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ABSTRACT 

 

 

 

Unmanned Aerial Vehicles (UAVs) are aircrafts that are guided autonomously, by remote 

control, or both, and that are equipped with sensors, go-pro cameras, global positioning 

system (GPS), etc., depending on their purpose of use. Unencumbered by crew and the 

design-safety requirements of manned aircrafts, UAVs can be efficiently used in a wide 

range of military, commercial, and civil applications, where the last includes weather 

monitoring, forest fire detection, traffic control, and emergency search and rescue. 

 

The world has witnessed the biggest number of refugees on record at the end of 2016; an 

unprecedented 65.6 million people around the world were forced from home by conflict 

and persecution. Among them, the conflict in Syria was the world's biggest producer of 

refugees with about 5.5 million refugees. Many of these refugees tried to cross the 

Mediterranean Sea by overloaded and unsafe boats, and most of these trials ended in 

tragic ends with sunk boats and drowned people. There are lots of papers that have been 

written on different aspects of disaster management. None of these, however, have 

addressed the refugee problem, even though the International Federation of Red Cross 

and Red Crescent Societies (IFRC) have identified displaced populations as a disaster 

type.  

 

Our aim in this study is to model and solve a UAVs' surveillance problem. That is, we are 

given a set of target points that have to be visited once, a set of potential locations where 

stations to swap batteries or to refuel UAVs can be placed, and a main depot from which 

UAVs are initially launched and to where they eventually return. All these points form 

the node set of an undirected graph. We are also given a set of homogeneous UAVs. Now, 

our problem is to determine which of the potential stations to open and the routes of UAVs 



 

 

 

 

which minimize the total sum of operating costs of UAVs and opening costs of stations 

under several different sets of constraints. This problem type is known as the Location-

Routing (L-R) problem in the OR/MS literature. However, due to the technical properties 

of UAVs, our mathematical formulation differs from the classic L-R formulation, as 

explained below. Our contributions to the literature can be explained as follows.  

 

Firstly, we propose the UAVs' surveillance problem as part of the risk mitigation phase 

of disaster management, where risk mitigation is defined by Federal Emergency 

Management Agency (FEMA) as the activities taken to prevent a disaster, reduce the 

chance of it happening, or reduce its damaging effects. We can achieve this by 

considering all target points to fill the danger area where many refugee boats have sunk 

so far. By surveying these points continuously, we aim at reducing the risk of boats 

passing through that area. Secondly, UAVs have very limited battery or fuel capacities. 

Hence, during their missions, their batteries have to be charged or swapped, or they have 

to be refueled. Therefore, different from the classic L-R formulation, we consider energy 

consumptions of UAVs in different flight statuses, and formulate the remaining 

consumable energies as part of our constraint sets. Moreover, in our problem, each 

subtour made by an UAV has to start and end at the main depot; hence, we formulate new 

subtour elimination constraints which eliminate all subtours that do not start and end at 

the main depot.  

  



 

 

 

 

ÖZET 

 

 

 

İnsansız Hava Araçları (İHAlar) kullanım alanına göre sensörler, kameralar ve küresel 

konumlama sistemi (GPS) gibi birçok ekipmanla donatılabilen; otonom, uzaktan kontrol 

veya her ikisi olacak şekilde kumanda edilebilen hava araçlarıdır. Klasik hava araçlarının 

aksine mürettebat ihtiyacı duymayan ve güvenlik zaafı daha az olan İHAlar askeri, ticari 

ve hava durumu tahmini, orman yangını tespiti, trafik kontrolü ve arama kurtarma gibi 

birçok günlük sivil uygulamalarda geniş ve etkili bir şekilde kullanılabilir.    

 

Dünya tarihindeki en büyük göçmen hareketi 2016 yılında kaydedildi. Yaklaşık 65.6 

milyon insanın işkence ve çatışmalar yüzünden yurtlarını terk ettiği bu yılda Suriye 

Savaşı 5.5 milyon göçmenle bu istatistiğe en çok katkı yapan olay oldu. Bu göçmenlerin 

önemli bir kısmı Akdeniz üzerinden taşıma kapasitesini aşmış ve güvenli olmayan 

botlarla Avrupa’ya kaçmak istediyse de bu denemelerin birçoğu botların batması ve 

göçmenlerin ölümüyle sonuçlandı. Afet yönetimi alanında birçok çalışma yapılmış olsa 

da, göçmenlik durumunun otoritlerce afet olarak tanımlamasına rağmen, bu konu hiçbir 

çalışmada afet olarak ele alınmamıştır. 

 

Bu çalışmada bizim amacımız önceden belirlenen ve homojen bir İHA filosu yardımıyla 

bu göçmen akışının görüntülenmesi problemini modellemek ve çözmektir. Problem 

dahilinde sadece bir kez ziyaret edilecek noktalar, açılması muhtemel batarya değiştirme 

istasyonları ve İHAların kalkış ve iniş yapacağı ana deponun konumları önceden 

belirlenmiş ve bu düğümler yönsüz çizge oluşturmaktadır. Problemimiz belli kısıtlar 

altında operasyon ve istasyon açma maliyetlerini en aza indiren İHA rotalarını ve hangi 

istasyonların açılacağını belirlemektir. Bu problem yöneylem araştırmaları literatüründe 

Lokasyon-Rotalama (L-R) problemi olarak bilinmektedir. Fakat bizim sunduğumuz 

model, İHAların teknik özelliklerinden dolayı klasik L-R modellerinden farklıdır. 

Çalışmamızın katkıları aşağıdaki gibidir.  



 

 

 

 

Öncelikle, İHAların görüntüleme problemi afet yönetiminin risk azaltma aşamasında 

tanımlanmıştır. Risk azaltma aşaması bir afet olmadan önce onun olma olasılığının 

ve/veya olması durumunda vereceği hasarın azaltılmasına yönelik adımlar atılan 

aşamadır. Bu amaca yönelik olarak kaçak göçmen akışının ve –bunun sonucu olarak- 

göçmen botlarının battığı rotayı kapsayacak şekilde noktalar atanmıştır. Bu noktalar 

sürekli olarak veya göçmen akışının en yoğun olduğu saatlerde İHAlar tarafından ziyaret 

edilerek göçmen akışının gözlenmesi ve oluşabilecek faciaların önlenmesi amaçlanmıştır. 

İkinci olarak İHAların düşük batarya/yakıt kapasitesi göz önünde bulundurulmuş ve 

görev dâhilinde bu bataryaların değişmesi veya yakıt ikmali yapılması durumu modele 

eklenmiştir. Bu bağlamda İHAların her bir uçuş durumu için harcadığı enerji hesaplanmış 

ve kalan harcanabilir kısıtları L-R modeline eklenerek literatüre kazandırılmıştır. Son 

olarak, ana depoda başlayıp ana depoda bitmeyen İHA hareketlerini içeren alt turlar, yeni 

alt tur eleme kısıtlarıyla elenmiştir.    
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1. INTRODUCTION 

 

 

 

Unmanned Aerial Vehicles (UAVs) are the vehicles that can fly without any pilot aboard. 

They are able to be controlled via remote control with pilot or to move with any controller 

with pre-defined path (Wen et al., 2018). The first employment of UAVs was for military 

actions which occur in the hostile territory to reduce pilot losses. With the constant 

reduction in cost and size, UAVs have become more accessible and valid to apply in daily 

life in commercial and civilian actions (e.g. weather monitoring, forest fire detection, 

traffic control, cargo transport, emergency search and rescue etc.).  

 

Even though UAVs differ in many aspects from the operational point of view, they can 

be classified in two main categories such as fixed-wing and multi-rotor. The comparisons 

between these two types are given in Table 1.1 (Droneploy, 2017). As it can be seen from 

the Table 1.1, fixed-wing UAVs are more appropriate to use in military and long-ranged 

missions while multi-rotor UAVs are easy to fit in civilian applications with their high 

maneuverability, VTOL (Vertical Take-off and Landing) property and price. 

 

 

Table 1.1: Comparison of Fixed-wing and Multi-rotor UAVs 

 

 Properties\UAV Types Fixed Wing Multi-rotor 

Maneuverability Lower Higher 

Price Higher Lower 

Take-off Area 
Requires a path to 

speed up 
VTOL 

Payload Capacity Higher Lower 

Range Higher Lower 

Stability Higher Lower 

Ease of use Lower Higher 

Size Higher Lower 
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The UAVs have become the focus of many studies for over a decade. The researchers 

investigate ways to increase the number of areas where UAVs are applied because UAVs 

are easy to use, aren’t expensive in both deploying and maintaining when compared with 

other vehicles, have higher mobility and vertical take-off ability (in VTOL UAVs) (Hayat 

et al. 2016). The main application areas of UAVs can be divided into two as civilian and 

military applications. The civilian application studies in the literature can be classified in 

the following eight categories such as providing wireless coverage, remote sensing, real-

time monitoring, search and rescue, delivery of goods, surveillance, precision agriculture, 

and infrastructure inspection (Shakhatreh et al. 2018). Moreover, military applications 

are generally arming UAVs to hit some specific targets. Researches in this area are mostly 

on the infrastructure of UAVs to make them less detectable and increase their precision 

in target hitting (Boulanin & Verbruggen, 2017). 

 

PwC has published a report (2017) that discusses the commercial UAV market in 2017. 

In the report, it has been stated that the total addressable market value of UAVs in the 

global view is above of $127 bn. Another report that has been published by Business 

Intelligence shows the expectation of UAV sales to reach $12 billion in 2021, which will 

be caused by consumer UAV shipments, enterprise UAV shipments and governmental 

usage for surveillance and combat (Joshi, 2017). It is also known that $4.457 billion is 

budgeted for UAVs in US Department of Defense (Gettinger, 2016). 

 

Humans are migrating from one part of the world to another from the beginning of time. 

But especially in the last few decades, migration has become more common especially 

from east to west. The motivations of migrations are classified in two categories which 

are pull and push motivations. In short, pull motivations are the reasons why you went to 

place where you migrate to and push motivations are the reasons why you left where you 

used to locate.  

 

Conflicts, persecution, poverty, unemployment, lack of education, discrimination based 

on gender or religion, and a general lack of prospects in migrants’ countries of origin can 

be given as examples to push motivations while destination country includes family or 

friends already there, the possibility of employment and social insurance can be given as 

examples to pull motivations. In the last decades, illegal immigration has increased 
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steadily especially because of wars and Arab spring (lately). This illegal immigration 

flows from Middle East or Africa towards Europe or America most generally. The UN 

Refugee Agency UNHCR publishes reports that indicates illegal migrations in numbers 

each year. According to these reports 22.5 million refugees are migrated to another 

country (UNHCR, 2018). In Table 1.2 numbers of illegal migrations toward Europe by 

seas is given.  

 

 

Table 1.2: Numbers of Migration Towards EU by Sea 

 

Years 

Sea 

Arrivals 

Dead & 

Missing 

2017 172,301 3,139 

2016 362,753 5,096 

2015 1,015,078 3,771 

2014 216,054 3,538 

 

These illegal migrations unfortunately might end up with death of migrants. UNHCR 

(2018) in their reports also declares demographic qualifications of refugees. According 

to these reports most of the refugees are male. And Turkey is a country which refugees 

use as a bridge to Europe.  

 

FRONTEX is found by European Union in 2005 (for the management of operational 

cooperation at the EU External borders) to detect illegal migration actions (Vytautas, 

2016). Due to FRONTEX’s report (2015), 1,166 suspected facilitators apprehended and 

254,693 people rescued by FRONTEX operation. 

 

In this thesis the UAVs’ surveillance problem is analyzed, modeled and solved. That is, 

given a set of target points which must be visited only once, a set of potential stations 

where battery swap operations occur, and a main depot from which UAVs take off at the 

beginning and to which land on at the end of their missions form a node set of an 

undirected graph, and any two nodes are connected by an edge in this graph. With the 

given number of homogenous fleet of UAVs, the problem is to determine the locations of 

the potential stations to open and the routes of UAVs which minimize the total sum of 

operating costs of UAVs and opening costs of stations under several different sets of 
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constraints. This is a typical Location Routing Problem (LRP). Nevertheless, our 

mathematical formulation differs from classic LRP formulation, as explained below.  

 

The contributions of this thesis can be expressed as follows. Firstly, we propose the 

UAVs’ surveillance problem as part of the risk mitigation phase of disaster management. 

This phase is defined by FEMA(year) as the phase where preventive or effect reducing 

actions are taken to reduce or to prevent the damages of a disaster if it occurs. We can 

achieve this by considering all target points to fill the danger area where many refugee 

boats have sunk so far. By surveying these points continuously, we aim at reducing the 

risk of boats passing through that area.  

 

Secondly, UAVs have very limited battery or fuel capacities. Henceforth, during their 

missions, their batteries have to be charged or swapped, or they have to be refueled; this 

is similar to Green VRP problems. Therefore, different from the classical LRP 

formulation, energy consumptions of UAVs in different flight statuses is considered and 

the remaining consumable energies are formulated as part of our constraint sets; this 

consideration differs our problem from the Green VRP problem. Moreover, in the context 

of the problem each UAV is to start and end their mission at the main depot; hence, new 

sub-tour elimination constraints to eliminate all sub-tours that do not start and end at the 

main depot are formulated. 

 

Thirdly, with the consideration of real-life applications, time windows constraints are 

added to the first formulation to obtain a second formulation, which is LRP with Time 

Windows (LRPTW) formulation. This addition of the time windows constraints is 

justified by the fact that most of the danger area has to be surveyed within a time interval.  

All the contributions are mentioned above holds for LRPTW except the sub-tour 

elimination constraints. For that formulation, the time windows constraints eliminate all 

the sub-tours that do not start and end at the main depot.  

 

The rest of the thesis is organized as follows. In Section 2, the relevant literature review 

is presented in 2 different streams. In Section 3, our novel LRP and LRPTW formulations 

are introduced with the energy consumption models. In Section 4, the computational 
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study is performed and sensitivities are analyzed for each formulation by changing several 

parameters. Finally, in the Section 5, the conclusions of the study are presented.   

 



 

 

 

 

2. LITERATURE REVIEW 

 

 

 

In this section the related literature is reviewed in two main streams. The first stream is 

disaster management and the second stream is routing problem of vehicles. 

 

2.1 Disaster Management 

 

With the increasing number of disasters, disaster management has become one of the 

most studied research topics among researchers. This topic is different from the other 

classic topics because it aims to be non-profit, life-saving, and human suffer reducing. 

Gupta et al. (2016), classifies disasters in two categories as natural and manmade 

disasters. Manmade disasters include terrorist activities and errors such as industrial 

errors and transportation errors. Cozzolino (2012) categorizes these operations into four 

as (1) mitigation, (2) preparation, (3) response and (4) reconstruction. Firstly, Federal 

Emergency Management Agency (FEMA) (2018) then Altay and Green (2006) defines 

the phases as follows. Mitigation is the step where preventive actions or effect reducing 

actions, in case if disaster occurs, are taken. While preparation is the phase that response 

strategies to be followed when the disaster occurs are determined. Response is defined as 

the step that actions are taken in order to save lives, properties, and environment and 

provide continuance to communal structure. As a last step, they define reconstruction 

(recovery) is the long-term oriented strategies followed to recover community from the 

instant effects of disasters. 

 

2.1.1 UAV Usage in Disaster Management 

 

The application areas of UAVs are increased with the great progress of the technology. 

In this subsection, the literature is investigated with the classification made by Erdelj and 

Natalizio (2016). They distinguish disaster management operations in three categories, w
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hich UAVs can operationally participate, in their research which investigates UAV usage 

in disaster management as (1) pre-disaster preparedness, (2) disaster assessment and (3) 

disaster response and recovery. Henceforth, Erdelj and Natalizio (2016) merged 

mitigation and preparation phases of disaster management that is classified by Cozzolino 

(2012). 

 

In the pre-disaster preparedness phase, UAVs usage is limited because of the capacitated 

operational time of UAVs. Erdelj et al. (2016) recommends using UAVs as an assistant 

to wireless sensor networks (WSN) in this phase. Ueyama et al. (2014) uses UAVs in 

order to compensate a fault that is occurred in a node of WSN that is being used to monitor 

disasters. In this case, researchers run the experiments for flood detection system. Erman 

et al. (2008) presents data centric routing protocol to compensate WSNs as well. 

  

The other two phases take more attraction than the pre-disaster preparedness phase. In 

response and recovery phase emergency communication is one of the most crucial parts. 

The goal of the study is to ensure that the communication system with the rescuers, 

casualties and disaster managers survives after a disaster occurs. Fu et al. (2015) propose 

to deploy a Wi-Fi device onto a UAV so that traditional signal range is extended from 

100m to 25km. Wu et al. (2018) designed a multi-UAV system to enable communication, 

with deploying base stations to UAVs. Information gathering is an-other important area 

of research in order to make effective decisions. Corrado & Panetta (2017), compares the 

combination of situations where radiation detection, camera vision and GSP information 

are deployed. They declare that UAV range, data transmission range, UAV`s payload 

capacity are the biggest challenges. 

 

The routing problems of UAVs in disaster management are going to be discussed in 

further sections. 

 

2.2. Routing Problem 

 

The problem of routing vehicles (VRP) is one of the best known and practiced research 

areas in the logistics literature. The problem is to find the optimal routes of a certain 

number of vehicles to a number of predefined destinations for delivering or collecting 
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Figure 2.1: Routes of TSP and VRP 

purposes. The first VRP study is by Dantzig and Ramser (1959). In the paper, they 

formulate truck dispatcher problem with the generalization of traveling salesman problem 

(TSP). In TSP, Hamiltonian path is followed which can be defined as a path that returns 

to beginning location at the end of the route, all customer nodes are to be visited with 

objective function of minimizing traveling cost, except some variants.  

Feillet et al. (2005), names these variants as “TSP with profits” where the objective 

function maximizes the profit. TSPs can be categorized in two branches in terms of 

traveling distance. Matai et al. (2010) classifies TSPs in three categories. The first 

categorization depends on the equality of distances between every two cities in both 

directions (symmetric). If the distance or cost of traveling between two cities are equal in 

opposite directions, the problem is called “symmetric TSP” (STSP) otherwise it is called 

“asymmetric TSP” (ATSP). The other variant of TSP is called multiple TSP where there 

is more than one salesman at the depot, which is called as the beginning node. 

  

Dantzig and Ramser (1959) differentiates VRP and TSP as follows: You have 𝑞𝑖 demand 

to be met, 𝑃𝑖 nodes to be visited, and a vehicle with a capacity of 𝐶. If 𝐶 ≥  ∑ 𝑞𝑖𝑖 , a 

vehicle can serve all nodes in one trip with a route that links all the nodes. However, if 

𝐶 ≪  ∑ 𝑞𝑖𝑖 , the vehicle can’t serve all nodes in one trip. And they underline the condition 

that number of vehicles to be used doesn’t change this situation. Therefore, the difference 

can be summarized as the capacity constraint of vehicles in VRP. The difference of routes 

drawn by using TSP and VRP are given in the Figure 2.1, respectively. 
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2.2.1 Electric Vehicle Routing Problem 

 

The literature of VRP is wide since it is the problem that draws most attention among 

researchers studying in logistics, transportation and distribution. Therefore, VRP has lots 

of variants that serve several problems. Electric VRP (EVRP) is a relatively new area that 

seeks the optimum solution for electric vehicles (EVs) with increasing attention due to 

advancements in the technology and environmental concerns. Briefly, EVs are the 

vehicles that have onboard batteries as power sources and have advantages over old 

fashioned internal combustion engine vehicles in terms of energy consumption and 

environmental protection. One of the biggest challenges in the problem is the power 

(limited missiles) limitations of vehicles so while fulfilling the task, vehicles require 

recharging. Therefore, the recharging action will be taken into consideration with 

intermediate stops between beginning and destination nodes and the problem is called 

routing problem with intermediate stops (RPIS); see Schiffer et al. (2019).  

 

Schiffer et al. (2019) differs intermediate stops from regular stops and optional customer 

stops by defining it as an optional stop to maintain vehicle’s operation. And application 

areas of RPIS is categorized into three as follows: (1) Replenishment and disposal of 

goods or waste, (2) Refueling and (3) Idling for rest periods and breaks. Here, in this 

thesis we focus on RPIS for refueling (i.e., swapping batteries).   

 

For internal combustion engine vehicles, the shortest path problem (SPP) is first defined 

by Ichimori and Ishii (1981) with refueling option at prespecified nodes. They define a 

time limit (L) which a vehicle can operate without refueling and apply Dijkstra’s shortest-

path algorithm. The algorithm checks the remaining time of L and decides either going 

to a refueling node or to a customer. 

 

Conrad and Figliozzi (2011) introduces a new VRP variant with recharging nodes 

(RVRP) for EVs, which have capacitated range and are able to recharge with constant 

duration at certain customer stations. The formulation has two objective functions. The 

first objective is to minimize the number of required vehicles to meet the total demand 

while the alternative one is to minimize total cost which consists of travelled distance, 



10 

 

  

 

service time and recharging. The addition of recharging cost into a total cost, recharging 

action is penalized.  

 

Erdoğan and Miller-Hooks (2012) proposes the formulation that considers recharging 

stations apart from customers while defining green vehicle routing problem (GVRP) 

which is a problem that focuses on decreasing carbon emission via alternative fuel 

vehicles (AFVs) not only electric vehicles (EVs). In the paper, the objective function was 

to minimize the overall travelled distance, and they declare that the feasibility is 

subordinate to locations of customers and recharging stations.  

 

Schneider et al. (2014) defines the first formulation that considers EVs explicitly with 

separate recharging stations from customers while introducing EVRP with Time 

Windows (EVRP-TW).  Dual objective function is employed while the primary objective 

is to minimize the number of vehicles, the secondary is to minimize total travelled 

distance with homogenous fleet. The recharging duration is defined as a function of a 

remaining energy in the battery. Hiermann et al. (2016) extends the formulation with 

heterogenous fleet of EVs. 

 

Keskin and Çatay (2016) combines EVRP-TW with partial recharging and calls the 

problem EVRPTW-PR. The problem is formulated as minimization problem that 

minimizes the total distance traveled. In the paper, all batteries and chargers assumed to 

have the same performance. Felipe et al (2014) uses four different chargers with different 

technology and defines the partial recharging for the first time, but they don’t consider 

time windows in their formulation. They extend GVRP with multiple technologies and 

partial recharges (GVRP-MTPR) with the objective function that minimizes the total cost 

which consists of recharging cost and traveled distance.  

  

2.2.2 Location Routing Problem 

 

The Location-Routing Problem is a combinatorial problem that seeks for the optimum 

solution of two widely studied hard problems in the literature which are the location 

problem of depots, facilities etc. and routing problem of vehicles simultaneously 

(Prodhon and Prins, 2014). Even though necessity of combining these two problems is 
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declared in 1960s, due to the technological and methodological inadequacies this 

combination has not accomplished until 1973. Watson-Gandy and Dhorn (1973), 

published the first paper which combines these two problems. There are lots of variants 

in the LRP literature, some of these variants are summarized in Table 2.1 (Drexl and 

Schneider, 2015).  

 

 

Table 2.1: Main Characteristics in LRP Variants 

 

Characteristics Types 

Data Discrete Stochastic Fuzzy 

Planning Period Static  Dynamic  Periodic 

Locations of Facilities Discrete Continuous Network 

Echelons Single  Multiple  
Objectives Single  Multiple  
Routings Vertex Arc  

 

Another variant of LRP, which is indicated by Schiffer et al. (2019) in refueling, is 

Location Routing Problem with Intra-Route Facilities (LRPIF) which differs from 

classical LRP as regards the type of facility to be located. While the decision of depot 

location is made in classical LRP, intra-route facility location is decided in LRPIF. These 

intra-route facilities can be charging station, rest & break point, synchronization etc. 

 

In this context the first research is published by Yang and Sun (2015). Researchers 

introduces Battery Swap Station Location-Routing Problem with Capacitated Electric 

Vehicles (BSS-EV-LRP) which is the first time that decision of routes of EVs and 

locating of battery swap stations are considered simultaneously. In the formulation the 

minimizing objective function contains BSS construction cost as well as the routing cost 

of EVs. They only formulate the case that battery is swapped and there is no partial 

recharging or fully recharging of EVs. Hof et al. (2017) applied enlarged Variable 

Neighborhood Search (VNS) and obtained better solution than Yang and Sun (2015). 

 

Schiffer and Walther (2017a) extends the BSS-EV-LRP with addition of time windows 

and partial recharging and introduces electric LRP with time windows and partial 

recharging (ELRPTWPR). In the study, formulation is discussed for 5 different objective 

functions that minimizes (i) total traveled distance, (ii) the number of vehicles, (iii) the 
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number of charging stations, (iv) the convex combination of the number of vehicles and 

the number of charging stations and (v) overall total cost that includes construction of 

charge stations, total traveled distance and investment to the vehicles. And the results 

highlight the benefits of making simultaneous decision on routing and location. Schiffer 

et al. (2017b) applied methodology to a company in retail logistics and examined the 

competitiveness of EVs for mid-haul fleet. Results showed that EVs are advantageous 

over conventional vehicles in terms of costs and emissions. Schiffer and Walther (2018) 

accounts for uncertainties such as costumer demands, and construct robust ELRPTWPR.  

 

Schiffer et al. (2018) construct a new LRPIF with intra-route facilities where vehicles can 

both recharge and replenish their freight simultaneously. These authors introduce an 

Adaptive Large Neighborhood Search (ALNS) that outperforms all algorithms mentioned 

previously.  

 

2.3 UAV Routing Problem and Its Applications in Disaster Management 

 

In logistics of disaster management and surveillance, the routing problem of UAV’s is 

located in the focus point of most works. Chowdhury et al. (2017) proposes a continuous 

approximation model in disaster response and relief operations for UAVs where they 

decide for distribution center locations, their service regions, and ordering quantities to 

minimize overall distribution cost. They include energy usage in model as constant for 

different movements and do not consider cost of battery.  

 

Rabta et al. (2018) stresses the importance of energy consumption function in models and 

having recharge stations. They prioritize target points according to emergency level and 

formed a convex model that the global optimum is guaranteed. Chowdhury (2018) used 

heterogeneous fleet in order to inspect post-disaster effects.  

 

Kim & Lim (2018) apply electrificated line battery charging for UAVs that have a border 

surveillance duty. They use 3 different types of UAVs and installed the line for 6 km. 

Case study is showing that with these specific instruments after 25th flight, electrification 

line pays back.  
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Waharte & Trigoni (2010) proposed an algorithm to search and rescue mission with 

employing and comparing different search strategies which are based on greedy 

heuristics, potential-based algorithms and partially observable Markov Decision Process 

to control several UAVs with criteria of the time to reach victim. 

 

Yakıcı (2016), studied the LRP of a fixed number of UAV fleet. In the study, the author 

limited the flight time deterministically without mentioning any fuel constraint. The 

problem is formulated as a prize collection Mixed Integer Linear Programming (MILP) 

problem. When the size of the problem is bigger, the optimum solution cannot be found 

by a commercial software so that a heuristic approach is developed and applied, which is 

based on ant colony optimization algorithm.  

 

Yılmaz et al. (2018) considered homogeneous fleet in order to maximize total of 

importance values collected form interest points with spatio-temporal synchronization 

constraints (prize collection problem). But this time, they used ships as a refuel platforms 

that have a limited capacity for recharging. At the end, the comparison of Max-Min Ant 

System (MMAS) based heuristic with commercial heuristics is made and the results show 

that MMAS outperforms commercial heuristics.  

 

Harrington et al. (2018), published one of the most important articles in the literature for 

this thesis. The research group formed a swarm that includes Coast Guard and UAVs. 

They consider the environmental factors in their model like currents, wind and weather 

conditions as well as complex interactions such as communication, detection and 

intercept. System detects the suspicious boats, rank them and decides which boat to infer. 

Results show that the overall success of the system is positively correlated with number 

of coast guards. 

  



 

 

 

 

3. METHODOLOGY 

 

 

 

This section consists of two subsections, where the first subsection presents flight statues 

of UAVs and their energy consumptions in these statuses. The second subsection presents 

our assumptions and LRP model.  

 

3.1 Energy Consumption Models 

 

There exist three flight statuses for UAVs, namely vertical take-off and landing, cruising 

(horizontal movement), and hovering (Thibotuwawa et al. 2018). Vertical take-off and 

landing statuses are observed when an UAV is launched from the main depot or a station, 

and when it returns to the main depot or arrives to a station for its battery to be swapped. 

Cruising status is observed between any two nodes in the graph, and is decomposed into 

three phases, namely, acceleration until the UAV reaches to a constant speed, horizontal 

movement at the constant speed, and deceleration when the UAV reaches to a 

neighborhood of the next node to be visited. Hovering status, however, is only observed 

over a target point for the UAV to take photos or videos of that point. Below, we give the 

total energy consumed by an UAV at each of these flight statuses. 

 

Let 𝑃𝑐 𝑙𝑖𝑚 𝑏 and 𝑃𝑑𝑒𝑠𝑐 be the powers absorbed by an UAV for taking off and landing, and 

𝑣𝑐 𝑙𝑖𝑚 𝑏 and 𝑣𝑑𝑒𝑠𝑐 be the speeds of the UAV for taking off and landing, respectively. These 

𝑣𝑐 𝑙𝑖𝑚 𝑏 and 𝑣𝑑𝑒𝑠𝑐 are assumed to be constant by Franco and Buttazzo (2016). Furthermore 

let 𝛥ℎ be the change in altitude. Assuming that each time the UAV is launched from 

altitude zero and it climbs up to an altitude ℎ (i.e., 𝛥ℎ =ℎ), the total energy consumed by 

the UAV is given by  
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𝐸𝑐𝑙𝑖𝑚𝑏 =  ∫ 𝑃𝑐𝑙𝑖𝑚𝑏𝑑𝑡

𝑡𝑐𝑙𝑖𝑚𝑏

0

=  𝑃𝑐𝑙𝑖𝑚𝑏

ℎ

𝑣𝑐𝑙𝑖𝑚𝑏
 

(1) 

 

where 𝑡𝑐 𝑙𝑖𝑚 𝑏 = ℎ/𝑣𝑐 𝑙𝑖𝑚 𝑏 is the total time spent for climbing. Similar to (1), the total 

energy consumed while descending from an altitudeℎto the altitude zero is given by 

 

 
𝐸𝑑𝑒𝑠𝑐 =  ∫ 𝑃𝑑𝑒𝑠𝑐𝑑𝑡

𝑡𝑑𝑒𝑠𝑐

0

=  𝑃𝑑𝑒𝑠𝑐

ℎ

𝑣𝑑𝑒𝑠𝑐
 

(2) 

   

where 𝑡𝑑𝑒𝑠𝑐 = ℎ/𝑣𝑑𝑒𝑠𝑐 is the total time spent for descending. 

 

Let 𝑃ℎ𝑜𝑣𝑒𝑟 be the power absorbed by an UAV while hovering and 𝑡ℎ𝑜𝑣𝑒𝑟 be the hovering 

time. This 𝑃ℎ𝑜𝑣𝑒𝑟is defined by 𝑃ℎ𝑜𝑣𝑒𝑟 = (𝛽 + 𝛼ℎ) in Pugliese et al. (2016), where 𝛽 is the 

minimum power needed to hover at an altitude almost zero and 𝛼 is the motor speed 

multiplier; both 𝛼 and 𝛽depend on the weight and motor/propeller characteristics of the 

UAV. Now, the total energy consumed during hovering is given by 

  

 
𝐸ℎ𝑜𝑣𝑒𝑟 =  ∫ 𝑃ℎ𝑜𝑣𝑒𝑟𝑑𝑡

𝑡ℎ𝑜𝑣𝑒𝑟

0

= (𝛽 +  𝛼ℎ)𝑡ℎ𝑜𝑣𝑒𝑟 
(3) 

   

Moreover, an UAV spends extra power while rotating Franco and Buttazzo (2016) as it 

is shown in Figure 3.1. Let 𝑃𝑟𝑜𝑡𝑎𝑡𝑒 be the power absorbed during rotation, 𝛥𝜃 be the angle 

in radians covered by the rotation, and 𝑤𝑟𝑜𝑡𝑎𝑡𝑒 be the rotational speed. Then, Franco and 

Buttazzo (2016) gives the energy consumed by rotation of the UAVs as  

 

 
𝐸𝑟𝑜𝑡𝑎𝑡𝑒 = 𝑃𝑟𝑜𝑡𝑎𝑡𝑒

∆𝜃

𝑤𝑟𝑜𝑡𝑎𝑡𝑒
 

(4) 
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Figure 3.1. Rotational Movement of UAVs 

 

Finally, let𝑃𝑎𝑐𝑐,𝑃𝑑𝑒𝑐, and 𝑃𝑐𝑜𝑛 be the powers consumed by acceleration, deceleration and 

constant speed, respectively, and let 𝑡𝑎𝑐𝑐, 𝑡𝑑𝑒𝑐, and 𝑡𝑐𝑜𝑛be their respective durations. 

Then, the total energy consumed while moving horizontally is given in Franco and 

Buttazzo (2016) by 

 

 
𝐸𝑐𝑙𝑖𝑚𝑏 =  ∫ 𝑃𝑎𝑐𝑐𝑑𝑡

𝑡𝑎𝑐𝑐

0

+  ∫ 𝑃𝑑𝑒𝑐𝑑𝑡
𝑡𝑑𝑒𝑐

0

+  ∫ 𝑃𝑐𝑜𝑛𝑑𝑡
𝑡𝑐𝑜𝑛

0

=  𝑃𝑎𝑐𝑐𝑡𝑎𝑐𝑐 + 𝑃𝑑𝑒𝑐𝑡𝑑𝑒𝑐 +  𝑃𝑐𝑜𝑛𝑡𝑐𝑜𝑛 

(5) 

   

To obtain 𝑡𝑎𝑐𝑐,𝑡𝑑𝑒𝑐, and 𝑡𝑐𝑜𝑛, we make the same assumption as in Chowdurry et al. (2017) 

as follows. Let𝑑(𝑖, 𝑗) be the Euclidean distance between any two nodes𝑖and𝑗in the graph; 

i.e.,  

𝑑(𝑖, 𝑗) =  √(𝑎𝑏𝑠(𝑖) − 𝑎𝑏𝑠 (𝑗))2 + (𝑜𝑟𝑑(𝑖) − 𝑜𝑟𝑑(𝑗))2,  

where 𝑎𝑏𝑠(. )and 𝑜𝑟𝑑(. )are the horizontal and vertical coordinates of a node, 

respectively. We assume that each time an UAV goes from node 𝑖 to 𝑗, 𝑎% of the distance 

is spent for acceleration, and𝑏%for deceleration. With this assumption,𝑡𝑎𝑐𝑐, 𝑡𝑑𝑒𝑐, and 

𝑡𝑐𝑜𝑛can be computed as in Chowdurry et al. (2017) by 

 

 

𝑡𝑎𝑐𝑐 =  √
𝑣𝑐𝑜𝑛𝑚𝑎%𝑑(𝑖, 𝑗)

𝑃𝑎𝑐𝑐
 

(6) 
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𝑡𝑑𝑒𝑐 =  √
𝑣𝑐𝑜𝑛𝑚𝑏%𝑑(𝑖, 𝑗)

𝑃𝑑𝑒𝑐
 (7) 

 

 
𝑡𝑐𝑜𝑛 =  

(1 − 𝑎% − 𝑏%)𝑑(𝑖, 𝑗)

𝑣𝑐𝑜𝑛
 

(8) 

   

where 𝑣𝑐𝑜𝑛 is the constant speed the UAV reaches after its phase of acceleration and𝑚is 

the total payload of the UAV including its own weight. Note that all of the 

times𝑡𝑎𝑐𝑐,𝑡𝑑𝑒𝑐and 𝑡𝑐𝑜𝑛in (6), (7) and (8) respectively, depend on nodes𝑖and𝑗; yet, we do 

not show this dependence for notational simplicity. Now, 𝐸𝑐𝑟𝑢𝑖𝑠𝑒 in Franco and Buttazzo 

(2016) can be computed by setting 𝑡𝑎𝑐𝑐,𝑡𝑑𝑒𝑐and 𝑡𝑐𝑜𝑛in (6), (7) and (8) respectively, for 

any two nodes𝑖and𝑗. 

 

3.2. LRP Formulation    

 

This section presents first the assumptions and then the formulation. We assume the 

followings: (i) There is one main depot from which an UAV departs and to which that 

UAV returns after completing its mission; (ii) a potential station, if it is opened can only 

be used to swap the battery of an UAV and not for recharging (BSS) and battery costs are 

included in opening cost; (iii) the number of batteries stored at each open station is limited 

(i.e., capacitated facility); (iv) all sub-tours that do not start and end at the main depot 

have to be avoided; and (v) battery swap time is negligible. Before presenting the 

formulation, we have the remaining notation below.  

 

𝝉  : Set of n target points 

𝑪𝒌 : Set of m potential stations indexed by k 

𝜿𝒌  : Capacity of potential station k 

𝑪′𝒌  : Set of dummy stations obtained by splitting potential station k 

into𝜅𝑘stations of capacity one  

𝑪′ = 𝑪′𝟏 ∪. . .∪ 𝑪′𝒎  : Set of all dummy stations 

𝑫 = {𝒅𝟎, 𝒅𝒏+𝟏}  : Set of nodes representing the main depot (i.e., 𝑑0 and 𝑑𝑛+1 

show the same site) 
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𝒗′ = 𝑫 ∪ 𝑪′ ∪ 𝝉  : Set of nodes in an undirected graph 𝐺 = (𝑣′, 𝜀′) indexed by 

𝑖, 𝑗 ∈ 𝑣′   

𝜺′  : Set of edges (i,j) in 𝐺 = (𝑣′, 𝜀′) 

𝒗′𝟎  : Set of all nodes except 𝑑0 

𝒗′𝒏+𝟏  : Set of all nodes except 𝑑𝑛+1 

𝑺  : Fleet size 

𝒇𝒌  : Fixed cost of opening potential station k 

𝒄  : Per unit distance operating cost of an UAV 

𝑻  : Total energy of a fully charged battery 

𝒑%  : Percentage of total consumable energy of a fully charged 

battery 

𝑼 = ∑ 𝜿𝒌𝒌∈𝑪   : Total capacity of𝐺 = (𝑣′, 𝜀′)  

𝒚𝒌  : 0-1 decision variable with 𝑦𝑘=1 if potential station k is open 

and 𝑦𝑘= 0 otherwise  

𝒙𝒊𝒋  : 0-1 decision variable with 𝑥𝑖𝑗= 1 if edge (i,j) is traversed and 

𝑥𝑖𝑗  = 0 otherwise 

𝒛𝒊 ≥ 𝟎  : Total remaining consumable energy in the battery after an UAV 

completes its Mission at node i (decision variable) 

𝒕𝒊 ≥ 𝟎  : Starting from the launch, the cumulative amount of energy 

consumed by an UAV up to and including node i (decision 

variable) 

 

Now the problem is formulated as  

 

 𝑀𝑖𝑛 ∑ 𝑓𝑘𝑦𝑘𝑘∈𝐶 + 𝑐 ∑ ∑ 𝑑(𝑖, 𝑗)𝑥𝑖𝑗𝑖∈𝑣0
′ ,𝑗≠𝑖𝑗∈𝑣𝑛+1

′    (9) 

    

 ∑ 𝑥𝑖𝑗 ≤ 𝑦𝑘

𝑗∈𝑣′0,𝑗≠𝑖

 ∀(𝑖 ∈ 𝐶′𝑘, 𝑘 ∈ 𝐶)  (10) 

    

 ∑ ∑ 𝑥𝑗𝑖 ≤ 𝜅𝑘

𝑖∈𝐶′𝑘,𝑖≠𝑗𝑗∈𝑣′𝑛+1

 ∀𝑘 ∈ 𝐶 (11) 
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 ∑ 𝑥𝑖𝑗 = 1

𝑖∈𝑣′𝑛+1,𝑖≠𝑗

 ∀(𝑗 ∈ 𝜏) (12) 

    

 ∑ 𝑥𝑖𝑗 − ∑ 𝑥𝑗𝑖 = 0

𝑗∈𝑣′𝑛+1,𝑗≠𝑖𝑗∈𝑣′0,𝑗≠𝑖

 ∀𝑖 ∈ 𝜏 ∪ 𝐶′ (13) 

    

 ∑ 𝑥𝑑0𝑗 ≤ 𝑆

𝑗∈𝑣′0

  (14) 

    

 𝑧𝑗 ≤ 𝑝%𝑇 − 𝐸𝑐 𝑙𝑖𝑚 𝑏 − 

(𝐸𝑐𝑟𝑢𝑖𝑠𝑒(𝑖, 𝑗) + 𝐸𝑟𝑜𝑡𝑎𝑡𝑒 + 𝐸ℎ𝑜𝑣𝑒𝑟)𝑥𝑖𝑗 

∀(𝑖 ∈ {𝑑0} ∪ 𝐶′, 
𝑗 ∈ 𝜏) 

(15) 

    

 𝑧𝑗 ≤ 𝑧𝑖 − (𝐸𝑐𝑟𝑢𝑖𝑠𝑒(𝑖, 𝑗) + 𝐸𝑟𝑜𝑡𝑎𝑡𝑒 + 𝐸ℎ𝑜𝑣𝑒𝑟)𝑥𝑖𝑗 +  

(𝑝%𝑇 − 𝐸𝑐 𝑙𝑖𝑚 𝑏)(1 − 𝑥𝑖𝑗) 

∀(𝑖, 𝑗 ∈ 𝜏, 𝑖 ≠ 𝑗) (16) 

    

 𝑧𝑗 ≤ 𝑧𝑖 − (𝐸𝑐𝑟𝑢𝑖𝑠𝑒(𝑖, 𝑗) + 𝐸𝑟𝑜𝑡𝑎𝑡𝑒 + 𝐸𝑑𝑒𝑠𝑐)𝑥𝑖𝑗 + 

(𝑝%𝑇 − 𝐸𝑐 𝑙𝑖𝑚 𝑏)(1 − 𝑥𝑖𝑗) 

∀(𝑖 ∈ 𝜏, 
𝑗 ∈ {𝑑𝑛+1} ∪ 𝐶′) 

(17) 

    

 𝑡𝑗 ≥ 𝑡𝑖 + (𝐸𝑐𝑟𝑢𝑖𝑠𝑒(𝑖, 𝑗) + 𝐸𝑟𝑜𝑡𝑎𝑡𝑒 + 𝐸ℎ𝑜𝑣𝑒𝑟)𝑥𝑖𝑗 

−𝑈𝑝%𝑇(1 − 𝑋𝑖𝑗) 

∀(𝑖 ∈ 𝑣′𝑛+1, 𝑗 ∈ 𝜏 
𝑖 ≠ 𝑗) 

(18) 

    

 𝑡𝑗 ≥ 𝑡𝑖 + (𝐸𝑐𝑟𝑢𝑖𝑠𝑒(𝑖, 𝑗) + 𝐸𝑟𝑜𝑡𝑎𝑡𝑒 + 𝐸𝑑𝑒𝑠𝑐  

+𝐸𝑐 𝑙𝑖𝑚 𝑏)𝑥𝑖𝑗 − 𝑈𝑝%𝑇(1 − 𝑋𝑖𝑗) 

∀(𝑖 ∈ 𝑣′𝑛+1,  
𝑗 ∈ 𝐶′ ∪ {𝑑𝑛+1}, 
 𝑖 ≠ 𝑗) 

(19) 

    

 𝑇(1 − 𝑝%) ≤ 𝑧𝑖 ≤ 𝑝%𝑇(1 − 𝑥𝑖𝑗)  ∀𝑖 ∈ 𝑣′  (20) 

    

 𝑡𝑑0
≥ 𝐸𝑐 𝑙𝑖𝑚 𝑏   (21) 

    

 𝑡𝑖 ≥ 𝐸𝑐 𝑙𝑖𝑚 𝑏 + 𝐸𝑟𝑜𝑡𝑎𝑡𝑒 + 𝐸ℎ𝑜𝑣𝑒𝑟  ∀𝑖 ∈ 𝜏 (22) 

    

 𝑡𝑖 ≥ 𝐸𝑐 𝑙𝑖𝑚 𝑏 + 𝐸𝑟𝑜𝑡𝑎𝑡𝑒 + 𝐸𝑑𝑒𝑠𝑐 ∀𝑖 ∈ 𝐶′ ∪ {𝑑𝑛+1}  (23) 

    

 𝑡𝑖 ≤ 𝑈𝑝%𝑇  ∀𝑖 ∈ 𝑣′  (24) 

    

 𝑦𝑘 ∈ {0,1}, 𝑥𝑖𝑗 ∈ {0,1}  ∀(𝑘 ∈ 𝐶, 
(𝑖, 𝑗) ∈ 𝜀′)  

(25) 
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where ∀(. ) means that the set of constraints holds for all indices within the parentheses. 

The objective function and constraints given above can be explained as follows. The 

objective function (9) is to minimize the total overall cost that includes opening costs of 

potential stations and operating costs of UAV which depends on the travelled distance. 

The first constraint (10) ensures the connectivity of potential station k if it is open. The 

constraint (11) limits the battery capacity for potential station k. The condition of VRP to 

visit each node only once is ensured by constraint (12). The constraint (13) is the set of 

flow balance constraint while the constraint (14) restricts the number of UAVs to be 

launched to the fleet size.  

 

The remaining constraints are novel to the literature; therefore, they are detailed as 

follows. The constraints (15), (16) and (17) limit the remaining amounts of consumable 

energy depending on the types of nodes from which the UAV departs (node i) and to 

which the UAV arrives (node j). In the constraint (15), node i is the main depot or 

potential station and node j is a target point. In the constraint (16) both i and j are target 

nodes points while in the constraint (17), i denotes target points and j is the main depot or 

potential station. These constraints provide the remaining amounts of consumable energy 

if 𝑥𝑖𝑗= 1. Otherwise, they provide a valid upper bound 𝑝%𝑇 − 𝐸𝑐 𝑙𝑖𝑚 𝑏on the amounts of 

consumable energy. The constraint (20), also known as box constraints, controls the 

amount of consumable energy. In Franco and Buttazzo (2016), it is stated that from the 

fully charged battery, T, only 60%-70% can be consumed; therefore, we set p% = 70%.  

 

Finally, the constraints (18) and (19) give, starting from their launches, the cumulative 

amounts of energy consumed by UAVs up to and including node𝑖if they are active (i.e., 

𝑥𝑖𝑗= 1), and they give valid lower bounds on 𝑡𝑗 otherwise. The constraint (18) is for a 

target point𝑗, and the constraint (19) is for the main depot or potential station𝑗. The 

remaining constraints provide lower and upper bounds on the cumulative amounts of 

energy consumed up to and including node𝑖. In particular, the upper bound on the 

cumulative amount of energy spent by an UAV is given by𝑈𝑝%𝑇, where𝑈is the total 

number of batteries stocked at all potential stations. The constraints (18) – (24) 

eliminate all sub-tours that do not start from and end at the main depot. The last 

constraint, namely constraint (25), ensures that 𝑦𝑘 and 𝑥𝑖𝑗take either 0 or 1, as values. 
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3.3 LPRTW Formulation 

 

In this section the LRP formulation with Time Windows constraints are presented. In 

addition to the assumptions in Section 3.2, the followings are assumed: (vi) The UAVs 

are assumed to have a constants speed while cruising; (vii) some target points have 

specific time windows’ to be hovered on. In this formulation, the following notations is 

added to the notation list of Section 3.2: 

 

𝒒𝒊 ≥ 𝟎  : Arrival time of UAV to node i (decision variable) 

𝒍𝒊 : Allowed latest arrival time of UAVs to node i 

𝒆𝒊 : Allowed earliest arrival time of UAVs to node i 

𝒍𝒅𝒏+𝟏
  : Allowed latest arrival time of UAVs to main depot 

 

The following constraints are combined with objective function (9) and constraints (10) 

– (17) and (25) from LRP in Section 3.2 formulation:  

  

𝑞𝑗 ≥ 𝑞𝑖 + (𝑡ℎ +
𝑑(𝑖,𝑗)

𝑣𝑐𝑜𝑛
) 𝑥𝑖𝑗 − 𝑙𝑑𝑛+1

(1 − 𝑥𝑖𝑗)  ∀(𝑖 ∈ 𝜏, 𝑗 ∈ 𝑣′0 )   (26) 

   

𝑞𝑗 ≥ 𝑞𝑖 + (
ℎ

𝑣_𝑐𝑙𝑖𝑚𝑏
+

𝑑(𝑖,𝑗)

𝑣𝑐𝑜𝑛
) 𝑥𝑖𝑗 − 𝑙𝑑𝑛+1

(1 − 𝑥𝑖𝑗)   ∀(𝑖 ∈ {𝑑0} ∪ 𝐶′, 
𝑗 ∈ 𝑣′𝑛+1 )  

(27) 

   

𝑒𝑖 ≤ 𝑞𝑖 ≤ 𝑙𝑖  ∀𝑖 ∈ 𝑣′  (28) 

   

Constraints (26) and (27) controls the arrival time of UAVs to target points, potential 

stations and depot. The time windows restrictions are enforced by constraint (28) to the 

model. These three constraints also eliminate the sub-tours.      



 

 

 

 

4. COMPUTATIONAL ANALYSIS 

 

 

 

This section provides numerical results for the two models introduced in Subsections 3.2 

and 3.3. In Subsection 4.1, small size problems are solved to optimality for LRP model 

in Subsection 3.2, then sensitivity analysis is performed by changing some parameters. 

Then, the same analyses are performed for the problem introduced in subsection 3.3. 

 

All solutions presented in Section 4 are obtained by Gurobi 8.1.1 Python API on a 

computer with Intel i5-8250 1.8 GHz CPU and 8 GB Ram. 

 

4.1 Application of LRP to a Small Size Problem 

 

We solved a small-size problem in an obstacle free environment for LRP model in 3.2. 

First, the base values of the parameters of the problem are determined. Then, some 

parameters are changed in order to form different scenarios. These scenarios are further 

solved and the results for each scenario are shown in Section 4.2. 

 

In the problem we define nine target points, four potential stations with capacities and 

costs given in Table 4.1, and a single main depot, all located in a square of 1500m x 

1500m. This area in the Mediterranean Sea is shown in Figure 4.1, and the arrows are 

declared as illegal migration paths by UNHCR. 

 

 

Table 4.1: Potential Stations Specifications 

 

Potential 

Station ID 

Capacities 

(𝜅) 

Costs 

(𝑓) 

1 2 2 

2 3 3 

3 3 5 

4 2 5 
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Figure 4.1: Selected Region for Computational Analysis 

 

We split potential station 1 into two stations of capacity one, potential station 2 into three 

stations of capacity one, potential station 3 into three stations of capacity one, and 

potential station 4 into two stations of capacity one which results in ten dummy stations 

of capacity one in 𝐶′ = {3,4, …, 12}. The sets of target points and the main depot are 

given by 𝜏 = {13, 14, …, 27} and 𝐷 = {1,2} respectively.  

 

The UAV parameters, based on Franco and Buttazzo (2016) and Pugliese et al. (2016) 

are given in the Table 4.2. to calculate the amount of energy consumption of the UAV in 

different flight statuses.  
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Table 4.2: Parameters of UAVs 

 

Specification Values 

𝑃𝑐 𝑙𝑖𝑚 𝑏 320 Watt 

𝑃𝑑𝑒𝑠𝑐 180 Watt 

𝑃𝑟𝑜𝑡𝑎𝑡𝑒 250 Watt 

𝑃𝑎𝑐𝑐 270 Watt 

𝑃𝑑𝑒𝑐 270 Watt 

𝑃𝑐𝑜𝑛 250 Watt 

β 250 Watt 

α 1 

𝑣𝑐 𝑙𝑖𝑚 𝑏 10 m/s 

𝑣𝑑𝑒𝑠𝑐 2.55 m/s 

𝑣𝑐𝑜𝑛 15 m/s 

𝑤𝑟𝑜𝑡𝑎𝑡𝑒 2.1 radians/s 

p% 70% 

   

The chosen battery for the numeric study has a specification of 5200 mAh and 11.1 V, so 

T is calculated as 69264 Joules, and a and b are set to a%=b%=5%. The locations of all 

nodes are generated randomly according to a uniform distribution 𝑈 (0, 1500) over two-

dimensional and obstacle-free space. 

 

Considering three UAVs, the optimal solution is presented in Figure 4.2. Only one UAV 

visits all target points, and potential station 1 (nodes 3 and 4) is opened. The optimal cost 

is found as 5,50E+19, and the optimal route is presented in Figure 4.2.  
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Figure 4.2: The optimal route of the formulation 

 

4.2 Sensitivity Analysis of LRP 

 

In this subsection some parameters of the problem are altered in order to examine the 

sensitivity of the proposed LRP model. Base case scenario is given in Table 4.2. Some 

specifications of UAVs are different from Section 4.1 which are h and p% and used as 

100m and 75% respectively 

 

4.2.1 Sensitivity to Range of Region 

 

The range of the region that main depot, potential stations and target points are located is 

altered and the results are analyzed in this subsection. The observed area is enlarged by 

increasing the range of the region. Since the distance has a direct effect on the objective 

function, it is expected to lead an increase in the value of optimum solution. The model 

is applied to 1.5 km2, 3 km2, 7.5 km2 and 10 km2 without any time limitation on the 

solution time of the model. The locations of nodes are distributed uniformly and the 

results for objective function and run times are presented in the Table 4.3. 
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Table 4.3: Optimum Results for Different Ranges 

 

Range of 

Region 

Run Time 

(secs) 

Optimum 

Solution 

1.5km2 40.98 5,46E+19 

3km2 49.66 1,09E+20 

7.5km2 52.75 2,76E+20 

10 km2 106 4,46E+20 

 

It can be seen in Table 4.3 that both the optimal solution and the run times increase with 

the range.  

 

4.2.2 Sensitivity to the Number of Target Points 

 

With 5 minutes time limitation, the sensitivity of the proposed model to the number of 

target points is analyzed in this subsection in 3 km2 region. Since all target points must be 

visited by an UAV, the increase in the number of target points is expected to lead an 

increase in the value of the optimum solution. The number target points are increased 

from 15 to 21 and the results for objective function and run times are shown in Table 4.4.   

 

 

 

Table 4.4: Optimum Results for Different Number of Nodes 

 

Number of 

Target Points 

Optimum 

Solution 
Run Time (secs) C1 C2 C3 C4 

15 1,094E+19 49,66 0 0 0 1 

16 1,174E+19 8,02 1 0 0 0 

17 1,117E+19 1,27 0 0 1 0 

18 1,124E+19 7,59 0 0 0 1 

19 1,125E+19 12,93 0 0 0 1 

20 1,180E+19 159,79 0 0 0 1 

21 - Time Limit  - - - - 

 

As it can be seen from Table 4.4, the increase in number of target points resulted with an 

increase in the value of optimum solution. However, there is a decrease in the value of 

optimum solution while the number of target points is increased from 16 to 17. In 
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addition, the increasing rate fluctuates. These inconsistencies occurred because the 

locations for each number of target points are generated randomly. 

  

The same inconsistency is detected for the run times because of the random generation 

process. And, when 21 target points deployed in the model, the solution cannot be 

gathered in 5 minutes. 

 

4.2.3 Sensitivity to Flying Altitude 

 

In this subsection, the sensitivity of the proposed model to flying altitude of UAVs is 

examined. The tradeoff in the context of our problem, for flying altitude, is while UAV 

climbs higher altitudes the probability of UAV to be detected decreases, however the 

energy consumption increases accordingly. 

  

Flying altitude effects energy consumption in both take-off and landing since it is the 

distance to be travelled in both actions. These two actions require substantial amount of 

power each time when an UAV visits a potential station or main depot. So, the increase 

in the flying altitude is expected to lead an increase in the value of optimum solution. The 

model is applied in a region of 3 km2, and the results are shown in Table 4.5. 

 

 

Table 4.5: Results of Flying Altitude is 3 km2 

 

Altitude 
Optimum 

Solution 

Solution 

Time (secs) 
C1 C2 C3 C4 

110 1,10E+20 54,94 1 1 0 1 

120 1,10E+20 65,66 1 1 0 1 

130 1,10E+20 29,19 1 1 0 1 

140 1,10E+20 46,45 1 0 0 0 

170 1,10E+20 19,56 1 0 0 1 

200 1,18E+20 254,43 1 0 0 1 

250 - Time Limit  - - - - 

 

When the region is 3 km2, the change in the optimum solution is small, even negligible 

between 100m to 170 m. So, the same study is applied to 7.5 km2 region in order to show 

the effect of altitude clearly. The results are shown in Table 4.6. 
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Table 4.6: Results of Flying Altitude in 7.5 km2 

 

Altitude 
Optimum 

Solution 

Solution 

Time (secs) 
C1 C2 C3 C4 

110 2,78E+20 27,82 1 1 0 1 

120 2,98E+20 181,47 1 1 0 1 

130 3,16E+20 298,05 1 1 0 1 

140 - Time Limit - - - - 

 

As it can be seen from Table 4.6, when the altitude increases, the optimum solution and 

the run time increase concurrently. It can be concluded that altitude is not effective on the 

value of optimum solution unless it causes to open or revisit a potential station, because 

altitude is not considered in objective function. It only stresses the energy consumption 

constraints. So, in 7.5 km2 region, higher altitudes cause revisits to opened potential 

station and changes in optimum value becomes visible. However, when the altitude is 

140m, run time limitation is reached and optimum solution couldn’t be found.   

 

4.2.4 Sensitivity to Hovering Time 

 

In this subsection, with different hovering time, the sensitivity of the proposed model is 

examined. Hovering time is also referred as service time of the node in literature. In our 

context, it is the time that an UAV spends over a target point to monitor. The tradeoff for 

this parameter is with higher hovering times, the image quality increases, however the 

energy consumption increases as well. So, it is expected that the optimum solution to 

increases with the hovering time. The results of the analysis in 7.5 km2 are shown in Table 

4.7. 

 

 

Table 4.7: Results of Hovering Time 

 

Hovering 

Time (secs) 

Optimum 

Solution 

Solution 

Time (secs) 
C1 C2 C3 C4 

5 3,34E+20 515,86 1 1 0 1 

10 3,49E+20 100,13 1 1 1 1 

15 4,18E+20 178,25 1 1 1 1 

20 5,24E+20 228,92 1 1 1 1 

25 infeasible - - - - - 
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As it can be seen from Table 4.7, higher hovering times result in higher optimum solutions 

by opening a new station or revisiting an opened station several times. And the problem 

becomes infeasible in 25 seconds. So, we can say that hovering time is one of the most 

important parameters for the feasibility of the problem considering the limited battery 

capacity.  

  

In Table 4.7 the solution time of th = 5 secs, is higher than the other hovering times. This 

can be explained as follows; when the hovering time is small, the amount of remaining 

energy of UAVs increases. This leads to more options for UAVs to visit next; i.e. if the 

remaining energy of UAVs is low, then they have to go to an open station to swap 

batteries. However, with a higher level of energy UAVs can visit target points or potential 

stations. 

 

4.2.5 Sensitivity to Cost of Opening a Potential Station   

 

In this subsection, opening a potential station cost is altered in order to see the sensitivity 

of the model. In the current problem the effect of this cost is small when it is compared 

with the distances. In order to make opening cost more effective, we first multiply the 

costs with 100 and alter it accordingly in 7.5 km2 region. The results are shown in Table 

4.8. 

 

Table 4.8: Results of Cost Changes 

 

Costs for C1, C2, C3 

and C4 

Optimum 

Solution 

Number of 

Deployed 

UAVs 

Opened 

Sations 

2, 3, 5, 5 2,76E+20 1 C1 and C4 

200, 300, 500, 500 3,41E+20 1 C1 and C4 

1000, 200, 200, 1000 2,89E+20 2 C1 

10000, 200, 200, 1000 3,25E+20 1 C3 and C4 

 

With bigger fixed costs, optimum solution increases drastically; however, the optimal 

routes are not changed.  

 

Therefore, we directly manipulated the opening costs of C1 and C4 with multiplying them 

by 2 in order to see a difference in the route, since they were opened in the previous case. 
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With these parameters, the value of optimum solution is decreased, number of deployed 

UAVs increased, and only C1 is opened. Opening a new station is more expensive than 

routing a new UAV in this case. The decrease in the value of optimum solution can be 

explained as follows; in the previous case with small opening costs, an UAV visits C1 

twice and C4 once; however, with bigger costs, it only visits C1 once. So, the decrease in 

the value of the optimum solution is a result of the decrease in travelled distance. 

 

In the last scenario, the cost of opening C1 is multiplied by 10 since it is the only station 

opened in the previous scenario. The optimum solution increases. This time, opening C3 

and C4 becomes advantageous rather than deploying a new UAV.  

 

As conclusion, we have seen that manipulating costs has direct effect on the solution in 

every aspect such as optimum route, opened stations, number of deployed UAVs and 

optimum solution. 

 

4.3 Application of LRPTW to Small Size Problem 

 

As a numerical study for LRPTW model, the predefined parameters in Subsection 4.1 are 

used as base specifications in order to compare models in small scale solutions. Then, 

with changing the parameters the sensitivity analysis is performed on the model. In the 

study, first the critical targets determined and their time windows are allocated. 

Henceforth, the maximum mission duration is set to 10 minutes. The critical target points 

due to their locations on the route of illegal migration are target point 15, 19, 22 and 24. 

The time limitations for these critical target points are presented in Table 4.9.  

 

 

Table 4.9: Time Windows of Critical Target Points (in seconds) 

 

Target Lower Bound Upper Bound 

15 120 120 

19 100 300 

22 100 600 

24 120 350 

 

Target 15 has a hard time windows constraint which ensures that an UAV starts hovering 

onto target at 120 secs after the start of its mission. Time windows for targets 19 and 24, 
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enforce UAVs not to start hovering onto these targets before 100 and 120 secs, and after 

300 and 350 secs, respectively. Lastly, target 22 has the limitation of earliest starting to 

hover time which is 100 secs.  

 

The optimal route for UAVs to follow is given in Figure 4.3.  

 

Figure 4.3: Optimal Route of LRPTW 

 

As it can be seen from Figure 4.3, only one UAV is deployed for mission same with the 

LRP formulation however, potential station 4 (nodes 11 and 12) is opened instead of 1 

and little changes occurred in the order of visited targets. The objective function is found 

as 5.62E+19 which is higher than LRP formulation. This situation can be explained as 

follows; since UAVs have to satisfy more constraints, this enforces UAVs to take longer 

trips and opening potential station 4 which has higher cost then 1. 

 

4.4 Sensitivity Analysis of LRPTW  

 

In this subsection the sensitivity of LRPTW model to changes in parameters is presented. 

The base case scenario parameters used for sensitivity analysis are as given in Subsection 

4.2 and run time is limited to 10 minutes throughout Subsection 4.4 unless otherwise 

stated. 
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4.4.1 Effect of Time Windows 

 

In this subsection the effect of time windows is examined with the comparison of cases 

with time windows for target points and maximum mission duration, only maximum 

mission duration and no time windows at all. For each case, the rest of the parameters 

remain the same. It is expected that the addition of time windows increases the value of 

optimum solution. Three cases analyzed in 3 km2 region, with 600 secs maximum mission 

duration (if existed) and the results are shown in Table 4.10. 

 

 

Table 4.10: Results of Time Windows Study 

 

Time Windows for 

Target Points 

Optimum 

Solution 

Solution 

Time (secs) 

Number of 

Deployed 

UAVs 

Number of 

Opened 

Stations 

Yes 1,31E+20 149,22 2 0 

No TW for target 

points but with 

maximum mission 

duration 

1,22E+20 648,6 2 0 

No TW at all 1,09E+20 44,96 1 1 

 

In Table 4.10, the increase in optimum solution is clear with the addition of time windows 

for maximum mission duration and for target points. With the addition of maximum 

mission duration, the number of deployed UAVs is increased from 1 to 2 in order to 

satisfy the limitation but it doesn’t induce opening a new station. Since the number of 

deployed UAVs is not considered as cost in our model this increase can be explained as 

a result of excessive distance traveled in the existence of only maximum mission duration. 

In the no time windows case, a potential station is opened.  However, this situation doesn’t 

affect the optimum solution as much as traveled distance. So, this leads us to conclude 

that costs of potential stations are not as effective as cost of travel. 

 

The increase in the value of optimum solutions between the cases with only maximum 

mission duration and with time windows for target points and maximum mission duration 

is clear to see. With the addition of time windows for target points, which means bringing 

new limitations, increases the value of optimum solution. Since UAVs have to reach some 
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specific targets within some specific time intervals, they travel more than the previous 

case but opening a new station is not required in both cases. 

 

4.4.2 Sensitivity to Maximum Mission Duration  

 

Maximum mission duration is the time that is allocated for UAVs to end their route and 

return to the main depot after visiting every target point. In this subsection maximum 

mission duration is altered from 600 secs (10 mins) to 360 secs (6mins) in 3 km2 region 

with some target points to have specific time windows. The results are presented in Table 

4.11.   

 

 

Table 4.11: Results of Changes in Maximum Mission Duration 

 

Maximum Mission 

Duration (secs) 

Optimum 

Solution 

Solution 

Time (secs) 

Number of 

Deployed 

UAVs 

600 1,31E+20 144,06 2 

540 1,31E+20 172,73 2 

480 1,31E+20 200,03 2 

420 1,59E+20 2296,03 3 

360 infeasible - - 

 

As it can be seen from Table 4.11, when the maximum mission duration is between 600 

secs and 480 secs, the value of optimum solution and number of deployed UAVs remain 

the same. However, solution time increases while maximum mission duration decreases. 

Number of deployed UAVs is 3 when maximum mission duration is 420 and the run time 

increases dramatically to 2296.03 secs. It is seen that, in LRPTW model more than one 

UAV is deployed, which is different than the solution of the LRP model. So, addition of 

time windows and narrowing them increase the number of the deployed UAVs, run times 

and the optimum solutions. The number of opened potential stations is not shown since 

none is opened. 
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4.4.3 Sensitivity to the Number of Target Points  

 

In this subsection, the sensitivity of LRPTW model to the number of target points is 

examined with alteration from 15 target points to 19 in 3km2. The results are shown in 

Table 4.12. 

 

 

Table 4.12: Results of Changes in Number of Target Points 

 

Number of Targets 
Optimum 

Solution 

Solution 

Time (secs) 

Number of 

Deployed 

UAVs 

15 1,31E+20 144,06 2 

16 1,25E+20 1,29 2 

17 1,20E+20 4,99 2 

18 1,29E+20 1,65 2 

19 infeasible - - 

      

Even though the increase in the value of optimum solution is expected with the increase 

in the number target points, this is not observed in the solutions except between 17 target 

points and 18 target points. This and run time volatility is again the result of random 

number generation process from scratch for each number of targets parameter. The 

problem is infeasible when number of target points is 19 or higher with time windows 

constraints. The number of deployed UAVs is again more than LRP model, and 2 

throughout the process. 

 

4.4.4 Sensitivity to Flying Altitude 

 

In this subsection the sensitivity of LRPTW model to flying altitude of UAVs is 

examined. In the study, the flying altitude is altered from 100m to 250m. The tradeoff is 

the same with the LRP model. That is, higher altitude decreases the probability of 

detectability while increasing the energy consumption. So, it is expected for the value of 

optimum solution to increase with respect to flying altitude. The results are shown in 

Table 4.13 with 10 minutes time limitation. 
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Table 4.13: Results of Changes in Flying Altitude 

Flying Altitude (m) 
Optimum 

Solution 

Solution 

Time (secs) 

Number of 

Deployed 

UAVs 

Number of 

Opened 

Stations 

100 1,31E+20 144,06 2 0 

110 1,31E+20 86,76 2 0 

130 1,31E+20 91,14 2 0 

200 1,31E+20 148,9 2 0 

250 1,55E+20 239,36 2 2 

      

Since the flying altitude is not included in the objective function, it only effects optimum 

solution when it causes a revisit to opened station or a new station to open. The value of 

optimum solution is not changed between 100m and 200m of altitude. Therefore, it means 

that the increase in energy usage while altitude is in between 100 and 200 m doesn’t 

require to open a station. However, it is seen that in 250 m, number of opened stations is 

2 which is the reason of the increase in the value of optimum solution.  

    

4.4.5 Sensitivity to Hovering Time 

 

In this subsection the sensitivity of LRPTW model to hovering time is examined. The 

tradeoff in the context of this study, as it is mentioned in Subsection 4.2.4, is higher 

hovering time increases the image quality while leading higher energy consumption as 

well. So, the expectation is to get higher values of optimum solution in higher hovering 

times. The runs are taken with 10 mins time limitation and results are shown in Table 

4.14.  

 

 

Table 4.14: Results of Changes in Hovering time 

 

Hovering Time 

(secs) 

Optimum 

Solution 

Solution 

Time (secs) 

Number of 

Deployed 

UAVs 

Number of 

Opened 

Stations 

2 1,31E+20 149,22 2 0 

5 1,31E+20 191,27 2 0 

10 1,39E+20 35,6 2 2 

15 1,76E+20 402,36 2 2 

20 - Time Limit - - 
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As it can be seen from Table 4.14, the optimum solution increases with the increase in 

hovering time except the change from 2 secs to 5 secs. There is no change in the optimum 

value between 2 to 5 secs. This is because the number of opened stations is not changed 

in the optimum solution. When we compare the change occurred in the value of optimum 

solution with other parameter changes, hovering time has bigger effect on the optimum 

value. Therefore, hovering time can be named as one of the most important factors in 

LRPTW model.    

 



 

 

 

 

5. CONCLUSION 

 

 

 

In this thesis, this refugee problem is taken into consideration with the technology of 

UAV. We propose a surveillance strategy in Aegean Sea, which is one of the crucial 

routes, to deploy UAVs in order to detect refugee boats before they sunk. Therefore, a 

routing problem of UAVs arises. The problem is considered as a Location Routing 

Problem where the simultaneous decisions of UAV routes and opening intermediate 

charging facilities are made. In the disaster management literature, this study is placed in 

the mitigation phase where the prevention actions or effect reducing actions are taken.  

 

Two models are proposed in this context. The first one is LRP formulation which UAV 

specific energy models are embedded into formulation and novel subtour elimination 

constraints are presented. The second one is LRP formulation with Time Windows, which 

keeps the UAV specific energy models in the formulation, more realistic and case based, 

and subtours are eliminated by time windows constraints without having any extra 

constraints. 

 

Then, computational study is performed on two models with changing parameters and 

evaluating the effects of changes on the value of optimum solution. First, the base 

parameters for UAVs and problem are determined and small size studies are performed 

in both models. The changes are first applied on LRP formulation to parameters of (i) 

range of region that mission is due on, (ii) number of target points to be visited, (iii) flying 

altitude of UAVs, (iv) hovering time of UAVs on target points and (v) cost of opening 

potential stations. Then the changes are applied on LRPTW formulation with altering (i) 

the status of time windows, (ii) maximum mission duration, (iii) number of target points 

to be visited, (iv) flying altitude of UAVs and (v) hovering time of UAVs on target points. 
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In the computational study of LRP, it is seen that when we enlarged the area for UAVs to 

survey, the cost which is the minimizing objective function and run times increase 

accordingly. The same trend is observed in objective function while increasing the 

number of target points to be surveyed. It is because, with the increase of target points the 

distance travelled increases. However, since we locate the nodes on the graph with 

random distribution for each number of target points, there are some volatility of the 

amount of both run times and the value of optimum solutions. 

 

For flying altitude, two studies are conducted which are the studies on 3 km2 and 7.5 km2 

regions. In 3 km2 region, the increase in altitude did not cause a big increase in objective 

function. It is because, the altitude has no direct effect on the objective function it only 

has an effect if it leads an opening to a new station or a revisit to an opened station. So, 

in order to see the effect the same study conducted to 7.5 km2 and the increase in the 

value of optimum solution became visible. 

 

On the other hand, hovering time is one of the most effective parameters in the study. The 

effect of increase in hovering time is visible in the value of optimum solution directly. 

Even thought, it is not included in objective function, it makes UAVs to visit a charging 

station more frequent in higher hovering times.  

 

In the study, the cost sensitivity is crucial since we can directly manipulate the objective 

function. It is seen that, with the changes in cost of opening potential stations not only the 

value of optimum solution fluctuates, also the whole route and most importantly number 

of deployed UAVs changed for the first time throughout the LRP computational study. 

 

After the solution of small size problem for LRPTW, the effect of adding time windows 

is studied with changing time windows status. The examined three cases are as follows: 

(i) no time windows at all, (ii) only maximum mission duration and (iii) both time 

windows for target points and maximum mission duration. The value of the optimum 

solution increased along cases (i)-(iii). The number of UAVs is increased from 1 to 2, 

with the addition of time windows. And also, deploying new UAV is cheaper than 

opening a new station in time windows existence. 
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For maximum mission duration, while the duration shortened up to a significant level, the 

value of objective function and run time increases. In the study of number of target points, 

the same situation with the LRP arises which is the result of random distribution of 

locations of nodes. Run times and the value of optimum solution fluctuates.  

 

On the other hand, flying altitude and hovering time showed the same effect in LRPTW 

as they shown in LRP. They have an impact on objective function with causing opening 

a new station or a revisit to opened station.  

    



 

 

 

 

REFERENCES 

 

 

 

Altay N. and Green W.G. (2006). Or/Ms Research in Disaster Operations Management, 

European Journal of Operational Research 175(1): 475-493. 

Bektaş T. (2006). The multiple traveling saleman problem: an overview of formulations 

and solution procedures, The International Journal of Management Science 34: 209-

219. 

Boulanin V., and Verbruggen M. (2017). Availability and Military Use of UAVs, SIPRI 

Literature Review for the Policy and Operations Evaluations, Department of the Dutch 

Ministry of Foreign Affairs. 

Chowdhury, S., Emelogu, A., Marufuzzaman, M., Nurre, S. G., and Bian, L. (2017). 

Drones for disaster response and relief operations: A continuous approximation model, 

International Journal of Production Economics 188: 167-184. 

Chowdhury, S. (2018). Drone routing and optimization for post-disaster inspection. PhD 

Thesis, Mississippi State University. 

Conrad R. G. and Figliozzi M. A. (2011). The recharging vehicle routing problem. Doolen 

T, Van Aken E, eds. Proceedings of the 2011 Industrial Engineering Research 

Conference: 1-8.  

Corrado, C., and Panetta, K. (2017). Data fusion and unmanned aerial vehicles (UAVs) 

for first responders, 2017 IEEE international symposium on technologies for homeland 

security (HST), IEEE, pp. 1-6. 

Cozzolino A. (2012). Humanitarian logistics and supply chain management, 

Humanitarian Logistics, Springer Berlin, pp. 5-16.  

Dantzig G. B. and Ramser J. H. (1959). The truck dispatching problem, Management 

Science 6(1): 80-91. 

Drexl M., Schneider M. (2015). A survey of variants and extensions of the location-

routing problem, European Journal of Operational Research 241: 283-308. 



 

 

 

 

Droneploy (2017), Choosing the Right Mapping Drone for Your Business Part I: Multi-

Rotor vs. Fixed Wing Aircraft.  

URL:https://blog.dronedeploy.com/choosing-the-right-mapping-drone-for-your-

business-part-i-multi-rotor-vs-fixed-wing-aircraft-6ec2d02eff48 

Erdelj M. and Natalizio E. (2016). UAV-assisted disaster management: Applications and 

open issues, International Conference on Computing, Networking and 

Communications 2016, ICNC, Kauai, USA. pp.1-5. 

Erdoğan S. and Miller-Hooks E. (2012). A green vehicle routing problem, Transportation 

Research Part E: Logistics and Transportation Review 48(1):100-114. 

Erman A., hoesel L., Havinga P., and Wu J. (2008). Enabling mobility in heterogeneous 

wireless sensor networks cooperating with UAVs for mission-critical management, 

IEEE Wireless Communications 15(6): 38-46. 

Federal Emergency Management Agency (FEMA) (2018), Mission Areas, 

 URL: https://www.fema.gov/mission-areas  

Federal Ministry of the Interior, Building and Community (2016), Illegal entry and 

immigrant smuggling, 

URL:www.bmi.bund.de/EN/topics/migration/illegal-entry/illegal-entry-

node.html;jsessionid=61AB6A4EF8176AD934DA0788B8911D6A.1_cid364 

Feillet D., Dejax P., and Gendreau M. (2005). Traveling salesman problems with profits, 

Transportation Science 39(2): 188-205. 

Felipe A., Ortuno M. T., Righini G., and Tirado G. (2014). A heuristic approach for the 

green vehicle routing problem with multiple technologies and partial recharges, 

Transportation Research Part E: Logistics and Transportation Review 71: 111-128. 

Franco C. D., and Buttazzo G. (2016), Coverage Path Planning for UAVs 

Photogrammetry with Energy and Resolution Constraints, Journal of Intelligent & 

Robotic Systems 83(3-4): 445-462. 

Fu S. and Wan Y. (2015) Spotlight: UAVs for Disaster Area Communication. Homeland 

Defense & security Information Analysis Center. 

Gettinger D., (2016). Drone Spending in the Fiscal Year 2017 Defense Budget, Center 

for the Study of Drone at Bard College. 

Hayat S., Yanmaz E., Muzaffar R. (2016), Survey on Unmanned Aerial Vehicle Networks 

for Civil Applications: A Communications Viewpoint, IEEE Communication Surveys 

& Tutroials, Vol: 18 Issue: 4, pp. 2624-2661. 

file:///C:/Users/u.dundar/Dropbox/ugurcan/www.bmi.bund.de/EN/topics/migration/illegal-entry/illegal-entry-node.html;jsessionid=61AB6A4EF8176AD934DA0788B8911D6A.1_cid364
https://www.fema.gov/mission-areas
file:///C:/Users/u.dundar/Dropbox/ugurcan/www.bmi.bund.de/EN/topics/migration/illegal-entry/illegal-entry-node.html;jsessionid=61AB6A4EF8176AD934DA0788B8911D6A.1_cid364
file:///C:/Users/u.dundar/Dropbox/ugurcan/www.bmi.bund.de/EN/topics/migration/illegal-entry/illegal-entry-node.html;jsessionid=61AB6A4EF8176AD934DA0788B8911D6A.1_cid364


42 

 

  

 

Harrington T., Urdahl S., Skinner S. W., Balchanos M.G., Garcia E., Mavris D. N. (2018). 

UAV swarms for migration flow monitoring and search and rescue mission support, 

AIAA Information Systems, American Institute of Aeronautics and Astronautics, 

Kisimmee, Florida. 

Hiermann G., Puchinger J., Ropke S., and Hartl r. F. (2016). The electric fleet size and 

mix vehicle routing problem with time windows and recharging stations, European 

Journal of Operational Research 252(3): 995-1018. 

Hof J., Schneider M., Goeke D. (2017). Solving the battery swap station location-routing 

problem with capacitated electric vehicles using an AVNS algorithm for vehicle-

routing problems with intermediate stops, Transportation Research Part B: 

Methodological 97:102-112.  

Ichimori T., and Ishii H. (1981). Routing a vehicle with the limitation of fuel, Journal of 

the Operation Research Society of Japan 24(3): 277-281.  

Joshi D. (2017). Commercial Unmanned Aerial Vehicle (UAV) Market Analysis – 

Industry trends, companies and what you should know 

 URL: https://www.businessinsider.com/commercial-uav-market-analysis-2017-8 

Keskin M. and Çatay B. (2016). Partial recharge strategies for the electric vehicle routing 

problem with time windows, Transportation Research Part C: Emerging 

Technologies 65:111-127. 

Kim, S. J. and Lim, G. J. (2018). Drone-aided border surveillance with an electrification 

line battery charging system, Journal of Intelligent & Robotic Systems 92(3-4): 657-

670. 

Laporte G., Nobert Y., and Desrochers M. (1985). Optimal routing under capacity and 

distance restrictions, Operations Research 33(5): 1050-1073. 

Matai R., Singh S. P., and Mittal M. I. (2010). Traveling salesman problem: An overview 

of applications, formulations and solution approaches. In D. Davendra (Ed.). Traveling 

salesman problems: Theory and applications, Intech, pp. 1- 24. 

Prodhon C., and Prins C. (2014), A survey of recent research on location-routing 

problems, European Journal of Operational Research 238: 1-17. 

Pugliese L. D. P., Guerriero F., Zorbas D., and Razafindralambo T. (2016). Modelling 

the mobile target covering problem using flying drones, Optimization letter 

10(5):1021-1052.  

https://www.businessinsider.com/commercial-uav-market-analysis-2017-8


43 

 

  

 

PwC, Global Market ofr Commercial Applications of Drone Technology Valued at over 

$ 127 bn,  

URL:https://press.pwc.com/News-releases/global-market-for-commercial-

applications-of-drone-technology-valued-at-over--127-bn/s/ac04349e-c40d-4767-

9f92-a4d219860cd2 

Rabta, B., Wankmüller, C., and Reiner, G. (2018). A drone fleet model for last-mile 

distribution in disaster relief operations, International Journal of Disaster Risk 

Reduction 28: 107-112. 

Schiffer M. and Walther G. (2017a). The electric location routing problem with time 

windows and partial recharging, European Journal of Operations Research 260(3): 

995-1013. 

Schiffer M., Stütz S., and Walther G. (2017b). Are ECVs breaking even? 

Competititveness of electric vehicles in retail logistics, Les Chaiers du GERAD G-

2017-47, HEC Montreal, Montreal. 

Schiffer M., Schneider M., and Laporte G. (2018). Designing sustainable mid-haul 

logistics networks with intra-route multi-resource facilities, European Journal of 

Operations Research 256(2):517-532. 

Schiffer M., Schneider M., Walther G. and Laporte G. (2019). Vehicle routing and 

location routing with intermediate stops: A review, Transportation Science 53(2): 1-

25.  

Schneider M., Stenger A., and Goeke D. (2014). The electric vehicle-routing problem 

with time windows and recharging stations, Transportation Science 48 (4): 500-520. 

Shakhatreh H., Sawalmeh A., Dou A. A. Z., Almaita E., Khalil I., Othman N. S., 

Khreishah A., Guizani M. (2018), Unmanned Aerial Vehicles: A survey on Civil 

Applications and Key Research Challenges, arXiv:1805.00881v1 

Thibbotuwawa A., Nielsen P., Zbigniew B., and Bocewicz G. (2018), Factors affecting 

energy consumption of unmanned aerial vehicles: an analysis of how energy 

consumption changes in relation to UAV routing, International Conference on 

Information Systems Architecture and Technology. Springer, Cham. pp. 228-238. 

Ueyama J., Freitas H., Faical B., Filho G., Fini P., Pessin G., Gomes P., and Villas L. 

(2014). Exploiting the use of unmanned aerial vehicles to provide resilience in wireless 

sensor networks, IEEE Communications Magazine 52(12): 81-87. 

UNCHR, Mediterranean situation, 



44 

 

  

 

URL: data2.unhcr.org/en/situations/Mediterranean  

UNCHR, Desperate Journeys 

URL: https://data2.unhcr.org/en/documents/download/63039 

Vytautas L., “Migration Phenomena Towards EU: Joint Operations in the Central and 

Eastern Mediterranean Sea” FRONTEX, Rome, 12 May 2016. 

Waharte S., and Trigoni N. (2010), Supporting Search and Rescue Operations with 

UAVs, International Conference on Emerging Security Technologies, Canterbury, 

UK. 

Watson-Gandy C., and Dohrn P. (1973). Depot location with van salesmen – A practical 

approach, Omega (3):231-329. 

Wen F., Wolling J., McSweeney Jr. K., and Gu H. (2018), Unmanned Aerial Vehicles for 

Survey of Marine and Offshore Structures: A Classification Organization’s Viewpoint 

and Experience, Offshore Technology Conference, Texas, OTC-28950-MS. 

Wu, Q., Zeng, Y., and Zhang, R. (2018). Joint trajectory and communication design for 

multi-UAV enabled wireless networks, IEEE Transactions on Wireless 

Communications 17(3): 2109-2121. 

Yakıcı E. (2016), Solving location and routing problem for UAVs, Computers & 

Industrial Engineering 102: 294-301. 

Yang J. and Sun H. (2015). Battery swap station location-routing problem with 

capacitated electric vehicles, Computers & Operations Research 55:217-232. 

Yılmaz O., Yakıcı E., Karatas M. (2018), A UAV Location and Routing Problem with 

Spatio-Temporal Synchronization Constraints Solved by Ant Colony Optimization, 

Journal of Heuristics 1-25. 

  

file:///C:/Users/Grundig-pc/Dropbox/mine/Adv.%20Sim/www.bmi.bund.de/EN/topics/migration/illegal-entry/illegal-entry-node.html;jsessionid=61AB6A4EF8176AD934DA0788B8911D6A.1_cid364
file:///C:/Users/Grundig-pc/Dropbox/mine/Adv.%20Sim/www.bmi.bund.de/EN/topics/migration/illegal-entry/illegal-entry-node.html;jsessionid=61AB6A4EF8176AD934DA0788B8911D6A.1_cid364
https://data2.unhcr.org/en/documents/download/63039


 

 

 

 

BIOGRAPHICAL SKETCH 

 

 

 

Uğurcan Dündar was born in Izmir on March 20, 1995. He studied at Konak Anatolian 

High School where he was graduated in 2013. He attended the undergraduate program 

of Industrial Engineering in Istanbul Kültür University. He received his B.S. degree in 

the Industrial Engineering in 2017. He started his academic career where he is working 

currently, at Istanbul Kültür University in 2017 as a Research Assistant. Also, he is 

working towards Master of Science degree in Industrial Engineering under the 

supervision of Assoc. Prof. Dr. M. Ebru Angün the Institute of Science and 

Engineering, Galatasaray University. 

 

PUBLICATIONS 

 

Full text in Proceedings of International Conferences: 

• Angun, E., and Dündar, U. (2020). “Intelligent Systems for Disaster Management: 

Unmanned Aerial Vehciles’ Surveillance Problem with Energy Consumption 

Constraints”, Intelligent and Fuzzy Techniques in Big Data Analytics and 

Decision Making: 1269-1278. 

• Gergin, Z., Üney-Yüksektepe, F., Gençyılmaz M.G., Aktin, A.T., Gülen K.G., 

İlhan, D.A., Dündar, U., Cebeci Ö., and Çavdarlı A. İ. (2018). “Industry 4.0 

Scorecard of Turkish SMEs”, in Proceedings of International Symposium for 

Production Research 2018:426-437 

 


