MEASURES ON THE BOUNDARY
OF THE FAREY TREE

(FAREY AGACININ SINIRI
UZERINDEKI OLCULER)
by

Hamide KURU, B.S.

Thesis

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

MASTER OF SCIENCE
in
MATHEMATICS
in the
GRADUATE SCHOOL OF SCIENCE AND ENGINEERING
of

GALATASARAY UNIVERSITY

June 2019



Acknowledgements

First of all, I would like to thank my advisor Prof. Dr. A. Muhammed ULUDAG. He is
not only perfect in thesis counseling but also in life and in mathematics, he always directe
me to sensible things, and helps to solve my own problems about doctoral, academic or
real life. Moreover, I would like to thank him for his patience and for explaining the

things I didn’t understand and always passing on his knowledge.

I would like to thank professor Hakan AYRAL who always participated in my thesis work
and has helped me understand what I didn’t understand. I want to thank my friend Buket
EREN for her helps and supports.

I would like to thank my professor Ayberk ZEYTIN for his helps to solve my problems
patiently and for his great contribution to my education and academic life. Moreover, |

would like to thank all my professors at Galatasaray University.

I want to thank my friends for their patience, their support, and what they believe in me.
Especially I thank Yesim URUN for her motivational speeches. I am also grateful to
Hasan SULUYER, who patiently discusses math with me and listens, comments on my

studies.

I would like to thank my parents and to my brother and sister for supporting me spiritually
throughout writing this thesis and my life in general. In particular my mom Fadime
KURU.

Thanks to the Turkish Scientific and Technical Research Institute (TUBITAK) for
supporting this work under project grant 115F412.

14 May 2019
Hamide KURU

il



Table of Contents

LIST OF SYMBOLS . . . . . . . e vi
LIST OF FIGURES . . . . . . . . . e vii
ABSTRACT . . . . . . ix
OZET . . . . e X
1 Imtroduction . . .. .. ... . . .. ... 1
1.1 Basic Definitions of The Graph Theory . . . . . . . ... .. ... .. .. 1

2 Literature Review . . . . . . . . ... ... 5
2.1 Boundaryof ATree . . . . . . . . . . . . . ... 5

2.2 The Topology on The Boundary of A Tree . . ... ... ... ..... 7

2.3 Ordered Boundary of the Tree . . .. ... ... ... .......... 11

3 Tree Automorphisms. . . . . . .. ... ... L Lo 17
3.1 Automorphisms of Planar Trees . . . . . ... .. ... ... ...... 17
3.1.1 Presentations of The Three-Regular Tree . . . .. ... ... .. 19

3.1.2 The Automorphism Group of Planar Farey Tree . .. ... ... 20

3.1.3 The Automorphism Group of Finite Abstract Farey Tree . . . . . 20

3.1.4 Profinite Group . . . . . . . . ... 23

3.2 Automorphism Group of An Abstract Tree . . . . . . .. ... ... ... 24
3.2.1 The Group Aut, (| F|). . . - -« v o i 24

4 Measures on the Boundary of The Farey Tree . . . . . . ... ... ..... 31
4.1 Stern-BrocotTree . . . . . . . . . . . .. 31

4.2 The Monoid Structure on the Set of Vertices of The Tree . . . ... . .. 34

4.3 Some Special Automorphisms of The Farey Tree . . . .. ... ... .. 37

43.1 The AutomorphismK . . . ... ... ... .. .. ....... 37



432 TheFlip. ... ... .. 39

433 ThelJimmPFunction . . . . . ... ... .............. 39
4.4 Measures on The Boundary of The Farey Tree . . . . . . ... ... ... 41
Continued FractionMaps . . . . . . .. .. ... ... .. .......... 45
5.1 Continued Fraction Expansion of Real Numbers . . . . . . ... ... .. 45
5.2 Dynamics of Continued Fraction Maps . . . . .. .. ... ... .... 46
5.2.1 A More Generalisation of The Continued Fraction Maps . . . . . 57

5.2.2  Invariant Measures for A Special Case of A Generalisation of
The Continued Fraction Maps . . . . . .. .. ... ... .... 60
Associated Power Series of The Continued Fractions . . . . . . . . ... .. 69
6.1 Some Power Series Candidates . . . . . . .. ... ... ......... 70
6.2 A Well Defined Power Series . . . . .. ... ... ... ...... 71
6.2.1 Conclusion for The Chapter6 . . . . ... ... ......... 76
7 Conclusion . . . . .. ... 78
REFERENCES . . . . . . . . e 78
APPENDICES . . . . . . . . e 81
BIOGRAPHICAL SKETCH . . . . . . . . ... .. . .. 83



LIST OF SYMBOLS

PGL(2,Z) : Projective general linear group of determinant +1 integral 2 x 2 matrices

G(V,E): : Graph with the set of vertices V and the set of edges E.

T : Tree
o7 : The boundary of the tree.
o7, : The boundary of the tree 7 with fixed starting edge e.
F :Farey Tree with ribbon structure
J :Jimm Function
| F| :Abstract Farey Tree without ribbon structure
Oy : twist automorphism which twists every vertices in the set v.
Tu : shuffle automorphism.

Ty, : Continued Fraction Map



List of Figures

Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure

Figure
Figure
Figure

Figure

1.1:
1.2
1.3:
1.4:
1.5:

2.1:
2.2
2.3:
2.4:

3.1:
3.2:
3.3
3.4:
3.5:
3.6:
3.7:
3.8:
3.9:
3.10:
3.11:
3.12:

4.1:

5.1:
5.2
5.3
5.4:

3regulartree . . . . . ... Lo
IsomorphicGraphs . . . . . .. ... ... ... ... ......
Drawing of the graph K4 with 2 different ways . . . . . . .. ..

Alineartree . . . . . . . . .. .. ..o
Binary Tree . . . . . . . . . . . . .
The Binary Tree Represented by the NumbersOand 1 . . . . . .
the Tree withbaseedgee . . ... ... .. ... ... .....

Binary Tree . . . . . . . . . .. .. L
An example of non regulartree . . . .. ... ... ... ....
Binary Tree which is described by PSLy(Z) . . . . . . .. . ...

,‘]:1 and ,‘]72 .............................

Farey Tree . . . . . . . . . . . . ... . ... .
The graphsof G1(x) . . . . . . . ... ...
The graphs of Gy, (x) . . . . . . . . .. Lo
The graphs of Gy, (x) . . . . . . . ... L
The graphs of ¢ 3 (X) o

Continued Fraction expansion of The Paths of Farey Tree

Continued Fraction expansion of The Paths of Farey Tree

11

18
18
19
21
22
25
26
28
28
29
29
30

34



Figure 5.5: Tgq .. . . o000

Figure 5.6: T+, —(x) . . ... oo
. 3 V3

Figure 5.7: T%Jrv vty %—(x) ........................

vii



Abstract

In this work, we consider trees, their boundaries and some special Borel measures on the
boundary of trees. Especially we work on Farey Tree. Farey Tree is a rooted binary
planar tree whose vertices are described by all rational numbers in the unit interval. It is
the first left branch of the Stern-Brocot Tree.

The boundary of a tree is the set of all infinite non back-tracking paths which is called
end of the tree. If we fixed an edge or vertex on the tree we can define a metric on the
bondary of the tree. A topology on the boundary of the tree is induced by this metric, it
is generated by open balls. Some natural Borel measures appear on the boundary of the
Farey tree. The Minkowski measure is the unique measure on the boundary which is
invariant under the full action of the automorphism group of the tree on its boundary.
Denjoy’s measures are straightforward generalization of the Minkowski measure.
Moreover, The Lebesgue’s measure can be presented as a Boundary measure in a nice

way.

Continued fraction map is defined on the unit interval which is a generalization of the
Gauss map. The formal definition of this map is given in the Chapter 5. In this thesis we
consider an even larger generalization of the continued fraction maps defined by using
the tree structure. Our aim in this chapter is to find the invariant measures under these
special continued fraction maps. Our claim is f(y) = % satisfies the density of an
invariant measure under this special members of maps and we proved it. At final chapter,
we have a study that is not very compatible with the overall thesis. We associate a power
series to continued fractions such that this series has some proprieties, such as

convergence and continuity.

Keywords: Continued fraction, Farey Tree, Invariant measure, Minkowski measure,

Denjoy’s measure, Continued fraction map, Gauss map.



Ozet

Bu calismada, agaclari, sinirlarin1 ve agaclarin sinirlar iizerindeki baz1 6zel Borel
olciilerini ele aliyoruz. Ozellikle Farey agaci iizerinde ¢alistyoruz. Farey agaci, koseleri
birim araligindaki rasyonel sayilarla tanmimlanan koklii bir ikili agagtir. Stern Brocot

agacinin ilk sol koludur.

Agaclarin smurlar son diye adlandirilan, tiim sonsuz, geri doniilmeyen yollarin
olusturdugu kiimedir. Eger bir kenar ya da kose sabitlersek agaclarin sinirlari iizerinde
metrik tanimlayabiliriz. Agaglarin sinirlar iizerindeki topoloji bu metrik aracilig ile
tanimlanir, topoloji acik toplar tarafindan gerilir. Agacin sinirlar iizerinde bazi 6zel
Borel olciileri vardir. Minkowski Ol¢iisii agacin otomorfizma gruplarinin aksiyonu
altinda degismez kalan tek oOlciidiir. Denjoy 6l¢iisii ise Minkowski dlc¢iisiiniin
genellestirilmis halidir. Ayrica Lebesgue Olciisii de agacin sinirlari iizerinde hog bir yol

ile tanimlanabilir.

Stirekli kesir fonksiyonu birim araliktan tanimlanir ve Gauss fonksiyonunun bir
genellestirilmesidir. Bu fonksiyonun formal tanim1 5. boliimde verilir. Bu tezde, agag
yapist kullanilarak tanimlanan stirekli kesir fonksiyonlarinin daha genis bir
genellemesini ele aliyoruz. Bu boliimdeki amacimiz, 6zel siirekli kesir fonksiyonu
altinda degismeyen 6lgiileri bulmaktir. Iddiamiz f(y) = % bu 6zel fonksiyon iiyeleri
altindaki degismez bir 6l¢iiniin yogunlugunu saglar ve bu iddiamiz1 ispatliyoruz. Son
boliimde tezin geneli ile cok uyumlu olmayan bir calismamiz var. Her siirekli kesin
tasvirine bir kuvvet serisi ilistiriyoruz dyle ki bu kuvvet serisi yakinsaklik ve siireklilik

gibi baz1 giizel 6zelliklere sahip olsun.

Anahtar Sozciikler : Siirekli kesirler, Farey Agaci, Degismez 6l¢ii, Minkowski 0lciisti,

Denjoy oOlciisii, Siirekli kesir fonksiyonu, Gauss fonksiyonu.



1 INTRODUCTION

1.1 Basic Definitions of The Graph Theory

Our aim is to study trees and their boundaries so we will give some basic definitions and
examples from Graph Theory.

In general, a graph consists of vertices and edges that connects the vertices. There are
various ways of formalising a graph. We will use the following.

Definition 1.1.1. A graph G = (V,E) consists of a set of vertices V together with a
subset £ C (‘2/) elements of which are called the edges of G where (g) is the set of

subsets of V having two elements.

Example 1.1.1. Set G = (V,E) with V = {v,v2,v3,v4} and
E ={e; = {vi,m},es = {v2,3},e3 = {v1,v3}}. Then we can draw this graph in R? as

follows:

€1 €2

V] <V3>
€3

Figure 1.1: Drawing of the graph

Remark. In our definition multi-edges and loops are not allowed but actually such graphs

are considered in the literature. Also note that our graphs are not directed.
Let G = (V,E) be a graph.

Definition 1.1.2. Let u,v € V and suppose ¢ = {u,v} € E. Then e is said to be incident
to u or to v. Two edges are called incident if they have a common vertex. Two vertices
are called adjacent if they are connected by an edge. Furthermore, the set of all edges
incident to u € V is called the star of u and the number of edges in the star of u is called
the degree of u. A graph G = (V,E) is said to be locally finite if deg(u) < oo for all
ucV.



From now on we shall assume that our graphs are locally finite.

Example 1.1.2. Let V = {v,v|,v2,v3,v4} and

E ={e; ={v,v1}, e2 ={v,»2}, e3 ={v,v3}, ea = {v,v4}}. Then the star of v is
{e1,e2,e3,e4} so deg(v) = 4. Moreover all edges are incident in this graph. This graph is
called the star tree and it is denoted by Sj.

€4

Figure 1.2: S4

Definition 1.1.3. A path in G is a finite or infinite sequence of edges (eq,e2,e3---) such
that the consecutive edges are incident and if v is a vertex in this path then the star of v
has at most 2 edges in this path. Let e; = {u, v} and e; = {v,7} then u is called the initial
vertex of the path. If the path is finite we have the terminal vertex such that the last
edge e, is incident to this vertex but e,,_1 is not. If the terminal and initial vertex are the

same such a path is called circuit.
Example 1.1.3. In the graph Sy the set of paths is {(e;,e;)|i # jand i,j € {1,2,3,4}}.

Definition 1.1.4. A graph G = (V,E) is called connected if for any pair of vertices
{u,v} there exists a path from u to v. Moreover, if a connected graph does not contain

any loops or circuits then it is called tree.
Example 1.1.4. The graph in Figure 1.2 is a tree whereas in Figure 1.1 is not.

Definition 1.1.5. A graph is said to be d-regular if all of the vertices have the same

degree d.
Definition 1.1.6. A graph is said to be perfect if all vertices are of degree > 2.

Example 1.1.5. The following tree is 3— regular.



€1

€0

€01 €11
€00 €10

Figure 1.3: 3-regular tree

Definition 1.1.7. Two graphs G = (V,E), G' = (V',E’) are said to be isomorphic if
there exists a bijection ¢ : V — V' which preserves the incidence. That is, {u,v} € E iff
{0(u),0(v)} € E". If ¢ is not a bijection but it preserves the incidence then it is called

just a morphism.

Example 1.1.6. Let V = {v|,v2,v3,v4,v5} and
E = {enn={vi,n2},e13 ={v1,v3},e14 = {v1,v4},e24 = {v2,v4},e25 = {12,v5},
e3s ={v3,vs}}. Let V' ={1,2,3,4,5} and
= {fiz=1{1,2}, f13 = {1,3}, fia = {1,4}, foa = {2,4}, fos = {2,5},
f35 ={3,5}}. Then ¢(v;) :=iforany i€ {1,2,---,5} is a bijective map from V to V’

which preserves the incidence.

o @ J\f%

fl4 Joa

el4 €24

@ (>
e12

Figure 1.4: Isomorphic Graphs

Proposition 1.1.1. Up to isomorphism there exists a unique d-regular tree for any d > 2.

Proof. All of the vertices are d-regular and there doesn’t exist any circuits and the tree is

infinite. Choose a base vertex from both of them, « and u’ where 0(«) = u’. The image of



other vertices are determined accordingly to preserve incidence. For u and ' infinitely

different choice can be made. So we can find infinitely many isomorphisms.

Definition 1.1.8.

e A planar graph is a graph that can be drawn in the plane without any edge

crossings.

e A plane graph is a graph that has been drawn in the plane without any edge

crossings.

e A planar tree is a tree given by a drawing in the plane. Such a drawing endows 7
with an extra structure: one has a cyclic ordering of all stars of 7. Conversely, if
we are given a cyclic ordering of stars, then there is a unique way of compatibly
drawing the tree.

Example 1.1.7. K is the complete graph with 4 vertices i.e. all vertices are connected
to others. In the following figure, the first one contains one crossing edge so it is not a
plane graph whereas the second one does not contain so it is a plane graph. But we say

that K4 is a planar graph due to the second graph.

ez 2

V2 V3 u U3

Figure 1.5: Drawing of the graph K4 with 2 different ways

el €3 h

Vi <V4>
e4




2 LITERATURE REVIEW

Trees are very basic combinatorial objects and there is a vast literature on them. A basic
reference is the now-classical book [16] which studies groups via their actions on trees.
See also [3] and [6] for some recent work. Automorphism groups of trees have been
studied in [11], [5] and boundary measures in relation to the tree automorphism groups
have been studied in [15]. There are also the works on the measures on the boundary of

some special trees for example the book [20] is one of them.

The Farey tree and the Strern-Brocot trees are binary rooted planar trees presented in a
very special way: their vertices enumerate the rationals in a very natural fashion [1].
These are very fundamental objects and there is a growing literature about them. Our

approach to the continued fraction maps can be traced back to [2].

The Gauss map is a very basic and elementary dynamical map with a very rich structure.
We refer the reader to [14] for a classical study of continued fractions and the Gauss
Map, and to [13] for a modern treatment. For the related ergodic theory, our reference is
[8].Invariant measure is an important subject of dynamical systems. Since if we have
two different invariant measures the two dynamical systems shows different proprieties
of each others. In this thesis we are showing some invariant measures under continued
fraction maps. To our knowledge, a more generalization of the continued fraction maps
introduced in this thesis have not been studied elsewhere. We study the dynamics of

these maps.

2.1 Boundary of A Tree

In this chapter some definitions and proofs are taken by an unpublished manuscript [23].

In what follows let 7 be a tree.

Definition 2.1.1. Two paths Y= (ej,e2,---) and Y = (f1, f2,---) in the tree T are said
to eventually coincide if there exists n,m € N such that e, ; = f;,4; foranyie N.



Definition 2.1.2. An end of 7 is an equivalence class of one-sided, infinite,

non-backtracking paths in 7 under the equivalence relation:
Y~ Y <= vand Y eventually coincide.

The set of all ends of 7 is called the boundary of 7. We denote this set by 9.

Example 2.1.1. Let 7 be the linear tree consisting of edges e; for all i € Z such that the
consecutive edges are incident. Then this tree has only two ends. Since let us choose an
edge e, in the tree. Then vy, = {e,, ent1,€n42, -+ } and y— = {ey,en—1,€,—2, - } are two
paths of the tree representing the two ends. If we chose another edge, ¢,, then the tree
would have the paths {e;,, €pn+1,€m+2,- -} and {ey,em—1,em—2,--- } but they are
equivalent to the first two paths. So 07 = {y4,y-}.

€2

6 6N %0 N\~
RS AR \ &

Figure 2.1: A linear tree

Example 2.1.2. In the tree which is described in the Figure 2.1, we can say that

(€0,€01,€011,€011n;,€011nyny5"**) ~ (€011,€011n1,€011nymy, "+ ), for any n; € {0, 1} but for
any path which starts with eqg is not equivalent to these paths.

€00
€000 €001 €010 e100 K €101 611%6111
eof1

Figure 2.2: Binary Tree

Proposition 2.1.1. Let e be a fixed edge of 7. Let Y= (ej,e2,---) be a one-sided
non-backtracking path. Then there exists a unique path in the equivalence class of v,

which starts at e. This path is denoted by 7,.



Proof. If e = e; for some i € N, then Y = (e,e;11,€i12,-+) ~ Y, so we won. Otherwise,

since T is connected, we can find a path Y = (e, f1,-- , fu,€i,€i+1,- - ) for some i € N.
Thus Yy~ Y.

Assume there exist two paths which start at e and are equivalent to y. We call

Y = (e, 82,83, ,¢€i,eiy1,---) and Y’ = (e,ha, h3,--- ,ej,eji1,- ) for some

i,j € N—{0}. Without loss of generality assume that i < j. Then we have two paths in
the tree 7, (f,82,83, -+ ,€i, -+ ,ej) and (f,ha,h3,--- ,e;). Then we obtained a circuit so
which contradicts with the definition of a tree. Then h; = g; for all i. Hence Y =7".

Therefore this path is unique.

2.2 The Topology on The Boundary of A Tree

The set of all ends in 7 which starts at e is denoted by 97 ... In this situation e is called
the base edge.

Proposition 2.2.1. Let e be an edge in 7. There is a canonical bijection between 07 and
o7,.

Proof. Lety€ d7. We define f : 97 — 07, be a map such that f () € 0, to be the
path which starts at e and is equivalent to . We know by Proposition 2.1.1 such an end
exists and it is unique. Therefore f is injective. Let Y € 07, then it is obvious that

Y €97 and f(y) =7. So the map is surjective.

Proposition 2.2.2. Lety,Y € 07, withy= (e,e1,e2,--), Y = (e,€},€5, ). Then
d(y,Y) =2""is a metric over the set 07, with n =max{i, e; = ¢/;,Vj < i}. Hence
(07 ,,d) is a metric space.

Proof. Lety~ 1Y € 07 .. By Proposition 2.1.1 there exists a unique path which starts at e
and equivalence class of Y. So y="7. Then n = o. Then d(y,Y) = 4~ = 0. Furthermore,
ifd(y,Y) =0 then ¢; = €, for all i. Theny="Y.

Due to the e, 1 < n for any v,Y € 97 ,. Then d(y,Y) < % And also we have showed that
if Y~ v then d(y,Y) =0. So for all v,y € 8T, d(y,Y) € [0, 3] since 27" is a monotone
decreasing function.

It is clear that d(,Y) = d(Y,Y) since n does not change.

Lety,Y,Y' € 0T, withd(y,yY) =2"and d(Y,Y') = 2" then d(y,y") = 2~min{mn},
Hence the triangle inequality satisfies.

This metric induces a topology on the set 97, which is generated by open balls
B(y,r)={Y | d(y,Y) < r} for any r > 0.



Example 2.2.1. Let us choose an edge e in the linear tree which is described in Figure
2.1. Then 9T, = {y= (e,e1,---),Y = (e,e_1,--- }. The topology over this set is
generated by the open balls ; B(y,27"),B(Y,27"), forany n € N. So B(y,1) = {v,Y},
B(y,1/2) = {y} and B(Y,1/2) = {Y}. So the topology on this set is the discrete

topology : {{v,Y'},{v}.{¥},2}.

Theorem 2.2.1. If T is a perfect tree then 0T , is canonically homeomorphic to 0T ,,

for any edges e and €.

Proof. We must find a bijective and continuous map between these two topological
spaces. Let Y, € 0Z,. We define amap & : 07, — 97 »» such that (7,) is an end which
starts at ¢ and equivalent to Y, by the Proposition 2.1.1 such an end exists and unique so
h is an injection. This map is surjective. Since for any end in y,» € 97T/, by the same
Proposition there exists unique 7, such that i(y,) = Y./ So & is a bijection.

Let ® € 7. Let B(®,r) be an open ball in the topological space 07 ./ then

h~1(B(w,r)) = B(h(w), r) so the inverse image of open balls are open ball in the
topological space 07 ,. So this map is continuous. By the same reasoning the 2! is also

continuous. Hence 07, and 97,/ are homeomorphic.

Definition 2.2.1. Let X be a topological space and x € X. x is said to be an isolated point
if it has an open neighbourhood O such that X N O = {x}.

Example 2.2.2. Let X be a set and (X,2%) be a topological space with the discrete
topology on X. Then every point is isolated.

The topological space (X,{0,X}) has no isolated points.

In the boundary of 2—regular tree both of the ends are isolated.

Definition 2.2.2. Let T be a topological space. A subset P C T is perfect if P is closed

and has no isolated points.
Example 2.2.3. Let 7 be a 2—regular tree. Then 07, is not perfect.
Proposition 2.2.3. If 7 is a perfect tree then 97, is perfect for any base edge e.

Proof. Assume that the tree is perfect but 07 s is not a perfect. Then it has at least one
isolated point, we say 7. Then there exists n € N such that B(y,27") = {7}. Let
v=(e,e1, - ,en,ent1---). Since T is a perfect tree there exists at least one edge which
is adjacent to e, and e, at the same time, we call it g,,1. So all ends which starts with
the path (e,eq,---,en,8gn+1), is also an element of open ball B(y,27"). Hence vy is not an

isolated point, so we have a contradiction.

Proposition 2.2.4. If T is a perfect tree then the singletons are closed in 07 .



Proof. Lety= (e,ej,ez,---) be anend in 07 .. Let {e1,eo1,e02, - , ek, } be the set of
edges which are adjacent to e. Let yp; be any path which starts at e and passes e; for all
i€{l, - ko}. Thend(y,Yo:) = 3. So {y} € UfilB(Yoi,Z_l) Then we can say
UfilB(y()i, 271) c {y}°. Let define the set of all adjacent edges to e; which is
{e,ez,e11,€12, -+ ,eix, } and let yy; be any path which starts at e and passes ej ; for any
j€{1, -+ ki }. Then smilarly we can say that Ulj.lle(yljﬂ_z) c {y}“

If we continue with this way we find U, Uf.‘; \B(Yni,27") = {y}¢. {y}¢ is open then {y}
is closed.

Proposition 2.2.5. Let 7 be a 3— regular tree and e be an edge in 7. Then 97, is
homeomorhic to {0, 1} which is equipped with the product topology.

Proof. We can label the edges of the tree with the numbers 0 and 1:

11 00 e

novy e
/ 11

¢ 00

/.

Figure 2.3: The Binary Tree Represented by the Numbers 0 and 1

So a7, = {0, 1}Nu{o, 13N ={0,1}.

From now on, we assume that 7 is a perfect tree. The following proofs were made by us

using ideas from standard proofs in topology on R".
Proposition 2.2.6. 07, is Hausdorff.

Proof. Lety= (e,e1,e2,--),Y = (e, €], e5,---) be two disjoint ends in 97 .. Then there
exist n € N such that e, ; # ¢, ; for any i € N. Then B(y,27") and B(y,27") are the

neighbourhoods of y and Y respectively and they are disjoints. So 9T, is Hausdorf.

Distance of between two edges is defined as the number of edges between these edges. It
is denoted by d(e,¢’) for any e, e’ € E(T).

Proposition 2.2.7. 97, is compact.

Proof. Let O be an open cover of the topological space 07 .. We suppose that there
exists a number N € N for any ¢’ € E(‘T) with d(e,e’) = N such that there exists an open
O(e') C O with O(¢') is a cover of B(Y,27") where 7Y is the end which is starting at e
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and passing at ¢’. So if our claim is true we can find finite O(e’) such that their unions
cover 07 .

Assume that such an N does not exist. So there are the infinitely many edges e, e, - -
such that we can not find such a subcover O(e;) for any i. Let {f1, f2,--- , f»} be the the
set of all edges incident to e. Let A; be the set of all ends which starts with the path

(e, fj) forany j € {1,---,n}. Then at least one of these A’;s must contain infinitely many
els. We call it Ag. Let {e, 81,82, ,gm} be the the set of all edges incident to f;. And
again we define the set B; which starts with the path (e, fi,g;). Then we will choose one
B; which contains infinitely many e;’s. So proceeding in this manner gives us a path
which has infinitely many e;’s. So this path can not be covered by any element of O,

contradiction.
Remark. 0T, is disconnected.

Proof. Let {ej,ea,--- ,e,} be the set of incident edges of e. Let y; be any edge which
starts at the edges e, e; for any i. Then 07, = U B(Y;, %) And it is obvious that
B(i',%)NB(i",}) = @. So T , is disconnected.

Proposition 2.2.8. 97, is totally disconnected.

Proof. Lety= (e,e1,er,---ep,-++) be anend in 07 ,. Let n € N and B(y,27") be an open
neighbourhood of y. Then B(y,27") contains all ends which starts with the path
(e,e1,ez,- - ey). We define the set of the incident edges of e; {ey, fi, 2, , fu}-
Consider Y, an end which starts with the path (e, f;) for any i € {1,--- ,n}. Let
u=e,_1Ney. Letthe set U = {e,_1,en,81, -+ ,&m} be the star of the u. Let Y, be an
end which starts with the path (e,ey,e2, -+ ,e,-1,g;). Then

B(y,27")° = U B(yg, 27 HuUs™! B(Yg;,27"). So the complement of any

neighbourhood of any end is open. Hence 07, is totally disconnected.

Theorem 2.2.2. (Brouwer) Every nonempty, totally disconnected, compact, metrizable

space without isolated points is homeomorphic to the Cantor set.
Proof. see [4].
Theorem 2.2.3. If T is a perfect tree then 0T , is homeomorphic to the Cantor Set.

Proof. We proved in the previous propositions that if 7 is a perfect tree then 07, is a
perfect, totally disconnected and compact topological space. These gives us the

topological caracterisation of Cantor Set.
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2.3 Ordered Boundary of the Tree

Let 7 be a planar tree. In this case there is a naturally defined cyclic order relation on

07 . induced by the planar structure of 7.

Definition 2.3.1. Let the edge e has an orientation clockwise or counterclockwise. Let
v,Y be different two ends induce the same orientation on e in 0T .. If 'y differentiates
from y from the right of the Y, we say that Y < Y. Due to the this relation 07, is an
ordered set.

This order is compatible with the topology over the 07 .. An interval can be defined as

follows
[v.Y] ={o|y< o<y} forany v,y € 0T, withy <Y}

Example 2.3.1. If we look the following tree we have 5 ends in 07 .. Assume the cyclic
ordering of the edge e is clockwise so the direction of Y;,Y2,Y3, V4 are the same with the
direction of e whereas the direction of s is inverse. So we say that

V5 <Y<Y <T2<T"i

——o——o— - V]

*———0— -

*——o——o— - V4

Figure 2.4: the Tree with base edge e

Definition 2.3.2. Since d7 . is an ordered set we can define a relation over this set. Let
Y1,Y2 be two ends in 0T .. We say Y1 ~ Y2 if Y1 <o <y ory <o <7; theny; = ot or
v» = o for any o € 97 .. We denote the equivalence class of an end y by ¥.

Example 2.3.2. In the tree at Figure 2.4, we say that Y4 ~ Y3, Y3 ~ Y2, Y2 ~ Y1 but
Y4 7 Y1 0r Y3 .
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Proposition 2.3.1. This relation over the set 07, is symmetric and reflexive but it is not

always transitive.

Proof. 1t is obvious that the relation is reflexive and symmetric. Since Y ~ 'y by definition
and if y; ~ 7y, then there is no end between these paths so y, ~ 7y, also satisfies.

Moreover, we can see in the example 2.3.2 that this relation is not always transitive i.e.
V3~ Y2, Y2 ~ Y1 but vz o 71

Definition 2.3.3. The transitive closure of a relation R on a set A, is the smallest

transitive relation which contains the relation R.

We know the relation over 97, is not transitive. Let take the transitive closure of the
relation on this tree and from now on we will say that ~ is an equivalence relation. We

consider the quotient topological space 07,/ ~ via the map

0:9T, — 3T,/ ~

All proofs from here to the end of the chapter were made by us using ideas from

standard proofs in topology on R".

Lemma 2.3.1. Let 7 be a perfect tree and Y € 07 .. Then ¥ equivalents to either two

ends or one end which is itself.

Proof. Assume that Y € 07, without loss of generality with the same orientation of e
such that after n-many edges it turns always right (left). Then we can find an end Y
whose first n — 1-many edges are the same with 'y and then it turns once the first right
(left) of the 7y then it turns always left(right). So since Y turns right (left) before than ¥ by
definition Y <y (y<Y). If it was ¥’ such that Y <Y’ <y (y <y’ <) then Y’ must
have the same common edges with v and Y and it must turn right before than y () and it
must turns left before then ¥ (). Then it must be equal to ¥ () or 7y (Y) respectively. So
we say that Y~ Y. And there is no another edges which is equivalent to y. On the other
hand there exists the ends which turns randomly left or right.

Claim :Let o be such an end then the class of o by the relation ~ has just itself.

Proof: For any o' € 97, such that o < o we can always find B such that o < B < o/, If
o < of o turns right before than o, assume at the n'* edge. Let n+ k' edge of o turns
left then the end which of first n 4k — 1 edges are the same with o and (n + k)’h edge
turns the right of o is smaller than . It proves our claim.

Proposition 2.3.2. If 7 is a perfect tree the relation ~ is an equivalence relation. i.e. it

1s transitive.
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Proof. By the previous lemma if Y € 07, then the class of ¥ has one or two edges. So if
B ~ v then there does not exist another path which is equivalent to Y. That is ~ is a

transitive relation so it is an equivalence relation in the case of perfect trees.

Notation. We notice the set of all ends whose class has 2 elements by 07 3 and the set of

ends whose class has only itself by 07 i

Lemma 2.3.2. Let o, 0 be an end of 97 .. An interval [, 0] is not an open interval for

the topological space 97 , if o or o is an element of 97 ..

Proof. Assume that ot € 97"} and [, o] be an open interval. Then there exists n € N
such that o € B(o,27") and B(c,27") C [o, o']. We know o turns randomly left and
right. Let n + k" edge of o turns right for k > 1. Then there exists an end o’ whose both
the first n+ k — 1 edges are same with o and n + k' edge turns left. Then o € B(y,27™)
but &’ > aso o ¢ [o, ], contradiction with our hypothesis. By the similar reason if

o €T e} we can reach the same contradiction.

Corollary 2.3.1. By the proof of the Lemma 2.3.2 [0, o), (o, o] are not open intervals
indT,ifo/ €37 .

Lemma 2.3.3. For appropriately selected a0 < o € 97, the all possible open intervals
of the topological space 07, are given by

1.(o, o) for any o, o’ € 9T .

2.[o, o) for o € 9T 2.

3.(ot, 0] for of € 9T 2.

4., o] for o, 0 € 9T 2.

Proof. Let o and o have exactly 7+ 1—many common edges and after that o turns
always right and o turns always left. Then B(c,27") = B(o,27") = [a,0/]. Since by
definition B(at,27") and B(o',27") contain all ends which has at least n + 1- many
common edges with o or o respectively. And it is obvious that o is the minimal element
of these sets whereas o is the maximal element.

Hence all open balls can be described by an interval [o, o] with o, o' € 9T 3

Claim: Any union of non disjoint intervals is interval.

Let {S;|i € N} be the set of intervals and a € ;e Si- Now assume thaty <Y < v and
Y,Y" € Ujen Si- We have three cases: ¥ < a,Y =a, and Y > a. If y = a then

¥ € NienSi C Uien Si- If Y < a, let take S; for some j € N such that y € S;. Now
Y<Y <awithx,a € §j,s0Y €S by definition of interval. Theny € J;cnSi If Y > a
let Sy be an interval such that Y’ € S, I. Now a < Y < ¥’ with a,Y’ € i, so Y € S then
Y € Ujen Si- Hence ;e Si is an interval.
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Let’s take an interval [or, ') for oo € 972 and of € 97 ..

Claim: There exist o; € 97> for any i € N such that

[(x‘va’/) - [aua‘l] U U [Ociaai-l-l]'
ieN—{0}

Let o and o have n common edges and they have the same orientation with e. Assume
that o0 always turns right after first n edges. Assume that after first n edges o is a zigzag
path that is if one edge of o turns left (right) then the consecutive edges turns right (left).
Assume oL = (e,eq, - ,en,ent1, ) and o = (e,er, - e, f1, /2, ) and we say that f;
turns left. If we choose o; the path which passes the finite path

(e,e1,ea2,-+ yen, f1, f2, -+, f2i) and then it always turns right. By this choice [o;, 0t;11] is
open interval for any i € N since [0y, ot 1] = B(0;, 2~ 20). And [or, 011] = B(at,27").
By previous claim the union of non disjoint intervals is interval and by the definition of
topology the union of arbitrary opens is open. So [ct,a’) is an open interval for
appropriately selected o and o'

By the similar reason we will say that (0, 0] can be an open interval for o € 072,

Let o, o, 0otp, 0 have exactly n many common edges. Assume that ot} always turns left,
o always turns left and oo and o are zigzag path after n edges such that o first left and
o/ turns right. Then oy > o > o > 0. And also (o, ') = (at, 0] N [0, ). Since

(o, 0], [ot1, o) are opens then (o, o) is an open interval for o, o € 972

For the other cases we must use the similar arguments.
From now on assume that 7 is a perfect tree.
Proposition 2.3.3. Any open subset of 97, is the union of the disjoint open intervals.

Proof. If U is an open subset of 07, with y € U then there exists an open interval I € U
such that x € 1. (At least since U is an open subset then we know for any element of
x € U we can find an open ball and all open balls can be written an open interval.) If
there exists one such interval there exists one ’largest’ interval which contains x. Denote
by the set {Iy} all such maximal intervals. So I, are pairwise disjoint otherwise they

wouldn’t be maximal. Then U can be written as the union of the disjoint open intervals

{Io,}

Definition 2.3.4. Since ~ is an equivalence relation over 07, then we can define the

quotient topology on 07,/ ~. Let

$:0T, — 9T,/ ~
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This map is continuous and it determines the opens of the topological space 07,/ ~. We
say that U is an open subset of 97,/ ~ if its inverse image ¢! (97T ,/ ~) is an open
subset of 07 ,.

Remark. Due to the continuity of the previous map ¢ and the compactness of 07 ., the
topological space 07,/ ~ is compact. Since continuous functions preserves

compactness.
Proposition 2.3.4. The topological space 07,/ ~ is connected.

Proof. Let’s define X := 97, and Y := 97,/ ~. Assume that there exists open subsets
U,V ofYsuchthatY =U UV and UNV = & and U and V are not empty. i.e. Y is
disconnected. Then ¢! (U) and ¢~ (V) are open since ¢ is continuous and

o U)UOTH(V) =X, 07 (U)NO (V) = 2. S0 ¢~ (U)" = ¢~ '(V). By the
Proposition 2.3.3 ¢! (U) and ¢! (V) and can be written as the union of the open
intervals. And we know all of the open intervals by the Lemma 2.3.3. We consider

0 (U) = Users (1) and 6~ (V) = Uy ().

Let’s we look all possible cases for the open intervals /, and Js:

Assume that for some o, o € 972 [o, o] = I, for some s € N such that (of, B) = J,. for
some r € N. Claim: U NV # @. We know o € 972 and o0 < o’ so o’ is a path which
always turns left after finitely many edges. So there exists o > o and o’ ~ o. So

o’ € U since X is a quotient topology. But in the same time o € V. So this claim gives
us a contradiction.

Assume that for some r € N I, = (o, 0] with o € 972 such that J; = (o, B). Then by
the same reason with the previous case there exists o’ € UNYV.

Assume that for some r € N I, = (o, o) with o, o € 97"} with [0/, B] or [o, B) are not
open for any 3 so there is not such a case.

Assume that r € N I, = (o, o) with o, o € 972 with [0, ] = J; for some s € N. So in
this case we have o” ~ o such that o” € U NV like the first case. So we reach the
contradiction

Hence Y is a connected topological space.
Lemma 2.3.4. Y \ {a,B} is disconnected for any {a, B} C Y.

Proof. We can say that Y —{a,B} = (a,B) U (B,a). Then Y is the union of two disjoint

open intervals.
Theorem 2.3.5. The topological space 0T,/ ~ is homeomorphic to S'.
Proof. The topological caracterisation of S' is given as follows:

e Connected
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e Compact

e Forany a,b €S!, S! —{a,b} is totally disconnected.

So all topological spaces which has these properties are homeomorphic to S', see
[12].



3 TREE AUTOMORPHISMS

In this section, we study the automorphism groups of trees. This group may change
dramatically if we consider trees with ribbon structure and if we require that the
automorphisms must preserve the ribbon structure. For example, the automorphism
group of a regular planar tree is countable, whereas if we consider it as an abstract graph
(i.e. without the ribbon structure), then the automorphism group becomes an

uncountable group.

3.1 Automorphisms of Planar Trees

If 7 has a ribbon structure we say 7 is a planar tree and in this case it has countably
many automorphisms. We denote the automorphisms group of 7" by Aut(‘T). Aut(T) is

generated by rotations around a vertex (or edge).

Example 3.1.1. Let 7 be a 3- regular planar tree with the set of edges ;
E(7T)={{0,1}*U{0/,1'}*} and the set of vertices V(7 ) = (u,u0,ul). We can define
countably many automorphisms on this tree but all of them can be generalized by the
rotations.
We will choose 2 edges and we will define a function from the first to the second one.
And the others are determined by this two edges.
1.9 :E(T)— E(T)

00 — 0’ is an automorphism of 7. It just dislocates the edges and it preserves
the planar structure. So @(000) =1, ,@(001) = ¢, ¢(0) =01’ etc.
2. ¢y := (Ole) is a rotation around the vertex (e,0,1).. So it is an automorphism of 7. It
rotates the tree around the edges e. So it preserves also the planar structure.
3. @3 := (00")(11") is the rotation around the edge e and also @3 € Aur(‘T).
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'’ 'y

: : : - : : :
o't o'1r'o’ 00’0’

1’0/

00 o 10 11

000 001 Ojo/wl 100/ 101 11%11
* : : . e . e

Figure 3.1: Binary Tree

Automorphism groups of non regular trees are less interesting than regular trees.
Moreover, the automorphism group of a non regular tree can be trivial. For example, the
tree 7 which is given in Figure 3.2 is non regular and Aus(7') = {Id}. But this is not to
say that the automorphism groups of non regular trees are always trivial or finite.

Figure 3.2: An example of non regular tree
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3.1.1 Presentations of The Three-Regular Tree

In the Example 3.1.1 we saw a representation of the edges of 3— regular tree by using
{0,1,0',1"}. But this representation is not the natural one. If the tree was a rooted tree
we would use {0, 1} and it could be sufficient for the representation. But in our tree we
must use {0, 1’} also for defining all of the edges and it breaks the naturalness. Via this

representation we can describe easily the group Aur (‘7).

The Natural Representation of The 3— Regular Trees

This representation is given in the article [17]. Consider the group

7./27.%7./37 = {a,b | a*> = b> = e := 1) which is isomorphic the group PSL(27Z).
Consider the graph F with the set of edges E(F ) = Z /27 *Z/3Z and the set of vertices
V(F) =Ve(F)UVe(F) where Vo (F) = {{w,wa}|w € Z/27Z+7Z/37} and

Vo(F) = {{w,wb,wb*}|w € Z./27.x 7./3Z}.

This gives a tree since {a,b} generates the group Z /27 7./37Z so the graph is

connected. Moreover, it does not contain circuit or loop. Since there are no relations
2

other than the relation a? = b> = ¢ between a and b,

b%a ba

ab*a

abab abab* ab*ab ab*ab*?

Figure 3.3: Binary Tree which is described by PSL;(Z)

Remark. In fact, via this representation we define a ribbon structure also over the tree

and it is counterclockwise i.e. the vertices have an orientation (m, mb,mb*) and (m,ma),
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we can see at the Figure 3.5. So the tree ¥ is planar.

3.1.2 The Automorphism Group of Planar Farey Tree

Thanks to this representation defining the automorphisms is much easier.

Proposition 3.1.1. Let M € Z/27Z *7/3Z. Then the map ¢ : E(F ) — E(¥ sending
the edge w to the edge Mw and mapping the vertices as

Va(F) — Va(F)

{w,wa} — {Mw,Mwa}

Vo(F) — Va(F)

{w,wb,wb?*} — {Mw, Mwb, ,Mwb*}

is a planar automorphism of the tree 7. Every planar automorphism of the tree can be
expressed this way so that Aut(F) = 7 /27 + 737

Proof. The multiplication map @ preserves the incidence of edges since the image of a
vertex {w,wb,wb?} or {w,wa} is also a vertex. So if the edges are incident the image of
the edges are incident. So ¢ is a homomorphisme.

There is no relation between a and b such that i.e. ak&1b%2aks ... £ g™ p™2g™s . .. for any
ki,mj € Z and kyjy1,mojy1 # 2, koj,mp; # 3 for any i, j € N. So the map is a bijection.
Hence it is an automorphism.

If we multiply all vertices with M we can not change the orientation. So this

automorphism preserves the ribbon sturcture. So it is an automorphism of .

3.1.3 The Automorphism Group of Finite Abstract Farey Tree

We can define the automorphism group of the abstract Farey tree #F and since there is no
ribbon structure of this tree, it has more automorphisms than F. We will use the same
representation of Farey tree to define the automorphisms of | ¥ | since it is the most
appropriate representation. But we don’t have an expectation that the automorphisms

preserve the ribbon structure.

Proposition 3.1.2. One has a proper inclusion Aut(F)<Aut(|F

), but Aut(F) is not a
normal subgroup inside Aut(|F|).

Proof. Let @p € Aut(F). i.e. @p(w) =w. Let y € Aut, (] 7 |) be the twist of the vertex
{e,b,b°}ie. w{{e,b,b*}} = {e,b%,b}. Then yo,y~' (b) = yo,(b*) = y(e) =e
Yoy (b%) = o, (b) = W(b*) = b wepy ' (e) = oy (e) = y(b) = b*. Hence
wo v ! & Aut(F). Then Aut (] F|) is not normal.
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Now let ¢ € Aut(|F|) and w € E(| F|) with @(w) = u where u is an edge in | 7 |. Then
there is an automorphism y € Auz(| ¥ |) such that y(u) = w. Then @y (u) = u. Hence @y
fixes the edge u. All of the automorphisms which fixes the edge u constitutes a subgroup
of Aut (| F|) which we denote as Aut, (| F|).

Proposition 3.1.3. Aut, (| F|) is the subgroup of Auz(| ¥ |) but it is not normal.

Proof. Let 1,9 € Aut,(|F|). Then @1 ((@2) ' (1)) = @1 (u) = u. Then it is closed
under the composition operation. And also Id € Aut, (| F|) is obvious. Let ¢ € Aut, (| F|)
and let W € Aut (] F |) with w(u) = w. Then (yow!)(w) = y(¢(u)) = y(u) = w. Then it
fixes w. So wAut,(|F|) w~! = Aut,, (| F|). Thus the subgroup is not normal.

Denote by ¥, is the subtree of F consisting of vertices of distance < n to the fixed edge

e.

Example 3.1.2. The finite trees ¥, are given in the following figures forn = 1,2,3. Let’s
give the Aut,(|7,|) for each n.

Since they fix e and they are not perfect we have finitely many automorphisms. Let
define @ : E(|F,|) — E(|F|) with @(b) = b?, @(b*) = b, ¢(e) = e. Then

¢ € Aut, (| F 1|) is the unique non trivial automorphism. And ¢> = Id. Therefore,
Aut.(|F 1|) 2 Z/27Z.

In | 2| we can generate all automorphisms by two automorphisms which is given by
01,92 : E(|F 1) — E(|F 4|) where ¢1(e) = e,@1(b) = b*,@1(b*) = b so it must be
¢1(b*a) = ba and ¢ (ba) = b*a and it fixes the others,

P2(e) = e, P2(a) = a,@2(ab?®) = ab, ¢,(ab) = ab® and it fixes the other edges. So
Aute(|F 2|) = (@1,92) and it is obvious that 93> = @12 := Id. Then |Aut,(|F »|)| = 4.
So Aut(|F2|) 2 Z)27 < 7] 2.

Since we want to find the automorphisms which preserves the edge e we can give the
automorphisms of the finite tree which is the left of the edge e and the other finite tree
which is the right of e. The automorphism group of the left side of the tree | F3| ( by the
edge e) is isomorphic to the automorphism group of the right side of | F2)|.

S

b2 @ @ b2 @
'7@% i W
® @ ab ®

s

Figure 3.4: ¥ and
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In the right side of the tree | 3| by the edge e we can twist the tree vertices;
vi := {e,b,b*},v; := {ba,bab,bab*},vs := {b*a,b*ab,b*ab’}. Let define
G := (v1,v2,13). So Aut,(|F|) = Z/2Z x G.

Figure 3.5: F3

To facilitate the notation we will show the automorphisms on the following tree:

We can give all of the twists by permutation notation such as :

op:= (34), oc:= (56), opoc := (34)(56), 64 := (12)(36)(45), OpC4 :=
(12)(3546), 6c04 := (12)(3645), 6c0p04 := (12)(35)(46). That is, if we twist the
vertex B, 6g(3) =4 and op(4) = 3.

We can see that these automorphisms are the symmetries and rotations of a rectangle
whose vertices are named with the numbers 3,4,5,6. That is G is isomorphic to the

Dihedral Group Dg. As a result, Aut.(|F3|) = Z /27 x Dg. Hence |Aut,(| F3])| = 16.
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More generally, we have

2n=ls2m ifnis odd.
| Aute(|F )| =

2N 1 if n is even.

3.1.4 Profinite Group

The following restriction map is surjective:

[i=Aut(|F]) — Aute(] Fa])

¢ 97,

It is obvious that it is not injective.

Furthermore, we have a system of surjective maps given by:
- Aute (| F3]) — Aute(| F2|) — Aute(|F1]) — Aute(| Fol)

where each group is finite.

Definition 3.1.1. A profinite group is a topological group that is isomorphic to the
inverse limit of an inverse system of discrete finite groups. In this case the inverse limit

is called the profinite limit. Let

= G3 — Gy — G — Gy
f ) h Jo

be a system of finite groups. Then their profinite limit is given by:

lgn Gi:={x=(gi)icr € HGi\fi(X) =g}

icl

In our case we have a system of fine groups :

co— Auto (| F3|) — Aut (| F2|) — Aute(|F1|) — Aut.(| Fol)
5 f bil Jo

Theorem 3.1.1.
Aute(|F ) = lim Aute (] Fa)

Proof. The following map is restriction and it is surjective:

@ : lim Aute(| Fa|) — Aute(| )
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So we have the following diagram:

AUte(|%+2|>

|
Aut(| Far1l)
_— LT~
limAut,(|F,|) —— Aut.(|Fu|) «——— Aut.(|F|)
T~ I
Aut, (| Fo-1l)
|
Aut, (| %ol)

By this diagram we say that Aut, (| F|) = lim « Aut.(|%,|).

3.2 Automorphism Group of An Abstract Tree

3.2.1 The Group Aut.(|F|)

Aut,(|F]) is the group of automorphisms of the abstract tree # which fixes the edge e.
We have two different type of automorphism.

1.Twist

Definition 3.2.1. Let w € E(F) and v = {w,wb,wb*} € Vo(F). Then the twist

automorphism by the vertex v is given by G,, as follows;

() X if x does not start with w
cy(x) =
wbMab=*2q... ifx =wblaba--- with k; € {1,2} for any i.
We know b> = e so b=! = b and b=2 = b. So this automorphisms transforms all b to b*

whereas all b* to b.
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wb?ab? wbab
{ wb?ab { wbab?
wba whab? wh?a wh?ab

wbab wh?ab?

Figure 3.6: ¥ and 6,(¥)

In the Figure 3.7 we can see that v = {w, wb,wb?} whereas 6, (v) = {w,wb? whb}. So it
changed the orientation i.e. it does not preserve the ribbon structure.
Let v ={vi,v2,v3,--- } be an arbitrary set of vertices of the tree F. Let us sort vertices
according to their distance to the fixed edge e where
d (v,-, e) = the number of the edges between v;, e for any i € N . So let

= {v,(V) ),v3(1). ...} be the current ordered set by the distance. That is
d(vi( ),e) < d(vi+1(1),e).
Oy := is the twist automorphism which twists every vertices in the set v in order and
appropriately.
Then the twist Oy is defined as follows: First, apply 6, ) to F. Let call 6,0) =0, ().
Then update the list, that is if we twist v| the places of other vertices may change so we
must write it to the list by their new places. But it is obvious that the order does not
change. So let v; := {v,(¥, 132 ...}, Then apply G, to the new tree. Let call

v(2)

by this way. Therefore,

Gy@2) = O, (1) ©0O,, 2. Then we will update again the set of vertices V;, and we continue

Oy :=---00, (3 06v2(2> OGVl(l).

b33)
Let v = {vi,vp,v3,--- } be an infinite set. We know 7, has only one vertex to twist,

v:={e,b,b*}. Letvi(V! =v. So 6, 1) € Ve(F1) buto, i ¢ Va(F1) forany i > 1. Since
> has just 2 vertices to twist, G, () ¢ Ve(/F2) for any i > 2. Continuing this way we can

observe that (0,));; is a convergent sequence such that 6y = lim + o).
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Shuffle

Definition 3.2.2. Let m € E(¥F ) and u = {m,mb,mb*} € Vo(F). Then the shuffle

automorphism by the vertex u is given by T, as follows;

X if x does not start with m
Tu(x) = S mby  if x =mb?y
mb*y  if x = mby

Shuffle of the edge u is given by the following figure:

Figure 3.7: F and 7,(F)

Remark. It is clear that it does not preserve the orientation of the vertex u whereas it

preserves the others.

Let u= {ur,uz,u3,--- } be an arbitrary set of vertices of the tree F .Now 7T, is the shuffle

automorphism which shuffles every vertices in the set u in order. By the same steps with

twist automorphism we will find T,,. First we sort vertices according to their distance to

the fixed edge e. So let t") = {uy (D, uy V) w3V ...} be the current ordered set by the

distance.

First, apply T, () to F. Then update the list y := {ur u3®) ... }. Then apply T,,(2) 10

the new tree. So we will continue by the same way. Therefore,

Ty i=--- oTu3(3) Oﬂcuz(z) Oﬂcul(l)'
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And by the same explication, (Tu“) )72, is a convergent sequence such that

T,u = lim < ‘Ey(i).

Lemma 3.2.1. Let v = {w,wb,wb?} and G, be twist automorphism of the 7. Then there
exists p = {uy,up,--- } C Vo(F) such that the shuffle 1, = o,.

Proof. G, is given by:

X if x does not start with w

ov(x) = ki —k - ki ok - :
wb ™ ab™a--- if x =wb"ab®a--- with k; € {1,2} for any i.

T,(x) = o, (x) for any x which does not start with w and for any u = {wz, wzb, wzb*} with
z€Z/27 x ZJ3Z. So for such x’s we won.

Claim: u:= {{wz,wzb,wzb*}| forallz € Z/27 x 7./3Z} C Vo(F)ieu:= {u; :=
{w,wb,wb?},ur := {w}}

Assume that x = wbk1ab2ab®s - .. Then T, (x) = wh~*abk2abks . ...

T,0)(X) = wb Miab=*2qbks ... since there exist two vertices whose distance to the edge e
are 2. So the shuffle of one of them does not change the value of x. By the similar reason

T, (x) =wb Mab~ab%s ... So continue with this way we reach T, := o,.

Lemma 3.2.2. Let u = {m,mb,mb*} and 1, be a shuffle automorphism of the F. Then
there exists v = {vy,vz, -+ } C Vo(F) such that the twist Gy := T,

Proof. Letx € E(F) with t,(x) # x. Since in this case the result is obvious. Let
x = mbMab*2ab® - .- then 1,(x) = wbK1ab2ab’s .- .. Let take

v ={v| = {m,mb,mb*} v, = {mb* a,mb*1 ab,mb* ab*}} C V,(F). Then

G, mx) = wbtab™2ab™% ... and then 6 ) (x) = wbF1ab2ab®s - - - = 1, ().

Theorem 3.2.3. Every automorphisms of the abstract Farey tree F which preserves the
fixe edge e can be written by twists (or shuffles).

Proof. We know the automorphisms are shuffles and twists. And we showed that by the
Lemma 3.2.2 every shuffles can be written by twists. So every automorphisms can be

written by twists or vice versa.

Proposition 3.2.1. Let ¢ € Aut,(|F]|) and v,y € 0.(F). Then d(y,Y) =d(9(y),0(Y)).

Graps of Automorphisms

In fact, the vertices of F can be presented by the rational numbers:

By this tree 6 1 (x) = % for every x € Q. So the graphs is given by following figure:
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Figure 3.8: Farey Tree

2 4 3 8 10

Figure 3.9: The graphs of 6} (x)

Let’s look at the graphs of some elements of Aut, (| F|):
oy, (x) with v = {1,1}. So

@ ,ifx € (0,1)
GV X) =
l — % ,otherwise

- =l
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Figure 3.10: The graphs of oy, (x)
Gv, (x) with vo = {1, 4,2}. So 6y, (x) = 71 (x) for any x € Q*.

L ifxe(0,1)

1—x
Oy, (x) = ] )
11—+ ,otherwise

Figure 3.11: The graphs of oy, (x)

Let’s look at the automorphism ¢ 3 We are just twisting the vertex % SO

4x—3 : 12
— Lifxe (5,%)

o ( x) _ ) 5x—4 273

X ,otherwise

Since the subtree of the Farey tree whose root is % consists all rational numbers between

% and % So the others does not change after the twist of %

So the graphs of o3 is given by :
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N

n.q./
0.2

0.4 0.6 0.8

Figure 3.12: The graphs of G3 (x)



4 MEASURES ON THE BOUNDARY OF THE FAREY
TREE

4.1 Stern-Brocot Tree

Stern-Brocot tree is a binary tree which contains all positive rationals numbers once as a
vertex. This particular tree was discovered by a mathematician Stern and a clockmarker

Brocot. We construct this tree by taking the mediants.

Definition 4.1.1. Let bl i ZZ € @+ The mediant of these two fractions is Z‘izz € Q. For

the mediant we use the notatlon @ bz = Ziii;

Remark. Let g,f € Q1 such that 15) < t. Then
Polgrar, @.1)

Proof. We haveB < L then p.s < g.r. So
ps+pq<qr—|—pq<:>p(q+s)<q(r+p)<:> <;i’: On the other hand
ps<qr<=ps+rs<qr+rs<s(p+ )<r(q+s) 4P < £. Thus

q+s
p Pmr r
q<q®s<s

To construct the Stern- Brocot Tree we start with the fractlons and . The mediant of
these given fractions is 7. Then for finding the right child and left chlld of we will take
the mediant of (T) and 1 1> we get % This is the left child of the fraction 1 1 and we will take
the mediant of (l) and %, we get % which is the right child of % Continuing this way we

obtain a tree which is called Stern-Brocot Tree. On the other words, let’s take a rational

a+b
c+d

the nearest right ancestor of 5. We will use the notation § for the Stern Brocot tree.

number g in the tree such that ’—; = where % is the nearest left ancestor of g and 5 is

Furthermore S” represents the set of vertices of (n+ 1)" line of the tree. For example
SV = {%, 91,81 ={1},5% = {3, %}...You can see at the following figure which is

described Stern-Brocot Tree.
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Lemma 4.1.1. Let § = g @ £ be in the tree. Then the children of 7 are § @ g and 3 @ {.

Proof. Without lost of generality let § be the nearest left ancestor of 7 whereas £ is the
right one. The right child of 7 is the mediant of the its nearest left ancestor, 7 and its
nearest right ancestor is the same as %/ s. So the right child of 7 is 7 @ . By the same
thing the left child of % is the mediant of the its nearest right ancestor, % and its nearest
left ancestor ’5’.

Proposition 4.1.1. Let § = 2 & £ then |ag — bp| = |as — br| = 1.

Proof. First, it is true for % : [1.2—1.1| = 0.2 — 1.1| = 1. Asumme that the hypothesis
is true at § for all i < n. Let 5= g@f c S 1 Let = be a child of 7. Then it is equal to
5D g or 7 @ ¢ by Lemma 4.1.1. Without lost of generality we assume that 7 = £ © g.

\(a+ p)g— (b+q)p| = |ag — bp| = 1 by assumption. (4.2)

And also |(a+ p)b— (b+q)a| = |ag—bp| = 1. 4.3)

So the equation satisfies for §".

Corollary 4.1.1. Let g and  be consecutive rational numbers in the tree such that
)4 r
7 <5 Then

qr—ps=1 “4.4)

Proposition 4.1.2. All rational numbers in Stern-Brocot Tree is irreducible. On the
other words, if ”* € § then (m,n) = 1.
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Proof. Let g and £ be consecutive rational number in § such that § < L. Then

g.r — p.s = 1 by Corollary 4.1.1. Hence (p,q) = (r,s) = 1.
Proposition 4.1.3. Stern Brocot tree contains every positive rational numbers.

Proof. Let 3 € QN (0,1). Then we want to show that a vertex of the Stern Brocot tree is
labeled with this rational number. 7, ’:lill be the rationals in § such that 7 < § < ’% Now
there are three cases:

' memo_agqa i mepm - a - m ; '
First one, 7' @ n = b 505 € S, we win. Second, . D e <b < and the third case is
Ty <D % Without lost of generality we assume that the second one satisfies.

 my mom . . b _a _m .
Then we write n—zz =@ n—ll Then we obtain a new inegality n—; <3< n—ll We will do

. m3 __ nyp my m3 __ a s LR
the same things. Let mem O If wTh then we win. If it is not true then we have

two cases again: ’% < por ’:—33 > 7. Assume that the first one. Then we have

':—33 <3< ’ZZLI‘ And again we will contine by the same way. After finitely step we will

obtain %f = ‘E’,thenwewin. Hence all the rational numbers in QN (0, 1) is contained in

Stern Brocot tree. But we can generalise this by takingthe rational in QN (1,e0). In this

case the rational number is in first right branch of the Stern Brocot tree.
Proposition 4.1.4. [/0] Stern Brocot tree contains a rational numbers at most once.
Some nice proprieties of Stern-Brocot tree can be found at [10] pp. : 117 — 120.

Definition 4.1.2. The Farey Tree is the first left branch of Stern Brocot Tree. So it

contains all rational numbers in (0, 1) N Q. For Farey Tree we use the notation 7.

N,
VAVEEVAN
A A

TN
ool
W
<
ool
W
(S,1FN

1
5

Definition 4.1.3. The top vertex of the tree is called the root. The root of the

Stern-Brocot Tree is % whereas the root of the Farey Tree is %
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Figure 4.1: Continued Fraction expansion of The Paths of Farey Tree

If we have an end 7y the open ball B(y,27") contains all ends which has at least n+ 1
common edges with y. In other words, if Y= (e,eq, ez, ,e,,---) then B(y,27") contains
all ends which starts with the edges e, ey, - ,e,. Then we will use an other notation
O(e,) which denotes the set of ends starts at e and passes at e,. For the Farey tree we
will use the vertices instead of edges. We fix the root vertex % So O(%) contains all ends
which starts at § and passes through 4. Then O(%) = [’7;, £] with g, . are the ancestors of

5. These intervals are called Farey Interval. We will denote them by /() = [15’, 7.

4.2 The Monoid Structure on the Set of Vertices of The
Tree

Now we will define a natural operation over the vertices of #. For each vertex of F
there is a unique path which starts at the root % and ends at this vertex. The operation
between the vertices can be defined as concatenating the paths which are corresponding
to these vertices. To be more precise we will give this operation via defining the set X
and the x operation over this set and they will give us a monoid structure.

Now, we define the set X := {(n1,n2,n3,--- ,ng|n; € N\{0} for any i}.

Proposition 4.2.1. The following map is a bijection:

0: X —Qn(0,1)
(n1,no,...,ng) — [0,n1,n2,...ng, 1]

Proof. Let § € QN (0,1) then it can be write such a continued fraction. Let

[0,x1,x2, - - x¢| be the continued fraction representation of g. Since

[0,x1,x2, x| = [0,x1,x2, - -xx — 1, 1], O((x1,x2,- -+ ,xx — 1)) = a.Let

0(x) =0((y)) =[0,n1,n2--- ,my, 1] thenx =y = (ny,nz--- ,n;). Hence 0 is a bijection.
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Example 4.2.1. 1 =[0,2]=1[0,1,1]=0((1)), 1 =[0,3] = [0,2,1] = 6((2)),
% =10,1,2] =1[0,1,1,1] = 6((1, 1)) are some examples of the values of 6.

Since 8 is a bijection map between X and QN (0, 1), we can write all the rational
numbers in QN (0, 1) by using the elements of the set X. So all vertices of the Farey Tree

can be represented by a tuple in X.

(2) (12)
RN N
(3) (2.1) (13) (1.2)
/ O\ \ / N\ \
4) @1 (212 (22) (122) (L) (121) (1.3)

Definition 4.2.1. Let x = (ny,ny,- - ,ng) € X. The depth of x is
||x|| :==n1 +ny+---+n,— 1 and the length of x is £(x) := k.

Example 4.2.2. Let x = 0~1(3) thenx = (1),
x=(1,1), [|x||=14+1—1=1and £(x) = 2.

x||=0and ¢(x) = 1. For x = 9—1(%),

Remark. [18] x € X is a right child if ¢(x) is even, x is a left child otherwise.

We define an operation over X which is called star and described with x symbol, let

X = (n17n27'” 7nk)ay: (m17m27"' 7ml) €X7

(ny,np, - ,ng,my — Lmy, -+ my) if x is a right child
Xxy =
(ny,np, - ,ng+my—lL,my, -+ my) if x is a left child

We assume that (---,m,0,k,---) = (- ,m+k,---)and (--- ,m,0) = (--- ,m).
Example 4.2.3. (1,1)x(1,1)=(1,1,1—-1,1)=(1,2).
Proposition 4.2.2. The set X is a monoid under this x operation.

Proof. First, x is associative.
Letx = (ny,na,- -+ ,ng), y= (my,my,--- ,my), z= (ky,ka,---k,) € X. By definition of *
operation

(ny,np,--- ,ng,my — l,my, -+ ;my) if x is a right child
X*xy:i=
(ny,np, -+ ng+my— Lmy, -+ my) if x is a left child
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ny,- - ng,my — Limy, - mypky — koo Jky) x and y right
ny,--e o ng,my— lLmy, - mp+ky— L ky- k) x right, y left
n17 7ns_|_m1 _ 1’m27... ;ml7k1 —1,k2--~ 7kr) Xleft,yl‘lght

(
(xxy)*z:= (

(

(nl,--- Np+my—1,mo, - mp+kp — l,kz---kr) x and y left
Then

(X*y)*Z': (l’ll’-.-,ns)*(ml,mz’...7ml7k1—1’k2...,kr) yl‘lght
(1, ons)x (mama, - omy+ky = 1 ka k) -y left

And we know

(my,mp,-- myky — ko -+ k) if y is a right child
y*zi=
(mi,ma, - my+k — Lk k) ifyis aleft child

So, (x*xy)*xz =x* (y*z) that is, associativity satisfies.

(ny,np,- - ,ng,0) = (ny,n2,- - ,ng) if x is a right child
xx(1):=
(ny,ng,---,ng+1—1) = (n1,nz,- - ,ny) if x is a left child
(D)xx=(14m;—1,mp,--- ,m;) = x. So, (1) is the neutral element of X. Besides, it

corresponds to the root of the Stern-Brocot Tree, 1 . Then (X, *) is a monoid.

Proposition 4.2.3. We have the following equalities

(L)% (1, 1) 5% (1,1) = (1,n)

~~
n times

S2)*(2)*---*(22: (n+1)

g

n times
Proof. We know that (1,1)x(1,1) = (1,2). Assume that
(171) (151) ’ ( 71) (l,l’l—l). (1,n—1)*(1,1)=(1,n—1,0,1)=(1,n),bythe

~
n—1 times

induction hypothesis. (2) % (2) = (3).Assume that (2) % (2) x--- % (2) = (n).

'

n—1 times

(n)x(2) = (n+ 1), by the induction hypothesis.

Proposition 4.2.4. Let L := (2) and R := (1,1). We can generate all elements of X by L
and R such that (ny,ny,n3,...) = L' xR % L « R™ x - - -
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Proof. Let £(x) = 1 such that x = (n) then x = L'~ 1. If £(x) = 2 such that x = (n1,n7)
then x = (n1)* (1,n3) = L~ %« R™. Assume that the hypothesis is true for £(x) = 2k — 1
such that x = (n1,ny,...n_1) € X. Then we can write x = L™ ~1R"™ ... L"2-1 (if £(x)
had be an even number, x would end with R"2-1). Let ¢(x) = 2k such that

x = (n)*(1,n,n3,...ny)
= L" s (1,m) % (n3+1,n4,...10) 4.5)

LM~V « R" % 3 % ... % R™* by assumption.
Moreover if /(x) = 2k + 1 then,

x = (m)x(1,n2,n3,...n241)
= L”l_l*(l,nz)*(m—|—1,n4,...n2k+1) (4.6)
LM~V R % 3 % ... % L2+1 by assumption.

Remark. By using the bijection map 0 we can transform *x operation to an operation on
2 2 2
QnN(0,1). And then we obtain 3% 33 Z—ié since 0((1,1)) = % and
|
n times
8((1,n))=1[0,1,n,1] = Z% And also by this transformation we obtain
11 1 |
5*5*"'*5 = P,
N————

n times

generate by % and %

By conclusion, we can say that the Stern-Brocot three can be

Actually, this result is obvious seeing as L means to go left wheras R means to go right
on the Farey Tree. So, we can walk on the whole tree via L and R. Meanwhile, we can
generate all elements of the QN X by L and R.

4.3 Some Special Automorphisms of The Farey Tree

4.3.1 The Automorphism K

We define the map:
K: X —X
L—R
R— L

In fact, the map K finds the symmetry of the element on the tree according to the

perpendicular line which passes the middle of the tree. To illustrate, the symmetry of % is
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3 , the symmetry of % is % etc. SoK:=o¢ 1 which is the twist automorphism by the root
vertex 2 So K(x) =1 —x for any x € (0, 1). We can show this result on the set X.
Proposition 4.3.1. K is an automorphism of X.

Proof. Letx = (ny,ny,...,ng) and y = (my,my,...,m;) be two elements of X, without

loss of generality /(y) is an even number. Then

K(”l;”Z;" cyNg, M — 17"'7ml) =
K(L" 1 %R % -, RS x LM~V RM2 5. % R ) =
Rl oxe s % RM= g [y oy [ —

K(ny,ny, - ,ng)xK(my,my,....m) =

K(x)% if x is right
Kony) = d KOOKD) :

K(ny,np, - ng+my—1,....m) =

K(LM V%R s x LB TM=T o R g R =
Ry R 5 RM—Lypm g ypm —
K(ny,ng,--- ,ng)*K(my,my,...,my) =

\ K(x)*K(y) if x is left

Hence, K is a homomorphism.
Remark. K can be defined such a homomorphism of QN (0, 1) via the bijection 6.
Proof. Letx=L""'xR" %[ ... Then

Kx = R" 's%L™4«R%«... since K is a homomorphism

(Lnl - l,l’lz,n3,...,nk).

Lemma 4.3.1. Letx = (n,ny,...,n;) € X then Kx =1 —x.

Proof. We showed that we can write x via L and R such that x = L' "L x R x [ - ..

Then
Kx = R" 1'5%L™4«R%«... since K is a homomorphism

= (Lng—1)%x(np+1)%(1,n3)%--- (4.8)
= (1,n1—1,ny,n3,...,np).
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0(Kx) =0(1,n; — 1,np,n3,...,ny)

=1[0,1,ny — 1,np,n3,...,m, 1]

1
a 1
1+ i 1
0(x)
=1-6(x)

If K(x) = K(y) for any x,y € X then x = y and also for any x € X we can write
K(1—x) = x. So, K is an automorphism. Via the bijection map 6, K determines an

automorphism of the Farey Tree.

4.3.2 The Flip

The Flip map ¢ is defined on the set X as follows:
0: X —X

(n1,n2,...,n) — (Mg, ng—1,...,n1)

It is clear that ¢(¢(x)) = x. Such maps are called involution. Via 0, ¢ can be defined on
the set QN (0, 1) as follows:

¢([0,n1,n2,...,nk]) = [O,I’Ik— 1,ng_1,...np,n1 + 1]

4.3.3 The Jimm Function

We define another map on X which is called Jimm:

JX—X

(nlanZa cee ,l’lk) — (lnlflvza 1n272727 1n372>27 ceey lnkfl)

And we assume that k > 1 and we will eliminate 1p’s as [...,a,10,b,...] =[...,a,b,.. ]
and [1g,qa,...] = [a,...]. If we have 1_; then we will suppose
[...,a,1_1,b,...] =[...,a+b—1,...]. Furthermore, by convention J((n1)) = (1,,).

Remark. Jimm is an involution.i.e. J(J(x)) =x

It is coming with the simple calculation and the rules 1o and 1_.

Proposition 4.3.2. Jimm is an automorphism of the monoid X.
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Proof. Letx = (ny,ny,...,n5),y = (my,my,...,m;) €X.

p
3(”17”27"' ) s, 1M1 — 17"~>ml) =

(111171727 1n272v27 sty lnsf2727 1111173727 1m272- ] 1m171) ==

(1n1—1727 1n2—2727"'7lns—l)*(lml—hza 1m2—2~--71m1—1) =

~ J(x) +J(v) x is right
Jaxy) =1 _
d(n17n27”' s +my — 13"'7ml) =
(1n1—1727 1n2—2727 ceey lns+m1—3;27 1m2—27 ceey lm[—l) =
(1

n171727 1n27272;"'7lnsfl)*(lmlfhz? 1m272--->1m171) =

\3()6) *J(y) x is left

Then Jimm is a homomorphism of X. Since Jimm is an involution for any x € X
J(J(x)) = x so it is a surjective map. And also if J(x) = J(y) then J(J(x)) = J(TF(y)) so
x =y, then it is a bijection. Hence J is an automorphism of X.

Remark. By 6 we can transfer Jimm funtion to QN (0, 1) such that
3([07n17n27 - ank]) = [07 11’11—1727 1n2—2727 Xy lnk—1]~

1 1
Letx = [0,n1,n2,...,n;]) then 11 = 1+%: 1 =[0,n1+ Lyny,...,ng.
14+n;+
np +
Then
3(%) = [07ln172>1n272727---;1nk71]
= [07171n1—1723 1n2—2727---:1nk—1] (49)
1
1+3(x)
ﬁ =1[0,1,ny,ny,...,n;| for same x. Then we observe that
\Nj(ﬁ) = [0710727 1n1—272a---71nk—1]

= [0727 1n1—2727" '71nk—1]

= [0,1+1,1,-2,2,. .., 1]
(4.10)

Proposition 4.3.3. The involution JJ commutes with K.
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Proof. Letx = (ny,ny,...,n;). We need to show that J(Kx) = KJ(x) for any x.

K(\?(x)) :K(lm—luza 1112—2727"' 71nk—1)

= (1707 1n1—2727 1n2—2321 T lnk—l)
- (27 1n173527 1n272725 e 71nk71)
(

@.11)
- 10727 1n|f3527 1n272727 t 71nk71)
:3(1,’11 - 17”27”37"' >nk)
=J(K(x))

Proposition 4.3.4. The involution Jimm commutes with ¢.

Proof. Letx = (ny,np,---,ng) € X.
3((1)(711,?12," . ,l’lk)) :3(nkank—17"' ,I’lz,l’l]) = (lnk71727 lnk,17272;" : 71n171>
- ¢<1n|—172, 1n2—272> 1n3—27' e ;1nk—l) ~ q)s(x)

4.4 Measures on The Boundary of The Farey Tree

In the first section we look at the topology on the boundary of a tree. Now we will work
on the special tree which is Farey Tree. The topology on te boundary of a tree is
generated by the open intervals B(y,27") where vy is an end which starts at the fixed edge
(or vertex) and it is infinite and non-back tracking path. n € N and the open ball is
defined as B(y,27") = {Y|d(y,Y) < n}. That is, it contains all ends which starts at the
fixed edge (or vertex) and has at least n 4+ 1 common edges with y. On the other words,
let ¢’ be the n'" edge of y. Then B(y,2™") contains all ends which starts at fixed edge or
vertex and passes the edge ¢’. And we label this set by O,

Now on the Farey tree we don’t choose a fixed edge we choose a fixed vertex which is
root vertex % So we suppose 0F contains all ends which starts at % LetI [%, ﬂ be a
Farey interval. Actually the topology on the boundary of the Farey tree can be generated
by Oq with 7 := g @ <. Since there is a topology on the boundary of the Farey tree, there
is a Borel algebra on 0, which can be generated by opens of the topology on 9%,

basicly. So we can put a probabilty measure on the Borel algebra.

Definition 4.4.1. Let p,g € ¥ such that they are siblings. Then we define a map
w: F — QnN(0,1) such that (p) + m(q) = 1. All functions which provides this property
is called transition function.

Actually, the map 7 gives the probability of arriving to a choosen child from its parent.
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Let’s imagine that there is a man over the root vertex % who will walk randomly
non-backtracking on the tree. We want to calculate the probabilty of this man being at
the interval / [’7;, £] at the end of the walk. Then we want to calculate the probabilty of the
man reaching to § = 5 @ . So far we know just the probability of coming 7 from the
parent of § and it is 7t(7). We can find the probabilty of coming the parent of 7 from the
parent of the parent of the 7. And we we will continue with this method until we reach
the root and finally we will multiply the probability of all.

Let’s define the map:

Tq)FZX—)X

(l’ll,l’lQ,.-.,nk_l,nk) — (l’ll,l’lz,..-,nk_],nk— 1)

If n;, — 1 = 0 we will ignore. The map gives the parent of the (ny,na,...,nx_1,n;). Since

we know that an element of X can be generated by (1, 1) and (2). If we have a vertex

(n1,n2,...,nx_1,n;) the children of this vertex are (ny,ny,...,ng_1,nk, 1) and
(n1,n2,...,nx_1,n,+1). Then we give the probability measure on dF as follows
d—1 ‘
e (L(ny,... ) = (Tq;F (nl,nz,...,nk)> (4.12)
i=0

where d is the depth of the vertex i.e. it is just the number of edges between the vertex
(n1,nz,- -+ ,ng) and the root vertex % see [18], pg: 9.

So the cumulative distribution function is given as follows:

Fr(x) := un([0,x]) = L3y (= 1) un AW € I (n1,m2,... i)}
= Z:’:l(—l)l_’_knfl;ol i (qu;F (nl,nz, . ,nk)>

see [18]. There are special probability measures which is defined on the boundary of the
Farey Tree. For example; Minkowski Measure is a probability measure on the boundary
of the Farey tree which is defined as the previous it is just the special case of the measure
ur. It takes all transition function is equal except the root vertex. So it takes (x) = % for
any x € X. Then

pr AW €1 (ny,... )}y =2l-m=n2—ni,

where W is a random walker.

Proposition 4.4.1. Its cumulative distribution function of Minkowski measure is

Fr(n) = ¥ (—1)! e omomn,
k=1
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It is called Minkowski ? function.
Proof. see [22] pg: 5-6.

The more general probability measure on the boundary of ¥ is Denjoy’s measure. Let
p and ¢ be two siblings such that p is the right and ¢ is the left one. If we take t(p) = a
and mt(g) = 1 — a for any two siblings we obtain Denjoy’s measure.

The third measure on the bondary of Farey Tree is Lebesgue’s Measure. We denote the
Lebesgue’s Measure is a measure on the real numbers such that the measure of an
interval is the length of this interval. Now we have Farey intervals so we can talk about
the Lebesgue’s measure on 0F . Let A be the Lebesgue’s measure. Let 7y, be the

function corresponding to this measure. Then

gives us the Lebesgue’s measure where x = (ny,no,--- ,n;) € X . Let y be the parent of x
s0y = (ni,n2,--- ;g — 1). And we know T (x)ux(1(y)) = px(I(x)). So

1
UG (4.13)
pr(1(y))
The end points of the interval I(x) are [0,n,ny,--- ,ng) and [0,n1,n2,--- ,ng_1] as a
continued fraction expansion. We obtain it via the bijection 8. Moreover, The end points
of the interval I(y) are given by [0,n1,n2,--- ,nx — 1] and [0,n1,np,--- ,nx_1] as a
. . . Pk .
continued fraction expansion. Let — := [0,n,ny,--- ,n;] = y be the canonical
qk
Pk—1

representation of the continued fraction. Then :=1[0,n1,np,- -+ ,ng_1] is the
qk—1

(k— 1) convergent of y. Then by the corollary 7.0.1 we have the following equality:

Pk Pk—1
MI(x) =|———
dk  qk—1
4.14)
1
| grgr
Since the end points of I(y) are [0,n1,n2,--- ,ng_1nx — 1] and [0,n1,n2,- -+ ,ng_1],

assume that n;C = n; — 1 so the k" term of the continued fraction

0,n1,n0,- -+ ;1 — 1].
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So
Pr Pk-1
MI(y) = W d
k X k=l (4.15)
B qi'9dk—1
by corollary 7.0.1.
We denote g := (ny,...,nx_1,n;) for any k € N. So
1 1
7\/ I X)) = . }\, I e
(1) (ni,...,ng—1) (n1, ..., ng—1,ng) () (ni,...,n—1) (n, ... ,mg—1,mg — 1)
Then we have
AMI(x
e = A0
(I1(y))
_ (nyy...ong—1,nx—1)
<n1,...,nk>
h (nyy...ong) —(np,. . ng—1) (4.16)
<I’l1,...,nk>

(ny,...,ng_1)
<I’l],. "7nk717nk>
ZK(pTF(X).

—1—

=1- [Ovnbnk—lv"'anl]

where T is the Farey map which is given by:
Tr : (n1,na,...,ng—1,ng) = (ny— 1,ng, ... ng_1,mg) .
If we return the set X,
) (n1,...,n) = (Ling— Limg_q,...,n1 — 1)

So we can say that

n;b(nl,...,nk) :nk(l,nl — 1,...,nk)

Then this equality gives us
T (x) = T, (Kx).

That is, Lebesgue’s measure is invariant under the automorphism K.

So the symmetry of the Lebesgue’s measure is given by :

3 () = I (x)-

Since JJ commutes with K, ¢ and Tr which was proved by the propositions 4.3.3 and

4.3.4. So we obtain the symmetry of Lebesgue’s measure.



S CONTINUED FRACTION MAPS

5.1 Continued Fraction Expansion of Real Numbers

An expression of the form

o=
1
n+——
1
ny+ —

is called simple continued fraction expansion where n; € N — {0} for any i. We denote
this continued fraction by o = [0,n1,n2,...]. Every real numbers can be presented by a
continued fraction. If a continued fraction is finite it represents a unique rational number
we showed it in the Proposition 7.0.1. Otherwise, if o € R \ QQ then its continued fraction

expansion must be infinite.

Proposition 5.1.1. Let o € QN [0, 1] then o has two different continued fraction
representations such that if o = [0,n,n7,- -+ ,ng_1,nk,°0| where n; € Z and n; > 1 then

o= [O,I’ll,l’lz,"'l’lk,oo] = [O,I’l],l’lz,"' yMk—1,Nk — 17 17°°]

Proof. The first k — 1 terms of two continued fractions are equals. So we will just show

the equality of last terms.

o= =
1 1
ni+ ni+
Ng—1+ Ng—1 -+ ’
I’lk-l-; ny — 1+—1
1+ —
We deonte these representations by o := [0,n1,n2, -+ ,mx_1,nx — 1,1,0] and

o = [0,”1,”2,"' Jnk717nk7°°]-
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Example 5.1.1. The continued fraction representations of some numbers:
V2=1[1,2,2,2,---]=[1,2], %* =1[0,1,1,0], 3~ = [0,2, 0], The golden ratio;
# =[1,1,1,---] = [1J.

More information about continued fractions is available in Appendix.

We said that the edges of Farey tree can be presented by the elements of the free group
Z]27 x 7./ 37, or the vertices can be presented by the rational numbers. Now we will
presented the paths of Farey tree which of their initial vertices are the same by continued

fractions. Actually it is compatible with the presentation of vertices by rational numbers.

01 111
_/ 12 \
A3 A 28 N
s\ Jus\ 3B\ ju4

Figure 5.1: Continued Fraction expansion of The Paths of Farey Tree

For example, in the Figure 5.1 the path which starts the edge e after turns always left is
labeled with the rational numbers % and otherwise the path wihch starts the edge e and
turns always right is labeled with the rational number % It is very natural way to
represent the path. Since the continued fraction expansion of % is

[0,00] =[0,14+ 141+ ---]. Turning the same direction means adding 1 to the last
number of the continued fraction. Otherwise, turning another direction means write 1 the
end of the continued fraction expansion. The path which starts e after always turns left

presented by [0,1,14+14+1+---] =[0,1,00] = %

5.2 Dynamics of Continued Fraction Maps

Definition 5.2.1. A family of continued fraction maps T, is given by;

[0, Mgy 1, Mgy, Mpy 3, -+ ] if ng > my
To(x) =

0, my — ng, Mgy, Mg, -+ if nge < my

where o0 = [0,n1,n3,n3---| € [0,1] and x = [0,m),mp,m3,---| € [0,1] and k is the least

positive integer such that my # ny.



47

That is, this map cuts the common edges with the path o of the path x.

Example 5.2.1. Letoo=[0,1,1,1,---] and x; € [0,1,1,2,3,4,---]
x2 =1[0,1,4,4,5,6,---]. Then Ty (x;) =10,1,3,4,5,---] and Tg(x2) = [0,3,4,5,--].

Actually, we must define T, by hand for some special values:

The map Ty, is not continuous in the variable o for any o € [0, 1] i.e. Tq+ (x) and Ty (x)
are two distinct maps with distinct dynamical proprieties. Let

o :=[0,ny,n, - ,mg_1,nx — 1,1,00] and 0~ = [0,n1,n2, -+ ,n_1,ny,°0]. Then

To+(x) # To-(x) forx = [0,ny,n2,- -+ ,ng_1,ng,my,my,--- ,o0].

Since T+ (x) # Tqy- (x) for some x € [0, 1] we always take o = " i.e. if

o= [0,ny,- - ,ng,oo| then ny > 1.

Furthermore, T (o) is not defined. By convention we say Tq (o) = 0.

Finallly, T¢/(x) is not defined for some x where x € QQ and its continued fraction
expansion is the same with the inital part of o. i.e. if x = [0,ny,- -+ , 1y, 0] and

o=1[0,n, Ak, Ngs1,Mk42, - |. Actually in this case we accept that T (x) = [0,00] = 0.

Proposition 5.2.1. The following equation satisfies for any o, x € [0, 1]
JTa(x) = T3(a) (Jx)

where J is the involution Jimm function which is defined in the previous chapter.

Proof. Let o= [0,n1,np,n3---] € [0,1] and x = [0,m,mp,m3,---] € [0,1]. Then

0, Iy 1,25 L2y if g >m
3Ta(x) _ [ myy1—1 Myey2—2 ] | k k
0, Ly — =152 U1 =252, Ly 257+ if e <y

where n; = m; forany i € {1,---k—1}. J(a) = [0, Lny—1,2,1ny—2,2, 1y 2,2, -+ -] and
J@x) =10,1,-1,2,1;ny—2,2,113-2,2,---]. Soif mj =n; forany i € {1,---k— 1} then
Ty(0)(3%) = [0,2= 1, 1y 2,2, Ly 25+ ] = [0, L, —1,2, Ly p -2, -+ -] in the case
ng > my. If np < my then Tfj((x) (5)6) = [0, lmk—Z—(nk—Z)—la27 lmk+]_2’2, .. ] =

[0, Lmg——152 Vi1 =2, 2, L 25+ ] S0 JTau(x) = Ty (Ix).

Example 5.2.2. (Gauss Map) The Gauss continued fraction map % is given by:

h: [0,1] — [0,1]
xHi—L%j.

where |1 | denotes floor function.
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Figure 5.2: Gauss Map

As we can see at Figure 5.2 it has an infinite number of jump discontinues.

Let o :=[0,00] =0 and x = [0,n1,n2,---| € [0,1] forany n; € Z, i € {1,2,--- } which is
rational or irrational number. Then by definition of continued fraction map

To(x) = [0,n2,n3,---] = % —ny = % — L%J = h(x). That is, the map Ty is the Gauss map
and it forgets just the first partial quotient of x for any x € [0, 1].

Example 5.2.3. (The Fibonacci Map) Let’s take o= [0,1,1,---] = ¥3=L Then
To(x) = [0,my1 — 1,myyn,- -] where x = [0, 1, my 1, myyo -+ | with myy g > 1 is called
the Fibonacci Map.

Proposition 5.2.2. [19] The Gauss continued fraction map and Fibonacci map are

conjugate under the involution Jimm. That is,

ITo(I(x)) = To,1,1,...) (x)
for any x € [0, 1].

Proof. 3([0,1,1,---]) = 0. By Proposition 5.2.1 3T 1 ;... (x) = Ty((0,1,1,...)) (3x) for any
x € [0,1]. Then JTg ; ;... (x) = To(Jx). Since J is an involution
I3T)o,11,.1(x) = Tpo,1,1,...) (x). Then Ty ; 1 ...1(x) = JTo(Jx) for any x € [0, 1].

Note that Ty, is piecewise PSL;(7Z) and that its inverse branches are given by

_ [07”1;”2;"'”k—17i+y] lflgk’lglgnk
To ™' (y) = . (5.1)
[O;nlanZ;" 'nk—17nk7y] if1 <k
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So the inverse of Gauss Map:

To ' (y) = :

= =10,n1+y|.
y+ny [ ! y]

Let v be the cumulative distribution function of a probability measure on [0, 1]. The
operator L, is just the push back of Ty, and the cumulative distribution funtion of y is
equal to Lo ¥ (y).

(La®) (y) = Y (=) (®[0,n1,....mg—y,mpe, Y] =P [0,m1, ... i1, i, 0])

. - (5.2)

+ Z(_l)k Z (\P[Ovnlv"'ankfbi—i_y] _lP[O,nl,"'vnkflai])
=1 i=1

We assume that ¥ is differentiable. So we find the density function by taking the

derivative of equation 5.2 term by term, we get the equation:

La\IIZ):f:1(—1)Hk{d%[0,n1,---,nk—l,nk»)’]}\lf[(),nl,---,nk—lank,y]‘i‘
Z?:](_l)kz‘?izl {d%;[Oanla-"7nk717i+y]}\l’[07n17'~-7nk717i+y]

where  is the derivative of W.
This operator is called Gauss Kuzmin Wirsing operator of T. Now for finding the
derivatives of continued fraction expansions of a function we will write them in the

following form:
_ A+ By
Gy + Dy’

with Ay, By, Cy, Dy € Z and Ay Dy — B;.Cy, = (—1)1+k.
Then

[O,I’ll,...,l’lk_l,nk,y]

Ac  CGlAw+By)
Coy+Dx)  (Cry+Dy)?
_ ArDy — By Gy
" (Co+D? )
(_1)k+1

(Coy+Dy)*

a1 07”17"'7nk717nk7y =
dy[ | (

So we obtain:
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2\]![0,7117. '-7nkflank7y]

L bt i) D ey

= | d

:Z d_[Oanla---7”lk—1,”ka}’]‘W[07”17~-~7nk—1>”lk7)’]
k=119Y
[ }’lk—l d

+Z Z d—y[O,nl, -,nk—l,i+y]‘\lf[0,n1,---,nk—l,i+)’]
k=1 i=1

And we have the following equality:

!

[O,I’ll,...,l’lk_],y]

O NOTE nk—l?”kvy]‘W[Ovnlv"'ank—hnkvy]:

(%) d S
Lo

k=1

d

W[O,I’ll, ceey Ng—1 ay] r ’d_[oay] ‘ W[Ony]
y

When we take the derivative the last term we obtain:

o] viosl=—zv (1),

Finally we have the density function :

(LOCW)(y): ( )_I_Zk 1an 1‘ y[0,”1,...,I’lk_1,i+y]’\I][O,nl,...,nk_l,i+y]

y

The operation below

1 ax—+b
M) :=
(viM) |cx+d|2w(cx+d)
defines an action of the group PGL;(Z) on the set of functions on R with M (x) = %.

It is called the slash operator.

Proof. Indeed, let M(x) =x = ”“LO be the identity. Then
e —
Now let M(x) = “4b N (x) = &
We know that

St € PGLy(Z). We will show (W|MN) = ((y|M)|N).

i) = v (250,

lex+d|?2 " \ex+d
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S0, (ex+f)
1 1 a +b
(WM ) = ? ;;:J,}d)ZW(c(%’EH d)
_( (ex+f)+d (gx+h)) ZW( Zi—]]: 12 iﬁi%)
- (ce—l—dg)x+cf+dh 2“’( ?:izi iigi%)
— (y|MN)(x)
(ae+bg)x+af + bh) o .
where MN = (cotdgirtef+d h).Hence this is indeed a group action.

The modular group PSL;(7Z) is generated by the following transformations :

S:iz——1/z
T:7+—z+1

LetU:z—1/z, K:z—~1—2.SoT":z+—z+nand UT" : z+— 1/(z+n). Then we can
described a continued fraction via these transformations:
[0,n0,n1,n0,-- ,ng_1,i+y] =UT"U...UT"'UT!(y). And by Equation 5.3 we obtain

the derivative of a continued fraction. So we have the following equality:

d . . n n ]
d—y[(),nl,...,nk1,l+y]‘\|f[0,n1,...,nk1,l+y] = (\U\UT 'U...UT ’HUT’) (y)

v (5) =t

Then we reach to the following equality

And also we have

0 AL, Y] W0, ny, g i Y]

cant=—v(1)+ £ T[S

=1 i=0

o = '
—(ylU)+ Z Z (vluT"mu...UuT"'UT')
k=1 i=0
1 (5.4)

Then .
(LaW|T)=—(y|UT)+ Y. Z (yluT™U ... UT"\UT™!).

k=1 i=0
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Remark. The following equality satisfies

i e (w\ZMk>

k=1

So by this remark we get

o n—1 )
Loy = (q;\ -U+) Y, UT”‘U...UT”“UT’)
k=1 i=0

So we get

g1
Loy = (WI U+ ZUT”‘U UT"U Y T )
k=1 i=0

nk—l

Y ' =(-1)'a-1").
i=0

Then we obtain
Loy = <w| —U+ Y UT"U.. . UT" ' U(I-T)" (- T"k)>
k=1
By using the equation 5.4 we can compute (Lo W|T);

(Layl|T)=—(W|UT)+ ) Z (ylur™U...UT"\UT™)

k=1 i=0

(LaW|I =T) = (Lay) — (Loy|T)
—(ylU(I-T)) Z (WUT™ ... T"\U) — (Y|UT™ ... T"'UT"™)]

(o)

(LWl —T)|U) = —(W|UUI —T)U Z WUT" ... T 1) — (WlUT™ .. .UT™U)]

So
(LWl =T)+ (Layll =T)|U) = ((LaW|l = T)|(I+U))

is given by
—(y|lU—-UT+I1-UTU)+ (y|I+U) = (y|UT+UTU)

So we obtain very simple equation by these computations. Assume that Y is an
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eigenfunction of Ly with eigenvalue B, i.e. Ly = By. Then we obtain

1
B

(Y[ =T —TU) = 0 is called the Lewis three term and (x|UTU + UT) is Isola’s transfer

operator of the Farey map.

(W|(I-T)(I+U)) =5 (yUTU+UT).

1
B

So if we write explicitly we obtain the following functional equation;

(W) = (¥IT) + (W|U) = (W|UT) = 2 (W|UTU) + (y|UT).

yO) —w(l+y) + % {w(%) —w(%l)} =

y
e (v (25) +v ()}

Definition 5.2.2. Let 4 be the c-algebra of [0, 1] and u a measure on [0, 1]. A map
T: [0,1] — [0, 1] is called measurable if T~!(A) € 4 for any A € 4 and is called
measure preserving if u(T~'(A)) = u(A). In this case u is said to be invariant measure

under the map T.

Now we will try to find the eigenfunction W for the Gauss Map which its inverse branch

is given by Ty ' (y) = y+1n1 = [0,n1 +y]. Then

Loy(y) = id%

n=1

[0,n+y|w[0,n+y].

Loy =Y, (y|UT™) And then
(LoWIT) = X7, (WUT™ 1) = (W) = 5y (WIUT"). Assume yis an
eigenfunction of (Loy) with eigenvalue A we obtain :

Ay —(y[T)) = (y|UT)
Sy —(y|T) =5 (WlUT)
Sy =(y|T)+ 5 (ylUT)

If we write explicitly we find the following equality:

1 1 1
=y(l+y)+5 35
V() =w(l+y) x(1+y)2“’(1+y) (5.5)
yo(y) := @l—iy is a solution of this equality. This equality is called the Gauss density.

Moreover, it is straight forward to check that this measure satisfies the equation 5.5.

Remark. An invariant measure does not need to be unique. A map may have co-many
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invariant measure.

Proposition 5.2.3. /79] Minkowski measure is an invariant measure of T, for any
o€ [0,1].

Proof. The cumulative distribution function of Minkowski measure is Minkowski ?
function. The inverse branches of T for any & € [0, 1] in given at 5.1. Let

@y(y) :=[0,n1,n2,...,ng_1,i+y| where i > 0. such that {(py} are given the set of

v=1,2,...
inverse branches of T, for any Y. So we know by the equality 5.2 the cumulative

distribution function for any o is the following

Lo2(y) :Z(‘P[O,nl,...,nk_l,i—l—y] —W[0,ny,...,ng_1,i))
Y

We will check that the Minkowski ? function is an eigenfunction of Ly i.e.

Ly?(y) = A?(y) where A is an eigenvalue. We assume that A = 1.

La?(y) = Y (2[0,n1,.come1,i+y] =2[0,n1, ... ome_y,d]) = Y 2(y)2~ (- tmert
Y

Y
(5.6)
So

La?2(y) =2(y) Y 27 tmeatd
Y

Y, 2~ mFFmerti) = 1 Hence it proves Lo ?(y) =2(y).

Let’s take o = 1 = [0, 1,0]. So the continued fraction map is given by ;

[0,ml—l,m2,m3,-~] if my >1
T (x) =
[0,m3,my -] if m=1
where x = [0,my,ma,m3,---] € [0,1].
1 -1 1
-—1 if0<x< 5.
T](X): (x ) — 2

To(—1)if § <x<1.

Liy=(ylUTU)+ Y (ylUTUT)
i=1
=Y (ylurUuT’)
i=0
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Assume V is an eigenfunction for £;. And also we assume that the eigenvalue is 1. So

we get the following equality:

Y= i |UTUT
i=0

( |UTUZT)

= (ylUTU(I-T1)7")
& (YlI=T) = (y|UTU)

When we write explicitly we obtain

V) - w1+ = v ().

Soy(y) = % satisfies this equality which gives us an eigenfunction of £;. So it is the

density function of an invariant measure on 77 (x).

Example 5.2.4. 7 is the subtree of ¥ consisting of vertices of distance < 1 to the fixed
edge e. So T g, 18 just cutting the first edges of the paths of the tree. That is,

T ( ) [Oam1_17m27m37"'] lfml>1
A\X) =
1 [05m27m3;'“] #mlzl

where x = [0,my,mp,m3,---] € [0, 1]. If we write the function by the value x;

X : 1
2 o<x< A
1—x — 2
Ty (x) = ] 1
1
I
y ...................................................................................
0.4 / \ / \
4 N 4 Y
T ol ¥/(y+1) 1/+1) 1

Figure 5.3: T,

If  is an invariant measure under the function T, then the cumulative distribution
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function satisfies the following equation:
(Ln¥) (y) = ([0, 1,y] = W[0,00]) + ([0, 1 +y] = ¥[0,1,e])

Assuming that (L, W) (y) is differentiable the desity function which is derivative of this

function is given by:

(L) () = \% 0, l,yJ\w[o, Lyl + \di‘y 0,1 +y1'w[o, 14y
(Lay) = (WUTV) + (W]UT)

Now suppose that y is an eigenfunction of £ then we get:

v = (ylUTU)+ (y|UT)

& (YlU) = (ylUTU?) + (y|UTU)
& (Y|U) = (WlUT) + (yluTU)
& (y—(ylU))=0

If we write explicitly the previous equation we obtain:

v(y) - izw (1> =0.

y
y(y) = § satisfies this equality for any y.

Remark. Ty = (Tg)" so the invariant measure under the function T¢, is the same with
Ty

1°

Proof. The map T g, just cuts the first starting edge e. And T g, cuts the sub tree . That
is, it cuts only the edge in the first line; e and the edges in the second line. So if we apply
T, we cut the edge e in the first line. And again we apply this map we cut the edges in
the first line again but now these are the edges in the second line of the tree. So

T% =Tgp,. Letn € N. Assume Ty, | = (T )""". The map Ty, cuts the sub tree %,.
The map T¢ | cuts the first n — 1 lines of the tree. And if we apply the map T ¢, we
obtain the map (T, ). Then by induction T ¢, = (T, )".

The graphs of the maps T, and T ¢, are as follows:
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Figure 5.4: T,

Figure 5.5: Tz,

5.2.1 A More Generalisation of The Continued Fraction Maps

We know some ends of Farey tree can be labeled by rational numbers and the meaning of
a continued fraction map T, can be thought as just cutting the end o. So if we cut more

than one end we obtain a generalization of these maps. This generalization is given by

us.
Let us see this generalization over some examples:

b + - 1 1 1
Let’s take the paths % and % . We know the continued fraction expansion of them are

notsameso T+ ZT,- #T+  ,-.
2 2 2 V2

[0,m1—2,m2,---] if mp>2
[0,m3,myq, -] if m =2
Tﬁv 1-(x) = .
2 2 [0,m4,m5,---] if m1:1, my =1
[O,mz—l,m3,---] if m=1,m>1.
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where x = [0,my,mp,m3,---] € [0,1].
(

T if 0<x<3

X—mp+2mox e 1 1

P]F1+\/ %—(X) = l_xl__22,z3x+m3 1.f 31S s 22

o f 3 <x <3

= if 2<x<l.

Figure 5.6: ']I‘1+ - (x)

2

The density function of an invariant measure u is given by as follows:

b 1 y+m y+m+1
f,U(y) _mgo (2y+2m+1)2 (fﬂ(2y+2m+1)+f’u(2y—|—2m—|-1)>

F0) =5+ 1) = G () + A G

fuly) = 3 satisfies the previous equality. So it can the density of an invariant measure u

under the function T+ , | -. Let us to write f,(y) = 5"
2 2

- 1 y+m y+m+1
mz::() (2y—|—2m—|—1)2 <fy(2y+2m+1)+f“(2y+2m+l))

o)

=)

= y+m —|—m—|—1)
- 1 1

ﬂy+m Cytmtl oy

Pﬂ

Then f,(y) = % is the density of an invariant measure.
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[0,my —3,mp,---] if m; >3
[0,m3,my,- -] if m =3
[0,m4,m5,~~] if m1:2, m2:1
[0,my —1,m3,---] if my =2, my>1.
Tl+v l7v2+v Zi(x) = .
3 S 3 [0,m3—1,m4,--~] if m=1m=1m3>1
[0,1’)15,1116,“'] if mlzl,m2:1,m3:1
[0,ma,ms,- -] if m=1m=2
\[O,mz—z,m3,--~] if m=1,m>2
where x = [0,m),mp,m3---]| € [0,1]. By the value x function is given as:
f !
. .
13 if 0<XS i
x—mp—+3myx e 1 1
1o if <x<j
1-2x—3m3x+m3 . l 2
-1 if 3<x<3
i oo ) B 1f2<x<%
1+, 1—,2+, 2-\X) =
3 V3 V3 Vs 2x—1 3
23x if 3 <x<3
2x—1—2myq+3myx 3 2
S if 5 <x <3
1—x—3m3x+2m3 3
3x—2 if 3<x<3
1= if 2<x<1
3x—2 4 —

So the density of an invariant measure under the previous function satisfies the equation:

= 1 y+m 2y+2m—+1
f,u()’) _mgo (3y+3m+1)2 (ff‘(3y_|_3m_|_1)+f’u(3y—|—3m—|-1)>

1 y+m—+1 2y+2m+1 )
+(3y+3m+2)2<f“(3y—|—3m+2)+f“(3y+3m+2) '

(5.7

Assuming that the density function is analytic we can write the following equality,

finding a solution for this equality is simpler than the previous one.

2y+1
fuld) = fuly+1) = (3y+1) () TG )

y+1 2y—|—1))

+(3y—|—2) (f”(3y+2) f“(3y+2

fly)= % satisfies this equality. If we check it for the equation 5.7, it satisfies also. So it
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is the density of the invariant measure under the map T, *v 1- v2+v 2- (x).

N7

Figure 5.7: T X
gu 1+v1 v2+v% (x)

5.2.2 Invariant Measures for A Special Case of A Generalisation of

The Continued Fraction Maps

Denote that 7, is a subtree of ¥ consisting of vertices of distance < n to the root vertex
By convention, V(%) := 0, é, {} Then V(%) := 9, %, %, %,%
(72) = {(1—), }l%, %, %, %, %, ?—1,% etc. Since it is a binary tree we can observe that

[V (F.)| =2""1 +1. So let

0 ay dp as Ay Ayn+l_1 dyn+l
V(.I]:n): PR A A )
1 b] b2 b3 bk b2n+1 —1 b2n+1

Then V(F,—1) and V(F,41) is given by

0 ay a4 Ayn+1_p dyn+l

Vv — =NY397 7 v

(’{]:n 1) {1 b2 b4 b2n+1_2 b2n+1
0 a a a+a ax ar+az az
Vv =17 Y7 ) y 7 ) y7 9"

(Fn) =13 1401 b1 b +by by by+b3 by
A Ak + Qg1 iy Aynt1_1 Qontl_| T Apntl Aol
bk, bk +bk_|_1 ’ bk+1 ’ b2n+171 ’ b2n+171 +b2n+1 ’ b2n+1

T

Lemma 5.2.1. LetV(gfn):{? a o ;;; b—i%d—’; d‘id‘i%} Then
di=b;and ¢; = b;—a; forany i € {1,2,-- -+ }. Indeed, a’+c‘ =1 forany i€ N.

Proof. Tt satisfies for V(%) := {9, 3, 1}. Assume that the propriety satisfies for V().
+1)-

We will show it satisfies for V (7,

0 a a ai+a a ax+az az
V) = D T, by by v by by bt by by
I e N S S N S N S .
bi— b1 +b b 72 d di—y +di dj—y
c3 ¢34 &) )+ <1 c1+1 1
"%’d3+d2’d2’d2+d1’dl’d1+1’1}
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Let Z" % € V(F,). Then by assumption by_| = dj_1 and by = dj then
br—1+ bk = dy_1 + di. Moreover, by assumption ¢;_| = by_1 —ax_1 and ¢ = by — ai.
Then cp_1+cx =by_1 + b — (ak —|—ak,1).

The following proprieties of Farey tree (following 2 lemmas) were showed by us.

Lemma 5.2.2. Assume that

(gy =@ ak | drot Lo @ oa
n b07b17b27 ,bk’ 7b2n_1’2,b2n_17 ,bk’ 7b27b17b0
Then
V(7 ):{a_o aptar ay axtax  agtay a  ap_1+1
il bo by+by by’ by+by’  by+bi_q by’ bzn 1+2

b 1 b2 b4 b3 bz b] bo

1
" b 1 +2 by’ by bi+by by b+ 1’ bo}

Proof. We know V(%) = O, 5, }} and V() = ?, %, %, %, %} So the hypothesis is true

for this case. Assume that it is true for V(F,). We will show it for V(7,41). Let

apg ay ag 1 Coyn_)p C4 C2 Cp
\% ) — [ __ g - - yee - _ 4
(,{Fn 1) {b05b27b45 ’2’b2n72 7b47b27b0}

If

ap a; ap az a1 cony cmp Ck c3 2 €1 €
(—{]:”): b_ab_7_7_7"'7_7"'_7—7 I R R e
o b1 by b3 by 2 boyn_1 by_»p by bz by by by

Then by our assumption
cx = by and con_j = by for any k € {O, e ,Znil}. (5.8)
We want to show that
Ck + Cr+1 = bog+1 and ¢ = by
Con_j + Con(k+1) = b1 and cyn_y = byy for any k € {0,2”_1}.

By the equation 5.8 ¢ + ck+1 = Dok + bag+2 = bax+1 by the rule of the Farey sum, and
also ¢, = byy. Moreover, con_j + Con_(kt1) = by + bog+2 = byg41 by Farey sum, and
con_y = by for any k € {0,---, 2" 1},

So it gives us
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0 a1 a aita ap az+ay a3

1% — (= = = =
(,{EH»I) {labl+17b17b1+b27b27b3+b27b37 )

ag+ag—1 ag 1 by by

bi+bi1 b 2 by 42 by
by by by b 1

b_zabl_{_bz?b_l?bl_{_l?I}

Lemma 5.2.3. Assume

ap ay ay Ayn+l
Vv =17 177 17 "
(j:n) {bo bl b2 b2n+1
Then
ap aj a, QAyn+1 Contl_q c1+co co
14 —{F =17 > s 2 T ) 9° g
(Fur1) {bo bo+b1 by by by +bw’ bo+b by

Proof. We will just focus on the nominators of the elements of V ( %,41) which are less
than % We have V(%) = {(T), %, %} and V(F) = %, %, %, %, %} So the hypothesis is true
for this case. Assume that it is true for V (F,;). We will show it for V (,1). We must
show

ap + ag+1 = azk+1 and ax = ag.

By our assumption a; = ayy satisfies. By the rule of Farey sum

Aof+1 = W + A2k42 = A + Qg1

We see that in the Farey tree every end can be describbed also by a rational number, and
also every vertices of a tree labeled with a rational number and these give us an end. Let
. be the subtree of the Farey tree and

V(FO\V(Fr) ={&, 8 “5 L 2”“ 1 } Denote X,, be the set of the all ends

by’ b3’ > by’ bynt1_
which are labeled with the rat10na1 numbers in V( Fa)\V( fn_l) Assume
Z—: € V(Fn) \V(Fa—1). Then it represents two ends in the tree : b_ and . Denote that
Tx, = Ta1+va1 Gyl g Oy For example T%*v{ = Tx,
by T by Ty b1y

The following theorem was raised and proved by us.

Theorem 5.2.4. The density of an invariant measure under the transition map Tx, is
fuly) = %for any n € N.

Proof. First, let us to try the inverse branches of the transition map. Assume
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ax—+b

Tx, = +dfor some a,b,c,d € N with ¢ # 0 ord # O and |ad — bc| = 1. So the
cx

inverse of this map is

ag Ap—1 Adi+1
p—— Let 7 € V(F) \V (Fu-1). Ifx € (5=, P ) then

To+ - (x) = Tx, (x). Let us to divide this interval and try to find the inverse branches.
b by
Ak—1 Ak+1\ [ k-1 Gk—1+ak U ag—1+ag ag U
bk—1" by br—1 by—1+ by br—1+ by’ by
aj A+ a1 U A+ Ak+1 Akt
b+ b1 by

b by + by 1
, the map T+, a - (x) cuts the first n edges of
b b

ag—1 Ag—1 +a
First, let the path x € ( )

br—1 b—1 + by

1 , , Af—1 Ax—1 + A
x. The depth of 5 asa vertex is 1, $0 T, +, o - maps the interval

k—1 B VB b1 b1+ Dbk
to (0,1). Then we reach the following values of the map T« + N
LR
()] 0
(] Ta aq-\—) = —
i ) T

ap—1+ag 1
Tak+ a-\7— ;)= 7

i Vi b b1

- (Zak,l—kak_ 1
EVE b b 2

T (3ak_1 +a, 1
WOV 3b +b 3

. . . . k-1 by
After some calculations we obtain the following equalities: b = —ab—, c=—a b
k—1 k—1

ay
d= —cb—, a=a. We know |ad — bc| = 1, then a® = b,%_l. Without loss of generality

a=by_q. Thus,d = a;, b = —ay_| and ¢ = —by. Hence we obtain
_ agy + akg—1
Tak1+vak - (y) = b—
5 Vi kY + bi—1

ay—1+ag ai ., Gk
Now assume that x € {| ————, — | . Then x has at least n + 1 common edges with —.
b1+ by by k
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N i i i Y ty n+ 1 dges with the end —
x€E , en x has exactly n common edges wi eend —,
br—1+ by br—1+2by Y . k
if we apply the transition map, it means we will cut the common edges. So we obtain:
ax—1 +ag 0
Ta a—\ 77— ) — T
SR (bk—ri-bk 1
Ag_1 + 2ay, 1
R e
bk bk bk_l + zbk 1
2ap_1+3a;, 1
® Tor - (G—=—=5>
b Vb 2bx—1+3by 2
3ap_1+4a; 1
® Tor - (=3
b Vb 3bx_1+4br 3
After some calculations we obtain a = by_| + by, b = —(ay_1 + ax), c = —by and d = qy.

dy—>b ary+ax—1+ax
a—cy  by+be+b
ax—1+2ar a1+ 3a;
br—1+2by by—1 +3by

So

which gives us the inverse branch of the map.

Now assume that x € ( ) then x has exactly n 42 common edges

. ag .- . .
with the end = if we apply the transition map, it means we will cut the common edges.
k

So we obtain:

ag—1 + 2ay, 0

[ ] Tal+

n VE b +2b 1

ax—1 +3ay 1
o Tor o (—7)=7

b Vb br—1+3bg 1

2ap_1+5a; 1
i T‘Lk+ ‘Lk’(—_ Y

5 Vor 2by_1+5by 2

dy—b  ary+ap1+2a;

After some calculations we obtain =
a—cy bry+bi1+2b;

which gives us the inverse

branch of the map.

For generaliser the inverse branches in this case, we assume x has n + m common edges

a
with = Then we will cut this edges and in this case
k

(ak_l +may a1+ (m+ 1)ak>
X € .

bi_1+mby by_1+ (m+1)by

T ai—1 +may 0
[ ] a a-—-\7T7""7"—"—"—""""F7") — —
Vi (bk—l +mb;” 1
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ay_1 —l—(m—i— 1)ak) B 1
1

[ ] Ta ay —
Vi (bk71+(m+1)bk

2051+ (2m+1)a, 1

[ ] Taf,;ﬁ-

5 V%’;‘(zbk_l Fm+ b 2

dy—b ay+ai_1+mag

After similar steps we obtain the inverse branch: In

a—cy byy+bg_i +mby
ag—1+ag ag

—— , — | infinitely many intervals such that
b1+ by bk) v

ag—1+ax a O ar—1 +iag ax—1 + (i+1)ax
xel— — | = — : :
bk—l +bk bk i bk—l -+ lbk bk—l -+ (l —+ l)bk

summary we divise the interval (

ax—1+may a1+ (m+1)a;
br—1+mby by_1+ (m—+1)by

Since if x € ( ) it has exactly n + m common edges with

he end X
t —
€ en bk

A ax + Ag+1
by’ b+ biy1
we will divise this interval as following :

ay ag +agy _O (i+1)ak+ak+1 iag + ag41
b bitbirr ) 2 \ (i Dbg+bigr i +bitr )

Now assume that x € . By the similar reason with the previous interval

_ o ag (m—}—l)ak—l—ak+| may + agy1
If x has exactly n +m common edges with — then x € , .
by (m+1)by +byy 1’ mby + by g
And in this case we have the following values of the transition map:
i1 +may 0
[} Tak+\/ak7(+— - -
o Ve by +mbi 1
ak+1+(m+1)ak 1

Ta a; — —_ -
SRV (bk+l+(m+1)bk 1

2ap11+ 2m+1)a; 1
® Togra( 5

b Vi 2bk+1—|—(2m+l)bk:2

Then we find the inverse branch:

dy—>b  ary+mag+ a1

a—cy by+mbp+biyy



66

ag+ags1 At
Finally if x € ( i i > .

bx+biy1 by

ag
Then x has exactly n common edges with the end b Then
k

Ai+1 0
Tu a—\7T7") — ©
* Tarva () =1

T ar+1tar, 1
o a a — ) — —
nOVE b by

2ap1+a;, 1
[ ] TakJr ag — (+—:—

b Vb 2bgr1+bp 2
After similar calculations the inverse branch of the transition map is given by

dy—>b B ary + 41
a—cy by+bgy

2}1

)= {8 8 B VOV = (8 e ) T
n f

equatlo (y) — f(y+1) for the map T, is given as follows:
-1
1 ax+1y + dok
fO) = f+1) = A )
gf) (bokr1y+ba)?”  Dows1y +bo (5.9)
1 Wk+1Y + A2k+2

(b2k+1y + b2k+2)2 Dok 1y + Dokt 2

We showed that f(y) = % is the density of an invariant measure of Tx,. Assume that
fly)= % satisfies the equation 5.9 then we obtain

1 2”21 1 N 1
yo+1) = (aakp1y+an) by +bxu)  (az1y +azi2) (b 1y +bai2)

By the previous lemmas 5.2.1, 5.2.2 and 5.2.3 V(%,+1) can be given as follows:

ao al ar as Aon+1_q Aon+l
V(j:n+1):{b_7b v 7 ) P ’ )
o b1+bo by by +by byn_1+byn" bon
byni1_1  bynt1_5 o by by b @} .
bon_1+by’ by_y ' bi+by’ by’ bi+by by
_[_a as as__ .., ol by by b
V(_’Fn+1)/V("7‘;1) - {b1+b0’ by+b1? b3+by> Y bon_1+bon ? byn_+boyn? Y bi+by? b1+b()}'

Then the equation f(y) — f(y+ 1) for the map T, , is given as follows:
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2"—1 1

A2k+1Y + Az
)=o) k;) (b + by )y + b)) (b + b))y + b
1 i1y + Aoks2
((br+bir1)y +bre1)> (bt bies1)y + bt
n 1 bar 1y + by
((bk+bk+1)y—|—bk)2 (bk+bk+l)y+bk
1 bay1y +bogy2

+
(b +brs1)y+bi1)* (bt bis1)y + it

Let f(y) = % The right side of the equality is given as follows:
2”2—’1 1 N 1
=0 ((br+ b))y +bi) (aokr1y+aa)  ((bk+bis1)y + birr) (@2n 1y + aze+2)

1 1

+

(D +bi1)y +bic) (o 1y +b2x) (b +bii1)y + bii1) (bok+ 1y + boxt2)

_ = (askt1+bawy1)y +aok + by n
=t (b +bir1)y+bi)(azk1y + ax) (bawy1y + bar)

(aoks1+bouy1)y+aokio+boyyo
((bk +bry1)y + by 1) (aoks 1y + azii2) (bok 1y + bowy2)

B

bog+1 Dkyl _
By the Lemma 5.2.1 BitbeoT + Bithi = 1 then boyy1 + axky1 = by + br41 and

% + %" = 1 then ayy + by = by. Then we have the following equality:

2"2—‘1 (a2k+1+ boks1)y+ ank + bk

_|_
(=t ((bk+by11)y +bi)(azk 1y +az) (bawy1y + bax)

(a2k+1+bokt1)y+ asks2 +bogs2

(b + bis1)y + bry1) (a2k1y + aok+2) (bok1y + boks2)
_ Znil (br +biy1)y + b
= ((

+
b+ biy1)y + bi) (azis1y + azi) (box+1y + box)
(bk + bgy1)y + bt

(b +bis1)y + biy1) (21 + ak+2) (bok 1y + ok 2)
]
1

-y 1

_|_
=0 (a2 +aok) (bor1y +bo)  (a2ks1y + azer2) (bars1y + boxi2)

So by the Equation 5.9 we have

21 1 1 1

+ .
k;)(02k+1y+612k)(b2k+1)’+b2k) (aoks1y +agii2)(bor1y +buy2)  y(y+1)

So f(y) = % satisfies all the equalities f(y) — f(y+ 1) for our general map if f is an
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analytic funtion. As a result we can say that f(y) = % is the density of an invariant

measure under these special case of a generalization of continued fraction maps.



6 ASSOCIATED POWER SERIES OF THE
CONTINUED FRACTIONS

This chapter is not directly related to the other chapters in this thesis. Our motivation is
to associate a power series to continued fractions, but we want to this power series has

some proprieties such as continuity and convergence.

The modular group PSL(2,7) is the group of 2X2 matrices which of the coefficients are

a

integers and the operation is matrix multiplication. Let [ ] be an element of

c
PSL(2,7Z), it represents a linear fractional transformation such that z — %. The group
which occurs by these linear transformations and composition operation is called
modular group. Moreover we can generate this modular group by the linear
transformations 7 : z+— 1+zand S: z — —% such that §? = (T'S)? = Id. So apparently
we can say that PSL(2,7) = (S,T|S?> = (TS)> =1Id). Let L:=TS.

There is a natural homomorphism between the group PSL(2,7Z) and real numbers such
that

Y:PSL(2,Z) — RTUR™
(LS)" (L2S)"™(LS)™ ... — [n1,n2,n3, -]
S(LS)" (L2S)™(LS)™ ... — [—ny — 1, 1,ny — 1,n3,n4---].

1
suchthat LS=1+zand L2S = ——.
1
1+ -

z
It is clear that (LS)"(z) = n+ z for any n € Z. We know that
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1
(L%S)(z) = — Assume that (L2S)"~!(z) = — then by induction
I+ - n—14-
z z

(L*S)"(z) = L*S(L*S)"'(2)

1 1
N 1
1+ n—+—
1 Z
1
n—14-—
<
So we obtain the following equality
. 1
(LS)™ (L78)"(LS)"™ (z) = m1 + X
n3+z
= [nl;n27n3]

We can generalize this result for infinite continued fraction expansions. Moreover if we

multiply by S we can obtain negative real numbers such that

S(LS)™ (L*S)™ (LS)™ (z) = —ny + = [—n1 —1,1,np—1,n3,...].  (6.2)

n3—+z

ny +

6.1 Some Power Series Candidates

Now our aim is to come up with a well defined power series for each continued fraction
expansion of reel numbers. First of all finding for RN (0, 1) is adequate, after we will
enhance and generalize for all real numbers.

Former, basicly for x = [0,n,n5,...] we can suggest the power series

hy(t) =™ M+ pmAmtns 4 for any t. But it is obvious that this series is not well
defined, we will explain the reason by a simple example. Let x = % then it can be
represented by two continued fractions but actually they are the same,

[0, 1,1,00] = [0,2,00]. Our expactation is i,(¢) should be the same power series for two
expansion but it is not: for [0, 1, 1,00] A, (¢) = ¢! + 1> whereas for [0,2, 0], h,(t) = 12.

Latter for x = [0,n;,ny,...] we put forward the power series g, (¢) which is ordinary
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generating function of the sequence 0,0,...,0,1,1,...,1,0,0,...,0... In this case
—_— —— —

nj-times np-times n3-times

ge(t) =Y apt* =" 4t 2 ppntm oy bt gttty
k=0
L. +tn1+n2+n3+n4—l _’_l_nl+...n5 4. +tnl+...n6_1 e

Or if we write compactly g, () = Y, "1 21 . So we can say that

gx(t) < Yo t* for any r. And we know that this serieslis éeometric and it is convergent
for |¢| < 1. Then by comparison test g,(¢) is also convergent for |¢| < 1. But this power
series is not well defined like previous power series. We can control this result by
calculating the power series of the same rational number % Hence g,(r) =1 for the
premier continued fraction expansion [0, 1, 1, 0] whereas g,(t) = 1’—: for x = [0,2,0] and

they are not equal.

6.2 A Well Defined Power Series

Proposition 6.2.1. The series fy(t) = 1 +¢+12 4+ M~ M (1 f 54524271+
M1+t 12 4 ) g2 (1 5457 1) 4. is a well defined power
series for x = [0,n1,np,n3,n4---] withn; € Z\ {0} and s =7 — 1.

Proof. Letq™ =[0,n1,na,...,n—1,1,00] and g~ = [0,n1,nz,...,nx,0]. We must show
that f,+(¢) = f,-(t) for any t.

fq+(t) =14t pmlpm (14+s+--- _*_Snz*l) e T e g T (] o p
2. +tnk*2) B R S R e

So if we calculate f,- () we will observe that f,+ (1) = f,— () +

it gho ety (I+t+--- +tnk—2) I e R R
gt gt ettt (1 4p 4o % 1) Then it is obvious that f+ (1) = f,- (1)

for any 7.
Example 6.2.1.
d 1
k
t)=) t'=—for|f| < 1.
fo(t) k;) T forlrf <

- 1
HD=1+tY sf=14r——=2f% <1
Al =Tor s = Tty =2 for s

& 1
_ 2 ky _ 2 _
fit)=1+1+1 (k2=OS)_l+t+t (1_5) 142t for |s| < 1
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Let x=1[0,1,1,---]

fo) =1+t +1s+2s4+122 + 532+ 35 + -

[0

=Y (zs)k+t§(zs)"

k=0
B 1 n t 141
Cl—ts l—tsl—t+12

1 I —t" 1—s"
Lemma 6.2.1. For x =[0,7], f(t) = - (ts)”( - +1" l—s) with |t| < 1.

Proof.

fel@)=14t4+ 4" " (A Hs+- 5" D+ (T4t 4+ )+
= (L+t4-+"D(1+ (1) 4 (19)*" + (1) + - )+
(14545 DA+ (15)" + ()" + (15)>" +---)

1 1—" 1—s"
= t" ith t] < 1.
L{mf(l—t+ 1—s>WI|’

2n

Proposition 6.2.2. Let x = [0,77,712, -, 7] with k is an even number then
1 1 —¢" n 1 —s™ " nzl—t’13

t) = t t -

fe(t) l—msmans ...\ 1 —¢ + 1—s s 1—1¢

_ %
_{_..._{_tnls”Z...t”kfll 5 )
1—=s
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Proof.

@) =1+t (s 52 ) g2 (T - 2+
G (] g 4T o g () g Tl
by gt g () g gy g
= (Lt ML) (1 gt gt ikt gty 2y
(tn1+~-'+nk,1sn2+~~+nk)3_i_'_.)_i_(l_|_S_|_”__|_sn271)tn1<l_|_tn1+~-+nk,lsn2+~~+nk_|_

(tn]‘|‘"'+nkflsn2‘|‘"’+nk)2 + (tnl+"'+nk—lsn2+3”'+"k)3 4. )_|_

(1 +t4---+ t”S_l)t’ll snz(l _|_l-nl+"'+nkflsn2+"'+nk + (tnl+"'+”k—ls”2+"'+nk)2 + .- )

+1 r + 1Mt

1 11— 1—s™ 1—1"
( 11—t 1— -1t

Now we fix x = [0,n1,n2,---].
Proposition 6.2.3. We have the following functional equation for any #.

11—
ntx 1—1t

+1" fi(s).

P . - :Oa ) y P
roof. nx " [0,n,n1,n2,- -]
n—+ ’
mt——

I’l2+—
So
fa @) =141+ + " (I st+s+- 45" D)+t (T4 +02 4+ +
n+x

1 —t" 1-¢
)= 1_tl‘"(1+s+sz+---+s’“_l+s’“(l+t+t2+-"t"2_l)+"': 1" - fi(s).

Corollary 6.2.1. The following equalities are provided

[ () =1+1/(s)

I4+x

foa (t)=1+t+1fs)

24x
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Corollary 6.2.2. For n =0 we find f()—lc,t) = f(x,1 —1) = f(x,s) then we can say that the
series f(x,t) is defined for x € (0,00) NR.

Proposition 6.2.4. The following equation satisfies for any n € NU {0}

X 1—1"
t] = " t
Nows TS )

1 1 1
Proof - = = =[0,n+ny,ny,---
nx+1 px41 1 1
n+- n+n+———
X X 1
n2‘|‘T
So
f(nx+1’t) =144 2 TG (BT
=1"f(x,t) F L+t 24!
l_tn+tn f( t)
= . x
1—1¢ ’

Proposition 6.2.5. For any x € (0,1), f(x,3) =2.

Proof. Letx =1[0,n1,ny,---] withn; € Z. We know s = 1 —t = % Then

1 1 1 1 1m 1 11
Y=l (2 (o D e
=) (5)
L6
=2

Proposition 6.2.6. f(x,t) is a convergent power series where r € (0,1) NR.

Proof. Assume thatt € (0,1) since s =1—1, s € (0,1). We will try to write the series in

a more appropriate form to see that it is convergent:



It is a finite sum when n; < 0. So
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1—¢M 1 —s™ 1—¢™ 1 — s 1—1¢"
— + tnl + tnl ny + tnl antn3 + tnl sn2tn3 Sn4
1—1¢ 1—s 1—1t 1—s 1—1t
— ¢6 _ 4y
+tn1 npy (N3 N4 }’l51 S n| J12 (N3 N4 N5 n61 t
SEPRS ——— s s RS
1—y5 1—1¢
1 —t™
— — +tn1—1(1 )+tn1 ny— 1(1_tn3)_’_tn1sn2tn3—l(1_sn4)
+tn1sn2tn3sn4—1(1_tn5)+tn1sn2tn3sn4tn5—l(l )+tn1 ny Sné—l(l_tm).__
1—¢m
=+ Ppm=lgn=l e —g) 4 msn 1 (s—1)

Mg g () g s (g )

+tn1sn2tn3sn4tn5—lsn6—l (l‘ . S) +tnlsngtn3sn4tn5sn6—ltn7—1 (S . t) 4.

—
_ - +In1+(s—t)( Z‘nl_l ny— 1+tn1 ny— 1tn3 1 tnlsngtn3—lsn4—1
+tn1sn2tn3sn471tn571 o tnlsnztngsn4tn5718n6fl _|_tnlSnztn3sn4tn5sn671tn7fl) .
1_ ni oo oo ) )
<5 +"M+(s-0)Y [ Y|
—t i=0 \j=0
=14r+24+2" T s—n)Y [ Y]
i=0 \j=0
) 1
Whent € (0,1) we obtain Y77 ot/ = 1
So we have

i=0 \j=0
-1 -1
=14t4+24--42M 4 Y s
—ri=0
. 1
If 1 € (0,1) thens € (0,1). So Y72 ys' = T
—s
Then we reach
14+¢+12 2=l
FrtT 4 _tZs

s—1
=Trtrt oMy —

1= A
- +t"M+(s—1) Y7, ():;-":0 2 ) s' converges.
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Then f,(t) is convergent by comparison test. If n; = oo since |¢| < 1 the sum

1+t+1>+---+2t"~ ! converges. By the same reason f,(t) is convergent.

t
Proposition 6.2.7. f(—x,t) = S—2<f(x,s) — 1) forx € (0,1)NR.

Proof. If x =[0,n1,np,n3,...] then —x =[—1,1,n; — 1,ny,...]. So
_71 =[0,—1,1,n; — 1,ny,...] by the corolloary 6.2.2.

f(_?l,t) (24D ot (s e 82 )4
ERTCILel§ NN IPOIPLER ) I
:;(1+l+l2+"'+t”1_2+l‘"1_1(1—}—s+s2—1—---—1—s”2_1)
—I—t'“*ls”z(l—|—t—|—~~-—|—t"3*1))_|_... (6.3)
:tiz(t+t2+"‘+l‘"rl—l—t"1(1+s+s2+-.-+3”2*1)

+ M2 (14t 4+ )+
= 50 =1).

So f(5,5) = 5(f(x,8) — 1) = f(—x,1) by the corollary 6.2.2.

6.2.1 Conclusion for The Chapter 6

We said that at the equality 6.1 every continued fraction expansion can be identified by a
multiplication of the elements of the modular group PSL,Z. And also we associate every
continued fraction expansion by the power series f(x,#). Now we can associate the

power series f(x,t) with PSL,Z by the following way:

o X :=LS=1+4+z—X :p(t)— L+sp(1).

1+1HYt:p(t)l—>l+tp(t)

o U = % «—— U p(t) = p(s).

where the maps X;,Y;,U; defines on C|¢] which is the ring of the formal power series with
complex coefficients.

So for x = [0,n1,n, - - -]

feot)=14t+2 4 M (s 52 ) e (Tt o )
=YX
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But for the power series which associate to negative numbers can not be associate to

these maps.

In this study we couldn’t find any other power series such that series expansion of

negative numbers associate to these maps. It can be tried in the other works.



7 CONCLUSION

In this thesis we studied on the trees especially the Farey Tree. We defined the topology
on the boundary of a tree. We showed that if a tree is perfect then its topology is
homeomorphic to the Cantor Set. Furthermore, we gave an equivalence relation on the
boundary of a perfect tree and we showed that the quotient topology is homeomorphic to
the unit circle. Secondly, we studied the Borel measures on the tree, we give some of
them. Then we studied the automorphism groups of Farey Tree whose edges can be
described by the generators of modular group PSL»(Z) in a nice way. Finally, we
generalized the Gauss map and the Fibonacci map which is called the continued fraction
maps and we examined the dynamics of this map such that we tried to find an invariant
measure under this map. At final, we gave a more generalization of this map and for a
special case we found the density of an invariant measure under the continued fraction
maps, and we proved it.

In this study, we focused on the Farey tree. For other special trees or all trees,
automorphism groups can be observed or the measure on the boundary of these trees can
be studied. We know every vertex is the degree 3 in Farey tree (except the root vertex) so
we define the probability 7 function by two siblings. If there were more than 2 we could
modify this function and we could try to give another special measures on the boundary
of such trees.

Furthermore, we found an invariant measure under the more general continued fraction
map but we choose the paths conveniently. We could try to find an invariant measure for

more general cases.
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Appendix

More informations about continued fractions:

Proposition 7.0.1. Every finite continued fraction has a unique canonical representation.

ie. every continued fraction can be presented by simple fraction.

Proof. Let [ag] = ap = 5. We will prove it by induction. Assume that it satisfies for the

(n— 1) order continued fraction. Let @ = [ag,ay,- - - ,ay,) be finite continued fraction.

The order of a is n. Let r| = [ay,az,- - ,a,) then we have a = ag + — Now the order of
r

/ / /
riisn—1.Sor = % for some p,q € N. Then a = %. So a can be represented by

simple fraction. If a = [ag,ay, -+ ,a,] = %. We reach the following equation:

p=aop +4q and g =p' (7.1)

So the canonical representation of a is unique.

Let a = [ap,ay, - | be a finite or infinite continued fraction we can give the canonical
representation of the segment Sy = [ag,ay,- - - ,a;| by %. S is called the k™ order

convergent of the continued fraction. So if a is finite it has finite number of convergents.

Theorem 7.0.1. We have the rule of the convergents for k > 2.

k = QkPk—1+ Pk—2
P Pk—1 TP (72)

Qi = Akqr—1 + qr—2

: o . P az(arao+ 1) +aop
Proof. This equation is satisfied for k = 2 since — = [ag,a1,a2| = ( )
q2 aza; + 1

then py = ax(ajap+ 1) +ap = axp1 + po and g2 = axa; + 1 = axq; + qo. Assume that

this recursion satisfy for all k < n. Let S, = [ay,a2,- - ,a,] be the ' order convergent of

lay,az,- - -ay|. By the equation 7.1 we have

Pn=aop,_ | +4,_

, (7.3)
qi’l = pnfl
Moreover by our assumption we have:
/ _ / /
Pp—1 =Pyt Py3 (7.4)

Gy 1 =ndy 2+ 4, 3
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We don’t write a,_1 since we start with a; not ag.

Then by the equations 7.3 and 7.4 we obtain

Pn = 4ao (anp:z—z +p:1—3) + (anQ:z—Z + %1—3)

= an (a0py—r+dp—2) + (aop,—3+qn-3) (7.5)
=anppn—1+ Pn-2
And also:
/ /
qn = nPy_2 + Pp3 (7.6)
=danqn-1+qn-2
By convention we set p_1 =1l andg_1 =0
Theorem 7.0.2. Forall k>0
QPr—1 — Pki—1 = (—1)*
Proof. By the theorem 7.0.1 we have
Pk = QkPk—1+ Pk—2 7.7)

qk = arqk—1 + qk—2

Let us to multiply the first equarion with ¢g;_; and the second with p;_; and then
substracting the first from the second we have :

qkPk—1 — Pk4k—1 = — (Qkflpkfz - pkfI‘Ik72)

By the convention gop_1 — pog—1 = qo = 1. So it proves our theorem.

Corollary 7.0.1. For all kK > 1 we have

pi-1 pe_ (=1
k-1 9k qk9k—1
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