

GALATASARAY UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

LOAD RELATED FEATURE ENGINEERING FOR

QUERY EXECUTION TIME PREDICTION

Yalçın YENİGÜN

July 2018

LOAD RELATED FEATURE ENGINEERING FOR QUERY EXECUTION

TIME PREDICTION

(SORGULARIN ÇALIŞMA SÜRESİNİN TAHMİNİ İÇİN YÜKLE İLİŞKİLİ

ÖZNİTELİK MÜHENDİSLİĞİ)

by

Y a l ç ı n Y E N İG Ü N , B . S .

Thesis

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

in the

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

of

GALATASARAY UNIVERSITY

July 2018

ii

ACKNOWLEDGEMENTS

I would like to thank my supervisors Atay Özgövde and Özlem Durmaz İncel and my

company iyzico for their contribution throughout the work on this thesis.

I also owe thanks to my wife Ezgi Hancı Yenigün, M.D. for her unconditional love.

July 2018

Yalçın YENİGÜN

 iii

TABLE OF CONTENTS

LIST OF SYMBOLS .. v

LIST OF FIGURES.. vi

LIST OF TABLES ... viii

ABSTRACT .. ix

RÉSUMÉ ... x

ÖZET ... xi

1. INTRODUCTION ... 1

2. LITERATURE REVIEW .. 4

2.1 Related Work .. 4

2.2 Previous Feature Engineering Strategies ... 6

3. MATERIALS AND METHODS ... 10

3.1 Dataset Information .. 10

3.2 Materials and Experiments .. 12

3.2.1 H2O Framework .. 12

3.2.2 Splunk Database Stream .. 14

3.2.3 MySQL Query Optimizer .. 16

3.2.4 Random Forest Algorithm ... 20

3.2.5 Linear Regression Algorithm ... 21

3.2.6 Experimental Setup ... 22

3.3 Evaluation Metrics .. 25

3.4 Feature Engineering for Query Execution Time Prediction................................ 26

3.4.1 Query Plan Features .. 26

3.4.2 Load Features .. 29

4. RESULTS ... 33

4.1 Random Forest Results ... 33

4.2 Linear Regression Results ... 38

 iv

5. CONCLUSION ... 40

REFERENCES ... 42

 v

LIST OF SYMBOLS

QET : Query Execution Time
RF : Random Forest
RMSE : Root Mean Square Error
PCA : Principal Component Analysis
CCA : Canonical Correlation Analysis
KCCA : Kernel Canonical Correlation Analysis
MAE : Mean Absolute Error
GLM : Generalized Linear Model
DBPSB : Dpedia Sparql Benchmark

vi

LIST OF FIGURES

Figure 3.1: Maximum Query Execution Times of the System in 24 hours................... 11

Figure 3.2: Each node builds a subset of random forest in DRF 13

Figure 3.3: H2O Framework Architecture .. 14

Figure 3.4: Splunk Database Stream Distributed Deployment Architecture 15

Figure 3.5: Example SQL Query for Visual Explain ... 17

Figure 3.6: Visual Explain of An Example Query ... 17

Figure 3.7: JSON Output of an EXPLAIN Query ... 18

Figure 3.8: Python Code to Remove Duplicated JSON keys 19

Figure 3.9: Python Code to Train and Validate a Random Forest Regression Model ... 23

Figure 3.10: Scoring History Deviance Relationship .. 24

Figure 3.11: The Constant Index Example SQL Query ... 27

Figure 3.12: The percentages of join types (Const, All, Ref, Index) in the data set 27

Figure 3.13: Python Code for Time Series Aggregation with the Given Window Size
.. 29

Figure 3.14: The relation between the total number of bytes transferred and query

execution time for 10.000 random instances .. 30

Figure 3.15: Query for Retrieving Bytes Received and Bytes Sent Information (Global

Level).. 31

Figure 3.16: Query for Retrieving Bytes Received and Bytes Sent Information (Session

Level).. 31

Figure 3.17: The linear relation between Bytes In and Bytes Out for 10.000 random

instances ... 31

Figure 4.1: RMSE metrics for query plan features, load features and all features

comparison in low, medium, high and highest workloads .. 34

Figure 4.2: R2 metrics for query plan features, load features and all features

comparison in low, medium, high and highest workloads .. 35

vii

Figure 4.3: MAE metrics for query plan features, load features and all features

comparison in low, medium, high and highest workloads .. 35

Figure 4.4: The scaled importance of query plan features and load features together in

the highest workload ... 36

Figure 4.5: Actual vs predicted query execution time in seconds in high workload with

query plan features and load features for fast running queries 37

Figure 4.6: Actual vs predicted query execution time in seconds in high workload with

query plan features and load features for slow running queries 37

Figure 4.7: RMSE metrics for query plan features, load features and all features

comparison in low, medium, high and highest workloads with Linear Regression 38

Figure 4.8: Standardized Coefficient Magnitudes in Highest Workload for All Features

in Generalized Linear Model Algorithm with Linear Regression 39

viii

LIST OF TABLES

Table 3.1: Query Dataset with Different Workloads ... 10

Table 3.2: Dataset Column Value Distribution in Low Workload 11

Table 3.3: Dataset Column Value Distribution in Medium Workload 11

Table 3.4: Dataset Column Value Distribution in High Workload 12

Table 3.5: Dataset Column Value Distribution in Highest Workload 12

Table 3.6: Query Plan Features ... 26

Table 3.7: Select Types .. 28

Table 3.8: Load Features .. 30

Table 3.9: Aggregated Continuous Load Features ... 32

ix

ABSTRACT

Prediction of query execution time is one of the most challenging issues for relational

databases and is useful for database administration, resource management, system

monitoring and query scheduling. Most of the query optimizers use cost-based models

for query execution time prediction but the problem is more complex because the

heterogeneity of the database system’s hardware platforms and operating systems makes

more difficult to measure CPU and I/O costs. The relational database vendors try to

implement autonomous databases which automates management and performance thus

intelligent query execution time prediction is a key issue. Previous work mostly used

synthetical data so that reproducing machine learning experiments are almost

impossible for various domains. In this thesis, we use real-world data of a payment

service provider with different workloads and we propose new sets of features based on

aggregating the database queries and compared them with traditional query plan

features. We collected data from a common machine data tool so that reproducing

machine learning experiments and building models are easy for various domains.

x

RÉSUMÉ

La prédiction du temps d'exécution des requêtes est l'un des problèmes les plus

complexes pour les bases de données relationnelles et est utile pour l'administration de

la base de données, la gestion des ressources, la surveillance du système et la

planification des requêtes. La plupart des optimiseurs de requêtes utilisent des modèles

basés sur les coûts pour la prédiction du temps d'exécution des requêtes mais le

problème est plus complexe car l'hétérogénéité des plateformes matérielles et des

systèmes d'exploitation du système de base de données rend plus difficile la mesure des

coûts CPU et E/S. Les fournisseurs de bases de données relationnelles essaient

d'implémenter des bases de données autonomes qui automatisent la gestion et les

performances. La prédiction intelligente de l'heure d'exécution des requêtes est donc un

problème majeur. Les travaux antérieurs utilisaient principalement des données

synthétiques, de sorte que les expériences de reproduction automatique sont presque

impossibles pour divers domaines. Dans cette thèse, nous utilisons des données réelles

d'un fournisseur de services de paiement avec différentes charges de travail et nous

proposons de nouveaux ensembles de fonctionnalités basées sur l'agrégation des

requêtes de base de données et les comparons aux fonctionnalités traditionnelles des

plans de requête. Nous avons collecté des données à partir d'un outil commun de

données machine afin que les expériences de reproduction automatique et les modèles

de construction soient faciles pour différents domaines.

xi

ÖZET

Sorguların çalışma süresini tahmin etmek ilişkisel veri tabanları için en zor konulardan

biridir ve bu tahminin doğru gerçekleşmesi, veri tabanı yönetimi, kaynak yönetimi,

sistemin performansının izlenmesi ve sorguların zamanlamasının yönetimi gibi birçok

konuda faydalıdır. Birçok sorgu iyileştiren yazılım, sorguların çalışma süresini tahmin

edebilmek için maliyet tabanlı modeller kullanır fakat ilgili problem daha karmaşıktır

zira veri tabanı sistemlerinin donanım ve yazılımlarının heterojen olması işlemci ve G/Ç

maliyetlerinin ölçümünü çok zor kılmaktadır. İlişkisel veri tabanı üreticileri, yönetimi

ve performansı otomatik hale getiren, kendi kendine çalışan veri tabanı sistemleri

geliştirmeye çalışmaktadırlar. Bu noktada veri tabanı sorgularının çalışmadan önce ne

kadar süreceğini tahmin etmek kilit bir özelliktir. Geçmiş çalışmalar sorgu süresini

tahmin edebilmek için sentetik veri kullanmışlardır. Bu nedenle farklı alanlarda yapay

öğrenme deneylerini tekrar etmek neredeyse imkânsız hale gelmektedir. Bu makalede,

bir ödeme hizmet sağlayıcısının gerçek dünyadaki farklı yükler altındaki verisi

kullanılmış ve veri tabanı sorguları zaman pencereleri içerisinde toplanarak üretilen yeni

öznitelik kümesi sunulmuştur. Bu sunulan öznitelik kümesi geleneksel sorgu planı

öznitelikleriyle karşılaştırılmış ve sonuçlar paylaşılmıştır. İlgili veri yaygın bir veri

toplama aracıyla toplanmış bu sayede yapılan yapay öğrenme deneyleri ve oluşturulan

modeller çeşitli alanlarda kolayca tekrar edilebilir hale gelmiştir.

1

1. INTRODUCTION

In the recent years, the database vendors try to decrease operational cost of database

systems with the automation of patch management, high availability approaches and

performance tuning. Predicting query execution time is a key issue for automatic

intelligent performance tuning. Most of the database systems use cost-based optimizers

to predict the query execution time. However, these optimizers are by themselves not

sufficient as there are too many operational variables involving the operating system,

the hardware characteristics and the database load. The prediction task can become

indeterministic and letting too many long running queries can result in system

downtime. One of the implicit assumptions behind our work is that the database

system's query execution time performance doesn't abruptly change but varies in time

and therefore the time series (Hamilton, 1994) analysis is leveraging factor for better

prediction.

Recent work on predicting database query execution time has argued that the query

optimizer’s cost models are useful to compare alternative queries but not useful to

predict database query performance metrics. Ganapathi et al. extracted features before

the queries execute and predicts multiple resource usage characteristics for both short

and long running queries. They give operator cardinalities and performance metrics to

KCCA algorithm and the algorithm interpolates on the relative differences between

these cardinalities and builds a model. The training and validation dataset contains

queries which have query execution times range from milliseconds to hours and the

predicted metrics are elapsed time, records used, disk I/O and message bytes. In that

work Ganapathi et al. (2009) designed an architecture which requires vendor site

installation for predictions and uses synthetic data which has 2807 instances at

maximum.

2

Moreover, current data management systems process concurrent queries in

heterogeneous query workloads and the query performance can be related to the

workload size. J. Duggan et al. presents a modeling approach which tries to estimate

the effect of concurrency for analytical workloads without using semantic information

and adapts the baseline system to dynamically changing workload by using time series

analysis. They also introduce a metric that captures the joint effects of disk and

memory contention on query performance and predict the latency of each query in the

workload and determine the termination time of each query (Duggan et al., 2011).

Previous work mostly uses generated queries from templates but the database

management systems can behave differently in production environments. The current

systems have database connection pools and these connection pools have limited

capacity. The connection pool cannot give connections to applications if there is a

latency or too many long-running queries in the system so that identifying long-running

queries before execution will help us to better schedule queries. The prediction of query

execution time also helps us to know resource requirements of the database

management systems before installation.

In high available and scalable systems, latency and failover management is a key issue

for scalability because the systems can have latency issues in high workloads. Under

high workload, each thread can wait too long and throw timeout exceptions when there

are too many long running queries in the system thus there can be a downtime issue

because of the constant size of thread pools.

Predicting query execution time can be useful for many system management decisions

including:

• System Administration: Knowing query execution time before they are executed

can enable cost-based decisions and management systems can decide whether

they should execute the query or not

• System Monitoring: Monitoring and alert systems can provide execution time

information of queries before they are executed so that systems can avoid too

many long-running queries.

3

• System Sizing: The database infrastructure teams can use the query execution

time to give optimum hardware to the systems. This information is also useful

for dynamic resource allocation in cloud systems.

• Query Scheduling: Latency aware scheduling systems need the query execution

time prediction.

The main contributions of this thesis are listed as follows:

• We propose new sets of load related features to predict query execution time.

• Our machine learning experiments are reproducible because every user of the

same database logging platform can collect the similar data in their domain.

• Rather than generating queries from templates, we collect a large data set from

production environment of a payment platform and consequently the results of

the experiments are reliable for this indeterministic prediction task.

The rest of the thesis is organized as follows: In section 2 we describe related work and

previous feature engineering strategies. In section 3 we describe traditional query plan

features (Chaudhuri, 1998), we briefly introduce load related features and give

information about experiments and materials used in these experiments. In section 4 we

present our experiments and results. Finally, we conclude the thesis and outline the

future work in section 5.

4

2. LITERATURE REVIEW

2.1 Related Work

Previous work on query execution time prediction are mostly based on comparative

evaluation of various machine learning techniques with synthetic query templates for

short and long-running queries. They compared regression techniques, clustering

techniques, principal component analysis (PCA), canonical correlation analysis (CCA)

and kernel canonical correlation analysis (KCCA) to predict query execution time

(Ganapathi et al., 2009) (Akdere et al., 2012). However, these studies do not involve

any realistic workloads with real-world production data. Some of the work attempt to

address concurrent query performance predictions under different analytical query

workloads where TPC-H (Council, T. P. P., 2008) templates are employed for

generating the queries (Duggan et al., 2011).

Hasan et al. predicted query execution time of SPARQL queries with a machine

learning approach. In that work they extracted algebra features by using the frequencies

of algebra operators and extracted graph pattern features by clustering structurally

similar query patterns. They use the sum of all SLICE operator cardinalities which is

the combination of OFFSET and LIMIT operators appearing in the algebra expression.

They also used the depth of the algebra tree and the number of triple patterns as

additional features. The DBPSB benchmark is used for evaluation of experiments and

this benchmark includes 25 query templates which cover most commonly used

SPARQL queries (Hasan & Gandon, 2014).

Moreover, some previous work challenges the assumption of insufficiency of query

optimizers and calibrates the constants of optimizer’s cost model for prediction. They

show that the optimizer’s cost model can be competitive with machine learning systems

5

if the parameters of optimizer’s cost model is optimized. In general the flow of

PostgreSQL’s cost optimizer can be summarized as follows (Wu et al., 2013):

• Estimate the cardinality of I/O

• Compute the CPU cost by using the information of the I/O cardinality

• Compute the number of accessed pages with the cardinality estimate information

• Compute the I/O cost with the information of accessed pages

• Compute the sum of CPU cost and I/O cost

Wu W. et al. (2013) also helped the interpretation of database management cost models

because they preferred optimizing cost model’s parameters instead of black-box

machine learning approaches. The other advantages of their framework are as follows:

• No Training Data Needed: The machine learning based query execution time

predictions systems need training data but their system can work with only

ad-hoc queries.

• Interpretable Approach: The machine learning algorithms are difficult to

interpret and most of them are black-box approaches. Their system is related to

existing paradigm of query optimization in relational databases.

• Lightweight: The profiling step doesn’t depend hardware and the system is

portable.

In another work, Wu W. et al. (2014) presents uncertainty aware query execution

prediction time methodologies in which they provide prediction uncertainty by using

different distributions of likely running times. They try a random distribution for CPU

cost of processing one tuple to quantify the uncertainty by assuming that the distribution

of CPU cost is normal (i.e. Gaussian) for intuitively the CPU speed is likely to be stable

and centered around its mean value. For the selectivity of an operator in the query plan,

the uncertainties are different than CPU costs while CPU costs have random values but

the selectivity values have fixed numbers because they suppose that any cost model

doesn’t have a perfect selectivity estimator. In this work they show that the distribution

of query execution time t(q) for a query q is asymptotically normal so that this reduces

the problem to estimate the two parameters of normal distributions and the mean and

variance of t(q) (Wu et al. 2014).

6

In this thesis we collected a large sample of real-world queries of a payment service

provider under different workloads. Results of many machine learning studies in this

context are difficult to reproduce (Olorisade et al., 2017). In this sense one of our goals

is to increase the probability of being reproduced. To address this, we use one common

machine intelligence tool to collect the data and the retrieval process of the dataset is the

same for all users of this tool.

2.2 Previous Feature Engineering Strategies

Prior feature engineering studies include following techniques to convert a query to a

feature vector (Ganapathi et al., 2009):

• The statistics on the SQL text of each query by counting:

o Number of nested sub-queries,

o Total number of selection predicates

o Number of equality selection predicates

o Number of non-equality selection predicates

o Total number of join predicates

o Number of equijoin predicates

o Number of aggregation columns

o Number of sort columns

• Query plan which is produced by the query optimizer (Ganapathi et al., 2009;

Akdere et al., 2012; Wu et al., 2013). Query plan feature vector consists of a

tree of query operators with estimated cardinalities and contains an instance

count and cardinality sum of each possible operator (Ganapathi et al., 2009).

Previous work uses PostgreSQL database’s query plan features as below

(Akdere et al., 2012):

o seq_page_cost: I/O cost to sequentially access a page which is calculated

by query optimizer. Example query:

§ SELECT * FROM R;

o random_page_cost: I/O cost to randomly access a page. Example query:

§ SELECT * FROM R WHERE R.B < b; (b is unclustered index)

7

o cpu_tuple_cost: CPU cost to process a tuple which is unordered sets of

known values with names. Example query:

§ SELECT * FROM R;

o cpu_index_tuple_cost: CPU cost to process a tuple via index. Example

query:

§ SELECT * FROM R WHERE R.A < a; (a is clustered index)

o cpu_aggregator_cost: CPU cost of aggregation or hash which is

calculated by query optimizer. Example query:

§ SELECT COUNT(*) FROM R;

• Akdere et al. (2012) use query plan level features which is calculated by query

optimizer as follows:

o p_tot_cost: Estimated total plan cost

o p_st_cost: Estimated plan start cost

o p_rows: Estimated number of output tuples

o ap_width: Estimated average size of an output tuple

o op_count: Number of query operators in the plan

o row_count: Estimated total number of tuples input and output to/from

each operator

o byte_count: Estimated total size of all tuples input and output

o <opertor_name>_count: The number of operators in the query

o <operator_name>_rows: The total number of tuples output from

<operator_name> operators

• Akdere et al. (2012) also used operator level features which is collected by using

“MATERIALISE” operator. The operator level features use two separate

prediction models as start-time model and run-time model. The start-time model

tries to estimate the execution time of an operator until it produces its first tuple.

The run-time model tries to estimate total execution time of query operators:

o np: Estimated I/O (in number of pages)

o nt: Estimated number of output tuples

o nt1: Estimated number of input tuples (from left child operator)

8

o nt2: Estimated number of input tuples (from left right operator)

o sel: Estimated operator selectivity

o st1: Start-time of left child operator

o rt1: Run-time of left child operator

o st2: Start-time of right child operator

o rt2: Run-time of right child operator

• The structural similarity between graph queries by using clustering techniques.

They construct multiple graphs from multiple query patterns and compute the

edit distance between these graphs to compute the structural similarity between

query patterns (Hasan & Gandon, 2014).

• Wu W. et al. (2013) used queuing theory and they designed a queuing model

which uses prediction pipelines of multiple queries as customers. In this model

the query execution time of a pipeline is its residence time in queueing network.

If k ∈	{CPU, disk}, the features of this queuing model are as follows:

o C(k): Number of servers in (service) center k

o T(k): Mean service time per visit to center k

o Y(k): Correction factor of center k

o p(k): Utility of center k

o V(k,m): Mean number of visits by customer m to center k

o Q(k,m): Mean queue length by customer m at center k

o R(k,m): Mean residence time per visit by customer m to center k

9

• We W. et al (2013) also uses scan operator features like sequential scan, index

scan and bitmap index scan which are implemented by PostgreSQL. They use

the following features to represent a scan instance s(i) in a mix {s1 , ..., sn},

where tbl(i) is the table accessed by s(i), and N(s(i)) is the set of neighbor scans

of s(i) in the mix:

o Number of sequential I/O’s of s(i)

o Number of random I/O’s of s(i)

o Number of scans in N(s(i)) that are over tbl(i)

o Number of sequential I/O’s from scans in N(s(i)) that are over tbl(i)

o Number of random I/O’s from scans in N(s(i)) that are over tbl(i)

o Number of scans in N(s(i)) that are not over tbl(i)

o Number of sequential I/O’s from scans in N(s(i)) that not are over tbl(i)

o Number of random I/O’s from scans in N(s(i)) that are not over tbl(i)

10

3. MATERIALS AND METHODS

3.1 Dataset Information

The data set is collected for 40 minutes from a payment service provider with a database

plugin of streaming machine data platform in four different workloads. The highest

workload data is collected during black Friday between 21.55 and 22.05, the lowest

workload data is collected in the early morning between 03.00 and 03.10 (See Table

3.1). The data set contains all queries of the company from too many different schemas

and applications with the limit of 10 minutes overall execution time. In Table 3.1,

minimum, maximum and mean of query execution times in related workload type is

shown.

Table 3.1: Query Dataset with Different Workloads

Workload
Type

Number of Instances Minimum
QET

Mean
QET

Maximum
QET

Low 199789

0.0001 secs 0.01 secs 33.5 secs

Medium 425847 0.0001 secs 0.009 secs 41.5 secs

High

425989

0.001 secs

0.05 secs

152 secs

Highest

944254

0.0001 secs 0.006 secs 8.5 secs

The dataset has 4 distinct samples and each sample has 10 minutes window size with

different workload sizes. When we look at the behavior of the overall system in 24

hours, the maximum query execution times change between 10 seconds and 150

seconds (Figure 3.1). The mean of the query execution times changes between 0.006

11

seconds and 0.05 seconds. The highest workload data sample size is 780 MB while the

lowest workload data sample size is 140 MB.

Figure 3.1: Maximum Query Execution Times of the System in 24 hours

The minimum, maximum and mean of other numerical column values are shown in

tables for all workloads (Table 3.2, 3.3, 3.4 and 3.5).

Table 3.2: Dataset Column Value Distribution in Low Workload

Column Name Workload
Type

Minimum Mean Maximum

Reply Time Low 0 0.01 33.5
Request Time Low 0 0.00002 0.2

Bytes Low 24 3090 4399465
Bytes In Low 13 1096 20835

Bytes Out Low 0 1993 4378630
Result Column Count Low 1 6.8 182

Result Row Count Low 0 1 18

Table 3.3: Dataset Column Value Distribution in Medium Workload

Column Name Workload
Type

Minimum Mean Maximum

Reply Time Medium 0 0.008 41.5
Request Time Medium 0 0.00001 0.3

Bytes Medium 24 3319 2104348
Bytes In Medium 13 1153 20835

Bytes Out Medium 0 2165 2103717
Result Column Count Medium 1 6 114

Result Row Count Medium 0 1 30

12

Table 3.4: Dataset Column Value Distribution in High Workload

Column Name Workload
Type

Minimum Mean Maximum

Reply Time High 0 0.04 152
Request Time High 0 0.00001 0.3

Bytes High 24 3090 8886522
Bytes In High 13 804 60199

Bytes Out High 11 2364 8885920
Result Column Count High 1 7 114

Result Row Count High 0 1 23

Table 3.5: Dataset Column Value Distribution in Highest Workload

Column Name Workload
Type

Minimum Mean Maximum

Reply Time Highest 0 0.06 8
Request Time Highest 0 0.00005 21.5

Bytes Highest 24 1713 8035174
Bytes In Highest 13 595 20835

Bytes Out Highest 0 1118 8032750
Result Column Count Highest 1 7 122

Result Row Count Highest 0 1 100

3.2 Materials and Experiments

3.2.1 H2O Framework

H2O framework is open-source, in-memory and distributed machine learning

framework for big data analytics. Inside the framework, a distributed key value store is

used for data manipulation and model building so that each node has an access to data

frames and models (Figure 3.3). The framework has three parts:

• H2O Cluster: Multi-node cluster with shared memory model

• Distributed Key-Value Store: Data frames, models and any other H2O objects

can be accessed via distributed key value store

13

• H2O Frame: Distributed data frames which their columns are distributed

(across the nodes) arrays

In the experiments, Distributed Random Forest (DRF) (Segal, 2004) algorithm is used

and this algorithm can handle categorical variables and missing values automatically.

In the DRF algorithm of H2O framework, missing values are not interpreted as missing

at random. They are interpreted as containing information (i.e., missing for a reason).

Split decisions for every node are found by minimizing the loss function and treating

missing values as a separate category that can go either left or right during tree building.

In DRF each node builds a subset of forest (Figure 3.2) (Liaw & Wiener, 2002).

Figure 3.2: Each node builds a subset of random forest in DRF

The H2O Framework has different components working together to build machine

learning models (Figure 3.3). The data scientists or software developers can build

models by using different programming languages like Python, R, JavaScript ..etc. and

the framework is also integrated with business intelligence tools. The framework also

provides plugins for different data sources from relational databases to big data tools

and it helps us to run experiments with millions of queries with its scalability and data

compression capabilities.

14

Figure 3.3: H2O Framework Architecture

3.2.2 Splunk Database Stream

Splunk is a machine data collection tool for distributed applications and the query

dataset is collected by using Splunk database stream. Streams support passive capture

of network data and database protocol is one of the supported protocols of streams. To

collect data from a database, the forwarders forward the query data and the execution

times to indexer and the indexer indexes the queries for searching.

15

Splunk database stream supports MySQL database and can be installed on a single

instance server as both search head and indexer which is ideal for small local and testing

environment because it supports one or two concurrent searches. For large datasets and

enterprise applications, distributed installation is needed (Figure 3.4).

Figure 3.4: Splunk Database Stream Distributed Deployment Architecture

16

To collect queries and their execution times in a scalable and distributed architecture,

the database queries are collected as network inputs by universal forwarders of a

database stream. The universal forwarders of the plugin collect the query, the query

parameters and their execution time and forward this information to indexers. To find

all the queries, the head pointer points the indexer so that the search results appear on

the user interface of plugin (Figure 3.4).

3.2.3 MySQL Query Optimizer

MySQL query optimizer tries to optimize the queries in database level and hardware

level. In the database level the optimizer looks at the database’s basic design:

• Do the columns have the right data types?

• Is the right storage engine (MyIsam or InnoDB) used? For example, if the

system is transactional, it needs a transactional storage engine InnoDB.

• Are the right indexes in place to make query executions faster?

• Is the application uses the right locking strategy? For example, InnoDB storage

engine guarantees data consistency.

• Is the memory used efficiently for caching the queries?

In the hardware level the optimizer looks at the hardware limits:

• CPU cycles: Having large tables need more memory.

• Memory bandwidth: If CPU needs more memory than the size of CPU cache,

the main memory bandwidth can be a bottleneck.

• Disk seeks: The disk needs time to find a piece data.

• Disk reading and writing: Reading data from the disk and writing the data to the

disk may be expensive.

In MySQL database, the query plan information can be retrieved by using EXPLAIN

query. In Figure 3.5, an example SQL query is given with selection, concatenation,

inner joins and where operation with some limit. This query has a full table scan cost

and multiple nested loop costs which uses unique key and non-unique key lookups.

MySQL query plan calculates the cost of the query by using these parameters (Figure

3.5).

17

SELECT CONCAT(customer.last_name, ', ',

customer.first_name) AS customer, address.phone, film.title

FROM rental

INNER JOIN customer ON rental.customer_id =

customer.customer_id

INNER JOIN address ON customer.address_id =

address.address_id

INNER JOIN inventory ON rental.inventory_id =

inventory.inventory_id

INNER JOIN film ON inventory.film_id = film.film_id

WHERE rental.return_date IS NULL

AND rental_date + INTERVAL film.rental_duration DAY <

CURRENT_DATE()

LIMIT 5;

Figure 3.5: Example SQL Query for Visual Explain

The visual information about the explain is as follows (Figure 3.6):

Figure 3.6: Visual Explain of An Example Query

The MySQL optimizer uses disk seek count to estimate the query performance in

hardware level:

18

log(row_count)
log(index_block_length)

3 × 2
index_length +data_pointer_length

+1 (1)

The query plan features are collected by using MySQL’s “EXPLAIN JSON” query. In

MySQL’s EXPLAIN query, the output JSON format (Figure 3.7) is not valid because

there are many keys which have the same names (i.e. table, table_name ..etc.):

EXPLAIN: {

 "query_block": {

 "select_id": 1,

 "nested_loop": [

 { "table": {

 "table_name": "departments",

 <skipped>

 },

 { "table": {

 "table_name": "<subquery2>",

 "access_type": "eq_ref",

 "key": "<auto_key>",

 "key_length": "4",

 "ref": [

 "employees.departments.dept_no"

],

 "rows_examined_per_scan": 1,

 "materialized_from_subquery": {

 "using_temporary_table": true,

 "query_block": {

 "table": {

 "table_name": "dept_manager",

 "access_type": "ALL",

 "possible_keys": [

 "dept_no"

], "used_columns": [

 "dept_no",

 "to_date"

]}}}}}]}

}

Figure 3.7: JSON Output of an EXPLAIN Query

19

To fix the invalid JSON format problem, we have to differentiate key names by adding

postfixes to the names. We use Python programming language in all experiments and

fix invalid JSON problem with the following code (Figure 3.8) :

from collections import OrderedDict

from json import JSONDecoder

def make_unique(key, dct):

 counter = 0

 unique_key = key

 while unique_key in dct:

 counter += 1

 unique_key = '{}_{}'.format(key, counter)

 return unique_key

def parse_object_pairs(pairs):

 dct = OrderedDict()

 for key, value in pairs:

 if key in dct:

 key = make_unique(key, dct)

 dct[key] = value

 return dct

Figure 3.8: Python Code to Remove Duplicated JSON keys

We give the EXPLAIN output to parse_object_pairs function to make the JSON keys

unique so that multiple table keys are renamed as table_1, table_2..., table_n.

20

3.2.4 Random Forest Algorithm

Growing ensemble of trees and letting them vote for the most popular class in

classification resulted improvements in classification accuracy. Random vectors are

created for growing the ensembles of trees. Random forest algorithm is also used for

regression and we make our experiments with this algorithm. Random forests for

regression are created by growing trees depending on a random vector such that the

predictor trees take on numerical values rather than categorical values. Each leaf of

random trees contains a distribution for the continuous output variable. The random

forest predictor is created by taking the average of k of the trees for final prediction.

Some of the input features may be categorical and since the random forest algorithm

wants to define additive combinations of variables, the algorithm needs to define how

categorical variables will be treated so they can be combined with numerical variables

(Breiman, 2001).

Random forest algorithm is that each time a categorical feature is selected to split on at

a node, to select a random subset of the categories of the variable, and define a

substitute variable that is one when the categorical value of the variable is in the subset

and zero outside (Breiman, 2001). In H2O framework, random forest algorithm handles

categorical variables with the following encoding types:

• Auto: Allow the algorithm to decide and it is the default encoding scheme to

handle categorical features. In H2O random forest the algorithm will

automatically perform Enum encoding.

• Enum: The algorithm adds one column per categorical feature.

• One Hot Explicit: The algorithm adds N+1 new columns for categorical

features with N levels.

• Binary: The algorithm adds no more than 32 columns per categorical feature.

• Eigen: The algorithm adds k columns per categorical feature, keeping

projections of one-hot-encoded matrix onto k-dimension eigen space only.

• Label Encoder: The algorithm converts every enumeration into the integer of

its index (for example, level 0 -> 0, level 1 -> 1, etc.).

21

In H2O framework, random forest algorithm splits the trees based on reduction in

Squared Error for regression. For categorical features, the framework also uses

histograms for splitting and can handle splitting on categorical variables with the chosen

encoding type. In the experiments, we used “enum” encoding which adds one column

per categorical feature to split on categorical feature and assigns 1 if the instance is in

this category, 0 if the instance is not in this category.

3.2.5 Linear Regression Algorithm

Linear regression algorithm tries to model the relationship between two or more

explanatory variables by setting a linear equation to observed data. One variable is

considered to be explanatory, and the other variable is considered to be dependent. It is

the simplest sample of a linear algorithm but has many uses and several advantages over

other algorithms. Especially, it is faster and requires more stable computations. H2O

framework handles categorical variables automatically by expanding them into one-hot

encoded binary vectors. The framework creates variables which is a variable created to

assign numerical value to levels of categorical variables and each variable represents

one category of the explanatory variable and is coded with 1 if the case falls in that

category and with 0 if not. Consequently the algorithm adds one binary column for

each categorical feature and encodes it with zero or one (Seber & Lee, 2012).

Linear regression model parameters in H2O framework are as follows (Ambati et al.,

2014):

• training_frame: Specify the dataset used to build the model

• seed: Specify the random number generator seed for algorithm components

dependent on randomization. The seed is consistent for each H2O instance so

that you can create models with the same starting conditions in alternative

configurations.

• y: Specify the column to use as the dependent variable. For a regression model,

this column must be numeric. For a classification model, this column must be

categorical (Enum or String).

22

• x: Specify a vector containing the names or indices of the predictor variables to

use when building the model. If x is missing, then all columns except y are used.

• alpha: Specify the regularization distribution between L1 and L2.

• lambda: Specify the regularization strength.

• early_stopping: Specify whether to stop early when there is no more relative

improvement on the training or validation set.

• standardize: Specify whether to standardize the numeric columns to have a

mean of zero and unit variance. If the standardization is not used, the results can

include components that are dominated by variables that appear to have larger

variances relative to other attributes as a matter of scale, rather than true

contribution. This option is enabled by default and we used this parameter in the

experiments.

• max_iterations: Specify the number of training iterations. It was 100 in the

experiments.

• objective_epsilon: Specify a threshold for convergence. The model is

converged if the objective value is less than this threshold.

• beta_epsilon: Specify the beta epsilon value. If the L1 normalization of the

current beta change is below this threshold, consider using convergence.

3.2.6 Experimental Setup

All the experiments used MySQL version 5.5 servers. The experiment infrastructure is

a DELL R730 eight processor machines with Emc5100 disks and 8 GB RAM. The data

is collected by using MySQL database plugin of Splunk Enterprise version 6.6.0.

Machine learning training and tests are made by using H2O.ai implementation of

Random Forest (Liaw & Wiener, 2002) for regression with 100 trees. The Python

programming language is used for all experiments. The queries are split as 80% for

training and 20% for testing and the same queries are not used for both training and

testing. Window size is 30 seconds for load feature aggregation. We predict query

execution time in seconds and measure error rates. The Random Forest parameter

values are shown below:

23

• Number of Trees: 100

• Number of Internal Trees: 100

• Minimum Depth: 20

• Maximum Depth: 20

• Mean Depth: 20

• Minimum Leaves: 2492

• Maximum Leaves: 10353

• Categorical Encoding: Enum

Random forest algorithm (Breiman, 2001) adds additional layer of randomness to

bagging which successful trees don’t depend on earlier trees. In standard decision trees,

each node of the tree is split by the best split in all variables. In a random forest, each

node of the tree is split by the best in a random subset of predictors at that node. This

randomness makes random forest robust to overfitting thus random forest algorithm is

chosen in all experiments. The example Python code to split training data frame and test

data frame and train a DRF model is shown below (Figure 3.9) :

from h2o import h2o

h2o.init()

h2o.remove_all()

from h2o.estimators.random_forest import H2ORandomForestEstimator

train, valid = no_peak_df_plan_h2o.split_frame(ratios = [.8], seed = 1234)

feature_columns.extend(continuous_feature_columns)

random_forest= h2o.H2ORandomForestEstimator(

 model_id="rf_no_peak_all",

 ntrees=100

)

random_forest.train(feature_columns, 'time_taken', training_frame=train,

validation_frame=valid)

Figure 3.9: Python Code to Train and Validate a Random Forest Regression Model

24

The validation (Picard & Cook, 1984) data set deviance decreases with the increase of

the number of trees in the Random Forest (Figure 3.10). The deviance is the goodness

of fit in statistics so that if it decreases, the model predicts better. In this model, the

deviance becomes constant at 80 trees and increasing the number of trees more than 80

doesn’t help to increase accuracy so that we can decrease computation resource of

predictions if we use only 80 trees. Decreasing number of trees in a Random Forest

algorithm helps us to use less hardware resources for computations and to decrease

training and prediction times so that we measure the deviance to fix the number of trees

in each training.

Figure 3.10: Scoring History – Deviance Relationship

In the experiments we also try to predict query execution time with Generalized Linear

Model (GLM) of H2O framework with Linear Regression. The linear regression model

25

predictions take the form of a full predictive distribution. Linear Regression

corresponds to the Gaussian family model (Frisch et al., 1996; Rasmussen, 2004; Bunea

et al., 2007).

3.3 Evaluation Metrics

Root Mean Squared Error (RMSE) (1) (Chai & Draxler, 2014) is used as the error

metric of experiments. This metric is useful to minimize the absolute difference in

actual and predicted query execution times.

 RMSE=#1
n
∑ (actual-estimate)2n

j=1 (2)

R2 (2), the coefficient of determination (Nakagawa & Schielzeth, 2013), also called the

multiple correlation is used as the second metric. y and y’ represent the actual and the

predicted values in n queries. As R2 is scaled between 0 and 1, it is easy to interpret the

results and to compare the results of different workloads.

																																							R2)y,	y'-=1-
1 (yi-y'i)2

n

i=1
4 (yi-y5)2

n
i=1

	 																															(3)

Mean Absolute Error (MAE) is the average magnitude of the errors in a set of

predictions without considering their direction (Willmott & Matsuura, 2005). If all

individual differences have the same weight, the mean absolute error is the average over

the test dataset of the absolute differences between prediction and actual values (3).

																																							MAE= 6
7
∑ 8𝑦: − 𝑦′:87
:=6 	 																															(4)

26

3.4 Feature Engineering for Query Execution Time Prediction

3.4.1 Query Plan Features

In this section we consider how will the relational database management system

executes a query. Our first approach for feature engineering relies on query execution

plans since many database management systems provide interfaces that returns query

plan information. The query plan features include information about partitions, how

tables are joined, the indexes that are chosen and the join types (See Table 3.6). The

query plan structure is collected with “EXPLAIN” interface of MySQL database.

Table 3.6: Query Plan Features

Feature Name Description
Access Type The join type (equijoin, non-equijoin etc.)

Select Id The sequential number of select within the query
Select Type Types of select
Table Name The name of the table to which the row of output refers

Key Index that is actually decided to use
Key Length The length of the index that is actually decided to use

Used Key Parts The part of a multiple column key that is actually used
Ref Columns that are compared to the index

Rows The number of rows that database believes it must examine
to execute the query

Using Index The column information is retrieved using only indexes

The access type can have the values of “all”, “index”, “const” and “ref”:

• ALL: For each combination of rows from the previous tables, a full table scan

is done. By adding indexes that enable row retrieval from the table based on

constant values or column values from earlier tables, we can avoid ALL.

• INDEX: This join type is the same as ALL, except that the index tree is

scanned. This may occur in two ways:

27

o If the index is a covering index only the index tree is scanned. In this

case, the query plan returns “using index”. An index-only scan usually

is faster than ALL because the size of the index usually is smaller than

the table data.

o A full table scan is performed using reads from the index to look up data

rows in index order. Uses index does not appear in the extra column.

• CONST: The table has one matching row at most and this row is read at the

start of the query. These tables are very fast because they are read-only at once.

This index type is used when you compare all parts of a primary key or unique

key to constant values. In the following queries, my_table can be used as a

const table (Figure 3.11).

SELECT * FROM my_table WHERE primary_key = 1;

SELECT * FROM my_table WHERE primary_key_part1 = 1 AND
primary_key_part2 = 2;

Figure 3.11: The Constant Index Example SQL Query

• REF: This column describes which columns or constants are compared to the

index named in the key column to select rows from the table.

In the dataset the most used join types are Const and All. 45% of queries uses Const,

31.1% of queries uses All, 21.2% of queries uses Ref and 2.68% of queries uses Index

(Figure 3.12).

28

Figure 3.12: The percentages of join types (Const, All, Ref, Index) in the data set

The select types of EXPLAIN output are shown in Table 3.7:

Table 3.7: Select Types

Select Type Description
SIMPLE Simple SELECT (not using sub queries or UNION)

PRIMARY Outermost SELECT
UNION Second or later SELECT statement in a UNION

DEPENDENT
UNION

Second or later SELECT statement in a UNION, dependent
on outer query

UNION RESUT Result of a UNION query
SUBQUERY First select in a subquery

DEPENDENT
SUBQUERY First SELECT in subquery, dependent on outer query

DERIVED Derived table SELECT (subquery in FROM clause)
MATERIALIZED Materialized subquery
UNCACHEABLE

SUBQUERY
A subquery for which the result cannot be cached and must

be re-evaluated for each row of the outer query
UNCACHEABLE

UNION
The second or later select in a UNION that belongs to an

uncacheable subquery

29

3.4.2 Load Features

The second feature engineering methodology is based on analyzing the periodic

behavior of a database management system by aggregating the queries with time series

analysis. The data is collected by using a common database plugin of a machine data

collection tool. We aggregated time features like minimum, maximum, mean, standard

deviation and variance with constant window size and analyzed the effects of workload

to predict query execution time (See Table 3.8). For example the aggregation of “bytes”

column in a rolling window is implemented with Pandas framework as follows (Figure

3.13) :

import pandas as pd

read CSV file from a data path

df = pd.read_csv(data_path, index_col=None, header=0)

aggregate features in a rolling window

df['bytes_mean']= df['bytes'].rolling(window_size).mean()

df['bytes_std']= df['bytes'].rolling(window_size).std()

df['bytes_var']= df['bytes'].rolling(window_size).var()

df['bytes_min']= df['bytes'].rolling(window_size).min()

df['bytes_max']= df['bytes'].rolling(window_size).max()

Figure 3.13: Python Code for Time Series Aggregation with the Given Window Size

30

Table 3.8: Load Features

Feature Name Description

Reply Time Number of microseconds that it took the server to start
replying to a request

Request Time Number of microseconds that it took the client to send a
request

Response Time Number of microseconds that it took the server to send a
response

Bytes The total number of bytes transferred
Bytes In The number of bytes sent from client to server

Bytes Out The number of bytes sent from server to client

We try to investigate the relationship between the total number of bytes transferred and

the query execution time to better understand the effects of network workload but we

couldn’t find a linear relation (Figure 3.14).

Figure 3.14: The relation between the total number of bytes transferred and query
execution time for 10.000 random instances

31

The number of bytes sent from client to server (bytes in) and the number of bytes sent

from server to client (bytes out) depends linearly (Figure 3.17). This information about

the number of bytes can be obtained with the query below in MySQL:

SELECT * FROM information_schema.global_status
WHERE variable_name IN
('Bytes_received','Bytes_sent');

Figure 3.15: Query for Retrieving Bytes Received and Bytes Sent Information (Global
Level)

SELECT * FROM information_schema.session_status
WHERE variable_name IN
('Bytes_received','Bytes_sent');

Figure 3.16: Query for Retrieving Bytes Received and Bytes Sent Information (Session
Level)

Figure 3.17: The linear relation between Bytes In and Bytes Out for 10.000 random
instances

After the aggregation of load features, the continuous aggregated features are shown in

Table 3.9 with window size of 30 seconds.

32

Table 3.9: Aggregated Continuous Load Features

Feature Name Description
Reply Time Mean The mean of reply time in the current window
Reply Time Std The standard deviation of reply time in the current window
Reply Time Var The variance of reply time in the current window
Reply Time Min The minimum value of reply time in the current window

Reply Time Max The maximum value of reply time in the current window

Request Time Mean The mean of request time in the current window
Request Time Std The standard deviation of request time in the current window
Request Time Var The variance of request time in the current window
Request Time Min The minimum value of request time in the current window
Request Time Max The maximum value of request time in the current window

Response Time
Mean The mean of response time in the current window

Response Time Std The standard deviation of response time in the current
window

Response Time Var The variance of response time in the current window
Response Time Min The minimum value of response time in the current window
Response Time Max The maximum value of response time in the current window

Bytes Mean The mean of total number of bytes transferred in the current
window

Bytes Std The standard deviation of total number of bytes transferred
in the current window

Bytes Var The variance of total number of bytes transferred in the
current window

Bytes Min The minimum value of total number of bytes transferred in
the current window

Bytes Max The maximum value of total number of bytes transferred in
the current window

33

4. RESULTS

4.1 Random Forest Results

First, we show the results of predictions with query plan features and load features by

using random forest algorithm. We build a random forest regression model to predict

query execution time in seconds in different workloads and compare RMSE metric of

query plan features, load features and all features together with different workloads (see

Figure 4.1).

In Figure 4.1, the x-axis represents different workloads and the y-axis shows the RMSE

of the predictions. The best results are obtained with the model of query plan and load

features together in all workloads. Surprisingly, for the highest workload (1573 queries

per second) during black Friday, query plan features are more effective than load

features. We need to interpret random forest algorithm to analyze this result so that we

calculate the relative influence of each feature whether this feature was selected during

splitting in the tree building process and how much the squared error (over all trees)

improved as a result. The scaled importance of features is calculated by h2o.ai

framework (Ambati et al., 2014).

34

Figure 4.1: RMSE metrics for query plan features, load features and all features
comparison in low, medium, high and highest workloads

Figure 4.2 shows the R2 values on the validation dataset for different workloads. The

low workload gives us the highest R2 value 0.9821 while the highest workload gives the

lowest R2 value 0.5268 with query plan and load features together.

35

Figure 4.2: R2 metrics for query plan features, load features and all features comparison
in low, medium, high and highest workloads

Figure 4.3 shows the mean absolute error (MAE) values on the validation set of

different workloads. The low workload gives us the lowest MAE value 1266 and while

the high workload gives us the highest MAE value 4878.

Figure 4.3: MAE metrics for query plan features, load features and all features

comparison in low, medium, high and highest workloads

36

Comparing the scaled importance (Strobl et al., 2007; Menze et al., 2009) of each

feature, we observe that the most important features correlate with a particular database

table during black Friday. The effect of query plan features in the highest workload is

due to the usage of the same table (table_1) under the load (See Figure 4.4). When we

analyze only the load features, the mean and variance of total number of bytes

transferred in the current window are important features thus we validate the relation

between total bytes transferred and query execution time (See Figure 4.4).

Figure 4.4: The scaled importance of query plan features and load features together in
the highest workload

To provide more information about the results, we show the predicted and actual query

execution times for a random subset of test queries having size of 15.000 (See Figure

4.5 and Figure 4.6).

We categorize queries by query execution time and create slow and fast running query

pools and our predictions are linear for both slow and fast queries while using query

plan and load features together. When we look at the results, the predicted and actual

execution times are linear thus the query plan features and load features are useful when

37

they are used together in a machine learning algorithm for both fast (Figure 4.5) and

slow running queries (Figure 4.6).

Figure 4.5: Actual vs predicted query execution time in seconds in high workload with
query plan features and load features for fast running queries

Figure 4.6: Actual vs predicted query execution time in seconds in high workload with
query plan features and load features for slow running queries

38

4.2 Linear Regression Results

We show the prediction results with Linear Regression algorithm for query plan

features and load features by using RMSE metric (Figure 4.7).

Figure 4.7: RMSE metrics for query plan features, load features and all features
comparison in low, medium, high and highest workloads with Linear Regression

In Linear Regression, the predictions are worse than Random Forest Regression by

RMSE metrics in all workloads and the feature engineering strategies don’t make

significant difference. The query execution time predictions with Linear Regression

algorithm are as good as Random Forest Algorithm in the highest workload and to

interpret this result, we look at standardized coefficient magnitudes of all features in

highest workload (Figure 4.8). In Linear Regression of H2O Framework a standardized

coefficient is a linear coefficient that has been defined in terms of standard deviations

rather than whatever the original units for that particular variable were.

When we interpret the standardized coefficient magnitudes which are used as feature

importance, we see that bytes_in and bytes_out features are the most important feature

in the highest workload with Linear Regression model. These two features are related

39

with the network bandwidth so that in the highest workload, the network bandwidth

may be a bottleneck for query execution time prediction. We also see that

table_1_name is the third most important feature in the highest workload as in the

prediction results of DRF algorithm thus both two algorithms show that, table_1_name

may have a bias in the highest workload for query execution time prediction.

Figure 4.8: Standardized Coefficient Magnitudes in Highest Workload for All Features
in Linear Regression Algorithm

40

5. CONCLUSION

We present load related feature engineering strategies to predict query execution time

using machine learning techniques. We make our experiments with already executed

queries from a payment service provider in different workloads, introduce load-based

features and compare them with traditional query plan features. We show that load

based features are effective when they are used with query plan features for both slow

and fast running queries in all workload sizes. All these features can be used in

machine learning for capacity planning and workload management of autonomous

database systems.

Given query plan features and load features in its input feature vectors, the random

forest algorithm predicts query execution time and we calculate scaled importance of

each feature. The bytes transferred in the current window is one of the most important

features in load features and this result shows that the network data transfer volume may

allow us to better predict query execution time and to find network bottlenecks on a

database server.

Indeed, in high workloads, the workload and also the machine learning algorithms can

have a bias to some tables or indexes thus the experiments may depend on the dataset.

To solve this bias, we would like to have a random sample which have random

distributions of tables and indexes in the future.

In the future, firstly we would like to test multiple sliding window sizes for the

aggregations of load features because we believe that the window size should change

dynamically by workload size. Second, we plan to extract new load features by using

SQL text statistics like the mean and the maximum of aggregation count, equijoin count

etc. and compare these features with the query plan features. Third, we plan to apply

41

these black box load features in different domains and use these features for intelligent

workload management of different systems.

We also plan to implement an alert management system to identify long-running queries

before they are executed so that we can manage database workload without any

downtime. Another direction we plan to research in the future is integrating machine

learning models to relational database management systems so that these systems can

manage workload more efficient.

REFERENCES

Akdere, M., Çetintemel, U., Riondato, M., Upfal, E., & Zdonik, S. B. (2012, April).

 Learning-based query performance modeling and prediction. In Data Engineering

 (ICDE), 2012 IEEE 28th International Conference on (pp. 390-401). IEEE.

Ambati S, et al. “Building Random Forest an Scale” (2014). Published by H2O.ai, Inc.

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.

Bunea, F., Tsybakov, A. B., & Wegkamp, M. H. (2007). Aggregation for Gaussian

 regression. The Annals of Statistics, 35(4), 1674-1697.

Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute

 error (MAE)?. Geoscientific Model Development Discussions, 7, 1525-1534.

Chaudhuri, S. (1998, May). An overview of query optimization in relational systems. In

 Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on

 Principles of database systems (pp. 34-43). ACM.

Chawla, N. V., Hall, L. O., Bowyer, K. W., & Kegelmeyer, W. P. (2004). Learning

 ensembles from bites: A scalable and accurate approach. Journal of Machine Learning

 Research, 5(Apr), 421-451.

Council, T. P. P. (2008). TPC-H benchmark specification. Published at http://www. tcp.

 org/hspec. html, 21, 592-603.

Duggan, J., Cetintemel, U., Papaemmanouil, O., & Upfal, E. (2011, June). Performance

 prediction for concurrent database workloads. In Proceedings of the 2011 ACM

 SIGMOD International Conference on Management of data (pp. 337-348). ACM.

Frisch, M. J., Frisch, A., & Foresman, J. B. (1996). Gaussian 94 User's Reference.

 Gaussian.

Ganapathi, A., Kuno, H., Dayal, U., Wiener, J. L., Fox, A., Jordan, M., & Patterson, D.

 (2009, March). Predicting multiple metrics for queries: Better decisions enabled by

 machine learning. In Data Engineering, 2009. ICDE'09. IEEE 25th International

 Conference on (pp. 592-603). IEEE.

Gupta, C., Mehta, A., & Dayal, U. (2008, June). PQR: Predicting query execution times

 for autonomous workload management. In Autonomic Computing, 2008. ICAC'08.

 International Conference on (pp. 13-22). IEEE.

Hamilton, J. D. (1994). Time series analysis (Vol. 2). Princeton: Princeton university

 press.

Hasan, R., & Gandon, F. (2014, August). A machine learning approach to SPARQL

 query performance prediction. In Web Intelligence (WI) and Intelligent Agent

 Technologies (IAT), 2014 IEEE/WIC/ACM International Joint Conferences on (Vol.

 1, pp. 266-273). IEEE.

H2O Reference Documentation (2018). Chapter: Architecture.

Lazowska, E. D., Zahorjan, J., Graham, G. S., & Sevcik, K. C. (1984). Quantitative

 system performance: computer system analysis using queueing network models.

 Prentice-Hall, Inc..

Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R news,

 2(3), 18-22.

Matsunaga, A., & Fortes, J. A. (2010, May). On the use of machine learning to predict

 the time and resources consumed by applications. In Proceedings of the 2010 10th

 IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (pp.

 495-504). IEEE Computer Society.

Menze, B. H., Kelm, B. M., Masuch, R., Himmelreich, U., Bachert, P., Petrich, W., &

 Hamprecht, F. A. (2009). A comparison of random forest and its Gini importance with

 standard chemometric methods for the feature selection and classification of spectral

 data. BMC bioinformatics, 10(1), 213.

MySQL version 5.7 Reference Manual (2017), Chapter: Optimization.

Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2

 from generalized linear mixed-effects models. Methods in Ecology and Evolution,

 4(2), 133-142

Olorisade, B. K., Brereton, P., & Andras, P. (2017). Reproducibility in Machine

 Learning-Based Studies: An Example of Text Mining.

Picard, R. R., & Cook, R. D. (1984). Cross-validation of regression models. Journal of

 the American Statistical Association, 79(387), 575-583.

Rasmussen, C. E. (2004). Gaussian processes in machine learning. In Advanced lectures

 on machine learning (pp. 63-71). Springer, Berlin, Heidelberg.

Seber, G. A., & Lee, A. J. (2012). Linear regression analysis (Vol. 329). John Wiley

Segal, M. R. (2004). Machine learning benchmarks and random forest regression.

Splunk Reference Documentation (2018). Chapter: Streams.

Strobl, C., Boulesteix, A. L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest

 variable importance measures: Illustrations, sources and a solution. BMC

 bioinformatics, 8(1), 25.

Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE)

 over the root mean square error (RMSE) in assessing average model performance.

 Climate research, 30(1), 79-82.

Wu, W., Chi, Y., Zhu, S., Tatemura, J., Hacigümüs, H., & Naughton, J. F. (2013, April).

 Predicting query execution time: Are optimizer cost models really unusable?. In Data

 Engineering (ICDE), 2013 IEEE 29th International Conference on (pp. 1081-1092).

 IEEE.

Wu, W., Chi, Y., Hacígümüş, H., & Naughton, J. F. (2013). Towards predicting query

 execution time for concurrent and dynamic database workloads. Proceedings of the

 VLDB Endowment, 6(10), 925-936.

Wu, W., Wu, X., Hacigümüş, H., & Naughton, J. F. (2014). Uncertainty aware query

 execution time prediction. Proceedings of the VLDB Endowment, 7(14), 1857-1868.

BIOGRAPHICAL SKETCH

Yalçın Yenigün, born in 1986 in Balıkesir/Turkey, is a software engineer and data

scientist specializing in machine learning with 9 years of experience in the full lifecycle

of the software design process including requirements definition, prototyping, proof of

concept, design, interface implementation, testing and maintenance.

Education

• M.S., Computer Engineering, Galatasaray University, 2018 (expected).

• B.S., Computer Engineering, Galatasaray University, 2010.

• High School, Mathematics, Sırrı Yırcalı Anatolian High School, 2004

Work Experience

2015 – present, Expert Software Engineer, iyzico.

2013 – 2015, Unit Manager, Bilge Adam

2010 – 2013, Software Development Engineer, Vodafone.

2009 – 2010, Software Development Specialist, Zerobuffer.

Publications

• Öztürk, M., Yenigün, Y., Yaycıoğlu, O. T., & Tunalı, A. Ç. (2012). RESTful

Konfigürasyon Yönetimi Web Arayüzü. 6. Ulusal Yazılım Mühendisliği

Sempozyumu

• Yenigün, Y., Ozgovde, A., Dincel, O. (2018). Load Related Feature Engineering

For Query Execution Time Prediction. 22nd European Conference on Advances

in Databases and Information Systems. (submitted)

