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Abstract

In this work, we consider trees, their boundaries and some special Borel measures on the
boundary of trees. Especially we work on Farey Tree. Farey Tree is a rooted binary
planar tree whose vertices are described by all rational numbers in the unit interval. It is
the first left branch of the Stern-Brocot Tree.

The boundary of a tree is the set of all infinite non back-tracking paths which is called
end of the tree. If we fixed an edge or vertex on the tree we can define a metric on the
bondary of the tree. A topology on the boundary of the tree is induced by this metric, it
is generated by open balls. Some natural Borel measures appear on the boundary of the
Farey tree. The Minkowski measure is the unique measure on the boundary which is
invariant under the full action of the automorphism group of the tree on its boundary.
Denjoy’s measures are straightforward generalization of the Minkowski measure.
Moreover, The Lebesgue’s measure can be presented as a Boundary measure in a nice
way.

Continued fraction map is defined on the unit interval which is a generalization of the
Gauss map. The formal definition of this map is given in the Chapter 5. In this thesis we
consider an even larger generalization of the continued fraction maps defined by using
the tree structure. Our aim in this chapter is to find the invariant measures under these
special continued fraction maps. Our claim is f (y) = 1

y satisfies the density of an
invariant measure under this special members of maps and we proved it. At final chapter,
we have a study that is not very compatible with the overall thesis. We associate a power
series to continued fractions such that this series has some proprieties, such as
convergence and continuity.

Keywords: Continued fraction, Farey Tree, Invariant measure, Minkowski measure,
Denjoy’s measure, Continued fraction map, Gauss map.



Özet

Bu çalışmada, ağaçları, sınırlarını ve ağaçların sınırları üzerindeki bazı özel Borel
ölçülerini ele alıyoruz. Özellikle Farey ağacı üzerinde çalışıyoruz. Farey ağacı, köşeleri
birim aralığındaki rasyonel sayılarla tanımlanan köklü bir ikili ağaçtır. Stern Brocot
ağacının ilk sol koludur.

Ağaçların sınırları son diye adlandırılan, tüm sonsuz, geri dönülmeyen yolların
oluşturduğu kümedir. Eğer bir kenar ya da köşe sabitlersek ağaçların sınırları üzerinde
metrik tanımlayabiliriz. Ağaçların sınırları üzerindeki topoloji bu metrik aracılığı ile
tanımlanır, topoloji açık toplar tarafından gerilir. Ağacın sınırları üzerinde bazı özel
Borel ölçüleri vardır. Minkowski ölçüsü ağacın otomorfizma gruplarının aksiyonu
altında değişmez kalan tek ölçüdür. Denjoy ölçüsü ise Minkowski ölçüsünün
genelleştirilmiş halidir. Ayrıca Lebesgue ölçüsü de ağacın sınırları üzerinde hoş bir yol
ile tanımlanabilir.

Sürekli kesir fonksiyonu birim aralıktan tanımlanır ve Gauss fonksiyonunun bir
genelleştirilmesidir. Bu fonksiyonun formal tanımı 5. bölümde verilir. Bu tezde, ağaç
yapısı kullanılarak tanımlanan sürekli kesir fonksiyonlarının daha geniş bir
genellemesini ele alıyoruz. Bu bölümdeki amacımız, özel sürekli kesir fonksiyonu
altında değişmeyen ölçüleri bulmaktır. Iddiamız f (y) = 1

y bu özel fonksiyon üyeleri
altındaki değişmez bir ölçünün yoğunluğunu sağlar ve bu iddiamızı ispatlıyoruz. Son
bölümde tezin geneli ile çok uyumlu olmayan bir çalışmamız var. Her sürekli kesin
tasvirine bir kuvvet serisi iliştiriyoruz öyle ki bu kuvvet serisi yakınsaklık ve süreklilik
gibi bazı güzel özelliklere sahip olsun.

Anahtar Sözcükler : Sürekli kesirler, Farey Ağacı, Değişmez ölçü, Minkowski ölçüsü,
Denjoy ölçüsü, Sürekli kesir fonksiyonu, Gauss fonksiyonu.



1 INTRODUCTION

1.1 Basic Definitions of The Graph Theory

Our aim is to study trees and their boundaries so we will give some basic definitions and
examples from Graph Theory.
In general, a graph consists of vertices and edges that connects the vertices. There are
various ways of formalising a graph. We will use the following.

Definition 1.1.1. A graph G = (V,E) consists of a set of vertices V together with a
subset E ⊆

(V
2

)
elements of which are called the edges of G where

(V
2

)
is the set of

subsets of V having two elements.

Example 1.1.1. Set G = (V,E) with V = {v1,v2,v3,v4} and
E = {e1 = {v1,v2},e2 = {v2,v3},e3 = {v1,v3}}. Then we can draw this graph in R2 as
follows:

v2

v3v1

v4

e1 e2

e3

Figure 1.1: Drawing of the graph

Remark. In our definition multi-edges and loops are not allowed but actually such graphs
are considered in the literature. Also note that our graphs are not directed.

Let G = (V,E) be a graph.

Definition 1.1.2. Let u,v ∈V and suppose e = {u,v} ∈ E. Then e is said to be incident
to u or to v. Two edges are called incident if they have a common vertex. Two vertices
are called adjacent if they are connected by an edge. Furthermore, the set of all edges
incident to u ∈V is called the star of u and the number of edges in the star of u is called
the degree of u. A graph G = (V,E) is said to be locally finite if deg(u)< ∞ for all
u ∈V .

1
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From now on we shall assume that our graphs are locally finite.

Example 1.1.2. Let V = {v,v1,v2,v3,v4} and
E = {e1 = {v,v1}, e2 = {v,v2}, e3 = {v,v3}, e4 = {v,v4}}. Then the star of v is
{e1,e2,e3,e4} so deg(v) = 4. Moreover all edges are incident in this graph. This graph is
called the star tree and it is denoted by S4.

v1 v2

v

v3v4

e1

e2

e3

e4

Figure 1.2: S4

Definition 1.1.3. A path in G is a finite or infinite sequence of edges (e1,e2,e3 · · ·) such
that the consecutive edges are incident and if v is a vertex in this path then the star of v

has at most 2 edges in this path. Let e1 = {u,v} and e2 = {v, t} then u is called the initial
vertex of the path. If the path is finite we have the terminal vertex such that the last
edge en is incident to this vertex but en−1 is not. If the terminal and initial vertex are the
same such a path is called circuit.

Example 1.1.3. In the graph S4 the set of paths is {(ei,e j)|i 6= j and i, j ∈ {1,2,3,4}}.

Definition 1.1.4. A graph G = (V,E) is called connected if for any pair of vertices
{u,v} there exists a path from u to v. Moreover, if a connected graph does not contain
any loops or circuits then it is called tree.

Example 1.1.4. The graph in Figure 1.2 is a tree whereas in Figure 1.1 is not.

Definition 1.1.5. A graph is said to be d-regular if all of the vertices have the same
degree d.

Definition 1.1.6. A graph is said to be perfect if all vertices are of degree > 2.

Example 1.1.5. The following tree is 3− regular.
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...
...

v0

v1

v2

...
...

...

v3

...

e0

e1

e−0

e−1

e00

e01

e10

e11

e

Figure 1.3: 3-regular tree

Definition 1.1.7. Two graphs G = (V,E), G′ = (V ′,E ′) are said to be isomorphic if
there exists a bijection φ : V −→V ′ which preserves the incidence. That is, {u,v} ∈ E iff
{φ(u),φ(v)} ∈ E ′. If φ is not a bijection but it preserves the incidence then it is called
just a morphism.

Example 1.1.6. Let V = {v1,v2,v3,v4,v5} and
E = {e12 = {v1,v2},e13 = {v1,v3},e14 = {v1,v4},e24 = {v2,v4},e25 = {v2,v5},
e35 = {v3,v5}}. Let V ′ = {1,2,3,4,5} and

E ′ = { f12 = {1,2}, f13 = {1,3}, f14 = {1,4}, f24 = {2,4}, f25 = {2,5},
f35 = {3,5}}. Then φ(vi) := i for any i ∈ {1,2, · · · ,5} is a bijective map from V to V ′

which preserves the incidence.

v4

v5

v1

v3

v2

1 2

5

4

3
e24e14

e25

e35

e13

e12

f12

f13

f14

f25

f35

f24

Figure 1.4: Isomorphic Graphs

Proposition 1.1.1. Up to isomorphism there exists a unique d-regular tree for any d ≥ 2.

Proof. All of the vertices are d-regular and there doesn’t exist any circuits and the tree is
infinite. Choose a base vertex from both of them, u and u′ where φ(u) = u′. The image of
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other vertices are determined accordingly to preserve incidence. For u and u′ infinitely
different choice can be made. So we can find infinitely many isomorphisms.

Definition 1.1.8.

• A planar graph is a graph that can be drawn in the plane without any edge
crossings.

• A plane graph is a graph that has been drawn in the plane without any edge
crossings.

• A planar tree is a tree given by a drawing in the plane. Such a drawing endows T
with an extra structure: one has a cyclic ordering of all stars of T . Conversely, if
we are given a cyclic ordering of stars, then there is a unique way of compatibly
drawing the tree.

Example 1.1.7. K4 is the complete graph with 4 vertices i.e. all vertices are connected
to others. In the following figure, the first one contains one crossing edge so it is not a
plane graph whereas the second one does not contain so it is a plane graph. But we say
that K4 is a planar graph due to the second graph.

v1

v2 v3

v4

e1

e2

e3

e4

e5

e6

u1

u2 u3

u4

f1

f2

f5

f6

Figure 1.5: Drawing of the graph K4 with 2 different ways



2 LITERATURE REVIEW

Trees are very basic combinatorial objects and there is a vast literature on them. A basic
reference is the now-classical book [16] which studies groups via their actions on trees.
See also [3] and [6] for some recent work. Automorphism groups of trees have been
studied in [11], [5] and boundary measures in relation to the tree automorphism groups
have been studied in [15]. There are also the works on the measures on the boundary of
some special trees for example the book [20] is one of them.

The Farey tree and the Strern-Brocot trees are binary rooted planar trees presented in a
very special way: their vertices enumerate the rationals in a very natural fashion [1].
These are very fundamental objects and there is a growing literature about them. Our
approach to the continued fraction maps can be traced back to [2].

The Gauss map is a very basic and elementary dynamical map with a very rich structure.
We refer the reader to [14] for a classical study of continued fractions and the Gauss
Map, and to [13] for a modern treatment. For the related ergodic theory, our reference is
[8].Invariant measure is an important subject of dynamical systems. Since if we have
two different invariant measures the two dynamical systems shows different proprieties
of each others. In this thesis we are showing some invariant measures under continued
fraction maps. To our knowledge, a more generalization of the continued fraction maps
introduced in this thesis have not been studied elsewhere. We study the dynamics of
these maps.

2.1 Boundary of A Tree

In this chapter some definitions and proofs are taken by an unpublished manuscript [23].

In what follows let T be a tree.

Definition 2.1.1. Two paths γ = (e1,e2, · · ·) and γ′ = ( f1, f2, · · ·) in the tree T are said
to eventually coincide if there exists n,m ∈ N such that en+i = fm+i for any i ∈ N.
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Definition 2.1.2. An end of T is an equivalence class of one-sided, infinite,
non-backtracking paths in T under the equivalence relation:

γ∼ γ
′⇐⇒ γ and γ

′ eventually coincide.

The set of all ends of T is called the boundary of T . We denote this set by ∂T .

Example 2.1.1. Let T be the linear tree consisting of edges ei for all i ∈ Z such that the
consecutive edges are incident. Then this tree has only two ends. Since let us choose an
edge en in the tree. Then γ+ = {en,en+1,en+2, · · ·} and γ− = {en,en−1,en−2, · · ·} are two
paths of the tree representing the two ends. If we chose another edge, em then the tree
would have the paths {em,em+1,em+2, · · ·} and {em,em−1,em−2, · · ·} but they are
equivalent to the first two paths. So ∂T = {γ+,γ−}.

v0 v1 v2 · · ·v−1v−2· · ·
e0 e1 e2

e−1e−2e−3

Figure 2.1: A linear tree

Example 2.1.2. In the tree which is described in the Figure 2.1, we can say that
(e0,e01,e011,e011n1,e011n1n2, · · ·)∼ (e011,e011n1,e011n1n2, · · ·), for any ni ∈ {0,1} but for
any path which starts with e00 is not equivalent to these paths.

...
...

...
...

...
...

...
...

...
...

e0 e1

e00

e000 e001

e01

e010

e011

e10 e11

e110 e111e100 e101

Figure 2.2: Binary Tree

Proposition 2.1.1. Let e be a fixed edge of T . Let γ = (e1,e2, · · ·) be a one-sided
non-backtracking path. Then there exists a unique path in the equivalence class of γ,
which starts at e. This path is denoted by γe.
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Proof. If e = ei for some i ∈ N, then γ′ = (e,ei+1,ei+2, · · ·)∼ γ, so we won. Otherwise,
since T is connected, we can find a path γ′ = (e, f1, · · · , fn,ei,ei+1, · · ·) for some i ∈ N.
Thus γ∼ γ′.
Assume there exist two paths which start at e and are equivalent to γ. We call
γ′ = (e,g2,g3, · · · ,ei,ei+1, · · ·) and γ′′ = (e,h2,h3, · · · ,e j,e j+1, · · ·) for some
i, j ∈ N−{0}. Without loss of generality assume that i < j. Then we have two paths in
the tree T , ( f ,g2,g3, · · · ,ei, · · · ,e j) and ( f ,h2,h3, · · · ,e j). Then we obtained a circuit so
which contradicts with the definition of a tree. Then hi = gi for all i. Hence γ′ = γ′′.
Therefore this path is unique.

2.2 The Topology on The Boundary of A Tree

The set of all ends in T which starts at e is denoted by ∂T e. In this situation e is called
the base edge.

Proposition 2.2.1. Let e be an edge in T . There is a canonical bijection between ∂T and
∂T e.

Proof. Let γ ∈ ∂T . We define f : ∂T −→ ∂T e be a map such that f (γ) ∈ ∂Te to be the
path which starts at e and is equivalent to γ. We know by Proposition 2.1.1 such an end
exists and it is unique. Therefore f is injective. Let γ′ ∈ ∂T e then it is obvious that
γ′ ∈ ∂T and f (γ′) = γ′. So the map is surjective.

Proposition 2.2.2. Let γ,γ′ ∈ ∂T e with γ = (e,e1,e2, · · ·), γ′ = (e,e′1,e
′
2, · · ·). Then

d(γ,γ′) = 2−n is a metric over the set ∂Te with n = max{i, e j = e′j,∀ j ≤ i}. Hence
(∂T e,d) is a metric space.

Proof. Let γ∼ γ′ ∈ ∂T e. By Proposition 2.1.1 there exists a unique path which starts at e

and equivalence class of γ. So γ = γ′. Then n = ∞. Then d(γ,γ′) = 1
2

∞
= 0. Furthermore,

if d(γ,γ′) = 0 then ei = e′i for all i. Then γ = γ′.
Due to the e, 1≤ n for any γ,γ′ ∈ ∂T e. Then d(γ,γ′)≤ 1

2 . And also we have showed that
if γ∼ γ′ then d(γ,γ′) = 0. So for all γ,γ′ ∈ δT e, d(γ,γ′) ∈ [0, 1

2 ] since 2−n is a monotone
decreasing function.
It is clear that d(γ,γ′) = d(γ′,γ) since n does not change.
Let γ,γ′,γ′′ ∈ ∂T e with d(γ,γ′) = 2−n and d(γ′,γ′′) = 2−m then d(γ,γ′′) = 2−min{m,n}.

Hence the triangle inequality satisfies.

This metric induces a topology on the set ∂T e which is generated by open balls
B(γ,r) = {γ′ | d(γ,γ′)< r} for any r > 0.
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Example 2.2.1. Let us choose an edge e0 in the linear tree which is described in Figure
2.1. Then ∂T e = {γ = (e,e1, · · ·),γ′ = (e,e−1, · · ·}. The topology over this set is
generated by the open balls ; B(γ,2−n),B(γ′,2−n), for any n ∈ N. So B(γ,1) = {γ,γ′},
B(γ,1/2) = {γ} and B(γ′,1/2) = {γ′}. So the topology on this set is the discrete
topology : {{γ,γ′},{γ},{γ′},∅}.

Theorem 2.2.1. If T is a perfect tree then ∂T e is canonically homeomorphic to ∂T e′ ,

for any edges e and e′.

Proof. We must find a bijective and continuous map between these two topological
spaces. Let γe ∈ ∂Te. We define a map h : ∂T e −→ ∂T e′ such that h(γe) is an end which
starts at e′ and equivalent to γe by the Proposition 2.1.1 such an end exists and unique so
h is an injection. This map is surjective. Since for any end in γe′ ∈ ∂T e′ , by the same
Proposition there exists unique γe such that h(γe) = γe′. So h is a bijection.
Let ω ∈ Te′ . Let B(ω,r) be an open ball in the topological space ∂T e′ then
h−1(B(ω,r)) = B(h(ω),r) so the inverse image of open balls are open ball in the
topological space ∂T e. So this map is continuous. By the same reasoning the h−1 is also
continuous. Hence ∂T e and ∂T e′ are homeomorphic.

Definition 2.2.1. Let X be a topological space and x ∈ X . x is said to be an isolated point
if it has an open neighbourhood O such that X ∩O = {x}.

Example 2.2.2. Let X be a set and (X ,2X) be a topological space with the discrete
topology on X . Then every point is isolated.
The topological space (X ,{ /0,X}) has no isolated points.
In the boundary of 2−regular tree both of the ends are isolated.

Definition 2.2.2. Let T be a topological space. A subset P⊂ T is perfect if P is closed
and has no isolated points.

Example 2.2.3. Let T be a 2−regular tree. Then ∂T e is not perfect.

Proposition 2.2.3. If T is a perfect tree then ∂T e is perfect for any base edge e.

Proof. Assume that the tree is perfect but ∂T f is not a perfect. Then it has at least one
isolated point, we say γ. Then there exists n ∈ N such that B(γ,2−n) = {γ}. Let
γ = (e,e1, · · · ,en,en+1 · · ·). Since T is a perfect tree there exists at least one edge which
is adjacent to en and en+1 at the same time, we call it gn+1. So all ends which starts with
the path (e,e1, · · · ,en,gn+1), is also an element of open ball B(γ,2−n). Hence γ is not an
isolated point, so we have a contradiction.

Proposition 2.2.4. If T is a perfect tree then the singletons are closed in ∂T e.
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Proof. Let γ = (e,e1,e2, · · ·) be an end in ∂T e. Let {e1,e01,e02, · · · ,e0k0} be the set of
edges which are adjacent to e. Let γ0i be any path which starts at e and passes e0i for all
i ∈ {1, · · · ,k0}. Then d(γ,γ0i) =

1
2 . So {γ}* ∪k0

i=1B(γ0i,2−1) Then we can say
∪k0

i=1B(γ0i,2−1)⊂ {γ}c. Let define the set of all adjacent edges to e1 which is
{e,e2,e11,e12, · · · ,e1k1} and let γ1i be any path which starts at e and passes e1 j for any
j ∈ {1, · · · ,k1}. Then smilarly we can say that ∪k1

j=1B(γ1 j,2−2)⊂ {γ}c.
If we continue with this way we find

⋃
n=0∪

kn
i=1B(γni,2−n) = {γ}c. {γ}c is open then {γ}

is closed.

Proposition 2.2.5. Let T be a 3− regular tree and e be an edge in T . Then ∂T e is
homeomorhic to {0,1}N which is equipped with the product topology.

Proof. We can label the edges of the tree with the numbers 0 and 1:

e

0

00

01

1
10

11

1

11

10

0
01

00

Figure 2.3: The Binary Tree Represented by the Numbers 0 and 1

So ∂T e ∼= {0,1}N∪{0,1}N ∼= {0,1}N.

From now on, we assume that T is a perfect tree. The following proofs were made by us
using ideas from standard proofs in topology on Rn.

Proposition 2.2.6. ∂T e is Hausdorff.

Proof. Let γ = (e,e1,e2, · · ·),γ′ = (e,e′1,e
′
2, · · ·) be two disjoint ends in ∂T e. Then there

exist n ∈ N such that en+i 6= e′n+i for any i ∈ N. Then B(γ,2−n) and B(γ′,2−n) are the
neighbourhoods of γ and γ′ respectively and they are disjoints. So ∂T e is Hausdorf.

Distance of between two edges is defined as the number of edges between these edges. It
is denoted by d(e,e′) for any e,e′ ∈ E(T ).

Proposition 2.2.7. ∂T e is compact.

Proof. Let O be an open cover of the topological space ∂T e. We suppose that there
exists a number N ∈ N for any e′ ∈ E(T ) with d(e,e′) = N such that there exists an open
O(e′)⊂ O with O(e′) is a cover of B(γ′,2−N) where γ′ is the end which is starting at e
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and passing at e′. So if our claim is true we can find finite O(e′) such that their unions
cover ∂T e.
Assume that such an N does not exist. So there are the infinitely many edges e1,e2, · · ·
such that we can not find such a subcover O(ei) for any i. Let { f1, f2, · · · , fn} be the the
set of all edges incident to e. Let A j be the set of all ends which starts with the path
(e, f j) for any j ∈ {1, · · · ,n}. Then at least one of these A′js must contain infinitely many
e′is. We call it Ak. Let {e,g1,g2, · · · ,gm} be the the set of all edges incident to fk. And
again we define the set B j which starts with the path (e, fk,gi). Then we will choose one
B j which contains infinitely many ei’s. So proceeding in this manner gives us a path
which has infinitely many ei’s. So this path can not be covered by any element of O,
contradiction.

Remark. ∂T e is disconnected.

Proof. Let {e1,e2, · · · ,en} be the set of incident edges of e. Let γi be any edge which
starts at the edges e,ei for any i. Then ∂T e = ∪n

i=1B(γi,
1
2). And it is obvious that

B(i′, 1
2)∩B(i′′, 1

2) =∅. So ∂T e is disconnected.

Proposition 2.2.8. ∂T e is totally disconnected.

Proof. Let γ = (e,e1,e2, · · ·en, · · ·) be an end in ∂T e. Let n ∈ N and B(γ,2−n) be an open
neighbourhood of γ. Then B(γ,2−n) contains all ends which starts with the path
(e,e1,e2, · · ·en). We define the set of the incident edges of e; {e1, f1, f2, · · · , fn}.
Consider γ fi an end which starts with the path (e, fi) for any i ∈ {1, · · · ,n}. Let
u = en−1∩ en. Let the set U = {en−1,en,g1, · · · ,gm} be the star of the u. Let γg j be an
end which starts with the path (e,e1,e2, · · · ,en−1,g j). Then
B(γ,2−n)c =

⋃i=1
n B(γ fi,2

−1)∪
⋃ j=1

n B(γg j ,2
−n). So the complement of any

neighbourhood of any end is open. Hence ∂T e is totally disconnected.

Theorem 2.2.2. (Brouwer) Every nonempty, totally disconnected, compact, metrizable

space without isolated points is homeomorphic to the Cantor set.

Proof. see [4].

Theorem 2.2.3. If T is a perfect tree then ∂T e is homeomorphic to the Cantor Set.

Proof. We proved in the previous propositions that if T is a perfect tree then ∂T e is a
perfect, totally disconnected and compact topological space. These gives us the
topological caracterisation of Cantor Set.
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2.3 Ordered Boundary of the Tree

Let T be a planar tree. In this case there is a naturally defined cyclic order relation on
∂T e induced by the planar structure of T .

Definition 2.3.1. Let the edge e has an orientation clockwise or counterclockwise. Let
γ,γ′ be different two ends induce the same orientation on e0 in ∂T e. If γ differentiates
from γ′ from the right of the γ′, we say that γ < γ′. Due to the this relation ∂T e is an
ordered set.

This order is compatible with the topology over the ∂T e. An interval can be defined as
follows

[γ,γ′] = {α |γ≤ α≤ γ
′} for any γ,γ′ ∈ ∂T e with γ < γ

′}

Example 2.3.1. If we look the following tree we have 5 ends in ∂T e. Assume the cyclic
ordering of the edge e is clockwise so the direction of γ1,γ2,γ3,γ4 are the same with the
direction of e whereas the direction of γ5 is inverse. So we say that
γ5 < γ4 < γ3 < γ2 < γ1.

· · ·γ5

· · · γ1

· · · γ2

· · · γ3

· · · γ4

e

Figure 2.4: the Tree with base edge e

Definition 2.3.2. Since ∂T e is an ordered set we can define a relation over this set. Let
γ1,γ2 be two ends in ∂T e. We say γ1 ∼ γ2 if γ1 ≤ α≤ γ2 or γ2 ≤ α≤ γ1 then γ1 = α or
γ2 = α for any α ∈ ∂T e. We denote the equivalence class of an end γ by γ.

Example 2.3.2. In the tree at Figure 2.4, we say that γ4 ∼ γ3, γ3 ∼ γ2, γ2 ∼ γ1 but

γ4 6∼ γ1 or γ3 6∼ γ1.
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Proposition 2.3.1. This relation over the set ∂T e is symmetric and reflexive but it is not
always transitive.

Proof. It is obvious that the relation is reflexive and symmetric. Since γ∼ γ by definition
and if γ1 ∼ γ2 then there is no end between these paths so γ2 ∼ γ1 also satisfies.
Moreover, we can see in the example 2.3.2 that this relation is not always transitive i.e.
γ3 ∼ γ2, γ2 ∼ γ1 but γ3 6∼ γ1.

Definition 2.3.3. The transitive closure of a relation R on a set A, is the smallest
transitive relation which contains the relation R.

We know the relation over ∂T e is not transitive. Let take the transitive closure of the
relation on this tree and from now on we will say that ∼ is an equivalence relation. We
consider the quotient topological space ∂T e/∼ via the map

φ : ∂T e −→ ∂T e/∼

All proofs from here to the end of the chapter were made by us using ideas from
standard proofs in topology on Rn.

Lemma 2.3.1. Let T be a perfect tree and γ ∈ ∂T e. Then γ equivalents to either two
ends or one end which is itself.

Proof. Assume that γ ∈ ∂T e without loss of generality with the same orientation of e

such that after n-many edges it turns always right (left). Then we can find an end γ′

whose first n−1-many edges are the same with γ and then it turns once the first right
(left) of the γ then it turns always left(right). So since γ′ turns right (left) before than γ by
definition γ′ < γ (γ < γ′). If it was γ′′ such that γ′ < γ′′ < γ (γ < γ′′ < γ′) then γ′′ must
have the same common edges with γ and γ′ and it must turn right before than γ (γ′) and it
must turns left before then γ′ (γ). Then it must be equal to γ′ (γ) or γ (γ′) respectively. So
we say that γ∼ γ′. And there is no another edges which is equivalent to γ. On the other
hand there exists the ends which turns randomly left or right.
Claim :Let α be such an end then the class of α by the relation ∼ has just itself.
Proof: For any α′ ∈ ∂T e such that α < α′ we can always find β such that α < β < α′. If
α < α′ α turns right before than α′, assume at the nth edge. Let n+ kth edge of α turns
left then the end which of first n+ k−1 edges are the same with α and (n+ k)th edge
turns the right of α is smaller than α. It proves our claim.

Proposition 2.3.2. If T is a perfect tree the relation ∼ is an equivalence relation. i.e. it
is transitive.
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Proof. By the previous lemma if γ ∈ ∂T e then the class of γ has one or two edges. So if
β∼ γ then there does not exist another path which is equivalent to γ. That is ∼ is a
transitive relation so it is an equivalence relation in the case of perfect trees.

Notation. We notice the set of all ends whose class has 2 elements by ∂T 2
e and the set of

ends whose class has only itself by ∂T 1
e .

Lemma 2.3.2. Let α,α′ be an end of ∂T e. An interval [α,α′] is not an open interval for
the topological space ∂T e if α or α′ is an element of ∂T 1

e .

Proof. Assume that α ∈ ∂T 1
e and [α,α′] be an open interval. Then there exists n ∈ N

such that α ∈ B(α,2−n) and B(α,2−n)⊆ [α,α′]. We know α turns randomly left and
right. Let n+ kth edge of α turns right for k > 1. Then there exists an end α′′ whose both
the first n+ k−1 edges are same with α and n+ kth edge turns left. Then α′′ ∈ B(γ,2−n)

but α′′ > α so α′′ /∈ [α,α′], contradiction with our hypothesis. By the similar reason if
α′ ∈ ∂T 1

e we can reach the same contradiction.

Corollary 2.3.1. By the proof of the Lemma 2.3.2 [α′,α), (α,α′] are not open intervals
in ∂T e if α′ ∈ ∂T 1

e .

Lemma 2.3.3. For appropriately selected α < α′ ∈ ∂T e the all possible open intervals
of the topological space ∂T e are given by
1.(α,α′) for any α,α′ ∈ ∂T e.

2.[α,α′) for α ∈ ∂T 2
e .

3.(α,α′] for α′ ∈ ∂T 2
e .

4.[α,α′] for α,α′ ∈ ∂T 2
e .

Proof. Let α and α′ have exactly n+1−many common edges and after that α turns
always right and α′ turns always left. Then B(α,2−n) = B(α′,2−n) = [α,α′]. Since by
definition B(α,2−n) and B(α′,2−n) contain all ends which has at least n+1- many
common edges with α or α′ respectively. And it is obvious that α is the minimal element
of these sets whereas α′ is the maximal element.
Hence all open balls can be described by an interval [α,α′] with α,α′ ∈ ∂T 2

e .

Claim: Any union of non disjoint intervals is interval.
Let {Si|i ∈ N} be the set of intervals and a ∈

⋂
i∈N Si. Now assume that γ < γ′ < γ′′ and

γ,γ′′ ∈
⋃

i∈N Si. We have three cases: γ′ < a,γ′ = a, and γ′ > a. If y = a then
y ∈

⋂
i∈N Si ⊂

⋃
i∈N Si. If γ′ < a, let take S j for some j ∈ N such that γ ∈ S j. Now

γ < γ′ < a with x,a ∈ S j, so γ′ ∈ S j by definition of interval. Then γ′ ∈
⋃

i∈N Si If γ′ > a

let Sk be an interval such that γ′′ ∈ Sk I. Now a < γ′ < γ′′ with a,γ′′ ∈ Sk, so γ′ ∈ Sk then
γ′ ∈

⋃
i∈N Si. Hence

⋃
i∈N Si is an interval.
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Let’s take an interval [α,α′) for α ∈ ∂T 2
e and α′ ∈ ∂T 1

e .

Claim: There exist αi ∈ ∂T 2
e for any i ∈ N such that

[α,α′) = [α,α1]∪
⋃

i∈N−{0}
[αi,αi+1].

Let α and α′ have n common edges and they have the same orientation with e. Assume
that α always turns right after first n edges. Assume that after first n edges α′ is a zigzag
path that is if one edge of α turns left (right) then the consecutive edges turns right (left).
Assume α = (e,e1, · · · ,en,en+1, · · ·) and α′ = (e,e1, · · · ,en, f1, f2, · · ·) and we say that f1

turns left. If we choose αi the path which passes the finite path
(e,e1,e2, · · · ,en, f1, f2, · · · , f2i) and then it always turns right. By this choice [αi,αi+1] is
open interval for any i ∈ N since [αi,αi+1] = B(αi,2−(n+2i)). And [α,α1] = B(α,2−n).

By previous claim the union of non disjoint intervals is interval and by the definition of
topology the union of arbitrary opens is open. So [α,α′) is an open interval for
appropriately selected α and α′.
By the similar reason we will say that (α,α′] can be an open interval for α′ ∈ ∂T 2

e .
Let α,α′,α1,α2 have exactly n many common edges. Assume that α1 always turns left,
α2 always turns left and α and α′ are zigzag path after n edges such that α first left and
α′ turns right. Then α1 > α > α′ > α2. And also (α,α′) = (α,α2]∩ [α1,α

′). Since
(α,α2], [α1,α

′) are opens then (α,α′) is an open interval for α,α′ ∈ ∂T 2
e .

For the other cases we must use the similar arguments.

From now on assume that T is a perfect tree.

Proposition 2.3.3. Any open subset of ∂T e is the union of the disjoint open intervals.

Proof. If U is an open subset of ∂T e with γ ∈U then there exists an open interval I ∈U

such that x ∈ I. (At least since U is an open subset then we know for any element of
x ∈U we can find an open ball and all open balls can be written an open interval.) If
there exists one such interval there exists one ’largest’ interval which contains x. Denote
by the set {Iα} all such maximal intervals. So Iα are pairwise disjoint otherwise they
wouldn’t be maximal. Then U can be written as the union of the disjoint open intervals
{Iα}.

Definition 2.3.4. Since ∼ is an equivalence relation over ∂T e then we can define the
quotient topology on ∂T e/∼. Let

φ : ∂T e −→ ∂T e/∼
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This map is continuous and it determines the opens of the topological space ∂T e/∼. We
say that U is an open subset of ∂T e/∼ if its inverse image φ−1(∂T e/∼) is an open
subset of ∂T e.

Remark. Due to the continuity of the previous map φ and the compactness of ∂T e, the
topological space ∂T e/∼ is compact. Since continuous functions preserves
compactness.

Proposition 2.3.4. The topological space ∂T e/∼ is connected.

Proof. Let’s define X := ∂T e and Y := ∂T e/∼. Assume that there exists open subsets
U,V of Y such that Y =U ∪V and U ∩V =∅ and U and V are not empty. i.e. Y is
disconnected. Then φ−1(U) and φ−1(V ) are open since φ is continuous and
φ−1(U)∪φ−1(V ) = X , φ−1(U)∩φ−1(V ) =∅. So φ−1(U)

c
= φ−1(V ). By the

Proposition 2.3.3 φ−1(U) and φ−1(V ) and can be written as the union of the open
intervals. And we know all of the open intervals by the Lemma 2.3.3. We consider
φ−1(U) =

⋃
s∈N (Is) and φ−1(V ) =

⋃
r∈N (Jr).

Let’s we look all possible cases for the open intervals Ir and Js:
Assume that for some α,α′ ∈ ∂T 2

e [α,α
′] = Is for some s ∈ N such that (α′,β) = Jr for

some r ∈ N. Claim: U ∩V 6=∅. We know α′ ∈ ∂T 2
e and α < α′ so α′ is a path which

always turns left after finitely many edges. So there exists α′′ > α′ and α′′ ∼ α′. So
α′′ ∈U since X is a quotient topology. But in the same time α′′ ∈V . So this claim gives
us a contradiction.
Assume that for some r ∈ N Ir = (α,α′] with α′ ∈ ∂T 2

e such that Js = (α′,β). Then by
the same reason with the previous case there exists α′′ ∈U ∩V.

Assume that for some r ∈ N Ir = (α,α′) with α,α′ ∈ ∂T 1
e with [α′,β] or [α′,β) are not

open for any β so there is not such a case.
Assume that r ∈ N Ir = (α,α′) with α,α′ ∈ ∂T 2

e with [α′,β] = Js for some s ∈ N. So in
this case we have α′′ ∼ α′ such that α′′ ∈U ∩V like the first case. So we reach the
contradiction
Hence Y is a connected topological space.

Lemma 2.3.4. Y \{α,β} is disconnected for any {α,β} ⊂ Y .

Proof. We can say that Y −{α,β}= (α,β)∪ (β,α). Then Y is the union of two disjoint
open intervals.

Theorem 2.3.5. The topological space ∂Te/∼ is homeomorphic to S1.

Proof. The topological caracterisation of S1 is given as follows:

• Connected
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• Compact

• For any a,b ∈ S1, S1−{a,b} is totally disconnected.

So all topological spaces which has these properties are homeomorphic to S1, see
[12].



3 TREE AUTOMORPHISMS

In this section, we study the automorphism groups of trees. This group may change
dramatically if we consider trees with ribbon structure and if we require that the
automorphisms must preserve the ribbon structure. For example, the automorphism
group of a regular planar tree is countable, whereas if we consider it as an abstract graph
(i.e. without the ribbon structure), then the automorphism group becomes an
uncountable group.

3.1 Automorphisms of Planar Trees

If T has a ribbon structure we say T is a planar tree and in this case it has countably
many automorphisms. We denote the automorphisms group of T by Aut(T ). Aut(T ) is
generated by rotations around a vertex (or edge).

Example 3.1.1. Let T be a 3- regular planar tree with the set of edges ;
E(T ) = {{0,1}∗∪{0′,1′}∗} and the set of vertices V (T ) = (u,u0,u1). We can define
countably many automorphisms on this tree but all of them can be generalized by the
rotations.
We will choose 2 edges and we will define a function from the first to the second one.
And the others are determined by this two edges.
1. ϕ1 : E(T ) 7−→ E(T )

00−→ 0′ is an automorphism of T . It just dislocates the edges and it preserves
the planar structure. So ϕ(000) = 1′, ,ϕ(001) = e, ϕ(0) = 0′1′ etc.
2. ϕ2 := (01e) is a rotation around the vertex (e,0,1).. So it is an automorphism of T . It
rotates the tree around the edges e. So it preserves also the planar structure.
3. ϕ3 := (00′)(11′) is the rotation around the edge e and also ϕ3 ∈ Aut(T ).
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Figure 3.1: Binary Tree

Automorphism groups of non regular trees are less interesting than regular trees.
Moreover, the automorphism group of a non regular tree can be trivial. For example, the
tree T which is given in Figure 3.2 is non regular and Aut(T ) = {Id}. But this is not to
say that the automorphism groups of non regular trees are always trivial or finite.

Figure 3.2: An example of non regular tree
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3.1.1 Presentations of The Three-Regular Tree

In the Example 3.1.1 we saw a representation of the edges of 3− regular tree by using
{0,1,0′,1′}. But this representation is not the natural one. If the tree was a rooted tree
we would use {0,1} and it could be sufficient for the representation. But in our tree we
must use {0′,1′} also for defining all of the edges and it breaks the naturalness. Via this
representation we can describe easily the group Aut(T ).

The Natural Representation of The 3− Regular Trees

This representation is given in the article [17]. Consider the group
Z/2Z∗Z/3Z= 〈a,b | a2 = b3 = e := 1〉 which is isomorphic the group PSL(2Z).
Consider the graph F with the set of edges E(F ) = Z/2Z∗Z/3Z and the set of vertices
V (F ) =V⊗(F )∪V•(F ) where V⊗(F ) = {{w,wa}|w ∈ Z/2Z∗Z/3Z} and
V•(F ) = {{w,wb,wb2}|w ∈ Z/2Z∗Z/3Z}.
This gives a tree since {a,b} generates the group Z/2Z∗Z/3Z so the graph is
connected. Moreover, it does not contain circuit or loop. Since there are no relations
other than the relation a2 = b3 = e between a and b,

.
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...

.

x

x

.

x x

...
...

ab

aba

ab2

abab abab2

ab2a

ab2ab2ab2ab

a

e

b2 b

bab2a

Figure 3.3: Binary Tree which is described by PSL2(Z)

Remark. In fact, via this representation we define a ribbon structure also over the tree
and it is counterclockwise i.e. the vertices have an orientation (m,mb,mb2) and (m,ma),
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we can see at the Figure 3.5. So the tree F is planar.

3.1.2 The Automorphism Group of Planar Farey Tree

Thanks to this representation defining the automorphisms is much easier.

Proposition 3.1.1. Let M ∈ Z/2Z∗Z/3Z. Then the map ϕ : E(F )−→ E(F sending
the edge w to the edge Mw and mapping the vertices as

V⊗(F )−→V⊗(F )

{w,wa} 7−→ {Mw,Mwa}

V•(F )−→V•(F )

{w,wb,wb2} 7−→ {Mw,Mwb, ,Mwb2}

is a planar automorphism of the tree T . Every planar automorphism of the tree can be
expressed this way so that Aut(F )∼= Z/2Z∗Z/3Z.

Proof. The multiplication map ϕ preserves the incidence of edges since the image of a
vertex {w,wb,wb2} or {w,wa} is also a vertex. So if the edges are incident the image of
the edges are incident. So ϕ is a homomorphisme.
There is no relation between a and b such that i.e. ak1bk2ak3 · · · 6= am1bm2am3 · · · for any
ki,m j ∈ Z and k2i+1,m2i+1 6= 2, k2i,m2i 6= 3 for any i, j ∈ N. So the map is a bijection.
Hence it is an automorphism.
If we multiply all vertices with M we can not change the orientation. So this
automorphism preserves the ribbon sturcture. So it is an automorphism of F .

3.1.3 The Automorphism Group of Finite Abstract Farey Tree

We can define the automorphism group of the abstract Farey tree F and since there is no
ribbon structure of this tree, it has more automorphisms than F . We will use the same
representation of Farey tree to define the automorphisms of |F | since it is the most
appropriate representation. But we don’t have an expectation that the automorphisms
preserve the ribbon structure.

Proposition 3.1.2. One has a proper inclusion Aut(F )<Aut(|F |), but Aut(F ) is not a
normal subgroup inside Aut(|F |).

Proof. Let ϕb ∈ Aut(F ). i.e. ϕb(w) = w. Let ψ ∈ Autu(|F |) be the twist of the vertex
{e,b,b2}.i.e. ψ{{e,b,b2}}= {e,b2,b}. Then ψϕbψ−1(b) = ψϕb(b2) = ψ(e) = e

ψϕbψ−1(b2) = ψϕb(b) = ψ(b2) = b ψϕbψ−1(e) = ψϕb(e) = ψ(b) = b2. Hence
ψϕbψ−1 6∈ Aut(F ). Then Aut(|F |) is not normal.
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Now let ϕ ∈ Aut(|F |) and w ∈ E(|F |) with ϕ(w) = u where u is an edge in |F |. Then
there is an automorphism ψ ∈ Aut(|F |) such that ψ(u) = w. Then ϕψ(u) = u. Hence ϕψ

fixes the edge u. All of the automorphisms which fixes the edge u constitutes a subgroup
of Aut(|F |) which we denote as Autu(|F |).

Proposition 3.1.3. Autu(|F |) is the subgroup of Aut(|F |) but it is not normal.

Proof. Let ϕ1,ϕ2 ∈ Autu(|F |). Then ϕ1((ϕ2)
−1(u)) = ϕ1(u) = u. Then it is closed

under the composition operation. And also Id ∈Autu(|F |) is obvious. Let ϕ ∈Autu(|F |)
and let ψ ∈ Aut(|F |) with ψ(u) = w. Then (ψϕψ−1)(w) = ψ(ϕ(u)) = ψ(u) = w. Then it
fixes w. So ψAutu(|F |) ψ−1 = Autw(|F |). Thus the subgroup is not normal.

Denote by Fn is the subtree of F consisting of vertices of distance ≤ n to the fixed edge
e.

Example 3.1.2. The finite trees Fn are given in the following figures for n = 1,2,3. Let’s
give the Aute(|Fn|) for each n.
Since they fix e and they are not perfect we have finitely many automorphisms. Let
define ϕ : E(|Fn|)−→ E(|Fn|) with ϕ(b) = b2, ϕ(b2) = b, ϕ(e) = e. Then
ϕ ∈ Aute(|F 1|) is the unique non trivial automorphism. And ϕ2 ≡ Id. Therefore,
Aute(|F 1|)∼= Z/2Z.

In |F2| we can generate all automorphisms by two automorphisms which is given by

ϕ1,ϕ2 : E(|F n|)−→ E(|F n|) where ϕ1(e) = e,ϕ1(b) = b2,ϕ1(b2) = b so it must be

ϕ1(b2a) = ba and ϕ1(ba) = b2a and it fixes the others,

ϕ2(e) = e,ϕ2(a) = a,ϕ2(ab2) = ab, ϕ2(ab) = ab2 and it fixes the other edges. So

Aute(|F 2|) = 〈ϕ1,ϕ2〉 and it is obvious that ϕ2
2 = ϕ1

2 := Id. Then |Aute(|F 2|)|= 4.

So Aute(|F2|)∼= Z/2Z×Z/2Z.

Since we want to find the automorphisms which preserves the edge e we can give the

automorphisms of the finite tree which is the left of the edge e and the other finite tree

which is the right of e. The automorphism group of the left side of the tree |F3| ( by the

edge e) is isomorphic to the automorphism group of the right side of |F2|.

x

x

x e

b2

ba

x

x

x

x

x

b2

b

b2a

ba

ea
ab

ab2

Figure 3.4: F 1 and F2
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In the right side of the tree |F3| by the edge e we can twist the tree vertices;

v1 := {e,b,b2},v2 := {ba,bab,bab2},v3 := {b2a,b2ab,b2ab2}. Let define

G := 〈v1,v2,v3〉. So Aute(|F3|)∼= Z/2Z×G.

x

x

x

x

x

x

x

x

x

b2

b

b2a

ba

ea
ab

ab2

b2ab2

b2ab

bab2

bab

aba

ab2a

Figure 3.5: F 3

To facilitate the notation we will show the automorphisms on the following tree:

A

B

C

1

2

e

3

4

5

6

We can give all of the twists by permutation notation such as :

σB := (34), σC := (56), σBσC := (34)(56), σA := (12)(36)(45), σBσA :=
(12)(3546), σCσA := (12)(3645), σCσBσA := (12)(35)(46). That is, if we twist the

vertex B, σB(3) = 4 and σB(4) = 3.

We can see that these automorphisms are the symmetries and rotations of a rectangle

whose vertices are named with the numbers 3,4,5,6. That is G is isomorphic to the

Dihedral Group D8. As a result, Aute(|F3|)∼= Z/2Z×D8. Hence |Aute(|F3|)|= 16.
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More generally, we have

| Aute(|F n|)|=

2n−1×2n if n is odd.

2n×2n if n is even.

3.1.4 Profinite Group

The following restriction map is surjective:

f := Aute(|F |)−→ Aute(|Fn|)

ϕ 7−→ ϕ|Fn.

It is obvious that it is not injective.
Furthermore, we have a system of surjective maps given by:

· · ·Aute(|F3|)−→ Aute(|F2|)−→ Aute(|F1|)−→ Aute(|F0|)

where each group is finite.

Definition 3.1.1. A profinite group is a topological group that is isomorphic to the
inverse limit of an inverse system of discrete finite groups. In this case the inverse limit
is called the profinite limit. Let

· · · −→
f3

G3 −→
f2

G2 −→
f1

G1 −→
f0

G0

be a system of finite groups. Then their profinite limit is given by:

lim←− Gi := {x = (gi)i∈I ∈∏
i∈I

Gi| fi(x) = gi}

In our case we have a system of fine groups :

· · · −→
f3

Aute(|F3|)−→
f2

Aute(|F2|)−→
f1

Aute(|F1|)−→
f0

Aute(|F0|)

Theorem 3.1.1.
Aute(|F |)∼= lim←− Aute(|Fn|)

Proof. The following map is restriction and it is surjective:

ϕ : lim←− Aute(|Fn|)−→ Aute(|Fn|)
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So we have the following diagram:

...

Aute(|Fn+2|)

Aute(|Fn+1|)

limAute(|Fn|) Aute(|Fn|) Aute(|F |)

Aute(|Fn−1|)

...

Aute(|F0|)

By this diagram we say that Aute(|F |)∼= lim←− Aute(|Fn|).

3.2 Automorphism Group of An Abstract Tree

3.2.1 The Group Aute(|F |)

Aute(|F |) is the group of automorphisms of the abstract tree F which fixes the edge e.
We have two different type of automorphism.

1.Twist

Definition 3.2.1. Let w ∈ E(F ) and v = {w,wb,wb2} ∈V•(F ). Then the twist
automorphism by the vertex v is given by σv as follows;

σv(x) =

x if x does not start with w

wb−k1ab−k2a · · · if x = wbk1abk2a · · · with ki ∈ {1,2} for any i.

We know b3 = e so b−1 = b2 and b−2 = b. So this automorphisms transforms all b to b2

whereas all b2 to b.
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x

x

x

x

x

x

x

wb2

wb

wb2a

wba

w

wb2ab2

wb2ab

wbab2

wbab

x

x

x

x

x

x

x

wb

wb2

wba

wb2a

w

wbab

wbab2

wb2ab

wb2ab2

Figure 3.6: F and σv(F )

In the Figure 3.7 we can see that v = {w,wb,wb2} whereas σv(v) = {w,wb2,wb}. So it
changed the orientation i.e. it does not preserve the ribbon structure.
Let ν = {v1,v2,v3, · · ·} be an arbitrary set of vertices of the tree F . Let us sort vertices
according to their distance to the fixed edge e where
d(vi,e) := the number of the edges between vi, e for any i ∈ N . So let
ν(1) = {v1

(1),v2
(1),v3

(1), · · ·} be the current ordered set by the distance. That is
d(vi

(1),e)≤ d(vi+1
(1),e).

σν := is the twist automorphism which twists every vertices in the set ν in order and
appropriately.
Then the twist σν is defined as follows: First, apply σv1

(1) to F . Let call σ
ν(1) = σv1

(1) .
Then update the list, that is if we twist v1 the places of other vertices may change so we
must write it to the list by their new places. But it is obvious that the order does not
change. So let ν2 := {v2

(2),v3
(2), · · ·}. Then apply σv2

(2) to the new tree. Let call
σ

ν(2) = σv1
(1) ◦σv2

(2). Then we will update again the set of vertices ν2, and we continue
by this way. Therefore,

σν := · · · ◦σv3
(3) ◦σv2

(2) ◦σv1
(1).

Let ν = {v1,v2,v3, · · ·} be an infinite set. We know F1 has only one vertex to twist,
v := {e,b,b2}. Let v1

(1) = v. So σv1
(1) ∈V•(F1) but σvi(i)

/∈V•(F1) for any i > 1. Since
F2 has just 2 vertices to twist, σvi(i)

/∈V•(F2) for any i > 2. Continuing this way we can
observe that (σ

ν(i))
∞
i=1 is a convergent sequence such that σν = lim←− σ

ν(i) .
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Shuffle

Definition 3.2.2. Let m ∈ E(F ) and u = {m,mb,mb2} ∈V•(F ). Then the shuffle
automorphism by the vertex u is given by τu as follows;

τu(x) =


x if x does not start with m

mby if x = mb2y

mb2y if x = mby

Shuffle of the edge u is given by the following figure:

x

x

x

x

x

x

x

mb2

mb

mb2a

mba

m

mb2ab2

mb2ab

mbab2

mbab

x

x

x

x

x

x

x

mb

mb2

mba

mb2a

m

mbab2

mbab

mb2ab2

mb2ab

Figure 3.7: F and τu(F )

Remark. It is clear that it does not preserve the orientation of the vertex u whereas it
preserves the others.

Let µ = {u1,u2,u3, · · ·} be an arbitrary set of vertices of the tree F .Now τµ is the shuffle

automorphism which shuffles every vertices in the set µ in order. By the same steps with

twist automorphism we will find τµ. First we sort vertices according to their distance to

the fixed edge e. So let µ(1) = {u1
(1),u2

(1),u3
(1), · · ·} be the current ordered set by the

distance.

First, apply τu1
(1) to F . Then update the list µ2 := {u2

(2),u3
(3), · · ·}. Then apply τu2

(2) to

the new tree. So we will continue by the same way. Therefore,

τµ := · · · ◦ τu3
(3) ◦ τu2

(2) ◦ τu1
(1).
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And by the same explication, (τµ(i))
∞
i=1 is a convergent sequence such that

τµ = lim←− τµ(i) .

Lemma 3.2.1. Let v = {w,wb,wb2} and σv be twist automorphism of the F . Then there
exists µ = {u1,u2, · · ·} ⊂V•(F ) such that the shuffle τµ ≡ σv.

Proof. σv is given by:

σv(x) =

x if x does not start with w

wb−k1ab−k2a · · · if x = wbk1abk2a · · · with ki ∈ {1,2} for any i.

τu(x) = σv(x) for any x which does not start with w and for any u = {wz,wzb,wzb2} with
z ∈ Z/2Z×Z/3Z. So for such x’s we won.
Claim: µ := {{wz,wzb,wzb2}| for all z ∈ Z/2Z×Z/3Z} ⊂V•(F ).i.e.µ := {u1 :=
{w,wb,wb2},u2 := {w}}
Assume that x = wbk1abk2abk3 · · · . Then τu1

(1)(x) = wb−k1abk2abk3 · · · .
τu(3)(x) = wb−k1ab−k2abk3 · · · since there exist two vertices whose distance to the edge e

are 2. So the shuffle of one of them does not change the value of x. By the similar reason
τu(7)(x) = wb−k1ab−k2ab−k3 · · · . So continue with this way we reach τµ := σv.

Lemma 3.2.2. Let u = {m,mb,mb2} and τu be a shuffle automorphism of the F . Then
there exists ν = {v1,v2, · · ·} ⊂V•(F ) such that the twist σν := τu.

Proof. Let x ∈ E(F ) with τu(x) 6= x. Since in this case the result is obvious. Let
x = mbk1abk2abk3 · · · then τu(x) = wb−k1abk2abk3 · · · . Let take
ν = {v1 = {m,mb,mb2},v2 = {mbk1a,mbk1ab,mbk1ab2}} ⊂V•(F ). Then
σv1

(1)(x) = wb−k1ab−k2ab−k3 · · · and then σv(2)(x) = wb−k1abk2abk3 · · ·= τu(x).

Theorem 3.2.3. Every automorphisms of the abstract Farey tree F which preserves the

fixe edge e can be written by twists (or shuffles).

Proof. We know the automorphisms are shuffles and twists. And we showed that by the
Lemma 3.2.2 every shuffles can be written by twists. So every automorphisms can be
written by twists or vice versa.

Proposition 3.2.1. Let ϕ ∈ Aute(|F |) and γ,γ′ ∈ ∂e(F ). Then d(γ,γ′) = d(ϕ(γ),ϕ(γ′)).

Graps of Automorphisms

In fact, the vertices of F can be presented by the rational numbers:
By this tree σ 1

1
(x) = 1

x for every x ∈Q+. So the graphs is given by following figure:
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1
1

1
2

1
3

1
4

2
5

2
3

3
5

3
4

4
3

3
2

2
1

5
3

5
2

3
1

4
1

0
1

1
0

e

Figure 3.8: Farey Tree

Figure 3.9: The graphs of σ1(x)

Let’s look at the graphs of some elements of Aute(|F |):
σν1(x) with ν1 = {1, 1

2}. So

σν1(x) =

1
x , if x ∈ (0,1)

1− 1
x ,otherwise
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Figure 3.10: The graphs of σν1(x)

σν2(x) with ν2 = {1, 1
2 ,2}. So σν2(x) = τ1(x) for any x ∈Q+.

σν2(x) =

 1
1−x , if x ∈ (0,1)

1− 1
x ,otherwise

Figure 3.11: The graphs of σν2(x)

Let’s look at the automorphism σ 3
5

: We are just twisting the vertex 3
5 so

σ 3
5
(x) =

4x−3
5x−4 , if x ∈ (1

2 ,
2
3)

x ,otherwise

Since the subtree of the Farey tree whose root is 3
5 consists all rational numbers between

1
2 and 2

3 . So the others does not change after the twist of 3
5 .

So the graphs of σ 3
5

is given by :
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Figure 3.12: The graphs of σ 3
5
(x)



4 MEASURES ON THE BOUNDARY OF THE FAREY
TREE

4.1 Stern-Brocot Tree

Stern-Brocot tree is a binary tree which contains all positive rationals numbers once as a
vertex. This particular tree was discovered by a mathematician Stern and a clockmarker
Brocot. We construct this tree by taking the mediants.

Definition 4.1.1. Let a1
b1
, a2

b2
∈Q+. The mediant of these two fractions is a1+a2

b1+b2
∈Q. For

the mediant we use the notation a1
b1
⊕ a2

b2
= a1+a2

b1+b2
.

Remark. Let p
q ,

r
s ∈Q+ such that p

q < r
s . Then

p
q < p

q ⊕
r
s <

r
s . (4.1)

Proof. We have p
q < r

s then p.s < q.r. So
p.s+ p.q < q.r+ p.q⇐⇒ p(q+ s)< q(r+ p)⇐⇒ p

q < r+p
q+s . On the other hand

p.s < q.r⇐⇒ p.s+ r.s < q.r+ r.s⇐⇒ s(p+ r)< r(q+ s)⇐⇒ r+p
q+s <

r
s . Thus

p
q < p

q ⊕
r
s <

r
s .

To construct the Stern- Brocot Tree we start with the fractions 0
1 and 1

0 . The mediant of
these given fractions is 1

1 . Then for finding the right child and left child of 1
1 we will take

the mediant of 0
1 and 1

1 , we get 1
2 . This is the left child of the fraction 1

1 and we will take
the mediant of 1

0 and 1
1 , we get 2

1 which is the right child of 1
1 . Continuing this way we

obtain a tree which is called Stern-Brocot Tree. On the other words, let’s take a rational
number p

q in the tree such that p
q = a+b

c+d where a
b is the nearest left ancestor of p

q and c
d is

the nearest right ancestor of c
d . We will use the notation S for the Stern Brocot tree.

Furthermore S n represents the set of vertices of (n+1)th line of the tree. For example
S 0 = {1

0 ,
0
1},S

1 = {1
1},S

2 = {1
2 ,

2
1}...You can see at the following figure which is

described Stern-Brocot Tree.
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3
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3
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Lemma 4.1.1. Let a
b = p

q ⊕
r
s be in the tree. Then the children of a

b are a
b ⊕

p
q and a

b ⊕
r
s .

Proof. Without lost of generality let p
q be the nearest left ancestor of a

b whereas r
s is the

right one. The right child of a
b is the mediant of the its nearest left ancestor, a

b and its
nearest right ancestor is the same as a

b
′s. So the right child of a

b is a
b ⊕

r
s . By the same

thing the left child of a
b is the mediant of the its nearest right ancestor, a

b and its nearest
left ancestor p

q .

Proposition 4.1.1. Let a
b = p

q ⊕
r
s then |aq−bp|= |as−br|= 1.

Proof. First, it is true for S 2 : |1.2−1.1|= |0.2−1.1|= 1. Asumme that the hypothesis
is true at S i for all i < n. Let a

b = p
q ⊕

r
s ∈ S n−1. Let m

n be a child of a
b . Then it is equal to

a
b ⊕

p
q or a

b ⊕
r
s by Lemma 4.1.1. Without lost of generality we assume that m

n = a
b ⊕

p
q .

|(a+ p)q− (b+q)p|= |aq−bp|= 1 by assumption. (4.2)

And also |(a+ p)b− (b+q)a|= |aq−bp|= 1. (4.3)

So the equation satisfies for S n.

Corollary 4.1.1. Let p
q and r

s be consecutive rational numbers in the tree such that
p
q < r

s . Then

q.r− p.s = 1 (4.4)

Proposition 4.1.2. All rational numbers in Stern-Brocot Tree is irreducible. On the
other words, if m

n ∈ S then (m,n) = 1.



33

Proof. Let p
q and r

s be consecutive rational number in S such that p
q < r

s . Then
q.r− p.s = 1 by Corollary 4.1.1. Hence (p,q) = (r,s) = 1.

Proposition 4.1.3. Stern Brocot tree contains every positive rational numbers.

Proof. Let a
b ∈Q∩ (0,1). Then we want to show that a vertex of the Stern Brocot tree is

labeled with this rational number. m
n ,

m1
n1

be the rationals in S such that m
n < a

b < m1
n1
. Now

there are three cases:
First one, m

n ⊕
m1
n1

= a
b so a

b ∈ S , we win. Second, m
n ⊕

m1
n1

< a
b < m1

n1
and the third case is

m
n < a

b < m
n ⊕

m1
n1

. Without lost of generality we assume that the second one satisfies.
Then we write m2

n2
= m

n ⊕
m1
n1

. Then we obtain a new inegality m2
n2

< a
b < m1

n1
. We will do

the same things. Let m3
n3

= m2
n2
⊕ m1

n1
. If m3

n3
= a

b then we win. If it is not true then we have
two cases again: m3

n3
< a

b or m3
n3

> a
b . Assume that the first one. Then we have

m3
n3

< a
b < m1

n1
. And again we will contine by the same way. After finitely step we will

obtain mk
nk

= a
b , thenwewin. Hence all the rational numbers in Q∩ (0,1) is contained in

Stern Brocot tree. But we can generalise this by takingthe rational in Q∩ (1,∞). In this
case the rational number is in first right branch of the Stern Brocot tree.

Proposition 4.1.4. [10] Stern Brocot tree contains a rational numbers at most once.

Some nice proprieties of Stern-Brocot tree can be found at [10] pp. : 117−120.

Definition 4.1.2. The Farey Tree is the first left branch of Stern Brocot Tree. So it
contains all rational numbers in (0,1)∩Q. For Farey Tree we use the notation F .
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8

3
4

5
7

4
5

Definition 4.1.3. The top vertex of the tree is called the root. The root of the
Stern-Brocot Tree is 1

1 whereas the root of the Farey Tree is 1
2 .



34

Figure 4.1: Continued Fraction expansion of The Paths of Farey Tree

If we have an end γ the open ball B(γ,2−n) contains all ends which has at least n+1
common edges with γ. In other words, if γ = (e,e1,e2, · · · ,en, · · ·) then B(γ,2−n) contains
all ends which starts with the edges e,e1, · · · ,en. Then we will use an other notation
O(en) which denotes the set of ends starts at e and passes at en. For the Farey tree we
will use the vertices instead of edges. We fix the root vertex 1

2 . So O(a
b) contains all ends

which starts at 1
2 and passes through a

b . Then O(a
b) = [ p

q ,
r
s ] with p

q ,
r
s are the ancestors of

a
b . These intervals are called Farey Interval. We will denote them by I(a

b) = [ p
q ,

r
s ].

4.2 The Monoid Structure on the Set of Vertices of The
Tree

Now we will define a natural operation over the vertices of F . For each vertex of F
there is a unique path which starts at the root 1

2 and ends at this vertex. The operation
between the vertices can be defined as concatenating the paths which are corresponding
to these vertices. To be more precise we will give this operation via defining the set X

and the ? operation over this set and they will give us a monoid structure.
Now, we define the set X := {(n1,n2,n3, · · · ,nk|ni ∈ N\{0} for any i}.

Proposition 4.2.1. The following map is a bijection:

θ : X −→Q∩ (0,1)

(n1,n2, . . . ,nk) 7→ [0,n1,n2, . . .nk,1]

Proof. Let p
q ∈Q∩ (0,1) then it can be write such a continued fraction. Let

[0,x1,x2, · · ·xk] be the continued fraction representation of p
q . Since

[0,x1,x2, · · ·xk] = [0,x1,x2, · · ·xk−1,1], θ((x1,x2, · · · ,xk−1)) = a.Let
θ(x) = θ((y)) = [0,n1,n2 · · · ,nl,1] then x = y = (n1,n2 · · · ,nl). Hence θ is a bijection.
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Example 4.2.1. 1
2 = [0,2] = [0,1,1] = θ((1)), 1

3 = [0,3] = [0,2,1] = θ((2)),
2
3 = [0,1,2] = [0,1,1,1] = θ((1,1)) are some examples of the values of θ.

Since θ is a bijection map between X and Q∩ (0,1), we can write all the rational
numbers in Q∩ (0,1) by using the elements of the set X . So all vertices of the Farey Tree
can be represented by a tuple in X .

(1)

(2)

(3)

(4) (3.1)

(2.1)

(2.12) (22)

(12)

(13)

(12.2) (14)

(1.2)

(1.2.1) (1.3)

Definition 4.2.1. Let x = (n1,n2, · · · ,nk) ∈ X. The depth of x is

||x|| := n1 +n2 + · · ·+nk−1 and the length of x is `(x) := k.

Example 4.2.2. Let x = θ−1(1
2) then x = (1), ||x||= 0 and `(x) = 1. For x = θ−1(2

3),

x = (1,1), ||x||= 1+1−1 = 1 and `(x) = 2.

Remark. [18] x ∈ X is a right child if `(x) is even, x is a left child otherwise.

We define an operation over X which is called star and described with ? symbol, let
x = (n1,n2, · · · ,nk),y = (m1,m2, · · · ,ml) ∈ X ,

x? y :=

(n1,n2, · · · ,nk,m1−1,m2, · · · ,ml) if x is a right child

(n1,n2, · · · ,nk +m1−1,m2, · · · ,ml) if x is a left child

We assume that (· · · ,m,0,k, · · ·) = (· · · ,m+ k, · · ·) and (· · · ,m,0) = (· · · ,m).

Example 4.2.3. (1,1)? (1,1) = (1,1,1−1,1) = (1,2).
(2)? (2,1) = (2+2−1,1) = (3,1)

Proposition 4.2.2. The set X is a monoid under this ? operation.

Proof. First, ? is associative.
Let x = (n1,n2, · · · ,ns), y = (m1,m2, · · · ,ml), z = (k1,k2, · · ·kr) ∈ X . By definition of ?
operation

x? y :=

(n1,n2, · · · ,ns,m1−1,m2, · · · ,ml) if x is a right child

(n1,n2, · · · ,ns +m1−1,m2, · · · ,ml) if x is a left child
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(x? y)? z :=



(n1, · · · ,ns,m1−1,m2, · · · ,ml,k1−1,k2 · · · ,kr) x and y right

(n1, · · · ,ns,m1−1,m2, · · · ,ml + k1−1,k2 · · ·kr) x right, y left

(n1, · · · ,ns +m1−1,m2, · · · ,ml,k1−1,k2 · · · ,kr) x left, y right

(n1, · · · ,nk +m1−1,m2, · · · ,ml + k1−1,k2 · · ·kr) x and y left

Then

(x? y)? z :=

(n1, · · · ,ns)? (m1,m2, · · · ,ml,k1−1,k2 · · · ,kr) y right

(n1, · · · ,ns)? (m1,m2, · · · ,ml + k1−1,k2 · · ·kr) y left

And we know

y? z :=

(m1,m2, · · · ,ml,k1−1,k2 · · · ,kr) if y is a right child

(m1,m2, · · · ,ml + k1−1,k2 · · ·kr) if y is a left child

So, (x? y)? z = x? (y? z) that is, associativity satisfies.

x? (1) :=

(n1,n2, · · · ,ns,0) = (n1,n2, · · · ,ns) if x is a right child

(n1,n2, · · · ,ns +1−1) = (n1,n2, · · · ,ns) if x is a left child

(1)? x = (1+m1−1,m2, · · · ,ml) = x. So, (1) is the neutral element of X . Besides, it
corresponds to the root of the Stern-Brocot Tree, 1

2 . Then (X ,?) is a monoid.

Proposition 4.2.3. We have the following equalities

(1,1)? (1,1)? · · ·? (1,1)︸ ︷︷ ︸
n times

= (1,n)

(2)? (2)? · · ·? (2)︸ ︷︷ ︸
n times

= (n+1)

Proof. We know that (1,1)? (1,1) = (1,2). Assume that
(1,1)? (1,1)? · · ·? (1,1)︸ ︷︷ ︸

n−1 times

= (1,n−1). (1,n−1)? (1,1) = (1,n−1,0,1) = (1,n), by the

induction hypothesis. (2)? (2) = (3).Assume that (2)? (2)? · · ·? (2)︸ ︷︷ ︸
n−1 times

= (n).

(n)? (2) = (n+1), by the induction hypothesis.

Proposition 4.2.4. Let L := (2) and R := (1,1). We can generate all elements of X by L

and R such that (n1,n2,n3, . . .) = Ln1−1 ?Rn2 ?Ln3 ?Rn4 ? · · · .
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Proof. Let `(x) = 1 such that x = (n1) then x = Ln1−1. If `(x) = 2 such that x = (n1,n2)

then x = (n1)? (1,n2) = Ln1−1 ?Rn2 . Assume that the hypothesis is true for `(x) = 2k−1
such that x = (n1,n2, . . .n2k−1) ∈ X . Then we can write x = Ln1−1Rn2 . . .Ln2k−1 (if `(x)
had be an even number, x would end with Rn2k−1). Let `(x) = 2k such that

x = (n1)? (1,n2,n3, . . .n2k)

= Ln1−1 ? (1,n2)? (n3 +1,n4, . . .n2k)

= Ln1−1 ?Rn2 ?Ln3 ? · · ·?Rn2k by assumption.

(4.5)

Moreover if `(x) = 2k+1 then,

x = (n1)? (1,n2,n3, . . .n2k+1)

= Ln1−1 ? (1,n2)? (n3 +1,n4, . . .n2k+1)

= Ln1−1 ?Rn2 ?Ln3 ? · · ·?Ln2k+1 by assumption.

(4.6)

Remark. By using the bijection map θ we can transform ? operation to an operation on

Q∩ (0,1). And then we obtain
2
3
?

2
3
? · · ·? 2

3︸ ︷︷ ︸
n times

= n+1
n+2 since θ((1,1)) = 2

3 and

θ((1,n)) = [0,1,n,1] = n+1
n+2 . And also by this transformation we obtain

1
3
?

1
3
? · · ·? 1

3︸ ︷︷ ︸
n times

= 1
n+2 . By conclusion, we can say that the Stern-Brocot three can be

generate by 2
3 and 1

3 .

Actually, this result is obvious seeing as L means to go left wheras R means to go right
on the Farey Tree. So, we can walk on the whole tree via L and R. Meanwhile, we can
generate all elements of the Q∩X by L and R.

4.3 Some Special Automorphisms of The Farey Tree

4.3.1 The Automorphism K

We define the map:
K : X −→ X

L 7−→ R

R 7−→ L

In fact, the map K finds the symmetry of the element on the tree according to the
perpendicular line which passes the middle of the tree. To illustrate, the symmetry of 2

5 is
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3
5 , the symmetry of 1

3 is 2
3 etc. So K := σ 1

2
which is the twist automorphism by the root

vertex 1
2 . So K(x) = 1− x for any x ∈ (0,1). We can show this result on the set X .

Proposition 4.3.1. K is an automorphism of X .

Proof. Let x = (n1,n2, . . . ,ns) and y = (m1,m2, . . . ,ml) be two elements of X , without
loss of generality l(y) is an even number. Then

K(x? y) =



K(n1,n2, · · · ,ns,m1−1, . . . ,ml) =

K(Ln1−1 ?Rn2 ? · · ·?Rns ?Lm1−1 ?Rm2 ? · · ·?Rml) =

Rn1−1 ?Ln2 ? · · ·?Lns ?Rm1−1 ?Lm2 ? · · ·?Lml =

K(n1,n2, · · · ,ns)?K(m1,m2, . . . ,ml) =

K(x)?K(y) if x is right

K(n1,n2, · · · ,ns +m1−1, . . . ,ml) =

K(Ln1−1 ?Rn2 ? · · ·?Lns+m1−1 ?Rm2 ? · · ·?Rml) =

Rn1−1 ?Ln2 ? · · ·?Rns ?Rm1−1 ?Lm2 ? · · ·?Lml =

K(n1,n2, · · · ,ns)?K(m1,m2, . . . ,ml) =

K(x)?K(y) if x is left

Hence, K is a homomorphism.

Remark. K can be defined such a homomorphism of Q∩ (0,1) via the bijection θ.

Proof. Let x = Ln1−1 ?Rn2 ?Ln3 ? · · · . Then

Kx = Rn1−1 ?Ln2 ?Rn3 ? · · · since K is a homomorphism
= (1,n1−1)? (n2 +1)? (1,n3)? · · ·
= (1,n1−1,n2,n3, . . . ,nk).

(4.7)

Lemma 4.3.1. Let x = (n1,n2, . . . ,nk) ∈ X then Kx = 1− x.

Proof. We showed that we can write x via L and R such that x = Ln1−1 ?Rn2 ?Ln3 ? · · · .
Then

Kx = Rn1−1 ?Ln2 ?Rn3 ? · · · since K is a homomorphism
= (1,n1−1)? (n2 +1)? (1,n3)? · · ·
= (1,n1−1,n2,n3, . . . ,nk).

(4.8)
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θ(Kx) = θ(1,n1−1,n2,n3, . . . ,nk)

= [0,1,n1−1,n2,n3, . . . ,nk,1]

=
1

1+
1

1
θ(x) −1

= 1−θ(x)

If K(x) = K(y) for any x,y ∈ X then x = y and also for any x ∈ X we can write
K(1− x) = x. So, K is an automorphism. Via the bijection map θ, K determines an
automorphism of the Farey Tree.

4.3.2 The Flip

The Flip map φ is defined on the set X as follows:

φ : X −→ X

(n1,n2, . . . ,nk) 7−→ (nk,nk−1, . . . ,n1)

It is clear that φ(φ(x)) = x. Such maps are called involution. Via θ, φ can be defined on
the set Q∩ (0,1) as follows:

φ([0,n1,n2, . . . ,nk]) = [0,nk−1,nk−1, . . .n2,n1 +1]

4.3.3 The Jimm Function

We define another map on X which is called Jimm:

J : X −→ X

(n1,n2, . . . ,nk) 7−→ (1n1−1,2,1n2−2,2,1n3−2,2, . . . ,1nk−1)

And we assume that k > 1 and we will eliminate 10’s as [. . . ,a,10,b, . . .] = [. . . ,a,b, . . .]

and [10,a, . . .] = [a, . . .]. If we have 1−1 then we will suppose
[. . . ,a,1−1,b, . . . ] = [. . . ,a+b−1, . . .]. Furthermore, by convention J((n1)) = (1n1).

Remark. Jimm is an involution.i.e. J(J(x)) = x

It is coming with the simple calculation and the rules 10 and 1−1.

Proposition 4.3.2. Jimm is an automorphism of the monoid X .
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Proof. Let x = (n1,n2, . . . ,ns),y = (m1,m2, . . . ,ml) ∈ X .

J(x? y) =



J(n1,n2, · · · ,ns,m1−1, . . . ,ml) =

(1n1−1,2,1n2−2,2, . . . ,1ns−2,2,1m1−3,2,1m2−2 . . . ,1ml−1) =

(1n1−1,2,1n2−2,2, . . . ,1ns−1)? (1m1−1,2,1m2−2 . . . ,1ml−1) =

J(x)?J(y) x is right

J(n1,n2, · · · ,ns +m1−1, . . . ,ml) =

(1n1−1,2,1n2−2,2, . . . ,1ns+m1−3,2,1m2−2, . . . ,1ml−1) =

(1n1−1,2,1n2−2,2, . . . ,1ns−1)? (1m1−1,2,1m2−2 . . . ,1ml−1) =

J(x)?J(y) x is left

Then Jimm is a homomorphism of X . Since Jimm is an involution for any x ∈ X

J(J(x)) = x so it is a surjective map. And also if J(x) = J(y) then J(J(x)) = J(J(y)) so
x = y, then it is a bijection. Hence J is an automorphism of X .

Remark. By θ we can transfer Jimm funtion to Q∩ (0,1) such that
J([0,n1,n2, . . . ,nk]) = [0,1n1−1,2,1n2−2,2, . . . ,1nk−1].

Let x = [0,n1,n2, . . . ,nk] then x
1+x =

1

1+ 1
x

=
1

1+n1 +
1

n2 + . . .

= [0,n1 +1,n2, . . . ,nk].

Then
J( x

x+1) = [0,1n1,2,1n2−2,2, . . . ,1nk−1]

= [0,1,1n1−1,2,1n2−2,2, . . . ,1nk−1]

= 1
1+J(x)

(4.9)

1
1+x = [0,1,n1,n2, . . . ,nk] for same x. Then we observe that

J( 1
x+1) = [0,10,2,1n1−2,2, . . . ,1nk−1]

= [0,2,1n1−2,2, . . . ,1nk−1]

= [0,1+1,1n1−2,2, . . . ,1nk−1]

=
1

1+ 1
J(x)

= J(x)
J(x)+1

(4.10)

Proposition 4.3.3. The involution J commutes with K.
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Proof. Let x = (n1,n2, . . . ,nk). We need to show that J(Kx) = KJ(x) for any x.

K(J(x)) = K(1n1−1,2,1n2−2,2, · · · ,1nk−1)

= (1,0,1n1−2,2,1n2−2,2, · · · ,1nk−1)

= (2,1n1−3,2,1n2−2,2, · · · ,1nk−1)

= (10,2,1n1−3,2,1n2−2,2, · · · ,1nk−1)

= J(1,n1−1,n2,n3, · · · ,nk)

= J(K(x))

(4.11)

Proposition 4.3.4. The involution Jimm commutes with φ.

Proof. Let x = (n1,n2, · · · ,nk) ∈ X .

J(φ(n1,n2, · · · ,nk)) = J(nk,nk−1, · · · ,n2,n1) = (1nk−1,2,1nk−1−2,2, · · · ,1n1−1)

= φ(1n1−1,2,1n2−2,2,1n3−2, · · · ,1nk−1) = φJ(x).

4.4 Measures on The Boundary of The Farey Tree

In the first section we look at the topology on the boundary of a tree. Now we will work
on the special tree which is Farey Tree. The topology on te boundary of a tree is
generated by the open intervals B(γ,2−n) where γ is an end which starts at the fixed edge
(or vertex) and it is infinite and non-back tracking path. n ∈ N and the open ball is
defined as B(γ,2−n) = {γ′|d(γ,γ′)< n}. That is, it contains all ends which starts at the
fixed edge (or vertex) and has at least n+1 common edges with γ. On the other words,
let e′ be the nth edge of γ. Then B(γ,2−n) contains all ends which starts at fixed edge or
vertex and passes the edge e′. And we label this set by Oe′ .
Now on the Farey tree we don’t choose a fixed edge we choose a fixed vertex which is
root vertex 1

2 . So we suppose ∂F contains all ends which starts at 1
2 . Let I

[
p
q ,

r
s

]
be a

Farey interval. Actually the topology on the boundary of the Farey tree can be generated
by O a

b
with a

b := p
q ⊕

r
s . Since there is a topology on the boundary of the Farey tree, there

is a Borel algebra on ∂Fe which can be generated by opens of the topology on ∂Fe

basicly. So we can put a probabilty measure on the Borel algebra.

Definition 4.4.1. Let p,q ∈ F such that they are siblings. Then we define a map
π : F 7→Q∩ (0,1) such that π(p)+π(q) = 1. All functions which provides this property
is called transition function.

Actually, the map π gives the probability of arriving to a choosen child from its parent.
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Let’s imagine that there is a man over the root vertex 1
2 who will walk randomly

non-backtracking on the tree. We want to calculate the probabilty of this man being at
the interval I[ p

q ,
r
s ] at the end of the walk. Then we want to calculate the probabilty of the

man reaching to a
b = p

q ⊕
r
s . So far we know just the probability of coming a

b from the
parent of a

b and it is π(a
b). We can find the probabilty of coming the parent of a

b from the
parent of the parent of the a

b . And we we will continue with this method until we reach
the root and finally we will multiply the probability of all.
Let’s define the map:

TφF : X −→ X

(n1,n2, . . . ,nk−1,nk) 7−→ (n1,n2, . . . ,nk−1,nk−1)

If nk−1 = 0 we will ignore. The map gives the parent of the (n1,n2, . . . ,nk−1,nk). Since
we know that an element of X can be generated by (1,1) and (2). If we have a vertex
(n1,n2, . . . ,nk−1,nk) the children of this vertex are (n1,n2, . . . ,nk−1,nk,1) and
(n1,n2, . . . ,nk−1,nk +1). Then we give the probability measure on ∂F as follows

µπ (I (n1, . . . ,nk)) =
d−1

∏
i=0

π

(
T i

ϕF (n1,n2, . . . ,nk)
)

(4.12)

where d is the depth of the vertex i.e. it is just the number of edges between the vertex
(n1,n2, · · · ,nk) and the root vertex 1

2 . see [18], pg : 9.
So the cumulative distribution function is given as follows:

Fπ(x) := µπ([0,x]) = ∑
∞
k=1(−1)kµπ {W ∈ I (n1,n2, . . . ,nk)}

= ∑
∞
k=1(−1)1+k

∏
d−1
i=0 π

(
T i

ϕF (n1,n2, . . . ,nk)
)

see [18]. There are special probability measures which is defined on the boundary of the
Farey Tree. For example; Minkowski Measure is a probability measure on the boundary
of the Farey tree which is defined as the previous it is just the special case of the measure
µπ. It takes all transition function is equal except the root vertex. So it takes π(x) = 1

2 for
any x ∈ X . Then

µπ {W ∈ I (n1, . . . ,nk)}= 21−n1−n2···−nk .

where W is a random walker.

Proposition 4.4.1. Its cumulative distribution function of Minkowski measure is

Fπ(x) =
∞

∑
k=1

(−1)1+k21−n1−n2···nk .
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It is called Minkowski ? function.

Proof. see [22] pg: 5-6.

The more general probability measure on the boundary of F is Denjoy’s measure. Let
p and q be two siblings such that p is the right and q is the left one. If we take π(p) = a

and π(q) = 1−a for any two siblings we obtain Denjoy’s measure.
The third measure on the bondary of Farey Tree is Lebesgue’s Measure. We denote the
Lebesgue’s Measure is a measure on the real numbers such that the measure of an
interval is the length of this interval. Now we have Farey intervals so we can talk about
the Lebesgue’s measure on ∂F . Let λ be the Lebesgue’s measure. Let πλ be the π

function corresponding to this measure. Then

µπ(I(x)) := λ(I(x)) =
||x||

∏
i=0

πλ

(
T i

ϕF(x)
)

gives us the Lebesgue’s measure where x = (n1,n2, · · · ,nk) ∈ X . Let y be the parent of x

so y = (n1,n2, · · · ,nk−1). And we know πλ(x)µπ(I(y)) = µπ(I(x)). So

πλ(x) =
µπ(I(x))
µπ(I(y))

(4.13)

The end points of the interval I(x) are [0,n1,n2, · · · ,nk] and [0,n1,n2, · · · ,nk−1] as a
continued fraction expansion. We obtain it via the bijection θ. Moreover, The end points
of the interval I(y) are given by [0,n1,n2, · · · ,nk−1] and [0,n1,n2, · · · ,nk−1] as a

continued fraction expansion. Let
pk

qk
:= [0,n1,n2, · · · ,nk] = y be the canonical

representation of the continued fraction. Then
pk−1

qk−1
:= [0,n1,n2, · · · ,nk−1] is the

(k−1)th convergent of y. Then by the corollary 7.0.1 we have the following equality:

λ(I(x)) =

∣∣∣∣∣ pk

qk
−

pk−1

qk−1

∣∣∣∣∣
=

∣∣∣∣∣ 1

qkqk−1

∣∣∣∣∣
(4.14)

Since the end points of I(y) are [0,n1,n2, · · · ,nk−1nk−1] and [0,n1,n2, · · · ,nk−1],
assume that n′k := nk−1 so the kth term of the continued fraction
[0,n1,n2, · · · ,nk−1nk−1] .
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So

λ(I(y)) =
∣∣∣∣ pk′

qk′
− pk−1

qk−1

∣∣∣∣
=

∣∣∣∣ 1
qk′qk−1

∣∣∣∣ (4.15)

by corollary 7.0.1.
We denote qk := 〈n1, . . . ,nk−1,nk〉 for any k ∈ N. So

λ(I(x)) =
1

〈n1, . . . ,nk−1〉〈n1, . . . ,nk−1,nk〉
, λ(I(y)) =

1

〈n1, . . . ,nk−1〉〈n1, . . . ,nk−1,nk−1〉
Then we have

πλ(x) =
λ(I(x))
λ(I(y))

=
〈n1, . . . ,nk−1,nk−1〉
〈n1, . . . ,nk〉

=
〈n1, . . . ,nk〉−〈n1, . . . ,nk−1〉

〈n1, . . . ,nk〉

= 1− 〈n1, . . . ,nk−1〉
〈n1, . . . ,nk−1,nk〉

= 1− [0,nk,nk−1, . . . ,n1]

= KϕTF(x).

(4.16)

where TF is the Farey map which is given by:

TF : (n1,n2, . . . ,nk−1,nk)→ (n1−1,n2, . . . ,nk−1,nk) .

If we return the set X ,

πλ (n1, . . . ,nk) = (1,nk−1,nk−1, . . . ,n1−1)

So we can say that
πλ (n1, . . . ,nk) = πλ (1,n1−1, . . . ,nk)

Then this equality gives us
πλ(x) = πλ(Kx).

That is, Lebesgue’s measure is invariant under the automorphism K.
So the symmetry of the Lebesgue’s measure is given by :

πλJ(x) = Jπλ(x).

Since J commutes with K, φ and TF which was proved by the propositions 4.3.3 and
4.3.4. So we obtain the symmetry of Lebesgue’s measure.



5 CONTINUED FRACTION MAPS

5.1 Continued Fraction Expansion of Real Numbers

An expression of the form

α =
1

n1 +
1

n2 +
1
...

is called simple continued fraction expansion where ni ∈ N−{0} for any i. We denote
this continued fraction by α = [0,n1,n2, . . . ]. Every real numbers can be presented by a
continued fraction. If a continued fraction is finite it represents a unique rational number
we showed it in the Proposition 7.0.1. Otherwise, if α ∈R\Q then its continued fraction
expansion must be infinite.

Proposition 5.1.1. Let α ∈Q∩ [0,1] then α has two different continued fraction
representations such that if α = [0,n1,n2, · · · ,nk−1,nk,∞] where ni ∈ Z and nk > 1 then
α = [0,n1,n2, · · ·nk,∞] = [0,n1,n2, · · · ,nk−1,nk−1,1,∞].

Proof. The first k−1 terms of two continued fractions are equals. So we will just show
the equality of last terms.

α =
1

n1 +
1

nk−1 +

...

nk +
1

∞

=
1

n1 +
1

nk−1 +

...

nk−1+
1

1+
1

∞

We deonte these representations by α+ := [0,n1,n2, · · · ,nk−1,nk−1,1,∞] and
α− = [0,n1,n2, · · · ,nk−1,nk,∞].

45
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Example 5.1.1. The continued fraction representations of some numbers:√
2 = [1,2,2,2, · · · ] = [1,2], 1

2
+
= [0,1,1,∞], 1

2
−
= [0,2,∞], The golden ratio;

1+
√

5
2 = [1,1,1, · · · ] = [1].

More information about continued fractions is available in Appendix.

We said that the edges of Farey tree can be presented by the elements of the free group
Z/2Z×Z/3Z, or the vertices can be presented by the rational numbers. Now we will
presented the paths of Farey tree which of their initial vertices are the same by continued
fractions. Actually it is compatible with the presentation of vertices by rational numbers.

Figure 5.1: Continued Fraction expansion of The Paths of Farey Tree

For example, in the Figure 5.1 the path which starts the edge e after turns always left is
labeled with the rational numbers 0

1 and otherwise the path wihch starts the edge e and
turns always right is labeled with the rational number 1

1 . It is very natural way to
represent the path. Since the continued fraction expansion of 0

1 is
[0,∞] = [0,1+1+1+ · · · ]. Turning the same direction means adding 1 to the last
number of the continued fraction. Otherwise, turning another direction means write 1 the
end of the continued fraction expansion. The path which starts e after always turns left
presented by [0,1,1+1+1+ · · · ] = [0,1,∞] = 1

1 .

5.2 Dynamics of Continued Fraction Maps

Definition 5.2.1. A family of continued fraction maps Tα is given by;

Tα(x) =

[0,mk+1,mk+2,mk+3, · · · ] if nk > mk

[0,mk−nk,mk+1,mk+2, · · · ] if nk < mk

where α = [0,n1,n2,n3 · · · ] ∈ [0,1] and x = [0,m1,m2,m3, · · · ] ∈ [0,1] and k is the least
positive integer such that mk 6= nk.
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That is, this map cuts the common edges with the path α of the path x.

Example 5.2.1. Let α = [0,1,1,1, · · · ] and x1 ∈ [0,1,1,2,3,4, · · · ]
x2 = [0,1,4,4,5,6, · · · ]. Then Tα(x1) = [0,1,3,4,5, · · · ] and Tα(x2) = [0,3,4,5, · · · ].

Actually, we must define Tα by hand for some special values:
The map Tα is not continuous in the variable α for any α ∈ [0,1] i.e. Tα+(x) and Tα−(x)

are two distinct maps with distinct dynamical proprieties. Let
α+ := [0,n1,n2, · · · ,nk−1,nk−1,1,∞] and α− = [0,n1,n2, · · · ,nk−1,nk,∞]. Then
Tα+(x) 6= Tα−(x) for x = [0,n1,n2, · · · ,nk−1,nk,m1,m2, · · · ,∞].
Since Tα+(x) 6= Tα−(x) for some x ∈ [0,1] we always take α = α+. i.e. if
α = [0,n1, · · · ,nk,∞] then nk > 1.
Furthermore, Tα(α) is not defined. By convention we say Tα(α) = 0.
Finallly, Tα(x) is not defined for some x where x ∈Q and its continued fraction
expansion is the same with the inital part of α. i.e. if x = [0,n1, · · · ,nk,∞] and
α = [0,n1, · · · ,nk,nk+1,nk+2, · · · ]. Actually in this case we accept that Tα(x) = [0,∞] = 0.

Proposition 5.2.1. The following equation satisfies for any α,x ∈ [0,1]

JTα(x) = TJ(α)(Jx)

where J is the involution Jimm function which is defined in the previous chapter.

Proof. Let α = [0,n1,n2,n3 · · · ] ∈ [0,1] and x = [0,m1,m2,m3, · · · ] ∈ [0,1]. Then

JTα(x) =

[0,1mk+1−1,2,1mk+2−2, · · · ] if nk > mk

[0,1mk−nk−1,2,1mk+1−2,2,1mk+2−2, · · · ] if nk < mk

where ni = mi for any i ∈ {1, · · ·k−1}. J(α) = [0,1n1−1,2,1n2−2,2,1n3−2,2, · · · ] and
J(x) = [0,1m1−1,2,1m2−2,2,1m3−2,2, · · · ]. So if mi = ni for any i ∈ {1, · · ·k−1} then
TJ(α)(Jx) = [0,2−1,1mk+1−2,2,1mk+2−2, · · · ] = [0,1mk+1−1,2,1mk+2−2, · · · ] in the case
nk > mk. If nk < mk then TJ(α)(Jx) = [0,1mk−2−(nk−2)−1,2,1mk+1−2,2, · · · ] =
[0,1mk−nk−1,2,1mk+1−2,2,1mk+2−2, · · · ]. So JTα(x) = TJ(α)(Jx).

Example 5.2.2. (Gauss Map) The Gauss continued fraction map h is given by:

h : [0,1]→ [0,1]

x 7→ 1
x
−b1

x
c.

where b1
xc denotes floor function.
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Figure 5.2: Gauss Map

As we can see at Figure 5.2 it has an infinite number of jump discontinues.

Let α := [0,∞] = 0 and x = [0,n1,n2, · · · ] ∈ [0,1] for any ni ∈ Z, i ∈ {1,2, · · ·} which is

rational or irrational number. Then by definition of continued fraction map

T0(x) = [0,n2,n3, · · · ] = 1
x −n1 =

1
x −b

1
xc= h(x). That is, the map T0 is the Gauss map

and it forgets just the first partial quotient of x for any x ∈ [0,1].

Example 5.2.3. (The Fibonacci Map) Let’s take α = [0,1,1, · · · ] =
√

5−1
2 . Then

Tα(x) = [0,mk+1−1,mk+2, · · · ] where x = [0,1k,mk+1,mk+2 · · · ] with mk+1 > 1 is called
the Fibonacci Map.

Proposition 5.2.2. [19] The Gauss continued fraction map and Fibonacci map are
conjugate under the involution Jimm. That is,

JT0(J(x)) = T[0,1,1,··· ](x)

for any x ∈ [0,1].

Proof. J([0,1,1, · · · ]) = 0. By Proposition 5.2.1 JT[0,1,1,··· ](x) = TJ([0,1,1,··· ])(Jx) for any
x ∈ [0,1]. Then JT[0,1,1,··· ](x) = T0(Jx). Since J is an involution
JJT[0,1,1,··· ](x) = T[0,1,1,··· ](x). Then T[0,1,1,··· ](x) = JT0(Jx) for any x ∈ [0,1].

Note that Tα is piecewise PSL2(Z) and that its inverse branches are given by

Tα
−1(y) =

[0,n1,n2, · · ·nk−1, i+ y] if 1≤ k; 1≤ i≤ nk

[0,n1,n2, · · ·nk−1,nk,y] if 1≤ k
(5.1)
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So the inverse of Gauss Map:

T0
−1(y) =

1
y+n1

= [0,n1 + y].

Let ψ be the cumulative distribution function of a probability measure on [0,1]. The
operator Lα is just the push back of Tα and the cumulative distribution funtion of y is
equal to LαΨ(y).

(LαΨ)(y) =
∞

∑
k=1

(−1)1+k (Ψ [0,n1, . . . ,nk−1,nk,y]−Ψ [0,n1, . . . ,nk−1,nk,0])

+
∞

∑
k=1

(−1)k
nk−1

∑
i=1

(Ψ [0,n1, . . . ,nk−1, i+ y]−Ψ [0,n1, . . . ,nk−1, i])

(5.2)

We assume that Ψ is differentiable. So we find the density function by taking the
derivative of equation 5.2 term by term, we get the equation:

Lαψ = ∑
∞
k=1(−1)1+k

{
d
dy [0,n1, . . . ,nk−1,nk,y]

}
ψ [0,n1, . . . ,nk−1,nk,y]+

∑
∞
k=1(−1)k

∑
nk−1
i=1

{
d
dy [0,n1, . . . ,nk−1, i+ y]

}
ψ [0,n1, . . . ,nk−1, i+ y]

where ψ is the derivative of Ψ.
This operator is called Gauss Kuzmin Wirsing operator of Tα. Now for finding the
derivatives of continued fraction expansions of a function we will write them in the
following form:

[0,n1, . . . ,nk−1,nk,y] =:
Aky+Bk

Cky+Dk
.

with Ak,Bk,Ck,Dk ∈ Z and AkDk−BkCk = (−1)1+k.
Then

d
dy

[0,n1, . . . ,nk−1,nk,y] =
Ak

(Cky+Dk)
−Ck(Aky+Bk)

(Cky+Dk)
2

=
AkDk−BkCk

(Cky+Dk)2

=
(−1)k+1

(Cky+Dk)
2 .

(5.3)

So we obtain:
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Lαψ =
∞

∑
k=1

1

(Cky+Dk)
2 ψ [0,n1, . . . ,nk−1,nk,y]

+
∞

∑
k=1

nk−1

∑
i=1

1

(Ck−1(y+ i)+Dk−1)
2 ψ [0,n1, . . . ,nk−1, i+ y]

=
∞

∑
k=1

∣∣∣∣ d
dy

[0,n1, . . . ,nk−1,nk,y]
∣∣∣∣ψ [0,n1, . . . ,nk−1,nk,y]

+
∞

∑
k=1

nk−1

∑
i=1

∣∣∣∣ d
dy

[0,n1, . . . ,nk−1, i+ y]
∣∣∣∣ψ [0,n1, . . . ,nk−1, i+ y]

And we have the following equality:

∞

∑
k=1

∣∣∣∣ d
dy

[0,n1, . . . ,nk−1,nk,y]
∣∣∣∣ψ [0,n1, . . . ,nk−1,nk,y] =

∞

∑
k=1

∣∣∣∣ d
dy

[0,n1, . . . ,nk−1,y]
∣∣∣∣s ψ [0,n1, . . . ,nk−1,y]−

∣∣∣∣ d
dy

[0,y]
∣∣∣∣ψ[0,y]

When we take the derivative the last term we obtain:∣∣∣∣ d
dy

[0,y]
∣∣∣∣ψ[0,y] =− 1

y2s ψ

(
1
y

)
.

Finally we have the density function :

(Lαψ)(y) =− 1
y2 ψ

(
1
y

)
+∑

∞
k=1 ∑

nk−1
i=0

∣∣∣ d
dy [0,n1, . . . ,nk−1, i+ y]

∣∣∣ψ [0,n1, . . . ,nk−1, i+ y]

The operation below

(ψ|M) :=
1

|cx+d|2
ψ

(
ax+b
cx+d

)
defines an action of the group PGL2(Z) on the set of functions on R with M(x) = ax+b

cx+d .
It is called the slash operator.

Proof. Indeed, let M(x) = x = 1x+0
0x+1 be the identity. Then

(ψ|M)(x) = 1
|0x+1|2 ψ

( x
1

)
= ψ(x).

Now let M(x) = ax+b
cx+d , N(x) = ex+ f

gx+h ∈ PGL2(Z). We will show (ψ|MN) = ((ψ|M)|N).

We know that
(ψ|M)(x) =

1
|cx+d|2

ψ

(
ax+b
cx+d

)
.
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So,

((ψ|M)|N)(x) =
1

(gx+h)2
1(

c ex+ f
gx+h +d

)2 ψ

(
a(ex+ f

gx+h)+b

c(ex+ f
gx+h)+d

)

=
1

(c(ex+ f )+d(gx+h))2 ψ

(
a(ex+ f )+b(gx+h)
c(ex+ f )+d(gx+h)

)
=

1
(ce+dg)x+ c f +dh)2 ψ

(
(ae+bg)x+a f +bh)
(ce+dg)x+ c f +dh)

)
= (ψ|MN)(x)

where MN =
(ae+bg)x+a f +bh)

(ce+dg)x+ c f +dh)
. Hence this is indeed a group action.

The modular group PSL2(Z) is generated by the following transformations :

S : z 7→ −1/z

T : z 7→ z+1
.

Let U : z 7→ 1/z, K : z 7→ 1− z. So T n : z 7→ z+n and UT n : z 7→ 1/(z+n). Then we can
described a continued fraction via these transformations:
[0,n0,n1,n2, · · · ,nk−1, i+ y] =UT n1U . . .UT nk−1UT i(y). And by Equation 5.3 we obtain
the derivative of a continued fraction. So we have the following equality:∣∣∣∣ d

dy
[0,n1, . . . ,nk−1, i+ y]

∣∣∣∣ψ [0,n1, . . . ,nk−1, i+ y] =
(
ψ|UT n1U . . .UT nk−1UT i)(y)

And also we have
− 1

y2 ψ

(
1
y

)
=−(ψ|U).

Then we reach to the following equality

(Lαψ)(y) =− 1
y2 ψ

(
1
y

)
+

∞

∑
k=1

nk−1

∑
i=0

∣∣∣∣ d
dy

[0,n1, . . . ,nk−1, i+ y]
∣∣∣∣ψ [0,n1, . . . ,nk−1, i+ y]

=−(ψ|U)+
∞

∑
k=1

nk−1

∑
i=0

(
ψ|UT n1U . . .UT nk−1UT i)

(5.4)
Then

(Lαψ|T ) =−(ψ|UT )+
∞

∑
k=1

nk−1

∑
i=0

(
ψ|UT n1U . . .UT nk−1UT i+1) .
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Remark. The following equality satisfies

∞

∑
k=1

(ψ|Mk) =

(
ψ|

∞

∑
k=1

Mk

)

So by this remark we get

Lαψ =

(
ψ|−U +

∞

∑
k=1

nk−1

∑
i=0

UT n1U . . .UT nk−1UT i

)

So we get

Lαψ =

(
ψ|−U +

∞

∑
k=1

UT n1U . . .UT nk−1U
nk−1

∑
i=0

T i

)
nk−1

∑
i=0

T i = (I−T )−1 (I−T nk) .

Then we obtain

Lαψ =

(
ψ|−U +

∞

∑
k=1

UT n1U . . .UT nk−1U(I−T )−1 (I−T nk)

)

By using the equation 5.4 we can compute (Lαψ|T );

(Lαψ|T ) =−(ψ|UT )+
∞

∑
k=1

nk−1

∑
i=0

(
ψ|UT n1U . . .UT nk−1UT i+1)

(Lαψ|I−T ) = (Lαψ)− (Lαψ|T )

=−(ψ|U(I−T ))+
∞

∑
k=1

[(ψ|UT n1 . . .T nk−1U)− (ψ|UT n1 . . .T nk−1UT nk)]

((Lαψ|I−T ) |U) =−(ψ|U(I−T )U)+
∞

∑
k=1

[(ψ|UT n1 . . .T nk−1)− (ψ|UT n1 . . .UT nkU)]

So
(Lαψ|I−T )+((Lαψ|I−T ) |U) = ((Lαψ|I−T ) |(I +U))

is given by

−(ψ|U−UT + I−UTU)+(ψ|I +U) = (ψ|UT +UTU)

So we obtain very simple equation by these computations. Assume that ψ is an
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eigenfunction of Lα with eigenvalue β, i.e. Lαψ = βψ. Then we obtain

(ψ|(I−T )(I +U)) =
1
β
(ψ|UTU +UT ).

(ψ|I−T −TU) = 0 is called the Lewis three term and (?|UTU +UT ) is Isola’s transfer
operator of the Farey map.

(ψ)− (ψ|T )+(ψ|U)− (ψ|UT ) =
1
β
(ψ|UTU)+(ψ|UT ).

So if we write explicitly we obtain the following functional equation;

ψ(y)−ψ(1+ y)+ 1
y2

{
ψ

(
1
y

)
−ψ

(
y+1

y

)}
=

1
β(1+y)2

{
ψ

(
y

1+y

)
+ψ

(
1

1+y

)}
Definition 5.2.2. Let A be the σ-algebra of [0,1] and µ a measure on [0,1]. A map
T : [0,1]→ [0,1] is called measurable if T−1(A) ∈ A for any A ∈ A and is called
measure preserving if µ(T−1(A)) = µ(A). In this case µ is said to be invariant measure
under the map T.

Now we will try to find the eigenfunction Ψ for the Gauss Map which its inverse branch
is given by T−1

0 (y) = 1
y+n1

= [0,n1 + y]. Then

L0ψ(y) =
∞

∑
n=1

d
dy

[0,n+ y]ψ [0,n+ y].

L0ψ = ∑
∞
n=1 (ψ|UT n1) And then

(L0ψ|T ) = ∑
∞
k=1
(
ψ|UT n+1)= (L0ψ|T ) = ∑

∞
n=2 (ψ|UT n). Assume ψ is an

eigenfunction of (L0ψ) with eigenvalue λ we obtain :

λ(ψ− (ψ|T )) = (ψ|UT )

⇔ ψ− (ψ|T ) = 1
λ
(ψ|UT )

⇔ ψ = (ψ|T )+ 1
λ
(ψ|UT )

If we write explicitly we find the following equality:

ψ(y) = ψ(1+ y)+
1
λ

1
(1+ y)2 ψ

(
1

1+ y

)
(5.5)

ψ0(y) := 1
log2

1
1+y is a solution of this equality. This equality is called the Gauss density.

Moreover, it is straight forward to check that this measure satisfies the equation 5.5.

Remark. An invariant measure does not need to be unique. A map may have ∞-many
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invariant measure.

Proposition 5.2.3. [19] Minkowski measure is an invariant measure of Tα for any
α ∈ [0,1].

Proof. The cumulative distribution function of Minkowski measure is Minkowski ?
function. The inverse branches of Tα for any α ∈ [0,1] in given at 5.1. Let
ϕγ(y) := [0,n1,n2, . . . ,nk−1, i+ y] where i≥ 0. such that

{
ϕγ

}
γ=1,2,... are given the set of

inverse branches of Tα for any γ. So we know by the equality 5.2 the cumulative
distribution function for any α is the following

Lα?(y) = ∑
γ

(Ψ [0,n1, . . . ,nk−1, i+ y]−Ψ [0,n1, . . . ,nk−1, i])

We will check that the Minkowski ? function is an eigenfunction of Lα i.e.
Lα?(y) = λ?(y) where λ is an eigenvalue. We assume that λ = 1.

Lα?(y) = ∑
γ

(? [0,n1, . . . ,nk−1, i+ y]−? [0,n1, . . . ,nk−1, i]) = ∑
γ

?(y)2−(n1+···+nk−1+i)

(5.6)
So

Lα?(y) =?(y)∑
γ

2−(n1+···+nk−1+i)

∑γ 2−(n1+···+nk−1+i) = 1. Hence it proves Lα?(y) =?(y).

Let’s take α = 1 = [0,1,∞]. So the continued fraction map is given by ;

T1(x) =

[0,m1−1,m2,m3, · · · ] if m1 > 1

[0,m3,m4 · · · ] if m1 = 1

where x = [0,m1,m2,m3, · · · ] ∈ [0,1].

T1(x) =


(1

x −1
)−1

if 0≤ x < 1
2 .

T0
(1

x −1
)

if 1
2 ≤ x < 1.

L1ψ = (ψ|UTU)+
∞

∑
i=1

(
ψ|UTUT i)

=
∞

∑
i=0

(
ψ|UTUT i)
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Assume ψ is an eigenfunction for L1. And also we assume that the eigenvalue is 1. So
we get the following equality:

ψ =
∞

∑
i=0

(
ψ|UTUT i)

=

(
ψ|UTU

∞

∑
i=0

T i

)
=
(
ψ|UTU(I−T )−1)

⇔ (ψ|I−T ) = (ψ|UTU)

When we write explicitly we obtain

ψ(y)−ψ(1+ y) =
1

(y+1)2 ψ

(
y

y+1

)
.

So ψ(y) = 1
y satisfies this equality which gives us an eigenfunction of L1. So it is the

density function of an invariant measure on T1(x).

Example 5.2.4. F1 is the subtree of F consisting of vertices of distance ≤ 1 to the fixed
edge e. So TF1 is just cutting the first edges of the paths of the tree. That is,

TF1(x) =

[0,m1−1,m2,m3, · · · ] if m1 > 1

[0,m2,m3, · · · ] if m1 = 1

where x = [0,m1,m2,m3, · · · ] ∈ [0,1]. If we write the function by the value x;

TF1(x) =

 x
1−x if 0≤ x < 1

2 .

1
x −1 if 1

2 ≤ x < 1.

Figure 5.3: TF1

If µ is an invariant measure under the function TF1 then the cumulative distribution
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function satisfies the following equation:

(LF1Ψ)(y) = (Ψ [0,1,y]−Ψ [0,∞])+(Ψ [0,1+ y]−Ψ [0,1,∞])

Assuming that (LF1Ψ)(y) is differentiable the desity function which is derivative of this
function is given by:

(Lαψ)(y) =
∣∣∣∣ d
dy

[0,1,y]
∣∣∣∣ψ[0,1,y]+ ∣∣∣∣ d

dy
[0,1+ y]

∣∣∣∣ψ[0,1+ y]

(Lαψ) = (ψ|UTU)+(ψ|UT )

Now suppose that ψ is an eigenfunction of Lα then we get:

ψ = (ψ|UTU)+(ψ|UT )

⇔ (ψ|U) =
(
ψ|UTU2)+(ψ|UTU)

⇔ (ψ|U) = (ψ|UT )+(ψ|UTU)

⇔ (ψ− (ψ|U)) = 0

.

If we write explicitly the previous equation we obtain:

ψ(y)− 1
y2 ψ

(
1
y

)
= 0.

ψ(y) := 1
y satisfies this equality for any y.

Remark. TFn = (TF1)
n so the invariant measure under the function TFn is the same with

TF1 .

Proof. The map TF1 just cuts the first starting edge e. And TF2 cuts the sub tree F2. That
is, it cuts only the edge in the first line; e and the edges in the second line. So if we apply
TF1 we cut the edge e in the first line. And again we apply this map we cut the edges in
the first line again but now these are the edges in the second line of the tree. So
T2

F1
≡ TF2 . Let n ∈ N. Assume TFn−1 = (TF1)

n−1. The map TFn cuts the sub tree Fn.
The map TFn−1 cuts the first n−1 lines of the tree. And if we apply the map TF1 we
obtain the map (TFn). Then by induction TFn = (TF1)

n.

The graphs of the maps TF2 and TF3 are as follows:
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Figure 5.4: TF2

Figure 5.5: TF3

5.2.1 A More Generalisation of The Continued Fraction Maps

We know some ends of Farey tree can be labeled by rational numbers and the meaning of
a continued fraction map Tα can be thought as just cutting the end α. So if we cut more
than one end we obtain a generalization of these maps. This generalization is given by
us.

Let us see this generalization over some examples:

Let’s take the paths 1
2
+

and 1
2
−

. We know the continued fraction expansion of them are
not same so T 1

2
+ 6≡ T 1

2
− 6≡ T 1

2
+∨ 1

2
− .

T 1
2
+∨ 1

2
−(x) =



[0,m1−2,m2, · · · ] if m1 > 2

[0,m3,m4, · · · ] if m1 = 2

[0,m4,m5, · · · ] if m1 = 1, m2 = 1

[0,m2−1,m3, · · · ] if m1 = 1, m2 > 1.
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where x = [0,m1,m2,m3, · · · ] ∈ [0,1].

T 1
2
+∨ 1

2
−(x) =



x
1−2x if 0 < x≤ 1

3
x−m2+2m2x

1−2x if 1
3 ≤ x < 1

2
1−x−2m3x+m3

2x−1 if 1
2 < x≤ 2

3
1−x

2x−1 if 2
3 ≤ x < 1.

Figure 5.6: T 1
2
+∨ 1

2
−(x)

The density function of an invariant measure µ is given by as follows:

fµ(y) =
∞

∑
m=0

1
(2y+2m+1)2

(
fµ
( y+m

2y+2m+1
)
+ fµ

( y+m+1
2y+2m+1

))

fµ(y)− fµ(y+1) =
1

(2y+1)2

(
fµ
( y

2y+1
)
+ fµ

( y+1
2y+1

))
fµ(y) = 1

y satisfies the previous equality. So it can the density of an invariant measure µ

under the function T 1
2
+∨ 1

2
− . Let us to write fµ(y) = 1

y :

∞

∑
m=0

1
(2y+2m+1)2

(
fµ
( y+m

2y+2m+1
)
+ fµ

( y+m+1
2y+2m+1

))
=

∞

∑
m=0

1
(y+m)(y+m+1)

=
∞

∑
m=0

1
y+m

− 1
y+m+1

=
1
y

Then fµ(y) = 1
y is the density of an invariant measure.
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T 1
3
+∨ 1

3
−∨ 2

3
+∨ 2

3
−(x) =



[0,m1−3,m2, · · · ] if m1 > 3

[0,m3,m4, · · · ] if m1 = 3

[0,m4,m5, · · · ] if m1 = 2, m2 = 1

[0,m2−1,m3, · · · ] if m1 = 2, m2 > 1.

[0,m3−1,m4, · · · ] if m1 = 1,m2 = 1,m3 > 1

[0,m5,m6, · · · ] if m1 = 1,m2 = 1,m3 = 1

[0,m4,m5, · · · ] if m1 = 1,m2 = 2

[0,m2−2,m3, · · · ] if m1 = 1,m2 > 2

where x = [0,m1,m2,m3 · · · ] ∈ [0,1]. By the value x function is given as:

T 1
3
+∨ 1

3
−∨ 2

3
+∨ 2

3
−(x) =



x
1−3x if 0 < x≤ 1

4
x−m2+3m2x

1−3x if 1
4 ≤ x < 1

3
1−2x−3m3x+m3

3x−1 if 1
3 < x≤ 2

5
1−2x
3x−1 if 2

5 ≤ x < 1
2

2x−1
2−3x if 1

2 < x≤ 3
5

2x−1−2m4+3m4x
2−3x if 3

5 ≤ x < 2
3

1−x−3m3x+2m3
3x−2 if 2

3 < x≤ 3
4

1−x
3x−2 if 3

4 ≤ x < 1

So the density of an invariant measure under the previous function satisfies the equation:

fµ(y) =
∞

∑
m=0

1
(3y+3m+1)2

(
fµ
( y+m

3y+3m+1
)
+ fµ

(2y+2m+1
3y+3m+1

))
+

1
(3y+3m+2)2

(
fµ
( y+m+1

3y+3m+2
)
+ fµ

(2y+2m+1
3y+3m+2

))
.

(5.7)

Assuming that the density function is analytic we can write the following equality,
finding a solution for this equality is simpler than the previous one.

fµ(y)− fµ(y+1) =
1

(3y+1)2

(
fµ
( y

3y+1
)
+ fµ

(2y+1
3y+1

))
+

1
(3y+2)2

(
fµ
( y+1

3y+2
)
+ fµ

(2y+1
3y+2

))
.

f (y) = 1
y satisfies this equality. If we check it for the equation 5.7, it satisfies also. So it
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is the density of the invariant measure under the map T 1
3
+∨ 1

3
−∨ 2

3
+∨ 2

3
−(x).

Figure 5.7: T 1
3
+∨ 1

3
−∨ 2

3
+∨ 2

3
−(x)

5.2.2 Invariant Measures for A Special Case of A Generalisation of
The Continued Fraction Maps

Denote that Fn is a subtree of F consisting of vertices of distance ≤ n to the root vertex
1
2 . By convention, V (F0) := {0

1 ,
1
2 ,

1
1}. Then V (F1) := {0

1 ,
1
3 ,

1
2 ,

2
3 ,

1
1},

V (F2) := {0
1 ,

1
4

1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

3
4 ,

1
1} etc. Since it is a binary tree we can observe that

|V (Fn)|= 2n+1 +1. So let

V (Fn) =

{
0
1
,
a1

b1
,
a2

b2
,
a3

b3
, · · · , ak

bk
, · · · ,

a2n+1−1

b2n+1−1
,
a2n+1

b2n+1

}
Then V (Fn−1) and V (Fn+1) is given by

V (Fn−1) =

{
0
1
,
a2

b2
,
a4

b4
, · · · ,

a2n+1−2

b2n+1−2
,
a2n+1

b2n+1

}
V (Fn+1) = {

0
1
,

a1

1+b1
,
a1

b1
,
a1 +a2

b1 +b2
,
a2

b2
,
a2 +a3

b2 +b3
,
a3

b3
, · · · ,

ak

bk
,
ak +ak+1

bk +bk+1
,
ak+1

bk+1
· · · ,

a2n+1−1

b2n+1−1
,
a2n+1−1 +a2n+1

b2n+1−1 +b2n+1
,
a2n+1

b2n+1
}

Lemma 5.2.1. Let V (Fn) =
{

0
1 ,

a1
b1
, a2

b2
, a3

b3
, · · · , ak

bk
, · · · , 1

2 , · · · ,
ck
dk
, · · · , c2

d2
, c1

d1
, 1

1

}
. Then

di = bi and ci = bi−ai for any i ∈ {1,2, · · · ,k, · · ·}. Indeed, ai
bi
+ ci

di
= 1 for any i ∈ N.

Proof. It satisfies for V (F0) := {0
1 ,

1
2 ,

1
1}. Assume that the propriety satisfies for V (Fn).

We will show it satisfies for V (Fn+1).

V (Fn+1) = {
0
1
,

a1

1+b1
,
a1

b1
,
a1 +a2

b1 +b2
,
a2

b2
,
a2 +a3

b2 +b3
,
a3

b3
, · · · ,

ak−1

bk−1
,
ak−1 +ak

bk−1 +bk
,
ak

bk
, · · · , 1

2
, · · · , ck

dk
,

ck−1 + ck

dk−1 +dk
,

ck−1

dk−1
,

· · · , c3

d3
,

c3 + c2

d3 +d2
,

c2

d2
,

c2 + c1

d2 +d1
,

c1

d1
,

c1 +1
d1 +1

,
1
1
}
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Let ak
bk
, ck

dk
∈V (Fn). Then by assumption bk−1 = dk−1 and bk = dk then

bk−1 +bk = dk−1 +dk. Moreover, by assumption ck−1 = bk−1−ak−1 and ck = bk−ak.
Then ck−1 + ck = bk−1 +bk− (ak +ak−1).

The following proprieties of Farey tree (following 2 lemmas) were showed by us.

Lemma 5.2.2. Assume that

V (Fn) =

{
a0

b0
,
a1

b1
,
a2

b2
, · · · , ak

bk
, · · · , a2n−1

b2n−1
,
1
2
,

c2n−1

b2n−1
, · · · , ck

bk
, · · · , c2

b2
,

c1

b1
,

c0

b0

}
.

Then

V (Fn+1) = {
a0

b0
,
a0 +a1

b1 +b0
,
a1

b1
,
a1 +a2

b1 +b2
, · · · , ak +ak−1

bk +bk−1
,
ak

bk
, · · · , a2n−1 +1

b2n−1 +2

,
1
2
,

b1

b2n−1 +2
,

b2

b2n−1
, · · · , b4

b2
,

b3

b1 +b2
,
b2

b1
,

b1

b1 +1
,
b0

b0
}

.

Proof. We know V (F0) = {0
1 ,

1
2 ,

1
1} and V (F1) = {0

1 ,
1
3 ,

1
2 ,

2
3 ,

1
1}. So the hypothesis is true

for this case. Assume that it is true for V (Fn). We will show it for V (Fn+1). Let

V (Fn−1) = {
a0

b0
,
a2

b2
,
a4

b4
, · · · , 1

2
,

c2n−2

b2n−2
· · · , c4

b4
,

c2

b2
,

c0

b0
}

If

V (Fn) =

{
a0

b0
,
a1

b1
,
a2

b2
,
a3

b3
, · · · , ak

bk
, · · · 1

2
,

c2n−1

b2n−1
,

c2n−2

b2n−2
, · · · , ck

bk
, · · · , c3

b3
,

c2

b2
,

c1

b1
,

c0

b0

}
Then by our assumption

ck = b2k and c2n−k = b2k for any k ∈ {0, · · · ,2n−1}. (5.8)

We want to show that
ck + ck+1 = b2k+1 and ck = b2k.

c2n−k + c2n−(k+1) = b2k+1 and c2n−k = b2k for any k ∈ {0,2n−1}.

By the equation 5.8 ck + ck+1 = b2k +b2k+2 = b2k+1 by the rule of the Farey sum, and
also ck = b2k. Moreover, c2n−k + c2n−(k+1) = b2k +b2k+2 = b2k+1 by Farey sum, and
c2n−k = b2k for any k ∈ {0, · · · ,2n−1}.
So it gives us
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V (Fn+1) = {
0
1
,

a1

b1 +1
,
a1

b1
,
a1 +a2

b1 +b2
,
a2

b2
,
a3 +a2

b3 +b2
,
a3

b3
, · · · ,

ak +ak−1

bk +bk−1
,
ak

bk
, · · · , 1

2
,

b1

b2n−1 +2
,

b2

b2n−1
· · · ,

b4

b2
,

b3

b1 +b2
,
b2

b1
,

b1

b1 +1
,
1
1
}

Lemma 5.2.3. Assume

V (Fn) = {
a0

b0
,
a1

b1
,
a2

b2
, · · · , a2n+1

b2n+1
}

Then

V (Fn+1) = {
a0

b0
,

a1

b0 +b1
,
a2

b1
, · · · , a2n+1

b2n
,

c2n+1−1

b2n−1 +b2n
, · · · , c1 + c0

b0 +b1
,

c0

b0
}

Proof. We will just focus on the nominators of the elements of V (Fn+1) which are less
than 1

2 . We have V (F0) = {0
1 ,

1
2 ,

1
1} and V (F1) = {0

1 ,
1
3 ,

1
2 ,

2
3 ,

1
1}. So the hypothesis is true

for this case. Assume that it is true for V (Fn). We will show it for V (Fn+1). We must
show

ak +ak+1 = a2k+1 and ak = a2k.

By our assumption ak = a2k satisfies. By the rule of Farey sum
a2k+1 = a2k +a2k+2 = ak +ak+1.

We see that in the Farey tree every end can be describbed also by a rational number, and
also every vertices of a tree labeled with a rational number and these give us an end. Let
Fn be the subtree of the Farey tree and
V (Fn)\V (Fn−1) = {a1

b1
, a3

b3
, a5

b5
, . . . , ak

bk
, · · · , a2n+1−1

b2n+1−1
}. Denote Xn be the set of the all ends

which are labeled with the rational numbers in V (Fn)\V (Fn−1). Assume
ak
bk
∈V (Fn)\V (Fn−1). Then it represents two ends in the tree : ak

bk

+ and ak
bk

−. Denote that
TXn = T a1

b1

+∨ a1
b1

−∨···∨
a
2n+1−1

b
2n+1−1

+
∨

a
2n+1−1

b
2n+1−1

− . For example T 1
2
+∨ 1

2
− = TX0

The following theorem was raised and proved by us.

Theorem 5.2.4. The density of an invariant measure under the transition map TXn is

fµ(y) = 1
y for any n ∈ N.

Proof. First, let us to try the inverse branches of the transition map. Assume
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TXn :=
ax+b

cx+d
for some a,b,c,d ∈ N with c 6= 0 or d 6= O and |ad−bc|= 1. So the

inverse of this map is
dy−b

a− cy
. Let ak

bk
∈V (Fn)\V (Fn−1). If x ∈ (ak−1

bk−1
, ak+1

bk+1
) then

T ak
bk

+∨ ak
bk

−(x) = TXn(x). Let us to divide this interval and try to find the inverse branches.

(
ak−1

bk−1
,
ak+1

bk+1

)
=

(
ak−1

bk−1
,
ak−1 +ak

bk−1 +bk

]⋃(
ak−1 +ak

bk−1 +bk
,
ak

bk

]⋃
(

ak

bk
,
ak +ak+1

bk +bk+1

]⋃(
ak +ak+1

bk +bk+1
,
ak+1

bk+1

)

First, let the path x ∈

(
ak−1

bk−1
,
ak−1 +ak

bk−1 +bk

)
, the map T ak

bk

+∨ ak
bk

−(x) cuts the first n edges of

x. The depth of
ak−1

bk−1
as a vertex is n, so T ak

bk

+∨ ak
bk

− maps the interval

(
ak−1

bk−1
,
ak−1 +ak

bk−1 +bk

)
to (0,1). Then we reach the following values of the map T ak

bk

+∨ ak
bk

−:

• T ak
bk

+∨ ak
bk

−(
ak−1

bk−1
) =

0

1

• T ak
bk

+∨ ak
bk

−(
ak−1 +ak

bk−1 +bk
) =

1

1

• T ak
bk

+∨ ak
bk

−(
2ak−1 +ak

2bk−1 +bk
=

1

2

• T ak
bk

+∨ ak
bk

−(
3ak−1 +ak

3bk−1 +bk
=

1

3

After some calculations we obtain the following equalities: b =−a
ak−1

bk−1
, c =−a

bk

bk−1
,

d =−c
ak

bk
, a = a. We know |ad−bc|= 1, then a2 = b2

k−1. Without loss of generality

a = bk−1. Thus, d = ak, b =−ak−1 and c =−bk. Hence we obtain

T−1
ak
bk

+∨ ak
bk

−(y) =
aky+ak−1

bky+bk−1
.

Now assume that x ∈

(
ak−1 +ak

bk−1 +bk
,
ak

bk

)
. Then x has at least n+1 common edges with

ak

bk
.
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If x ∈

(
ak−1 +ak

bk−1 +bk
,
ak−1 +2ak

bk−1 +2bk

)
then x has exactly n+1 common edges with the end

ak

bk
,

if we apply the transition map, it means we will cut the common edges. So we obtain:

• T ak
bk

+∨ ak
bk

−(
ak−1 +ak

bk−1 +bk
) =

0

1

• T ak
bk

+∨ ak
bk

−(
ak−1 +2ak

bk−1 +2bk
) =

1

1

• T ak
bk

+∨ ak
bk

−(
2ak−1 +3ak

2bk−1 +3bk
=

1

2

• T ak
bk

+∨ ak
bk

−(
3ak−1 +4ak

3bk−1 +4bk
=

1

3

After some calculations we obtain a = bk−1 +bk, b =−(ak−1 +ak), c =−bk and d = ak.

So
dy−b

a− cy
=

aky+ak−1 +ak

bky+bk−1 +bk
which gives us the inverse branch of the map.

Now assume that x ∈

(
ak−1 +2ak

bk−1 +2bk
,
ak−1 +3ak

bk−1 +3bk

)
then x has exactly n+2 common edges

with the end
ak

bk
, if we apply the transition map, it means we will cut the common edges.

So we obtain:

• T ak
bk

+∨ ak
bk

−(
ak−1 +2ak

bk−1 +2bk
) =

0

1

• T ak
bk

+∨ ak
bk

−(
ak−1 +3ak

bk−1 +3bk
) =

1

1

• T ak
bk

+∨ ak
bk

−(
2ak−1 +5ak

2bk−1 +5bk
=

1

2

After some calculations we obtain
dy−b

a− cy
=

aky+ak−1 +2ak

bky+bk−1 +2bk
which gives us the inverse

branch of the map.
For generaliser the inverse branches in this case, we assume x has n+m common edges

with
ak

bk
. Then we will cut this edges and in this case

x ∈

(
ak−1 +mak

bk−1 +mbk
,
ak−1 +(m+1)ak

bk−1 +(m+1)bk

)
.

• T ak
bk

+∨ ak
bk

−(
ak−1 +mak

bk−1 +mbk
) =

0

1
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• T ak
bk

+∨ ak
bk

−(
ak−1 +(m+1)ak

bk−1 +(m+1)bk
) =

1

1

• T ak
bk

+∨ ak
bk

−(
2ak−1 +(2m+1)ak

2bk−1 +(2m+1)bk
=

1

2

After similar steps we obtain the inverse branch:
dy−b

a− cy
=

aky+ak−1 +mak

bky+bk−1 +mbk
. In

summary we divise the interval

(
ak−1 +ak

bk−1 +bk
,
ak

bk

)
infinitely many intervals such that

x ∈

(
ak−1 +ak

bk−1 +bk
,
ak

bk

)
=

∞⋃
i=1

(
ak−1 + iak

bk−1 + ibk
,
ak−1 +(i+1)ak

bk−1 +(i+1)bk

)
.

Since if x ∈

(
ak−1 +mak

bk−1 +mbk
,
ak−1 +(m+1)ak

bk−1 +(m+1)bk

)
it has exactly n+m common edges with

the end
ak

bk
.

Now assume that x ∈

(
ak

bk
,
ak +ak+1

bk +bk+1

)
. By the similar reason with the previous interval

we will divise this interval as following :(
ak

bk
,
ak +ak+1

bk +bk+1

)
=

∞⋃
i=1

(
(i+1)ak +ak+1

(i+1)bk +bk+1
,
iak +ak+1

ibk +bk+1

)
.

If x has exactly n+m common edges with
ak

bk
then x ∈

(
(m+1)ak +ak+1

(m+1)bk +bk+1
,
mak +ak+1

mbk +bk+1

)
.

And in this case we have the following values of the transition map:

• T ak
bk

+∨ ak
bk

−(
ak+1 +mak

bk+1 +mbk
) =

0

1

• T ak
bk

+∨ ak
bk

−(
ak+1 +(m+1)ak

bk+1 +(m+1)bk
) =

1

1

• T ak
bk

+∨ ak
bk

−(
2ak+1 +(2m+1)ak

2bk+1 +(2m+1)bk
=

1

2

Then we find the inverse branch:

dy−b

a− cy
=

aky+mak +ak+1

bky+mbk +bk+1
.
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Finally if x ∈

(
ak +ak+1

bk +bk+1
,
ak+1

bk+1

)
.

Then x has exactly n common edges with the end
ak

bk
. Then

• T ak
bk

+∨ ak
bk

−(
ak+1

bk+1
) =

0

1

• T ak
bk

+∨ ak
bk

−(
ak+1 +ak

bk+1 +bk
) =

1

1

• T ak
bk

+∨ ak
bk

−(
2ak+1 +ak

2bk+1 +bk
=

1

2
After similar calculations the inverse branch of the transition map is given by

dy−b

a− cy
=

aky+ak+1

bky+bk+1
.

V (Fn) =
{

a0
b0
, a1

b1
, a2

b2
, · · · , a2n+1

b2n+1

}
. V (Fn)/V (Fn−1) = {a1

b1
, a3

b3
, · · · , a2n+1−1

b2n+1−1
} Then the

equation f (y)− f (y+1) for the map TXn is given as follows:

f (y)− f (y+1) =
2n−1

∑
k=0

1

(b2k+1y+b2k)
2 f (

a2k+1y+a2k

b2k+1y+b2k
)

+
1

(b2k+1y+b2k+2)
2 f (

a2k+1y+a2k+2

b2k+1y+b2k+2
)

(5.9)

We showed that f (y) = 1
y is the density of an invariant measure of TX0 . Assume that

f (y) = 1
y satisfies the equation 5.9 then we obtain

1
y(y+1)

=
2n−1

∑
k=0

1
(a2k+1y+a2k)(b2k+1y+b2k)

+
1

(a2k+1y+a2k+2)(b2k+1y+b2k+2)

By the previous lemmas 5.2.1, 5.2.2 and 5.2.3 V (Fn+1) can be given as follows:

V (Fn+1) = {
a0

b0
,

a1

b1 +b0
,
a2

b1
,

a3

b1 +b2
, · · · ,

a2n+1−1

b2n−1 +b2n
,
a2n+1

b2n
,

b2n+1−1

b2n−1 +b2n
,
b2n+1−2

b2n−1
, · · · , b3

b1 +b2
,
b2

b1
,

b1

b1 +b0
,
b0

b0
}

.

V (Fn+1)/V (Fn) = { a1
b1+b0

, a3
b2+b1

, a5
b3+b2

, · · · , a2n+1−1
b2n−1+b2n ,

b2n+1−1
b2n−1+b2n , · · · ,

b3
b1+b2

, b1
b1+b0

}.
Then the equation f (y)− f (y+1) for the map TXn+1 is given as follows:
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f (y)− f (y+1) =
2n−1

∑
k=0

1

((bk +bk+1)y+bk)
2 f (

a2k+1y+a2k

(bk +bk+1)y+bk
)

+
1

((bk +bk+1)y+bk+1)
2 f (

a2k+1y+a2k+2

(bk +bk+1)y+bk+1
)

+
1

((bk +bk+1)y+bk)
2 f (

b2k+1y+b2k

(bk +bk+1)y+bk
)

+
1

((bk +bk+1)y+bk+1)
2 f (

b2k+1y+b2k+2

(bk +bk+1)y+bk+1
)

Let f (y) = 1
y . The right side of the equality is given as follows:

2n−1

∑
k=0

1
((bk +bk+1)y+bk)(a2k+1y+a2k)

+
1

((bk +bk+1)y+bk+1)(a2k+1y+a2k+2)

+
1

((bk +bk+1)y+bk)(b2k+1y+b2k)
+

1
((bk +bk+1)y+bk+1)(b2k+1y+b2k+2)

=
2n−1

∑
k=0

(a2k+1 +b2k+1)y+a2k +b2k

((bk +bk+1)y+bk)(a2k+1y+a2k)(b2k+1y+b2k)
+

(a2k+1 +b2k+1)y+a2k+2 +b2k+2

((bk +bk+1)y+bk+1)(a2k+1y+a2k+2)(b2k+1y+b2k+2)

By the Lemma 5.2.1 b2k+1
bk+bk+1

+ a2k+1
bk+bk+1

= 1 then b2k+1 +a2k+1 = bk +bk+1 and
a2k
bk

+ b2k
bk

= 1 then a2k +b2k = bk. Then we have the following equality:

2n−1

∑
k=0

(a2k+1 +b2k+1)y+a2k +b2k

((bk +bk+1)y+bk)(a2k+1y+a2k)(b2k+1y+b2k)
+

(a2k+1 +b2k+1)y+a2k+2 +b2k+2

((bk +bk+1)y+bk+1)(a2k+1y+a2k+2)(b2k+1y+b2k+2)

=
2n−1

∑
k=0

(bk +bk+1)y+bk

((bk +bk+1)y+bk)(a2k+1y+a2k)(b2k+1y+b2k)
+

(bk +bk+1)y+bk+1

((bk +bk+1)y+bk+1)(a2k+1y+a2k+2)(b2k+1y+b2k+2)

=
2n−1

∑
k=0

1
(a2k+1y+a2k)(b2k+1y+b2k)

+
1

(a2k+1y+a2k+2)(b2k+1y+b2k+2)

So by the Equation 5.9 we have

2n−1

∑
k=0

1
(a2k+1y+a2k)(b2k+1y+b2k)

+
1

(a2k+1y+a2k+2)(b2k+1y+b2k+2)
=

1
y(y+1)

.

So f (y) = 1
y satisfies all the equalities f (y)− f (y+1) for our general map if f is an
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analytic funtion. As a result we can say that f (y) = 1
y is the density of an invariant

measure under these special case of a generalization of continued fraction maps.



6 ASSOCIATED POWER SERIES OF THE
CONTINUED FRACTIONS

This chapter is not directly related to the other chapters in this thesis. Our motivation is
to associate a power series to continued fractions, but we want to this power series has
some proprieties such as continuity and convergence.

The modular group PSL(2,Z) is the group of 2X2 matrices which of the coefficients are

integers and the operation is matrix multiplication. Let

[
a b

c d

]
be an element of

PSL(2,Z), it represents a linear fractional transformation such that z 7→ a·z+b
c·z+d . The group

which occurs by these linear transformations and composition operation is called
modular group. Moreover we can generate this modular group by the linear
transformations T : z 7→ 1+ z and S : z 7→ −1

z such that S2 = (T S)3 = Id. So apparently
we can say that PSL(2,Z) = 〈S,T |S2 = (T S)3 = Id〉. Let L := T S.
There is a natural homomorphism between the group PSL(2,Z) and real numbers such
that

γ : PSL(2,Z)−→ R+∪R−

(LS)n1(L2S)n2(LS)n3 . . . 7−→ [n1,n2,n3, · · · ]

S(LS)n1(L2S)n2(LS)n3 . . . 7−→ [−n1−1,1,n2−1,n3,n4 · · · ].

such that LS = 1+ z and L2S =
1

1+
1

z

.

It is clear that (LS)n(z) = n+ z for any n ∈ Z. We know that

69
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(L2S)(z) =
1

1+
1

z

. Assume that (L2S)n−1(z) =
1

n−1+
1

z

then by induction

(L2S)n(z) = L2S(L2S)n−1(z)

=
1

1+
1

1

n−1+
1

z

=
1

n+
1

z

.

So we obtain the following equality

(LS)n1(L2S)n2(LS)n3(z) = n1 +
1

n2 +
1

n3 + z

= [n1,n2,n3]

(6.1)

We can generalize this result for infinite continued fraction expansions. Moreover if we
multiply by S we can obtain negative real numbers such that

S(LS)n1(L2S)n2(LS)n3(z) =−n1 +
1

n2 +
1

n3 + z

= [−n1−1,1,n2−1,n3, . . .]. (6.2)

6.1 Some Power Series Candidates

Now our aim is to come up with a well defined power series for each continued fraction
expansion of reel numbers. First of all finding for R∩ (0,1) is adequate, after we will
enhance and generalize for all real numbers.
Former, basicly for x = [0,n1,n2, . . .] we can suggest the power series
hx(t) = tn1 + tn1+n2 + tn1+n2+n3 + · · · for any t. But it is obvious that this series is not well
defined, we will explain the reason by a simple example. Let x = 1

2 then it can be
represented by two continued fractions but actually they are the same,
[0,1,1,∞] = [0,2,∞]. Our expactation is hx(t) should be the same power series for two
expansion but it is not: for [0,1,1,∞] hx(t) = t1 + t2 whereas for [0,2,∞], hx(t) = t2.
Latter for x = [0,n1,n2, . . .] we put forward the power series gx(t) which is ordinary
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generating function of the sequence 0,0, . . . ,0︸ ︷︷ ︸
n1-times

,1,1, . . . ,1︸ ︷︷ ︸
n2-times

,0,0, . . . ,0︸ ︷︷ ︸
n3-times

. . . In this case

gx(t) =
∞

∑
k=0

aktk = tn1 + tn1+1 + tn1+2 ++tn1+n2−1 + tn1+n2+n3 + tn1+n2+n3+1+

· · ·+ tn1+n2+n3+n4−1 + tn1+···n5 + · · ·+ tn1+···n6−1 + · · ·

Or if we write compactly gx(t) = ∑
∞
k=1 tn1+n2+···n2k−1

1− tn2k

1− t
. So we can say that

gx(t)< ∑
∞
k=0 tk for any t. And we know that this series is geometric and it is convergent

for |t|< 1. Then by comparison test gx(t) is also convergent for |t|< 1. But this power
series is not well defined like previous power series. We can control this result by
calculating the power series of the same rational number 1

2 . Hence gx(t) = t for the
premier continued fraction expansion [0,1,1,∞] whereas gx(t) = t2

1−t for x = [0,2,∞] and
they are not equal.

6.2 A Well Defined Power Series

Proposition 6.2.1. The series fx(t) = 1+ t + t2 + · · · tn1−1 + tn1(1+ s+ s2 + · · ·sn2−1)+

tn1sn2(1+ t + t2 + · · · tn3−1)+ tn1sn2tn3(1+ s+ · · ·sn4−1)+ · · · is a well defined power
series for x = [0,n1,n2,n3,n4 · · · ] with ni ∈ Z\{0} and s = t−1.

Proof. Let q+ = [0,n1,n2, . . . ,nk−1,1,∞] and q− = [0,n1,n2, . . . ,nk,∞]. We must show
that fq+(t) = fq−(t) for any t.

fq+(t) = 1+ t + · · · tn1−1 + tn1(1+ s+ · · ·+ sn2−1)+ · · ·+ tn1+···nk−2sn2+···+nk−1(1+ t +

t2 + · · ·+ tnk−2)+ tn1+n3+···nk−2+nk−1sn2+n4+···+nk−1.

So if we calculate fq−(t) we will observe that fq+(t) = fq−(t)+

tn1+···nk−2sn2+···+nk−1(1+ t + · · ·+ tnk−2)+ tn1+n3+···+nk−1sn2+n4+···+nk−1−
tn1+n3+···nk−2sn2+n4+···+nk−1(1+ t + · · ·+ tnk−1). Then it is obvious that fq+(t) = fq−(t)

for any t.

Example 6.2.1.

f0(t) =
∞

∑
k=0

tk =
1

1− t
for |t|< 1.

f1(t) = 1+ t
∞

∑
k=0

sk = 1+ t
1

1− s
= 2 for |s|< 1

.

f 1
2
(t) = 1+ t + t2(

∞

∑
k=0

sk) = 1+ t + t2(
1

1− s
) = 1+2t for |s|< 1

.
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Let x = [0,1,1, · · · ]

fx(t) = 1+ t + ts+ t2s+ t2s2 + t3s2 + t3s3 + · · ·

=
∞

∑
k=0

(ts)k + t
∞

∑
i=0

(ts)i

=
1

1− ts
+

t
1− ts

1+ t
1− t + t2

Lemma 6.2.1. For x = [0,n], fx(t) =
1

1− (ts)n

(1− tn

1− t
+ tn

1− sn

1− s

)
with |t|< 1.

Proof.

fx(t) = 1+ t + · · ·+ tn−1 + tn(1+ s+ · · ·sn−1)+ tnsn(1+ t + · · ·+ tn−1)+ · · ·

= (1+ t + · · ·+ tn−1)(1+(ts)n +(ts)2n +(ts)3n + · · ·)+

tn(1+ s+ · · ·sn−1)(1+(ts)n +(ts)2n +(ts)3n + · · ·)

=
1

1− (ts)n

(
1− tn

1− t
+ tn 1− sn

1− s

)
with |t|< 1.

Proposition 6.2.2. Let x = [0,n1,n2, · · · ,nk] with k is an even number then

fx(t) =
1

1− tn1sn2tn3 · · ·snk

(1− tn1

1− t
+ tn1

1− sn2

1− s
+ tn1sn2

1− tn3

1− t

+ · · ·+ tn1sn2 · · · tnk−1
1− snk

1− s

)
.
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Proof.

fx(t) = 1+ t + · · · tn1−1 + tn1(1+ s+ · · ·+ sn2−1)+ tn1sn2(1+ t + · · ·+ tn3−1)+

tn1+n3sn2(1+ s+ · · ·+ sn4−1)+ · · ·+ tn1+n3+···+nk−1sn2+···+nk(1+ t + · · ·+ tn1−1)+

tn1+n3+···+nk−1sn2+···+nktn1(1+ s+ · · ·+ sn2−1)+ · · ·

= (1+ t + · · ·+ tn1−1)(1+ tn1+···+nk−1sn2+···+nk +(tn1+···+nk−1sn2+···+nk)2+

(tn1+···+nk−1sn2+···+nk)3 + · · ·)+(1+ s+ · · ·+ sn2−1)tn1(1+ tn1+···+nk−1sn2+···+nk+

(tn1+···+nk−1sn2+···+nk)2 +(tn1+···+nk−1sn2+3···+nk)3 + · · ·)+

(1+ t + · · ·+ tn3−1)tn1sn2(1+ tn1+···+nk−1sn2+···+nk +(tn1+···+nk−1sn2+···+nk)2 + · · ·)

=
1

1− tn1sn2 + · · ·snk

(1− tn1

1− t
+ tn1

1− sn2

1− s
+ tn1sn2

1− tn3

1− t
+ · · ·+

tn1sn2 · · · tnk−1
1− snk

1− s

)
.

Now we fix x = [0,n1,n2, · · · ].

Proposition 6.2.3. We have the following functional equation for any n.

f 1
n+x

(t) =
1− tn

1− t
+ tn fx(s).

Proof.
1

n+ x
=

1

n+
1

n1 +
1

n2 +
1
...

= [0,n,n1,n2, · · · ].

So
f 1

n+x
(t) = 1+t+t2+ · · · tn−1+tn(1+s+s2+ · · ·+sn1−1)+tnsn1(1+t+t2+ · · ·+tn2−1)+

· · ·) =
1− tn

1− t
tn(1+ s+ s2 + · · ·+ sn1−1 + sn1(1+ t + t2 + · · · tn2−1)+ · · ·=

1− tn

1− t
tn · fx(s).

Corollary 6.2.1. The following equalities are provided

f 1
1+x

(t) = 1+ t fx(s)

f 1
2+x

(t) = 1+ t + t2 fx(s)
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Corollary 6.2.2. For n = 0 we find f (1
x , t) = f (x,1− t) = f (x,s) then we can say that the

series f (x, t) is defined for x ∈ (0,∞)∩R.

Proposition 6.2.4. The following equation satisfies for any n ∈ N∪{0}

f

(
x

nx+1
, t

)
=

1− tn

1− t
+ tn · f (x, t)

Proof.
x

nx+1
=

1

nx+1

x

=
1

n+
1

x

=
1

n+n1 +
1

n2 +
1
...

= [0,n+n1,n2, · · · ]

So

f (
x

nx+1
, t) = 1+ t + · · · tn+n1−1 + tn+n1(1+ s+ · · ·sn2)+ tn+n1sn2(1+ t + · · · tn3−1)+ · · ·

= tn f (x, t)+1+ t + t2 + · · ·+ tn−1

=
1− tn

1− t
+ tn · f (x, t)

Proposition 6.2.5. For any x ∈ (0,1), f (x, 1
2) = 2.

Proof. Let x = [0,n1,n2, · · · ] with ni ∈ Z. We know s = 1− t = 1
2 . Then

f (x,
1
2
) = 1+

1
2
+(

1
2
)2 + · · ·+(

1
2
)n1−1 +

1
2

n1

(1+
1
2
+ · · · 1

2

n2−1
)+ · · ·

=
∞

∑
i=0

(
1
2
)

i

= 2

Proposition 6.2.6. f (x, t) is a convergent power series where t ∈ (0,1)∩R.

Proof. Assume that t ∈ (0,1) since s = 1− t, s ∈ (0,1). We will try to write the series in
a more appropriate form to see that it is convergent:
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fx(t) =
1− tn1

1− t
+ tn1

1− sn2

1− s
+ tn1sn2

1− tn3

1− t
+ tn1sn2tn3

1− sn4

1− s
+ tn1sn2tn3sn4

1− tn5

1− t

+ tn1sn2tn3sn4tn5
1− sn6

1− s
+ tn1sn2tn3sn4tn5sn6

1− tn7

1− t
· · ·

=
1− tn1

1− t
+ tn1−1(1− sn2)+ tn1sn2−1(1− tn3)+ tn1sn2tn3−1(1− sn4)

+ tn1sn2tn3sn4−1(1− tn5)+ tn1sn2tn3sn4tn5−1(1− sn6)+ tn1sn2 · · ·sn6−1(1− tn7) · · ·

=
1− tn1

1− t
+ tn1−1 + tn1−1sn2−1(t− s)+ tn1sn2−1tn3−1(s− t)

+ tn1sn2tn3−1sn4−1(t− s)+ tn1sn2tn3sn4−1tn5−1(s− t)

+ tn1sn2tn3sn4tn5−1sn6−1(t− s)+ tn1sn2tn3sn4tn5sn6−1tn7−1(s− t)+ · · ·

=
1− tn1

1− t
+ tn1 +(s− t)(−tn1−1sn2−1 + tn1sn2−1tn3−1− tn1sn2tn3−1sn4−1

+ tn1sn2tn3sn4−1tn5−1− tn1sn2tn3sn4tn5−1sn6−1 + tn1sn2tn3sn4tn5sn6−1tn7−1)−·· ·

<
1− tn1

1− t
+ tn1 +(s− t)

∞

∑
i=0

(
∞

∑
j=0

t j

)
si

= 1+ t + t2 + · · ·+2tn1−1 +(s− t)
∞

∑
i=0

(
∞

∑
j=0

t j

)
si.

When t ∈ (0,1) we obtain ∑
∞
j=0 t j =

1

1− t
.

So we have

1+ t + t2 + · · ·+2tn1−1 +(s− t)
∞

∑
i=0

(
∞

∑
j=0

t j

)
si

= 1+ t + t2 + · · ·+2tn1−1 +
s− t

1− t

∞

∑
i=0

si

If t ∈ (0,1) then s ∈ (0,1). So ∑
∞
i=0 si =

1

1− s
.

Then we reach

1+ t + t2 + · · ·+2tn1−1 +
s− t

1− t

∞

∑
i=0

si

= 1+ t + t2 + · · ·+2tn1−1 +
s− t

st

It is a finite sum when n1 < ∞. So
1− tn1

1− t
+ tn1 +(s− t)∑

∞
i=0

(
∑

∞
j=0 t j

)
si converges.
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Then fx(t) is convergent by comparison test. If n1 = ∞ since |t|< 1 the sum
1+ t + t2 + · · ·+2tn1−1 converges. By the same reason fx(t) is convergent.

Proposition 6.2.7. f (−x, t) =
t

s2

(
f (x,s)−1

)
for x ∈ (0,1)∩R.

Proof. If x = [0,n1,n2,n3, . . .] then −x = [−1,1,n1−1,n2, . . .]. So
−1
x = [0,−1,1,n1−1,n2, . . .] by the corolloary 6.2.2.

f
(
−1
x
, t
)
= t−1s(1+ t + t2 + tn1−2)+ t−1st−n1−1(1+ s+ · · ·+ sn2−1)+

t−1stn1−1sn2(1+ t + · · ·+ tn3−1)+ · · ·

=
s
t
(1+ t + t2 + · · ·+ tn1−2 + tn1−1(1+ s+ s2 + · · ·+ sn2−1)

+ tn1−1sn2(1+ t + · · ·+ tn3−1))+ · · ·

=
s
t2 (t + t2 + · · ·+ tn1−1 + tn1(1+ s+ s2 + · · ·+ sn2−1)

+ tn1sn2(1+ t + · · ·+ tn3−1))+ · · ·

=
s
t2 ( f (x, t)−1).

(6.3)

So f (−1
x ,s) = t

s2 ( f (x,s)−1) = f (−x, t) by the corollary 6.2.2.

6.2.1 Conclusion for The Chapter 6

We said that at the equality 6.1 every continued fraction expansion can be identified by a
multiplication of the elements of the modular group PSL2Z. And also we associate every
continued fraction expansion by the power series f (x, t). Now we can associate the
power series f (x, t) with PSL2Z by the following way:

• X := LS = 1+ z←→ Xt : p(t) 7→ 1+ sp(t).

• Y := L2S =
1

1+ 1
z

←→ Yt : p(t) 7→ 1+ t p(t)

• U := 1
z ←→Ut : p(t) 7→ p(s).

where the maps Xt ,Yt ,Ut defines on C[t] which is the ring of the formal power series with
complex coefficients.
So for x = [0,n1,n2, · · · ]

f (x, t) = 1+ t + t2 + · · · tn1−1 + tn1(1+ s+ · · ·+ sn2−1)+ tn1sn2(1+ t + · · ·+ tn3−1)+ · · ·

= Yt
n1Xt

n2Yt
n3 · · ·

.
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But for the power series which associate to negative numbers can not be associate to
these maps.

In this study we couldn’t find any other power series such that series expansion of
negative numbers associate to these maps. It can be tried in the other works.



7 CONCLUSION

In this thesis we studied on the trees especially the Farey Tree. We defined the topology
on the boundary of a tree. We showed that if a tree is perfect then its topology is
homeomorphic to the Cantor Set. Furthermore, we gave an equivalence relation on the
boundary of a perfect tree and we showed that the quotient topology is homeomorphic to
the unit circle. Secondly, we studied the Borel measures on the tree, we give some of
them. Then we studied the automorphism groups of Farey Tree whose edges can be
described by the generators of modular group PSL2(Z) in a nice way. Finally, we
generalized the Gauss map and the Fibonacci map which is called the continued fraction
maps and we examined the dynamics of this map such that we tried to find an invariant
measure under this map. At final, we gave a more generalization of this map and for a
special case we found the density of an invariant measure under the continued fraction
maps, and we proved it.
In this study, we focused on the Farey tree. For other special trees or all trees,
automorphism groups can be observed or the measure on the boundary of these trees can
be studied. We know every vertex is the degree 3 in Farey tree (except the root vertex) so
we define the probability π function by two siblings. If there were more than 2 we could
modify this function and we could try to give another special measures on the boundary
of such trees.
Furthermore, we found an invariant measure under the more general continued fraction
map but we choose the paths conveniently. We could try to find an invariant measure for
more general cases.



REFERENCES

[1] Bates, B. P., Bunder, M. W. and Tognetti, K.P. (2010). ”Linking the Calkin–Wilf
and Stern–Brocot trees.” European Journal of Combinatorics 31.7 : 1637-1661.

[2] Bates, B. P., Bunder, M. W. and Tognetti, K.P. ”Linkages between the Gauss map
and the Stern-Brocot tree.” (2006). Acta Mathematica Academiae Paedagogicae
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[18] Uludağ, M. and Ayral, H. (2016). A subtle symmetry of Lebesgue’s measure,
arXiv :1605.07330 [math.NT].
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Appendix

More informations about continued fractions:

Proposition 7.0.1. Every finite continued fraction has a unique canonical representation.
ie. every continued fraction can be presented by simple fraction.

Proof. Let [a0] = a0 =
a0
1 . We will prove it by induction. Assume that it satisfies for the

(n−1)th order continued fraction. Let a = [a0,a1, · · · ,an] be finite continued fraction.

The order of a is n. Let r1 = [a1,a2, · · · ,an] then we have a = a0 +
1

r1
. Now the order of

r1 is n−1. So r1 =
p′
q′ for some p,q ∈ N. Then a = a0 p′+q′

p′ . So a can be represented by
simple fraction. If a = [a0,a1, · · · ,an] =

p
q . We reach the following equation:

p = a0 p′+q′ and q = p′ (7.1)

So the canonical representation of a is unique.

Let α = [a0,a1, · · · ] be a finite or infinite continued fraction we can give the canonical
representation of the segment Sk = [a0,a1, · · · ,ak] by pk

qk
. Sk is called the kth order

convergent of the continued fraction. So if a is finite it has finite number of convergents.

Theorem 7.0.1. We have the rule of the convergents for k ≥ 2.

pk = ak pk−1 + pk−2

qk = akqk−1 +qk−2
(7.2)

Proof. This equation is satisfied for k = 2 since
p2

q2
= [a0,a1,a2] =

a2(a1a0 +1)+a0

a2a1 +1
then p2 = a2(a1a0 +1)+a0 = a2 p1 + p0 and q2 = a2a1 +1 = a2q1 +q0. Assume that
this recursion satisfy for all k < n. Let Sr = [a1,a2, · · · ,ar] be the rth order convergent of
[a1,a2, · · ·an]. By the equation 7.1 we have

pn = a0 p′n−1 +q′n−1

qn = p′n−1
(7.3)

Moreover by our assumption we have:

p′n−1 = an p′n−2 + p′n−3

q′n−1 = anq′n−2 +q′n−3
(7.4)
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We don’t write an−1 since we start with a1 not a0.

Then by the equations 7.3 and 7.4 we obtain

pn = a0
(
an p′n−2 + p′n−3

)
+
(
anq′n−2 +qn−3

)
= an

(
a0 p′n−2 +q′n−2

)
+
(
a0 p′n−3 +qn−3

)
= an pn−1 + pn−2

(7.5)

And also:
qn = an p′n−2 + p′n3

= anqn−1 +qn−2
(7.6)

By convention we set p−1 = 1 and q−1 = 0

Theorem 7.0.2. For all k ≥ 0

qk pk−1− pkqk−1 = (−1)k

Proof. By the theorem 7.0.1 we have

pk = ak pk−1 + pk−2

qk = akqk−1 +qk−2
(7.7)

Let us to multiply the first equarion with qk−1 and the second with pk−1 and then
substracting the first from the second we have :

qk pk−1− pkqk−1 =−(qk−1 pk−2− pk−1qk−2)

By the convention q0 p−1− p0q−1 = q0 = 1. So it proves our theorem.

Corollary 7.0.1. For all k ≥ 1 we have

pk−1

qk−1
− pk

qk
=

(−1)k

qkqk−1
.
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