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ABSTRACT 

 

 

 

Prediction of query execution time is one of the most challenging issues for relational 

databases and is useful for database administration, resource management, system 

monitoring and query scheduling.  Most of the query optimizers use cost-based models 

for query execution time prediction but the problem is more complex because the 

heterogeneity of the database system’s hardware platforms and operating systems makes 

more difficult to measure CPU and I/O costs.  The relational database vendors try to 

implement autonomous databases which automates management and performance thus 

intelligent query execution time prediction is a key issue.  Previous work mostly used 

synthetical data so that reproducing machine learning experiments are almost 

impossible for various domains. In this thesis, we use real-world data of a payment 

service provider with different workloads and we propose new sets of features based on 

aggregating the database queries and compared them with traditional query plan 

features.  We collected data from a common machine data tool so that reproducing 

machine learning experiments and building models are easy for various domains. 
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RÉSUMÉ 

 

 

 

La prédiction du temps d'exécution des requêtes est l'un des problèmes les plus 

complexes pour les bases de données relationnelles et est utile pour l'administration de 

la base de données, la gestion des ressources, la surveillance du système et la 

planification des requêtes.  La plupart des optimiseurs de requêtes utilisent des modèles 

basés sur les coûts pour la prédiction du temps d'exécution des requêtes mais le 

problème est plus complexe car l'hétérogénéité des plateformes matérielles et des 

systèmes d'exploitation du système de base de données rend plus difficile la mesure des 

coûts CPU et E/S.  Les fournisseurs de bases de données relationnelles essaient 

d'implémenter des bases de données autonomes qui automatisent la gestion et les 

performances.  La prédiction intelligente de l'heure d'exécution des requêtes est donc un 

problème majeur.  Les travaux antérieurs utilisaient principalement des données 

synthétiques, de sorte que les expériences de reproduction automatique sont presque 

impossibles pour divers domaines.  Dans cette thèse, nous utilisons des données réelles 

d'un fournisseur de services de paiement avec différentes charges de travail et nous 

proposons de nouveaux ensembles de fonctionnalités basées sur l'agrégation des 

requêtes de base de données et les comparons aux fonctionnalités traditionnelles des 

plans de requête.  Nous avons collecté des données à partir d'un outil commun de 

données machine afin que les expériences de reproduction automatique et les modèles 

de construction soient faciles pour différents domaines. 
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ÖZET 

 

 

 

Sorguların çalışma süresini tahmin etmek ilişkisel veri tabanları için en zor konulardan 

biridir ve bu tahminin doğru gerçekleşmesi, veri tabanı yönetimi, kaynak yönetimi, 

sistemin performansının izlenmesi ve sorguların zamanlamasının yönetimi gibi birçok 

konuda faydalıdır.  Birçok sorgu iyileştiren yazılım, sorguların çalışma süresini tahmin 

edebilmek için maliyet tabanlı modeller kullanır fakat ilgili problem daha karmaşıktır 

zira veri tabanı sistemlerinin donanım ve yazılımlarının heterojen olması işlemci ve G/Ç 

maliyetlerinin ölçümünü çok zor kılmaktadır.  İlişkisel veri tabanı üreticileri, yönetimi 

ve performansı otomatik hale getiren, kendi kendine çalışan veri tabanı sistemleri 

geliştirmeye çalışmaktadırlar.  Bu noktada veri tabanı sorgularının çalışmadan önce ne 

kadar süreceğini tahmin etmek kilit bir özelliktir.  Geçmiş çalışmalar sorgu süresini 

tahmin edebilmek için sentetik veri kullanmışlardır.  Bu nedenle farklı alanlarda yapay 

öğrenme deneylerini tekrar etmek neredeyse imkânsız hale gelmektedir.  Bu makalede, 

bir ödeme hizmet sağlayıcısının gerçek dünyadaki farklı yükler altındaki verisi 

kullanılmış ve veri tabanı sorguları zaman pencereleri içerisinde toplanarak üretilen yeni 

öznitelik kümesi sunulmuştur.  Bu sunulan öznitelik kümesi geleneksel sorgu planı 

öznitelikleriyle karşılaştırılmış ve sonuçlar paylaşılmıştır.  İlgili veri yaygın bir veri 

toplama aracıyla toplanmış bu sayede yapılan yapay öğrenme deneyleri ve oluşturulan 

modeller çeşitli alanlarda kolayca tekrar edilebilir hale gelmiştir.  
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1. INTRODUCTION 

 

 

 

In the recent years, the database vendors try to decrease operational cost of database 

systems with the automation of patch management, high availability approaches and 

performance tuning.  Predicting query execution time is a key issue for automatic 

intelligent performance tuning.  Most of the database systems use cost-based optimizers 

to predict the query execution time.  However, these optimizers are by themselves not 

sufficient as there are too many operational variables involving the operating system, 

the hardware characteristics and the database load.  The prediction task can become 

indeterministic and letting too many long running queries can result in system 

downtime.  One of the implicit assumptions behind our work is that the database 

system's query execution time performance doesn't abruptly change but varies in time 

and therefore the time series (Hamilton, 1994) analysis is leveraging factor for better 

prediction. 

 

Recent work on predicting database query execution time has argued that the query 

optimizer’s cost models are useful to compare alternative queries but not useful to 

predict database query performance metrics.  Ganapathi et al. extracted features before 

the queries execute and predicts multiple resource usage characteristics for both short 

and long running queries.  They give operator cardinalities and performance metrics to 

KCCA algorithm and the algorithm interpolates on the relative differences between 

these cardinalities and builds a model.  The training and validation dataset contains 

queries which have query execution times range from milliseconds to hours and the 

predicted metrics are elapsed time, records used, disk I/O and message bytes.  In that 

work Ganapathi et al. (2009) designed an architecture which requires vendor site 

installation for predictions and uses synthetic data which has 2807 instances at 

maximum. 
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Moreover, current data management systems process concurrent queries in 

heterogeneous query workloads and the query performance can be related to the 

workload size.  J. Duggan et al. presents a modeling approach which tries to estimate 

the effect of concurrency for analytical workloads without using semantic information 

and adapts the baseline system to dynamically changing workload by using time series 

analysis.  They also introduce a metric that captures the joint effects of disk and 

memory contention on query performance and predict the latency of each query in the 

workload and determine the termination time of each query (Duggan et al., 2011). 

 

Previous work mostly uses generated queries from templates but the database 

management systems can behave differently in production environments.  The current 

systems have database connection pools and these connection pools have limited 

capacity.  The connection pool cannot give connections to applications if there is a 

latency or too many long-running queries in the system so that identifying long-running 

queries before execution will help us to better schedule queries.  The prediction of query 

execution time also helps us to know resource requirements of the database 

management systems before installation. 

 

In high available and scalable systems, latency and failover management is a key issue 

for scalability because the systems can have latency issues in high workloads.  Under 

high workload, each thread can wait too long and throw timeout exceptions when there 

are too many long running queries in the system thus there can be a downtime issue 

because of the constant size of thread pools. 

 

Predicting query execution time can be useful for many system management decisions 

including: 

 

• System Administration: Knowing query execution time before they are executed 

can enable cost-based decisions and management systems can decide whether 

they should execute the query or not 

• System Monitoring: Monitoring and alert systems can provide execution time 

information of queries before they are executed so that systems can avoid too 

many long-running queries. 
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• System Sizing: The database infrastructure teams can use the query execution 

time to give optimum hardware to the systems.  This information is also useful 

for dynamic resource allocation in cloud systems.   

• Query Scheduling: Latency aware scheduling systems need the query execution 

time prediction. 

 

The main contributions of this thesis are listed as follows: 

• We propose new sets of load related features to predict query execution time. 

• Our machine learning experiments are reproducible because every user of the 

same database logging platform can collect the similar data in their domain. 

• Rather than generating queries from templates, we collect a large data set from 

production environment of a payment platform and consequently the results of 

the experiments are reliable for this indeterministic prediction task. 

 

The rest of the thesis is organized as follows: In section 2 we describe related work and 

previous feature engineering strategies.  In section 3 we describe traditional query plan 

features (Chaudhuri, 1998), we briefly introduce load related features and give 

information about experiments and materials used in these experiments.  In section 4 we 

present our experiments and results.  Finally, we conclude the thesis and outline the 

future work in section 5. 
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2. LITERATURE REVIEW 

 

 

 

2.1 Related Work 

 

Previous work on query execution time prediction are mostly based on comparative 

evaluation of various machine learning techniques with synthetic query templates for 

short and long-running queries.  They compared regression techniques, clustering 

techniques, principal component analysis (PCA), canonical correlation analysis (CCA) 

and kernel canonical correlation analysis (KCCA) to predict query execution time 

(Ganapathi et al., 2009) (Akdere et al., 2012).  However, these studies do not involve 

any realistic workloads with real-world production data.  Some of the work attempt to 

address concurrent query performance predictions under different analytical query 

workloads where TPC-H (Council, T. P. P., 2008) templates are employed for 

generating the queries (Duggan et al., 2011). 

 

Hasan et al. predicted query execution time of SPARQL queries with a machine 

learning approach.  In that work they extracted algebra features by using the frequencies 

of algebra operators and extracted graph pattern features by clustering structurally 

similar query patterns.  They use the sum of all SLICE operator cardinalities which is 

the combination of OFFSET and LIMIT operators appearing in the algebra expression.  

They also used the depth of the algebra tree and the number of triple patterns as 

additional features.  The DBPSB benchmark is used for evaluation of experiments and 

this benchmark includes 25 query templates which cover most commonly used 

SPARQL queries (Hasan & Gandon, 2014). 

 

Moreover, some previous work challenges the assumption of insufficiency of query 

optimizers and calibrates the constants of optimizer’s cost model for prediction.  They 

show that the optimizer’s cost model can be competitive with machine learning systems 
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if the parameters of optimizer’s cost model is optimized.  In general the flow of 

PostgreSQL’s cost optimizer can be summarized as follows (Wu et al., 2013): 

• Estimate the cardinality of I/O 

• Compute the CPU cost by using the information of the I/O cardinality 

• Compute the number of accessed pages with the cardinality estimate information 

• Compute the I/O cost with the information of accessed pages 

• Compute the sum of CPU cost and I/O cost 

 

Wu W. et al. (2013) also helped the interpretation of database management cost models 

because they preferred optimizing cost model’s parameters instead of black-box 

machine learning approaches.  The other advantages of their framework are as follows: 

• No Training Data Needed: The machine learning based query execution time 

predictions systems need training data but their system can work with only     

ad-hoc queries. 

• Interpretable Approach: The machine learning algorithms are difficult to 

interpret and most of them are black-box approaches.  Their system is related to 

existing paradigm of query optimization in relational databases. 

• Lightweight: The profiling step doesn’t depend hardware and the system is 

portable. 

 

In another work, Wu W. et al. (2014) presents uncertainty aware query execution 

prediction time methodologies in which they provide prediction uncertainty by using 

different distributions of likely running times.  They try a random distribution for CPU 

cost of processing one tuple to quantify the uncertainty by assuming that the distribution 

of CPU cost is normal (i.e. Gaussian) for intuitively the CPU speed is likely to be stable 

and centered around its mean value.  For the selectivity of an operator in the query plan, 

the uncertainties are different than CPU costs while CPU costs have random values but 

the selectivity values have fixed numbers because they suppose that any cost model 

doesn’t have a perfect selectivity estimator.  In this work they show that the distribution 

of query execution time t(q) for a query q is asymptotically normal so that this reduces 

the problem to estimate the two parameters of normal distributions and the mean and 

variance of t(q) (Wu et al. 2014). 
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In this thesis we collected a large sample of real-world queries of a payment service 

provider under different workloads.  Results of many machine learning studies in this 

context are difficult to reproduce (Olorisade et al., 2017).  In this sense one of our goals 

is to increase the probability of being reproduced.  To address this, we use one common 

machine intelligence tool to collect the data and the retrieval process of the dataset is the 

same for all users of this tool. 

 

2.2 Previous Feature Engineering Strategies 

 

Prior feature engineering studies include following techniques to convert a query to a 

feature vector (Ganapathi et al., 2009): 

• The statistics on the SQL text of each query by counting:  

o Number of nested sub-queries,  

o Total number of selection predicates  

o Number of equality selection predicates  

o Number of non-equality selection predicates  

o Total number of join predicates  

o Number of equijoin predicates  

o Number of aggregation columns 

o Number of sort columns 

 

• Query plan which is produced by the query optimizer (Ganapathi et al., 2009; 

Akdere et al., 2012; Wu et al., 2013).  Query plan feature vector consists of a 

tree of query operators with estimated cardinalities and contains an instance 

count and cardinality sum of each possible operator (Ganapathi et al., 2009).  

Previous work uses PostgreSQL database’s query plan features as below 

(Akdere et al., 2012): 

o seq_page_cost: I/O cost to sequentially access a page which is calculated 

by query optimizer.  Example query: 

§ SELECT * FROM R; 

o random_page_cost: I/O cost to randomly access a page.  Example query: 

§ SELECT * FROM R WHERE R.B < b; (b is unclustered index) 
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o cpu_tuple_cost: CPU cost to process a tuple which is unordered sets of 

known values with names.  Example query: 

§ SELECT * FROM R; 

o cpu_index_tuple_cost: CPU cost to process a tuple via index.  Example 

query: 

§ SELECT * FROM R WHERE R.A < a; (a is clustered index) 

o cpu_aggregator_cost: CPU cost of aggregation or hash which is 

calculated by query optimizer.  Example query: 

§ SELECT COUNT(*) FROM R; 

 

• Akdere et al. (2012) use query plan level features which is calculated by query 

optimizer as follows: 

o p_tot_cost: Estimated total plan cost 

o p_st_cost: Estimated plan start cost 

o p_rows: Estimated number of output tuples 

o ap_width: Estimated average size of an output tuple 

o op_count: Number of query operators in the plan 

o row_count: Estimated total number of tuples input and output to/from 

each operator 

o byte_count: Estimated total size of all tuples input and output 

o <opertor_name>_count: The number of operators in the query 

o <operator_name>_rows: The total number of tuples output from 

<operator_name> operators 

 

• Akdere et al. (2012) also used operator level features which is collected by using 

“MATERIALISE” operator.  The operator level features use two separate 

prediction models as start-time model and run-time model.  The start-time model 

tries to estimate the execution time of an operator until it produces its first tuple.  

The run-time model tries to estimate total execution time of query operators: 

o np: Estimated I/O (in number of pages) 

o nt: Estimated number of output tuples 

o nt1: Estimated number of input tuples (from left child operator) 



 

 
 

8 
 
 

o nt2: Estimated number of input tuples (from left right operator) 

o sel: Estimated operator selectivity 

o st1: Start-time of left child operator 

o rt1: Run-time of left child operator 

o st2: Start-time of right child operator 

o rt2: Run-time of right child operator 

 

• The structural similarity between graph queries by using clustering techniques.  

They construct multiple graphs from multiple query patterns and compute the 

edit distance between these graphs to compute the structural similarity between 

query patterns (Hasan & Gandon, 2014). 

 

• Wu W. et al. (2013) used queuing theory and they designed a queuing model 

which uses prediction pipelines of multiple queries as customers.  In this model 

the query execution time of a pipeline is its residence time in queueing network.  

If k ∈	{CPU, disk}, the features of this queuing model are as follows: 

o C(k): Number of servers in (service) center k 

o T(k): Mean service time per visit to center k 

o Y(k): Correction factor of center k 

o p(k): Utility of center k 

o V(k,m): Mean number of visits by customer m to center k 

o Q(k,m): Mean queue length by customer m at center k 

o R(k,m): Mean residence time per visit by customer m to center k 
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• We W. et al (2013) also uses scan operator features like sequential scan, index 

scan and bitmap index scan which are implemented by PostgreSQL.  They use 

the following features to represent a scan instance s(i) in a mix {s1 , ..., sn}, 

where tbl(i) is the table accessed by s(i), and N(s(i)) is the set of neighbor scans 

of s(i) in the mix: 

o Number of sequential I/O’s of s(i) 

o Number of random I/O’s of s(i) 

o Number of scans in N(s(i)) that are over tbl(i) 

o Number of sequential I/O’s from scans in N(s(i)) that are over tbl(i) 

o Number of random I/O’s from scans in N(s(i)) that are over tbl(i) 

o Number of scans in N(s(i)) that are not over tbl(i) 

o Number of sequential I/O’s from scans in N(s(i)) that not are over tbl(i) 

o Number of random I/O’s from scans in N(s(i)) that are not over tbl(i)
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3. MATERIALS AND METHODS 

 

 

 

3.1 Dataset Information 

 

The data set is collected for 40 minutes from a payment service provider with a database 

plugin of streaming machine data platform in four different workloads.  The highest 

workload data is collected during black Friday between 21.55 and 22.05, the lowest 

workload data is collected in the early morning between 03.00 and 03.10 (See Table 

3.1).  The data set contains all queries of the company from too many different schemas 

and applications with the limit of 10 minutes overall execution time.  In Table 3.1, 

minimum, maximum and mean of query execution times in related workload type is 

shown. 

 

 

Table 3.1: Query Dataset with Different Workloads 
 

Workload 
Type 

Number of Instances Minimum 
QET 

Mean  
QET 

Maximum 
QET 

Low 199789 
 

0.0001 secs 0.01 secs 33.5 secs 

Medium 425847 0.0001 secs 0.009 secs 41.5 secs 

High 
 

425989 
 

 
0.001 secs 

 
0.05 secs 

 
152 secs 

Highest 
 

944254 
 

0.0001 secs 0.006 secs 8.5 secs 

 

 

The dataset has 4 distinct samples and each sample has 10 minutes window size with 

different workload sizes.  When we look at the behavior of the overall system in 24 

hours, the maximum query execution times change between 10 seconds and 150 

seconds (Figure 3.1).  The mean of the query execution times changes between 0.006 
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seconds and 0.05 seconds.  The highest workload data sample size is 780 MB while the 

lowest workload data sample size is 140 MB. 

 

 

Figure 3.1: Maximum Query Execution Times of the System in 24 hours  

 
 
The minimum, maximum and mean of other numerical column values are shown in 

tables for all workloads (Table 3.2, 3.3, 3.4 and 3.5).  

 

 

Table 3.2: Dataset Column Value Distribution in Low Workload 
 

Column Name Workload 
Type 

Minimum Mean Maximum 

Reply Time Low 0 0.01 33.5 
Request Time Low 0 0.00002 0.2 

Bytes Low 24 3090 4399465 
Bytes In Low 13 1096 20835 

Bytes Out Low 0 1993 4378630 
Result Column Count Low 1 6.8 182 

Result Row Count Low 0 1 18 
 

 

Table 3.3: Dataset Column Value Distribution in Medium Workload 
 

Column Name Workload 
Type 

Minimum Mean Maximum 

Reply Time Medium 0 0.008 41.5 
Request Time Medium 0 0.00001 0.3 

Bytes Medium 24 3319 2104348 
Bytes In Medium 13 1153 20835 

Bytes Out Medium 0 2165 2103717 
Result Column Count Medium 1 6 114 

Result Row Count Medium 0 1 30 
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Table 3.4: Dataset Column Value Distribution in High Workload 
 

Column Name Workload 
Type 

Minimum Mean Maximum 

Reply Time High 0 0.04 152 
Request Time High 0 0.00001 0.3 

Bytes High 24 3090 8886522 
Bytes In High 13 804 60199 

Bytes Out High 11 2364 8885920 
Result Column Count High 1 7 114 

Result Row Count High 0 1 23 
 

 

Table 3.5: Dataset Column Value Distribution in Highest Workload 
 

Column Name Workload 
Type 

Minimum Mean Maximum 

Reply Time Highest 0 0.06 8 
Request Time Highest 0 0.00005 21.5 

Bytes Highest 24 1713 8035174 
Bytes In Highest 13 595 20835 

Bytes Out Highest 0 1118 8032750 
Result Column Count Highest 1 7 122 

Result Row Count Highest 0 1 100 
 

 

3.2 Materials and Experiments 

 

3.2.1 H2O Framework 

 

H2O framework is open-source, in-memory and distributed machine learning 

framework for big data analytics.  Inside the framework, a distributed key value store is 

used for data manipulation and model building so that each node has an access to data 

frames and models (Figure 3.3).  The framework has three parts: 

 

• H2O Cluster: Multi-node cluster with shared memory model 

• Distributed Key-Value Store: Data frames, models and any other H2O objects 

can be accessed via distributed key value store 
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• H2O Frame: Distributed data frames which their columns are distributed 

(across the nodes) arrays 

 

In the experiments, Distributed Random Forest (DRF) (Segal, 2004) algorithm is used 

and this algorithm can handle categorical variables and missing values automatically.  

In the DRF algorithm of H2O framework, missing values are not interpreted as missing 

at random.  They are interpreted as containing information (i.e., missing for a reason).  

Split decisions for every node are found by minimizing the loss function and treating 

missing values as a separate category that can go either left or right during tree building.  

In DRF each node builds a subset of forest (Figure 3.2) (Liaw & Wiener, 2002). 

 

 

 
Figure 3.2: Each node builds a subset of random forest in DRF 

 

 

The H2O Framework has different components working together to build machine 

learning models (Figure 3.3).  The data scientists or software developers can build 

models by using different programming languages like Python, R, JavaScript ..etc. and 

the framework is also integrated with business intelligence tools.  The framework also 

provides plugins for different data sources from relational databases to big data tools 

and it helps us to run experiments with millions of queries with its scalability and data 

compression capabilities.  
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Figure 3.3: H2O Framework Architecture 

 

 

3.2.2 Splunk Database Stream 

 

Splunk is a machine data collection tool for distributed applications and the query 

dataset is collected by using Splunk database stream.  Streams support passive capture 

of network data and database protocol is one of the supported protocols of streams.  To 

collect data from a database, the forwarders forward the query data and the execution 

times to indexer and the indexer indexes the queries for searching.  
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Splunk database stream supports MySQL database and can be installed on a single 

instance server as both search head and indexer which is ideal for small local and testing 

environment because it supports one or two concurrent searches.  For large datasets and 

enterprise applications, distributed installation is needed (Figure 3.4).   

 

 

 
 

Figure 3.4: Splunk Database Stream Distributed Deployment Architecture 
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To collect queries and their execution times in a scalable and distributed architecture, 

the database queries are collected as network inputs by universal forwarders of a 

database stream.  The universal forwarders of the plugin collect the query, the query 

parameters and their execution time and forward this information to indexers.  To find 

all the queries, the head pointer points the indexer so that the search results appear on 

the user interface of plugin (Figure 3.4). 

 

3.2.3 MySQL Query Optimizer 

 

MySQL query optimizer tries to optimize the queries in database level and hardware 

level.  In the database level the optimizer looks at the database’s basic design: 

• Do the columns have the right data types? 

• Is the right storage engine (MyIsam or InnoDB) used? For example, if the 

system is transactional, it needs a transactional storage engine InnoDB. 

• Are the right indexes in place to make query executions faster? 

• Is the application uses the right locking strategy? For example, InnoDB storage 

engine guarantees data consistency. 

• Is the memory used efficiently for caching the queries?  

 

In the hardware level the optimizer looks at the hardware limits: 

• CPU cycles: Having large tables need more memory. 

• Memory bandwidth: If CPU needs more memory than the size of CPU cache, 

the main memory bandwidth can be a bottleneck. 

• Disk seeks: The disk needs time to find a piece data. 

• Disk reading and writing: Reading data from the disk and writing the data to the 

disk may be expensive. 

 

In MySQL database, the query plan information can be retrieved by using EXPLAIN 

query.  In Figure 3.5, an example SQL query is given with selection, concatenation, 

inner joins and where operation with some limit.  This query has a full table scan cost 

and multiple nested loop costs which uses unique key and non-unique key lookups.  

MySQL query plan calculates the cost of the query by using these parameters (Figure 

3.5). 



 

 
 

17 
 
 
SELECT CONCAT(customer.last_name, ', ', 

customer.first_name) AS customer, address.phone, film.title 

FROM rental 

INNER JOIN customer ON rental.customer_id = 

customer.customer_id 

INNER JOIN address ON customer.address_id = 

address.address_id 

INNER JOIN inventory ON rental.inventory_id = 

inventory.inventory_id 

INNER JOIN film ON inventory.film_id = film.film_id 

WHERE rental.return_date IS NULL 

AND rental_date + INTERVAL film.rental_duration DAY < 

CURRENT_DATE() 

LIMIT 5; 

Figure 3.5: Example SQL Query for Visual Explain 

 
 
The visual information about the explain is as follows (Figure 3.6): 

 
Figure 3.6: Visual Explain of An Example Query 

 

 

The MySQL optimizer uses disk seek count to estimate the query performance in 

hardware level: 
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log(row_count)
log(index_block_length)

3  × 2
index_length +data_pointer_length 

+1 (1) 

 

The query plan features are collected by using MySQL’s “EXPLAIN JSON” query.  In 

MySQL’s EXPLAIN query, the output JSON format (Figure 3.7) is not valid because 

there are many keys which have the same names (i.e. table, table_name ..etc.):  

 

 
EXPLAIN: { 

  "query_block": { 

    "select_id": 1, 

    "nested_loop": [ 

      {  "table": { 

          "table_name": "departments", 

          <skipped> 

      }, 

      {  "table": { 

          "table_name": "<subquery2>", 

          "access_type": "eq_ref", 

          "key": "<auto_key>", 

          "key_length": "4", 

          "ref": [ 

            "employees.departments.dept_no" 

          ], 

          "rows_examined_per_scan": 1, 

          "materialized_from_subquery": { 

            "using_temporary_table": true, 

            "query_block": { 

              "table": { 

                "table_name": "dept_manager", 

                "access_type": "ALL", 

                "possible_keys": [ 

                  "dept_no" 

                ], "used_columns": [ 

                     "dept_no", 

                     "to_date" 

                ]}}}}}]} 

} 

Figure 3.7: JSON Output of an EXPLAIN Query 
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To fix the invalid JSON format problem, we have to differentiate key names by adding 

postfixes to the names.  We use Python programming language in all experiments and 

fix invalid JSON problem with the following code (Figure 3.8) : 

 

 

from collections import OrderedDict 

from json import JSONDecoder 

 

def make_unique(key, dct): 

    counter = 0 

    unique_key = key 

 

    while unique_key in dct: 

        counter += 1 

        unique_key = '{}_{}'.format(key, counter) 

    return unique_key 

 

 

def parse_object_pairs(pairs): 

    dct = OrderedDict() 

    for key, value in pairs: 

        if key in dct: 

            key = make_unique(key, dct) 

        dct[key] = value 

 

    return dct 

Figure 3.8: Python Code to Remove Duplicated JSON keys 

 
 
We give the EXPLAIN output to parse_object_pairs function to make the JSON keys 

unique so that multiple table keys are renamed as table_1, table_2..., table_n. 
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3.2.4 Random Forest Algorithm 

 

Growing ensemble of trees and letting them vote for the most popular class in 

classification resulted improvements in classification accuracy.  Random vectors are 

created for growing the ensembles of trees.  Random forest algorithm is also used for 

regression and we make our experiments with this algorithm.  Random forests for 

regression are created by growing trees depending on a random vector such that the 

predictor trees take on numerical values rather than categorical values.  Each leaf of 

random trees contains a distribution for the continuous output variable.  The random 

forest predictor is created by taking the average of k of the trees for final prediction.  

Some of the input features may be categorical and since the random forest algorithm 

wants to define additive combinations of variables, the algorithm needs to define how 

categorical variables will be treated so they can be combined with numerical variables 

(Breiman, 2001). 

 

Random forest algorithm is that each time a categorical feature is selected to split on at 

a node, to select a random subset of the categories of the variable, and define a 

substitute variable that is one when the categorical value of the variable is in the subset 

and zero outside (Breiman, 2001).  In H2O framework, random forest algorithm handles 

categorical variables with the following encoding types: 

 

• Auto: Allow the algorithm to decide and it is the default encoding scheme to 

handle categorical features.  In H2O random forest the algorithm will 

automatically perform Enum encoding. 

• Enum: The algorithm adds one column per categorical feature. 

• One Hot Explicit: The algorithm adds N+1 new columns for categorical 

features with N levels. 

• Binary: The algorithm adds no more than 32 columns per categorical feature. 

• Eigen: The algorithm adds k columns per categorical feature, keeping 

projections of one-hot-encoded matrix onto k-dimension eigen space only. 

• Label Encoder: The algorithm converts every enumeration into the integer of 

its index (for example, level 0 -> 0, level 1 -> 1, etc.). 
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In H2O framework, random forest algorithm splits the trees based on reduction in 

Squared Error for regression. For categorical features, the framework also uses 

histograms for splitting and can handle splitting on categorical variables with the chosen 

encoding type. In the experiments, we used “enum” encoding which adds one column 

per categorical feature to split on categorical feature and assigns 1 if the instance is in 

this category, 0 if the instance is not in this category.  

 

3.2.5 Linear Regression Algorithm 

 

Linear regression algorithm tries to model the relationship between two or more 

explanatory variables by setting a linear equation to observed data. One variable is 

considered to be explanatory, and the other variable is considered to be dependent.  It is 

the simplest sample of a linear algorithm but has many uses and several advantages over 

other algorithms.  Especially, it is faster and requires more stable computations. H2O 

framework handles categorical variables automatically by expanding them into one-hot 

encoded binary vectors.  The framework creates variables which is a variable created to 

assign numerical value to levels of categorical variables and each variable represents 

one category of the explanatory variable and is coded with 1 if the case falls in that 

category and with 0 if not.  Consequently the algorithm adds one binary column for 

each categorical feature and encodes it with zero or one (Seber & Lee, 2012). 

 

Linear regression model parameters in H2O framework are as follows (Ambati et al., 

2014): 

 

• training_frame: Specify the dataset used to build the model 

• seed: Specify the random number generator seed for algorithm components 

dependent on randomization. The seed is consistent for each H2O instance so 

that you can create models with the same starting conditions in alternative 

configurations. 

• y: Specify the column to use as the dependent variable.  For a regression model, 

this column must be numeric.  For a classification model, this column must be 

categorical (Enum or String). 
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• x: Specify a vector containing the names or indices of the predictor variables to 

use when building the model. If x is missing, then all columns except y are used. 

• alpha: Specify the regularization distribution between L1 and L2. 

• lambda: Specify the regularization strength. 

• early_stopping: Specify whether to stop early when there is no more relative 

improvement on the training or validation set. 

• standardize: Specify whether to standardize the numeric columns to have a 

mean of zero and unit variance. If the standardization is not used, the results can 

include components that are dominated by variables that appear to have larger 

variances relative to other attributes as a matter of scale, rather than true 

contribution. This option is enabled by default and we used this parameter in the 

experiments. 

• max_iterations: Specify the number of training iterations. It was 100 in the 

experiments. 

• objective_epsilon: Specify a threshold for convergence. The model is 

converged if the objective value is less than this threshold. 

• beta_epsilon: Specify the beta epsilon value.  If the L1 normalization of the 

current beta change is below this threshold, consider using convergence. 

 

3.2.6 Experimental Setup 

 

All the experiments used MySQL version 5.5 servers.  The experiment infrastructure is 

a DELL R730 eight processor machines with Emc5100 disks and 8 GB RAM.  The data 

is collected by using MySQL database plugin of Splunk Enterprise version 6.6.0.  

Machine learning training and tests are made by using H2O.ai implementation of 

Random Forest (Liaw & Wiener, 2002) for regression with 100 trees.  The Python 

programming language is used for all experiments.  The queries are split as 80% for 

training and 20% for testing and the same queries are not used for both training and 

testing.  Window size is 30 seconds for load feature aggregation.  We predict query 

execution time in seconds and measure error rates.  The Random Forest parameter 

values are shown below: 
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• Number of Trees: 100 

• Number of Internal Trees: 100 

• Minimum Depth: 20 

• Maximum Depth: 20 

• Mean Depth: 20 

• Minimum Leaves: 2492 

• Maximum Leaves: 10353 

• Categorical Encoding: Enum 

 

Random forest algorithm (Breiman, 2001) adds additional layer of randomness to 

bagging which successful trees don’t depend on earlier trees.  In standard decision trees, 

each node of the tree is split by the best split in all variables.  In a random forest, each 

node of the tree is split by the best in a random subset of predictors at that node.  This 

randomness makes random forest robust to overfitting thus random forest algorithm is 

chosen in all experiments. The example Python code to split training data frame and test 

data frame and train a DRF model is shown below (Figure 3.9) : 

 
from h2o import h2o 

h2o.init() 

h2o.remove_all() 

 

from h2o.estimators.random_forest import H2ORandomForestEstimator 

 

train, valid = no_peak_df_plan_h2o.split_frame(ratios = [.8], seed = 1234) 

 

feature_columns.extend(continuous_feature_columns) 

 

random_forest= h2o.H2ORandomForestEstimator( 

    model_id="rf_no_peak_all", 

    ntrees=100 

) 

random_forest.train(feature_columns, 'time_taken', training_frame=train, 

validation_frame=valid) 

Figure 3.9: Python Code to Train and Validate a Random Forest Regression Model 
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The validation (Picard & Cook, 1984) data set deviance decreases with the increase of 

the number of trees in the Random Forest (Figure 3.10).  The deviance is the goodness 

of fit in statistics so that if it decreases, the model predicts better.  In this model, the 

deviance becomes constant at 80 trees and increasing the number of trees more than 80 

doesn’t help to increase accuracy so that we can decrease computation resource of 

predictions if we use only 80 trees.  Decreasing number of trees in a Random Forest 

algorithm helps us to use less hardware resources for computations and to decrease 

training and prediction times so that we measure the deviance to fix the number of trees 

in each training.   

 

 

 

Figure 3.10: Scoring History – Deviance Relationship 

 

 

In the experiments we also try to predict query execution time with Generalized Linear 

Model (GLM) of H2O framework with Linear Regression.  The linear regression model 
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predictions take the form of a full predictive distribution.  Linear Regression 

corresponds to the Gaussian family model (Frisch et al., 1996; Rasmussen, 2004; Bunea 

et al., 2007). 

 

3.3 Evaluation Metrics 

 

Root Mean Squared Error (RMSE) (1) (Chai & Draxler, 2014) is used as the error 

metric of experiments.  This metric is useful to minimize the absolute difference in 

actual and predicted query execution times. 

 

 

                  RMSE=#1
n
∑ (actual-estimate)2n

j=1                     (2) 

 

 

R2 (2), the coefficient of determination (Nakagawa & Schielzeth, 2013), also called the 

multiple correlation is used as the second metric.  y and y’ represent the actual and the 

predicted values in n queries.  As R2 is scaled between 0 and 1, it is easy to interpret the 

results and to compare the results of different workloads. 

 

 

																																							R2)y,	y'-=1-
1 (yi-y'i)2

n

i=1
4 (yi-y5)2

n
i=1

	 																															(3) 

 

 

Mean Absolute Error (MAE) is the average magnitude of the errors in a set of 

predictions without considering their direction (Willmott & Matsuura, 2005).  If all 

individual differences have the same weight, the mean absolute error is the average over 

the test dataset of the absolute differences between prediction and actual values (3). 

 

 

																																							MAE= 6
7
∑ 8𝑦: − 𝑦′:87
:=6 	 																															(4) 
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3.4 Feature Engineering for Query Execution Time Prediction 

 

3.4.1 Query Plan Features 

 

In this section we consider how will the relational database management system 

executes a query.  Our first approach for feature engineering relies on query execution 

plans since many database management systems provide interfaces that returns query 

plan information.  The query plan features include information about partitions, how 

tables are joined, the indexes that are chosen and the join types (See Table 3.6).  The 

query plan structure is collected with “EXPLAIN” interface of MySQL database. 

 

 

Table 3.6: Query Plan Features 
 

Feature Name Description 
Access Type The join type (equijoin, non-equijoin etc.) 

Select Id The sequential number of select within the query 
Select Type Types of select 
Table Name The name of the table to which the row of output refers 

Key Index that is actually decided to use 
Key Length The length of the index that is actually decided to use 

Used Key Parts The part of a multiple column key that is actually used 
Ref Columns that are compared to the index 

Rows The number of rows that database believes it must examine 
to execute the query 

Using Index The column information is retrieved using only indexes 
 

 

The access type can have the values of “all”, “index”, “const” and “ref”: 

• ALL: For each combination of rows from the previous tables, a full table scan 

is done.  By adding indexes that enable row retrieval from the table based on 

constant values or column values from earlier tables, we can avoid ALL. 

 

• INDEX: This join type is the same as ALL, except that the index tree is 

scanned.  This may occur in two ways: 
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o If the index is a covering index only the index tree is scanned.  In this 

case, the query plan returns “using index”.  An index-only scan usually 

is faster than ALL because the size of the index usually is smaller than 

the table data. 

o A full table scan is performed using reads from the index to look up data 

rows in index order.  Uses index does not appear in the extra column. 

 

• CONST: The table has one matching row at most and this row is read at the 

start of the query.  These tables are very fast because they are read-only at once.  

This index type is used when you compare all parts of a primary key or unique 

key to constant values.  In the following queries, my_table can be used as a 

const table (Figure 3.11). 

 

 

SELECT * FROM my_table WHERE primary_key = 1; 

SELECT * FROM my_table WHERE primary_key_part1 = 1 AND 
primary_key_part2 = 2; 

Figure 3.11: The Constant Index Example SQL Query 

 
 

• REF: This column describes which columns or constants are compared to the 

index named in the key column to select rows from the table. 

 

In the dataset the most used join types are Const and All.  45% of queries uses Const, 

31.1% of queries uses All, 21.2% of queries uses Ref and 2.68% of queries uses Index 

(Figure 3.12).   
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Figure 3.12: The percentages of join types (Const, All, Ref, Index) in the data set 

 
 
The select types of EXPLAIN output are shown in Table 3.7: 

 

 

Table 3.7: Select Types 
 

Select Type Description 
SIMPLE Simple SELECT (not using sub queries or UNION) 

PRIMARY Outermost SELECT 
UNION Second or later SELECT statement in a UNION 

DEPENDENT 
UNION 

Second or later SELECT statement in a UNION, dependent 
on outer query 

UNION RESUT Result of a UNION query 
SUBQUERY First select in a subquery 

DEPENDENT 
SUBQUERY First SELECT in subquery, dependent on outer query 

DERIVED Derived table SELECT (subquery in FROM clause) 
MATERIALIZED Materialized subquery 
UNCACHEABLE 

SUBQUERY 
A subquery for which the result cannot be cached and must 

be re-evaluated for each row of the outer query 
UNCACHEABLE 

UNION 
The second or later select in a UNION that belongs to an 

uncacheable subquery 
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3.4.2 Load Features 

 

The second feature engineering methodology is based on analyzing the periodic 

behavior of a database management system by aggregating the queries with time series 

analysis.  The data is collected by using a common database plugin of a machine data 

collection tool.  We aggregated time features like minimum, maximum, mean, standard 

deviation and variance with constant window size and analyzed the effects of workload 

to predict query execution time (See Table 3.8).  For example the aggregation of “bytes” 

column in a rolling window is implemented with Pandas framework as follows (Figure 

3.13) : 

 

 

import pandas as pd 

 

# read CSV file from a data path 

df = pd.read_csv(data_path, index_col=None, header=0) 

 

# aggregate features in a rolling window 

df['bytes_mean']= df['bytes'].rolling(window_size).mean() 

df['bytes_std']= df['bytes'].rolling(window_size).std() 

df['bytes_var']= df['bytes'].rolling(window_size).var() 

df['bytes_min']= df['bytes'].rolling(window_size).min() 

df['bytes_max']= df['bytes'].rolling(window_size).max() 

Figure 3.13: Python Code for Time Series Aggregation with the Given Window Size 
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Table 3.8: Load Features 
 

Feature Name Description 

Reply Time Number of microseconds that it took the server to start 
replying to a request 

Request Time Number of microseconds that it took the client to send a 
request 

Response Time Number of microseconds that it took the server to send a 
response 

Bytes The total number of bytes transferred 
Bytes In The number of bytes sent from client to server 

Bytes Out The number of bytes sent from server to client 
 

 

We try to investigate the relationship between the total number of bytes transferred and 

the query execution time to better understand the effects of network workload but we 

couldn’t find a linear relation (Figure 3.14). 

 

 

 

Figure 3.14: The relation between the total number of bytes transferred and query 
execution time for 10.000 random instances 
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The number of bytes sent from client to server (bytes in) and the number of bytes sent 

from server to client (bytes out) depends linearly (Figure 3.17).  This information about 

the number of bytes can be obtained with the query below in MySQL: 

 

 
SELECT * FROM information_schema.global_status  
WHERE variable_name IN  
('Bytes_received','Bytes_sent'); 

Figure 3.15: Query for Retrieving Bytes Received and Bytes Sent Information (Global 
Level) 

 
 
SELECT * FROM information_schema.session_status  
WHERE variable_name IN  
('Bytes_received','Bytes_sent'); 

Figure 3.16: Query for Retrieving Bytes Received and Bytes Sent Information (Session 
Level) 

 

 

 

Figure 3.17: The linear relation between Bytes In and Bytes Out for 10.000 random 
instances  

 
 
After the aggregation of load features, the continuous aggregated features are shown in 

Table 3.9 with window size of 30 seconds. 
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Table 3.9: Aggregated Continuous Load Features 
 

Feature Name Description 
Reply Time Mean The mean of reply time in the current window 
Reply Time Std The standard deviation of reply time in the current window 
Reply Time Var The variance of reply time in the current window 
Reply Time Min The minimum value of reply time in the current window 

Reply Time Max The maximum value of reply time in the current window 

Request Time Mean The mean of request time in the current window 
Request Time Std The standard deviation of request time in the current window 
Request Time Var The variance of request time in the current window 
Request Time Min The minimum value of request time in the current window 
Request Time Max The maximum value of request time in the current window 

Response Time 
Mean The mean of response time in the current window 

Response Time Std The standard deviation of response time in the current 
window 

Response Time Var The variance of response time in the current window 
Response Time Min The minimum value of response time in the current window 
Response Time Max The maximum value of response time in the current window 

Bytes Mean The mean of total number of bytes transferred in the current 
window 

Bytes Std The standard deviation of total number of bytes transferred 
in the current window 

Bytes Var The variance of total number of bytes transferred in the 
current window 

Bytes Min The minimum value of total number of bytes transferred in 
the current window 

Bytes Max The maximum value of total number of bytes transferred in 
the current window 
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4. RESULTS 

 

 

 

4.1 Random Forest Results 

 

First, we show the results of predictions with query plan features and load features by 

using random forest algorithm.  We build a random forest regression model to predict 

query execution time in seconds in different workloads and compare RMSE metric of 

query plan features, load features and all features together with different workloads (see 

Figure 4.1). 

 

In Figure 4.1, the x-axis represents different workloads and the y-axis shows the RMSE 

of the predictions.  The best results are obtained with the model of query plan and load 

features together in all workloads.  Surprisingly, for the highest workload (1573 queries 

per second) during black Friday, query plan features are more effective than load 

features.  We need to interpret random forest algorithm to analyze this result so that we 

calculate the relative influence of each feature whether this feature was selected during 

splitting in the tree building process and how much the squared error (over all trees) 

improved as a result.  The scaled importance of features is calculated by h2o.ai 

framework (Ambati et al., 2014). 
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Figure 4.1: RMSE metrics for query plan features, load features and all features 
comparison in low, medium, high and highest workloads 

 
 
Figure 4.2 shows the R2 values on the validation dataset for different workloads.  The 

low workload gives us the highest R2 value 0.9821 while the highest workload gives the 

lowest R2 value 0.5268 with query plan and load features together.   
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Figure 4.2: R2 metrics for query plan features, load features and all features comparison 
in low, medium, high and highest workloads 

 

 

Figure 4.3 shows the mean absolute error (MAE) values on the validation set of 

different workloads.  The low workload gives us the lowest MAE value 1266 and while 

the high workload gives us the highest MAE value 4878. 

 

 
Figure 4.3: MAE metrics for query plan features, load features and all features 

comparison in low, medium, high and highest workloads 
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Comparing the scaled importance (Strobl et al., 2007; Menze et al., 2009) of each 

feature, we observe that the most important features correlate with a particular database 

table during black Friday.  The effect of query plan features in the highest workload is 

due to the usage of the same table (table_1) under the load (See Figure 4.4).  When we 

analyze only the load features, the mean and variance of total number of bytes 

transferred in the current window are important features thus we validate the relation 

between total bytes transferred and query execution time (See Figure 4.4). 

 

 

 

Figure 4.4: The scaled importance of query plan features and load features together in 
the highest workload 

 

 

To provide more information about the results, we show the predicted and actual query 

execution times for a random subset of test queries having size of 15.000 (See Figure 

4.5 and Figure 4.6).   

 

We categorize queries by query execution time and create slow and fast running query 

pools and our predictions are linear for both slow and fast queries while using query 

plan and load features together.  When we look at the results, the predicted and actual 

execution times are linear thus the query plan features and load features are useful when 
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they are used together in a machine learning algorithm for both fast (Figure 4.5) and 

slow running queries (Figure 4.6). 

 

 

 

Figure 4.5: Actual vs predicted query execution time in seconds in high workload with 
query plan features and load features for fast running queries 

 
 

 

Figure 4.6: Actual vs predicted query execution time in seconds in high workload with 
query plan features and load features for slow running queries 
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4.2 Linear Regression Results 

 

We show the prediction results with Linear Regression algorithm for query plan 

features and load features by using RMSE metric (Figure 4.7). 

 

 

 
 

 
Figure 4.7: RMSE metrics for query plan features, load features and all features 
comparison in low, medium, high and highest workloads with Linear Regression 

 
 
In Linear Regression, the predictions are worse than Random Forest Regression by 

RMSE metrics in all workloads and the feature engineering strategies don’t make 

significant difference.  The query execution time predictions with Linear Regression 

algorithm are as good as Random Forest Algorithm in the highest workload and to 

interpret this result, we look at standardized coefficient magnitudes of all features in 

highest workload (Figure 4.8).  In Linear Regression of H2O Framework a standardized 

coefficient is a linear coefficient that has been defined in terms of standard deviations 

rather than whatever the original units for that particular variable were. 

 

When we interpret the standardized coefficient magnitudes which are used as feature 

importance, we see that bytes_in and bytes_out features are the most important feature 

in the highest workload with Linear Regression model.  These two features are related 
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with the network bandwidth so that in the highest workload, the network bandwidth 

may be a bottleneck for query execution time prediction.  We also see that 

table_1_name is the third most important feature in the highest workload as in the 

prediction results of DRF algorithm thus both two algorithms show that, table_1_name 

may have a bias in the highest workload for query execution time prediction. 

 

  

Figure 4.8: Standardized Coefficient Magnitudes in Highest Workload for All Features 
in Linear Regression Algorithm
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5. CONCLUSION 

 

 

 

We present load related feature engineering strategies to predict query execution time 

using machine learning techniques.  We make our experiments with already executed 

queries from a payment service provider in different workloads, introduce load-based 

features and compare them with traditional query plan features.  We show that load 

based features are effective when they are used with query plan features for both slow 

and fast running queries in all workload sizes.  All these features can be used in 

machine learning for capacity planning and workload management of autonomous 

database systems. 

 

Given query plan features and load features in its input feature vectors, the random 

forest algorithm predicts query execution time and we calculate scaled importance of 

each feature.  The bytes transferred in the current window is one of the most important 

features in load features and this result shows that the network data transfer volume may 

allow us to better predict query execution time and to find network bottlenecks on a 

database server. 

 

Indeed, in high workloads, the workload and also the machine learning algorithms can 

have a bias to some tables or indexes thus the experiments may depend on the dataset.  

To solve this bias, we would like to have a random sample which have random 

distributions of tables and indexes in the future. 

 

In the future, firstly we would like to test multiple sliding window sizes for the 

aggregations of load features because we believe that the window size should change 

dynamically by workload size.  Second, we plan to extract new load features by using 

SQL text statistics like the mean and the maximum of aggregation count, equijoin count 

etc. and compare these features with the query plan features.  Third, we plan to apply 
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these black box load features in different domains and use these features for intelligent 

workload management of different systems. 

 

We also plan to implement an alert management system to identify long-running queries 

before they are executed so that we can manage database workload without any 

downtime.  Another direction we plan to research in the future is integrating machine 

learning models to relational database management systems so that these systems can 

manage workload more efficient. 
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