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ABSTRACT 

 

 

 

With the rapid development of whole industry(automotive and especially logistics) and 

software industry, increasing demand by customers and supply by manifacturers led the 

optimization more and more important nowadays. By the word for optimization, we 

mean minimizing production times, maximizing product logictics per transportation or 

minimizing fuel usage/maximizing fuel saving/efficiency for transportation vehicles. By 

the demand of these optimizations by the industry, also led optimization 

algorithms/techniques to grow and evolve. With the evolution of computers and 

computation powers, classic optimization techniques also evolved. One of evolutinary 

optimization techniques, Genetic algorithms and genetic programming, corresponded to 

these heavy demand of optimization area. Basically, genetic algorithms evolved from 

genetics and applications of sir Charles Darwin, crossover and mutation principles. 

 

Using Genetic Algorithms, we have the ability to optimize our solutions for hard 

problems. Simply, finding/choosing random solutions to the problem and make 

crossover and mutations on these solutions as the nature does. Crossing over and mutate 

the parts of solutions by switching the meaningful data between solutions and hope to 

reach to the best optimized solution. Generally we reach to the optimized solution by 

finding and trying correct or better crossover and mutation rates. In other words, 

choosing bad rates for these parameters, most likely leads to worse optimization. 

 

In this work, firstly, we presented the genetic algorithms in general way and after that 

we go in deep and used genetic algorithms to find better optimized results for the 

famous Traveling Salesman Problem. We chose to apply genetic algorithms on 

geographical regions of Turkey(Marmara, Aegean and Black Sea regions, 32 cities in 

total) to find best or best optimized route to travel. While applying genetic algorithms, 



 

 
 

we modified crossover methods, mutation methods and crossover and mutation rates to 

reach to the best possible route and analysed final solutions for each used 

parameter/method and made a comparison between them.  

 

Finally, we presented the compared results on graphics to visualize the evolution for 

each presented parameter. By making these research, we aim to reach out the best or 

better parameters for real use cases used in the logistics industry to reach better fuel 

efficiency and reducing fuel costs. 

 

 



 

 
 

RÉSUMÉ 

 

 

 

Avec le développement rapide de toute l'industrie (automobile et surtout logistique) et 

de l'industrie du logiciel, l'augmentation de la demande des clients et 

l'approvisionnement par les fabricants ont conduit l'optimisation de plus en plus 

importante de nos jours. Par optimisation, on veut dire qu la minimisation des temps de 

production, la maximisation de la logistique du produit par transport ou la minimisation 

de la consommation de carburant / la maximisation de l'économie de carburant / 

efficacité pour les véhicules de transport. Par la demande de ces optimisations par 

l'industrie, a également conduit des algorithmes / techniques d'optimisation pour grandir 

et évoluer. Avec l'évolution des ordinateurs et des puissances de ses calcul, les 

techniques classiques d'optimisation ont également évolué. L'une des techniques 

d'optimisation évolutive, les algorithmes génétiques et la programmation génétique, 

correspondaient à cette forte demande de domaine d'optimisation. Fondamentalement, 

les algorithmes génétiques ont évolué à partir de la génétique et des applications de sir 

Charles Darwin, les principes de croisement(crossover) et de mutation. 

 

En utilisant des algorithmes génétiques, nous avons la capacité d'optimiser nos solutions 

pour les problèmes difficiles. Simplement, trouver / choisir des solutions aléatoires au 

problème et faire des croisements et des mutations sur ces solutions comme le fait la 

nature. Traverser et muter les parties des solutions en changeant les données 

significatives entre les solutions et espérer trouver la solution la mieux optimisée. 

Généralement, on trouve la solution optimisée en trouvant et en essayant des taux de 

croisement et de mutation corrects ou meilleurs. En d'autres termes, le choix de mauvais 

taux pour ces paramètres conduit très probablement à une optimisation moins bonne. 

 

Dans ce travail, nous avons d'abord présenté les algorithmes génétiques de façon 

générale et ensuite nous allons dans des algorithmes génétiques profonds et utilisés pour 



 

 
 

trouver des résultats mieux optimisés pour le fameux Traveling Salesman Problem. 

Nous avons choisi d'appliquer des algorithmes génétiques sur les régions géographiques 

de la Turquie (régions de Marmara, de la mer Egée et de la mer Noire, 32 villes au total) 

pour trouver le meilleur ou le meilleur optimisé pour voyager. En appliquant des 

algorithmes génétiques, nous avons modifié les méthodes de croisement, les méthodes 

de mutation et les taux de croisement et de mutation pour atteindre la meilleure route 

possible et analysé les solutions finales pour chaque paramètre / méthode utilisé et fait 

une comparaison entre eux. 

 

Enfin, nous avons présenté les résultats comparé sur les graphiques pour visualiser 

l'évolution de chaque paramètre présenté. En faisant ces recherches, nous cherchons à 

atteindre les meilleurs ou les meilleurs paramètres pour les cas d'utilisation réels utilisés 

dans l'industrie de la logistique pour atteindre une meilleure efficacité énergétique et 

réduire les coûts de carburant. 



 

 
 

ÖZET 

 

 

 

Tüm endüstrinin(otomotiv ve özellikle lojistik alanında) ve yazılım endüstrisinde ki 

hızlı gelişmelerle, artan müşteri talepleri ve üreticilerin arzları sayesinde optimizasyon 

her gün daha çok önem kazanmaktadır. Optimizasyonla kastımız, üretim zamanlarının 

düşürülmesi, ürün lojistiğinin artırılması veya taşıma maliyetlerinde yakıt tüketiminin 

düşürülmesi anlatılmak istenmektedir. Endüstrinin bu tarz optimizasyon talepleri ayrıca 

optimizasyon algoritmalarının/tekniklerinin gelişerek evrilmesine katkıda bulunmuştur. 

Bilgisayarların gelişimi ve hesap kabiliyetlerinin gelişmesiyle, klasik optimizasyon 

teknikleri de evrilmiştir. Evolutionary optimizasyon tekniklerinden olan Genetik 

algoritmalar ve genetik programlama, optimizasyon alanında ki yüklü talebe yanıt 

vermeye çalışmaktadır. Temel olarak, generik algoritmalar, biyolojik genetik ve Sir 

Charles Darwin'in genetik alanında ki çaprazlama ve mutasyon uygulamalarından 

türetilmiştir. 

 

Genetik algoritmaları kullanarak, zor problemlerin daha optimize edilmiş sonuçlarına 

daha kolay olarak ulaşma şansına sahip oluruz. Genel olarak, aynı doğada olduğu gibi, 

rastgele çözümler bularak/seçerek, bu sonuçlara çaprazlama ve mutasyon teknikleri 

uygulayarak daha optimize sonuçlar bulmayı hedefliyoruz. Rastgele sonuçları birbiri 

arasında, parçalı olarak anlamlı verilerini çaprazlama ve mutasyon uygulayarak, daha 

optimize edilmiş sonuçlara varmayı umuyoruz. Genellikle, optimize edilmiş sonuca, 

doğru ve daha iyi çaprazlama ve mutasyon oranları seçerek ulaşmayı deniyoruz. Diğer 

bir deyişle, parametreler için kötü oranlar seçmek, bizi çoğunlukla daha kötü ve ya 

optimize olmayan sonuçlara ulaştıracaktır. 

 

Bu çalışmamızda, öncelikle, genetik algoritmaların genel konseptlerini tanıtıyoruz, daha 

sonra ise daha derine inerek ve spesifik şekilde genetik algoritmaları kullanarak, ünlü 

Gezgin Satıcı Problemi'ne optimize çözümler arıyoruz. Bu çalışmamızda, genetik 



 

 
 

algoritmayı Türkiyenin coğrafi bölgelerine(Marmara, Ege ve karadeniz bölgelerindeki 

şehirler, toplam 32 şehir) uygulayarak bu şehirler arasında ki en kısa yolu bulmaya 

çalışıyoruz. Genetik algoritmayı uygularken, çaprazlama metodlarını, mutasyon 

metodlarını, çaprazlama ve mutasyon oranlarını değiştirerek, en optimize yolu bulmaya 

çalışıyoruz ve sonuç olarak bulunan optimize sonuçları tüm bu parametler için ayrı ayrı 

analiz edip ortaya koyuyoruz. 

 

Sonuçta ise, karşılaştırılmış sonuçları grafik üzerinde göstererek, her parametrenin 

sonuca ne denli etki ettiğini ortaya koyuyoruz. Bu araştırmayı yaparak, gerçek hayatta 

lojistik endüstrisinde de aktif olarak kullanılan use caseler için daha doğru 

parametrelerin seçimine katkıda bulunarak, şirketlerin daha iyi yakıt tasarrufu elde 

etmelerine katkı sağlamayı amaçlıyoruz. 



 
 

 
 

1. INTRODUCTION 

 

 

 

Nowadays, in the industry, heavy demand of customers for products is known. 

Everyday, the consumption of products rises to significant levels. This consumption rise 

pushes manufacturers to calculate their every expense and to make improvements on 

every step of production and logictics. Which is why, optimization takes place and help 

manufacturers to improve their work and profitability. This need of optimization leads 

manufacturers to search for ways to improve their work and also that leads to find better 

algorithms that suits for their needs. Being one of evolutionary algorithms, Genetic 

Algorithms and Genetic Programming, take into action at this point.  

 

With the evolution of computers and their computational power, every calculation and 

optimization techniques are also evolving. This evolution also leads algorithms to 

improve. Evolution-based systems and evolution programs(EP) has been around since 

1960s and evolutionary algorithms are also improving every day. The word 

evolutionary is coming from evolution in biology, from works of Sir Charles Darwin, as 

species evolve with cross-overs and mutations to their childs/generations in time 

naturally. This is done by natural selection by the nature. Cross-over is simply 

transmitting parent's meaningful data to their childs, and mutation is changing or 

deterioration of one or various meaningful data of a child. These kind of operators 

provide variation of offsprings and also for the population. By this way, better 

offsprings and thus better populations are created. 

 

 

Using this evolution concept, we have the ability to apply this concept to computer 

science by creating parents and evolve them and create better offsprings and result. This 

concept allows us to reach better and better results for optimization. Genetic algorithms 

are heavily used for optimization in the industry and research area to achieve better 

optimization results.  

 



 
 

 

Especially, for the logistics industry, the production times and transportation costs play 

significant role for their profitability. The manufacturers always try to achieve better 

results, to find better and optimized routes for logistics and for their profits. They try to 

achieve, primarily maximazing production, minimizing cost and finally maximize the 

profits. Achieving this, they have to evaluate their past productions or calculate their 

best shortest route for logistics. Optimization is stated in Chong et al[2008] as ; 

 

"Optimization is central to any problem involving decision making, whether in 

engineering or in economics. The task of decision making entails choosing between 

various alternatives. This choice is governed by our desire to make the "best"  

decision." 

 

Genetic Algorithms are one of evolutionary algorithms that uses some heuristics and 

using crossover and mutation methods to achieve better optimization results, when the 

calculation is heavy. Simply, choosing several random results and crossing over and 

mutating these results between them and collecting better results to reach to the 

optimized solution according to their fitness to the problem. In Parmal et al.[2017], 

genetic algorithms are described as ; 

 

"Genetic Algorithm(GA) is a heuristic search technique for optimization, where it is not 

possible to analytically establish the extreme of the function. It employs a strategy 

based on the theory of natural selection to obtain iterative refinement of a population of 

potential solutions. It has been applied to diverse fields in problems like Traveling 

salesman problem (TSP), Marketing, finance etc." 

 

In this work, we analyse Traveling Salesman Problem for cities of 3 different regions of 

Turkey(Marmara, Aegean and Black Sea regions) that traveling salesman starts at one 

city and travels each cities and returns back to the starting city. Our aim is to analyse 

how the genetic algoritm and their parameters affect optimal solutions while trying to 

find the optimal route. We present each parameter in detail and present each of their 

behaviour for the results. We modify crossover, mutation methods and crossover, 

mutation rates. Then we visualize these distinct result and present on the graphics. 
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Finally, we compare these results to identify which parameters are better choice for 

better optimization. 
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2. LITERATURE REVIEW 

 

Genetic algorithms have variety of use cases, and wide area of use. Especially a lot of 

work has been done for the financial forecasting area and optimization areas in the real 

life applications. Allen et al.[1999] used genetic algorithms to learn technical trading 

rules for the S&P 500 using daily price movements from 1928 to 1995. They try to find 

trading rules for buy/sell orders on the index but it is indicated that after the transaction 

costs, the found trading rules do not earn excessive returns. Also Parmal et al. [2017] 

dealt with the problem of optimization of sales of a company, with using available data 

of a company, applying genetic algorithm to customer and product categories to to find 

optimal combinations. Kim et al[2005] used genetic algorithms to neural networks for 

customer targeting as identifying and profiling households. Lin et al.[2004] used sub-set 

values for parameters instead of single value to generate better optimization for 

financial buy/sell signals, using sub-set method, better optimization values obtained in 

result. In financial markets, calculating and analysing historical price data is crucial, so 

generally researches are highly focused on analysing the market data and to have a 

concrete meaningful strategies/results. 

 

While the genetic algorithms is an interesting an practical area of research, also general 

concept researches and practical use case researches have been made widely. In book 

« Practical Genetic Algorithms , Haupt[2004]» general concepts of optimization and 

genetic algorithms have been presented as genetic algorithm methods and practical use 

cases. Bethke[1980] presented the genetic algorithms as function optimizers in his 

research, this research is also interesting as this research is one of the primary 

researches in this area. Michalewicz[1992], in his book he presented genetic algorithms 

in detail, briefly explains GAs and classic problems that can be solved/optimized using 

GAs as prisoners dilemma and traveling salesman problem. 

 

 

 



 
 

 
 

There are also special and famous optimization problems as Prisoners Dilemma and 

Traveling Salesman Problem(TSP), heavy number of researches also have been made  

through the area. The researchers tried to optimize these problems to have better results. 

Grefenstte et al.[1985] discussed representation methods as ordinal representation and 

adjacency representations as well as the crossover  and also presenting subtour 

chunking operator , an off-spring is constructed from to parent tours as follows : "First 

choose a subtour of random length from one parent, then extend the partial tour by 

choosing a subtour of random length from the other parent. Continue extending the tour 

by choosing subtours from alternating parents. During the selection of a subtour from a 

parent, if the parent’s edge would introduce a cycle into a partial tour, then extend the 

partial tour by a random edge which does not introduce a cycle. Continue until a 

complete tour is constructed." Also Potvin[1996] also discussed several advanced 

crossover , mutation techniques as partially-mapped crossover(PMX), order based 

crossover(OBX), position based crossover (PBX) and presented computational results 

and made comparisons between methods. He also calculated CPU calculation times. 

 

There are also researches for parameters of the genetic algorithms to reach better 

optimization results by choosing better control parameters. Mills et al.[2014] defined an 

experiment design and analysis method to determine the relative importance and most 

effective setting for each control parameter in a GA. Also Boyabatlı et al.[2004] 

analysed the effect of numerical parameters on the performance of GA based 

mimulation optimization applications with experimental design techniques. Rexhepi et 

al.[2013] presented an analysis on impact of parameter values for Traveling Salesman 

Problem(TSP).  
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3. GENETIC ALGORITHMS 

 

 

 

Genetic Algorithms are one of evolutionary algorithms that use some heuristics and 

using crossover and mutation methods to achieve better optimization results, when the 

calculation is heavy. Evolution starts with randomly selected population members, for 

the mathematical functions, it is randomly generated solutions or results. Simply, 

choosing several random solutions/results and crossing over and mutating these results 

between them and collecting better results to reach to the optimized solution according 

to their fitness to the problem. Figure 3.1 shows the general flow chart of genetic 

algorithm(GA). In Figure 3.2, pseudo-code for GA is given. Also, in Parmal et 

al.(2017), genetic algorithms are described as ; 

 

"Genetic Algorithm(GA) is a heuristic search technique for optimization, where it is not 

possible to analytically establish the extreme of the function. It employs a strategy 

based on the theory of natural selection to obtain iterative refinement of a population of 

potential solutions. It has been applied to diverse fields in problems like Traveling 

salesman problem (TSP), Marketing, finance etc." 

 

 

 

 



 

 
 

 

Figure 3.1: Genetic Algorithm Flow Chart 

 

 

 

 

 

Figure 3.2: Genetic Algorithm pseudo-code 
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3.1 OPTIMIZATION 

 

Optimization is selecting a best element or a best solution (regarding some fitness or 

criterion) in a set of alternatives. Optimization can be done to maximizing or 

minimizing the solutions according to the problem type.  Simply, systematically 

choosing input values from allowed range and maximize or minimize the solution. 

Figure 3.2 shows the optimization logic. 

 

 

Figure 3.3: Optimization Logic 

 

 

 

In simple words, we try to find the better/best input values to find better/best output 

values, better output values(results) mean optimization of the problem. If there is no 

further better result, that result is called optimal value. 

 

Especially, for the logistics industry, the production times and transportation costs play 

significant role for their profitability. The manufacturers always try to achieve better 

results, to find better and optimized routes for logistics and for their profits. They try to 

achieve, primarily maximazing production, minimizing cost and finally maximize the 

profits. Achieving this, they have to evaluate their past productions or calculate their 

best shortest route for logistics.  

 

Mathematically, optimization can be defined as ; 

 

Given: a function  f : A  R from some set A to the real numbers 
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Sought: an element x0 in A such that f(x0) ≤ f(x) for all x in A ("minimization") or such 
that f(x0) ≥ f(x) for all x in A ("maximization"). 

 

f : objective function to be optimized. 

 

 

3.2 WHY GENETIC ALGORITHMS ? 

 

Genetic Algorithms provide « good-enough » solutions « fast-enough ». In other words, 

we may have better optimization fast enough using GAs. This benefit of GAs, make 

them very attractive especially for hard problems. 

 

3.2.1 SOLVING DIFFICULT PROBLEMS 

 

There are a lot of problems in computer science that requires a lot of computational 

power, even it takes years to solve these kind of problems. At that point, Genetic 

Algorithms provide usable near-optimal solutions in a short period of time. That makes 

GAs more and more attractive. 

 

3.2.2 PROVIDE GOOD SOLUTION FAST 

 

Various difficult problems like Traveling Salesman Problem(TSP), are used in real-life 

applications like Navigation apps. Thus, providing good-enough solutions fast-enough 

is very important for such cases. GAs provide required fast and good-enough solutions. 
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3.3 GENETIC ALGORITHM ADVANTAGES / DISADVANTAGES 

 

3.3.1 ADVANTAGES 

 

Here is a list of advantages of genetic algorithms ; 

- Faster and works efficiently than  the traditional methods. 

- Parallel capability/computing. 

- Optimizes both continuous and discrete functions. 

- Always provides an answer, solutions get better with better parameter choices. 

- Generally useful when the search space and the parameter number is large.  

 

 

3.3.2 DISADVANTAGES / LIMITATIONS 

 

GA also has some disadvantages/limitations, here are some examples ; 

- For simple functions/problems, using GA might be useless or redundant. 

- Fitness values for chromosomes are calculated repeatedly, that process might 

take time and might be expensive in terms of computation. 

- There are no guarantees that the found solutions is optimal or its quality. 

- If chosen parameters are not good enough or if there is a problem of 

implementation, then GA might not converge to the optimal solution. 

  

 

3.4 APPLICATION AREAS 

 

Genetic algorithms have a wide area of application in real life. You may find some 

application areas of GAs. 

 

- Optimization : Solving optimization problems. 

- Economics : GAs also have a part of economics to modelize or characterize 

price movements for better profits. 

- Neural Networks : Training neural networks. 

- Paralellization. 
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- Image Processing : Used for Digital Image Processing, dense pixel matching. 

- Vehicle Routing Problems . 

- Scheduling Applications : Optimizing for schedule problems, especially time 

tabling problem. 

- Machine Learning : Genetics based machine learning. 

- Parametric Design of Aircrafts : Varying the parameters, design of aircrafts gets 

better results. 

- Logistics : Traveling Salesman Problem and its application areas. 

 

 

 

 

3.5 TERMINOLOGY 

 

- Population : Subset of some possible solutions (encoded) to the problem. 

Poulation changes over time with new generations(offsprings). 

- Chromosomes : One solution to the given problem. An element of the 

population. 

- Fitness Function : Specific to the given problem. Fitness function is basically 

measures how fit / suitable is the solution. It takes solution as the input and 

generates its suitability as the output. 

- Genetic Operators :  

o Crossover : Exchanging / Transmitting meaningful data of 

chromosomes between them in a given order. 

o Mutation : Changing one or several meaningful data of a chromosome 

to provide variety in a given probability. 

o Survivor Selection : Selection of better solutions to achieve better 

optimal results. 
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3.6 REPRESENTATION OF CHROMOSOMES 

 

First and the most important decision for a genetic algorithm is to choose correct 

representation for our solutions. It is proven that bad representation choice often leads 

to bad GA performance. In this section, we present various GA representation methods, 

please keep in mind that representation is problem specific. 

 

3.6.1 BINARY REPRESENTATION 

 

In this type of representation, each data of a chromosome consists of a bit string (0 or 

1), it is useful when the solution space is boolean variables – true or false. (e.g. 

Knapsack problem, 1 represents an item is picked and 0 represents an item is not 

picked.). Figure 3.4 shows a chromosome consists of binary representation. 

 

 

 
Figure 3.4: Binary Representation Example 

 

 

 

3.6.2 INTEGER REPRESENTATION 

 

When we have more solution space than true or false, we may choose to use integer 

representation, simply represent various terms into integers, e.g. {up, down, left, right} 

to : {1,2,3,4}. Figure 3.5 shows a chromosome consists of integer representation. 

 

 

 

Figure 3.5: Integer Representation Example 
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3.6.3 PERMUTATION REPRESENTATION 

 

In this representation, solution is represented by order of elements in the list, e.g. 

Traveling Salesman Problem(TSP), representing order of all the cities which the 

traveling salesman will visit, makes sense to this problem. Figure 3.5 shows a 

chromosome consists of permutation representation. 

 

 

 
Figure 3.6: Permutation Representation Example 

 

 

3.7 POPULATION INITIALIZATION 

 

Population is the subset of solutions(chromosomes) in the current generation. Some 

points are very critical when populating GA optimization ; 

- Diversity of the population : if diversity is not good enough, process might lead 

to premature convergence, thus local maximum or local minimums. 

- Population size : this parameter is critical for the performance of the GA, small 

population size might not be enough for good mating, while very large 

population size might lead GA to slow down. 

 

3.7.1 INITIALIZATION METHODS 

 

There are several methods to initialize population, two important methods are the 

following : 

- Random Initialization : completely random population of solutions. 

- Heuristic Initialization : populate population using a known heuristic for the 

recent problem. 

 

Using heuristic initialization may cause the population to have similar chromosomes 

and thus it can deteriorate the diversity and finally it may affect the optimality. 
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3.8 FITNESS FUNCTION 

 

Fitness function is, simply, a function that takes solutions as input and calculates their 

fitness values to how fit they are to the given problem. It is a measure of « how good a 

solution » is. Fitness value choice and implementation is very important for a GA, 

because the fitness function is calculated repeatedly and must be fast enough. In our 

work, we use total distance travelled between cities in a chromosome and then 

comparing these fitness functions to pick the best chromosomes. 

 

Figure 3.7 shows a real example of our results, there is a population consists of 500 

chromosomes and we show 4 last chromosomes and their fitness values, in our case, 

fitness values is the same as objective function : total distance between cities. Less 

distance value is better. 

 

 

 Figure 3.7: Example Fitness Calculation Results 
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3.9 PARENT SELECTION 

 

Parent selection process is to select parents that will mate and generate off-springs with 

data interchange. It is very important to find balance while selecting parents, because 

always selecting best parents may lead to loss of diversity and that also may lead to 

premature convergence. So, keeping good diversity is always something to keep in 

mind for the performance of the GA. (e.g. with loss of diversity means that similar 

chromosomes will be generated in the next generations, that is not a desirable result for 

GAs.). Parent selection methods are as follows ; 

 

3.9.1 TOURNAMENT SELECTION 

 

Tournament selection is simply choosing « k » elements from the population at random 

and compare them and finally, select the best one to become a parent. The same process 

is repeated for other parents. In our work, we use tournament selection for our selection 

process. 

 

 

 

                       Figure 3.8: Example Fitness Calculation Results 
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3.9.2 ROULETTE WHEEL SELECTION 

 

In this method, a circular wheel divided into n pies where the n is the number of 

chromosomes in the population. So, each chromosome has a portion of proportional to 

its fitness value. By this way, better chromosomes have more chance to be picked as  

parents. 

 

 

Figure 3.9: Roulette Wheel Selection 

 

 

 

3.10 GENETIC OPERATORS 

 

3.10.1 CROSSOVER  

 

Crossover operator is just like biological crossover, interchanging meaningful data 

between parents, so new generations have properties from both parents. Applying 

crossover, we have to choose minimum 2 parents and one or more parent can be 

produced from these parents. Generally applied with a probability of  –Pc . For the 

brevity of the work, we presented 3 crossover methods in detail but there are also a lot 

A B C D E F
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of various crossover methods like Partially Mapped Crossover (PMX), Order Based 

Crossover(OBX) etc. 

 

3.10.1.1 ONE-POINT CROSSOVER 

 

This crossover operator is done as follows, randomly a crossover point is selected and 

according to that point, data of parents are swapped to generate new off-springs. 

 

 

 

Figure 3.10: One-Point Crossover 

 

 

3.10.1.2 MULTI POINT CROSSOVER 

 

Randomly choose more than one crossover point and swap alternatingly data from 

parents to generate new generations. 

 

 

 

Figure 3.11: Multi Point Crossover 
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3.10.1.3 UNIFORM CROSSOVER 

 

In this crossover method, we do not use separation segments, instead we treat each gene 

separately. In simple words, we choose random probability for each gene if this gene 

will be in the next generation. 

 

 

Figure 3.12: Uniform Crossover 

 

 

 

 

3.10.2 MUTATION 

 

Mutation is simply a disorder or defect on a data. Generally applied for maintaining the 

diversity on the population with a low probability –Pm. If Pm is not low enough, then 

GA may turn into a random search. 

 

3.10.2.1 INSERTION MUTATION 

 

Choose a random element in the chromosome and insert it into a random place. 

 

 

 

Figure 3.13: Insertion Mutation 
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3.10.2.2 SWAP MUTATION  

 

Choose random two positions and swap these two genes. Generally used in permutation 

representations. 

 

 

Figure 3.14: Swap Mutation 

 

 

 

3.10.2.3 SCRAMBLE MUTATION 

 

In this mutation method, a subset of chromosome is selected and their elements are 

scrambled at random. 

 

 

Figure 3.15: Scramble Mutation 

 

 

3.11 SURVIVAL SELECTION 

 

Survival selection process is to decide which chromosomes will propagate to the next 

generation and which ones will be removed from the population. It is very important to 

keep better/fitter chromosomes in the population and also we have to maintain the 

diversity in the population. 

 

For keeping the fitter chromosomes in the population, generally, the Elitism Method is 

used. It simply keeps last best chromosome in the population and directly propagates it 
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to the next generation. Randomness can be used to decide which ones to remove and 

propagate, but it affects the performance, thus, following methods are used to maintain 

better performance ; 

 

 

3.11.1 FITNESS BASED SELECTION 

 

In this method, fitnesses of the chromosomes play critical role. Basically, least fit 

chromosomes are replaced by the new off-springs. Sometimes, it is better to use some 

randomness to maintain diversity. Figure 3.14 shows the fitness based selection method. 

 

 

Figure 3.16: Fitness Based Selection 
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3.11.2 AGE  BASED SELECTION 

 

In age based selection, fitness of the chromosomes does not play a role, instead we use 

age of the chromosomes that for how many generations a chromosome has been in this 

population. The older chromosomes are replaced by the new off-springs. 

 

 

 

Figure 3.17: Age Based Selection 

 

 

 

3.12 TERMINATION CONDITION 

 

Termination condition is the last part of GA. The generation creation loop finishes 

according to this condition. These conditions may be applied as termination condition to 

a GA ; 

 

- If there will be no further improvements after a point of iterations. 

- If objective function hit to a pre-defined value. 

- If pre-defined number of generations realized.  
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In our work, we used a pre-defined maximum number of generations as a termination 

condition. We also want to mention that termination condition is highly problem 

specific and it must be taken into account according to given problem.  
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4. ANALYSIS DETAILS 

 

 

 

In this thesis, we have applied Genetic Algorithm with its various different methods and 

parameters on Traveling Salesman Problem(TSP). Our analysis consists of three 

different and neighbor geographic regions of Turkey that has 32 different cities in total. 

Theoretically and also in real life, all the cities have connected roads between them. We 

just measured theoretic air distance between all cities for brevity. Real road distances, 

real routes and traffic congestion also may be applied for further advanced researches. 

 

There are 32 cities total in three different regions, Marmara (11 cities), Aegean(8 cities) 

and Black Sea(13 cities) regions. We use “Euclidean distances” between cities. 

Basically, put cities to a graph according to their x and y coordinates and here is the 

distance function between two cities : 

 

         𝑐𝑖𝑡𝑦1 = (𝑥1,𝑦1),   𝑐𝑖𝑡𝑦2 = (𝑥2,𝑦2)                              (1) 

                                                  𝑑 =   (𝑥2 − 𝑥1) 2 + (𝑦2 − 𝑦1)2                

      

 

 

Using euclidean distance, we can get theoretical distances between cities, and also we 

can visualize cities and distances on a graph. Total distance of a chromosome is 

calculated as the following,  

 

 

                                                             𝑑𝑡 =   𝑑𝑖
𝑛−1
𝑖=0                                                   (2) 

𝑑𝑡  : 𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 

 

 

In our work, we analysed following parameters and methods during our trials ; 

- Population size 

- Maximum generation 



 

 
 

- Crossover Method 

- Crossover rate 

- Mutation Method 

- Mutation rate 

 

We analysed the affects of each of these parameters to GA performance. Also we used 

objective function/fitness calculation as the distance between cities and total distance of 

a chromosome. 

 

Table 4.1: Three Regions and Cities 

 

 

 

 

4.1 POPULATION INITIALIZATION 

 

We chose random initialization method for population initialization in our work. 

Basically, identified the population size and we randomly chose different cities from the 

list and put randomly in a chromosome. The order is not important because Traveling 

salesman problem is bi-directional and direction of a route from a city to another is not 

important. There are 32 cities in a chromosome in different order(solutions). 

Randomness is provided by java.util.Random library of Java language. 
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4.2. FITNESS FUNCTION 

 

Our fitness function is the same as objective function, total distance of a chromosome. 

To perform elitism and to find best chromosome among all the population, we try to 

find the best chromosome to compare total chromosome distance (total distance of 

chosen route).  Figure 4.1 shows a small part the population of four chromosomes and 

its fitness values(total distance). 

 

 

Figure 4.1: Fitness values of four example chromosomes 

 

 

4.3 PARENT SELECTION 

 

For the parent selection procedure, we use k-Way Tournament Selection, as it is very 

efficient for our case and also profits from randomness, thus we can maintain the 

diversity among our population. We decided to choose k value for 3, as it chooses 3 

chromosomes randomly and finally chooses a best one among them. We also give %20 

chance (relatively small chance) to maintain randomness, thus the diversity, that the best 

chromosome is not picked as a parent, instead, randomly choosen chromosome is 
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selected instead of the best one. We also apply elitism using 1 chromosome, that means, 

for each generation, only 1 best chromosome is selected for propagating directly to the 

new generation. Figure 4.2 shows our real example parent selection process. 

 

 

Figure 4.2 : Parent Selection with Possible Real Chromosomes 
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4.4 APPLIED CROSSOVER METHODS 

 

In this work, we implemented and analysed 3 main crossover methods ; 

 

 One Point Crossover 

 Two Point Crossover 

 Uniform Crossover 

 

After the parent selection, we decide to realize for a crossover between these parent or 

not according to crossover probability 𝑝𝑐 .  𝑝𝑐   is determined while program 

initialization. (e.g we choose a random number and see if this number is below 𝑝𝑐  ,  if 

we determine 𝑝𝑐  = 0.9, that means, the crossover operator will take place by %90 

chance between parents, if chosen random number is above 0.9, then no crossover is 

implemented for this iteration.) Figure 4.3 shows our crossover probability 

implementation using pre-defined crossover rate. 

 

if 𝑥 ≤ 𝑝𝑐  ,  realize crossover         (2) 

if 𝑥 > 𝑝𝑐  , no crossover 

 

 

 

Figure 4.3 : Crossover Probability Implementation 

 

 

In our implementation, one point crossover and two point crossover methods are 

implemented as the algorithm presented in previous chapter, but for the uniform 

crossover method, we use bitmask that generates an array of a specified size with 

randomly places 1s and 0s. Then we decide which genes to replace according to that 

bitmask as, e.g. Example: child 1 has all the same cities as parent 1 at the indexes where 

the bit-mask is 1 and the same process is applied to child 2. 
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4.5 APPLIED MUTATION METHODS 

 

Mutation methods are very important as they are used to maintain diversity. In our 

work, we chose very little chances of mutation rate to keep balance between keeping 

diversity and randomness. Primarly we have given %4 (mutation rate : 0.04)  chance of 

mutation rate to provide randomness, and we change this mutation rate in time to 

analyse its effects. We used following mutation methods as mutation operators ; 

 

 Insertion Mutation 

 Swap Mutation (in our implementation we named it reciprocal mutation) 

 Scramble Mutation 

 

After appliying crossover operators, we apply chosen(pre-defined) mutation technique 

according to predefined mutation probability 𝑝𝑐  , as 𝑝𝑐  is significantly small for not 

converging to random search. We increase this probability in time to analyse its effects 

on the performance of GA. Figure 4.4 shows the implementation which how we provide 

probability, we do the same process for both of chosen chromosomes according to two 

distinct random probabilities ; 

 

 

 

Figure 4.4 : Mutation Probability Implementation 

 

 

After all the crossover and mutation process is completed, if there is any room left, that 

means, if the next generation list contains less elements than population size, then we 

simply fill the empty places with random chromosomes in the last generation using k-

way tournament selection, so population size remains the same. 
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4.6 TERMINATION CONDITION 

 

In this work, we chose the termination condition as a pre-defined maximum generation 

number. Simply, if generation number hits the pre-defined value, then termination 

condition hit. We modified this pre-defined max. generation value in to to analyse its 

effects on the performance. We do not perform any other special conditions as early 

finishing with no further improvements etc. These kind of implementations are left for 

the future researches for brevity. Figure 4.5 shows the implementation of termination 

condition, we iterate over an array that the termination condition is maxGen.  

 

 

 

Figure 4.5 : Termination Condition Implementation 
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5. RESULTS 

 

 

 

In this work, we analysed the best distances and average of these best distances of each 

iteration according to the given parameters. Then we compared each parameters’ effects 

to the final results. We created a for loop and run genetic algorithm for pre-defined 

parameters. e.g.  

 Population size : range from 10 to 500 and increased by 30 ,  

 Max. Gen : range from 10 to 500 and increased by 30,  

 Crossover method :  

1. One point Crossover 

2. Two point Crossover 

3. Uniform Crossover 

 Mutation method : 

1. Insertion Mutation 

2. Swap Mutation (Reciprocal Mutation) 

3. Scramble Mutation 

 Crossover Rate 

 Mutation Rate 

 

In this work, we modified some parameters and we fixed other parameters to see effects 

of the changing parameter. First we run the GA according to given parameters in a loop, 

and calculated best distances and average distances in the end, we also calculate the 

average calculated distances of all crossover and mutation methods, so that we can 

compare all methods with averages and see how much optimization has been done 

compared to the averages. In the following section, you can find the result for several 

parameter effects: 

 

 



 
 

 
 

5.1 POPULATION SIZE 

 

5.1.1. First Trial 

Population size parameter : Varies and increments from 10 to 500 by 30 

MaxGen : 100, fixed 

Crossover Methods : Varies, {Uniform, One Point, Two point} 

Mutation Methods : Varies, {Insertion, Swap, Scramble}   

Crossover Rate : 0.9 

Mutation Rate : 0.04 

Table 5.1 shows the yielded result ; 

 

Table 5.1 : Results of GA with varying PopSize, Crossover and Mutation Methods 

PopSize 
Max
Gen 

Crosso
ver 

Mutat
ion  

Min. 
Dist. 

Avg. 
Dist. 

GA Dist. 
Avg. 

% min dist. 
Opt. 

% avg. dist. 
Opt. 

10;500;(
+30) 

100 
Unifor

m  
Inserti

on 
3781 4894 5204 27,34 5,96 

10;500;(
+30) 

100 
Unifor

m  
Swap 3799 4639 5204 27,00 10,86 

10;500;(
+30) 

100 
Unifor

m  
Scram

ble 
3756 4889 5204 27,82 6,05 

10;500;(
+30) 

100 
One 
Point 

Inserti
on 

4153 5113 5204 20,20 1,75 

10;500;(
+30) 

100 
One 
Point 

Swap 4305 5349 5204 17,28 -2,79 

10;500;(
+30) 

100 
One 
Point 

Scram
ble 

4404 5886 5204 15,37 -13,11 

10;500;(
+30) 

100 
Two 
Point 

Inserti
on 

4007 5007 5204 23,00 3,79 

10;500;(
+30) 

100 
Two 
Point 

Swap 4087 5209 5204 21,46 -0,10 

10;500;(
+30) 

100 
Two 
Point 

Scram
ble 

4451 5858 5204 14,47 -12,57 

 

 

As a result, when we increment the PopSize from 10 to 500, and the max PopSize is 

500, and the MaxGen is defined to 100, all the crossover methods and mutation 
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methods yield good results but for finding the minimum distance, using uniform 

crossover and scramble mutation combined yielded slightly the best result (%27 

optimization compared to average). But if we look at the average distances calculated, 

uniform crossover and swap mutation showed better results.(%10.86 optimization 

compared to average) 

 

 

5.1.2 Second Trial 

 

On this trial, we increment MaxGen to 300, here are the results; 

 

Population size parameter : Varies and increments from 10 to 500 

MaxGen : 300, fixed 

Crossover Methods : Varies, {Uniform, One Point, Two point} 

Mutation Methods : Varies, {Insertion, Swap, Scramble}   

Crossover Rate : 0.9 

Mutation Rate : 0.04 

Figure 5.1 and Table 5.2 shows the yielded result ; 

 

 

Figure 5.1 : Results on a Graph 
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Table 5.2 : Detailed Results 

PopSiz
e 

Max
Gen 

Crossov
er 

Mutat
ion  

Min. 
Dist. 

Avg. 
Dist. 

GA Dist. 
Avg. 

% min dist. 
Opt. 

% avg. dist. 
Opt. 

10;500
;(+30) 

300 Uniform  
Inserti

on 
3618 4091 4675 22,61 12,49 

10;500
;(+30) 

300 Uniform  Swap 3618 4300 4675 22,61 8,02 

10;500
;(+30) 

300 Uniform  
Scram

ble 
3618 4264 4675 22,61 8,79 

10;500
;(+30) 

300 
One 
Point 

Inserti
on 

3693 4445 4675 21,01 4,92 

10;500
;(+30) 

300 
One 
Point 

Swap 4042 4772 4675 13,54 -2,07 

10;500
;(+30) 

300 
One 
Point 

Scram
ble 

4555 5367 4675 2,57 -14,80 

10;500
;(+30) 

300 
Two 
Point 

Inserti
on 

3779 4473 4675 19,17 4,32 

10;500
;(+30) 

300 
Two 
Point 

Swap 3823 4675 4675 18,22 0,00 

10;500
;(+30) 

300 
Two 
Point 

Scram
ble 

4287 5588 4675 8,30 -19,53 

 

 

As a result, when we increment the PopSize from 10 to 500, and the max PopSize is 

500, and the MaxGen is defined to 300, all the crossover methods and mutation 

methods yield better results but for finding the minimum distance, this time, GA 

distance average is also decreased from 5204 to 4675, that means, all the methods 

yielded better results than the previous trial. This time, 3 different methods combined 

yielded slightly the best result (%22,61 optimization compared to average). But if we 

look at the average distances calculated, uniform crossover and insertion mutation 

showed better results.(%12.49 optimization compared to average). For the final 

decision, incrementing MaxGen from 100 to 300 yields better results, as a conclusion 

we can say that incrementing max generation number with popsize also increases 

genetic algorithm performance and the optimization. 
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5.2 MAXIMUM GENERATION SIZE 

 

5.2.1. First Trial 

 

Population size parameter : 100 , fixed 

MaxGen : Varies and increments from 10 to 500 by 30 

Crossover Methods : Varies, {Uniform, One Point, Two point} 

Mutation Methods : Varies, {Insertion, Swap, Scramble}   

Crossover Rate : 0.9 

Mutation Rate : 0.04 

Figure 5.2 and Table 5.3 shows the yielded result ; 

 

 

 

Figure 5.2 : Results on a Graph 
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Table 5.3 : Detailed Results 

PopS
ize 

MaxGe
n 

Crossov
er 

Mutat
ion  

Min. 
Dist. 

Avg. 
Dist. 

GA Dist. 
Avg. 

% min dist. 
Opt. 

% avg. dist. 
Opt. 

100 
10;500;

(+30) 
Uniform  

Inserti
on 

3756 4786 5250 28,46 8,84 

100 
10;500;

(+30) 
Uniform  Swap 3877 5027 5250 26,15 4,25 

100 
10;500;

(+30) 
Uniform  

Scram
ble 

3860 4864 5250 26,48 7,35 

100 
10;500;

(+30) 
One 
Point 

Inserti
on 

3943 4919 5250 24,90 6,30 

100 
10;500;

(+30) 
One 
Point 

Swap 4520 5399 5250 13,90 -2,84 

100 
10;500;

(+30) 
One 
Point 

Scram
ble 

4919 5935 5250 6,30 -13,05 

100 
10;500;

(+30) 
Two 
Point 

Inserti
on 

4050 4860 5250 22,86 7,43 

100 
10;500;

(+30) 
Two 
Point 

Swap 4335 5306 5250 17,43 -1,07 

100 
10;500;

(+30) 
Two 
Point 

Scram
ble 

5175 6162 5250 1,43 -17,37 

 

 

As a result, when we increment the MaxSize from 10 to 500, and the MaxSize is 500, 

and the PopSize is defined to 100, all the crossover methods and mutation methods 

yield good results but for finding the minimum distance, this time, GA distance average 

is again increased from 4675 to 5250 that means, all the methods yielded worst results 

than the last trial. This time, Uniform crossover and Insertion mutations combined 

yielded slightly the best result (%28,46 optimization compared to average). As if we 

look at the average distances calculated, also the same combination showed better 

results.(%8,84 optimization compared to average). For the final decision, fxing popSize  

to 100 and varying maxGen is yielded slightly worst results than the previous trials in 

terms of average distance but this time, Uniform crossover and Insertion mutation 

combined is the winner for better optimizations among other methods. As a conclusion 

we can say that with lower popSize with increasing MaxGen, using Uniform crossover 
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and Insertion mutation combination is better for genetic algorithm performance and the 

optimization. 

 

 

5.2.2 Second Trial 

 

Population size parameter : 300 , fixed 

MaxGen : Varies and increments from 10 to 500 by 30 

Crossover Methods : Varies, {Uniform, One Point, Two point} 

Mutation Methods : Varies, {Insertion, Swap, Scramble}   

Crossover Rate : 0.9 

Mutation Rate : 0.04 

Figure 5.3 and Table 5.4 shows the yielded result ; 

 

 

 

Figure 5.3 : Results on a Graph 
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Table 5.4 : Detailed Results 

PopS
ize 

MaxGe
n 

Crossov
er 

Mutat
ion  

Min. 
Dist. 

Avg. 
Dist. 

GA Dist. 
Avg. 

% min dist. 
Opt. 

% avg. dist. 
Opt. 

300 
10;500;

(+30) 
Uniform  

Inserti
on 

3602 4320 4636 22,30 6,82 

300 
10;500;

(+30) 
Uniform  Swap 3602 4388 4636 22,30 5,35 

300 
10;500;

(+30) 
Uniform  

Scram
ble 

3618 4396 4636 21,96 5,18 

300 
10;500;

(+30) 
One 
Point 

Inserti
on 

3725 4453 4636 19,65 3,95 

300 
10;500;

(+30) 
One 
Point 

Swap 3708 4623 4636 20,02 0,28 

300 
10;500;

(+30) 
One 
Point 

Scram
ble 

4033 5139 4636 13,01 -10,85 

300 
10;500;

(+30) 
Two 
Point 

Inserti
on 

3725 4440 4636 19,65 4,23 

300 
10;500;

(+30) 
Two 
Point 

Swap 4065 4859 4636 12,32 -4,81 

300 
10;500;

(+30) 
Two 
Point 

Scram
ble 

4196 5110 4636 9,49 -10,22 

 

 

As a result, when we increment the MaxSize from 10 to 500, and the MaxSize is 500, 

and the PopSize is defined to 300 fixed, all the crossover methods and mutation 

methods yield better results than the previous trials, and also for the first time we could 

reach to the best minimum distance (3602, we found this value after hundreds of trials), 

for finding the minimum distance, this time, GA distance average is decreased from 

5250 to 4636 that means, all the methods yielded better results than the last trial and 

previous trials. This time, Uniform crossover and Insertion mutations combined and 

Uniform crossover and Swap mutations combined yielded slightly the best results 

(%22,30 optimization compared to average). As if we look at the average distances 

calculated, Uniform crossover and Insertion mutation combination showed better 

results.(%6,82 optimization compared to average). For the final decision, fxing popSize  

to 300 and varying maxGen is yielded slightly better results than the previous trials in 

terms of average distance, so we can conclude that increasing maxGen and deciding 
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bigger popSize value also increases GA’s overall performance. Also uniform crossover 

and Insertion mutation combined is again the winner for better optimizations among 

other methods. As a conclusion we can say that with higher popSize with increasing 

MaxGen, using Uniform crossover and Insertion mutation combination is better for 

genetic algorithm performance and the optimization. 

 

 

5.3 CROSSOVER RATE 

 

Population size parameter : 100 , fixed 

MaxGen : 100, fixed 

Crossover Methods : Varies, {Uniform, One Point, Two point} 

Mutation Methods : Varies, {Insertion, Swap, Scramble}   

Crossover Rate : Varies and increments from 0,01 to 1 by 0.01 

Mutation Rate : 0.04, fixed 

 

For this analysis, we do not compared each methods, instead, we focused on general 

behaviour of all the methods and their overall reaction to crossover rate increase. We 

also chose relatively lower population size and maxGen to minimize popsize and 

maxgen effects on the algorithm performance so that we can see the effect of crossover 

rate better. 

Figure 5.4 shows the results for behaviors of all methods to crossover rate increase, 

mutation rate fixed. 
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 Figure 5.4 : General Behaviour of the Methods to Crossover Rate Increase 

 

 

As you can see on the graph that while the crossover rate increases when the mutation 

rate fixed to 0.04, all the methods’ performance gets better and yields better minimum 

distances, so as a conclusion, its better to choose a crossover rate close enough to 1 

yields better performance in terms of optimization if processing time is not significantly 

important.  

 

 

5.4 MUTATION RATE 

 

Population size parameter : 100 , fixed 

MaxGen : 100, fixed 

Crossover Methods : Varies, {Uniform, One Point, Two point} 

Mutation Methods : Varies, {Insertion, Swap, Scramble}   

Crossover Rate : 0.9 

Mutation Rate : Varies and increments from 0,001 to 1 by 0.002 

 

Now, we know that higher crossover rate yields better results, then we analyse the 

mutation rate effect on the performance of the GA while crossover rate is fixed. As the 
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previous trial, this time, we fixed crossover rate and selected it as 0.9 because in our 

trials, higher crossover rate but not selecting it as 1 yields better results to see the effect 

of mutation rate. Also please note that calculation time of the process is not taken into 

consideration on this analysis as we do not have heavy load of input (32 cities in a 

chromosome).  

 

 

 

Figure 5.5 : General Behaviour of the Methods to Mutation Rate Increase 

 

 

As you can see on the graph that while the mutation rate increases when the crossover 

rate fixed to 0.9, all the methods’ performance gets better and yields better minimum 

distances around iterations between 150-250 and then minimum distances found are 

slightly increasing again, so as a conclusion, its better to choose a mutation rate between 

0.03 to 0.05 gets better performance in terms of optimization if processing time is not 

significantly important. We also notified that, when the iteration gets higher (rate 

increase is small) process time also increases significantly. 
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6. FINAL RESULT & CONCLUSION 

 

Final results show that in terms of both minimum distances and average distances found 

of the several crossover and mutation methods combined, nearly always, uniform 

crossover and insertion mutation method selection yielded best results, both for lower 

and higher popsize and maxGen.  

 

On the other hand, our results show that, for our analysis (32 cities), selection of higher 

popSize and maxGen values also yielded better results but increasing popsize and 

maxgen parameters too high caused GA processing time to increase significant amount 

of times. Also for example, selecting popsize and maxGen parameters to higher than 

500, did not give significant performance increase comparing to significant process time 

increase. 

 

For the crossover rate and mutation rate analysis, we show that, when the other 

parameters are fixed, for crossover rate it is better to choose higher and closer values to 

1 yields better results, ideally we found that selecting a value around 0.85 - 0.95 yielded 

best results for our case. On the other hand, for the mutation rate, as we mentioned in 

the previous chapters, increasing mutation rate does not yield better results after some 

point, the search is getting similar to random search so decreasing optimization of the 

GA. In our case, ideally, selecting mutation rate between 0.03 - 0.05 yielded best 

results.   

 

 

 

 

 



 
 

  
 

REFERENCES 

 

Allen, Franklin & Karjalainen, Risto. (1993). Using Genetic Algorithms to Find    

  Technical Trading Rules. Journal of Financial Economics. 51. 10.1016/S0304-    

  405X(98)00052-X. 

 Bethke, A.D., Genetic algorithms as function optimizers, University of Michigan, Ann   

  Arbor, MI, 1980 

BOYABATLI, Onur and SABUNCUOGLU, Ihsan. Parameter Selection in Genetic  

  Algorithms. (2004). Journal of Systemics, Cybernetics and Informatics. 4, (2), 78-83 

Chong, Edwin & Zak, S.H.. (1996). An Introduction to Optimization, third edn, John 

Wiley&Sons New Jersey 

Grefenstette, John & Gopal, Rajeev & J. Rosmaita, Brian & Van Gucht, Dirk. (1985).      

  Genetic Algorithms for the Traveling Salesman Problem. 

HAUPT, L., Randy & Haupt, Sue. (1998). Practical Genetic Algorithms.   

  10.1002/0471671746. 

Kim, Yongseog & Street, Nick & Russell, Gary. (2003). Customer Targeting: A Neural  

  Network Approach Guided by Genetic Algorithms, Management Science, Vol. 51, No.  

  2, February 2005, pp. 264–276 

Lin, L., Cao, L., and Zhang, C., Genetic Algorithms for Robust Optimization in  

  Financial Application, Proc. of the Fourth IASTED Inter. Conf. of Computational    

  Intelligence, pp. 387-391, 2005 

Lin, li & Cao, Longbing & Wang, Jiaqi & Zhang, Chengqi. (2004). The Applications of   

  Genetic Algorithms in Stock Market Data Mining Optimisation. 10. 

Michalewicz, Zbigniew (1992), Genetic Algorithms + Data Structures = Evolution            

  Program, first edn, Springer Newyork 

Mills, Kevin & Filliben, James & L Haines, A. (2014). Determining Relative  

  Importance and Effective Settings for Genetic Algorithm Control Parameters.   

  Evolutionary computation. 23. 10.1162/EVCO_a_00137. 

Parmal, Varun & Banerjee, Snigdha. (2017). Maximizing Sales of a Finance Company:  

  A Genetic Algorithm Approach for Customer Identification. Pacific Business Review  

https://dl.acm.org/citation.cfm?id=909631
https://dl.acm.org/citation.cfm?id=909631


 
 

  
 

  International Volume 9 Issue 10, April 2017. 9. 49-54. 

 

Potvin, Jean-Yves. (1996). Genetic algorithms for the traveling salesman problem.  

  Annals of Operations Research. 63. 337-370. 10.1007/BF02125403.  

Rexhepi, A., Maxhuni, A., Dika, A., Analysis of the impact of parameters values on the  

  Genetic Algorithm for TSP, IJCSI International Journal of Computer Science Issues,  

  Vol. 10, Issue 1, No 3, January 2013 

 

 

 


