test percentages differ from the problem type and

the size of the corpus. The common distribution of machine learning values are 80 to 20

or 70 to 30 for train to test data respectively. In this study train and test data are divided

into 80 to 20 ratio respectively.

Figure 5.2: Train and test sets for evaluation.

5.3 Cross Validation and Evaluation

To minimize the bias associated with the random sampling of the train and test splits, a

proper methodology is using k-fold cross validation. In this technique, corpus is randomly

split into k subsets of approximately equal size. The developed classifier is trained and

then tested k times. In each iteration, training is done on all but one fold and then tested on

the remaining single fold. After all tests, final performance is calculated by the averaging

result of each iteration. The classifier is trained and tested with the whole corpus so results

will be more reliable with this approach. During this thesis 2, 5 and 10 K-folds cross

validation was tested. A 5-fold cross validation test structure can be seen in Figure 5.3.

27

Figure 5.3: Cross validation test structure.

In order to understand the performance of the classifier, test procedures should be evalua-

ted. Most techniques use test data to evaluate possible scores. The most used parameters

are accuracy, precision, recall, f1-score and confusion matrices.

Accuracy is the simplest and most widely used metric in the evaluation. It uses the per-

centage of the predicted labels to test labels. It can be calculated by using number of true

positives (Tpositive), true negatives (Tnegative), false positives (Fpositive) and false negatives

(Fnegative)

Accuracy =
Tpositive +Tnegative

Tpositive +Tnegative +Fpositive +Fnegative
(5.1)

Precision indicates how many of the items that we identified are relevant. It is defined as

the number of true positives (Tp) over the number of true positives plus the number of

false positives (Fp).

Precision =
TPositive

Tpositive +Fpositive
(5.2)

Recall shows how many of the relevant documents are identified. It can be defined as the

ratio of the number of the true positive documents (Tp) to the true positives and the false

28

negative documents (Fn). The recall is also known as sensitivity or True Positive Rate

(TPR).

Recall =
TPositive

Tpositive +Fnegative
(5.3)

F1 score combines precision and recall values. It is defined as the harmonic mean of that

two values.

F1 = 2(
Precision ·Recall

Precision+Recall
) (5.4)

False Positive Rate (FPR) is also called as false alarm rate. It shows the probability of

falsely rejecting the null hypothesis for the test.

FPR =
Fpositive

Fpositive +Tnegative
(5.5)

Figure 5.4: Retrieved and related documents in collection.

29

5.4 Precision-Recall Curve

Precision-Recall is a standard measure to evaluate and compare the performance of one

or more classifiers. It is more advantageous when classes are imbalanced(Gron, 2017). Y-

axis signifies precision, X-axis shows recall. It shows the trade off between the precision

and recall of the classifier. A big area under the curve depicts high precision and recall,

which signifies classifier both returns accurate results and returns majority of all positive

results. A high recall and low precision classifier can get many results but most of its pre-

dictions are incorrect. A high precision but low recall classifier returns very few numbers

of results but most of its predictions are correct. An ideal classifier has high precision and

recall which signifies that the system returns many results that are predicted correctly. A

typical precision-recall curve for two different algorithms can be seen in Figure 5.5.

Figure 5.5: Precision-recall curves for two algorithms.

5.5 ROC Curve

Receiver Operating Characteristic (ROC) curve is used to evaluate classifier output qua-

lity. Y-axis signifies True Positive Rate (recall) and X-axis shows False Positive Rate. In

30

this plot, ideal point is on upper left where the true positive rate is one and the false posi-

tive rate is zero. It is preferable to have a large area under the curve. Also, it is possible to

plot ROC curves to compare the performance of multiple classifiers as seen in Figure 5.6.

Figure 5.6: ROC curves for multiple algorithms.

5.6 Confusion Matrix

The confusion matrix is a specific table that shows the performance of an algorithm,

generally a supervised learning algorithm. Each row of this matrix shows instances of

an actual class and each column represents instances of the predicted class. Diagonal

values show the elements where predicted value is equal to expected value. Off-diagonal

values represent where the prediction is wrong. A typical confusion matrix can be seen

in Figure 5.7.

31

Figure 5.7: Confusion matrix for a three class model.

5.7 Optimization

Although default classifier models are sufficiently good, model parameters can be exa-

mined and can be optimized to improve classifier performance. For this purpose, model

parameters are analyzed and main parameters are selected. Then by using grid search

algorithms, these parameters are changed within some range and resultant model perfor-

mance is examined. In this thesis optimization was done for the parameters in Table 5.1.

Table 5.1: Optimized parameter list for classifiers.

Classifier Parameter Range Min Range Max

Naive Bayes Alpha 0.01 1
Decision Trees Max depth 1 100
Maximum Entropy C 0.01 50
Support Vector Machines C 0.01 10

6. EXPERIMENTS AND RESULTS

6.1 Test cases

For testing classifiers test cases were prepared. For all classifier types 3 type of vectorizer

was used, Count, Hash and Tfidf. Unigrams, bigrams and trigrams were used. Cross-

validation was used for 2, 5 and 10 K-folds.

For Naive Bayes alpha parameter was changed between 0.01 and 1. For Decision Trees,

maximum depth was changed between 1 and 100. Maximum Entropy classifier was tes-

ted for C values between 0.01 and 50. For Support Vector Machines C parameter was

changed between 0.01 and 10.

The final number of test cases was 1827. Total computation time for all tests became 77.6

hours, where each test took approximately 152 seconds. To decrease total calculation time

multiprocess framework of the Python was used.

Table 6.1: Test case distribution.

Classifier Vectorizer No of tests

Naive Bayes Count 189
Naive Bayes Hash 99
Naive Bayes Tfidf 189
Decision Trees Count 153
Decision Trees Hash 81
Decision Trees Tfidf 153
Maximum Entropy Count 180
Maximum Entropy Hash 99
Maximum Entropy Tfidf 180
Support Vector Machines Count 198
Support Vector Machines Hash 108
Support Vector Machines Tfidf 198

Total 1827

33

6.2 Naive Bayes

Naive Bayes classifier was tested with 477 tests. Count, Hashing and Tfidf vectorizer

were tested with 189, 99 and 189 tests respectively. From the all tests top 15, middle 15

and bottom 15 results can be seen from Table 6.2, Table 6.3 and Table 6.4.

Count vectorizer and 5-10 K-fold tests generally gave best results. Adding bigrams and

trigrams improves some of the accuracy results. Best accuracy value of 0.874 obtained

with these parameters : Count vectorizer, Alpha = 0.21, 10 K-fold, unigrams. For the

top 15 Naive Bayes classifiers, mean of the accuracy became 0.87 with the standard

deviation of 0.002. Those tests took approximately 35.2 seconds for each classifier with

the standard deviation of 37.8 seconds. The mean value of the Kappa coefficient became

0.857.

Table 6.2: Naive Bayes top 15 results.

Vect. Alpha K-fold Ngram Acc. Prec. Recall F score Duration
(seconds)

CV 0.21 10 1 0.874 0.877 0.874 0.874 11.790
CV 0.01 10 2 0.874 0.877 0.874 0.874 62.730
CV 0.06 10 2 0.874 0.878 0.874 0.874 62.900
CV 0.26 10 1 0.873 0.877 0.873 0.873 12.360
CV 0.31 10 1 0.873 0.877 0.873 0.873 12.710
CV 0.01 10 3 0.873 0.876 0.873 0.873 120.510
CV 0.36 10 1 0.872 0.876 0.872 0.872 11.500
CV 0.16 10 1 0.872 0.875 0.872 0.871 11.550
Tfidf 0.01 10 1 0.872 0.875 0.872 0.871 13.260
CV 0.41 10 1 0.871 0.875 0.871 0.870 11.700
CV 0.46 10 1 0.871 0.875 0.871 0.870 11.760
CV 0.11 10 1 0.870 0.873 0.870 0.870 11.570
CV 0.51 10 1 0.868 0.873 0.868 0.868 11.030
CV 0.06 10 3 0.868 0.873 0.868 0.867 119.890
CV 0.11 10 2 0.868 0.874 0.868 0.867 43.120
mean - - - 0.872 0.875 0.872 0.871 35.225
std dev - - - 0.002 0.002 0.002 0.002 37.824

Alpha accuracy graph of all Naive Bayes test results can be seen from Figure 6.1. Modi-

fying alpha parameter changes classifier performance significantly.

Regarding Figure 6.2, increasing alpha parameter makes worsen classifier performance

for Hashing and Tfidf vectorizer. For count vectorizer effect of alpha parameter change is

34

Table 6.3: Naive Bayes middle 15 results.

Vect. Alpha K-fold Ngram Acc. Prec. Recall F score Duration
(seconds)

Tfidf 0.96 5 1 0.783 0.825 0.783 0.767 5.950
Tfidf 0.91 5 1 0.783 0.825 0.783 0.766 6.480
CV 0.16 2 2 0.783 0.804 0.783 0.779 8.630
CV 0.11 2 3 0.783 0.803 0.783 0.779 16.500
CV 0.71 5 3 0.781 0.833 0.781 0.774 57.850
Tfidf 1 5 1 0.781 0.825 0.781 0.765 5.680
Tfidf 0.41 5 2 0.781 0.826 0.781 0.764 31.530
Tfidf 0.66 10 2 0.781 0.826 0.781 0.763 70.260
Tfidf 0.21 2 1 0.781 0.807 0.781 0.773 2.060
Tfidf 0.51 10 3 0.781 0.825 0.781 0.763 126.410
Tfidf 0.71 10 2 0.781 0.826 0.781 0.762 67.040
CV 0.96 5 2 0.780 0.831 0.780 0.773 31.300
Tfidf 0.31 5 3 0.780 0.824 0.780 0.763 61.280
CV 0.76 5 3 0.778 0.831 0.778 0.771 57.890
Tfidf 0.56 10 3 0.778 0.823 0.778 0.760 130.620
mean - - - 0.781 0.822 0.781 0.768 45.299
std dev - - - 0.002 0.009 0.002 0.006 40.480

Table 6.4: Naive Bayes bottom 15 results.

Vect. Alpha K-fold Ngram Acc. Prec. Recall F score Duration
(seconds)

Hash 0.51 2 3 0.664 0.722 0.664 0.627 11.390
Hash 0.61 2 2 0.664 0.722 0.664 0.627 8.790
Hash 0.61 2 3 0.662 0.723 0.662 0.624 12.000
Hash 0.71 2 2 0.659 0.721 0.659 0.622 8.670
Hash 0.71 2 1 0.658 0.721 0.658 0.623 4.650
Hash 0.81 2 2 0.657 0.721 0.657 0.619 8.410
Hash 0.81 2 1 0.656 0.721 0.656 0.620 4.820
Hash 0.71 2 3 0.655 0.721 0.655 0.616 11.850
Hash 0.91 2 1 0.653 0.722 0.653 0.617 4.890
Hash 1 2 1 0.650 0.722 0.650 0.614 4.910
Hash 0.91 2 2 0.650 0.720 0.650 0.612 8.350
Hash 0.81 2 3 0.646 0.719 0.646 0.606 10.960
Hash 1 2 2 0.644 0.719 0.644 0.605 8.680
Hash 0.91 2 3 0.643 0.720 0.643 0.602 11.300
Hash 1 2 3 0.640 0.719 0.640 0.599 10.900
mean - - - 0.653 0.721 0.653 0.616 8.705
std dev - - - 0.007 0.001 0.007 0.009 2.650

different when there are only unigrams. For that case increasing alpha improves accuracy

up to some point, after that performance degrades again.

35

The computation time of the classifier is another performance issue. As expected from

Figure 6.3 we can see that 2-fold classifiers took much less time than the 5-fold and

10-fold classifiers. Duration to obtain the classifier changes linearly. For the optimum

classifier, it can be seen that result was obtained in nearly 10-11 seconds.

During the performance evaluation accuracy value was used. But one should take fscore

and kappa into account also. To check whether these two parameters are consistent with

accuracy values, Figure 6.4 and Figure 6.5 can be checked.

For each vectorizer, k-fold and n-gram case best accuracy results can be seen from Fi-

gure 6.6. Count vectorizer outperforms other vectorizers for the majority of the cases.

Effect of the alpha parameter in optimal Naive Bayes classifier can be seen from Fi-

gure 6.7.

Figure 6.1: Naive Bayes alpha-accuracy graph for all tests.

36

Figure 6.2: Naive Bayes alpha-accuracy graph for each vectorizer.

Figure 6.3: Naive Bayes duration-accuracy graph for each vectorizer.

37

Figure 6.4: Naive Bayes fscore-accuracy graph for each vectorizer.

Figure 6.5: Naive Bayes kappa-accuracy graph for each vectorizer.

38

Figure 6.6: Naive Bayes best accuracy values for each vectorizer, k-fold and ngram case.

Figure 6.7: Naive Bayes alpha parameter for the optimal classifier.

39

6.3 Decision Trees

Decision Tree type classifier was tested with 387 tests. For these tests the maximum depth

of the trees, k-fold and existence of bigrams and trigrams changed. Count vectorizer was

analysed in 153 tests, Hashing vectorizer in 81 and Tfidf in 153 tests.

Top, middle and bottom 15 test cases can be seen in Table 6.5, Table 6.6 and Table 6.7.

In the top results, it is clear that Count vectorizer outperformed other two vectorizers. 10

K-fold became optimum for nearly every case. Adding unigrams and trigrams improved

accuracy results. Trees that have 1 level could not pass accuracy threshold of 0.19. Best

accuracy value obtained when Count Vectorizer was used with the maximum tree depth

of 50, 10 K-fold and trigrams. Mean accuracy for top 15 classifiers became 0.637. Also,

calculations took too much time where the mean duration for a decision tree classifier is

463 seconds with the standart error of 248 seconds.

Table 6.5: Decision Trees top 15 results.

Vect. Depth K-fold Ngram Acc. Prec. Recall F score Duration
(seconds)

CV 50 10 3 0.651 0.652 0.651 0.650 692.940
CV 90 10 3 0.649 0.649 0.649 0.648 674.500
CV 70 10 3 0.646 0.648 0.646 0.647 736.340
CV 90 10 2 0.646 0.646 0.646 0.646 311.660
CV 70 10 2 0.644 0.645 0.644 0.644 375.800
CV 50 10 2 0.642 0.645 0.642 0.643 349.300
CV 100 10 3 0.642 0.642 0.642 0.642 816.780
CV 100 10 2 0.641 0.640 0.641 0.640 369.500
CV 40 10 2 0.638 0.646 0.638 0.641 291.080
CV 40 10 3 0.632 0.639 0.632 0.634 758.200
CV 30 10 2 0.628 0.646 0.628 0.634 255.910
CV 100 10 1 0.626 0.628 0.626 0.626 41.150
CV 70 10 1 0.625 0.628 0.625 0.626 51.700
CV 30 10 3 0.624 0.645 0.624 0.630 725.640
Hash 70 10 2 0.623 0.625 0.623 0.624 505.210
mean - - - 0.637 0.642 0.637 0.638 463.714
std dev - - - 0.010 0.008 0.010 0.008 248.612

For the maximum depth range of 1 to 100, depth-accuracy results can be seen from Fi-

gure 6.8. Increasing depth improves accuracy results at the start, but performance change

becomes stable after 40 levels. For the decision trees, accuracy values do not change too

40

Table 6.6: Decision Trees middle 15 results.

Vect. Depth K-fold Ngram Acc. Prec. Recall F score Duration
(seconds)

CV 40 2 1 0.514 0.530 0.514 0.518 3.900
Tfidf 15 5 2 0.514 0.586 0.514 0.525 102.490
Tfidf 17 5 3 0.514 0.557 0.514 0.519 246.490
Hash 13 5 2 0.513 0.627 0.513 0.533 102.870
CV 20 2 2 0.513 0.575 0.513 0.526 23.280
Tfidf 15 10 2 0.513 0.593 0.513 0.523 263.370
Tfidf 40 2 2 0.512 0.517 0.512 0.513 37.510
Hash 13 10 2 0.512 0.653 0.512 0.538 236.600
Tfidf 17 10 3 0.510 0.552 0.510 0.518 444.670
Tfidf 19 10 3 0.510 0.540 0.510 0.516 647.890
Hash 13 10 1 0.509 0.611 0.509 0.529 181.320
CV 20 2 3 0.509 0.577 0.509 0.523 57.030
CV 11 10 2 0.509 0.657 0.509 0.541 178.000
Tfidf 50 2 3 0.507 0.508 0.507 0.506 61.110
Tfidf 15 5 3 0.507 0.570 0.507 0.514 203.400
mean - - - 0.511 0.577 0.511 0.523 185.995
std dev - - - 0.002 0.044 0.002 0.009 167.461

Table 6.7: Decision Trees bottom 15 results.

Vect. Depth K-fold Ngram Acc. Prec. Recall F score Duration
(seconds)

CV 1 5 2 0.196 0.097 0.196 0.104 42.120
Hash 1 10 1 0.196 0.095 0.196 0.104 37.610
Hash 1 5 2 0.196 0.095 0.196 0.103 28.660
Tfidf 1 10 1 0.196 0.094 0.196 0.103 10.090
Hash 1 5 1 0.195 0.096 0.195 0.103 16.130
Tfidf 1 5 1 0.195 0.095 0.195 0.103 7.160
Tfidf 1 2 3 0.183 0.156 0.183 0.107 16.800
Tfidf 1 2 2 0.181 0.165 0.181 0.107 6.690
Hash 1 2 3 0.177 0.172 0.177 0.104 14.090
Hash 1 2 1 0.177 0.182 0.177 0.104 6.120
Hash 1 2 2 0.177 0.173 0.177 0.104 17.170
CV 1 2 2 0.173 0.180 0.173 0.125 8.960
CV 1 2 3 0.173 0.180 0.173 0.125 52.800
CV 1 2 1 0.173 0.180 0.173 0.125 2.440
Tfidf 1 2 1 0.173 0.176 0.173 0.100 7.770
mean - - - 0.184 0.142 0.184 0.108 18.307
std dev - - - 0.010 0.039 0.010 0.009 14.579

much between the vectorizers, but count vectorizer can be seen as a better option regar-

ding Figure 6.9. Decision trees need too much computation time. In the worst case which

41

includes 10-fold, bigrams and trigrams, computation can take 250-300 seconds for each

classifier. Bar charts in Figure 6.11 show that increasing number of K-folds improves

accuracy nearly for all cases in Count vectorizer. Depth effect for the optimum decision

trees classifier was shown in Figure 6.12. Increasing its value up to 45-50 improves ac-

curacy, however, performance decrease starts after that level.

Figure 6.8: Decision Trees maximum depth-accuracy graph for all tests.

42

Figure 6.9: Decision Trees maximum depth-accuracy graph for each vectorizer.

Figure 6.10: Decision Trees duration-accuracy graph for each vectorizer.

43

Figure 6.11: Decision Trees best accuracy values for each vectorizer, k-fold and ngram
case.

Figure 6.12: Decision Trees maximum depth parameter for the optimal classifier.

44

6.4 Maximum Entropy

Maximum Entropy classifier was tested with 459 test cases. Count, Hash and Tfidf Vec-

torizers were used 180, 99 and 180 times respectively.

From all cases top, medium and bottom cases can be seen from Table 6.8, Table 6.9

and Table 6.10. Mean accuracy value for top 15 results is 0.886 and mean f-score is

0.886. Regardless of test case types computation time is high for nearly all of the cases.

A classifier can be obtained even in 500-750 seconds. Increasing K-fold from 2 to 5 or

from 5 to 10 increases computation time significantly. For the top 15 Maximum Entropy

classifier, average computation time is 377 seconds.

Table 6.8: Maximum Entropy top 15 results.

Vect. C K-fold Ngram Acc. Prec. Recall F score Duration
(seconds)

Tfidf 50 10 2 0.888 0.890 0.888 0.888 490.310
Tfidf 40 10 2 0.888 0.890 0.888 0.888 959.510
Tfidf 50 10 1 0.887 0.889 0.887 0.887 226.440
Tfidf 30 10 1 0.887 0.889 0.887 0.887 60.190
Tfidf 40 10 1 0.887 0.888 0.887 0.887 244.210
Tfidf 20 10 1 0.886 0.888 0.886 0.886 313.970
Tfidf 30 10 2 0.886 0.888 0.886 0.886 552.560
Tfidf 50 10 3 0.885 0.888 0.885 0.885 610.810
Tfidf 15 10 1 0.885 0.887 0.885 0.885 72.410
Tfidf 30 10 3 0.885 0.887 0.885 0.884 860.220
Tfidf 4.01 10 1 0.884 0.889 0.884 0.885 419.310
Tfidf 3.21 10 1 0.884 0.889 0.884 0.885 105.200
Tfidf 3.61 10 1 0.884 0.889 0.884 0.885 32.720
Tfidf 15 10 2 0.884 0.887 0.884 0.884 267.790
Tfidf 20 10 2 0.884 0.887 0.884 0.884 448.490
mean - - - 0.886 0.888 0.886 0.886 377.609
std dev - - - 0.001 0.001 0.001 0.001 273.227

Variation of C parameter versus accuracy for all cases can be seen from Figure 6.13.

Increasing C parameter improves accuracy for nearly every case. After a threshold, in-

creasing C does not change the performance of the classifier. As seen in Figure 6.14

vectorizer change does not differ the performance. However, Tfidf vectorizer seems to

be a better option for Maximum Entropy. For C parameter 50 would be an appropriate

45

Table 6.9: Maximum Entropy middle 15 results.

Vect. C K-fold Ngram Acc. Prec. Recall F score Duration
(seconds)

CV 30 5 2 0.864 0.866 0.864 0.864 486.900
Tfidf 2.01 5 3 0.864 0.872 0.864 0.864 383.870
Tfidf 1.61 5 3 0.864 0.873 0.864 0.864 259.420
CV 20 5 2 0.864 0.866 0.864 0.864 481.210
CV 50 10 1 0.864 0.864 0.864 0.864 379.210
CV 2.01 5 1 0.864 0.865 0.864 0.864 418.540
CV 2.41 5 1 0.864 0.865 0.864 0.864 122.160
Hash 20 5 3 0.864 0.866 0.864 0.863 248.390
Hash 4.01 10 3 0.863 0.869 0.863 0.864 823.420
Hash 4.81 5 1 0.863 0.866 0.863 0.863 235.930
CV 40 5 2 0.863 0.865 0.863 0.863 455.810
Hash 10 5 3 0.863 0.867 0.863 0.863 415.720
CV 2.81 5 1 0.863 0.865 0.863 0.863 90.270
CV 0.41 5 1 0.863 0.865 0.863 0.863 66.880
CV 20 5 3 0.863 0.865 0.863 0.863 734.400
mean - - - 0.864 0.867 0.864 0.864 373.475
std dev - - - 0.001 0.003 0.001 0.001 208.625

Table 6.10: Maximum Entropy bottom 15 results.

Vect. C K-fold Ngram Acc. Prec. Recall F score Duration
(seconds)

Tfidf 0.01 10 1 0.329 0.515 0.329 0.264 27.650
Tfidf 0.01 5 1 0.316 0.512 0.316 0.249 92.920
Hash 0.01 2 1 0.313 0.483 0.313 0.219 80.420
Hash 0.01 5 2 0.310 0.506 0.310 0.233 182.010
Hash 0.01 10 3 0.290 0.441 0.290 0.219 376.760
Tfidf 0.01 2 1 0.279 0.447 0.279 0.206 74.960
Hash 0.01 5 3 0.274 0.339 0.274 0.201 187.370
Hash 0.01 2 2 0.269 0.327 0.269 0.183 31.190
Hash 0.01 2 3 0.234 0.346 0.234 0.159 53.500
Tfidf 0.01 10 2 0.233 0.364 0.233 0.172 255.620
Tfidf 0.01 5 2 0.217 0.364 0.217 0.153 142.880
Tfidf 0.01 2 2 0.186 0.367 0.186 0.118 77.870
Tfidf 0.01 10 3 0.174 0.253 0.174 0.102 386.010
Tfidf 0.01 5 3 0.164 0.250 0.164 0.087 112.720
Tfidf 0.01 2 3 0.148 0.259 0.148 0.062 51.740
mean - - - 0.249 0.385 0.249 0.175 142.241
std dev - - - 0.058 0.091 0.058 0.059 112.018

value. It can be seen that accuracy does not change too much between 5 and 50 values of

C.

46

Figure 6.15 shows how the computation time is scattered. Although marginal values like

1000-1750 seconds exist, 200-300 seconds are very common for this type of classifier.

Optimal accuracy for each group can be seen from Figure 6.16. None of the group out-

performs other values. Obviously, increasing K-folds improves accuracy, adding bigram

and trigrams slightly improves or degrades performance. In the range of 0-50, change of

C parameter versus accuracy was plotted in Figure 6.17.

Figure 6.13: Maximum Entropy C-accuracy graph for all tests.

47

Figure 6.14: Maximum Entropy C-accuracy graph for each vectorizer.

Figure 6.15: Maximum Entropy duration-accuracy graph for each vectorizer.

48

Figure 6.16: Maximum Entropy best accuracy values for each vectorizer, k-fold and
ngram case.

Figure 6.17: Maximum Entropy C parameter for the optimal classifier.

49

6.5 Support Vector Machines

For the Support Vector Machines (SVM) 504 tests prepared. Count, Hash and Tfidf vec-

torizers were tested in 198, 108 and 198 cases respectively.

Top 15 results of SVM classifier shows that Tfidf vectorizer outperforms in nearly all

cases. Also 10 K-folds and bigrams exist in top SVM cases as seen in Table 6.8. Mean

accuracy value for top classifiers became 0.891 and f-score is 0.891. Average calculation

time is 238 seconds with standard error of 108 seconds.

Middle and bottom cases was shown in Table 6.9 and Table 6.10. Tfidf vectorizers also

exist in bottom results. Selecting an inappropriate C value creates a low performance

classifier.

Table 6.11: Support Vector Machines top 15 results.

Vect. C K-fold Ngram Acc. Prec. Recall F score Duration
(seconds)

Tfidf 10 10 2 0.893 0.894 0.893 0.892 453.870
Tfidf 5 10 2 0.892 0.894 0.892 0.892 286.500
Tfidf 4.76 10 2 0.892 0.893 0.892 0.891 213.490
Tfidf 3.76 10 2 0.892 0.893 0.892 0.891 156.010
Tfidf 3.51 10 2 0.892 0.893 0.892 0.891 170.330
Tfidf 3.26 10 2 0.892 0.893 0.892 0.891 204.100
Tfidf 4.01 10 2 0.892 0.893 0.892 0.891 253.770
Tfidf 2.01 10 2 0.891 0.893 0.891 0.891 143.960
Tfidf 3.01 10 2 0.891 0.893 0.891 0.891 200.100
Tfidf 4.26 10 2 0.891 0.893 0.891 0.891 205.300
Tfidf 4.51 10 2 0.891 0.893 0.891 0.891 198.120
Tfidf 2.26 10 2 0.891 0.893 0.891 0.890 162.120
Tfidf 2.76 10 2 0.891 0.893 0.891 0.890 174.710
Tfidf 2.51 10 2 0.891 0.893 0.891 0.890 211.910
Tfidf 4.51 10 3 0.889 0.891 0.889 0.889 540.760
mean - - - 0.891 0.893 0.891 0.891 238.337
std dev - - - 0.001 0.001 0.001 0.001 108.719

Tfidf vectorizer, unigram and bigram case outperforms in all variation of C except for the

values near to zero. As seen in Figure 6.18 changing C to values bigger than 3-4 does not

improve the accuracy drastically. For SVM classifier, Count Vectorizer performs different

behavior as seen in Figure 6.19. The increase in C value degrades accuracy at the start

and the performance stays stable. On the other hand, the increase in C for Tfidf and Hash

50

Table 6.12: Support Vector Machines middle 15 results.

Vect. C K-fold Ngram Acc. Prec. Recall F score Duration
(seconds)

CV 0.76 5 3 0.856 0.858 0.856 0.856 164.220
CV 0.51 5 2 0.856 0.857 0.856 0.856 70.920
CV 0.76 5 2 0.855 0.857 0.855 0.855 51.910
CV 1.26 5 3 0.854 0.857 0.854 0.855 165.410
CV 1.01 5 3 0.854 0.857 0.854 0.855 268.310
CV 1.01 5 2 0.854 0.856 0.854 0.855 94.130
CV 1.51 5 2 0.854 0.856 0.854 0.855 79.910
CV 1.51 5 3 0.854 0.857 0.854 0.854 258.340
CV 1.76 5 3 0.854 0.857 0.854 0.854 255.730
CV 1.76 5 2 0.854 0.856 0.854 0.854 108.260
CV 2.01 5 2 0.854 0.856 0.854 0.854 179.930
CV 2.51 5 2 0.854 0.856 0.854 0.854 105.150
CV 2.26 5 2 0.854 0.856 0.854 0.854 65.900
CV 2.76 5 2 0.854 0.856 0.854 0.854 89.130
CV 3.01 5 2 0.854 0.856 0.854 0.854 138.030
mean - - - 0.854 0.857 0.854 0.855 139.685
std dev - - - 0.001 0.001 0.001 0.001 70.823

Table 6.13: Support Vector Machines bottom 15 results.

Vect. C K-fold Ngram Acc. Prec. Recall F score Duration
(seconds)

CV 2.51 2 1 0.780 0.784 0.780 0.779 3.260
CV 2.76 2 1 0.780 0.783 0.780 0.778 9.440
Hash 0.01 5 2 0.769 0.819 0.769 0.763 38.420
Hash 0.01 10 3 0.757 0.817 0.757 0.747 89.830
Tfidf 0.01 10 2 0.750 0.824 0.750 0.737 91.480
Hash 0.01 2 1 0.743 0.791 0.743 0.736 5.220
Tfidf 0.01 2 1 0.741 0.815 0.741 0.731 2.690
Hash 0.01 5 3 0.733 0.808 0.733 0.722 46.050
Tfidf 0.01 5 2 0.727 0.817 0.727 0.711 38.930
Tfidf 0.01 10 3 0.712 0.766 0.712 0.693 227.210
Hash 0.01 2 2 0.695 0.787 0.695 0.683 10.850
Tfidf 0.01 5 3 0.685 0.760 0.685 0.664 79.930
Hash 0.01 2 3 0.652 0.741 0.652 0.635 14.320
Tfidf 0.01 2 2 0.648 0.753 0.648 0.623 9.610
Tfidf 0.01 2 3 0.593 0.747 0.593 0.559 32.820
mean - - - 0.718 0.787 0.718 0.704 46.671
std dev - - - 0.052 0.028 0.052 0.060 56.873

vectorizers makes the performance better. Additionally, the SVM classifiers need too

much computation time different from the Naive Bayes classifiers. For a top classifier

51

150-200 seconds are generally needed. Increasing K-fold value increases computation

time linearly, 100-150 seconds is generally sufficient as seen in Figure 6.20 except the 10

K-fold case.

Best SVM classifiers were obtained by using Tfidf vectorizers. From Figure 6.21 and

Figure 6.22 it can be seen that F-score and Kappa values have a good match with the

accuracy values. As seen in Figure 6.23 5 and 10 K-fold Tfidf vectorizers outperforms

nearly all other classifiers. For other groups, increasing K-fold values improved accuracy

in nearly all cases. C parameter was changed between 0-10 and its effect on optimum

SVM classifier was plotted in Figure 6.24.

Figure 6.18: Support Vector Machines C-accuracy graph for all tests.

52

Figure 6.19: Support Vector Machines C-accuracy graph for each vectorizer.

Figure 6.20: Support Vector Machines duration-accuracy graph for each vectorizer.

53

Figure 6.21: Support Vector Machines fscore-accuracy graph for each vectorizer.

Figure 6.22: Support Vector Machines kappa-accuracy graph for each vectorizer.

54

Figure 6.23: Support Vector Machines best accuracy values for each vectorizer, k-fold
and ngram case.

Figure 6.24: Support Vector Machines C parameter for the optimal classifier.

55

6.6 Comparative Analysis

In the previous sections, each analysis was done among the same type of classifiers. In

this section, a comparative analysis was done between different classifier types.

Table 6.14 shows a summary of the 1827 tests grouped by classifier type. Regarding ac-

curacy results, SVM gave average accuracy value of 0.849 when 504 SVM test analyzed.

Maximum Entropy became the second one with the average accuracy of 0.83. Decision

Tree and Naive Bayes had the accuracy of 0.481 and 0.775 respectively.

In case of the top 10 accuracy results of each classifier, SVM still becomes the best and

Decision Tree is the worst, while Maximum Entropy and Naive Bayes become second

and third methods. F-score values also well-matched with the accuracy order.

In terms of computation time the ranking changes. For Naive Bayes, average classifier

model was developed in 33.1 seconds for top 10 and in 33.5 seconds for all. SVM takes

the second rank in this criteria, the average of 228.7 seconds for top 10 and 106.9 seconds

for all SVM classifiers. Although accuracy and F-score values were very competitive for

Maximum Entropy, computation time is the longest. Approximately 439 seconds for a

top 10 classifier and 334 seconds are required for all Maximum Entropy classifiers.

Table 6.14: Main performance outputs for all classifiers.

Classifier Accuracy Precision Recall Fscore Duration
(seconds)

NB (Top 10) 0.873 0.876 0.873 0.873 33.1
NB (All) 0.775 0.817 0.775 0.762 33.5
DT (Top 10) 0.643 0.645 0.643 0.643 537.6
DT (All) 0.481 0.537 0.481 0.482 145.2
ME (Top 10) 0.886 0.888 0.886 0.886 439.1
ME (All) 0.83 0.841 0.83 0.826 334.1
SVM (Top 10) 0.892 0.893 0.892 0.891 228.7
SVM (All) 0.849 0.854 0.849 0.848 106.9

The comparison of the best classifier of each type can be seen from Table 6.15 which

was sorted by accuracy value. For all type of classifiers, 10 K-fold gave best results. This

strongly emphasizes the importance of the cross-validation while developing the classi-

fiers. Although, using unigrams was satisfactory for Naive Bayes, SVM and Maximum

56

Entropy performed better when bigrams were taken into account. On the other hand,

Decision Trees needed trigrams.

Table 6.15: Top results for each classifier.

Classifier Vect. Param K-fold Ngram Acc. F score Duration
(seconds)

SVM Tfidf C : 10 10 2 0.89286 0.89244 453.87
ME Tfidf C : 50 10 2 0.88820 0.88766 490.31
NB CV Alpha : 0.21 10 1 0.87422 0.87420 11.79
DT CV Depth : 50 10 3 0.65062 0.65050 692.94

Figure 6.25 shows Precision-recall graph for the best classifier of each type of classifier.

In nearly all cases SVM outperforms other models, whilst Decision Tree can not perform

enough to compete with others.

Figure 6.25: Precision-recall graph for top classifiers.

ROC curves of the best classifiers can be seen in Figure 6.26. Similar to precision-recall

graph SVM performs better.

Table 6.16 shows f1-scores for each class of the corpus. The Support column shows the

number of cases that the class exists in the test. Regarding SVM results cine (cinema)

and musica (music) topics were predicted with the f1-score of 0.88 and 0.86 respectively.

Worst results were obtained in case of recomendacion-literaria (literature) and biografia

57

Figure 6.26: Receiver Operating Characteristics (ROC) curve for top classifiers.

(biography) with the scores of 0.39 and 0.19 respectively. It is supposed that such a low

performance was based on the low number of texts in those categories.

Table 6.16: F1-scores of the best classifiers for each class.

Class NB DT ME SVM Support

a-donde-vamos 0.84 0.52 0.83 0.83 287
cine 0.87 0.79 0.9 0.9 231
deportes 0.92 0.63 0.9 0.9 216
economia 0.91 0.61 0.91 0.93 205
estilo 0.92 0.68 0.91 0.92 319
medio-ambiente 0.82 0.57 0.86 0.86 337
musica 0.83 0.67 0.87 0.88 124
recomendacion-literaria 0.88 0.73 0.93 0.93 272
salud 0.9 0.7 0.9 0.91 282
tecnologia 0.85 0.63 0.87 0.88 303

average (weighted) 0.87 0.65 0.89 0.89 -

Confusion matrices show correct and false prediction numbers for each class where dia-

gonals show correct predictions. Table 6.17, 6.18, 6.19 and 6.20 shows these matrices.

58

Table 6.17: Confusion matrix for Naive Bayes classifier.

ado cin dep eco est med mus rec sal tec

a-donde-vamos 227 3 2 5 4 25 1 10 0 10
cine 2 202 0 0 7 2 1 15 0 2
deportes 2 0 188 2 6 12 0 3 1 2
economia 2 0 0 189 1 3 0 0 2 8
estilo 4 5 1 2 294 3 1 4 2 3
medio-ambiente 9 1 0 4 2 296 2 4 15 4
musica 0 7 3 2 6 3 94 5 1 3
recom.-liter. 2 9 0 2 2 3 0 253 1 0
salud 1 1 0 1 0 14 1 1 257 6
tecnologia 4 4 0 4 0 20 3 5 11 252

Table 6.18: Confusion matrix for Decision Trees classifier.

ado cin dep eco est med mus rec sal tec

a-donde-vamos 148 7 25 13 14 36 5 13 4 22
cine 2 189 0 0 12 6 4 8 2 8
deportes 17 4 140 3 10 11 2 6 5 18
economia 22 1 8 121 10 9 1 3 2 28
estilo 15 14 13 14 212 11 8 9 8 15
medio-ambiente 36 6 9 19 12 188 4 6 39 18
musica 4 8 4 0 10 3 79 8 2 6
recom.-liter. 16 9 9 4 15 5 2 192 3 17
salud 12 1 11 5 5 38 1 3 193 13
tecnologia 12 9 12 12 7 17 6 7 14 207

Table 6.19: Confusion matrix for Maximum Entropy classifier.

ado cin dep eco est med mus rec sal tec

a-donde-vamos 226 5 4 3 7 29 1 6 2 4
cine 0 200 2 2 13 3 2 7 0 2
deportes 3 0 196 2 7 3 0 1 2 2
economia 5 0 0 188 2 2 0 0 2 6
estilo 3 1 2 3 302 0 0 1 4 3
medio-ambiente 12 0 1 0 1 298 0 0 20 5
musica 1 1 6 2 7 1 102 1 1 2
recom.-liter. 3 1 3 2 5 1 1 254 2 0
salud 0 0 1 1 1 4 1 1 271 2
tecnologia 4 5 4 3 1 18 3 1 13 251

59

Table 6.20: Confusion matrix for Support Vector Machines classifier.

ado cin dep eco est med mus rec sal tec

a-donde-vamos 228 4 5 2 6 29 1 6 2 4
cine 1 200 2 0 13 3 2 7 0 3
deportes 2 0 198 2 6 3 1 1 2 1
economia 5 0 0 189 3 2 0 0 3 3
estilo 3 1 2 2 303 0 0 1 4 3
medio-ambiente 14 0 1 1 0 297 1 0 19 4
musica 1 1 6 2 6 1 106 0 1 0
recom.-liter. 4 1 3 1 4 2 1 253 2 1
salud 0 0 1 1 1 4 1 1 272 1
tecnologia 4 5 4 3 1 14 4 1 13 254

7. CONCLUSION

In this thesis, a multiclass Spanish corpus was designed from electronic documents. The

machine learning classifiers were developed for topic classification through the created

corpus. Then, the sensitivity analysis was achieved by comparing several parameters ari-

sing from the structure of machine learning techniques.

Initially, electronic sources were searched and raw documents were gathered, due to the

absence of an appropriate and open source Spanish corpora for newspaper and magazine

articles. Different sources have different HTML formats for the documents, so each of the

sources was parsed due to its existing form. This process was done at different times, so

to increase practicality JSON files were formed and updated in each cycle. In the corpus,

documents were annotated to ten different topics like sports, economy, nature etc.

After the creation of raw documents, they were normalized to filter out unnecessary parts.

NLTK’s Spanish stemmers, tokenizers and stop words lists were used to complete this

setep. In order to use filtered texts in machine learning algorithms appropriate document

models were defined such as the bag of words, Tfidf, hash vectorizer. Additionally, three

different versions for each document model was created using unigrams, bigrams and

trigrams.

After the determination of appropriate classifiers, NLTK packages were started to design

the parameters on these classifiers. But after comparing it with Scikit’s classifier packages

it was seen that latter has advantages. It reduces the total time and the pipeline mechanism

makes vectorizer and classifier integration easier.

Prediction results were obtained from the Naive Bayes, Decision Trees, Maximum En-

tropy and Support Vector Machines classifiers. One of the main contributions of this

thesis is the sensitivity analysis of classifier parameters. Each parameter of the classifiers

was tested whether it has an important effect on accuracy and f-score. After having deter-

61

mined the most important parameters for each classifier, a raw test phase was run to deal

with the limit values. Moreover, test cases were designed to include 2, 5 and 10 K-fold

cross validation scenarios.

All test cases were designed and started along with the limit values. The total test num-

ber became 1827 which lasted in 77.6 hours, where each test took approximately 152

seconds. The sensitivity analysis phase made a positive impact on prediction accuracy

results between 2% and 16%. The final accuracy performance for the top two classi-

fiers became 89% and 88%. Even if the accuracy results were satisfactory, some of the

classifiers took too much time for computation. Consequently, it was seen that machine

learning methods give successful results for Spanish topic classification.

For the future work, ensemble learning methods can be used to design a voting classi-

fier, which combines similar on conceptually different machine learning classifiers. Also,

current corpus was developed iteratively but manually. A framework can be designed to

check existing sources for new articles and add them to existing corpus, or even search

for new sources and propose them to researchers. By the time passes new machine lear-

ning algorithms emerge or current ones are improved, so those methods can be used in

future studies.

REFERENCES

Anta, A. F., Chiroque, L. N., Morere, P. and Santos, A. (2013). Sentiment analysis and

topic detection of spanish tweets : A comparative study of of nlp techniques, Procesa-

miento del Lenguaje Natural 50(0) : 45–52.

Apté, C., Damerau, F. and Weiss, S. M. (1994). Automated learning of decision rules for

text categorization, ACM Trans. Inf. Syst. 12(3) : 233–251.

URL: http ://doi.acm.org/10.1145/183422.183423

Batista, F. and Ribeiro, R. (2013). Sentiment analysis and topic classification based on

binary maximum entropy classifiers, 50 : 77–84.

Berry, M. W. and Castellanos, M. (2008). Survey of text mining II, Vol. 6, Springer.

Carvalho, V. R. and Cohen, W. W. (2005). On the collective classification of email

"speech acts", Proceedings of the 28th Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, SIGIR ’05, ACM, New York,

NY, USA, pp. 345–352.

Cordobés, H., Anta, A. F., Chiroque, L. F., Pérez, F., Redondo, T. and Santos, A. (2014).

Graph-based techniques for topic classification of tweets in spanish, International

Journal of Interactive Multimedia and Artificial Intelligence 2(5) : 31–37.

Escudero, G., i Villodre, L. M. and Rigau, G. (2000). Naive bayes and exemplar-based

approaches to word sense disambiguation revisited, ECAI.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R. and Lin, C.-J. (2008). Liblinear : a

library for large linear classification, 9 : 1871–1874.

Fleischman, M., Kwon, N. and Hovy, E. (2003). Maximum entropy models for frame-

net classification, Proceedings of the 2003 Conference on Empirical Methods in Na-

tural Language Processing, EMNLP ’03, Association for Computational Linguistics,

Stroudsburg, PA, USA, pp. 49–56.

63

Frank, E. and Bouckaert, R. R. (2006). Naive bayes for text classification with unbalan-

ced classes, Proceedings of the 10th European Conference on Principle and Practice of

Knowledge Discovery in Databases, PKDD’06, Springer-Verlag, Berlin, Heidelberg,

pp. 503–510.

Gamallo, P. and Garcia, M. (2014). Citius : A naive-bayes strategy for sentiment analysis

on english tweets, Citius : A Naive-Bayes Strategy for Sentiment Analysis on English

Tweets, pp. 171–175.

Gamallo, P., Garcia, M. and Fernández-Lanza, S. (2013). TASS : a naive-bayes strategy

for sentiment analysis on spanish tweets, XXIX Congreso de la Sociedad Española

de Procesamiento de lenguaje natural. Workshop on Sentiment Analysis at SEPLN,

pp. 126–132.

Garreta, R., Moncecchi, G., Hauck, T. and Hackeling, G. (2017). scikit-learn : Machine

Learning Simplified : Implement scikit-learn into every step of the data science pipe-

line, Packt Publishing.

Gron, A. (2017). Hands-On Machine Learning with Scikit-Learn and TensorFlow :

Concepts, Tools, and Techniques to Build Intelligent Systems, 1st edn, O’Reilly Media,

Inc.

Joachims, T. (1998). Text categorization with support vector machines : Learning with

many relevant features, in C. Nédellec and C. Rouveirol (eds), Machine Learning :

ECML-98, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 137–142.

Juan, A. and Ney, H. (2002). Reversing and smoothing the multinomial naive bayes text

classifier, PRIS, pp. 200–212.

Kambhatla, N. (2004). Combining lexical, syntactic, and semantic features with maxi-

mum entropy models for extracting relations, Proceedings of the ACL 2004 on Inter-

active Poster and Demonstration Sessions, ACLdemo ’04, Association for Computa-

tional Linguistics, Stroudsburg, PA, USA.

Kim, S.-B., Han, K.-S., Rim, H.-C. and Myaeng, S. H. (2006). Some effective tech-

niques for naive bayes text classification, IEEE Transactions on Knowledge and Data

Engineering 18(11) : 1457–1466.

64

learn developers, S. (2017). Scikit learn user guide.

URL: http ://scikit-learn.org/stable/_downloads/scikit-learn-docs.pdf

Lewis, D. D. (1998). Naive (bayes) at forty : The independence assumption in informa-

tion retrieval, in C. Nédellec and C. Rouveirol (eds), Machine Learning : ECML-98,

Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 4–15.

Manning, C. D., Raghavan, P. and Schütze, H. (2008). Introduction to Information Re-

trieval, Cambridge University Press, New York, NY, USA.

Martínez-Cámara, E., Martín-Valdivia, M. T. and Ureña-López, L. A. (2011). Opinion

classification techniques applied to a spanish corpus, in R. Muñoz, A. Montoyo and

E. Métais (eds), Natural Language Processing and Information Systems, Springer Ber-

lin Heidelberg, Berlin, Heidelberg, pp. 169–176.

McCallum, A. and Nigam, K. (1998). A comparison of event models for naive Bayes text

classification, Learning for Text Categorization : Papers from the 1998 AAAI Work-

shop, pp. 41–48.

Mladenic, D. and Grobelnik, M. (1999). Feature selection for unbalanced class distribu-

tion and naive bayes, In Proceedings of the 16th International Conference on Machine

Learning (ICML, Morgan Kaufmann Publishers, pp. 258–267.

Mladenić, D. and Grobelnik, M. (2003). Feature selection on hierarchy of web docu-

ments, Decis. Support Syst. 35(1) : 45–87.

Osborne, M. (2002). Using maximum entropy for sentence extraction, Proceedings of

the ACL-02 Workshop on Automatic Summarization-Volume 4, Association for Com-

putational Linguistics, pp. 1–8.

Pla, F. and Hurtado, L.-F. (2017). Language identification of multilingual posts from

twitter : A case study, Knowl. Inf. Syst. 51(3) : 965–989.

Rokach, L. and Maimon, O. (2005). Top-down induction of decision trees classifiers -

a survey, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications

and Reviews) 35(4) : 476–487.

65

Saleh, M. R., Martín-Valdivia, M. T., Montejo-Ráez, A. and Ureña-López, L. (2011).

Experiments with svm to classify opinions in different domains, Expert Systems with

Applications 38(12) : 14799–14804.

Srivastava, A. N. and Sahami, M. (2009). Text mining : Classification, clustering, and

applications, CRC Press.

Vilares, D., Alonso, M. A. and Gómez-Rodríguez, C. (2015). A linguistic approach for

determining the topics of spanish twitter messages, Journal of Information Science

41(2) : 127–145.

Wang, S. and Manning, C. D. (2012). Baselines and bigrams : Simple, good sentiment

and topic classification, Proceedings of the 50th Annual Meeting of the Association for

Computational Linguistics : Short Papers-Volume 2, Association for Computational

Linguistics, pp. 90–94.

Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J.,

Ng, A., Liu, B., Yu, P. S., Zhou, Z.-H., Steinbach, M., Hand, D. J. and Steinberg,

D. (2008). Top 10 algorithms in data mining, Knowledge and Information Systems

14(1) : 1–37.

Zhang, H. (2004). The optimality of naive bayes, AA 1(2) : 3.

Zhang, M.-L., Peña, J. M. and Robles, V. (2009). Feature selection for multi-label naive

bayes classification, Information Sciences 179(19) : 3218 – 3229.

BIOGRAPHICAL SKETCH

Semuel Franko was born on 1981 in Istanbul, Turkey. After graduating from high school,

he began studying Mechanical Engineering at Istanbul University. He joined Computer

Engineering Master of Science programme of Galatasaray University in 2015. He studied

one year in Scientific Preparation class. After completing necessary courses he started his

Master of Science studies at the Galatasaray University.

PUBLICATIONS

— S. Franko and İ. B. Parlak, "A Comparative Approach for Multiclass Text Analy-

sis", 2018, 6th International Symposium on Digital Forensic and Security (ISDFS).

IEEE, 2018.

	LIST OF SYMBOLS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	RÉSUMÉ
	ÖZET
	Introduction
	Literature Review
	Methodology
	Text Classification
	Learning Machines
	Naïve Bayes
	Decision Trees
	Maximum Entropy
	Support Vector Machines

	Corpus Architecture
	Content of Spanish Corpus
	Processing of Spanish Corpus
	Implementation and Requirement for Software Technologies

	Evaluation Procedure
	Feature Extraction
	Design of Datasets
	Cross Validation and Evaluation
	Precision-Recall Curve
	ROC Curve
	Confusion Matrix
	Optimization

	Experiments and Results
	Test cases
	Naive Bayes
	Decision Trees
	Maximum Entropy
	Support Vector Machines
	Comparative Analysis

	Conclusion
	REFERENCES
	BIOGRAPHICAL SKETCH

