
MARKOV THEORY AND
OUTER AUTOMORPHISM OF PGL(2,Z)

(MARKOV TEORİSİ VE
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Abstract

The Markov numbers are positive integers that arise from the solutions of a special
Diophantine equation, called Markov equation. These numbers appear in the context of
continued fractions and so Diophantine approximation.The Lagrange number of the real
number α is defined as the supremum of real numbers ` such that |α− p/q|< 1/`q2 for
an infinite number of rationals p/q. The Lagrange spectrum is defined as the set of
Lagrange numbers of α ∈ R\Q .

Further, the solutions are related with the Lagrange-Markov spectrum which consists of
those quadratic numbers which are badly approximable by rational numbers. We focus
here on the set of irrationals α, called Markov irrationals, with L(α)< 3 such that
continued fraction expansion of such numbers is in the form [...,a1,a2,a3, ...] with
ai ∈ {1,2}. However, there is a fundamental involution Jimm of real line induced by the
outer automorphism of the extended modular group PGL(2,Z). Its action on the real
line, explicitly on continued fraction expansion, recently discovered.

In this dissertation, with the aim of finding relations on various parts of this work, we
consider to ask whether there is a classification related to Markov number or a special
property the set of image of Markov irrationals under the involution Jimm. Markov
numbers also appear in many parts of mathematics such as binary quadratic forms,
hyperbolic geometry and the combinatorial of words and we investigated analogous
problem in different topics.

Keywords: Continued fraction, Lagrange number, Diophantine approximation, Markov
equation, Markov number.



Özet

Markov sayıları, Markov denklemi adı verilen özel bir diyofant denklemin
çözümlerinden ortaya çıkan pozitif tamsayılardır. Bu sayıların sürekli kesirler ve
dolayısıyla diyofant yaklaşımı ile ilgisi vardır. Bir α reel sayısı için Lagrange sayısı,
|α− p/q|< 1/`q2 eşitsizliğini sonsuz sayıda rasyonel p/q sayı için sağlayan reel `
değerlerinin supremumu olarak tanımlanır. Ayrıca tüm α reel sayılarına ait Lagrange
sayılarının kümesine Lagrange spektrumu denir.

Dahası, Markov sayıları bazı kuadratik irrasyonellere ait Lagrange sayılarını içeren
Lagrange-Markov spektrumu ile ilgilidr. Bu çalışmada Lagrange sayıları 3’ten küçük
öyle ki sürekli kesir açılımları [...,a1,a2,a3, ...] , ai ∈ {1,2} formunda olan Markov
kuadratik irrasyonelleri kümesi üzerinde durulacaktır. Öte yandan, genişletilmiş modüler
grubun dış otomorfizminden kaynaklanan, reel sayıların Jimm adında temel bir
envolüsyonu vardır. Bu envolüsyonun reel sayılara diğer bir deyişle sürekli kesir
açılımlarına etkisi son zamanlarda keşfedilmiştir.

Bu tezde, çalışmanın çeşitli bölümleri arasında bağlantılar bulmayı amaçlayarak,
Markov irrasyonellerinin yukarıda bahsedilen Jimm envolüsyonu altında
görüntü kümesinin Markov sayılarına bağlı olarak bir sınıflandırmasının veya özgün bir
özelliğinin olup olmadığı araştırılmıştır. Markov sayıları ikili kuadratik formlar,
hiperbolik geometri ve kombinatuar gibi matematiğin bir çok alanında karşımıza çıkar.
Bu sebeple benzer sorular farklı alanlara taşınarak muhtemel sonuçlar tartışılmıştır.

Anahtar Sözcükler : Sürekli kesirler, Lagrange sayıları, diyofant yaklaşma, Markov
denklemi, Markov sayıları.



Chapter 1

Introduction

1.1 A Brief History of Rational Approximation

Every irrational number is the limit of a sequence of rational numbers since the density
of rational numbers in real numbers. Let us consider an example :

√
2 = 1,4142356237309504....

Since
√

2 is irrational, the decimal expansion does not stop so a sequence of rational
numbers that converges to

√
2 can be choosen as follows:

(1) (1,4) (1,41) (1,414) (1,4142) (1,41423) (1,414235) . . . (1.1)

As decimal representation of all the term of sequence terminates, we have a sequence of
rational numbers which converges to

√
2. Note that the distance between

√
2 and n-th

rational approximation is smaller than 101−n. If we want to find a good approximation,
we should choose n sufficiently large. But in this case, we may have:

√
2≈ 14142356237309504

10000000000000000
means denominators grow very fast. Thus, a natural question is: Can we find a good
approximation with smaller denominator ? Let us take another example,

√
2− 17

12
≈ 0,0024

On the other hand,

√
2− 141

100
≈ 0,0042
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This says that 17/12 is a better approximation than 141/100. In fact, we could choose
infinitely many rational numbers instead of 17/12 with comparatively small denominator
than rational numbers listed in 1.1.

How to find the good approximations? What about numbers like π or 3
√

2 ? We will try
to answer all the questions by general theory in this part. Before to give a classical
theorem in approximation theory, let us introduce a measure of approximation. Let α be
a real number and p/q with (p,q) = 1 be a rational then define:

µ := q|α− p
q
|= |qα− p|

Note that if p/q is a good approximation, then |α− p/q| is small and q is not so large.
Then quantity µ is small. Conversely, if µ is small then |α− p/q| is also small. So the
quantity µ gives us information about our approximation.

Theorem 1.1.1. (Dirichlet’s Theorem) [1, Chapter 1] Let α be an irrational and N ∈ N.
Then there exists infinitely many p/q rational with q≤ N such that

|qα− p|< 1
N

In particular,

|α− p
q
| ≤ 1

q2

Proof. Let α be an irrational and N be an integer. Consider N +1 numbers as:

α,2α,3α,4α, .....,(N +1)α

Choose integer part of kα as pk = bkαc hence we have 0≤ |kα− pk| ≤ 1 for
k ∈ {1,2, ...,N +1}. Let us distribute numbers between 0 and 1 in N distinct containers :

Put numbers between 0 and
1
N

, in 1st container.

Put numbers between
1
N

and
2
N

, in 2nd container.

...

Put numbers between
N−1

N
and

N
N

, in Nth container.

We have N +1 numbers between 0 and 1 and put them in N container. In this case, at
least one of these containers must contain at least two of these numbers by pigeonhole
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principle. Suppose that |kα− pk| and |lα− pl| are in same container then we have :

0 < |kα− pk− (lα− pl)|<
1
N

Let p = pk− pl and q = k− l, then |qα− p|< 1
N

which means |α− p
q
|< 1

qN
. Since k

and l are inferior to N +1, we have q≤ N so |α− p
q
| ≤ 1

q2 . As N is arbitrary, the

inequality |α− p
q
|< 1

qN
guarantees the existence of infinite number of distinct fractions

p
q

.

�

On the other hand, we say that a real number α can be approximated to order t if there
exist infinitely many p/q and a constant cα depending on α such that

|α− p
q
| ≤ cα

qt

It is clear that, for any α of order t, this inequality holds also for values smaller than t.
Hence the remarkable question : What is the possible highest order ? Before to give an
amazing result recall that a real number that is a root of a polynomial with integer
coefficients is called algebraic of degree d where d is smallest degree for which such a
polynomial exists. Now, we will see a relation between algebraic degree and order of
approximation with theorem proved by Liouville:

Theorem 1.1.2. (Liouville’s Theorem) [1, Chapter 1] Let α ∈ R be an algebraic of
degree d. Then there is a constant c > 0 such that

|α− p
q
|> c

qd for all
p
q
∈Q.

Proof. Let α ∈ R be an algebraic number of degree d and p/q ∈Q, p/q 6= α. Then
observe two cases :

• For d = 1, α is rational so α =
x
y

with x ∈ Z, y ∈ N∗. Then,

|α− p
q
|= |x

y
− p

q
|= |qx− py|

qy
≥ 1

qy

since qx− py 6= 0, c =
1
y

convient.
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• For d > 1: Let α be root of polynomial P(x) = a0 +a1x+a2x2 + ....+adxd where
P(α) = 0. Let β be real root different than α of P(x) which is closest to α with
|α−β|= δ. Consider interval (α−δ,α+δ). Let us now

p
q
∈Q arbitrary. Then we

have two cases:

X If |α− p
q
| ≥ δ, then we have |α− p

q
|> M

qd with M =
δ

2
.

X If |α− p
q
|< δ, then compute |P( p

q
)|:

( P(
p
q
) 6= 0 because we supposed that β is closest to α that is root of P(x) such that

|α−β|= δ.)

P(
p
q
)|= |a0qd +a1 pqd−1 + ....+ad pd|

qd ≥ 1
qd (1.2)

By intermediate value theorem, there exist ξ ∈ (α−δ,α+δ) such that

P( p
q )−P(α)

p
q −α

=
P( p

q )
p
q −α

= P′(ξ) 6= 0

where ξ ∈ (α,
p
q
). Hence, we obtain:

|α− p
q
|.|P′(ξ)|= |P( p

q
)| ≥ 1

qd

If we take K such that K > |P′(x)|, ∀x ∈ (α−δ,α+δ), then

|α− p
q
|> 1

Kqd

In conclusion, c = min(M,
1
K
) satisfies two cases.

�

It means that an algebraic number of degree d can be approximated to order at most d.
For instance, we can deduce by Dirichlet ’s and Liouville’s theorem that

i. If α can be approximated to every order n, it must be transcendental. In this case,
α is called well-approximable.

ii. If α can be approximated to order 1, then it must be rational.

iii. If α can be approximated to order greater than 1, then it must be irrational.
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The first observation allows us to construct many examples of transcendental numbers.
The second is already clear. For the last one, let us return to algebraic numbers of degree
d. Then the natural question is whether there is an order of approximation smaller than
d. The answer is found by Klaus Roth who was awarded Fields Medal in 1958. Roth’s
theorem states that every algebraic number α of any degree has approximation order 2.

Theorem 1.1.3. (Roth’s Theorem) [10, part D] Let α be an algebraic number. For any
ε > 0, there are only finitely many rational numbers p/q satisfying

|α− p
q
| ≤ 1

q2+ε

Proof. See [10, part D, p. 300].

It shows that the exponent 2 can not be improved when α is an algebraic number. Hence
we focus on all real numbers L > 0 such that

|α− p
q
| ≤ 1

Lq2

for infinitely many rational p/q.

Our aim is to determine the best constant L depending on α which is called Lagrange

number of α. Indeed, the main question is : Is there a connection between any given α

and its approximation constant ? The answer is found by A. A. Markov in 1879 and this
result connects very surprisingly approximation theory and a Diophantine equation we
will study in detail.



Chapter 2

Literature Review

Diophantine Analysis name is due to Greek mathematician Diophant of Alexandria in
the third century, is very old subject in mathematics; it relates the theory of Diophantine
approximations with the theory of Diophantine equations. Markov equation is one of the
interesting Diophantine equation and it occurred initially in Markov’s doctoral studies
about minima of quadratic forms in [11]. The solutions are related with the
Lagrange-Markov spectrum, which consists of those quadratic numbers which are badly
approximable by rational numbers. It can be find general Markov theory in [7].

The main idea of the Markov’s Theorem 3.1.3 comes from Dirichlet’s Theorem 1.1.1
proved by using pigeonhole principle. In fact, it is the first concrete application; so it is
also called Dirichlet principle. After some years, Liouville gives us a method to construct
the first concrete transcendental numbers by Liouville’s Theorem 1.1.2 in 1844. In the
same years, another important result was given by Hurwitz’s Theorem 2.1.4 which said
that
√

5 is best possible approximation constant. In 1873, A. Korkine and E.I. Zolotarev
proved that the first two Lagrange numbers are

√
5 and

√
8. All these works inspired

Frobenius and he introduced a problem which is open for more than 100 years, known as
the uniqueness conjecture for Markov numbers in 1913. Anyway the Conjecture has
been proved for certain classes of Markov numbers by A. Baragar (1996), P. Schmutz
(1996), J.O. Button (1998), M.L. Lang, S.P. Tan (2005), Y. Zhang (2006) [19].

Markov numbers occur also in other parts of mathematics, in particular free groups,
Fuchsian groups and hyperbolic Riemann surfaces and they were investigated by many
mathematicians as Ford, Lehner, Cohn, Rankin, Conway, Coxeter, Hirzebruch.
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2.1 Continued Fractions

History of continued fractions goes back to antiquity since it is closely related to Euclid
algorithm; the process of finding the continued fraction expansion of a real number is
exactly same with Euclid algorithm. More precisely, let us consider p,q ∈ Z>0 :

p = a0q+ r0 0 < r0 < q

q = a1r0 + r1 0 < r1 < r0

r0 = a2r1 + r2 0 < r2 < r1

...

rk−2 = akrk−1 0 = rk < rk−1 < · · ·< r0 < q

These equalities give :

p
q
= a0 +

r0

q
0 <

r0

q
< 1

= a0 +
1

q/r0
1 <

q
r0

< a1 +
r1

r0

= a0 +
1

a1 +
r1
r0

0 <
r1

r0
< 1

...

= a0 +
1

a1 +
1

. . . +
1

ak

This leads us to define a representation of a real number.

Definition 2.1.1. A real number α can be written in the form:

α = a0 +
1

a1 +
1

a2 +
1

a3 +
1
. . .

(2.1)

where ai ∈ Z, ai > 0 for i > 0 and this form is called simple continued fraction expansion
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of α and denoted by α = [a0,a1,a2, . . . ]. and the following continued fraction expansion

pn

qn
= [a0,a1,a2, . . . ,an]

is called n-th convergent of α.

Proposition 2.1.1. Let a0,a1,a2, ... be a sequence of positive real numbers. Let pn and
qn be defined as follows:

pn = an pn−1 + pn−2, p0 = a0, p−1 = 1 (2.2)

qn = anqn−1 +qn−2, q0 = 1, q−1 = 0 (2.3)

Then we have pn/qn = [a0,a1, ....,an] for all n.

Proof. We prove by induction:

X
p0

q0
= [a0]

X
p1

q1
=

a1 p0 + p−1

a1q0 +q−1
= a0 +

1
a1

= [a0,a1]

X Suppose that it is true for n−1 and consider :

a0 +
1

a1 +
1

. . .
1

an−1 +
1

an

Put a′n−1 = an−1 +
1
an

and obtain:

[a0,a1, ....,an] = [a0,a1, ....,an−2,a′n−1] = [a0,a1, ....,an−2,an−1 +
1
an

]

=
(an−1 +

1
an
)pn−2 + pn−3

(an−1 +
1
an
)qn−2 +qn−3

=
an(an−1 pn−2 + pn−3)+ pn−2

an(an−1qn−2 +qn−3)+qn−2

=
an pn−1 + pn−2

anqn−1 +qn−2
=

pn

qn

�
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Now we prove some useful facts about convergence.

Lemma 2.1.1. Let [a0,a1, . . . ] be a continued fraction expansion of a real number and
pn/qn = [a0,a1, . . . ,an] be the n-th convergent. Then we have:

i. pnqn−1− pn−1qn = (−1)n+1 where n≥ 0.

ii. gcd(pn,qn) = 1 where n≥ 0.

Proof. To see the first one, we use induction on n for the recurrence formula from
previous Proposition 2.1.1 then it is easily seen that we get(

a0 1
1 0

)(
a1 1
1 0

)
. . .

(
an 1
1 0

)
=

(
pn pn−1

qn qn−1

)

If we take determinants in two side we get desired result. The second can be deduced
from this by Bezout’s theorem .

�

It is clear that corresponding continued fraction expansion terminates if and only if
representing number is a rational number. And also rationals are not determined unique
way however every irrational has a uniquely determined continued fraction expansion.
On the other hand, a natural question is which irrational numbers have an eventually
periodic expansion. The answer is given by Lagrange:

Theorem 2.1.2. (Lagrange’s Theorem) An irrational number have an eventually periodic
continued fraction expansion if and only if it is a quadratic irrational.

Proof. [1, chapter 1, p. 15].

One of the famous theorem in Diophantine approximation theory gives us a connection
between continued fraction and rational approximation :

Theorem 2.1.3. (Legendre’s Theorem) [1, Chapter 1] Let α be an irrational number and
pn/qn be a convergent of α. If there exist p/q satisfying

|α− p
q
| ≤ 1

2q2

then p/q = pn/qn for some n.
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Proof. Suppose, by contradiction, that p/q is not a convergent of α with qn ≤ q < qn+1.
Then we have from Fact 1 in Appendix A :

qn ≤ q⇒ |qnα− pn| ≤ |qα− p|= |α− p
q
|q <

1
2q

|α− pn

qn
|< 1

2qqn

But, since
p
q
6= pn

qn
, we have |pqn−qpn| ≥ 1 which brings us to:

1
qqn
≤ |pqn−qpn|

qqn
= | p

q
− pn

qn
| ≤ |α− p

q
|+ |α− pn

qn
|< 1

2q2 +
1

2qqn

Then we obtain
1

qqn
<

1
q2 ⇐⇒ qn > q

which contradicts our hypothesis.

�

Our next theorem will show that we can do better :

Theorem 2.1.4. (Hurwitz’s Theorem)[1, Chapter 1] Let α be an irrational number. There
are infinitely many rational p/q such that

|α− p
q
| ≤ 1√

5q2

Proof. Let pn/qn be a convergent of α. It suffices to show that for all k positive, at least
one

p
q
∈ { pk−1

qk−1
,

pk

qk
,

pk+1

qk+1
}

satisfies
|α− p

q
|< 1√

5q2

Assume that pk−1/qk−1 et pk/qk does not satisfy this inequality and since α must be
between two consecutives convergents from Fact 2 in Appendix A, we have:

|α− pk−1

qk−1
|+ |α− pk

qk
|= | pk

qk
− pk−1

qk−1
|= 1

qkqk−1
≥ 1√

5q2
k−1

+
1√
5q2

k
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Then,
1≥ qk√

5qk−1
+

qk−1√
5qk
⇔ qk

qk−1
+

qk−1

qk
≤
√

5

from Lemma 1 in Appendix A we get

qk

qk−1
<

√
5+1
2

If |α− pk+1

qk+1
| ≥ 1√

5q2
k+1

is also true, then

qk+1

qk
<

√
5+1
2

with qk+1 = ak+1qk +qk−1, we conclude that:

√
5+1
2

>
qk+1

qk
= ak+1 +

qk−1

qk
≥ 1+

qk−1

qk
> 1+

√
5−1
2

=

√
5+1
2

,

which is contradiction.

�

2.2 Lagrange Spectrum

Recall that our aim is to find the best interval for a given irrational number. In other
words we want to determine the largest L for infinitely many p/q:

Definition 2.2.1. For a given α ∈ R, L(α) = supL over all L that satisfy for infinitely
many p/q ∈Q,

|α− p
q
| ≤ 1

Lq2

is said to be Lagrange number of α. The set of Lagrange number as α varies is called
Lagrange spectrum.

Legendre’s [1] and Hurwitz’s Theorem [1] guarante us all good approximations are
convergents

| α− pn

qn
|< 1√

5q2

which means it may be possible to compute Lagrange number of α bigger than
√

5 using
continued fraction expansion of α:
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Assume that α = [a0,a1,a2, . . . ] with α = [a0,a1,a2, . . . ,an,αn+1]. Proposition 2.1.1 tells
us that

|α− pn

qn
|= 1

qn(αn+1qn +qn−1)

=
1

q2
n(αn+1 +qn−1/qn)

=
1

(αn+1 +1/βn)q2
n

where αn+1 = [an+1,an+2, . . . ] and βn = qn/qn−1. Let us show that

βn =
qn

qn−1
= [an,an−1, . . . ,a1]

for all n≥ 1. We prove by induction on n. For n = 1, it is clear that βn = q1/q0 = a1.
Suppose it is true for n−1 then

βn =
qn

qn−1
=

anqn−1 +qn−2

qn−1
= an +

1
βn−1

(2.4)

= an +[0,an−1, . . . ,a1] (2.5)

= [an,an−1, . . . ,a1] (2.6)

as desired. Therefore we obtain

|α− pn

qn
|= 1

µn(α)q2
n

(2.7)

where
µn(α) := αn+1 +

1
βn

= [an+1,an+2, . . . ]+ [0,an−1, . . . ,a1] (2.8)

Consequently, one of the method to compute this number is following:

Proposition 2.2.1. With preceding notation, Lagrange number of α is

L(α) = lim
n→∞

sup([an+1,an+2, . . . ]+ [0,an, . . . ,a1])

Proof. Assume that K(α) := lim
n→∞

supλn(α). We want to show that L(α) = K(α). Let us

consider L >
√

5 such that |α− pn/qn|< 1/Lq2
n for all n ∈ N.

|α− pn

qn
|= 1

µn(α)qn2
<

1
Lq2

n
⇐⇒ µn(α)> L

Hence K(α) = lim
n→∞

supλn(α)≥ L(α). On the other hand, for all ε > 0, there exist
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infinitely n such that
µn(α)> K(α)− ε

which means

1
(K(α)− ε)q2

n
> |α− pn

qn
| =⇒ K(α)− ε≤ L(α) for all ε > 0

thus K(α)≤ L(α). In conclusion, we have K(α) = L(α).

�

Let us compute Lagrange numbers for some real numbers:

Example 2.2.1. Let α = [1,1,1,1, . . . ].

L(α) = lim
n→∞

sup([1,1,1, . . . ]+ [0,1,1, . . . ,1])

=
1+
√

5
2

+
2

1+
√

5
=
√

5

Thus,

L(
1+
√

5
2

) =
√

5

which means

|1+
√

5
2
− p

q
| ≤ 1√

5q2

holds for infinitely many rationals p/q and it is the best approximation.

Before to complete this part, we need to define an equivalence relation on irrational
numbers :

Definition 2.2.2. We say that α and β are equivalent if their continued fraction
expansions eventually coincide, that is

α = [a0,a1,a2, . . . ,γ] ∼ β = [b0,b1,b2, . . . ,γ]

Remark. If two continued fraction eventually coincide, then their Lagrange numbers
must be equal.

Proposition 2.2.2. Equivalent numbers have the same Lagrange numbers:

α∼ β =⇒ L(α) = L(β)
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Proof. We will see in the next chapter.

Attention. The converse is not always true. However, it is conjectured to be true under
some hypothesis.



Chapter 3

Markov’s Approximation Theory

A Diophantine equation is an equation with integers coefficients having only integer
solutions. The most famous example is of course Fermat’s equation:

xn + yn = zn (3.1)

This Diophantine equation has integer solutions known as pythagorean triples, for n = 2
by the work of Andrew Wiles in 1995, it has no integer solutions (x,y,z) with xyz 6= 0 for
n≥ 3. On the other hand, we know, by undecidability of Hilbert’s 10th problem, there is
no algorithm which for a given arbitrary Diophantine equation would tell whether the
equation has a solution or not.

3.1 Markov Numbers

In this part, we are interested in the Diophantine equation

x2 + y2 + z2 = 3xyz (3.2)

called Markov equation. This equation is the leading part the Markov theory and we will
find all solutions by a simple algorithm. For a moment, let us consider this Diophantine
equation as an algebraic variety V

V :=
{
(x,y,z) ∈ C3 : x2 + y2 + z2−3xyz = 0

}
and the surface defined by Markov equation has many automorphisms. It is not so
difficult to see that permutation of variables or change of signs is an automorphism of the
variety defined by this equation. Furthermore there is another automorphism which
produces all the integral solutions except (0,0,0). Let us see how we can find all



16

possible positive integer solutions of Markov equation. Assume that (m,m1,m2) be a
solution of this equation:

m2 +m2
1 +m2

2 = 3mm1m2

We get a quadratic equation in the third coordinate m of which we know a solution by
fixing two coordinates of this solution, say m1 and m2 so equation becomes

x2−3m1m2x+m2
1 +m2

2 = 0

has two solutions : m and m′ with

m+m′ = 3m1m2 & mm′ = m2
1 +m2

2

We have to verify that m′ is also a positive integer. The first equality shows us that m′ is
an integer because (m,m1,m2) is already a solution triple so that they are integers
furthermore m′ is positive by the second equality. Thus m′ = 3m1m2−m gives us another
solution triple

(3m1m2−m,m1,m2)

In conclusion, if we start with a solution (m,m1,m2) of the equation, we can extract three
other solutions

(m′ = 3m1m2−m,m1,m2) (m,m′1 = 3mm2−m1,m2) (m,m1,m′2 = 3mm1−m2)

of Markov equation by changing the role of mi above.

Definition 3.1.1. The solution (m1,m2,m3) ∈ N3 of the equation with mi 6= 0 for
i ∈ {1,2,3} are called Markov triples and each number mi is called Markov number.

It is easy to see that (1,1,1) is a Markov triple. All solutions can be generated from the
first triple by using previous algorithm, we will say two solutions are neighbors if they
share two components:

First solution (1,1,1) has only one neighbor : (1,2,1).

Second solution (1,2,1) has two neighbors: (1,1,1) and (1,5,2).

After (1,5,2) any other solution has exactly three neighbors.

The Markov triples are :

(1,1,1), (1,1,2), (1,2,5), (1,5,13), (2,5,29), . . .
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Hence, the set of Markov numbers is union of the solutions and denoted by M as
follows:

M =
{

1,2,5,13,29, . . .
}

(3.3)

To order all solutions derived from the first, take any Markov triple and write the
maximum in the middle

(m1,m,m2)

Then we can see easily

m′2 = 3m1m−m2 > m and m′1 = 3m2m−m1 > m (3.4)

It means that two of neighbors have larger maximum than the initial solution and the
third is smaller, namely m′, since it comes from the previous one:

m′2 > m′1 > m > m′ or m′1 > m′2 > m > m′ (3.5)

depending on which of m1 or m2 is larger. The recursive rule is following:

a,b,c

a,3ab− c,b b,3bc−a,c

Hence we can see all the solutions as a tree, namely Markov Tree,

(1,1,1)

(1,2,1)

(1,5,2)

(1,13,5)

(1,34,13)

(1,89,34) (34,1325,13) . . .

(13,194,5)

(5,29,2)

(5,433,29) (29,169,2)

(29,14701,169) (169,985,2)

Figure 3.1: Markov Tree
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Now we can show some properties of Markov numbers.

Proposition 3.1.1. There is no other solution (m1,m2,m3) containing repeated numbers
other than (1,1,1) and (1,2,1).

Proof. Suppose that m2 = m3 and Markov equation tells us that:

m2
1 +2m2

2 = 3m1m2
2

which means
m2 | m2

1⇒ m1 = bm2

where b is positive integer. We put it into Markov equation then we obtain:

(bm2)
2 +2m2

2 = 3bm2m2
2⇐⇒ b2 +2 = 3bm2

implies that
b | 2⇐⇒ b = 2 or b = 1

Therefore, if b = 1 we have m1 = m2 = m3 = 1 so (1,1,1) and otherwise if b = 2 then it
gives us triple (1,2,1).

�

(1,1,1) and (1,2,1) are called singular solutions and others are called nonsingular
solutions. In the above case, the smallest nonsingular solution is (1,5,2).

Theorem 3.1.1. Every Markov number appears as maximum for some Markov triple.

Proof. It is clear for singular solution. Suppose that m≥ 5 is one of the Markov number
in a nonsingular solution (m1,m2,m3) with m1 > m2 > m3.

X If m = m1, we are done .

X If m = m2, then m2 is the maximum of the smaller neighbor of (m1,m2,m3).

X If m = m3, going back in the tree, m3 eventually becomes largest after two next
step or m stays the smallest all the way. But in this case, if we continue up to
(1,5,2), then we conclude that m = 1 which contradicts with m≥ 5.

�
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Lemma 3.1.2. Any two Markov numbers in a Markov triple are relatively prime.

Proof. Obviously, it is true for (1,1,1),(1,2,1) and (1,5,2). If d is a divisor of, without
loss of generality , m1 and m2 then d must be divide also the third coordinate m3 since

m2
1 +m2

2 +m2
3 = 3m1m2m3 (3.6)

Going back in the tree, we will see that d divides 1,5 and 2 which are number of the
smallest nonsingular solution. It is equivalent to say d = 1. Thus any two Markov
numbers in a solution triple are relatively prime.

�

In the next section, we will see the main result in Markov’s 1880 paper [12]. For this, we
first define two characteristic numbers for a Markov triple:

Definition 3.1.2. Suppose (m,m2,m3) be a Markov triple with Markov number m such
that m≥ m1 , m≥ m2 .

i. Let u be the least positive residue of ±m1/m2 mod m. It is said to be the
characteristic number of (m,m2,m3).

ii. We define v by the following equation

u2 +1 = mv (3.7)

Let us compute characteristic number of some Markov triples.

Example 3.1.1. For (2,29,5), Markov number is 29 so the values u and v are as follows:

2x≡±5 mod 29⇒ x = 12 or x = 17

Since 12 < 29/2 the characteristic number u of 29 is 12. Thus:

122 =−1+29v⇒ v = 5

Let us see characteristic numbers and Markov numbers for the first fifteen Markov triples
in following table:
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Markov
number

u v

1 0 1

2 1 1

5 2 1

13 5 2

29 12 5

34 13 5

89 34 13

69 70 29

194 75 29

233 89 34

433 179 74

610 233 89

985 408 169

1325 507 194

1597 610 233

Table 3.1: Characteristic numbers of some Markov triples

3.1.1 From Markov Forms to Markov Theorem

A real quadratic form is a homogenous polynomial of degree 2 in two integer variables
as the form

f (x,y) = ax2 +bxy+ cy2 with a,b,c ∈ R (3.8)

If we complete the square to obtain:

4a f (x,y) = 4a2x2 +4abxy+4acy2 (3.9)

= (2ax+by)2 +4acy2−b2y2 (3.10)

= (2ax+by)2−Dy2 (3.11)

where D = b2−4ac discriminant of quadratic form. This value plays an important role
to determine the type of quadratic form:
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• If D < 0, the right hand side is always positive, so the sign of f (x,y) depends only
the sign of a so that this type is called definite form. In this case, when a > 0 we
say positive definite form and otherwise we say negative definite form.

• If D > 0, the quadratic form takes positive or negative values so we call indefinite

form.

Suppose that f is indefinite form with discriminant ∆. Let us define:

m( f ) := inf
{
| f (x,y) |: f (x,y) 6= 0,(x,y) ∈ Z2} (3.12)

Set

M( f ) =

√
∆

m( f )
(3.13)

which we call Markov constant.

Definition 3.1.3. The set

M=
{

M( f ) : f indefinite form
}

is called Markov spectrum.

Definition 3.1.4. Let (m,m2,m3) be a Markov triple with m≥ m2,m3 and u be the
characteristic number of m. Then Markov form fm(x,y) is defined as follows:

fm(x,y) = mx2 +(3m−2u)xy+(v−3u)y2

The discriminant of fm is:
∆( fm) = 9m2−4

By the theory of quadratic forms, we get also :

inf(| fm(x,y) |) = m

Hence, by previous construction, we get :

M( fm) =

√
9− 4

m2

As we see, M( fm) is always smaller than 3 and it is the limit point in the Markov
spectrum. These constants will play an important role in the next part and we denote it
by M∩ [0,3). See [11] for more details.
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Markov Triple Quadratic form fm(x,y) Markov constant M( fm)

(1,1,1) x2 + xy− y2
√

5 = 2,23606797 . . .

(1,2,1) 2x2 +4xy−2y2
√

8 = 2,82842712 . . .

(1,5,2) 5x2 +11xy−5y2
√

221/5 = 2,97321374 . . .

(1,13,5) 13x2 +29xy−13y2
√

1517/13 = 2,99605262 . . .

(2,29,5) 29x2 +63xy−31y2
√

7565/29 = 2,99920718 . . .

(1,34,13) 34x2 +76xy−34y2
√

2600/17 = 2,99942324 . . .

(1,89,34) 89x2 +199xy−89y2
√

71285/89 = 2,99991583 . . .

(2,169,29) 169x2 +367xy−181y2
√

257045/169 = 2,99997665 . . .

(5,194,13) 194x2 +432xy−196y2
√

338720/194 = 2,99998228 . . .

(1,233,89) 233x2 +521xy−233y2
√

488597/233 = 2,99998772 . . .

Table 3.2: Markov Triples, corresponding quadratic forms and Markov constants

Even if Markov spectrum and Lagrange spectrum seem to be very irrelavant each other,
they are closely related. We can see this relation by an analogy in two spectrum:
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Lagrange Spectrum Markov Spectrum

Let α,β and be two irrationals.
Then α∼ β if there is a matrix

A =

a b

c d

 ∈ GL2(Z)

such that α = A.β

i.e. α =
aβ+b
cβ+d

Equivalent numbers have the same
Lagrange numbers:

α∼ β =⇒ L(α) = L(β)

Let f and g be two quadratic forms.
Then f ∼ g if there is a matrix

A =

a b

c d

 ∈ GL2(Z)

such that g = A. f

i.e. g(x,y) = f (ax+by,cx+dy)

Equivalent forms have the same
m( f ) and ∆ so:

f ∼ g =⇒ M( f ) = M(g)

Markov proved in his famous paper [12] that every quadratic form f with M( f )< 3 is
equivalent to a Markov form fm(x,y) and then he proved that Lagrange and Markov
spectrum coincide up to 3 that is

M∩ [0,3) = L∩ [0,3)

as stated in the main theorem of Markov theory:

Theorem 3.1.3. (Markov’s Theorem) [1, Chapter 1]
Suppose M = {1,2,5,13,29,34, . . .} be the set of Markov numbers.

i. The Lagrange spectrum below 3 is given by the set

L<3 =

{√
9− 4

m2 : m ∈M
}

Also, there is an inequivalent sequence of quadratic irrationals such as

γm =
m+2u+

√
9m2−4

2m
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where u is the characteristic number of m and whose Lagrange numbers are

L(γm) =

√
9− 4

m2

ii. Conversely every α /∈Q with L(α)< 3 is of this form which means that α is
equivalent to exactly one γm with L(γm) as described above.

Proof. [1, chapter 9, p. 185].

To be more clear, take an example:

Example 3.1.2. Let us take (13,1,5) Markov triple. The characteristic numbers u and v

are 5 and 2 respectively. Thus, Markov form f13(x,y) is:

f13(x,y) = 13x2 +29xy−13y2

with discriminant ∆ = 1517. Hence

M( f13) =

√
1517
13

On the other hand, Markov theorem says that this number is the Lagrange number of
quadratic irrational γ13 :

L(γ13) =

√
9.132−4

13
=

√
1517
13

In fact this number shows that for any given quadratic irrational α, there is infinitely
many rational p/q such that

|α− p
q
| ≤ 13√

1517q2

Furthermore, there is no L superior to
√

1517/13 when α is equivalent to β as in
Proposition 2.2.2 where:

β =
23+

√
1517

26

3.1.2 Uniqueness Conjecture

Uniqueness of the Markov triples was a little hidden in Markov’s works [11], [12] and it
was the subject of a question asked from Frobenius in his treatise 1913 [9] and it is
known today as the uniqueness conjecture for Markov numbers. Despite the simplicity
of the statement, Cassels showed the depth and difficulty of this conjecture in [3], which
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made it famous. Several mathematicians [7], [6] have shown that this conjecture
branched out into several problems in number theory and Diophantine approximation.

Uniqueness Conjecture I. [1, Chapter 1] For a Markov number m > 2, there exists
exactly one pair (m1,m2) of positive integers with m > m1 > m2 such that

m2 +m2
1 +m2

2 = 3mm1m2

In other words, every Markov number appears exactly once as the maximum in a
Markov triple.

Uniqueness Conjecture II. [1, Chapter 1] Suppose that α and β are two irrational
numbers with L(α)< 3 and L(β)< 3. Then

L(α) = L(β) =⇒ α∼ β

Let us see these two conjectures are equivalent.

Proposition 3.1.2. Uniqueness Conjecture I and II are equivalent.

Proof. Assume that uniqueness of Markov numbers holds and let α and β be two
irrationals with L(α) = L(β)< 3. Markov theorem 3.1.3 says that there exists γr and γs

such that

α∼ γr and β∼ γs (3.14)

where r and s are two Markov numbers so they are maximum in the corresponding triple.
Since equivalent numbers have the same Lagrange number, we obtain

L(α) = L(γr) and L(β) = L(γs) (3.15)

By hypothesis, we know that L(α) = L(β) so we have also L(γr) = L(γs) that is

√
9r2−4

r
=

√
9s2−4

s
=⇒ r = s

Recall that γm depends on Markov number m and characteristic number u. Since
uniqueness property holds, there exist exactly one pair that determines characteristic
number of r = s. Therefore γr = γs and then we have

α∼ γr = γs ∼ β
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which implies that α∼ β.

Conversely, assume that uniqueness property does not hold. We have to show that there
exist two inequivalent numbers α and β with L(α) = L(β)< 3. Since uniqueness
assumption is false, there exist a Markov number r = s which is the maximum in two
different triples so there exist two different characteristic numbers ur and us

corresponding same Markov number. Markov theorem implies that

L(γr) = L(γs)< 3

and we can take α = γr and β = γs which are inequivalent.

�

Even if the uniqueness hypothesis can not be verified for almost 100 years, there is a lot
of work that shows the uniqueness of a certain Markov number.

3.2 Combinatorics of Markov Numbers

3.2.1 Farey index

It is well known that there is a method to produce all rationals between 0 and 1 by an
operation which is called Farey sum or the mediant of two rational numbers:

p
q
⊕ r

s
=

p+ r
q+ s

Now let us present the process of construction. We start by two rationals 0 and 1 so write
them in the first row

0
1

1
1

then copy the first row in the second by replacing their Farey sum between 0 and 1

0
1

1
1

0
1

1
2

1
1

and continue by the same rule, we rewrite (n−1)-th row in the n-th line by replacing
their Farey sum between two consecutive rationals. Thus, we get a piece of Farey table
as follows:
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0
1

1
2

1
1

0
1

1
3

1
2

2
3

1
1

0
1

1
4

1
3

2
5

1
2

3
5

2
3

2
4

1
1

Table 3.3: Farey Table

We will see that this table consists all rational numbers between 0 and 1. Let us now
prove some useful lemmas to see this fact.

Lemma 3.2.1. Let p/q be rational between 0 and 1.

i. Every row in Farey table arises a sequence strictly increasing from 0 to 1.

ii. Every fraction p/q is reduced in Farey table.

Proof. We prove the first assertion by induction. It is clear for the first row so assume
that is true for two consecutive numbers in some row p/q < r/s but then

p
q
<

r
s
⇔ ps < qr⇔ pq+ ps < pq+qr

⇔ p(q+ s)< q(p+ r)

⇔ p
q
<

p+ r
q+ s

on the other hand

p
q
<

r
s
⇔ ps < qr⇔ rs+ ps < rs+qr

⇔ s(p+ r)< r(q+ s)

⇔ p+ r
q+ s

<
r
s

hence we must have
p
q
<

p+q
r+ s

<
r
s

in the next row, as desired.
To prove second assertion, we claim that ps−qr = 1 where p/q and r/s be two
consecutive rationals in a Farey row. It is true for the first row so assume for n th row and
check for the next:

1 = ps−qr = pq+ ps− pq−qr = p(q+ s)−q(p+ r)
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It means that gcd(p+ r,q+ s) = 1 and do similar for the right hand side which completes
the proof.

�

In fact, Farey table can be seen as a binary tree produced by the following recursive rule

p
q
,
x
y
,
r
s

p
q
,

p+ x
q+ y

,
x
y

x
y
,
r+ x
s+ y

,
r
s

with starting triple (0
1 ,

1
2 ,

1
1) and every triple in a row is called the Farey triple. The

following binary tree is called Farey tree and denote it by TF :

(0
1 ,1

2 ,1
1 )

(0
1 ,1

3 ,1
2 )

(0
1 ,1

4 ,1
3 )

(0
1 ,1

5 ,1
4 ) (1

4 ,2
7 ,1

3 ) . . .

(1
3 ,2

5 ,1
2 )

(1
2 ,2

3 ,1
1 )

(1
2 ,3

5 ,2
3 ) (2

3 ,3
4 ,1

1 )

(2
3 ,5

7 ,3
4 ) (3

4 ,4
5 ,1

1 )

Figure 3.2: Farey Tree TF

Theorem 3.2.2. [1, Chapter 2] Farey tree contains all rational numbers t ∈ [0,1] and
every t 6= 0,1 is generated by a Farey sum exactly once.

Proof. See [1, chapter 2].

Now we have two combinatorically identical binary trees TF and TM . Hence each
Markov number can be indexed by a Farey rational that is

ı : Q∩ [0,1]→M
p
q
7→ m p

q

where the place of Markov number m in Markov tree is the same place corresponding
rational number p/q in Farey tree. Therefore uniqueness conjecture can be reformulated
as follows:

Uniqueness Conjecture III. [1, Chapter 2] The map ı : Q∩ [0,1]→M is injective.
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3.2.2 Cohn Matrices

Theorem 3.2.3. (Fricke Identity) [1, Chapter 2] Let A and B be matrices in SL(2,Z),
then

tr(A)2 + tr(B)2 + tr(AB)2 = tr(A) tr(B) tr(AB)+ tr(ABA−1B−1)+2

Proof. See [1, chapter 2].

Recall that a triple (m1/3,m2/3,m3/3) is a solution of Markov-like equation

x2 + y2 + z2 = xyz (3.16)

if and only if (m1,m2,m3) is a Markov triple. We would like to draw your attention to the
similarity between Fricke identity and Markov equation. Indeed there is one to one
correspondance between solutions of them when the last two terms of identity are
omitted so we can obtain Markov numbers from the trace of unimodular integral 2×2
matrices satisfying an elementary identity of Fricke. Harwey Cohn [5] , what he did is
exactly point out this coincidence of the solutions of two equations.

Corollary 3.2.4. Let A,B ∈ SL(2,Z) such that tr(A), tr(B) and tr(AB) are positive. Then

( tr(A)
3

,
tr(B)

3
,
tr(AB)

3

)
is a solution of Markov equation if and only if tr(ABA−1B−1) =−2.

Definition 3.2.1. Let mt be a Markov number and at ,ct be integers. A matrix in the
following term

Ct =

at mt

ct 3mt−at

 ∈ SL(2,Z)

is called Cohn matrix. A matrix triple (R,T,S) is said to be a Cohn triple if R,T and S

are Cohn matrices with T = RS and (mr,mt ,ms) Markov numbers where
r, t,s ∈Q∩ [0,1], t = r⊕ s associated respectively .

Theorem 3.2.5. [1, Chapter 2] Let (M,MN,N) be a Cohn triple associated with the
Markov triple (mr,mt ,ms) where t = r⊕ s. Then we have

M,MN,N

M,MN2,N MN,MN2,N
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where (M,M2N,MN) and (MN,MN2,N) is a Cohn triple associated with Markov
triples (mr,mr⊕t ,mt) and (mt ,mt⊕s,ms) respectively.

Proof. See [1, chapter 2].

This result gives the recursive rule for the construction of the Cohn tree denoted by TC .
In fact, there are infinitely many Cohn trees with starting triple depending on at and ct

which are integers. The natural question here is : Is it possible to classify all starting
Cohn triples ? The answer is as follows:

Theorem 3.2.6. [1, Chapter 2] All starting triples of Cohn matrices C0/1, C1/2 and C1/1

for m0/1 = 1, m1/2 = 5 and m1/1 = 2 are given by

C0/1 =

 a 1

3a−a2−1 3−a


,

C1/2 =

 5a+2 5

−5a2 +11a+5 13−5a

 and C1/1 =

 2a+1 2

−2a2 +4a+2 5−2a


Proof. See [1, chapter 2].

Note that the trace of Cohn matrices Ct , indexed by t ∈Q∩ [0,1] according their place in
Farey tree, depends on Markov number. Therefore the correspondance between Farey
tree and Markov tree allows us to say another version of uniqueness conjecture in this
context.

Uniqueness Conjecture IV. [1, Chapter 2] The matrices in the Cohn tree that arise from
any starting Cohn triple have different traces.

3.3 Geometry of Markov Numbers in Hyperbloic Plane

3.3.1 Uniqueness Conjecture in Hyperbolic Plane

Let us begin to define a special group which will play an important role in this part.

Definition 3.3.1. The set of invertible integral two-by-two matrices

GL(2,Z) :=
{a b

c d

 : a,b,c,d ∈ Z, ad−bc =±1
}
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form a group under the matrix product and it is called general linear group.

Proposition 3.3.1. The general linear group GL(2,Z) is generated by two matrices

T =

1 1

0 1

 and S =

0 1

1 0

 (3.17)

This group is closely related with continued fraction algorithm. Our interest is the action
on the left of this group on the complex plane C defined by

T̂ : GL(2,Z)×C−→ Ca b

c d

 ,z 7−→ T̂ (z) =
az+b
cz+d

Here, the maps T̂ is called fractional linear map and they form a group called projective

linear group denoted by PGL(2,Z) with composition as operation. We can deduce
immediately that T and −T represente the same transformation from the following
result:

Lemma 3.3.1. The map ϕ : GL(2,Z)→ PGL(2,Z) where ϕ(T ) = T̂ is a group
homomorphism with kernel {±I}. Therefore, PGL(2,Z)∼= GL(2,Z)/{±I}.

Recall from Section 2.2. that two irrational numbers are equivalent if their continued
fraction expansions eventually coincide. The previous lemma allows us to give an
alternative equivalence relation on irrational numbers.

Proposition 3.3.2. Let α and β be two irrational numbers. They are equivalent if and
only if T̂ (α) = β for some T ∈ GL(2,Z).

Proof. See [7, chapter 2].

It is possible to classify all matrices in the linear group hence in projective linear group
according to their trace. Look at the fixed points of the action on C̄= C∪{∞} that is
find the solutions of the equation

az+b
cz+d

= z

we obtain two solutions as fixed points

ζ1,ζ2 =
(a−d)±

√
(a+d)2−4

2c
=

(a−d)±
√
(trT )2−4

2c
(3.18)
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Remark that T and−T represente same transformation so we may assume that tr(T )≥ 0.

• If tr(T )< 2, then ζ1 and ζ2 are conjugate complex numbers and T is called elliptic.

• If tr(T ) = 2, then the map has only one fixed point which is rational (a−d)/2c

and T is called parabolic.

• If tr(T )> 2, then ζ1 and ζ2 are conjugate quadratic irrationals and T is called
hyperbolic.

The last is the interesting case for our purposes. Let (mr,mt ,ms) be a Markov triple with
Markov number mt . Recall that, for a ∈ Z, t ∈Q∩ [0,1], we have :

Ct(a) =

 amt +ut mt

(3a−a2)mt− (2a−3)ut− vt (3−a)mt−ut


where ut and vt characteristic numbers of mt . For any given a ∈ Z, there is a starting
triple and therefore a Cohn tree TC (a) arising from this triple. Note that the matrices
Ct(a) are distinct in the TC (a) for every a ∈ Z. Let us consider Bt as transpose of Ct(2)
that is

Bt =

2mt +ut 2mt−ut− vt

mt mt−ut

 ∈ SL(2,Z)

Note that tr(T ) = 3mt > 2 since mt ∈ {1,2,5,13,29, . . .} and fixed points can be obtain
from quadratic equation

(2mt +ut)x+2mt−ut− vt

mtx+mt−ut
= x

with discriminant ∆ = 9m2
t −4 hence fixed points of the map Bt

γt ,γ
′
t =

mt +2ut±
√

9m2
t −4

2mt

Proposition 3.3.3. Let γt ,γ
′
t be Markov quadratic irrational as defined above. They are

SL(2,Z)-equivalent; there is a matrix T ∈ SL(2,Z) such that T (γt) = γ
′
t . Thus, we have

L(γt) = L(γ
′
t).

Proof. See [1, chapter 2].
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Our aim is to introduce a connection between geodesics and the Lagrange spectrum.
Now we come to the the main result:

Theorem 3.3.2. [1, Chapter 3] Let T ∈ Γ(3) be hyperbolic with fixed points ζT and ζ
′
T .

The projection π(AT ) is simple if and only if the Lagrange numbers L(ζT )< 3 and
L(ζ

′
T )< 3.

Proof. See [1, chapter 2].

Markov’s Theorem says that every irrational α /∈Q with L(α)< 3 is equivalent to some
γt hence α′ to γ

′
t . Hence we get

L(α) = L(γt) and L(α′) = L(γ
′
t)

Consequently the result in the previous Proposition 3.3.3 becomes the following:

Corollary 3.3.3. Let T ∈ Γ(3) be hyperbolic with fixed points ζT and ζ
′
T . The projection

π(AT ) is simple if and only if the Lagrange numbers L(ζT ) = L(ζ
′
T )< 3.

Proposition 3.3.4. Let A be axis of a hyperbolic map T ∈ Γ(3) whose projection
Π = π(A) ∈H/Γ(3) is a simple closed geodesic. The length of Π is given by

`(Π) = 2log
t +
√

t2−4
2

(3.19)

where t = tr(B) is the trace of a primitive matrix B with axis A.

Note that primitve matrices have the same trace so the length of simple closed geodesic
is well defined. Now return to the group Γ(3) ; we denote the axis of Bt by At .

Lemma 3.3.4. Bt is primitive for the stabilizer of the axis At .

Proof. See [1, chapter 2].

Remark that Bt is not in Γ(3) because of 3 - m however B2
t is in Γ(3)

Bt(3) = B2
t =

6m2
t +3mtut−1 6m2

t −3mtut−3mtvt

3m2
t 3m2

t −3mtut−1

 ∈ Γ(3) (3.20)

thus Bt(3) is a primitive map with axis At and

tr(Bt(3)) = 9m2
t −2 (3.21)
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by previous Proposition 3.3.4 the length of Πt = π(At) is given by

`(Πt) = 2log
9m2

t −2+3mt
√

(9m2
t −4)

2
(3.22)

In conclusion, we notice that the length of Πt surprisingly depends only on the Markov
number mt . Let us define an equivalence relation on two simple closed geodesic.

Definition 3.3.2. Let Π and Π̂ be two simple closed geodesics. We say that Π and Π̂ are
equivalent if there is an automorphism σ such that σ(Π) = Π̂.

It is clear that equivalent geodesics have the same length but the converse is not always
true.

Proposition 3.3.5. Two simple closed geodesics Π and Π̂ on H/Γ(3) of the same length
are equivalent if and only if the uniqueness conjecture is true.

Proof. Let us take two simple closed geodesics Π and Π̂ on H/Γ(3) of the same length

`(Π) = `(Π̂) (3.23)

Then we have Π = π(A) with fixed points ζ and ζ′ such that L(ζ) = L(ζ′)< 3. Markov’s
Theorem tells us that there exists quadratic irrationals γt and its conjugate γ

′
t such that

ζ∼ γt and ζ′ ∼ γ
′
t for some t ∈Q∩ [0,1]. It follows that R(A) = At for some

R ∈ GL(2,Z) which means Π(A) and Π(At) are equivalent. Furthermore, equivalent
geodesic have the same length that is `(Π) = `(Πt). Similarly, we can deduce also
`(Π̂) = `(Πt̂). By hypothesis, we conclude that

`(Πt) = `(Πt̂) (3.24)

which depend only on the Markov numbers. Hence mt = mt̂ as indicated in the
conjecture. Suppose now the uniqueness conjecture is true, then A and Â and so their
projection Π and Π̂ on H/Γ(3) are connected by an automorphism. Because if not, there
are two Markov numbers mt and mt̂ with t 6= t̂. In this case, γt and γt̂ are not equivalents
and it is equivalent to say there is no map carrying Π onto Π̂.

�

It is a new reformulation of the uniqueness conjecture.

Uniqueness Conjecture V. [1, Chapter 3] Two simple closed geodesics Π and Π̂ on
H/Γ(3) of the same length are equivalent.
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Outer Automorphism of PGL(2,Z)

4.1 Functional Equations

In this part, we will introduce two functional equations and our aim is to find two
functions that arise from these equations. The first one is as follows:

g(x+1) = g(x)+g(
1
x
)

g(x) = g(
x

x+1
)

(4.1)

Can we find such a function g ? Let us take some numerical examples for natural
numbers, x ∈ N∗:

g(2) = g(1)+g(1) = 2g(1)

g(3) = g(2)+g(1/2) = 2g(1)+g(1/2)

g(4) = g(3)+g(1/3) = 2g(1)+g(1/2)+g(1/3)
...

g(n+1) = 2g(1)+g(1/2)+g(1/3)+ · · ·+g(1/n)

Remark that we have g(1/n) = g(1/(n+1)) for every n ∈ N∗ by the second equality of
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the functional equation. So we obtain

g(2) = 2g(1)

g(3) = 3g(1)

g(4) = 4g(1)
...

g(n+1) = (n+1)g(1)

It means that it suffices to say g(1) to determine image of all the values of N∗. For
example, choosing g(1) = 1, we obtain identity map of N∗:

g : N∗→ N∗

n 7→ n

Now, we ask same question to find a function which is defined on positive rational
numbers satisfying the same functional equation, let us choose x = p/q ∈Q>0 and by
the second equality, observe that

g(p/q) = g(p/(p+q)) = g(p/(2p+q)) = · · ·= g(p/(np+q)) = . . .

On the other hand, we have

g(
p+q

p+mq
) = g(

p
np+q

)+g(
q

p+ rq
) (4.2)

where m,n,r ∈ N∗. Hence, we infer that the value g(p/q) does not depend on the
denominator. For any p/q ∈Q>0 and a,b,c ∈ N∗,

g(
p+q

a
) = g(

p
b
)+g(

q
c
) (4.3)

Thus, we can see easily following function which we call numerator function is one of
the functions satisfiying functional equation of g:

num : Q>0→ N∗

p/q 7→ p

Further if we suppose num(−p/q) =−num(p/q) where p ∈ Z , q ∈ Z>0, we can extend
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it to all rational numbers, that is

num : Q→ Z

p/q 7→ p

In a similar way, we try to determine a function f such that
f (x+1) = f (x)+ f (

1
x
)

f (x) = f (
1

x+1
)

(4.4)

Take x ∈ N∗ ,

f (2) = f (1)+ f (1) = 2 f (1)

f (3) = f (2)+ f (1/2) = f (2)+ f (1) = 3 f (1)

f (4) = f (3)+ f (1/3) = f (3)+ f (2) = 5 f (1)

f (5) = f (4)+ f (1/4) = f (4)+ f (3) = 8 f (1)
...

f (n) = Fn+1 f (1)

where Fn is nth Fibonacci number. Hence, the function f from natural numbers depends
only on the choice of f (1). If we choose f (1) = 1, we get

f : N∗→ N∗

n 7→ Fn+1

Is it possible to extend this function to rational numbers ? The answer is given by the
following lemma:

Lemma 4.1.1. For all x ∈Q>0 and n ∈ N, we have

f (n+ x) = Fn+1 f (x)+Fn f (1/x)

where Fn is nth Fibonacci number.

Proof. We prove by induction. It is obvious for n = 0 and n = 1. Assume that it is true
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for n then we prove for n+1

f (n+1+ x) = Fn+1 f (1+ x)+Fn f (1/1+ x)

= Fn+1( f (x)+ f (1/x))+Fn f (x)

= (Fn+1 +Fn) f (x)+Fn+1 f (1/x)

= Fn+2 f (x)+Fn+1 f (1/x)

as desired.

�

It means that for any positive rational number x, we can reduce the value of f (x) into
some multiple of f (1) which is determined only by the Fibonnacci numbers by applying
this Lemma 4.1.1. For example, let us find f (5/3):

f (5/3) = f (1+2/3)

= F1 f (2/3)+F2 f (3/2)

= F1 f (1/2)+F2 f (1+1/2)

= F1 f (1)+F2(F1 f (1/2)+F2 f (2))

= F1 f (1)+F2(F1 f (1)+F2F3 f (1))

= (F1 +F2F1 +F2
2 F3) f (1)

= 4 f (1)

We call this extension conumerator function and denoted by con(x). Now we will see
interesting relations between these two functions satisfying functional equations:

Proposition 4.1.1. Let f and g be satisfied two functional equations as defined above.
Then

i. f

(
f (x)

f (1/x)

)
= g(x)

ii. g

(
f (x)

f (1/x)

)
= f (x)

Proof. To see these, it suffices to show that functions left hand side satisfy functional
equations of numerator function and conumerator function respectively. We can see
eaisly by using functional equations of f and g:
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i.

g(x+1) = f

(
f (x+1)

f (1/(x+1))

)
= f

(
f (x)+ f (1/x)

f (x)

)

= f

(
1+

f (1/x)
f (x)

)

= f

(
f (1/x)
f (x)

)
+ f

(
f (x)

f (1/x)

)
= g(x)+g(1/x)

And also,

g(x/(x+1)) = f

(
f (x/(x+1))
f ((x+1)/x)

)
= f

(
f (x/(x+1))
f (1+1/x)

)

= f

(
f (1/x)

f (1/x)+ f (x)

)

= f

(
1

f (1/x)+ f (x)
f (1/x)

)

= f

(
1

1+ f (x)
f (1/x)

)

= f

(
f (x)

f (1/x)

)
= g(x)

ii.

f (x+1) = g

(
f (x+1)

f (1/(x+1))

)
= g

(
f (x)+ f (1/x)

f (x)

)

= g

(
1+

f (1/x)
f (x)

)

= g

(
f (1/x)
f (x)

)
+g

(
f (x)

f (1/x)

)
= f (x)+ f (1/x)
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And also,

f (1/(x+1)) = g

(
f (1/(x+1))

f (x+1)

)
= g

(
f (x)

f (x)+ f (1/x)

)

= g

(
1

f (1/x)+ f (x)
f (x)

)

= g

(
1

1+ f (1/x)
f (x)

)

= g

(
f (x)

f (1/x)

)
= f (x)

�

Indeed, we have

con

(
con(x)

con(1/x)

)
= num(x)

and

num

(
con(x)

con(1/x)

)
= con(x)

Because of the last functional relation between numerator and conumerator, we can
extend conumerator function to all rational numbers by

con(−x) =−con(1/x)

Now define a new function which we call Jimm and denote it by J(x) :

J(x) := con(x)/con(1/x)

In fact this function can be defined on real numbers, we will see how it is possible in the
next part.

4.2 An involution Jimm on the Real Line

We will see some properties of Jimm such as continuity on irrationals and certain
equations by the following lemma:
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Lemma 4.2.1. Let J(x) = con(x)/con(1/x). Then we have,

i. J(J(x)) = x

ii. J(1/x) = 1/J(x)

iii. J(1+ x) = 1+1/J(x)

for all x ∈ R\Q.

Proof. Recall that conumerator function satisfies functional equation 4.4

i. To show first property,

J(J(x)) =

con

(
con(x)

con(1/x)

)

con

(
con(1/x)
con(x)

) =
num(x)

num(1/x)
= x

Hence, we can say Jimm is an involution.

ii. The second is immediately obvious,

J(1/x) = con(1/x)/con(x) = 1/(con(x)/con(1/x)) = 1/J(x)

iii. By using functional equation of conumerator 4.4 we get,

J(1+ x) = con(x+1)/con(1/x+1) = (con(x)+ con(1/x))/con(x)

= 1+ con(1/x)/con(x)

= 1+1/J(x)

�

Even if Jimm is derived from conumerator function, it is more interesting because it can
be defined on real numbers. Now, by using these two functional equations of Jimm:

J(1+ x) = 1+1/J(x) & J(1/x) = 1/J(x) (4.5)
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Let us compute the image of a continued fraction expansion of a real number
[a0,a1,a2, . . . ] under Jimm involution :

J([a0,a1,a2,a3, . . . ]) = J(1+[a0−1,a1,a2,a3, . . . ])

= 1+
1

J([a0−1,a1,a2,a3, . . . ])

= 1+
1

1+
1

J([a0−2,a1,a3, . . . ])

= 1+
1

1+
1

. . . 1+
1

J([0,a1,a3, . . . ])

= 1+
1

1+
1

. . . 1+
1

1+ J([a1,a2,a3, . . . ])

= 1+
1

1+
1

. . . 1+
1

2+
1

J([a1−1,a2,a3, . . . ])

= [1,1,1, . . . ,1︸ ︷︷ ︸
a0−1 times

,2,J([a1−1,a2,a3, . . . ])]

...

= [1,1,1, . . . ,1︸ ︷︷ ︸
a0−1 times

,2,1,1,1, . . . ,1︸ ︷︷ ︸
a1−2 times

,2,1,1,1, . . . ,1︸ ︷︷ ︸
a2−2 times

,2,1,1, . . . ]

Definition 4.2.1. Let [a0,a1,a2,a3, . . . ] be a continued fraction expansion of a real
number. Then Jimm is defined on real numbers as follows:

J : [a0,a1,a2,a3, . . . ]−→ [1a0−1,2,1a1−2,2,1a2−2,2, . . . ]
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with these two rules:

[. . . ,a,10,b, . . . ] := [. . . ,a,b, . . . ]

[. . . ,a,1−1,b, . . . ] := [. . . ,a+b−1, . . . ]

where 1k represents sequence 1,1, . . . ,1 of length k.

Example 4.2.1. Let us compute Jimm of some continued fractions :

1. J([1,1,1, . . . ]) = ∞

2. J([2,2,2, . . . ])) = [1,2,2,2, . . . ]

3. J([n,n,n, . . . ]) = [1n−1,2,1n−2]

4. J([2,2,1,1]) = [1,2,4]

5. J([2,2,1,1,1,1]) = [1,2,6]

6. J([2,2,2,2,1,1]) = [1,2,2,2,4]

Proposition 4.2.1. Jimm sends the set of quadratic irrational numbers to itself.

Proof. An infinite continued fraction is eventually periodic if and only if it represents
quadratic irrational. It is clear that Jimm preserves the set of irrationals having periodic
continued fraction expansion, so we are done.

�

Since all Markov irrationals are quadratic, their images under Jimm are also quadratic by
this proposition. Let us find images of continued fraction expansion of some Markov
irrationals:
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Markov number Continued Fraction of γm Continued Fraction of J(γm)

1 [1̄] ∞

2 [2̄] [1,2]

5 [22,12] [1,2,4]

13 [22,14] [1,2,6]

29 [24,12] [1,23,4]

34 [22,16] [1,2,8]

89 [22,18] [1,2,10]

169 [26,12] [1,25,4]

194 [22,12,22,14] [1,2,4,2,6]

233 [22,110] [1,2,12]

433 [23,12,22,12] [1,22,4,2,4]

610 [24,12,22,12] [1,23,4,2,4]

985 [28,12] [1,27,4]

1325 [22,14,22,16] [1,2,6,2,8]

1597 [22,114] [1,2,16]

Table 4.1: Continued fraction expansion of image some γm under Jimm.

It may be interesting also to see Jimm of Markov irrationals as quadratic form.We know
that it can be obtained of course from the limit of convergents of contiued fraction
expansion but we will present a nice way to find them in next section.



Chapter 5

Conclusion

This thesis consists of two main parts. The first is about Diophantine approximation
theory via Markov equation and the second part is about a fundamental involution of real
line induced by the outer automorphism of the extended modular group PGL(2,Z). Our
aim was to find possible relation between them. In the first part, we introduced the
general theory of Markov including Markov numbers arised from Markov Diophantine
equation and presented the five different reformulation of Uniqueness conjecture in
different context such as hyperbolic geometry and combinatorics.

During this period, we studied several questions in relation with different topics. For
example, since conumerator function is defined on rational numbers, we thought that it
may be interesting to study image of the some branches of Farey tree under conumerator
function because Farey numbers are in relation with uniqueness of Markov numbers.
And also a fundamental involution of real line called Jimm induced by the outer
automorphism of the extended modular group PGL(2,Z) which is recently discovered
inspired us that the effect of Jimm on the Markov quadratic irrationals suggests that this
involution must play a role in Markov’s theory. Finally, we found a method to find
directly the quadratic form of the image of Markov quadratics and then we proved an
interesting result on the subset of the image of Markov quadratic irrationals in relation
with Fibonacci numbers under Jimm by using a method coming from geometry of
Markov numbers.

5.1 Jimm of Markov Irrationals

General functional equation is

J(Mx) = J(M)J(x) for all M ∈ PGL2(Z) (5.1)

45
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Here, J(M) is the image of M under Dyer’s automorphism of PGL2(Z) :

J : PGL2(Z)→ PGL2(Z)

M =

p q

r s

 7→ J(M) =

a b

c d


If there is a matrix fixing an irrational then the following is true:

x = Mx =⇒ J(x) = J(Mx) = J(M)J(x) (5.2)

which means J(x) is fixed also by J(M). Hence, to find the image of a quadratic
irrational under Jimm, it suffices to find the image of matrix associated.

Question. For a given matrix M =

p q

r s

 , how to find J(M) ?

We know that J(1) = 1 and J(2) = 2,

J(M1) = J(M)J(1) =⇒ J
(

p+q
r+ s

)
=

a+b
c+d

(5.3)

J(M2) = J(M)J(2) =⇒ J
(

2p+q
2r+ s

)
=

2a+b
2c+d

(5.4)

It means that

con
(

p+q
r+ s

)
= a+b (5.5)

con
(

r+ s
p+q

)
= c+d (5.6)

con
(

2p+q
2r+ s

)
= 2a+b (5.7)

con
(

2r+ s
2p+q

)
= 2c+d (5.8)

Find a,b,c,d and replace in the matrix :
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J

p q

r s

=

con
(

2p+q
2r+ s

)
− con

(
p+q
r+ s

)
2con

(
p+q
r+ s

)
− con

(
2p+q
2r+ s

)
con
(

2r+ s
2p+q

)
− con

(
r+ s
p+q

)
2con

(
r+ s
p+q

)
− con

(
2r+ s
2p+q

)

(5.9)

Recall.

1. Suppose that (m,m2,m3) is a Markov triple with Markov number m such that
m≥ m1 , m≥ m2 .

i. Let u be the least positive residue of ±m1/m2 mod m. It’s said to be the
characteristic number of m.

ii. We define v by the following equation

u2 +1 = mv (5.10)

2. For all m ∈M = {1,2,5,13,29,34, . . .}, Markov quadratic irrational is of the form

γm =
m+2u+

√
9m2−4

2m

and it is fixed by the matrix

M =

2m+u 2m−u− v

m m−u


which is hyperbolic with trace 3m.

Example 5.1.1. Let us compute the image of some Markov quadratics under Jimm by
using previous method.

• Let m = 1, u = 0, v = 1 and quadratic irrational assocaited is

γ1 = (1+
√

5)/2

and it is fixed by the matrix

M1 =

2 1

1 1
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If we compute image of this matrix under Jimm by using formula, we obtain:

J(M1) =

1 2

0 1


whose fixed point is ∞ .

• Let m = 2, u = 1, v = 1 and quadratic irrational associated is

γ2 = 1+
√

2

and it is fixed by the matrix

M2 =

5 2

2 1


If we compute image of this matrix under Jimm by using previous formula, we
obtain:

J(M2) =

3 4

2 3


whose fixed points are ±

√
2.

• Let m = 5, u = 2, v = 1 and quadratic irrational assocaited is

γ5 = (9+
√

221)/10

and it is fixed by the matrix

M5 =

12 7

5 3


If we compute image of this matrix under Jimm by using formula, we obtain:

J(M5) =

3 10

2 7


whose fixed points are −1±

√
6.
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• Let m = 13, u = 5, v = 2 and quadratic irrational assocaited is

γ13 = (23+
√

1517)/26

and it is fixed by the matrix

M13 =

31 19

13 8


If we compute image of this matrix under Jimm by using formula, we obtain:

J(M13) =

3 16

2 11


whose fixed points are −2±

√
12.

Let us see Jimm of Markov irrationals in the following table:
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m γm = (m+2u+
√

9m2−4)/2m J(γm)

1 (1+
√

5)/2 ∞

2 1+
√

2
√

2

5 (9+
√

221)/10
√

6−1

13 (23+
√

1517)/26
√

12−2

29 (53+
√

7565)/58 (
√

210−6)/6

34 (15+
√

650)/17
√

20−3

89 (157+
√

71285)/178
√

30−4

169 (309+
√

257045)/338 (
√

7140−35)/35

194 (344+
√

338720)/388
√

119−2

233 (411+
√

488597)/466
√

42−5

433 (791+
√

1687397)/866 (12
√

143−60)/59

610 (1076+
√

3348896)/1220
√

56−6

985 (1801+
√

8732021)/1970 (
√

60639−102)/102

1325 (2339+
√

15800621)/2650 (
√

3906−42)/14

1597 (2817+
√

22953677)/3194
√

72−7

Table 5.1: Image of some Markov irrationals under Jimm as quadratic form

It seems that some of these images in the form
√

a−b with a,b ∈ N. To prove this
observation, we require the followings:

Lemma 5.1.1. Let Fn be n th Fibonacci number. Then the following hold:

i. con(
Fn

Fn+1
) = 1

ii. con(
Fn+1

Fn
) = n
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Proof. For the first one is easy to see, since we have

con(
Fn

Fn+1
) = con(

1
1+Fn/Fn+1

) = con(
Fn+1

Fn+2
)

for all n ∈ N, it is clear that

con(
Fn

Fn+1
) = con(

F1

F2
) = con(1) = 1

The second can be proved by induction, obviously we have for n = 1 and n = 2:

con(
F2

F1
) = 1

and
con(

F3

F2
) = con(2) = 2

Suppose that it is true for n then show that for n+1 by using previous assertion:

con(
Fn+2

Fn+1
) = con(1+

Fn

Fn+1
) = con(

Fn

Fn+1
)+ con(

Fn+1

Fn
) = n+1

which completes the proof.

�

Corollary 5.1.2. Let Fn be the n th Fibonacci number. Then the following hold:

i. con(1+
F2n

F2n+2
) = 4n+1

ii. con(1+
F2n+1

F2n+3
) = 4n+3

iii. con(2+
F2n

F2n+2
) = 6n+1

iv. con(2+
F2n+1

F2n+3
) = 6n+4

Proof.

i. Let us show the first one, we compute

con(1+
F2n

F2n+2
) = con(

F2n

F2n+2
)+ con(

F2n+2

F2n
)
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Since F2n/F2n+2 and F2n+1/F2n are in the same < 1/(1+ x)>-orbits and by Lemma
5.1.1 ii.

con(
F2n

F2n+2
) = con(

1
1+F2n+1/F2n

) = con(
F2n+1

F2n
) = 2n

similary we have

con(
F2n+2

F2n
) = con(1+

F2n+1

F2n
)

= con(
F2n+1

F2n
)+ con(

F2n

F2n+1
)

= 2n+1

Hence con(1+F2n/F2n+2) = 4n+1.

ii. To prove the second, we have

con(1+
F2n+1

F2n+3
) = con(

F2n+1

F2n+3
)+ con(

F2n+3

F2n+1
)

Since F2n+1/F2n+2 and F2n+1/F2n+3 are in the same < 1/(1+ x)>-orbits and by Lemma
5.1.1 ii.

con(
F2n+1

F2n+3
) = con(

1
1+F2n+2/F2n+1

) = con(
F2n+2

F2n+1
) = 2n+1

and also we have

con(
F2n+3

F2n+1
) = con(1+

F2n+2

F2n+1
)

= con(
F2n+2

F2n+1
)+ con(

F2n+1

F2n+2
)

= 2n+2

Hence con(1+F2n+1/F2n+3) = 4n+3.

iii. By using Lemma 4.1.1, we obtain

con(2+
F2n

F2n+2
) = F3 con(

F2n

F2n+2
)+F2 con(

F2n+2

F2n
)

since it is already known from previous part, we obtain

con(2+
F2n

F2n+2
) = 2(2n)+2n+1 = 6n+1

iv. By using Lemma 4.1.1, we obtain
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con(2+
F2n+1

F2n+3
) = F3 con(

F2n+1

F2n+3
)+F2 con(

F2n+3

F2n+1
)

since it is already known from the previous part, we obtain

con(2+
F2n+1

F2n+3
) = 2(2n+1)+2n+2 = 6n+4

�

Proposition 5.1.1. Let γm be a Markov quadratic irrational with m = F2n+1 as follows

γF2n+1 =
F2n+1 +F2n−1 +

√
9F2

2n+1−4

2F2n+1

fixed by the hyperbolic matrix

M =


2F2n+1 +F2n−1 F2n+2−F2n−3

F2n+1 F2n


Then image of M under Jimm is

J(M) =


3 6n−2

2 4n−1


and positive fixed point of this matrix which is equal to J(γm) is

√
n2 +n−n+1

Proof. Let us show that the matrix above is equal to the matrix J(M) which comes from
the formula 5.9 that is,

J(M) =


a11 a12

a21 a22
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where

a11 = con(
4F2n+1 +2F2n−1 +F2n+2−F2n−3

F2n+3
)− con(

2F2n+1 +F2n−1 +F2n+2−F2n−3

F2n+2
)

a12 = 2con(
2F2n+1 +F2n−1 +F2n+2−F2n−3

F2n+2
)− con(

4F2n+1 +2F2n−1 +F2n+2−F2n−3

F2n+3
)

a21 = con(
F2n+3

4F2n+1 +2F2n−1 +F2n+2−F2n−3
)− con(

F2n+2

2F2n+1 +F2n−1 +F2n+2−F2n−3
)

a22 = 2con(
F2n+2

2F2n+1 +F2n−1 +F2n+2−F2n−3
)− con(

F2n+3

4F2n+1 +2F2n−1 +F2n+2−F2n−3
)

By using Corollary 5.1.2 iii. and 5.1.2 iv, we find first a11 and a21

con(
4F2n+1 +2F2n−1 +F2n+2−F2n−3

F2n+3
) = con(2+

F2n+1

F2n+3
)

= 6n+4

and also

con(
2F2n+1 +F2n−1 +F2n+2−F2n−3

F2n+2
) = con(2+

F2n

F2n+2
)

= 6n+1

implies that 6n+4− (6n+1) = 3. Similary, we have also by Corollary 5.1.2 i. and
5.1.2 ii.

con(
F2n+3

4F2n+1 +2F2n−1 +F2n+2−F2n−3
) = con(1+

F2n+1

F2n+3
)

= 4n+3

and

con(
F2n+2

2F2n+1 +F2n−1 +F2n+2−F2n−3
) = con(1+

F2n

F2n+2
)

= 4n+1

we obtain 4n+3− (4n+1) = 2 so the first column of the image is constant as follows
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J(M) =


3 a12

2 a22


Now, we must determine the values a12 and a22. But we know

con(
F2n+3

4F2n+1 +2F2n−1 +F2n+2−F2n−3
)− con(

F2n+2

2F2n+1 +F2n−1 +F2n+2−F2n−3
) = 2

so it suffices to show that the last entry is

con(
F2n+2

2F2n+1 +F2n−1 +F2n+2−F2n−3
)−2 = 4n−1

which is already true by Corollary 5.1.2 i. Finally, we have

J(M) =


3 a12

2 4n−1


Since J(M) is a matrix in PGL(2,Z), the determinant is 1. After a short computation we
see that a12 is equal to 6n−2 so we can conclude that the matrix is as the form

J(M) =


3 6n−2

2 4n−1


and fixed point can be calculated from the quadratic equation

x2 +(2n−2)x−3n+1 = 0

with discriminant ∆ = 4(n2 +n) then positive root of the polynomial√
n2 +n−n+1

as desired.

�
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n m =
F2n+1

u =
F2n−1

v =
F2n−3

M J(M) J(γm)

1 2 1 1

5 2

2 1


3 4

2 3

 √
2

2 5 2 1

12 7

5 3


3 10

2 7

 √
6−1

3 13 5 2

31 19

13 8


3 16

2 11

 √
12−2

4 34 13 5

81 50

34 21


3 22

2 15

 √
20−3

5 89 34 13

212 131

89 55


3 28

2 19

 √
30−4

6 233 89 34

555 343

233 144


3 34

2 23

 √
42−5

7 610 233 89

1453 898

610 377


3 40

2 27

 √
56−6

8 1597 610 233

3804 2351

1597 987


3 46

2 31

 √
72−7

Table 5.2: Quadratic form of J(γF2n+1) .
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Appendix

Some facts about continued fraction as follows:

Fact 1. Let pn/qn be n-th convergent of a real number α. Then we have

i. |α− p
q
|< |α− pn

qn
| ⇒ q > qn for all n≥ 1.

ii. |qα− p|< |qnα− pn| ⇒ q≥ qn+1 for all n≥ 1.

Fact 2. Let α = [a0,a1,a2, . . . ] be a real number and let rn = pn/qn = [a0,a1,a2, . . . ,an]

be n-th convergent of α. Then

i. r0 < r2 < r4 . . . , · · ·< r5 < r3 < r1 ,

ii. We have r2i < α < r2 j+1 for all i, j ≥ 0 and lim
n→∞

rn = α exists.

Lemma 1. Assume α≥ 1 is a real number with α+α−1 ≤
√

5. Then

α≤ 1+
√

5
2

and α
−1 ≥

√
5−1
2

and equality α+α−1 =
√

5 is satisfied for α =
1+
√

5
2

.
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