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ABSTRACT

Prediction of query execution time is one of the most challenging issues for relational
databases and is useful for database administration, resource management, system
monitoring and query scheduling. Most of the query optimizers use cost-based models
for query execution time prediction but the problem is more complex because the
heterogeneity of the database system’s hardware platforms and operating systems makes
more difficult to measure CPU and I/O costs. The relational database vendors try to
implement autonomous databases which automates management and performance thus
intelligent query execution time prediction is a key issue. Previous work mostly used
synthetical data so that reproducing machine learning experiments are almost
impossible for various domains. In this thesis, we use real-world data of a payment
service provider with different workloads and we propose new sets of features based on
aggregating the database queries and compared them with traditional query plan
features. We collected data from a common machine data tool so that reproducing

machine learning experiments and building models are easy for various domains.
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RESUME

La prédiction du temps d'exécution des requétes est l'un des probléemes les plus
complexes pour les bases de données relationnelles et est utile pour 'administration de
la base de données, la gestion des ressources, la surveillance du systéme et la
planification des requétes. La plupart des optimiseurs de requétes utilisent des modéles
basés sur les colts pour la prédiction du temps d'exécution des requétes mais le
probléme est plus complexe car I'hétérogénéité des plateformes matérielles et des
systemes d'exploitation du systeéme de base de données rend plus difficile la mesure des
colts CPU et E/S. Les fournisseurs de bases de données relationnelles essaient
d'implémenter des bases de données autonomes qui automatisent la gestion et les
performances. La prédiction intelligente de 1'heure d'exécution des requétes est donc un
probléme majeur. Les travaux antérieurs utilisaient principalement des données
synthétiques, de sorte que les expériences de reproduction automatique sont presque
impossibles pour divers domaines. Dans cette thése, nous utilisons des données réelles
d'un fournisseur de services de paiement avec différentes charges de travail et nous
proposons de nouveaux ensembles de fonctionnalités basées sur l'agrégation des
requétes de base de données et les comparons aux fonctionnalités traditionnelles des
plans de requéte. Nous avons collecté des données a partir d'un outil commun de
données machine afin que les expériences de reproduction automatique et les modeles

de construction soient faciles pour différents domaines.



OZET

Sorgularin ¢alisma siiresini tahmin etmek iliskisel veri tabanlar1 i¢in en zor konulardan
biridir ve bu tahminin dogru gerceklesmesi, veri tabani yonetimi, kaynak yonetimi,
sistemin performansinin izlenmesi ve sorgularin zamanlamasinin yonetimi gibi bir¢ok
konuda faydalidir. Bir¢ok sorgu iyilestiren yazilim, sorgularin ¢aligma siiresini tahmin
edebilmek i¢in maliyet tabanli modeller kullanir fakat ilgili problem daha karmasiktir
zira veri tabani sistemlerinin donanim ve yazilimlarinin heterojen olmasi islemci ve G/C
maliyetlerinin 6l¢iimiinii cok zor kilmaktadir. Iliskisel veri tabani iireticileri, yonetimi
ve performansi otomatik hale getiren, kendi kendine ¢alisan veri tabani sistemleri
gelistirmeye calismaktadirlar. Bu noktada veri tabani sorgularinin ¢alismadan 6nce ne
kadar siirecegini tahmin etmek kilit bir 6zelliktir. Gegmis calismalar sorgu siiresini
tahmin edebilmek i¢in sentetik veri kullanmislardir. Bu nedenle farkli alanlarda yapay
o0grenme deneylerini tekrar etmek neredeyse imkansiz hale gelmektedir. Bu makalede,
bir 6deme hizmet saglayicisinin gercek diinyadaki farkli yiikler altindaki verisi
kullanilmis ve veri taban1 sorgular1 zaman pencereleri igerisinde toplanarak iiretilen yeni
Oznitelik kiimesi sunulmustur. Bu sunulan 6znitelik kiimesi geleneksel sorgu plani
oznitelikleriyle karsilastirilmis ve sonuglar paylasilmistir. lgili veri yaygin bir veri
toplama araciyla toplanmis bu sayede yapilan yapay 6grenme deneyleri ve olusturulan

modeller ¢esitli alanlarda kolayca tekrar edilebilir hale gelmistir.

Xi



1. INTRODUCTION

In the recent years, the database vendors try to decrease operational cost of database
systems with the automation of patch management, high availability approaches and
performance tuning. Predicting query execution time is a key issue for automatic
intelligent performance tuning. Most of the database systems use cost-based optimizers
to predict the query execution time. However, these optimizers are by themselves not
sufficient as there are too many operational variables involving the operating system,
the hardware characteristics and the database load. The prediction task can become
indeterministic and letting too many long running queries can result in system
downtime. One of the implicit assumptions behind our work is that the database
system's query execution time performance doesn't abruptly change but varies in time
and therefore the time series (Hamilton, 1994) analysis is leveraging factor for better

prediction.

Recent work on predicting database query execution time has argued that the query
optimizer’s cost models are useful to compare alternative queries but not useful to
predict database query performance metrics. Ganapathi et al. extracted features before
the queries execute and predicts multiple resource usage characteristics for both short
and long running queries. They give operator cardinalities and performance metrics to
KCCA algorithm and the algorithm interpolates on the relative differences between
these cardinalities and builds a model. The training and validation dataset contains
queries which have query execution times range from milliseconds to hours and the
predicted metrics are elapsed time, records used, disk I/O and message bytes. In that
work Ganapathi et al. (2009) designed an architecture which requires vendor site
installation for predictions and uses synthetic data which has 2807 instances at

maximum.



Moreover, current data management systems process concurrent queries in
heterogeneous query workloads and the query performance can be related to the
workload size. J. Duggan et al. presents a modeling approach which tries to estimate
the effect of concurrency for analytical workloads without using semantic information
and adapts the baseline system to dynamically changing workload by using time series
analysis. They also introduce a metric that captures the joint effects of disk and
memory contention on query performance and predict the latency of each query in the

workload and determine the termination time of each query (Duggan et al., 2011).

Previous work mostly uses generated queries from templates but the database
management systems can behave differently in production environments. The current
systems have database connection pools and these connection pools have limited
capacity. The connection pool cannot give connections to applications if there is a
latency or too many long-running queries in the system so that identifying long-running
queries before execution will help us to better schedule queries. The prediction of query
execution time also helps us to know resource requirements of the database

management systems before installation.

In high available and scalable systems, latency and failover management is a key issue
for scalability because the systems can have latency issues in high workloads. Under
high workload, each thread can wait too long and throw timeout exceptions when there
are too many long running queries in the system thus there can be a downtime issue

because of the constant size of thread pools.

Predicting query execution time can be useful for many system management decisions

including:

e System Administration: Knowing query execution time before they are executed
can enable cost-based decisions and management systems can decide whether
they should execute the query or not

e System Monitoring: Monitoring and alert systems can provide execution time
information of queries before they are executed so that systems can avoid too

many long-running queries.



e System Sizing: The database infrastructure teams can use the query execution
time to give optimum hardware to the systems. This information is also useful
for dynamic resource allocation in cloud systems.

e Query Scheduling: Latency aware scheduling systems need the query execution

time prediction.

The main contributions of this thesis are listed as follows:
*  We propose new sets of load related features to predict query execution time.
* Our machine learning experiments are reproducible because every user of the
same database logging platform can collect the similar data in their domain.
» Rather than generating queries from templates, we collect a large data set from
production environment of a payment platform and consequently the results of

the experiments are reliable for this indeterministic prediction task.

The rest of the thesis is organized as follows: In section 2 we describe related work and
previous feature engineering strategies. In section 3 we describe traditional query plan
features (Chaudhuri, 1998), we briefly introduce load related features and give
information about experiments and materials used in these experiments. In section 4 we
present our experiments and results. Finally, we conclude the thesis and outline the

future work in section 5.



2. LITERATURE REVIEW

2.1 Related Work

Previous work on query execution time prediction are mostly based on comparative
evaluation of various machine learning techniques with synthetic query templates for
short and long-running queries. They compared regression techniques, clustering
techniques, principal component analysis (PCA), canonical correlation analysis (CCA)
and kernel canonical correlation analysis (KCCA) to predict query execution time
(Ganapathi et al., 2009) (Akdere et al., 2012). However, these studies do not involve
any realistic workloads with real-world production data. Some of the work attempt to
address concurrent query performance predictions under different analytical query
workloads where TPC-H (Council, T. P. P., 2008) templates are employed for
generating the queries (Duggan et al., 2011).

Hasan et al. predicted query execution time of SPARQL queries with a machine
learning approach. In that work they extracted algebra features by using the frequencies
of algebra operators and extracted graph pattern features by clustering structurally
similar query patterns. They use the sum of all SLICE operator cardinalities which is
the combination of OFFSET and LIMIT operators appearing in the algebra expression.
They also used the depth of the algebra tree and the number of triple patterns as
additional features. The DBPSB benchmark is used for evaluation of experiments and
this benchmark includes 25 query templates which cover most commonly used

SPARQL queries (Hasan & Gandon, 2014).

Moreover, some previous work challenges the assumption of insufficiency of query
optimizers and calibrates the constants of optimizer’s cost model for prediction. They

show that the optimizer’s cost model can be competitive with machine learning systems



if the parameters of optimizer’s cost model is optimized. In general the flow of
PostgreSQL’s cost optimizer can be summarized as follows (Wu et al., 2013):
e Estimate the cardinality of I/O
e Compute the CPU cost by using the information of the I/O cardinality
e Compute the number of accessed pages with the cardinality estimate information
e Compute the I/O cost with the information of accessed pages

e Compute the sum of CPU cost and I/O cost

Wu W. et al. (2013) also helped the interpretation of database management cost models
because they preferred optimizing cost model’s parameters instead of black-box
machine learning approaches. The other advantages of their framework are as follows:

e No Training Data Needed: The machine learning based query execution time
predictions systems need training data but their system can work with only
ad-hoc queries.

e Interpretable Approach: The machine learning algorithms are difficult to
interpret and most of them are black-box approaches. Their system is related to
existing paradigm of query optimization in relational databases.

e Lightweight: The profiling step doesn’t depend hardware and the system is
portable.

In another work, Wu W. et al. (2014) presents uncertainty aware query execution
prediction time methodologies in which they provide prediction uncertainty by using
different distributions of likely running times. They try a random distribution for CPU
cost of processing one tuple to quantify the uncertainty by assuming that the distribution
of CPU cost is normal (i.e. Gaussian) for intuitively the CPU speed is likely to be stable
and centered around its mean value. For the selectivity of an operator in the query plan,
the uncertainties are different than CPU costs while CPU costs have random values but
the selectivity values have fixed numbers because they suppose that any cost model
doesn’t have a perfect selectivity estimator. In this work they show that the distribution
of query execution time t(q) for a query q is asymptotically normal so that this reduces
the problem to estimate the two parameters of normal distributions and the mean and

variance of t(q) (Wu et al. 2014).



In this thesis we collected a large sample of real-world queries of a payment service
provider under different workloads. Results of many machine learning studies in this
context are difficult to reproduce (Olorisade et al., 2017). In this sense one of our goals
is to increase the probability of being reproduced. To address this, we use one common
machine intelligence tool to collect the data and the retrieval process of the dataset is the

same for all users of this tool.

2.2 Previous Feature Engineering Strategies

Prior feature engineering studies include following techniques to convert a query to a
feature vector (Ganapathi et al., 2009):
* The statistics on the SQL text of each query by counting:
o Number of nested sub-queries,
o Total number of selection predicates
o Number of equality selection predicates
o Number of non-equality selection predicates
o Total number of join predicates
o Number of equijoin predicates
o Number of aggregation columns

o Number of sort columns

* Query plan which is produced by the query optimizer (Ganapathi et al., 2009;
Akdere et al., 2012; Wu et al., 2013). Query plan feature vector consists of a
tree of query operators with estimated cardinalities and contains an instance
count and cardinality sum of each possible operator (Ganapathi et al., 2009).
Previous work uses PostgreSQL database’s query plan features as below
(Akdere et al., 2012):

o seq page cost: I/O cost to sequentially access a page which is calculated
by query optimizer. Example query:
= SELECT * FROM R;
o random page cost: I/O cost to randomly access a page. Example query:

= SELECT * FROM R WHERE R.B < b; (b is unclustered index)



cpu_tuple cost: CPU cost to process a tuple which is unordered sets of
known values with names. Example query:

= SELECT * FROM R;
cpu_index tuple cost: CPU cost to process a tuple via index. Example
query:

= SELECT * FROM R WHERE R.A < a; (a is clustered index)
cpu_aggregator cost: CPU cost of aggregation or hash which is

calculated by query optimizer. Example query:

* SELECT COUNT(*) FROM R;

Akdere et al. (2012) use query plan level features which is calculated by query

optimizer as follows:

@)

©)

©)

©)

p_tot_cost: Estimated total plan cost

p_st _cost: Estimated plan start cost

p_rows: Estimated number of output tuples

ap_width: Estimated average size of an output tuple

op_count: Number of query operators in the plan

row_count: Estimated total number of tuples input and output to/from
each operator

byte count: Estimated total size of all tuples input and output
<opertor_name>_count: The number of operators in the query
<operator_name> _rows: The total number of tuples output from

<operator _name> operators

Akdere et al. (2012) also used operator level features which is collected by using

“MATERIALISE” operator. The operator level features use two separate

prediction models as start-time model and run-time model. The start-time model

tries to estimate the execution time of an operator until it produces its first tuple.

The run-time model tries to estimate total execution time of query operators:

o np: Estimated I/O (in number of pages)

o nt: Estimated number of output tuples

o ntl: Estimated number of input tuples (from left child operator)



o nt2: Estimated number of input tuples (from left right operator)
o sel: Estimated operator selectivity

o stl: Start-time of left child operator

o rtl: Run-time of left child operator

o st2: Start-time of right child operator

o rt2: Run-time of right child operator

The structural similarity between graph queries by using clustering techniques.
They construct multiple graphs from multiple query patterns and compute the
edit distance between these graphs to compute the structural similarity between

query patterns (Hasan & Gandon, 2014).

Wu W. et al. (2013) used queuing theory and they designed a queuing model
which uses prediction pipelines of multiple queries as customers. In this model
the query execution time of a pipeline is its residence time in queueing network.
If k € {CPU, disk}, the features of this queuing model are as follows:

o C(k): Number of servers in (service) center k

o T(Kk): Mean service time per visit to center k

o Y(Kk): Correction factor of center k

o p(k): Utility of center k

o V(k,m): Mean number of visits by customer m to center k

o Q(k,m): Mean queue length by customer m at center k

o R(k,m): Mean residence time per visit by customer m to center k



We W. et al (2013) also uses scan operator features like sequential scan, index
scan and bitmap index scan which are implemented by PostgreSQL. They use
the following features to represent a scan instance s(i) in a mix {sl , ..., sn},
where tbl(i) is the table accessed by s(i), and N(s(i)) is the set of neighbor scans
of s(i) in the mix:

o Number of sequential I/O’s of s(i)

o Number of random I/O’s of s(i)

o Number of scans in N(s(i)) that are over tbl(i)

o Number of sequential I/O’s from scans in N(s(i)) that are over tbl(i)

o Number of random I/O’s from scans in N(s(i)) that are over tbl(i)

o Number of scans in N(s(i)) that are not over tbl(i)

o Number of sequential I/O’s from scans in N(s(i)) that not are over tbl(i)

o Number of random I/O’s from scans in N(s(i)) that are not over tbl(i)
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3. MATERIALS AND METHODS

3.1 Dataset Information

The data set is collected for 40 minutes from a payment service provider with a database
plugin of streaming machine data platform in four different workloads. The highest
workload data is collected during black Friday between 21.55 and 22.05, the lowest
workload data is collected in the early morning between 03.00 and 03.10 (See Table
3.1). The data set contains all queries of the company from too many different schemas
and applications with the limit of 10 minutes overall execution time. In Table 3.1,

minimum, maximum and mean of query execution times in related workload type is

shown.
Table 3.1: Query Dataset with Different Workloads
Workload Number of Instances Minimum Mean Maximum
Type QET QET QET
199789 0.0001 secs 0.01 secs 33.5 secs
Low
Medium 425847 0.0001 secs  0.009 secs 41.5 secs
High 425989 0.001 secs 0.05 secs 152 secs
Highest 944254 0.0001 secs  0.006 secs 8.5 secs

The dataset has 4 distinct samples and each sample has 10 minutes window size with
different workload sizes. When we look at the behavior of the overall system in 24
hours, the maximum query execution times change between 10 seconds and 150

seconds (Figure 3.1). The mean of the query execution times changes between 0.006
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seconds and 0.05 seconds. The highest workload data sample size is 780 MB while the

lowest workload data sample size is 140 MB.

= - N
1 7 =3
S =) S

o

time_taken (seconds)

8:00 PM 12:00 AM 4:00 AM 8:00 AM 12:00 PM
Wed Dec 27 Thu Dec 28
2017

4:00 PM

_time

Figure 3.1: Maximum Query Execution Times of the System in 24 hours

The minimum, maximum and mean of other numerical column values are shown in

tables for all workloads (Table 3.2, 3.3, 3.4 and 3.5).

Table 3.2: Dataset Column Value Distribution in Low Workload

Column Name Workload Minimum Mean Maximum
Type

Reply Time Low 0 0.01 33.5
Request Time Low 0 0.00002 0.2

Bytes Low 24 3090 4399465

Bytes In Low 13 1096 20835

Bytes Out Low 0 1993 4378630

Result Column Count Low 1 6.8 182
Result Row Count Low 0 1 18

Table 3.3: Dataset Column Value Distribution in Medium Workload

Column Name Workload Minimum Mean Maximum
Type

Reply Time Medium 0 0.008 41.5
Request Time Medium 0 0.00001 0.3

Bytes Medium 24 3319 2104348

Bytes In Medium 13 1153 20835

Bytes Out Medium 0 2165 2103717
Result Column Count  Medium 1 6 114
Result Row Count Medium 0 1 30
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Table 3.4: Dataset Column Value Distribution in High Workload

Column Name Workload Minimum Mean Maximum
Type

Reply Time High 0 0.04 152
Request Time High 0 0.00001 0.3

Bytes High 24 3090 8886522

Bytes In High 13 804 60199

Bytes Out High 11 2364 8885920
Result Column Count High 1 7 114
Result Row Count High 0 1 23

Table 3.5: Dataset Column Value Distribution in Highest Workload

Column Name Workload Minimum Mean Maximum
Type
Reply Time Highest 0 0.06 8

Request Time Highest 0 0.00005 21.5

Bytes Highest 24 1713 8035174

Bytes In Highest 13 595 20835

Bytes Out Highest 0 1118 8032750
Result Column Count  Highest 1 122
Result Row Count Highest 0 1 100

3.2 Materials and Experiments

3.2.1 H20 Framework

H20 framework is open-source, in-memory and distributed machine learning
framework for big data analytics. Inside the framework, a distributed key value store is
used for data manipulation and model building so that each node has an access to data

frames and models (Figure 3.3). The framework has three parts:

e H2O Cluster: Multi-node cluster with shared memory model
e Distributed Key-Value Store: Data frames, models and any other H2O objects

can be accessed via distributed key value store
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e H20 Frame: Distributed data frames which their columns are distributed

(across the nodes) arrays

In the experiments, Distributed Random Forest (DRF) (Segal, 2004) algorithm is used
and this algorithm can handle categorical variables and missing values automatically.
In the DRF algorithm of H20 framework, missing values are not interpreted as missing
at random. They are interpreted as containing information (i.e., missing for a reason).
Split decisions for every node are found by minimizing the loss function and treating
missing values as a separate category that can go either left or right during tree building.

In DRF each node builds a subset of forest (Figure 3.2) (Liaw & Wiener, 2002).

o

Figure 3.2: Each node builds a subset of random forest in DRF

The H20 Framework has different components working together to build machine
learning models (Figure 3.3). The data scientists or software developers can build
models by using different programming languages like Python, R, JavaScript ..etc. and
the framework is also integrated with business intelligence tools. The framework also
provides plugins for different data sources from relational databases to big data tools
and it helps us to run experiments with millions of queries with its scalability and data

compression capabilities.
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Customer Algorithm

Javascript R Python

Excel/Tableau Flow

Rapids Expression Evaluation Engine

Scala (Customer Algorithm)

GLM
GBM In H20 Prediction o
Parse RF Engine Customer Algorithm
Deep Leaming
Fluid Vector Frame Job
Distributed Key Value Store MRTask
Non-Blocking Hash Map Fork/Join
Standalone
Spark Hadoop H20

Figure 3.3: H20 Framework Architecture

3.2.2 Splunk Database Stream

Splunk is a machine data collection tool for distributed applications and the query
dataset is collected by using Splunk database stream. Streams support passive capture
of network data and database protocol is one of the supported protocols of streams. To

collect data from a database, the forwarders forward the query data and the execution

times to indexer and the indexer indexes the queries for searching.
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Splunk database stream supports MySQL database and can be installed on a single
instance server as both search head and indexer which is ideal for small local and testing
environment because it supports one or two concurrent searches. For large datasets and

enterprise applications, distributed installation is needed (Figure 3.4).

search head with
splunk app stream
and splunk TA stream

Q
5%

i
I
0

indexers with splunk
TA stream

universal forwarders
with splunk TA stream » »

network input (local,
span or tap)

Figure 3.4: Splunk Database Stream Distributed Deployment Architecture
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To collect queries and their execution times in a scalable and distributed architecture,
the database queries are collected as network inputs by universal forwarders of a
database stream. The universal forwarders of the plugin collect the query, the query
parameters and their execution time and forward this information to indexers. To find
all the queries, the head pointer points the indexer so that the search results appear on

the user interface of plugin (Figure 3.4).

3.2.3 MySQL Query Optimizer

MySQL query optimizer tries to optimize the queries in database level and hardware
level. In the database level the optimizer looks at the database’s basic design:
e Do the columns have the right data types?
e [s the right storage engine (Mylsam or InnoDB) used? For example, if the
system is transactional, it needs a transactional storage engine InnoDB.
e Are the right indexes in place to make query executions faster?
e [s the application uses the right locking strategy? For example, InnoDB storage
engine guarantees data consistency.

e [s the memory used efficiently for caching the queries?

In the hardware level the optimizer looks at the hardware limits:
e CPU cycles: Having large tables need more memory.
e Memory bandwidth: If CPU needs more memory than the size of CPU cache,
the main memory bandwidth can be a bottleneck.
e Disk seeks: The disk needs time to find a piece data.
e Disk reading and writing: Reading data from the disk and writing the data to the

disk may be expensive.

In MySQL database, the query plan information can be retrieved by using EXPLAIN
query. In Figure 3.5, an example SQL query is given with selection, concatenation,
inner joins and where operation with some limit. This query has a full table scan cost
and multiple nested loop costs which uses unique key and non-unique key lookups.
MySQL query plan calculates the cost of the query by using these parameters (Figure
3.5).
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SELECT CONCAT (customer.last name, ', ',
customer.first name) AS customer, address.phone, film.title

FROM rental

INNER JOIN customer ON rental.customer id

customer.customer id

INNER JOIN address ON customer.address id
address.address_id

INNER JOIN inventory ON rental.inventory id =
inventory.inventory id

INNER JOIN film ON inventory.film id = film.film id
WHERE rental.return date IS NULL

AND rental date + INTERVAL film.rental duration DAY <
CURRENT_DATE ()

LIMIT 5;

Figure 3.5: Example SQL Query for Visual Explain

The visual information about the explain is as follows (Figure 3.6):

Query Block 1
Query Cost:

8813.61

1513.61 4013.61 6413.61 8813.61

> > > >
> > > »

Nestef Loop Nestef Loop Neste® Loop Neste Loop
213 1000 rows 1400.61 2 rows 2400 1 row 2400 1 row 2400 1 row
Non-Unique Key Non-Unique Key Unique Key Unique Key
FENEED St Lookup Lookup Lookup Lookup
Film inventory rental customer address
idx_fk_film_id idx_fk_inventory_id PRIMARY PRIMARY

Figure 3.6: Visual Explain of An Example Query

The MySQL optimizer uses disk seek count to estimate the query performance in

hardware level:
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log(row_count)
log(index_block length) y 2

+1 (1)

3 index_length +data_pointer_length

The query plan features are collected by using MySQL’s “EXPLAIN JSON” query. In
MySQL’s EXPLAIN query, the output JSON format (Figure 3.7) is not valid because

there are many keys which have the same names (i.e. table, table name ..etc.):

EXPLAIN: {
"query_block": {

"select_id":

1,

"nested_loop":

[

{ "table": {

"table name":

<skipped>

-~

"table": {

"table name":
"access_type":
"key":
"key length":

"ref": [

"departments",

"<subquery2>",

"eq_ref",

"<auto_key>",

ngn,

"employees.departments.dept no"
1,
"rows_examined per scan": 1,
"materialized from subquery": {
"using_temporary table": true,
"query_block": {
"table": {
"table name": "dept manager",
"access_type": "ALL",
"possible keys": [
"dept no"
], "used_columns": [
"dept_no",
"to_date"

1}3}331}

Figure 3.7: JSON Output of an EXPLAIN Query
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To fix the invalid JSON format problem, we have to differentiate key names by adding
postfixes to the names. We use Python programming language in all experiments and

fix invalid JSON problem with the following code (Figure 3.8) :

from collections import OrderedDict

from json import JSONDecoder

def make unique(key, dct):
counter = 0

unique key = key

while unique key in dct:
counter += 1
unique key = '{} {}'.format(key, counter)

return unique key

def parse object pairs(pairs):
dct = OrderedDict()
for key, value in pairs:
if key in dct:
key = make unique(key, dct)
dct[key] = value

return dct

Figure 3.8: Python Code to Remove Duplicated JSON keys

We give the EXPLAIN output to parse object pairs function to make the JSON keys

unique so that multiple table keys are renamed as table 1, table 2..., table n.
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3.2.4 Random Forest Algorithm

Growing ensemble of trees and letting them vote for the most popular class in
classification resulted improvements in classification accuracy. Random vectors are
created for growing the ensembles of trees. Random forest algorithm is also used for
regression and we make our experiments with this algorithm. Random forests for
regression are created by growing trees depending on a random vector such that the
predictor trees take on numerical values rather than categorical values. Each leaf of
random trees contains a distribution for the continuous output variable. The random
forest predictor is created by taking the average of k of the trees for final prediction.
Some of the input features may be categorical and since the random forest algorithm
wants to define additive combinations of variables, the algorithm needs to define how
categorical variables will be treated so they can be combined with numerical variables

(Breiman, 2001).

Random forest algorithm is that each time a categorical feature is selected to split on at
a node, to select a random subset of the categories of the variable, and define a
substitute variable that is one when the categorical value of the variable is in the subset
and zero outside (Breiman, 2001). In H2O framework, random forest algorithm handles

categorical variables with the following encoding types:

e Auto: Allow the algorithm to decide and it is the default encoding scheme to
handle categorical features. In H20 random forest the algorithm will
automatically perform Enum encoding.

e Enum: The algorithm adds one column per categorical feature.

e One Hot Explicit: The algorithm adds N+1 new columns for categorical
features with N levels.

e Binary: The algorithm adds no more than 32 columns per categorical feature.

e Eigen: The algorithm adds k columns per categorical feature, keeping
projections of one-hot-encoded matrix onto k-dimension eigen space only.

e Label Encoder: The algorithm converts every enumeration into the integer of

its index (for example, level 0 > 0, level 1 -> 1, etc.).
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In H20 framework, random forest algorithm splits the trees based on reduction in
Squared Error for regression. For categorical features, the framework also uses
histograms for splitting and can handle splitting on categorical variables with the chosen
encoding type. In the experiments, we used “enum” encoding which adds one column
per categorical feature to split on categorical feature and assigns 1 if the instance is in

this category, 0 if the instance is not in this category.

3.2.5 Linear Regression Algorithm

Linear regression algorithm tries to model the relationship between two or more
explanatory variables by setting a linear equation to observed data. One variable is
considered to be explanatory, and the other variable is considered to be dependent. It is
the simplest sample of a linear algorithm but has many uses and several advantages over
other algorithms. Especially, it is faster and requires more stable computations. H20
framework handles categorical variables automatically by expanding them into one-hot
encoded binary vectors. The framework creates variables which is a variable created to
assign numerical value to levels of categorical variables and each variable represents
one category of the explanatory variable and is coded with 1 if the case falls in that
category and with 0O if not. Consequently the algorithm adds one binary column for

each categorical feature and encodes it with zero or one (Seber & Lee, 2012).

Linear regression model parameters in H20 framework are as follows (Ambati et al.,

2014):

e training frame: Specify the dataset used to build the model

e seed: Specify the random number generator seed for algorithm components
dependent on randomization. The seed is consistent for each H2O instance so
that you can create models with the same starting conditions in alternative
configurations.

e y: Specify the column to use as the dependent variable. For a regression model,
this column must be numeric. For a classification model, this column must be

categorical (Enum or String).
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x: Specify a vector containing the names or indices of the predictor variables to
use when building the model. If x is missing, then all columns except y are used.
e alpha: Specify the regularization distribution between L1 and L2.

e lambda: Specify the regularization strength.

e early stopping: Specify whether to stop early when there is no more relative
improvement on the training or validation set.

e standardize: Specify whether to standardize the numeric columns to have a
mean of zero and unit variance. If the standardization is not used, the results can
include components that are dominated by variables that appear to have larger
variances relative to other attributes as a matter of scale, rather than true
contribution. This option is enabled by default and we used this parameter in the
experiments.

e max_iterations: Specify the number of training iterations. It was 100 in the
experiments.

e objective epsilon: Specify a threshold for convergence. The model is
converged if the objective value is less than this threshold.

e Dbeta epsilon: Specify the beta epsilon value. If the L1 normalization of the

current beta change is below this threshold, consider using convergence.

3.2.6 Experimental Setup

All the experiments used MySQL version 5.5 servers. The experiment infrastructure is
a DELL R730 eight processor machines with Emc5100 disks and 8 GB RAM. The data
is collected by using MySQL database plugin of Splunk Enterprise version 6.6.0.
Machine learning training and tests are made by using H2O.ai implementation of
Random Forest (Liaw & Wiener, 2002) for regression with 100 trees. The Python
programming language is used for all experiments. The queries are split as 80% for
training and 20% for testing and the same queries are not used for both training and
testing. Window size is 30 seconds for load feature aggregation. We predict query
execution time in seconds and measure error rates. The Random Forest parameter

values are shown below:
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e Number of Trees: 100

e Number of Internal Trees: 100
e  Minimum Depth: 20

e Maximum Depth: 20

e Mean Depth: 20

e  Minimum Leaves: 2492

e Maximum Leaves: 10353

e (ategorical Encoding: Enum

Random forest algorithm (Breiman, 2001) adds additional layer of randomness to
bagging which successful trees don’t depend on earlier trees. In standard decision trees,
each node of the tree is split by the best split in all variables. In a random forest, each
node of the tree is split by the best in a random subset of predictors at that node. This
randomness makes random forest robust to overfitting thus random forest algorithm is
chosen in all experiments. The example Python code to split training data frame and test

data frame and train a DRF model is shown below (Figure 3.9) :

from h2o import h2o
h2o.init()

h2o.remove_all()

from h2o.estimators.random forest import H20RandomForestEstimator

train, valid = no_peak_df plan h2o.split_ frame(ratios = [.8], seed = 1234)

feature columns.extend(continuous_feature columns)

random_forest= h2o.H20RandomForestEstimator (
model id="rf no peak_all",
ntrees=100
)
random_forest.train(feature columns, 'time taken', training frame=train,

validation_ frame=valid)

Figure 3.9: Python Code to Train and Validate a Random Forest Regression Model
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The validation (Picard & Cook, 1984) data set deviance decreases with the increase of
the number of trees in the Random Forest (Figure 3.10). The deviance is the goodness
of fit in statistics so that if it decreases, the model predicts better. In this model, the
deviance becomes constant at 80 trees and increasing the number of trees more than 80
doesn’t help to increase accuracy so that we can decrease computation resource of
predictions if we use only 80 trees. Decreasing number of trees in a Random Forest
algorithm helps us to use less hardware resources for computations and to decrease
training and prediction times so that we measure the deviance to fix the number of trees

in each training.
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Figure 3.10: Scoring History — Deviance Relationship

In the experiments we also try to predict query execution time with Generalized Linear

Model (GLM) of H20 framework with Linear Regression. The linear regression model
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predictions take the form of a full predictive distribution. Linear Regression
corresponds to the Gaussian family model (Frisch et al., 1996; Rasmussen, 2004; Bunea

et al., 2007).

3.3 Evaluation Metrics

Root Mean Squared Error (RMSE) (1) (Chai & Draxler, 2014) is used as the error

metric of experiments. This metric is useful to minimize the absolute difference in

actual and predicted query execution times.

RMSE= \/ i 2}1:1 (actual-estimate)? (2)

R2 (2), the coefficient of determination (Nakagawa & Schielzeth, 2013), also called the
multiple correlation is used as the second metric. y and y’ represent the actual and the
predicted values in n queries. As R2 is scaled between 0 and 1, it is easy to interpret the

results and to compare the results of different workloads.

Z?zl(Yi-Y'i)z

2 V=1-
R*(y,y)=1 Y )2

€)

Mean Absolute Error (MAE) is the average magnitude of the errors in a set of
predictions without considering their direction (Willmott & Matsuura, 2005). If all
individual differences have the same weight, the mean absolute error is the average over

the test dataset of the absolute differences between prediction and actual values (3).

MAE=237,[y; — /)] (4)
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3.4 Feature Engineering for Query Execution Time Prediction

3.4.1 Query Plan Features

In this section we consider how will the relational database management system
executes a query. Our first approach for feature engineering relies on query execution
plans since many database management systems provide interfaces that returns query
plan information. The query plan features include information about partitions, how
tables are joined, the indexes that are chosen and the join types (See Table 3.6). The
query plan structure is collected with “EXPLAIN” interface of MySQL database.

Table 3.6: Query Plan Features

Feature Name Description

Access Type The join type (equijoin, non-equijoin etc.)

Select Id The sequential number of select within the query
Select Type Types of select
Table Name The name of the table to which the row of output refers
Key Index that is actually decided to use

Key Length The length of the index that is actually decided to use

Used Key Parts The part of a multiple column key that is actually used
Ref Columns that are compared to the index
Rows The number of rows that database believes it must examine

to execute the query
Using Index The column information is retrieved using only indexes

29 ¢

The access type can have the values of “all”, “index”, “const” and “ref”:
e ALL: For each combination of rows from the previous tables, a full table scan
is done. By adding indexes that enable row retrieval from the table based on

constant values or column values from earlier tables, we can avoid ALL.

e INDEX: This join type is the same as ALL, except that the index tree is

scanned. This may occur in two ways:
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o If the index is a covering index only the index tree is scanned. In this
case, the query plan returns “using index”. An index-only scan usually
is faster than ALL because the size of the index usually is smaller than
the table data.

o A full table scan is performed using reads from the index to look up data

rows in index order. Uses index does not appear in the extra column.

e CONST: The table has one matching row at most and this row is read at the
start of the query. These tables are very fast because they are read-only at once.
This index type is used when you compare all parts of a primary key or unique
key to constant values. In the following queries, my table can be used as a

const table (Figure 3.11).

SELECT * FROM my table WHERE primary key = 1;

SELECT * FROM my table WHERE primary key partl = 1 AND
primary key part2 = 2;

Figure 3.11: The Constant Index Example SQL Query

e REF: This column describes which columns or constants are compared to the

index named in the key column to select rows from the table.

In the dataset the most used join types are Const and All. 45% of queries uses Const,
31.1% of queries uses All, 21.2% of queries uses Ref and 2.68% of queries uses Index

(Figure 3.12).
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Const
All
Ref
Index

Figure 3.12: The percentages of join types (Const, All, Ref, Index) in the data set

The select types of EXPLAIN output are shown in Table 3.7:

Table 3.7: Select Types

Select Type Description
SIMPLE Simple SELECT (not using sub queries or UNION)
PRIMARY Outermost SELECT
UNION Second or later SELECT statement in a UNION
DEPENDENT Second or later SELECT statement in a UNION, dependent
UNION on outer query
UNION RESUT Result of a UNION query
SUBQUERY First select in a subquery
I;%I;Egl?E%\g First SELECT in subquery, dependent on outer query
DERIVED Derived table SELECT (subquery in FROM clause)
MATERIALIZED Materialized subquery
UNCACHEABLE A subquery for which the result cannot be cached and must
SUBQUERY be re-evaluated for each row of the outer query
UNCACHEABLE The second or later select in a UNION that belongs to an
UNION uncacheable subquery
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3.4.2 Load Features

The second feature engineering methodology is based on analyzing the periodic
behavior of a database management system by aggregating the queries with time series
analysis. The data is collected by using a common database plugin of a machine data
collection tool. We aggregated time features like minimum, maximum, mean, standard
deviation and variance with constant window size and analyzed the effects of workload
to predict query execution time (See Table 3.8). For example the aggregation of “bytes”
column in a rolling window is implemented with Pandas framework as follows (Figure

3.13) ;

import pandas as pd

# read CSV file from a data path

df = pd.read csv(data path, index col=None, header=0)

# aggregate features in a rolling window

df[ 'bytes mean']= df[ 'bytes'].rolling(window size).mean()
df[ 'bytes std']= df['bytes'].rolling(window size).std()
df[ 'bytes var']= df['bytes'].rolling(window size).var()
df[ 'bytes min']= df[ 'bytes'].rolling(window size).min()

df[ 'bytes max']= df['bytes'].rolling(window size).max()

Figure 3.13: Python Code for Time Series Aggregation with the Given Window Size
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Table 3.8: Load Features

Feature Name Description
Number of microseconds that it took the server to start
replying to a request
Number of microseconds that it took the client to send a

Reply Time

Request Time

request
. Number of microseconds that it took the server to send a
Response Time
response
Bytes The total number of bytes transferred
Bytes In The number of bytes sent from client to server
Bytes Out The number of bytes sent from server to client

We try to investigate the relationship between the total number of bytes transferred and
the query execution time to better understand the effects of network workload but we

couldn’t find a linear relation (Figure 3.14).

Bytes - Query Execution Time Relation
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Figure 3.14: The relation between the total number of bytes transferred and query
execution time for 10.000 random instances
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The number of bytes sent from client to server (bytes in) and the number of bytes sent

from server to client (bytes out) depends linearly (Figure 3.17). This information about

the number of bytes can be obtained with the query below in MySQL.:

SELECT * FROM information schema.global status
WHERE variable name IN

('Bytes received', 'Bytes sent');

Figure 3.15: Query for Retrieving Bytes Received and Bytes Sent Information (Global
Level)

SELECT * FROM information schema.session status
WHERE variable name IN

('Bytes received', 'Bytes sent');

Figure 3.16: Query for Retrieving Bytes Received and Bytes Sent Information (Session
Level)

Bytes In - Bytes Out Relation

150k
&
3
o, 100k
()
dd
@ .
50k e
() [ ]
[ )

e & °
0—«iifgmee ®® °

0 5k 10k 15k 20k

Bytes In

Figure 3.17: The linear relation between Bytes In and Bytes Out for 10.000 random
instances

After the aggregation of load features, the continuous aggregated features are shown in

Table 3.9 with window size of 30 seconds.
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Table 3.9: Aggregated Continuous Load Features

Feature Name Description
Reply Time Mean The mean of reply time in the current window
Reply Time Std The standard deviation of reply time in the current window
Reply Time Var The variance of reply time in the current window
Reply Time Min The minimum value of reply time in the current window
Reply Time Max The maximum value of reply time in the current window
Request Time Mean The mean of request time in the current window

Request Time Std  The standard deviation of request time in the current window
Request Time Var The variance of request time in the current window

Request Time Min The minimum value of request time in the current window
Request Time Max  The maximum value of request time in the current window
Response Time

Mean The mean of response time in the current window

The standard deviation of response time in the current
window

Response Time Var The variance of response time in the current window

Response Time Min  The minimum value of response time in the current window

Response Time Max The maximum value of response time in the current window
The mean of total number of bytes transferred in the current

Response Time Std

Bytes Mean .
window
The standard deviation of total number of bytes transferred
Bytes Std . .
in the current window
The variance of total number of bytes transferred in the
Bytes Var .
current window
. The minimum value of total number of bytes transferred in
Bytes Min .
the current window
The maximum value of total number of bytes transferred in
Bytes Max .
the current window
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4. RESULTS

4.1 Random Forest Results

First, we show the results of predictions with query plan features and load features by
using random forest algorithm. We build a random forest regression model to predict
query execution time in seconds in different workloads and compare RMSE metric of
query plan features, load features and all features together with different workloads (see

Figure 4.1).

In Figure 4.1, the x-axis represents different workloads and the y-axis shows the RMSE
of the predictions. The best results are obtained with the model of query plan and load
features together in all workloads. Surprisingly, for the highest workload (1573 queries
per second) during black Friday, query plan features are more effective than load
features. We need to interpret random forest algorithm to analyze this result so that we
calculate the relative influence of each feature whether this feature was selected during
splitting in the tree building process and how much the squared error (over all trees)
improved as a result. The scaled importance of features is calculated by h2o.ai

framework (Ambati et al., 2014).
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Figure 4.1: RMSE metrics for query plan features, load features and all features
comparison in low, medium, high and highest workloads

Figure 4.2 shows the R2 values on the validation dataset for different workloads. The
low workload gives us the highest R2 value 0.9821 while the highest workload gives the
lowest R2 value 0.5268 with query plan and load features together.
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Figure 4.2: R2 metrics for query plan features, load features and all features comparison
in low, medium, high and highest workloads

Figure 4.3 shows the mean absolute error (MAE) values on the validation set of
different workloads. The low workload gives us the lowest MAE value 1266 and while
the high workload gives us the highest MAE value 4878.
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Figure 4.3: MAE metrics for query plan features, load features and all features
comparison in low, medium, high and highest workloads
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Comparing the scaled importance (Strobl et al., 2007; Menze et al., 2009) of each
feature, we observe that the most important features correlate with a particular database
table during black Friday. The effect of query plan features in the highest workload is
due to the usage of the same table (table 1) under the load (See Figure 4.4). When we
analyze only the load features, the mean and variance of total number of bytes
transferred in the current window are important features thus we validate the relation

between total bytes transferred and query execution time (See Figure 4.4).
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Figure 4.4: The scaled importance of query plan features and load features together in
the highest workload

To provide more information about the results, we show the predicted and actual query
execution times for a random subset of test queries having size of 15.000 (See Figure

4.5 and Figure 4.6).

We categorize queries by query execution time and create slow and fast running query
pools and our predictions are linear for both slow and fast queries while using query
plan and load features together. When we look at the results, the predicted and actual

execution times are linear thus the query plan features and load features are useful when
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they are used together in a machine learning algorithm for both fast (Figure 4.5) and

slow running queries (Figure 4.6).
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Figure 4.5: Actual vs predicted query execution time in seconds in high workload with
query plan features and load features for fast running queries
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Figure 4.6: Actual vs predicted query execution time in seconds in high workload with
query plan features and load features for slow running queries
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4.2 Linear Regression Results

We show the prediction results with Linear Regression algorithm for query plan

features and load features by using RMSE metric (Figure 4.7).
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Figure 4.7: RMSE metrics for query plan features, load features and all features
comparison in low, medium, high and highest workloads with Linear Regression

In Linear Regression, the predictions are worse than Random Forest Regression by
RMSE metrics in all workloads and the feature engineering strategies don’t make
significant difference. The query execution time predictions with Linear Regression
algorithm are as good as Random Forest Algorithm in the highest workload and to
interpret this result, we look at standardized coefficient magnitudes of all features in
highest workload (Figure 4.8). In Linear Regression of H20O Framework a standardized
coefficient is a linear coefficient that has been defined in terms of standard deviations

rather than whatever the original units for that particular variable were.

When we interpret the standardized coefficient magnitudes which are used as feature
importance, we see that bytes in and bytes out features are the most important feature

in the highest workload with Linear Regression model. These two features are related
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with the network bandwidth so that in the highest workload, the network bandwidth
may be a bottleneck for query execution time prediction. We also see that
table 1 name is the third most important feature in the highest workload as in the
prediction results of DRF algorithm thus both two algorithms show that, table I name

may have a bias in the highest workload for query execution time prediction.
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Figure 4.8: Standardized Coefficient Magnitudes in Highest Workload for All Features
in Linear Regression Algorithm
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5. CONCLUSION

We present load related feature engineering strategies to predict query execution time
using machine learning techniques. We make our experiments with already executed
queries from a payment service provider in different workloads, introduce load-based
features and compare them with traditional query plan features. We show that load
based features are effective when they are used with query plan features for both slow
and fast running queries in all workload sizes. All these features can be used in
machine learning for capacity planning and workload management of autonomous

database systems.

Given query plan features and load features in its input feature vectors, the random
forest algorithm predicts query execution time and we calculate scaled importance of
each feature. The bytes transferred in the current window is one of the most important
features in load features and this result shows that the network data transfer volume may
allow us to better predict query execution time and to find network bottlenecks on a

database server.

Indeed, in high workloads, the workload and also the machine learning algorithms can
have a bias to some tables or indexes thus the experiments may depend on the dataset.
To solve this bias, we would like to have a random sample which have random

distributions of tables and indexes in the future.

In the future, firstly we would like to test multiple sliding window sizes for the
aggregations of load features because we believe that the window size should change
dynamically by workload size. Second, we plan to extract new load features by using
SQL text statistics like the mean and the maximum of aggregation count, equijoin count

etc. and compare these features with the query plan features. Third, we plan to apply



41

these black box load features in different domains and use these features for intelligent

workload management of different systems.

We also plan to implement an alert management system to identify long-running queries
before they are executed so that we can manage database workload without any
downtime. Another direction we plan to research in the future is integrating machine
learning models to relational database management systems so that these systems can

manage workload more efficient.
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