
ANALYSIS OF CROSSOVER, MUTATION METHODS AND RATES OF

GENETIC ALGORITHMS APPLIED ON TRAVELING SALESMAN

PROBLEM

(GENETĠK ALGORĠTMALARIN ÇAPRAZLAMA, MUTASYON METODLARININ

VE PARAMETRELERĠNĠN GEZGĠN SATICI PROBLEMĠ ÜZERĠNDE ANALĠZĠ)

by

A d n a n B A L , B . S .

Thesis

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

in the

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

of

GALATASARAY UNIVERSITY

Nov 2018

This is to certify that the thesis entitled

ANALYSIS OF CROSSOVER, MUTATION METHODS AND RATES OF

GENETIC ALGORITHMS APPLIED ON TRAVELING SALESMAN

PROBLEM

prepared by Adnan BAL in partial fulfillment of the requirements for the degree of

Master of Science in Computer Engineering at the Galatasaray University is

approved by the

Examining Committee:

Asst. Prof. Dr. Murat AKIN (Supervisor)

Department of Computer Engineering -----------------
Galatasaray University

Asst. Prof. Dr. Burak PARLAK

Department of Computer Engineering -----------------
Galatasaray University

Asst. Prof. Dr. Ġlker ÜSTOĞLU

Electrical & Electronics Faculty Control and -----------------

Automation Engineering Department

Yıldız Technical University

 Date: -------------------------

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Asst. Prof. Murat Akın, for his helpful advices

and great patience during the process.

I also would like to thank my family, for supporting me to create this special work of

mine.

Nov, 2018

Adnan BAL

iii

TABLE OF CONTENTS

LIST OF SYMBOLS ... vi

LIST OF FIGURES .. vii

LIST OF TABLES ... viii

ABSTRACT ... x

RÉSUMÉ .. xi

ÖZET ... xii

1. INTRODUCTION .. 1

2. LITERATURE REVIEW .. 4

3. GENETIC ALGORITHMS ... 6

3.1 Optimization ... 8

3.2 Why Genetic Algorithms ?... 9

3.2.1. Solving Difficult Problems .. 9

3.2.2. Provide Good Solution Fast .. 9

3.3 Genetic Algorithm Advantages/Disadvantages ... 10

 3.3.1 Advantages ... 10

 3.3.2 Disadvantages/Limitations ... 10

3.4 Application Areas... 10

3.5 Terminology ... 11

3.6 Representation of Chromosomes ... 12

 3.6.1 Binary Representation ... 12

 3.6.2 Integer Representation .. 12

 3.6.3 Permutation Representation .. 13

 3.7 Population Initialization .. 13

 3.7.1 Initialization Methods .. 13

3.8 Fitness Function ... 14

3.9 Parent Selection .. 15

 3.9.1 Tournament Selection .. 15

 3.9.2 Roulette Wheel Selection ... 16

3.10 Genetic Operators... 16

 3.10.1 Crossover ... 16

 3.10.1.1 One Point Crossover .. 17

 3.10.1.2 Multi Point Crossover .. 17

 3.10.1.3 Uniform Crossover ... 18

 3.10.2 Mutation ... 18

 3.10.2.1 Insertion Mutation .. 18

 3.10.2.2 Swap Mutation ... 19

 3.10.2.3 Scramble Mutation ... 19

3.11 Survival Selection .. 19

 3.11.1 Fitness Based Selection ... 20

 3.11.2 Age Based Selection ... 21

3.12 Termination Condition ... 21

4. ANALYSIS DETAILS .. 23

4.1 Population Initialization ... 24

4.2 Fitness Function ... 25

4.3 Parent Selection .. 25

4.4 Applied Crossover Methods ... 27

4.5 Applied Mutation Methods .. 28

4.6 Termination Condition ... 29

v

5. RESULTS .. 30

5.1 Population Size .. 31

5.1.1. First Trial ... 31

5.1.2. Second Trial .. 32

5.2 Maximum Generation Size .. 34

5.2.1. First Trial ... 34

5.2.2. Second Trial .. 36

5.3 Crossover Rate ... 38

5.4 Mutation Rate ... 39

6. FINAL RESULT & CONCLUSION... 40

REFERENCES .. 41

vi

LIST OF SYMBOLS

EP : Evolutionary Programming

GA : Genetic Algorithm

GP : Genetic Programming

OBX : Order Based Crossover

PBX : Position Based Crossover

PMX : Partially Mapped Crossover

TSP : Traveling Salesman Problem

LIST OF FIGURES

Figure 3.1: Genetic Algorithm Flow Chart ... 7

Figure 3.2: Genetic Algorithm pseudo-code .. 7

Figure 3.3: Optimization Logic .. 8

Figure 3.4: Binary Representation Example ... 12

Figure 3.5: Integer Representation Example .. 12

Figure 3.6: Permutation Representation Example .. 13

Figure 3.7: Example Fitness Calculation Results .. 14

Figure 3.8: Example Fitness Calculation Results .. 15

Figure 3.9: Roulette Wheel Selection .. 16

Figure 3.10: One-Point Crossover .. 17

Figure 3.11 Multi Point Crossover .. 17

Figure 3.12: Uniform Crossover .. 18

Figure 3.13: Insertion Mutation ... 18

Figure 3.14 Swap Mutation .. 19

Figure 3.15: Scramble Mutation .. 19

Figure 3.16: Fitness Based Selection ... 20

Figure 3.17: Age Based Selection ... 21

Figure 4.1: Fitness values of four example chromosomes .. 25

Figure 4.2: Parent Selection with Possible Real Chromosomes 26

Figure 4.3: Crossover Probability Implementation ... 27

Figure 4.4: Mutation Probability Implementation ... 28

Figure 4.5: Termination Condition Implementation .. 29

Figure 5.1: Results on a Graph .. 32

Figure 5.2: Results on a Graph .. 34

Figure 5.3: Results on a Graph .. 36

Figure 5.4: General Behaviour of the Methods to Crossover Rate Increase 39

Figure 5.5: General Behaviour of the Methods to Mutation Rate Increase 40

ix

LIST OF TABLES

Table 4.1: Three Regions and Cities ... 24

Table 5.1: Results of GA with varying PopSize, Crossover and Mutation Methods ... 31

Table 5.2: Detailed Results ... 33

Table 5.3: Detailed Results ... 35

Table 5.4: Detailed Results ... 37

ABSTRACT

With the rapid development of whole industry(automotive and especially logistics) and

software industry, increasing demand by customers and supply by manifacturers led the

optimization more and more important nowadays. By the word for optimization, we

mean minimizing production times, maximizing product logictics per transportation or

minimizing fuel usage/maximizing fuel saving/efficiency for transportation vehicles. By

the demand of these optimizations by the industry, also led optimization

algorithms/techniques to grow and evolve. With the evolution of computers and

computation powers, classic optimization techniques also evolved. One of evolutinary

optimization techniques, Genetic algorithms and genetic programming, corresponded to

these heavy demand of optimization area. Basically, genetic algorithms evolved from

genetics and applications of sir Charles Darwin, crossover and mutation principles.

Using Genetic Algorithms, we have the ability to optimize our solutions for hard

problems. Simply, finding/choosing random solutions to the problem and make

crossover and mutations on these solutions as the nature does. Crossing over and mutate

the parts of solutions by switching the meaningful data between solutions and hope to

reach to the best optimized solution. Generally we reach to the optimized solution by

finding and trying correct or better crossover and mutation rates. In other words,

choosing bad rates for these parameters, most likely leads to worse optimization.

In this work, firstly, we presented the genetic algorithms in general way and after that

we go in deep and used genetic algorithms to find better optimized results for the

famous Traveling Salesman Problem. We chose to apply genetic algorithms on

geographical regions of Turkey(Marmara, Aegean and Black Sea regions, 32 cities in

total) to find best or best optimized route to travel. While applying genetic algorithms,

we modified crossover methods, mutation methods and crossover and mutation rates to

reach to the best possible route and analysed final solutions for each used

parameter/method and made a comparison between them.

Finally, we presented the compared results on graphics to visualize the evolution for

each presented parameter. By making these research, we aim to reach out the best or

better parameters for real use cases used in the logistics industry to reach better fuel

efficiency and reducing fuel costs.

RÉSUMÉ

Avec le développement rapide de toute l'industrie (automobile et surtout logistique) et

de l'industrie du logiciel, l'augmentation de la demande des clients et

l'approvisionnement par les fabricants ont conduit l'optimisation de plus en plus

importante de nos jours. Par optimisation, on veut dire qu la minimisation des temps de

production, la maximisation de la logistique du produit par transport ou la minimisation

de la consommation de carburant / la maximisation de l'économie de carburant /

efficacité pour les véhicules de transport. Par la demande de ces optimisations par

l'industrie, a également conduit des algorithmes / techniques d'optimisation pour grandir

et évoluer. Avec l'évolution des ordinateurs et des puissances de ses calcul, les

techniques classiques d'optimisation ont également évolué. L'une des techniques

d'optimisation évolutive, les algorithmes génétiques et la programmation génétique,

correspondaient à cette forte demande de domaine d'optimisation. Fondamentalement,

les algorithmes génétiques ont évolué à partir de la génétique et des applications de sir

Charles Darwin, les principes de croisement(crossover) et de mutation.

En utilisant des algorithmes génétiques, nous avons la capacité d'optimiser nos solutions

pour les problèmes difficiles. Simplement, trouver / choisir des solutions aléatoires au

problème et faire des croisements et des mutations sur ces solutions comme le fait la

nature. Traverser et muter les parties des solutions en changeant les données

significatives entre les solutions et espérer trouver la solution la mieux optimisée.

Généralement, on trouve la solution optimisée en trouvant et en essayant des taux de

croisement et de mutation corrects ou meilleurs. En d'autres termes, le choix de mauvais

taux pour ces paramètres conduit très probablement à une optimisation moins bonne.

Dans ce travail, nous avons d'abord présenté les algorithmes génétiques de façon

générale et ensuite nous allons dans des algorithmes génétiques profonds et utilisés pour

trouver des résultats mieux optimisés pour le fameux Traveling Salesman Problem.

Nous avons choisi d'appliquer des algorithmes génétiques sur les régions géographiques

de la Turquie (régions de Marmara, de la mer Egée et de la mer Noire, 32 villes au total)

pour trouver le meilleur ou le meilleur optimisé pour voyager. En appliquant des

algorithmes génétiques, nous avons modifié les méthodes de croisement, les méthodes

de mutation et les taux de croisement et de mutation pour atteindre la meilleure route

possible et analysé les solutions finales pour chaque paramètre / méthode utilisé et fait

une comparaison entre eux.

Enfin, nous avons présenté les résultats comparé sur les graphiques pour visualiser

l'évolution de chaque paramètre présenté. En faisant ces recherches, nous cherchons à

atteindre les meilleurs ou les meilleurs paramètres pour les cas d'utilisation réels utilisés

dans l'industrie de la logistique pour atteindre une meilleure efficacité énergétique et

réduire les coûts de carburant.

ÖZET

Tüm endüstrinin(otomotiv ve özellikle lojistik alanında) ve yazılım endüstrisinde ki

hızlı gelişmelerle, artan müşteri talepleri ve üreticilerin arzları sayesinde optimizasyon

her gün daha çok önem kazanmaktadır. Optimizasyonla kastımız, üretim zamanlarının

düşürülmesi, ürün lojistiğinin artırılması veya taşıma maliyetlerinde yakıt tüketiminin

düşürülmesi anlatılmak istenmektedir. Endüstrinin bu tarz optimizasyon talepleri ayrıca

optimizasyon algoritmalarının/tekniklerinin gelişerek evrilmesine katkıda bulunmuştur.

Bilgisayarların gelişimi ve hesap kabiliyetlerinin gelişmesiyle, klasik optimizasyon

teknikleri de evrilmiştir. Evolutionary optimizasyon tekniklerinden olan Genetik

algoritmalar ve genetik programlama, optimizasyon alanında ki yüklü talebe yanıt

vermeye çalışmaktadır. Temel olarak, generik algoritmalar, biyolojik genetik ve Sir

Charles Darwin'in genetik alanında ki çaprazlama ve mutasyon uygulamalarından

türetilmiştir.

Genetik algoritmaları kullanarak, zor problemlerin daha optimize edilmiş sonuçlarına

daha kolay olarak ulaşma şansına sahip oluruz. Genel olarak, aynı doğada olduğu gibi,

rastgele çözümler bularak/seçerek, bu sonuçlara çaprazlama ve mutasyon teknikleri

uygulayarak daha optimize sonuçlar bulmayı hedefliyoruz. Rastgele sonuçları birbiri

arasında, parçalı olarak anlamlı verilerini çaprazlama ve mutasyon uygulayarak, daha

optimize edilmiş sonuçlara varmayı umuyoruz. Genellikle, optimize edilmiş sonuca,

doğru ve daha iyi çaprazlama ve mutasyon oranları seçerek ulaşmayı deniyoruz. Diğer

bir deyişle, parametreler için kötü oranlar seçmek, bizi çoğunlukla daha kötü ve ya

optimize olmayan sonuçlara ulaştıracaktır.

Bu çalışmamızda, öncelikle, genetik algoritmaların genel konseptlerini tanıtıyoruz, daha

sonra ise daha derine inerek ve spesifik şekilde genetik algoritmaları kullanarak, ünlü

Gezgin Satıcı Problemi'ne optimize çözümler arıyoruz. Bu çalışmamızda, genetik

algoritmayı Türkiyenin coğrafi bölgelerine(Marmara, Ege ve karadeniz bölgelerindeki

şehirler, toplam 32 şehir) uygulayarak bu şehirler arasında ki en kısa yolu bulmaya

çalışıyoruz. Genetik algoritmayı uygularken, çaprazlama metodlarını, mutasyon

metodlarını, çaprazlama ve mutasyon oranlarını değiştirerek, en optimize yolu bulmaya

çalışıyoruz ve sonuç olarak bulunan optimize sonuçları tüm bu parametler için ayrı ayrı

analiz edip ortaya koyuyoruz.

Sonuçta ise, karşılaştırılmış sonuçları grafik üzerinde göstererek, her parametrenin

sonuca ne denli etki ettiğini ortaya koyuyoruz. Bu araştırmayı yaparak, gerçek hayatta

lojistik endüstrisinde de aktif olarak kullanılan use caseler için daha doğru

parametrelerin seçimine katkıda bulunarak, şirketlerin daha iyi yakıt tasarrufu elde

etmelerine katkı sağlamayı amaçlıyoruz.

1. INTRODUCTION

Nowadays, in the industry, heavy demand of customers for products is known.

Everyday, the consumption of products rises to significant levels. This consumption rise

pushes manufacturers to calculate their every expense and to make improvements on

every step of production and logictics. Which is why, optimization takes place and help

manufacturers to improve their work and profitability. This need of optimization leads

manufacturers to search for ways to improve their work and also that leads to find better

algorithms that suits for their needs. Being one of evolutionary algorithms, Genetic

Algorithms and Genetic Programming, take into action at this point.

With the evolution of computers and their computational power, every calculation and

optimization techniques are also evolving. This evolution also leads algorithms to

improve. Evolution-based systems and evolution programs(EP) has been around since

1960s and evolutionary algorithms are also improving every day. The word

evolutionary is coming from evolution in biology, from works of Sir Charles Darwin, as

species evolve with cross-overs and mutations to their childs/generations in time

naturally. This is done by natural selection by the nature. Cross-over is simply

transmitting parent's meaningful data to their childs, and mutation is changing or

deterioration of one or various meaningful data of a child. These kind of operators

provide variation of offsprings and also for the population. By this way, better

offsprings and thus better populations are created.

Using this evolution concept, we have the ability to apply this concept to computer

science by creating parents and evolve them and create better offsprings and result. This

concept allows us to reach better and better results for optimization. Genetic algorithms

are heavily used for optimization in the industry and research area to achieve better

optimization results.

Especially, for the logistics industry, the production times and transportation costs play

significant role for their profitability. The manufacturers always try to achieve better

results, to find better and optimized routes for logistics and for their profits. They try to

achieve, primarily maximazing production, minimizing cost and finally maximize the

profits. Achieving this, they have to evaluate their past productions or calculate their

best shortest route for logistics. Optimization is stated in Chong et al[2008] as ;

"Optimization is central to any problem involving decision making, whether in

engineering or in economics. The task of decision making entails choosing between

various alternatives. This choice is governed by our desire to make the "best"

decision."

Genetic Algorithms are one of evolutionary algorithms that uses some heuristics and

using crossover and mutation methods to achieve better optimization results, when the

calculation is heavy. Simply, choosing several random results and crossing over and

mutating these results between them and collecting better results to reach to the

optimized solution according to their fitness to the problem. In Parmal et al.[2017],

genetic algorithms are described as ;

"Genetic Algorithm(GA) is a heuristic search technique for optimization, where it is not

possible to analytically establish the extreme of the function. It employs a strategy

based on the theory of natural selection to obtain iterative refinement of a population of

potential solutions. It has been applied to diverse fields in problems like Traveling

salesman problem (TSP), Marketing, finance etc."

In this work, we analyse Traveling Salesman Problem for cities of 3 different regions of

Turkey(Marmara, Aegean and Black Sea regions) that traveling salesman starts at one

city and travels each cities and returns back to the starting city. Our aim is to analyse

how the genetic algoritm and their parameters affect optimal solutions while trying to

find the optimal route. We present each parameter in detail and present each of their

behaviour for the results. We modify crossover, mutation methods and crossover,

mutation rates. Then we visualize these distinct result and present on the graphics.

2

Finally, we compare these results to identify which parameters are better choice for

better optimization.

3

2. LITERATURE REVIEW

Genetic algorithms have variety of use cases, and wide area of use. Especially a lot of

work has been done for the financial forecasting area and optimization areas in the real

life applications. Allen et al.[1999] used genetic algorithms to learn technical trading

rules for the S&P 500 using daily price movements from 1928 to 1995. They try to find

trading rules for buy/sell orders on the index but it is indicated that after the transaction

costs, the found trading rules do not earn excessive returns. Also Parmal et al. [2017]

dealt with the problem of optimization of sales of a company, with using available data

of a company, applying genetic algorithm to customer and product categories to to find

optimal combinations. Kim et al[2005] used genetic algorithms to neural networks for

customer targeting as identifying and profiling households. Lin et al.[2004] used sub-set

values for parameters instead of single value to generate better optimization for

financial buy/sell signals, using sub-set method, better optimization values obtained in

result. In financial markets, calculating and analysing historical price data is crucial, so

generally researches are highly focused on analysing the market data and to have a

concrete meaningful strategies/results.

While the genetic algorithms is an interesting an practical area of research, also general

concept researches and practical use case researches have been made widely. In book

« Practical Genetic Algorithms , Haupt[2004]» general concepts of optimization and

genetic algorithms have been presented as genetic algorithm methods and practical use

cases. Bethke[1980] presented the genetic algorithms as function optimizers in his

research, this research is also interesting as this research is one of the primary

researches in this area. Michalewicz[1992], in his book he presented genetic algorithms

in detail, briefly explains GAs and classic problems that can be solved/optimized using

GAs as prisoners dilemma and traveling salesman problem.

There are also special and famous optimization problems as Prisoners Dilemma and

Traveling Salesman Problem(TSP), heavy number of researches also have been made

through the area. The researchers tried to optimize these problems to have better results.

Grefenstte et al.[1985] discussed representation methods as ordinal representation and

adjacency representations as well as the crossover and also presenting subtour

chunking operator , an off-spring is constructed from to parent tours as follows : "First

choose a subtour of random length from one parent, then extend the partial tour by

choosing a subtour of random length from the other parent. Continue extending the tour

by choosing subtours from alternating parents. During the selection of a subtour from a

parent, if the parent’s edge would introduce a cycle into a partial tour, then extend the

partial tour by a random edge which does not introduce a cycle. Continue until a

complete tour is constructed." Also Potvin[1996] also discussed several advanced

crossover , mutation techniques as partially-mapped crossover(PMX), order based

crossover(OBX), position based crossover (PBX) and presented computational results

and made comparisons between methods. He also calculated CPU calculation times.

There are also researches for parameters of the genetic algorithms to reach better

optimization results by choosing better control parameters. Mills et al.[2014] defined an

experiment design and analysis method to determine the relative importance and most

effective setting for each control parameter in a GA. Also Boyabatlı et al.[2004]

analysed the effect of numerical parameters on the performance of GA based

mimulation optimization applications with experimental design techniques. Rexhepi et

al.[2013] presented an analysis on impact of parameter values for Traveling Salesman

Problem(TSP).

5

3. GENETIC ALGORITHMS

Genetic Algorithms are one of evolutionary algorithms that use some heuristics and

using crossover and mutation methods to achieve better optimization results, when the

calculation is heavy. Evolution starts with randomly selected population members, for

the mathematical functions, it is randomly generated solutions or results. Simply,

choosing several random solutions/results and crossing over and mutating these results

between them and collecting better results to reach to the optimized solution according

to their fitness to the problem. Figure 3.1 shows the general flow chart of genetic

algorithm(GA). In Figure 3.2, pseudo-code for GA is given. Also, in Parmal et

al.(2017), genetic algorithms are described as ;

"Genetic Algorithm(GA) is a heuristic search technique for optimization, where it is not

possible to analytically establish the extreme of the function. It employs a strategy

based on the theory of natural selection to obtain iterative refinement of a population of

potential solutions. It has been applied to diverse fields in problems like Traveling

salesman problem (TSP), Marketing, finance etc."

Figure 3.1: Genetic Algorithm Flow Chart

Figure 3.2: Genetic Algorithm pseudo-code

7

3.1 OPTIMIZATION

Optimization is selecting a best element or a best solution (regarding some fitness or

criterion) in a set of alternatives. Optimization can be done to maximizing or

minimizing the solutions according to the problem type. Simply, systematically

choosing input values from allowed range and maximize or minimize the solution.

Figure 3.2 shows the optimization logic.

Figure 3.3: Optimization Logic

In simple words, we try to find the better/best input values to find better/best output

values, better output values(results) mean optimization of the problem. If there is no

further better result, that result is called optimal value.

Especially, for the logistics industry, the production times and transportation costs play

significant role for their profitability. The manufacturers always try to achieve better

results, to find better and optimized routes for logistics and for their profits. They try to

achieve, primarily maximazing production, minimizing cost and finally maximize the

profits. Achieving this, they have to evaluate their past productions or calculate their

best shortest route for logistics.

Mathematically, optimization can be defined as ;

Given: a function f : A R from some set A to the real numbers

8

Sought: an element x0 in A such that f(x0) ≤ f(x) for all x in A ("minimization") or such
that f(x0) ≥ f(x) for all x in A ("maximization").

f : objective function to be optimized.

3.2 WHY GENETIC ALGORITHMS ?

Genetic Algorithms provide « good-enough » solutions « fast-enough ». In other words,

we may have better optimization fast enough using GAs. This benefit of GAs, make

them very attractive especially for hard problems.

3.2.1 SOLVING DIFFICULT PROBLEMS

There are a lot of problems in computer science that requires a lot of computational

power, even it takes years to solve these kind of problems. At that point, Genetic

Algorithms provide usable near-optimal solutions in a short period of time. That makes

GAs more and more attractive.

3.2.2 PROVIDE GOOD SOLUTION FAST

Various difficult problems like Traveling Salesman Problem(TSP), are used in real-life

applications like Navigation apps. Thus, providing good-enough solutions fast-enough

is very important for such cases. GAs provide required fast and good-enough solutions.

9

3.3 GENETIC ALGORITHM ADVANTAGES / DISADVANTAGES

3.3.1 ADVANTAGES

Here is a list of advantages of genetic algorithms ;

- Faster and works efficiently than the traditional methods.

- Parallel capability/computing.

- Optimizes both continuous and discrete functions.

- Always provides an answer, solutions get better with better parameter choices.

- Generally useful when the search space and the parameter number is large.

3.3.2 DISADVANTAGES / LIMITATIONS

GA also has some disadvantages/limitations, here are some examples ;

- For simple functions/problems, using GA might be useless or redundant.

- Fitness values for chromosomes are calculated repeatedly, that process might

take time and might be expensive in terms of computation.

- There are no guarantees that the found solutions is optimal or its quality.

- If chosen parameters are not good enough or if there is a problem of

implementation, then GA might not converge to the optimal solution.

3.4 APPLICATION AREAS

Genetic algorithms have a wide area of application in real life. You may find some

application areas of GAs.

- Optimization : Solving optimization problems.

- Economics : GAs also have a part of economics to modelize or characterize

price movements for better profits.

- Neural Networks : Training neural networks.

- Paralellization.

10

- Image Processing : Used for Digital Image Processing, dense pixel matching.

- Vehicle Routing Problems .

- Scheduling Applications : Optimizing for schedule problems, especially time

tabling problem.

- Machine Learning : Genetics based machine learning.

- Parametric Design of Aircrafts : Varying the parameters, design of aircrafts gets

better results.

- Logistics : Traveling Salesman Problem and its application areas.

3.5 TERMINOLOGY

- Population : Subset of some possible solutions (encoded) to the problem.

Poulation changes over time with new generations(offsprings).

- Chromosomes : One solution to the given problem. An element of the

population.

- Fitness Function : Specific to the given problem. Fitness function is basically

measures how fit / suitable is the solution. It takes solution as the input and

generates its suitability as the output.

- Genetic Operators :

o Crossover : Exchanging / Transmitting meaningful data of

chromosomes between them in a given order.

o Mutation : Changing one or several meaningful data of a chromosome

to provide variety in a given probability.

o Survivor Selection : Selection of better solutions to achieve better

optimal results.

11

3.6 REPRESENTATION OF CHROMOSOMES

First and the most important decision for a genetic algorithm is to choose correct

representation for our solutions. It is proven that bad representation choice often leads

to bad GA performance. In this section, we present various GA representation methods,

please keep in mind that representation is problem specific.

3.6.1 BINARY REPRESENTATION

In this type of representation, each data of a chromosome consists of a bit string (0 or

1), it is useful when the solution space is boolean variables – true or false. (e.g.

Knapsack problem, 1 represents an item is picked and 0 represents an item is not

picked.). Figure 3.4 shows a chromosome consists of binary representation.

Figure 3.4: Binary Representation Example

3.6.2 INTEGER REPRESENTATION

When we have more solution space than true or false, we may choose to use integer

representation, simply represent various terms into integers, e.g. {up, down, left, right}

to : {1,2,3,4}. Figure 3.5 shows a chromosome consists of integer representation.

Figure 3.5: Integer Representation Example

12

3.6.3 PERMUTATION REPRESENTATION

In this representation, solution is represented by order of elements in the list, e.g.

Traveling Salesman Problem(TSP), representing order of all the cities which the

traveling salesman will visit, makes sense to this problem. Figure 3.5 shows a

chromosome consists of permutation representation.

Figure 3.6: Permutation Representation Example

3.7 POPULATION INITIALIZATION

Population is the subset of solutions(chromosomes) in the current generation. Some

points are very critical when populating GA optimization ;

- Diversity of the population : if diversity is not good enough, process might lead

to premature convergence, thus local maximum or local minimums.

- Population size : this parameter is critical for the performance of the GA, small

population size might not be enough for good mating, while very large

population size might lead GA to slow down.

3.7.1 INITIALIZATION METHODS

There are several methods to initialize population, two important methods are the

following :

- Random Initialization : completely random population of solutions.

- Heuristic Initialization : populate population using a known heuristic for the

recent problem.

Using heuristic initialization may cause the population to have similar chromosomes

and thus it can deteriorate the diversity and finally it may affect the optimality.

13

3.8 FITNESS FUNCTION

Fitness function is, simply, a function that takes solutions as input and calculates their

fitness values to how fit they are to the given problem. It is a measure of « how good a

solution » is. Fitness value choice and implementation is very important for a GA,

because the fitness function is calculated repeatedly and must be fast enough. In our

work, we use total distance travelled between cities in a chromosome and then

comparing these fitness functions to pick the best chromosomes.

Figure 3.7 shows a real example of our results, there is a population consists of 500

chromosomes and we show 4 last chromosomes and their fitness values, in our case,

fitness values is the same as objective function : total distance between cities. Less

distance value is better.

 Figure 3.7: Example Fitness Calculation Results

14

3.9 PARENT SELECTION

Parent selection process is to select parents that will mate and generate off-springs with

data interchange. It is very important to find balance while selecting parents, because

always selecting best parents may lead to loss of diversity and that also may lead to

premature convergence. So, keeping good diversity is always something to keep in

mind for the performance of the GA. (e.g. with loss of diversity means that similar

chromosomes will be generated in the next generations, that is not a desirable result for

GAs.). Parent selection methods are as follows ;

3.9.1 TOURNAMENT SELECTION

Tournament selection is simply choosing « k » elements from the population at random

and compare them and finally, select the best one to become a parent. The same process

is repeated for other parents. In our work, we use tournament selection for our selection

process.

 Figure 3.8: Example Fitness Calculation Results

15

3.9.2 ROULETTE WHEEL SELECTION

In this method, a circular wheel divided into n pies where the n is the number of

chromosomes in the population. So, each chromosome has a portion of proportional to

its fitness value. By this way, better chromosomes have more chance to be picked as

parents.

Figure 3.9: Roulette Wheel Selection

3.10 GENETIC OPERATORS

3.10.1 CROSSOVER

Crossover operator is just like biological crossover, interchanging meaningful data

between parents, so new generations have properties from both parents. Applying

crossover, we have to choose minimum 2 parents and one or more parent can be

produced from these parents. Generally applied with a probability of –Pc . For the

brevity of the work, we presented 3 crossover methods in detail but there are also a lot

A B C D E F

16

of various crossover methods like Partially Mapped Crossover (PMX), Order Based

Crossover(OBX) etc.

3.10.1.1 ONE-POINT CROSSOVER

This crossover operator is done as follows, randomly a crossover point is selected and

according to that point, data of parents are swapped to generate new off-springs.

Figure 3.10: One-Point Crossover

3.10.1.2 MULTI POINT CROSSOVER

Randomly choose more than one crossover point and swap alternatingly data from

parents to generate new generations.

Figure 3.11: Multi Point Crossover

17

3.10.1.3 UNIFORM CROSSOVER

In this crossover method, we do not use separation segments, instead we treat each gene

separately. In simple words, we choose random probability for each gene if this gene

will be in the next generation.

Figure 3.12: Uniform Crossover

3.10.2 MUTATION

Mutation is simply a disorder or defect on a data. Generally applied for maintaining the

diversity on the population with a low probability –Pm. If Pm is not low enough, then

GA may turn into a random search.

3.10.2.1 INSERTION MUTATION

Choose a random element in the chromosome and insert it into a random place.

Figure 3.13: Insertion Mutation

18

3.10.2.2 SWAP MUTATION

Choose random two positions and swap these two genes. Generally used in permutation

representations.

Figure 3.14: Swap Mutation

3.10.2.3 SCRAMBLE MUTATION

In this mutation method, a subset of chromosome is selected and their elements are

scrambled at random.

Figure 3.15: Scramble Mutation

3.11 SURVIVAL SELECTION

Survival selection process is to decide which chromosomes will propagate to the next

generation and which ones will be removed from the population. It is very important to

keep better/fitter chromosomes in the population and also we have to maintain the

diversity in the population.

For keeping the fitter chromosomes in the population, generally, the Elitism Method is

used. It simply keeps last best chromosome in the population and directly propagates it

19

to the next generation. Randomness can be used to decide which ones to remove and

propagate, but it affects the performance, thus, following methods are used to maintain

better performance ;

3.11.1 FITNESS BASED SELECTION

In this method, fitnesses of the chromosomes play critical role. Basically, least fit

chromosomes are replaced by the new off-springs. Sometimes, it is better to use some

randomness to maintain diversity. Figure 3.14 shows the fitness based selection method.

Figure 3.16: Fitness Based Selection

20

3.11.2 AGE BASED SELECTION

In age based selection, fitness of the chromosomes does not play a role, instead we use

age of the chromosomes that for how many generations a chromosome has been in this

population. The older chromosomes are replaced by the new off-springs.

Figure 3.17: Age Based Selection

3.12 TERMINATION CONDITION

Termination condition is the last part of GA. The generation creation loop finishes

according to this condition. These conditions may be applied as termination condition to

a GA ;

- If there will be no further improvements after a point of iterations.

- If objective function hit to a pre-defined value.

- If pre-defined number of generations realized.

21

In our work, we used a pre-defined maximum number of generations as a termination

condition. We also want to mention that termination condition is highly problem

specific and it must be taken into account according to given problem.

22

4. ANALYSIS DETAILS

In this thesis, we have applied Genetic Algorithm with its various different methods and

parameters on Traveling Salesman Problem(TSP). Our analysis consists of three

different and neighbor geographic regions of Turkey that has 32 different cities in total.

Theoretically and also in real life, all the cities have connected roads between them. We

just measured theoretic air distance between all cities for brevity. Real road distances,

real routes and traffic congestion also may be applied for further advanced researches.

There are 32 cities total in three different regions, Marmara (11 cities), Aegean(8 cities)

and Black Sea(13 cities) regions. We use “Euclidean distances” between cities.

Basically, put cities to a graph according to their x and y coordinates and here is the

distance function between two cities :

 𝑐𝑖𝑡𝑦1 = (𝑥1,𝑦1), 𝑐𝑖𝑡𝑦2 = (𝑥2,𝑦2) (1)

 𝑑 = (𝑥2 − 𝑥1) 2 + (𝑦2 − 𝑦1)2

Using euclidean distance, we can get theoretical distances between cities, and also we

can visualize cities and distances on a graph. Total distance of a chromosome is

calculated as the following,

 𝑑𝑡 = 𝑑𝑖
𝑛−1
𝑖=0 (2)

𝑑𝑡 : 𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒

In our work, we analysed following parameters and methods during our trials ;

- Population size

- Maximum generation

- Crossover Method

- Crossover rate

- Mutation Method

- Mutation rate

We analysed the affects of each of these parameters to GA performance. Also we used

objective function/fitness calculation as the distance between cities and total distance of

a chromosome.

Table 4.1: Three Regions and Cities

4.1 POPULATION INITIALIZATION

We chose random initialization method for population initialization in our work.

Basically, identified the population size and we randomly chose different cities from the

list and put randomly in a chromosome. The order is not important because Traveling

salesman problem is bi-directional and direction of a route from a city to another is not

important. There are 32 cities in a chromosome in different order(solutions).

Randomness is provided by java.util.Random library of Java language.

24

4.2. FITNESS FUNCTION

Our fitness function is the same as objective function, total distance of a chromosome.

To perform elitism and to find best chromosome among all the population, we try to

find the best chromosome to compare total chromosome distance (total distance of

chosen route). Figure 4.1 shows a small part the population of four chromosomes and

its fitness values(total distance).

Figure 4.1: Fitness values of four example chromosomes

4.3 PARENT SELECTION

For the parent selection procedure, we use k-Way Tournament Selection, as it is very

efficient for our case and also profits from randomness, thus we can maintain the

diversity among our population. We decided to choose k value for 3, as it chooses 3

chromosomes randomly and finally chooses a best one among them. We also give %20

chance (relatively small chance) to maintain randomness, thus the diversity, that the best

chromosome is not picked as a parent, instead, randomly choosen chromosome is

25

selected instead of the best one. We also apply elitism using 1 chromosome, that means,

for each generation, only 1 best chromosome is selected for propagating directly to the

new generation. Figure 4.2 shows our real example parent selection process.

Figure 4.2 : Parent Selection with Possible Real Chromosomes

26

4.4 APPLIED CROSSOVER METHODS

In this work, we implemented and analysed 3 main crossover methods ;

 One Point Crossover

 Two Point Crossover

 Uniform Crossover

After the parent selection, we decide to realize for a crossover between these parent or

not according to crossover probability 𝑝𝑐 . 𝑝𝑐 is determined while program

initialization. (e.g we choose a random number and see if this number is below 𝑝𝑐 , if

we determine 𝑝𝑐 = 0.9, that means, the crossover operator will take place by %90

chance between parents, if chosen random number is above 0.9, then no crossover is

implemented for this iteration.) Figure 4.3 shows our crossover probability

implementation using pre-defined crossover rate.

if 𝑥 ≤ 𝑝𝑐 , realize crossover (2)

if 𝑥 > 𝑝𝑐 , no crossover

Figure 4.3 : Crossover Probability Implementation

In our implementation, one point crossover and two point crossover methods are

implemented as the algorithm presented in previous chapter, but for the uniform

crossover method, we use bitmask that generates an array of a specified size with

randomly places 1s and 0s. Then we decide which genes to replace according to that

bitmask as, e.g. Example: child 1 has all the same cities as parent 1 at the indexes where

the bit-mask is 1 and the same process is applied to child 2.

27

4.5 APPLIED MUTATION METHODS

Mutation methods are very important as they are used to maintain diversity. In our

work, we chose very little chances of mutation rate to keep balance between keeping

diversity and randomness. Primarly we have given %4 (mutation rate : 0.04) chance of

mutation rate to provide randomness, and we change this mutation rate in time to

analyse its effects. We used following mutation methods as mutation operators ;

 Insertion Mutation

 Swap Mutation (in our implementation we named it reciprocal mutation)

 Scramble Mutation

After appliying crossover operators, we apply chosen(pre-defined) mutation technique

according to predefined mutation probability 𝑝𝑐 , as 𝑝𝑐 is significantly small for not

converging to random search. We increase this probability in time to analyse its effects

on the performance of GA. Figure 4.4 shows the implementation which how we provide

probability, we do the same process for both of chosen chromosomes according to two

distinct random probabilities ;

Figure 4.4 : Mutation Probability Implementation

After all the crossover and mutation process is completed, if there is any room left, that

means, if the next generation list contains less elements than population size, then we

simply fill the empty places with random chromosomes in the last generation using k-

way tournament selection, so population size remains the same.

28

4.6 TERMINATION CONDITION

In this work, we chose the termination condition as a pre-defined maximum generation

number. Simply, if generation number hits the pre-defined value, then termination

condition hit. We modified this pre-defined max. generation value in to to analyse its

effects on the performance. We do not perform any other special conditions as early

finishing with no further improvements etc. These kind of implementations are left for

the future researches for brevity. Figure 4.5 shows the implementation of termination

condition, we iterate over an array that the termination condition is maxGen.

Figure 4.5 : Termination Condition Implementation

29

5. RESULTS

In this work, we analysed the best distances and average of these best distances of each

iteration according to the given parameters. Then we compared each parameters’ effects

to the final results. We created a for loop and run genetic algorithm for pre-defined

parameters. e.g.

 Population size : range from 10 to 500 and increased by 30 ,

 Max. Gen : range from 10 to 500 and increased by 30,

 Crossover method :

1. One point Crossover

2. Two point Crossover

3. Uniform Crossover

 Mutation method :

1. Insertion Mutation

2. Swap Mutation (Reciprocal Mutation)

3. Scramble Mutation

 Crossover Rate

 Mutation Rate

In this work, we modified some parameters and we fixed other parameters to see effects

of the changing parameter. First we run the GA according to given parameters in a loop,

and calculated best distances and average distances in the end, we also calculate the

average calculated distances of all crossover and mutation methods, so that we can

compare all methods with averages and see how much optimization has been done

compared to the averages. In the following section, you can find the result for several

parameter effects:

5.1 POPULATION SIZE

5.1.1. First Trial

Population size parameter : Varies and increments from 10 to 500 by 30

MaxGen : 100, fixed

Crossover Methods : Varies, {Uniform, One Point, Two point}

Mutation Methods : Varies, {Insertion, Swap, Scramble}

Crossover Rate : 0.9

Mutation Rate : 0.04

Table 5.1 shows the yielded result ;

Table 5.1 : Results of GA with varying PopSize, Crossover and Mutation Methods

PopSize
Max
Gen

Crosso
ver

Mutat
ion

Min.
Dist.

Avg.
Dist.

GA Dist.
Avg.

% min dist.
Opt.

% avg. dist.
Opt.

10;500;(
+30)

100
Unifor

m
Inserti

on
3781 4894 5204 27,34 5,96

10;500;(
+30)

100
Unifor

m
Swap 3799 4639 5204 27,00 10,86

10;500;(
+30)

100
Unifor

m
Scram

ble
3756 4889 5204 27,82 6,05

10;500;(
+30)

100
One
Point

Inserti
on

4153 5113 5204 20,20 1,75

10;500;(
+30)

100
One
Point

Swap 4305 5349 5204 17,28 -2,79

10;500;(
+30)

100
One
Point

Scram
ble

4404 5886 5204 15,37 -13,11

10;500;(
+30)

100
Two
Point

Inserti
on

4007 5007 5204 23,00 3,79

10;500;(
+30)

100
Two
Point

Swap 4087 5209 5204 21,46 -0,10

10;500;(
+30)

100
Two
Point

Scram
ble

4451 5858 5204 14,47 -12,57

As a result, when we increment the PopSize from 10 to 500, and the max PopSize is

500, and the MaxGen is defined to 100, all the crossover methods and mutation

31

methods yield good results but for finding the minimum distance, using uniform

crossover and scramble mutation combined yielded slightly the best result (%27

optimization compared to average). But if we look at the average distances calculated,

uniform crossover and swap mutation showed better results.(%10.86 optimization

compared to average)

5.1.2 Second Trial

On this trial, we increment MaxGen to 300, here are the results;

Population size parameter : Varies and increments from 10 to 500

MaxGen : 300, fixed

Crossover Methods : Varies, {Uniform, One Point, Two point}

Mutation Methods : Varies, {Insertion, Swap, Scramble}

Crossover Rate : 0.9

Mutation Rate : 0.04

Figure 5.1 and Table 5.2 shows the yielded result ;

Figure 5.1 : Results on a Graph

32

Table 5.2 : Detailed Results

PopSiz
e

Max
Gen

Crossov
er

Mutat
ion

Min.
Dist.

Avg.
Dist.

GA Dist.
Avg.

% min dist.
Opt.

% avg. dist.
Opt.

10;500
;(+30)

300 Uniform
Inserti

on
3618 4091 4675 22,61 12,49

10;500
;(+30)

300 Uniform Swap 3618 4300 4675 22,61 8,02

10;500
;(+30)

300 Uniform
Scram

ble
3618 4264 4675 22,61 8,79

10;500
;(+30)

300
One
Point

Inserti
on

3693 4445 4675 21,01 4,92

10;500
;(+30)

300
One
Point

Swap 4042 4772 4675 13,54 -2,07

10;500
;(+30)

300
One
Point

Scram
ble

4555 5367 4675 2,57 -14,80

10;500
;(+30)

300
Two
Point

Inserti
on

3779 4473 4675 19,17 4,32

10;500
;(+30)

300
Two
Point

Swap 3823 4675 4675 18,22 0,00

10;500
;(+30)

300
Two
Point

Scram
ble

4287 5588 4675 8,30 -19,53

As a result, when we increment the PopSize from 10 to 500, and the max PopSize is

500, and the MaxGen is defined to 300, all the crossover methods and mutation

methods yield better results but for finding the minimum distance, this time, GA

distance average is also decreased from 5204 to 4675, that means, all the methods

yielded better results than the previous trial. This time, 3 different methods combined

yielded slightly the best result (%22,61 optimization compared to average). But if we

look at the average distances calculated, uniform crossover and insertion mutation

showed better results.(%12.49 optimization compared to average). For the final

decision, incrementing MaxGen from 100 to 300 yields better results, as a conclusion

we can say that incrementing max generation number with popsize also increases

genetic algorithm performance and the optimization.

33

5.2 MAXIMUM GENERATION SIZE

5.2.1. First Trial

Population size parameter : 100 , fixed

MaxGen : Varies and increments from 10 to 500 by 30

Crossover Methods : Varies, {Uniform, One Point, Two point}

Mutation Methods : Varies, {Insertion, Swap, Scramble}

Crossover Rate : 0.9

Mutation Rate : 0.04

Figure 5.2 and Table 5.3 shows the yielded result ;

Figure 5.2 : Results on a Graph

34

Table 5.3 : Detailed Results

PopS
ize

MaxGe
n

Crossov
er

Mutat
ion

Min.
Dist.

Avg.
Dist.

GA Dist.
Avg.

% min dist.
Opt.

% avg. dist.
Opt.

100
10;500;

(+30)
Uniform

Inserti
on

3756 4786 5250 28,46 8,84

100
10;500;

(+30)
Uniform Swap 3877 5027 5250 26,15 4,25

100
10;500;

(+30)
Uniform

Scram
ble

3860 4864 5250 26,48 7,35

100
10;500;

(+30)
One
Point

Inserti
on

3943 4919 5250 24,90 6,30

100
10;500;

(+30)
One
Point

Swap 4520 5399 5250 13,90 -2,84

100
10;500;

(+30)
One
Point

Scram
ble

4919 5935 5250 6,30 -13,05

100
10;500;

(+30)
Two
Point

Inserti
on

4050 4860 5250 22,86 7,43

100
10;500;

(+30)
Two
Point

Swap 4335 5306 5250 17,43 -1,07

100
10;500;

(+30)
Two
Point

Scram
ble

5175 6162 5250 1,43 -17,37

As a result, when we increment the MaxSize from 10 to 500, and the MaxSize is 500,

and the PopSize is defined to 100, all the crossover methods and mutation methods

yield good results but for finding the minimum distance, this time, GA distance average

is again increased from 4675 to 5250 that means, all the methods yielded worst results

than the last trial. This time, Uniform crossover and Insertion mutations combined

yielded slightly the best result (%28,46 optimization compared to average). As if we

look at the average distances calculated, also the same combination showed better

results.(%8,84 optimization compared to average). For the final decision, fxing popSize

to 100 and varying maxGen is yielded slightly worst results than the previous trials in

terms of average distance but this time, Uniform crossover and Insertion mutation

combined is the winner for better optimizations among other methods. As a conclusion

we can say that with lower popSize with increasing MaxGen, using Uniform crossover

35

and Insertion mutation combination is better for genetic algorithm performance and the

optimization.

5.2.2 Second Trial

Population size parameter : 300 , fixed

MaxGen : Varies and increments from 10 to 500 by 30

Crossover Methods : Varies, {Uniform, One Point, Two point}

Mutation Methods : Varies, {Insertion, Swap, Scramble}

Crossover Rate : 0.9

Mutation Rate : 0.04

Figure 5.3 and Table 5.4 shows the yielded result ;

Figure 5.3 : Results on a Graph

36

Table 5.4 : Detailed Results

PopS
ize

MaxGe
n

Crossov
er

Mutat
ion

Min.
Dist.

Avg.
Dist.

GA Dist.
Avg.

% min dist.
Opt.

% avg. dist.
Opt.

300
10;500;

(+30)
Uniform

Inserti
on

3602 4320 4636 22,30 6,82

300
10;500;

(+30)
Uniform Swap 3602 4388 4636 22,30 5,35

300
10;500;

(+30)
Uniform

Scram
ble

3618 4396 4636 21,96 5,18

300
10;500;

(+30)
One
Point

Inserti
on

3725 4453 4636 19,65 3,95

300
10;500;

(+30)
One
Point

Swap 3708 4623 4636 20,02 0,28

300
10;500;

(+30)
One
Point

Scram
ble

4033 5139 4636 13,01 -10,85

300
10;500;

(+30)
Two
Point

Inserti
on

3725 4440 4636 19,65 4,23

300
10;500;

(+30)
Two
Point

Swap 4065 4859 4636 12,32 -4,81

300
10;500;

(+30)
Two
Point

Scram
ble

4196 5110 4636 9,49 -10,22

As a result, when we increment the MaxSize from 10 to 500, and the MaxSize is 500,

and the PopSize is defined to 300 fixed, all the crossover methods and mutation

methods yield better results than the previous trials, and also for the first time we could

reach to the best minimum distance (3602, we found this value after hundreds of trials),

for finding the minimum distance, this time, GA distance average is decreased from

5250 to 4636 that means, all the methods yielded better results than the last trial and

previous trials. This time, Uniform crossover and Insertion mutations combined and

Uniform crossover and Swap mutations combined yielded slightly the best results

(%22,30 optimization compared to average). As if we look at the average distances

calculated, Uniform crossover and Insertion mutation combination showed better

results.(%6,82 optimization compared to average). For the final decision, fxing popSize

to 300 and varying maxGen is yielded slightly better results than the previous trials in

terms of average distance, so we can conclude that increasing maxGen and deciding

37

bigger popSize value also increases GA’s overall performance. Also uniform crossover

and Insertion mutation combined is again the winner for better optimizations among

other methods. As a conclusion we can say that with higher popSize with increasing

MaxGen, using Uniform crossover and Insertion mutation combination is better for

genetic algorithm performance and the optimization.

5.3 CROSSOVER RATE

Population size parameter : 100 , fixed

MaxGen : 100, fixed

Crossover Methods : Varies, {Uniform, One Point, Two point}

Mutation Methods : Varies, {Insertion, Swap, Scramble}

Crossover Rate : Varies and increments from 0,01 to 1 by 0.01

Mutation Rate : 0.04, fixed

For this analysis, we do not compared each methods, instead, we focused on general

behaviour of all the methods and their overall reaction to crossover rate increase. We

also chose relatively lower population size and maxGen to minimize popsize and

maxgen effects on the algorithm performance so that we can see the effect of crossover

rate better.

Figure 5.4 shows the results for behaviors of all methods to crossover rate increase,

mutation rate fixed.

38

 Figure 5.4 : General Behaviour of the Methods to Crossover Rate Increase

As you can see on the graph that while the crossover rate increases when the mutation

rate fixed to 0.04, all the methods’ performance gets better and yields better minimum

distances, so as a conclusion, its better to choose a crossover rate close enough to 1

yields better performance in terms of optimization if processing time is not significantly

important.

5.4 MUTATION RATE

Population size parameter : 100 , fixed

MaxGen : 100, fixed

Crossover Methods : Varies, {Uniform, One Point, Two point}

Mutation Methods : Varies, {Insertion, Swap, Scramble}

Crossover Rate : 0.9

Mutation Rate : Varies and increments from 0,001 to 1 by 0.002

Now, we know that higher crossover rate yields better results, then we analyse the

mutation rate effect on the performance of the GA while crossover rate is fixed. As the

39

previous trial, this time, we fixed crossover rate and selected it as 0.9 because in our

trials, higher crossover rate but not selecting it as 1 yields better results to see the effect

of mutation rate. Also please note that calculation time of the process is not taken into

consideration on this analysis as we do not have heavy load of input (32 cities in a

chromosome).

Figure 5.5 : General Behaviour of the Methods to Mutation Rate Increase

As you can see on the graph that while the mutation rate increases when the crossover

rate fixed to 0.9, all the methods’ performance gets better and yields better minimum

distances around iterations between 150-250 and then minimum distances found are

slightly increasing again, so as a conclusion, its better to choose a mutation rate between

0.03 to 0.05 gets better performance in terms of optimization if processing time is not

significantly important. We also notified that, when the iteration gets higher (rate

increase is small) process time also increases significantly.

40

6. FINAL RESULT & CONCLUSION

Final results show that in terms of both minimum distances and average distances found

of the several crossover and mutation methods combined, nearly always, uniform

crossover and insertion mutation method selection yielded best results, both for lower

and higher popsize and maxGen.

On the other hand, our results show that, for our analysis (32 cities), selection of higher

popSize and maxGen values also yielded better results but increasing popsize and

maxgen parameters too high caused GA processing time to increase significant amount

of times. Also for example, selecting popsize and maxGen parameters to higher than

500, did not give significant performance increase comparing to significant process time

increase.

For the crossover rate and mutation rate analysis, we show that, when the other

parameters are fixed, for crossover rate it is better to choose higher and closer values to

1 yields better results, ideally we found that selecting a value around 0.85 - 0.95 yielded

best results for our case. On the other hand, for the mutation rate, as we mentioned in

the previous chapters, increasing mutation rate does not yield better results after some

point, the search is getting similar to random search so decreasing optimization of the

GA. In our case, ideally, selecting mutation rate between 0.03 - 0.05 yielded best

results.

REFERENCES

Allen, Franklin & Karjalainen, Risto. (1993). Using Genetic Algorithms to Find

 Technical Trading Rules. Journal of Financial Economics. 51. 10.1016/S0304-

 405X(98)00052-X.

 Bethke, A.D., Genetic algorithms as function optimizers, University of Michigan, Ann

 Arbor, MI, 1980

BOYABATLI, Onur and SABUNCUOGLU, Ihsan. Parameter Selection in Genetic

 Algorithms. (2004). Journal of Systemics, Cybernetics and Informatics. 4, (2), 78-83

Chong, Edwin & Zak, S.H.. (1996). An Introduction to Optimization, third edn, John

Wiley&Sons New Jersey

Grefenstette, John & Gopal, Rajeev & J. Rosmaita, Brian & Van Gucht, Dirk. (1985).

 Genetic Algorithms for the Traveling Salesman Problem.

HAUPT, L., Randy & Haupt, Sue. (1998). Practical Genetic Algorithms.

 10.1002/0471671746.

Kim, Yongseog & Street, Nick & Russell, Gary. (2003). Customer Targeting: A Neural

 Network Approach Guided by Genetic Algorithms, Management Science, Vol. 51, No.

 2, February 2005, pp. 264–276

Lin, L., Cao, L., and Zhang, C., Genetic Algorithms for Robust Optimization in

 Financial Application, Proc. of the Fourth IASTED Inter. Conf. of Computational

 Intelligence, pp. 387-391, 2005

Lin, li & Cao, Longbing & Wang, Jiaqi & Zhang, Chengqi. (2004). The Applications of

 Genetic Algorithms in Stock Market Data Mining Optimisation. 10.

Michalewicz, Zbigniew (1992), Genetic Algorithms + Data Structures = Evolution

 Program, first edn, Springer Newyork

Mills, Kevin & Filliben, James & L Haines, A. (2014). Determining Relative

 Importance and Effective Settings for Genetic Algorithm Control Parameters.

 Evolutionary computation. 23. 10.1162/EVCO_a_00137.

Parmal, Varun & Banerjee, Snigdha. (2017). Maximizing Sales of a Finance Company:

 A Genetic Algorithm Approach for Customer Identification. Pacific Business Review

https://dl.acm.org/citation.cfm?id=909631
https://dl.acm.org/citation.cfm?id=909631

 International Volume 9 Issue 10, April 2017. 9. 49-54.

Potvin, Jean-Yves. (1996). Genetic algorithms for the traveling salesman problem.

 Annals of Operations Research. 63. 337-370. 10.1007/BF02125403.

Rexhepi, A., Maxhuni, A., Dika, A., Analysis of the impact of parameters values on the

 Genetic Algorithm for TSP, IJCSI International Journal of Computer Science Issues,

 Vol. 10, Issue 1, No 3, January 2013

