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ABSTRACT

Governments and international organizations act for global warming prevention,
greenhouse gases emissions reduction, and to impose penal sanctions on companies that
are polluting above the allowed limits with protocols, programs, and systems. In aviation
environmental actions gained speed with the inclusion of aviation industry into the

European Union’s Emission Trading System (EU ETS) in 2012.

According to the European Union’s Environment Commission, aviation industry is
responsible for more than 2% of global emissions by itself. In civil aviation operations,
main cause of carbon emission may be seen as jet fuel combustion in engines. Therefore,
civil aviation companies carry out researches on some popular subjects such as using

sustainable alternative fuel types, making efficient use of fuel in their flight operations.

Release of International Civil Aviation Organization (ICAQ)’s Carbon Offsetting and
Reduction Scheme for International Aviation (CORSIA) in 2018 and European Union’s
Emissions Trading System (ETS) pushed civil aviation companies to review and improve
their flights” carbon emission amounts. Both of these regulations use a single indicator to
track and evaluate carbon emission performance, which is carbon emission amount per
ton-kilometer. Therefore, most of the civil aviation companies adapted this performance
indicator formula to determine the carbon emission performance improvement potentials
on their flights. However, aviation companies will not be able to minimize the effects of
fixed assumptions from aviation regulation on carbon emission performance with this
performance indicator. This causes civil aviation companies to choose wrong flight for
improvement with limited improvement potential, which cause small improvements on

carbon emission performance with great effort.
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The model, which we introduced in this study, we aim to provide a method for aviation
companies to evaluate carbon emission performance and to detect improvement potentials
on flights with reducing the effects of fixed regulatory obligation on carbon emission
performance. Our goal is to provide a useful model to calculate flight based carbon
emission performance and to determine possible improvement potentials on flights for

civil aviation companies.

In this study, introduction and outline of this study is given in first section. In second
section, background information about regulators and their applications for aviation
industry. In the third section, literature review and recent studies on global warming and
carbon emission, emission performance measurement, aviation and carbon emission and
we analyze the previous studies and papers about carbon emission efficiency, efficiency
measurement and calculation methodologies. In the fourth section, methodology, which
we use in this study, is explained in detail. In the fifth section, application principles for
our study given in detail. In the last two section, the application results, discussion,

conclusion and further research suggestions are given.

First, we define the inner and outer main and sub factors, which have effect on emission
performance of a flight. In this part of our study, we meet with 12 experts from one private
held Turkish civil aviation company personnel. These experts are from technical
maintenance, piloting, and sustainability departments, which are selected among more
than 5 years of experienced personnel. This group of experts suggested four main and
thirteen sub-factor, which affect the emission performance of a flight. Main factors are
technology, distance, load, and piloting. Sub factors are flight time, average speed, flight
distance (GCD95), ground time, fuel weight, cargo weight, zero-fuel weight, aircraft type,
passenger weight, cruising altitude, fuel type, airport (arrival), airport (departure). Experts
asked to rank these factors with a given linguistic scale, which is weighted from one to
nine. After ranking process, we converted the answers to fuzzy scales, then constructed
matrices for FANP, and calculated relative weights for factors. These weights are used
for estimating main factor values via multiplying sub factors with corresponding weight
value. To test our model, we prepared a randomly selected 10.000 flight history data from
flight dataset in 2017, main factors as inputs and emission amount as output. To solve and

get results we constructed model based on constant returns to scale (CRS) and variable
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returns to scale (VRS) Data Envelopment Analysis (DEA) models. Then, we use R

software’s benchmarking library to compute the results.

In this thesis, the conducted empirical dataset study indicates that CRS model has more
distinctive properties than VRS model. This result shows us CRS model usage for flight
based carbon emission performance score calculation has more advantages in detail
analysis for performance improvement potentials of flight carbon emission. In addition,
results show us that the current accepted performance indicator, carbon emission amount

per ton-kilometer, does not correlate with our result in favor.

The results of this study are showing similarity with literature and provide new approach
for leg based flight emission efficiency tracking and ranking for global civil aviation.
Global aviation companies to assess their flights’ carbon emission performance and

potential on improvement can use this approach.



OZET

Hikiimetler ve uluslararasi organizasyonlar kiiresel 1sinmayi, sera gazi salinimini
azaltmaya ve izin verilen degerlerin iizerinde kirlilik olusturan firmalara cezai
miieyyideler uygulamaya yonelik protokoller, programlar ve sistemler yayinlamaktadir.
Bir¢ok sektorii kapsayan bu regiilasyonlara 2012 yilinda sivil havacilik sektoriiniin
Avrupa Birligi tarafindan Karbon Ticaret Sistemine (EU ETS) dahil edilmesiyle birlikte,

havacilikta ¢evresel aksiyonlarin alinmasina hiz verildi.

Avrupa Birligi Cevre Komisyonuna goére sivil havacilik sektorii kiiresel karbon
emisyonun %2’sinden sorumludur. Sivil havacilik operasyonlarinda karbon emisyonu
saliiminin bitylik boliimii ucaklarda kullanilan jet yakitlarinin yanmasiyla olusmaktadir.
Bu nedenle sivil havacilik firmalari siirdiiriilebilir alternatif yakit se¢enekleri, ugus
operasyonlarinda daha verimli yakit kullanimi saglayacak uygulamalar {izerine ¢aligsmalar

yiirlitmektedir.

Uluslararasi Sivil Havacilik Organizasyonu (ICAO) tarafindan 2018 y1l1 igerisinde taslagi
yayimlanan Uluslararas1 Havacilikta Karbon Ofset ve Azaltma Programi (CORSIA) ve
Avrupa Birligi tarafindan 2012 yilinda havaciligin déhil edildigi Avrupa Birligi Karbon
Ticaret Sistemi (EU ETS) ile birlikte sivil havacilik firmalarini uguslarindan kaynaklanan
karbon emisyonunu gozden gecirmeye ve iyilestirmeye yonelmistir. Bahsi gecen her iki
uygulama da karbon emisyon performansini takip etmek ve degerlendirmek i¢in ton-
kilometre bagina diisen karbon emisyon miktarini performans gostergesi olarak kabul
etmistir. Bu nedenle sivil havacilik firmalariin ¢ogunlugu kabul verilen bu performans
gostergesini takip ederek karbon emisyon performansinda iyilestirme potansiyellerini bu
gosterge lizerinden belirlemeye c¢alismaktadir. Fakat bu gostergenin ugus ile iliskili
sadece iki faktore odaklanmasindan 6tiirii havacilik regiilasyonlar1 ve uygulamalarindan
kaynakli, degistirilmesi miimkiin olmayan, etmenlerin karbon emisyon performansina
olan etkisinin en aza indirgenmesi miimkiin olmamaktadir. Bu durum sivil havacilik
firmalarinin iyilestirmek igin sectigi kotii performansa sahip uguslarinin ¢ogunlukla

yanlis secilmesi ve ufak iyilestirme potansiyellerinin tespitine yol agmaktadir.

Xi



Bu tez calismasi igerisinde olusturdugumuz model ile degistirilmesi miimkiin olmayan
faktorlerden kaynakli karbon emisyon performans kaybin1 odagimizdan uzaklastirarak
sivil havacilik firmalar1 i¢in daha etkili bir karbon emisyon performans: hesaplama ve
derecelendirme metodu sunmay1 hedeflemekteyiz. Sundugumuz modelin sivil havacilik
firmalari tarafindan kullanilarak karbon emisyon performans takibi ve iyilestirmeye agik

alanlarin belirlenebilmesi amaciyla kullanilmasini1 da hedeflemekteyiz.

Bu tez calismasi igeriginde, hiikiimetlerin ve uluslararasi organizasyonlarin havacilik
sektorlinii hedef alan regiilasyonlarinin tanitimi hakkinda bir bolim bulunmaktadir.
Kiiresel 1sinma, karbon emisyon performansi Ol¢limii, havacilik alaninda karbon
emisyonu alanlarinda yapilan calismalara literatiir aragtirmasi1 boliimiinde yer verilmistir.
Kullanilacak metotlara ve uygulama esaslarina iligkin bilgiler yontem boliimiinde
verilmigtir. Olusturulan modelin deneysel bir veri seti iizerinde uygulamasi ve bu
uygulama sonuglarina uygulama boliimiinde yer verilmistir. Son boliimde uygulamanin
literatiire olan katkisi, vaka calismasi sonucglar1 ve dnceden yapilan caligmalar ile bu

calisma sonuglarinin yorumlarina yer verilmistir.

Bu tez ¢aligmasi i¢in ilk olarak uguslarin karbon emisyon miktarina etki eden igsel ve
dissal faktorlerin belirlenmistir. Bu siirecte Tiirkiye’nin 6nde gelen 6zel sermayeli bir
sivil havacilik firmasindan alanlarinda uzman 12 personel ile goriisiilmiistiir. Bu
personeller teknik bakim, pilot, ¢evre alanlarinda 5 yildan fazla siiredir gérev yapmakta
olan kisilerden se¢ilmistir. Goriismeler sonucunda dort ana faktor altinda 13 alt faktor
belirlenmistir. Ana faktorler; teknoloji, mesafe, agirlik ve siiriis olarak, alt faktorler; ugus
stiresi, yer siiresi, ortalama hiz, dairesel mesafe, ucak agirlig1, yolcu agirligi, yakit agirhigi,
kargo agirlig1, ortalama irtifa, yakat tiirli, ugak tiirti, kalkis havalimani ve varig havaliman
olarak belirlenmistir. Belirlenen bu faktorler bir ila dokuz arasinda puanlanan nitel bir
yelpaze kullanilarak puanlandirilmistir. Sonrasinda puanlandirma bulanik Olgege
uyarlanarak faktorlerin goreceli agirliklarini belirmek iizere bulanik analitik ag siireci
yonetimine aktarilarak sonuclar elde edilmistir. Elde edilen bu sonuglar daha sonra alt
faktorlerin ana faktorlere cevrilmesinde kullanilmistir. Uguslarin karbon emisyon
performans derecelerinin belirlenmesi i¢in 2017 yili igerisinde gergeklestirilen 178.000

ucus arasindan rassal olarak secilen 10.000 ugusa ait veri seti dort girdi, ana faktorler, ve
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bir ¢ikt1 olacak sekilde diizenlenmistir. Diizenlenen bu veri seti veri zarflama metodunun
(VZA) olgege sabit donen (CRS) ve olgege degisken donen (VRS) modelleri temel

alinarak olusturulan modeller i¢in ¢oziilmiistiir.

Bu calismada yapilan deneysel veri seti ¢éziimii CRS VZA modellinin VRS VZA
modeline gore daha ayirt edici sonuglar verdigini gostermektedir. Mevcutta havayolu
firmalar1 tarafindan kullanilmakta olan ton-kilometre basina emisyon miktari
gostergesinin kiyaslanmasi ile calisma sonuglar1 dort ana faktoriin iligkisini ortaya

¢ikartmakta daha bagarili oldugu gézlemlenmistir.
Sonugclarimiz literatiir ile ortiismekte ve ugus bazinda karbon emisyon performans takibi

ve siralamasi i¢in yeni bir yaklasim ortaya koymaktadir. Bu yaklasim kiiresel sivil

havacilik firmalar1 tarafindan kullanilabilir.
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1. INTRODUCTION

Today’s fully industrialized world requires energy to operate and develop. Most of this
energy requirement supplied from energy production resources such as natural gases,
fossil fuels, coal, and traditional bio-fuels. All of these energy production resources emit
carbon dioxide and other greenhouse gases into the atmosphere, while they are burning.
Greenhouse gases, especially carbon dioxide, make our atmosphere more inner reflective
for heat energy, which causes average global temperature to rise. This harsh processed

named as global warming or climate change.

Global warming, one of the emerging environmental topics for the last century, is the
long-term rise in the world’s average temperature, which is caused by excessive amount

of greenhouse gases emissions.

Aviation industry responsible for 2% of annual global carbon emission. In last 10 years,
fuel consumption of aviation industry increased by more than 45%. These developments
make governments and aviation authorities to act for reduction of aviation carbon
emission. In aviation industry, jet engines burn fossil and bio fuels and the result of this
process creates two major outputs trust and carbon dioxide. Burning 1 liter of jet fuel
emits approximately 2.53 kg of carbon dioxide into the atmosphere according to US
Energy Information Administration (EIA).2 All of these facts and recent attention of
governments to limit aviation’s carbon emission with lack of decision support system
studies in this field make carbon emission performance scoring in aviation ideal subject

to study for improvement and sustainability.

L https://ec.europa.eu/clima/policies/transport/aviation_en

2 02 Emissions Coefficients, https://www.eia.gov/environment/emissions/co2_vol_mass.php



In this study, we aim to provide a new method for aviation companies to evaluate carbon
emission performance and to detect improvement potentials on their flights relatively
with reducing the effects of regulatory obligation on carbon emission performance. Our
goal is to provide a factor based two step model to calculate flight based relational carbon
emission performance and to determine possible improvement potentials on flights for
civil aviation companies. By providing this indicator, we aim to improve the current
indicator (CO2 per tone*km) significantly, and make aviation companies aware about
their potential to improve different factors like ground time, average speed, fuel weight,
cargo weight etc.

Scope of this study consist factors, which affect aviation industry’s carbon emission
amount, and methodology for evaluating efficiency scores of flights’ carbon emission. In
this thesis, explanation of carbon emission significance to aviation industry, expert
opinions on factors that affect emission performance of a flight, generic usage of FANP
and DEA methodologies, proposed model for scoring carbon emission efficiencies of

flight, and a case study to assess proposed model.

In order to give insight about flight performances of an aviation company, we need a
model to assess vast amount of data and correlates some factors. In the literature, there
are useful methods on MCDM and efficiency analysis such as analytical hierarchical
process (AHP), analytical network process (ANP), data envelopment analysis (DEA), and
Malmquist index introduced by researchers. Fuzzy usage of ANP is ideal for linguistically
scaled factors with empirical data. Therefore, we started our study with this method and
calculated relative weights for factors affecting carbon emission performance of flight.
On the other hand, aviation companies have hundreds of thousands flights each year even
a sessional analysis will have vast amount of data. Therefore, we need a method to
calculate efficiency scores faster with better computational power usage. The method,
which provides this kind of ability, is Data Envelopment Analysis (DEA). At the end, we

constructed our work on DEA models.

Our approach provides a new model to evaluate flights based carbon efficiency scoring
for aviation companies using their historic flight data and criteria defined in this study.

An aviation company will be able to find its best and worst performed flights with these



efficiency calculation results, and it will be able to determine which criteria caused the

flight operated efficiently or inefficiently.

In the literature there are some studies, which share similar goals such that to measure
relative performance of carbon emission for countries, several firms by using different
techniques. However, there is no significant study focuses on relative performance of
flight emission efficiency for aviation companies to assess their flights’ sustainability and
to determine improvement potential in the literature. This thesis provides a new model to
calculate and measure relative of flight carbon emission efficiency scores for aviation
companies, and put a brick on wall for filling the gap in literature to relative flight carbon

emission efficiency score calculation.

Outline of this study, introduction and outline of this study is presented in first chapter.
In second chapter, background information about regulators and their applications for
aviation industry is presented. In the third chapter, literature review and recent studies on
global warming, carbon emission, emission performance measurement, aviation and
carbon emission and we analyze the previous studies and papers about carbon emission
efficiency, efficiency measurement and calculation methodologies. In the fourth chapter,
methodology, which we use in this study, is explained in detail. In the fifth chapter,
application principles for our study given in detail. In the last two chapter, the application

results, discussion, conclusion and further research suggestions are given.



2. BACKGROUND

Greenhouse gases are carbon dioxide (CO2), methane (CH4), nitrous oxide (N20), and
fluorinated gases (F-gases). These greenhouse gases share on global emission amount are
shown in Figure 2.1, carbon dioxide has 76% share on global emission, and the most

polluting greenhouse gas.

Global Greenhouse Gas Emissions by Gas
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Figure 2.1: Greenhouse gases shares on global emissions®

To prevent global warming’s catastrophic event, governments, organizations and

charities are putting great effort.

3 https://www.ipcc.ch/report/ar5/syr/



European Union Emission Trading System (EU ETS) developed by EU in 2005 as the
first emission trading system in world. It aims to fight global warming via strict policy to
polluting industries. In EU ETS, every company have limitation on annual emission and
firms can use it, buy additional carbon credit or sell excessive carbon credit in market. In
addition, allowances reduce every year. In 2012, aviation activities area (flights with
departure and arrival has to be in EU borders) are included into EU ETS. EU ETS
allowance prices for last 5 years shown in Figure 2.2. EU ETS CO2 allowance prices

increased more than 350% in last 5 years.*

400.00%
350.00%
300.00%
250.00%
200.00%
150.00%
100.00%
50.00%

0.00%

2015 2016 2017 2018 2019

Figure 2.2: CO2 European emission allowances prices®

International Civil Aviation Organization (ICAO) released a strategy for its 2020 vision
on carbon neutral growth, which is named as Carbon Offsetting and Reduction Scheme
for International Aviation (CORSIA). CORSIA is based on voluntariness of aviation
companies and governments, there is no obligation, but it offers economically and
socially sustainable future for most of the aviation companies. CORSIA’s preparatory

actions were in 2018 and baseline period still ongoing (2019-2020), and it has more 3

44 https://markets.businessinsider.com/commodities/co2-emissionsrechte



phases in future as; pilot phase in 2021-2023, first phase 2024-2026, and second phase
2027-2035.°

In recent studies, the subject of carbon emission performance considered for
transportation industry, energy production, and aviation industry. Some of these studies
are; Country based total factor carbon emission performance (Zhou et al., 2009), China’s
regional energy and emission performance’s undesired output elimination method (Wang
et al., 2012), Fossil fueled power plants emission performance (Zhang & Choi, 2013),
Carbon emission performance of transportation industry in China (Zhang et al., 2015),

Countries’ regional energy and carbon emission performance (Yao et al., 2015).

6 https://www.icao.int/environmental-protection/CORSIA/Pages/default.aspx



3. LITERATURE REVIEW

In this chapter, we presented the studies on carbon emission efficiency and factors
affecting this efficiency with aviation in three sub-topics. These sub-topics are presented

in following paragraphs.

3.1 Carbon Emission Efficiency

The term efficiency described as doing something well and effectively without wasting

time, money or energy. In scientific terms described as the ratio of outputs to inputs.’

Most of the studies on environmental efficiency performance exhibits constant returns to
scale (CRS). Discussion of output oriented DEA technologies placed in the study. Non-
increasing return to scale (NIRS) and variant returns to scale (CRS) DEA technologies
are used to benchmark input and output oriented methodologies. The results show that
the output oriented DEA methodologies have higher discriminating power for efficiency
benchmarking (Zhou et al., 2008).

As an alternative to fossil fuels, bio-fuels are more environmental friendly and renewable
fuel type. In their study, Wu et al. (2009) experimented on biodiesel fuel alternatives
emission performance via measuring released greenhouse gases such as: nitrogen oxide,
unburned hydrocarbon, and carbon monoxide. The results show that the all alternative
fuels have lower carbon monoxide release than current diesel fuel, and efficiency saving

may vary up to 35%.

In their study, Zhou et al. (2010) introduced a Malmquist CO2 emission performance

index (MCPI) to measure deviation in gross carbon emission performance along the time.

7 Longman Dictionary : https://www.ldoceonline.com/dictionary/efficiency



They construct their model on the environmental DEA technology with inputs as capital
stock, labor force, and energy, outputs as domestic product (desirable output) and CO2
emissions (undesirable output). The result of this study showed that 1997 to 2004 these

18 top emitting countries carbon emission performance improved by 24%.

China is one the top emitters in the world. So, pollutant emissions reduction and
environment protection subjects very important for China. In their recent study, Wang et
al. (2012) studied China’s regional energy and emission performance to find the best way
to deal with undesired outputs such as greenhouse gases. They used three different DEA
models: (1) Energy performance evaluation model, (2) Performance evaluation model for
energy and emission, and (3) DEA window analysis and rank sum test to analyze and
measure emission and energy performances. They grouped 30 selected regions as east,
central, and west areas, then they analyze the period of 2000-2009 for regional and areal
energy and emission performance indices. The results show to treat emission as desirable
output provides higher discriminating power, but for China’s case treatment as

undesirable output provides higher accuracy on results.

A non-radial directional function approach used to measure energy and carbon dioxide
emission performance for calculating 129 countries’ electricity production efficiency. To
calculate an aggregate index for energy and carbon, optimally produced energy over half
of optimally consumed fuel and produced carbon used. The result shows that for energy
production usage energy-carbon performance index provides better insides for countries
to develop their sustainable energy production (Zhou et al., 2012).

In their recent study, Zhang & Choi (2013) studied total-carbon factor emission
performance of fossil fuel usage in power plants in China using a non-radial Malmquist
index analysis. They consider inputs as capital, labor and fuel, and output as electricity
and carbon emission. Data gathered by two groups such as central group and local group.
Results of their study indicate that total-factor CO2 emission performance increased by
0.38% for the same period results in Zhou et al. (2010).



3.2 Factors Affecting Carbon Emission in Aviation

In her article, Rypdal (2000) gives emission performances of aircraft model for same
landing and take-off (LTO) cycles and cruising. This study indicates that aircraft model,
which is considered as new and old technologies, is an effecting for carbon emission of a
flight.

In their recent study, Buttress & Morris (2005) indicate that the ground movements of an
aircraft also emit carbon dioxide. An aircraft run on idle power for taxi-in or taxi-out,
uses thrust power around 7% for control before take-off, movement on taxiways, and
general lighting, air-conditioning, etc. power requirements. If the airport’s taxiways

longer and the airport is crowded, then aircrafts will take more time on ground.

In their recent work, Blakey et al. (2011) consolidate the test on alternative fuel types,
such as: Jet Al, JP-8, SPK from Camelina, S8 and GTL, for aviation industry usage and
result shows that Fischer—Tropsch (FT) processed fuels have positive effect on emission

performance.

In their recent study, Masiol & Harrison (2014) show that the fuel flow to engines is
directly related with emission performance. As an airplane needs more thrust for load,
speed, or take-off it pulls more fuel from depot and this process releases more carbon

dioxide into the atmosphere.

3.3 Measuring Carbon Emission Efficiency in Aviation

In their recent study, Meleo et al. (2016) study Italian aviation sector’s adaptation of EU
ETS. General findings of this study highlight that direct costs are connected with EU ETS
and impact of these costs on both aviation companies and passengers or cargo clients are
currently quite small in amount. The increment in these costs tends to increase because
of two main reasons. First, the excessive amount of allowance was recorded for the
aviation industry in 2012 will be assimilated; second, the increase on greenhouse gases
emissions expected once the economy recovers ends. Figure 2.5 shows the EUA prices
for 12-month between Dec 2017 — Dec 2018.
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European Emission Allowances (EUA) Prices (Dec 2017 - Dec 2018)
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Figure 3.1 — EUA prices between Dec 2017 and Dec 20182

Seven variables and a method to calculate total fuel usage of a flight studied in two parts:
fuel usage per available seats miles, and delay related fuel usage. To calculate fuel usage
per available seats miles some variables such as, an indicator for aircraft fuel efficiency,
average seats on an aircraft, aircraft body length, total variable load amount, and fuel &
conservation effort have been used. By computing connection between fuel use and fuel
value they gave important bits of knowledge about air ship measure choice, fuel
utilization and outflow decrease, deferred flights impact on fuel use and discharge.
(Brueckner & Abreu, 2017)

In their recent study, Li & Cui (2017) examined the Carbon Neutral Growth from 2020
(CNG2020) as a roadmap in aviation environmental efficiency gap based on a forecasted
dataset. They used back propagation neural network technique to forecast the data that
they use for analysis, and then they introduced a new model, which they called network
ranged adjusted environmental data envelopment analysis, to show the difference with
CNG2020 roadmap for aviation. They presented their results in three parts, as follows;
overall and body efficiency gaps for 29 aviation companies’ datasets in 2021-2023 period.

CNG2020 roadmap’s beneficial outcome on environmental efficiency of most aviation

8 https://sandbag.org.uk
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companies. Operational expenses in aviation industry and operational efficiency gap are
two correlated subjects, feasible expansion of total revenue and sales are showed as

efficiency gaps, which are correlated.

Malmquist carbon emission performance index (MCPI) may be used to evaluate the
changes in total-factor carbon emissions efficiency over period using a production
frontier framework. In their recent study, Liu et al. (2017) used MCPI to measure the
carbon emission performance of 12 Chinese civil aviation companies in the period of
2007 to 2013; this study also introduced a bootstrapping MCPI to try statistical usage of
the MCPI results. They presented three significant findings, which are as follows, first
the additive MCPI of 12 Chinese civil aviation improved by more than 11% over 2007 to
2013 period. The decomposition analysis that they us to show us this development in
Chinese civil aviation was majorly because of technical improvements change index, with
total effect of more than 20%. Other factors influenced developments included the change
index of scale efficiency up to 3%. Among the aviation companies studied, Hebei Airlines
developed the most with more than 43%. Hence, Sichuan Airlines had approximately -
2.5% and China Postal Airlines had less than -10% are the occurred deteriorations in CO2
emission performance. Second, convergence in CO2 emission performance while there
were differences in CO2 emission performance among three aviation companies. Private
and joint venture aviation companies developed the most, at a speed of nearly 15%
annually. Aviation companies in central and local distinct done similar developments in
efficiency, at approximately 10% for each aviation companies. The least developed
aviation companies started to change with an effect called catch-up effect that makes these
aviation companies to approach developed aviation companies. In this research, the
higher MCPI increase indicates the least developed aviation companies, which had higher
improvement compared to those with higher MCPI values at the beginning. Third, a cross-
carrier relational examination demonstrated that civil aviation CO2 emission efficiency
is the most affected by course conveyance, trailed by fuel utilization rate, airplane usage

rate, and movements on the ground (Liu et al., 2017).

In their recent study, Fukui et al. (2017) examined the effects of increases in aviation’s
fuel tax for reducing fuel consumption and carbon emissions based on the data from the

US aviation industry. Results showed that the long-run price elasticities caused by an
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increase in fuel prices via additive fuel taxes have larger impact on smaller aviation
companies than on larger aviation companies. In this study, they study the highest fuel
tax increase in 2012 for US (4.3-cent), and the result showed this type of increase has no
significant effect on CO2 emission decrease. The short-run reduction in CO2 emissions
in the US resulting from a 4.3-cent increase in aviation fuel tax is only around 0.15%. In
the long run, the presence of a positive rebound effect would reduce the impact of an
increase in aviation fuel tax on fuel consumption and CO2 emissions. A 4.3-cent increase
in aviation fuel tax would reduce annual jet fuel consumption and CO2 emissions in the
US by approximately average on 0.45 million metric tons, respectively. For the next 3
years from 2012, a perpetual 4.3-penny increment on the price of jet fuel by taxes would
add to the decrease of CO2 outflows in the US by just up to 0.01%. The long-run
emanation decrease impact coming about because of a changeless 4.3-penny fuel charge
increment is just about a 0.2— 0.3% decrease of CO2 outflows in the US aeronautics
segment. This implies over the long haul, on the off chance that we are to accomplish a
1% decrease of CO2 emanations in the US avionics part, the flight fuel charge should be
about 3— multiple times higher than the present dimension. In addition, the go through
rate of aeronautics fuel duty to transporters is by all accounts under 1: the assessed normal
go through rate was roughly 54.3 — 62.3% in 2000. This recommends flight fuel charges
have not been passed completely to bearers, and subsequently, the real measure of

decreases could be a lot littler than the present appraisals.

Arjomandi et al. (2017) extend previous approaches to a premature efficiency indicator
by facilitates frontiers like using desired output, undesired output and production of
efficiencies to compare European and Asian airlines. They additionally analyze whether
the heterogeneity in natural administrative measures between these districts has
encouraged Asian aircrafts to be less eco-accommodating as well as more piece of the pie
chasing. They exhibited a mechanical hole proportion evaluates likewise point to some
Asian carriers beating every single other aircraft on innovative measures, showing they
work in an increasingly good business condition. Largely, the technique that they
introduced adds to the methodological improvement of data envelopment analysis (DEA)
and permits further bits of knowledge into firm tasks as a rule, and natural proficiency
examination of European and Asian carriers specifically. The technique has enabled us to

get increasingly nitty gritty and modern experiences into the effectiveness of European
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and Asian aircrafts contrasted and those of past examinations. The discoveries
recommend that European carriers have put an expanding center around ecological
productivity (and maybe the greening) of their flight exercises following the danger to
incorporate aircrafts in the EU ETS in 2009. The deterioration of effectiveness factors
gives a reasonable picture of EU aircrafts consistently improving their natural
proficiency, with some EU carriers driving inside their own gathering and in contrast with
the gathering of Asian aircrafts. Such airlines can be seen as setting a performance
benchmark for those that need to improve their performance by emulating peer airlines,
though, they may be lacking a learning curve to emulate (Wanke et al., 2016; Arjomandi
etal., 2018).

Ma et al. (2018) presented a least squares compromise model to the airline fleet
assignment problem. The model tested on real world data and the results showed better
controllability is possible by facilitating the compromise method than the linear-weighted
sum in terms of risk. Compared with the prevalent assignment strategy of China S Airline,
our model performed much better in terms of both profit and emission. Further tests on
replacing A320s with B737s and B757s showed better emission-reduction efficiency and
profitability for B7** types aircrafts.

3.4 Original Contributions of This Thesis

Previous studies only focuses on one or some the factors, which effect carbon emission
performance of flights. Also, there are studies on airline companies’ carbon emission

benchmarks and effects of agencies policies on airline companies.

We consider most of the proposed factors and some additional factors together and
propose a new two step model (using Fuzzy ANP and DEA) for any airline company to
benchmark its own flights and find out improvement potential on its worst performed
flights.

We also test our model with real world data to give insights about results and how to

interpret these results for aviation industries improvement.
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4. PROPOSED METHODOLOGY

Our main goal is to provide a model for airline companies to evaluate carbon emission
performance with respect to the flights that they have done in a specific period. In order
to provide such a model, we first need factors, which effect a flight’s carbon emission
amount. Then, we need weights of this factors to interpret the relationship of emission
performances of flights.

Therefore, we develop a framework, which is shown in Figure 4.1, to make our case easier

to understand.

Interviews & Literature Review Construction of Model

Determination affecting Grouping factors with respect to their

.. . A X Constructi f DEA model
factors of carbon emission specifications and define main factors ons ton o mode

v v

Evaluation of relative weights using Testing of DEA model with real world

Weighting factors — Fuzzy ANP data

Figure 4.1: Framework of the proposed methodology

4.1 Determination and Weighting of Factors Effecting Carbon Emission

We first check literature for factors and find limited amount of studies, which focus on
carbon emission in airline industry. Therefore, we take what we find from literature and
ask aviation experts from a Turkish airline company, if they have any additional factors

that affect carbon emission of a flight.

In the literature review, we find some studies proposing factors, which effect carbon

emission of a flight. Nowacki & Olejniczak, (2018) A flight’s fuel consumption and
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carbon emission amount is directly related with the fuel flow to engines. Brueckner &
Abreu, (2017) use a regression model on a set historical flight data to determine the
factors, which affects fuel consumption and carbon emission, and they give some of these
factors as total load (in tons), flight distance (in kilometers), aircraft type (by construction
year), and flight delays (in minutes). According to UK Civil Aviation Authority the
factors, which affect carbon emission of a flight, are: aircraft type, cruising altitude, take-
off and landing efficiency, flight distance, and total take-off load, operational procedures,
fuel type and weather condition®. In their recent study, Hassan et al., (2018) three factors
are considered to assess airline companies’ carbon emission. These factors are aircraft

technology, operational improvements and sustainable biofuel.

For further analysis of factors, we interviewed 12-expert from one of private held Turkish
civil aviation company personnel. These experts are from technical maintenance, piloting,
and sustainability departments, which are selected among more than 5 years of
experienced personnel. We defined 13 factors and their relations, which are shown in
Figure 4.2, which affect the emission performance of a flight with the help this group of

experts’ opinions.

We define the main factors as: (1) technology factor, (2) piloting factor, (3) distance

factor, and (4) load factor.

e Technology factor: contains aircraft and fuel sub-factors for weighting the difference
between new and old types of them according to better or worse emission performance.
o Aircraft type: New aircraft technologies provides less emission, up to 15%,
comparing to the old aircrafts. To comply with this improvement, we consider
aircraft type as one of our sub-factors, which affects emission performance of a

flight. This sub-factor also has an effect on zero-fuel weight via aircraft weight.
o Fuel type: Besides widely used jet fuel, Jet Al, there are new and sustainable fuel
alternatives with less emission amounts. To comply with this type of usage on
flights we consider fuel type as one of our sub-factors, which affects emission

performance of a flight.

% https://publicapps.caa.co.uk/docs /33/cap1524environmentalinformation29032017.pdf
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Figure 4.2: Analytical network for the worst emission performance goal

¢ Piloting factor: contains flight time, ground time, average speed, and cruising altitude
sub-factors for weighting the varying specifications of every flight. These sub-factors
may vary for numerous reasons such as; delays, slot filling, slot specs etc.

o Flight time: May vary because of tardiness on air or distance travelled, and it
causes vast amount of emission increase. This sub-factor is affected by flight
distance and average speed.

o Ground time: May vary because of delays, emergencies etc. also the origin and
target airport sizes have an effect on this sub-factor.

o Average speed: May vary limitedly because commercial aircraft’s top speed
limited up to 850 km per hour. However, slower travel may cause less emission
release.

o Cruising altitude: Typically, a commercial flight occurs between 33,000 to
42,000 feet high, the friction on thin air is less so the thrust needed will be less
causes less emission.

o Distance factor: contains flight distance, origin airport and target airport sub-factors

for weighting the distance related factors.
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o Flight distance: Measured from take-off to landing as the distance travelled in air.
It is the higher emitting part of a flight.

o Origin airport: airport size is one of the parameters that we cannot change or
improve as an airline company. However, it has huge effect on ground time and
emission released on ground. Therefore, we must consider this parameter to
calculate the emission efficiency.

o Target airport: same as origin airport this one also has effect on ground time and
emission amount.

e Load factor: contains all load to be travelled such as zero-fuel weight, fuel weight,
passenger weight, and cargo weight.

o Zero-fuel weight: Simply we can think it as aircraft sole weight. It is a fixed
weight but if you have different types of aircrafts in your fleet, you should
consider this sub-factor as emission changer.

o Fuel weight: Authorities are forcing to carry fuel based on a flights length but
some airline companies are taking much more than they need. Therefore, fuel
weight must include into the calculation in order to compare relative emission
efficiency of flights.

o Passenger weight: distributed quite equally on an airplane. This differs passenger
weight from cargo weight.

o Cargo weight: even if this load distributed equally it is most of the time higher

on front side of the plane.

Besides these factors, there are geographic (wind, mountain, lake etc.) and extreme
measure (such as; route change, manual maneuver etc.) factors as well. However, in this
study we omitted due to lack of sufficient data and we assumed that they have very small

effect percentage on carbon emission.

4.2 Fuzzy ANP

The Analytic Network Process (ANP) first proposed by Saaty (1996). ANP is considered
as a general form of AHP, which focuses on dependencies between the hierarchical
elements. Both the ANP and AHP contains a goal, multiple criteria in clusters, but ANP
has multiple sub-criteria in clusters, and alternatives in clusters. AHP is a hierarchical

process with no feedbacks or internal relationships while ANP is a network process with
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at least one or multiple feedbacks or internal relationships. Differences between AHP and
ANP shown in Figure 4.3.
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Figure 4.3: Comparison of AHP and ANP methods'°

A person needs a goal, factors, sub-factors and alternatives, besides these elements also
needs relationships (both importance scales and directions), dependencies in order to use
ANP to find best match for the goal. Therefore, importance scales of each element has to
be considered while using ANP. If the importance can be evaluated using some
mathematical formulas, it will be a certain value with no doubt, but most of the
relationship importance scales in our study are linguistic with a person’s judgement.

Therefore, we use fuzzy triangular numbers to make personal judgements more certain.

Buckley (1985) uses calculation of criteria weights geometric mean on fuzzy triangular
number. The geometric mean r for fuzzy triangular numbers as shown in (4.1). A fuzzy
triangular number defined as shown in (4.2).

A =(lL,m,w) (4.1)

Tz(ll[li»ﬁmi'ﬁui) “2

i=1

A is a triangular fuzzy number and r is geometric mean for fuzzy triangular numbers.

10 https://www.researchgate.net/figure/Comparison-of-AHP-and-ANP-methods-17_figl 285550168
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We used an importance scale table introduced by Parkash (2003) shown in Table 4.1 to

evaluate importance scales of factors.

Table 4.1: Linguistic variables for pairwise comparisons.

Linguistic variable Importance intensity  Fuzzy numbers
Equal importance 1 (1,11)
Moderate importance 3 (2,3,4)
Strong importance 5 (4,5,6)
Very strong importance 7 (6,7,8)
Extreme importance 9 (9,9,9

2 (1,2,3)
Intermediate values : (3:49)

6 (5,6,7)

8 (7,8,9)

The fuzzy ANP analysis in this study reviewed through 6 steps according to proposed
methodology by Saaty (2013) and Buckley (1985), which are given as follows.

Step 1. Network model construction and problem structuring. At first, we construct a
network model for evaluation. Network model construction needs all the
relationships and importance scales, which are gathered by using Table 4.1,
between goal, factors, and sub-factors. Also a figure given in below as Figure
4.4,

Step 2. Fuzzified comparison matrices creation. These comparison matrices are
constructed by using fuzzy number concepts introduced by Buckley (1985) and
network model, which is created in Step 1.

Step 3. Calculating fuzzy weights for each sub-factor. After creations of fuzzified
comparison matrices, we need to calculate fuzzy weights for each sub-factor to
weight external and internal relationships. We use the formulas given in (4.3),
(4.4), (4.5), and (4.6) to calculate fuzzy weights from fuzzified importance of

each factor pair.
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Fuzzy Weight = W, =7 Q (F, ®F, @ ;.0 7))t (4.3)
A1 ®A2 = (ll,ml,ul )@( lz,mz,uz ) = (ll + lz,m1 + mz,ul + uZ) (44‘)
Ay ®A4; = (1, m,u )®(ly, myp,uy ) = (Iy * I, my x my,uy * up) (4.5)
111 (4.6)

-1 _ -1 _ - _ =

A _(ll'mllul) _(ulmll)

Step 4. Calculating normalized weights for ANP. We construct fuzzified comparison
matrices and fuzzy weights of each factor but in order to make ANP analysis we
need certain numbers to put them inside ANP software (such as SuperDecisions).
Therefore, at this step we calculate the normalized weights from fuzzy weights
of each sub-factor using the formula given in (4.7) and (4.8). We must use the

formula in (4.8) to make the total of factor weights equal to 1.

_ (Umuw)

Centre of Area (COA) = w; = 3 4.7)

Normalized Weight = w; = (4.8)

L
xw;
Step 5. Calculating inconsistency for factors. After we calculate the normalized weights
for each sub-factor. In this step, we calculate the consistency index (CI) and the
consistency ratio (CR) (which calculated by using random index table provided
by Saaty (1980)) using formulas given in (4.9), (4.10), and (4.11). For a model

to be considered reasonably consistent CR value must be less than 0.10 value.

n Xi(wij * 1))
I — (49)

max 3

Amax —n

Consistency Index = CI =
n—1 (4.10)

Cl
Random Index (RI) (4.11)

Consistency Ratio = CR =
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Step 6. Selection of alternatives and result interpretation. After we calculate the
normalized weights for each sub-factor and there is no inconsistency. In this step,
we randomly choose flights from a specific period and we solve our network
model for these randomly chosen flight alternatives to calculate factor weights

with the internal relationship impacts.

By applying fuzzy ANP to our first model, we have weights for sub-factor and
corresponding sum of sub-factor weights for factor weights. We have factors with weights
and without any internal loops or feedbacks, which makes us be able to apply DEA
method easily without any error caused from internal relationship of factors or feedback

from factors.
4.3 Data Envelopment Analysis

After defining and weighting factors, we are able to use these data to evaluate relative
flight carbon emission performance for airline companies. To assess efficiency and define
the optimum (the best) performed flight(s), we decided to use Data Envelopment Analysis

(DEA) method, because of it is widely used and accepted by most of the researchers.

Data envelopment analysis (DEA) first introduced by Charnes et al. (1978). Now their
model is also known as CCR model with orientation of constant return to scale (CRS)
DEA developed for measuring decision making efficiency with concentrating on decision
making units (DMU), which have common input and outputs. Charnes et al. (1978)
defined their model based on maximum ratio of weighted outputs to weighted inputs for
each DMUs considered to be calculated. In more mathematical form,

S m
max hy = Z UrYro /Z VX (4.12)
i=1

r=1

Subject to:

<Zf‘=1 UrYrj (4-13)

<1: j=12,..,
itq vl-xij> B / "
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u,v; 20, r=12,..,s; j=12,..,n (4.14)

Where y,;, x;; are positive and known as outputs and inputs of DMUj, and w,, v; are

variable weights, which will be calculated by solving the model given in formulation
(4.12), (4.13), and (4.14).

Model given in formulations (4.12), (4.13), and (4.14) is nonlinear programming
formulation of an ordinary fractional formulation of decision-making efficiency. This
formulation can be reduced to linear programming formulation in order to work with large
set of DMUs easily. Therefore, Charnes et al. (1978) provides a linear form of DEA,
shown in formulations (4.15), (4.16), (4.17), and (4.18).

N

max fo = z Vi Vip (4.15)
k=1
Subject to:
= (4.16)
Zujxjp =1; j=12,...,m
j=1
S m
z VrYVki — Zujxﬂ <0; i=12..,s (417)
k=1 j=1
vew; 20; k=12,..,s j=12,..,n (4.18)

Where p is the DMU currently calculated, s and m are the number of outputs and inputs

respectively, yy; is the amount of output provided for k™" output for DMU;, and x;j; is the
amount of input provided for i input for DMU;, vy, u; are the weight for k™ output and

i input respectively.
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This model converted to dual form to provide insides about the improvement potential
through the efficiency frontier on output inequalities. The dual form of CCR model for
input formulation (4.19), (4.20), (4.21), and (4.22) and output formulations (4.23), (4.24),
(4.25), and (4.26) orientations given below.

min 6 (4.19)
Subject to:
i
Eliyki > Yip 5 Vk (4.21)
i
A =0; Vi (4.22)

Where 6 represents the efficiency value for DMUp and 4; is the dual slack variable, which

represents the comparative value for inefficiency on outputs.

min 6 (4.23)
Subject to:
le’x]'i < x]'p ; V] (424)
i
Zliyki = Oygp 5 Yk (4.25)
i

A = 0; Vi (4.26)
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Where the efficiency calculated by 1/6 because of output orientation.

In their study, Banker et al. (1984) introduced a new DEA model, which later called BCC
model. BCC model is, unlike CCR model’s constant return to scale (CRS), variable
returns to scale (VRS). They proposed more advanced model for CCR model by replacing
CCR’s concave efficiency frontier with convex efficiency frontier. This change in the
model provides precise differences on DMUSs efficiency values. BCC also has output and

input oriented models.

max 6 (4.27)
Subiject to: thﬁ < x,; v (4.28)
i
Eliyki 2 Oyrp 5 Vk (4.29)
i

Zli =1 (4.30)

A = 0; Vi (4.31)

Where a new constraint for convexity added on formulation (4.30). This model shows

output oriented BCC model. The input oriented BCC model given below.

max 6 (4.32)

Subiject to: Zlixﬁ < 6x, ;v (4.33)
i

Zliyki 2ykp ; Vk (434)
i
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Z/’li =1 (4.35)

A = 0; Vi (4.36)

Where only theta moved from formulation (4.34) to formulation (4.35) and the efficiency
is1/6.

There is one more model, which is widely used in recent studies, called additive DEA
model. The additive DEA model introduced by Charnes et al. (1985) for calculating
efficiency based on the calculation of simultaneous distance of input and outputs. The

models general form given by Cooper et al. (2007) shown below.

Max Z = es™ +es* (4.37)
Subject to: zﬂixji tsT= x; V) (4.38)
Zliyki +s =y Vk (4.39)

i

Zli =1 (4.40)

A =0; 57 =0; Sl-+ =>0; Vi (4.41)
Where the main goal is to maximize output by minimizing the values of s;” and s;" on
efficiency frontier.

There are also new DEA models published such as super efficiency model, DEA models

with weight restrictions, cross efficiency DEA models, etc. but the usage and coverage of
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models, which we give above, considered for study because of only these models are

suitable for our case.
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5. APPLICATION

5.1 Factor Weight Evaluation Using Fuzzy ANP

Using the network model, we give in section 4.2, we constructed our model with linguistic
importance scales from our interviews with 12-expert from one of private held Turkish
civil aviation company personnel. These experts are from technical maintenance, piloting,
and sustainability departments, which are selected among more than 5 years of
experienced personnel. Model structure, which we will use in model, is shown in Figure
5.1.
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Figure 5.1: Network model of fuzzy ANP for flight emission performance

Using fuzzy triangular numbers and corresponding values in Table 4.1, we have

converted expert opinions into numbers. Then, we construct fuzzy comparison matrices
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for each main factor. These comparison matrices are given in Table 5.2, Table 5.2, Table

5.3, and Table 5.4. Also, the corresponding weights are given under each table.

Table 5.1: Fuzzy pairwise comparisons matrix for main factors.

Factors Technology Piloting Distance Load

Technology 1 1 1 (0167 02 025025 033 051|033 05 1
Piloting 4 5 6 1 1 1 3 4 5 5 6 7
Distance 2 3 4 |02 025 033] 1 1 1 1 2 3
Load 1 2 3 (0143 0.167 021|033 05 1 1 1 1

W = {0.0816; 0.6023; 0.198; 0.1181}

Table 5.2: Fuzzy pairwise comparisons matrix for technology sub-factors.

Factors Aircraft Type Fuel Type
Aircraft Type 1 1 1 3 4 5
Fuel Type 0.2 025 033 1 1 1

W = {0.664; 0.336}

Table 5.3: Fuzzy pairwise comparisons matrix for piloting sub-factors.

Factors Flight Time Average Speed Ground Time  Altitude

Flight Time 1 1 1 2 3 4 6 7 8 7 8 9
Average Speed 0.25 033 05 1 1 1 3 4 5 4 5 6
Ground Time  0.13 014 017 02 025033 1 1 1 2 3 4

Cr. Altitude 0.11 0.13 0.14 0.17 0.2 0.25 0.25 0.33 0.5

[EEN
[EEN
[N

W = {0,589; 0,266; 0,094; 0,051}

Table 5.4: Fuzzy pairwise comparisons matrix for load sub-factors.
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Factors Zero-Fuel W. Fuel W. Cargo Weight  Passenger W.

Zero-Fuel W. 1 1 1 2 3 4 033 05 1 033 05 1
Fuel Weight 025 033 05 1 1 1 0.2 025033 02 025 0.33
Cargo Weight 1 2 3 3 4 5 1 1 1 1 1 1

Passenger W. 1 2 3 3 4 3) 1 1 1 1 1 1

W = {0.210; 0.084; 0.353; 0.353}

Inconsistency reports based on four main-factor given in Appendix B., these factors show
no inconsistency, as their inconsistency indexes are all 0.00.

These weights evaluated from only insights and we need to check their consistency with
real world data. Therefore, we decide to use The Analytic Network Process (ANP) to
assess the weights consistency with randomly selected flight data. Our weightings are all

in fuzzy and this makes our first model Fuzzy ANP.

Using the fuzzy pairwise comparisons matrices, which we prepared. We construct a
model with respect to the given network in Figure 5.1. Solving our network in
SuperDecision software we get final weighting matrix of our sub-factors, which is shown
in Table 5.5.

Table 5.5: Sub-factor priorities calculated on Super Decision.

Sub-factors Priorities
Flight Time 0.408
Average Speed 0.110
Flight Distance (GCD95) 0.109
Ground Time 0.066
Fuel Weight 0.061
Cargo Weight 0.057
Zero-Fuel Weight 0.054
Aircraft Type 0.037
Passenger Weight 0.029

Cruising Altitude 0.021
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Fuel Type 0.019
Airport (Arrival) 0.014
Airport (Departure) 0.014

5.2 Data Preparation for Efficiency Analysis with DEA

A flight contains six parts, which are taxi, takeoff, climb, cruise, descent, and landing.
Taxi is the part, which a plane disconnected from auxiliary power unit (APU) to take off.
Take off is the part, which plane cut off its connection with ground. Climb is the part,
which plane gains altitude. Cruise is the part, which plane carry on its path with fixed
altitude. Descent is the part, which plane loses altitude and eventually reach the runway,
the part, which starts with reaching the runway to park position named landing. These

phases of a flight are visualized in Figure 5.2.

Figure 5.2: Phases of a flight

The purpose of a flight is to transport matter from a place to a place. Therefore, the desired
output is the tons*km and undesired outputs are emission, noise, heat. The inputs of a
flight, to achieve desired transportation, are fuel, piloting and load. However, there are
factors affecting the amount of undesired outputs. We define these factors as aircraft
technology, fuel type, cruising altitude, average speed, ground time and flight time. An
airline company needs to detect emission performance abnormalities in their flights to

make its flights more fuel and emission efficient. Therefore, an airline company needs to
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evaluate all of its flights for a period and decide flights’ performance with respect to the

factors mentioned in previous paragraph.

In this part of our study, we use a dataset of randomly selected 10,000 flights from a list
of 178,000 flights, which occurred in year 2017, of a Turkish privately held commercial
airline company. In the dataset, we have flight number, departure airport, arrival airport,
fuel type, aircraft type, fuel load, total fuel burned, passenger load, cargo load, flight
distance, ground time, flight time, and projected emission amount.

First, we have to gather some of missing data such as cruising altitude, airport sizes.
Therefore, we extracted these data from flight tracking websites and airport websites. We
used the flight number to find out the average cruising altitudes, and then we find annual
passenger traffic and number of active runways of each airport in our study to rank
airports for their business. To calculate the airport numerical values, which shown in
Appendix A., we use the ratio of total number of annual passengers to number of runways,
and then we take the maximum value and divide all other values to this maximum to find
the percentage of weight.

After we construct our dataset with numerical values, we normalized our raw data
columns in order to work with consistent data. Normalizer value X; for each column (i
indicates the column index) calculated using formulation (5.1). For each element of raw

data set, c;; normalized value calculated using formulation (5.2).

Xi= ). (5.1)

« Cij . .
cij = (—), Vi; Vj (5.2)
5.3 Calculating Carbon Efficiency Scores for Flights Using DEA

We give factors affecting a flight’s emission performance in Figure 5.1 and factor weights
in Table 5.5. Because of computational limitations and coverage of main factors
consistent on sub-factors. In our model, we consider 4 main factors as inputs and carbon

emission as output. Using weights of thirteen sub-factors, which are given in Table 5.5,
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we calculate the numerical values of four main factors shown in Table 5.6 as relative

weights.

Table 5.6: Main factor relative weights based on sub-factor priorities

_ Relative o
Main Factors ) Sub-factors Priorities
Weights
Technolo Aircraft Type 0.037
gy 0.056 yp
(X1) Fuel Type 0.019
Flight Time 0.408
Piloting Ground Time 0.066
0.605
(X2) Average Speed 0.110
Cruising Altitude 0.021
Flight Distance
0.109
Distance (GCD95)
0.137 _ _
(Xa3) Airport (Arrival) 0.014
Airport (Departure) 0.014
Fuel Weight 0.061
Load Cargo Weight 0.057
0.201 _
(Xa) Zero-Fuel Weight 0.054
Passenger Weight 0.029

Using only four main factors provides us faster results with less computational power.
However, it might cause small errors, which will not affect the overall results, for our

efficiency results.

According to Table 5.6, the result of fuzzy ANP study, emission performance inputs Xi
weights are as follows 60.5% piloting, 20.1% load, 13.7% distance, and 5.6% technology
factors related. These values considered as DEA weight limitations in this study. The
output for our DEA model is total released carbon emission in kilograms Y. Our DEA

model for relative carbon emission performance of flights has four input and one output.
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We construct an input oriented CCR, an output oriented BCC and an additive DEA model
for this study and tested our models with empirical data, which we created from a real

flight dataset. The results and details of this application are given in section 5.4.

Randomly selected 10,000 flights data among a Turkish commercial airline company’s
more than 178,000 flights, which occurred in 2017. The raw data has 13 sub-factors, total
estimated emission amount with, and a unique identifier as flight numbers. Two of these
13 sub-factors, which are short codes airports, are linguistic. Therefore, we used the
weights in Table 5.6 to calculate the aggregate factors.

After provide the numeric values for all sub-factors and main factors. We put data into a
*.csv file and upload it on R Software. The benchmarking library of R Software provides
functions for solving CCR, BCC, and additive models with respect to input or output
orientation.

R benchmarking library’s dea() function, which is shown in formulation (5.3), estimates
the DEA efficiency frontier and calculates efficiency measures for all DMUs. This

functions usage given below.!

dea(X, Y, RTS="vrs", ORIENTATION="in", XREF=NULL, YREF=NULL, FRONT.IDX=NULL,
SLACK=FALSE, DUAL=FALSE, DIRECT=NULL, param=NULL, TRANSPOSE=FALSE, (5.3)
FAST=FALSE, LP=FALSE, CONTROL=NULL, LPK=NULL)

Where X is the inputs. Y is the outputs. RTS is the selection for returns to scale type.
ORIENTATION s solution orientation it can be input (in), output (out), or graph
efficiency (graph). XREF and YREF are defaults to X and Y. FRONT.IDX is the index to
determine methodology. SLACK activates the slack calculations. DUAL calculates the
dual variables and DIRECT is the directional efficiency. The param parameter used for

additional parameters and the other parameters used for debugging purposes.

1 https://cran.r-project.org/web/packages/Benchmarking/Benchmarking.pdf
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5.4 Results and Discussions

Using R software, we tested our models with 10,000 rows of data. Some remarks from
the results of input oriented CCR DEA model given in Table 5.8, Table 5.9, and Figure
5.3. Some remarks from the results of output oriented BCC DEA model given in Table
5.10, Table 5.11, and Figure 5.4. The results of additive DEA model do not show any
indicator of efficiency performance because all the efficiency score are calculated 100%,
for this reason we are not including additive DEA model into our case study.

The results for top and bottom 10 showed in tables below, also distribution of efficiency

scores shown as scatter diagram. The quartiles for CCR and BCC models computational

results given in Table 5.7.

Table 5.7: Quartiles for CCR and BCC models’ computational results

Quartile CCR (Input) BCC (Output)
Q1 64% 74%
Q2 69% 79%
Q3 75% 83%

In Table 5.7, the quartiles for BCC model are approximately 10% higher than quartiles
for CCR model and in the efficiency results for 10,000 rows; we have 68 rows of flights,
which have less than 50% efficiency score, for CCR model and 3 rows of flights for BCC
model. These results indicate that the BCC model tends to give higher efficiency scores
than the CCR model.

The biggest differences on efficiency scores between CCR and BCC models
computational results given in Table 5.7, and more than 75% percent of the efficiency

score results have less than 15% difference.
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Computational results in Table 5.8, Table 5.9, Table 5.10 and Table 5.11 indicates that
CCR and BCC models to find relative efficiency scores on sub-factors and each other are

better ways to measure carbon emission performance.

In Table 5.8 and Table 5.10, computational results for top ten best-performed flights for
input oriented CCR and output oriented BCC models shown. Results similar with last
three flights different on the list, these differences occurred because BCC model’s lack
of sensitivity on slight differences. BCC model’s results are always tending to be higher
than CCR model’s results.

In Table 5.9 and Table 5.11, computational results for top ten worst performed flights for
input oriented CCR and output oriented BCC models shown. Only three of the results

different, when we compare the results of BCC and CCR models’ computational results.

Both of the results discussed above have 70% similarity on selection of best and worst
performed flights. However, CCR model’s results are tend to be in more detail for
detecting improvement potential. In the computational results, relationship of main
factors calculated and used as inputs. Hence, the result is dependent with these four main
factors. In our case, technology factor only changes for aircraft type new or old
technology. Other three factors mostly fluctuated, and this makes us hard to see the
potential cause of worst emission performance. Another situation for our case is BCC
model fails when one or more factors are equal or near zero value. Because of this fail,

we seen some big differences such as shown in Table 5.12.



Table 5.8: Top 10 best performed flights efficiency scores in CCR results
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P B HEFErrWEERwwEE
B737 Al 197 802 13 12019 2635 220 0.65 41145 11760 1583 11870 25704 0.147 100.00% 100.00%
A320 Al 156 816 17 10737 2124 103 225 42600 9740 3044 11115 21105 0.149 100.00% 100.00%
B737 Al 204 739 14 11178 2515 0.65 10.32 41145 12310 2600 10660 27216 0.162 100.00% 100.00%
B737 Al 59 783 12 10293 770 225 042 41145 9180 1646 12720 9292 0.186 100.00% 100.00%
B737 Al 93 774 14 11168 1201 1025 225 41145 8370 2072 12405 14710 0.191 100.00% 100.00%
A320 Al 47 667 27 12470 523 225 0.07 42600 7140 1179 10385 6867 0.214 100.00% 100.00%
B737 Al 72 629 22 10831 755  0.65 10.25 41145 5810 0 13385 10458 0.229 100.00% 100.00%
A320 Al 69 669 11 12422 770 042 225 42600 7520 1168 11880 9828 0.202 99.86% 99.86%
A320 Al 57 461 47 10729 438 225 0.89 42600 5420 1430 11660 8442 0.315 99.81% 99.81%
A320 Al 177 793 16 12074 2340 57.09 225 42600 10420 4501 12615 21105 0.128 99.66% 99.66%




37

Table 5.9: Bottom 10 worst performed flights efficiency scores in CCR results

Flight

e TR TOUET wms o VSRR o BTN
B737 Al 202 775 10 10948 2612 2158 2.25 41145 11740 3463 13735 27688 0.151 30.56% 44.86%
B737 Al 74 750 12 12628 926 2.25 0.20 41145 10500 945 13235 11277 0.185 35.03% 48.52%
B737 Al 47 559 12 10728 438 0.89 2.25 41145 7800 822 13775 7686 0.276 36.74% 49.63%
B737 Al 42 597 14 11258 418 1.29 2.25 41145 4620 1337 13035 5922 0.235 38.39% 56.36%
B737 Al 49 682 14 10993 557 2.25 0.65 41145 5330 0 0 7087 0.273 40.32% 74.21%
A320 Al 47 711 14 12648 557 2.25 0.65 42600 4700 1612 12030 7245 0.213 42.87% 55.89%
A320 Al 225 696 28 10345 2612 225 2158 42600 12300 1275 6480 28413 0.173 43.88% 55.65%
B737 Al 65 766 9 12503 830 2.25 0.41 41145 8550 2791 12530 9670 0.179 44.18% 57.67%
B737 Al 86 850 13 11163 1219 0.89 0.26 41145 8400 1512 13865 12379 0.156 44.52% 51.09%
B737 Al 77 893 16 11408 1147 2.25 6.85 41145 7440 4822 10755 11497 0.156 44.72% 55.99%
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Figure 5.3: Input oriented CCR (CRS) model efficiency score results for 10,000 flights on scatter diagram
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Table 5.10: Top 10 best performed flights efficiency scores in BCC results

Flight

Fr FEHERErrRWEER e E ¥
B737 Al 197 802 13 12019 2635 220 0.65 41145 11760 1583 11870 25704 0.147 100.00% 100.00%
A320 Al 156 816 17 10737 2124 103 225 42600 9740 3044 11115 21105 0.149 100.00% 100.00%
B737 Al 204 739 14 11178 2515 0.65 10.32 41145 12310 2600 10660 27216 0.162 100.00% 100.00%
B737 Al 59 783 12 10293 770 225 042 41145 9180 1646 12720 9292 0.186 100.00% 100.00%
B737 Al 93 774 14 11168 1201 1025 225 41145 8370 2072 12405 14710 0.191 100.00% 100.00%
A320 Al 47 667 27 12470 523 225 0.07 42600 7140 1179 10385 6867 0.214 100.00% 100.00%
B737 Al 72 629 22 10831 755 0.65 10.25 41145 5810 0 13385 10458 0.229 100.00% 100.00%
B737 Al 52 642 15 11347 557 0.65 225 41145 6200 1400 12965 7969 0.231 99.33% 100.00%
B737 Al 53 734 14 11996 649 129 041 41145 6030 0 0 7654 0.250 94.73% 100.00%
B737 Al 45 700 10 11182 525 0.09 225 41145 5230 1820 11830 6741 0.213 93.61% 100.00%




40

Table 5.11: Bottom 10 worst performed flights efficiency scores in BCC results

Flight

e R RS T A HEEF SR S
B737 Al 202 775 10 10948 2612 2158 225 41145 11740 3463 13735 27688 0.151 30.56% 44.86%
B737 Al 74 750 12 12628 926 225 020 41145 10500 945 13235 11277 0.185 35.03% 48.52%
B737 Al 47 559 12 10728 438 089 225 41145 7800 822 13775 7686 0.276 36.74% 49.63%
B737 Al 86 850 13 11163 1219 0.89 0.26 41145 8400 1512 13865 12379 0.156 44.52% 51.09%
B737 Al 64 717 18 11093 765 0.15 1.29 41145 5520 1089 10715 9576 0.214 47.55% 51.98%
B737 Al 67 743 11 10652 830 225 0.41 41145 6920 1408 12675 9355 0.181 50.32% 52.04%
B737 Al 200 783 24 11627 2612 2158 225 41145 11240 1318 9200 25483 0.155 47.05% 53.60%
A320 Al 225 696 28 10345 2612 225 2158 42600 12300 1275 6480 28413 0.173 43.88% 55.65%
A320 Al 47 711 14 12648 557 225 0.65 42600 4700 1612 12030 7245 0.213 42.87% 55.89%
B737 Al 77 893 16 11408 1147 225 6.85 41145 7440 4822 10755 11497 0.156 44.72% 55.99%
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Figure 5.4: Output oriented BCC (VRS) model efficiency score results for 10,000 flights on scatter diagram
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Table 5.12: The most differentiated 10 flights on CCR and BCC efficiency score computational results

Flight

Flight Average Ground Cruising j F ; Zero Fuel Fuel Cargo Passenger . Emis. Efficiency .-
I;Iane ?uel Time Speed Time Altitude %'gaDg? AIIDr port Apl\rport Weight Weight Weight Weight Emlfsmn Per (CCR - Bng(':c'e\r};é g(.:f?'BCC
ype Y& (min)  (kmh) (min.) (km) ( (k) ) €p. m (Kg) (Kg) (Kg) (Kg) (Kg) Ton*Km CRS) (BCC - VRS) ITrerence
B737 Al 66 688 10 12097 757 041 0.89 41145 6280 0 0 8631 0.240 46.69% 100.00% 53.31%

B737 Al 47 688 15 12111 539 129 0.00 41145 7220 778 11240 7024 0.215 51.07% 100.00% 48.93%
A320 Al 40 787 13 12570 525 0.09 225 42600 7080 0 0 4977 0.190 53.34% 100.00% 46.66%
B737 Al 147 772 21 11236 1892 225 9.13 41145 9780 3237 13035 21105 0.166 54.10% 99.20% 45.10%
B737 Al 178 784 27 11149 2326 225 2211 41145 11890 3582 12615 27058 0.168 55.86% 100.00% 44.14%
B737 Al 87 762 24 10959 1106 225 0.11 41145 7530 1317 12425 12537 0.181 56.14% 100.00% 43.86%
A320 Al 136 713 17 11867 1617 225 6.83 42600 7220 2639 9725 15435 0.153 56.26% 100.00% 43.74%
B737 Al 59 533 9 10451 525 0.09 225 41145 5200 1254 13730 8694 0.270 54.49% 96.56% 42.07%
B737 Al 41 623 18 11913 426 0.89 4.37 41145 7000 0 0 6394 0.311 53.65% 94.87% 41.22%

B737 Al 67 737 10 10208 824 0.89 0.42 41145 8900 952 11135 10174 0.198 58.86% 100.00% 41.14%




43

6. MANAGERIAL INSIGHTS

6.1 Current State of Agencies and Governments on Carbon Emission Mitigation

Direct emissions caused by aviation industry is 3% of the European Union’s total
greenhouse gases emissions and more than 2% of total global greenhouse gases
emissions!?. According to ICAQ’s latest reports forecasted international aviation CO2

emissions value will increase by 250% to 450% reference to year 2018. 13

Since The Kyoto Protocol entered into force in 2005, governments and authorities are
developing new systems to mitigate GHG emissions in their territories. European Union
launched EU Emission Trading System (EU ETS) in 2005 and included aviation into this
system in 2012. International Civil Aviation Organization (ICAO) introduced a new
system Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA)
in January 2018. The main objective of these systems are to mitigate GHG emission.

In 2017, civil aviation, as a whole, emitted around 859 million tons of CO2, which is
roughly 2% of fabricated carbon emission in whole the world. ICAO forecasted
commercial aviation growth for the next 10-year, 20-year, and 30-year as 4.4%, 4.3%,

and 4.2% for yearly average.'* Figure 6.1 shows the forecasts made by ICAQ.%

12 European Commission, https://ec.europa.eu/clima/policies/transport/aviation_en

131112 https://www.icao.int/Meetings/EnvironmentalWorkshops/Documents/Env-Seminars-Lima-
Mexico/Mexico/08_UnitedStates_EnvironmentTrends.pdf
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Figure 6.1: Total passenger traffic: history and forecasts'®

The EU Emissions Trading System (EU ETS) is a ‘cap and trade’ system. It caps the total
volume of greenhouse gases emissions from installations and aircraft operators
responsible for around 50% of EU greenhouse gases emissions. The system allows
trading of emission allowances so that the total emissions of the installations and aircraft
operators stays within the cap and the least-cost measures can be taken up to reduce

emissions®’ as shown in Figure 6.2.

Phase | Phase 11 Phase 111 Phase 1V
(2005 - 2007) (2008 - 2012) (2013 - 2020) (from 2021)

Figure 6.2: Phases of EU ETS Development

In the first phase, commission constructed the price formation in the emission trading

market and monitoring, reporting and verification of emissions models. In the second

18 www.icao.int/Meetings/aviationdataseminar/Documents/ICAO-Long-Term-Traffic-Forecasts-July-
2016.pdf

7 https://ec.europa.eu/clima/sites/clima/files/docs/ets_handbook_en.pdf
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phase, commission apply the rules and limitations to comply with Kyoto promised
emission reduction numbers. In the phase three, four, and beyond, commission will

extend the coverage of ETS into different industries and its foreign suppliers.

ICAQ’s Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA)
covers more than 87% of international aviation operations with 73 states/countries to
participate in the pilot phase as June 20188 as shown in Figure 6.3.

: T Participation Based On Revenue Ton
Voluntary Participation * Kilometers Data in 2018

Pilot Phase First Phase Second Phase
(2021 - 2023) (2024 - 2026) (2027 - 2035)

Figure 6.3: Phases of CORSIA Development!®

Considering accelerating climate change and increasing global effort to reduce emissions
towards net-zero levels in the second half of this century, it is likely that future carbon

emissions will be subject to some form of ‘penalty’ (Becken & Shuker, 2019).

CORSIA and EU ETS use constants to convert burned fuel into carbon emission such as
ICAO accepts this constant as 3.16 kg CO2 per a kg of Jet Al fuel. They also use CO2
emission per carrying a ton of load for a kilometer as main performance indicator. EU
ETS only concerned with emitted CO2 amount rather than reduction actions or
improvement operation, they just give annual limited amount and charge the excessive
amount. On the other hand, CORSIA includes sustainable fuel usage, and improvement

activities into their CO2 emission calculator.?°

1816 Introduction to CORSIA, https://www.icao.int

20 https://blog.openairlines.com/corsia-how-to-monitoring-reporting
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6.2 Recommendation to Agencies and Governments for Improving Their Carbon
Emission Mitigation Activities

Most of the aviation companies started their carbon emission mitigation activities just
after regulations, such as; EU ETS and CORSIA published. Therefore, at first
governments and local aviation agencies should prepare plans to mitigate their territories

carbon emission.

In our case we only studied aviation as a pollutant industry and propose a model for
aviation companies to assess their flights emission performance indoor, but this study
might be used in other areas with different factors.

Currently most of the airline companies using carbon emission amount per each tone *
kilometer for their emission performance measurement, but this indicator only shows
them how much they are polluting the air and there is no insight about what to improve
or which factor they should focus on. Our model considers 4 main- and 13 sub-factors
when it is used to evaluate emission performance. Due to the nature of DEA method it

also gives improvement potential on each factor.

Using our model any organization can easily set a strategic goal and follow up this goal.
For example, in our case study with 10,000 rows of data we found that there are
opportunities on average speed optimization, taxi process improvement, and cargo weight

optimization improvements.
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7. CONCLUSION

Governments and international agencies are working to enact for preventing global
warming. Aviation is one the major players of global air polluters. Therefore, aviation
companies need to act quickly to adapt these early released of programs and systems such
as EU ETS, CORSIA, etc.

The subject such as carbon emission, carbon footprint, etc. are quite new to aviation
sector, it come to the aviation’s agenda with EU ETS started to charge excessive amount
of carbon emission in 2012. Some researchers introduced the emission limitation
activities, which have been carried out by governments and global agencies, and others
studied on overall aviation carbon emission performance for countries or aviation

companies.

Besides all these improvements on aviation and carbon emission, no one studied carbon
emission for aviation companies to decide ‘what to improve?’ and ‘where to focus?” Our
approach provides a solution to assessing flights for carbon emission improvement.
Therefore, with the help of aviation industry factors in this study can be improved and

adapted by an improvement assessment tool.

In this thesis, the relationship in aviation industry and carbon emission subjects is
discussed. Expert opinions gathered for determining factors, which affects carbon
emission of a flight. Thirteen sub and four main factors found and ranked by 12 aviation
experts to find weights of factors using fuzzy ANP. After this study, models for
calculation of relational flight emission performance scores, constructed via CCR and

BCC models from literature.
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Computation results from R Software of these models given in section 5 show significant
difference from emission performance index accepted by global aviation, which is
commonly used as carbon emission amount per a ton through a kilometer. This index tells
us how much a flight emits to carry a ton of load for just a kilometer. However, calculation
such as this one will not directly give us where we have a potential to improve our carbon
emission performance. Therefore, we need to use advanced methods to describe

improvement opportunities for sustainable flights.

Using thirteen sub-factors to calculate four main factors as technology, piloting, load and
distance factors makes our computation faster, but if one wants to test our weight results,
which we used to calculate main factors values, may use sub-factors as inputs to this

model.

In computational results, one may find out the emission performance improvement
potentials, which emission performance calculation with input oriented CCR (CRS) and
output oriented BCC (VRS) models. In detail, quartile analysis and computation details
indicates that BCC model has lower significance level and worse than CCR model on
showing slight differences.

In Table 5.8 and Table 5.10, computational results for top ten best-performed flights for
input oriented CCR and output oriented BCC models shown. Results similar with last
three flights different on the list, these differences occurred because BCC model’s lack
of sensitivity on slight differences. BCC model’s results are always tending to be higher
than CCR model’s results.

This thesis contributes to the literature by filling gap on flight based carbon emission
performance calculation for decision makers using inner and outer flight related factors
such as airport sizes, ground time, cargo weight, etc. Data preparation and model usage
methods are useful for aviation companies’ environmental responsible personnel to define
improvement potential for a past flight or a route and investigate detected flights in detail

to find abnormalities.
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There are parameters like average tail wind, taxi distance travelled, and time for idle run
of engines that could be considered in this study however we did not use because the lack

of data on these matters. This issue is the main limitation of this study.

Further researches should focus on expanding factors and their data gathering methods,
and should use other DEA methods like super-efficient DEA model to handle vast amount
data and provide insights for big aviation companies or multiple year data of mid-range

aviation companies.
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APPENDICES

Appendix A. Relative weights of airports for ground delay effects

Code Weight Code Weight Code Weight Code Weight Code Weight Code Weight

DOH 100,00 VIE 20,33 BAH 7,31 KUF 2,21 AYT 0,66 EZS 0,08
NAP 82,78 ATH 18,11  BEY 6,86 TLL 2,21 SYz 0,64 KYA 0,07
DXB 73,50 GVA 14,75 BLQ 6,83 LEJ 2,14 LWO 0,50 GNY 0,07
AMS 57,10 HAM 14,69 AMM 6,60 BRE 2,12 ADA 0,42 MLX 0,07
FRA 53,75 XFW 14,36 CDG 6,58 EBL 1,75 ECN 0,42 DLM 0,06
MED 53,08  CAl 13,30 BSL 6,57 MRV 1,63 KZR 0,42 MQM 0,05
MAD 44,50 PRG 12,85 CRL 6,42 TBZ 1,62 GRV 0,42 BAL 0,05
LGW 37,96 BGW 12,50 KHI 5,58 LIL 1,59 PAD 0,42 DNZ 0,05
MUC 37,15  KWI 11,42 SOF 5,41 PRN 1,57 ERF 0,42 KSY 0,05
FCO 34,14 BUD 10,91 HAJ 4,89 SKP 1,56 EBU 0,42 MSR 0,04
JED 28,33 HRG 10,83 ALA 4,70 RTM 1,54 BCM 0,37 VAS 0,04
ORY 26,70  SXF 10,72  NTE 4,57 SSH 1,46 SCN 0,33 ERC 0,03
BCN 26,67 OTP 10,67 BEG 4,45 DRS 1,42 OZH 0,29 GzZP 0,03
DME 25,58  KBP 10,50 IST 4,37 ESB 1,29 TZX 0,27 ADF 0,02
ZRH 24,50 CGN 10,32 VNO 4,33 FRU 1,28 GZT 0,21 KCM 0,02
CPH 24,31  BGY 10,28 OVB 4,17 VAN 1,10 DIY 0,16 EDO 0,02
MAN 23,14 TLV 10,25 TSE 3,58 SNN 1,09 ASR 0,14 YEI 0,02
OSL 22,90 SHJ 9,50 NUE 3,49 ODS 1,03 SZF 0,12 NAV 0,02
ARN 22,19 LYS 9,20 KRR 2,92 ADB 0,90 IEV 0,12 MZH 0,02
STN 21,59 STR 9,14 TBS 2,54 VOG 0,83 ERZ 0,12 BGG 0,02
BRU 20,65 VCE 8,64 TIA 2,46 GOl 0,81 cu 0,10 NOP 0,01
MXP 20,60 TLS 7,72 ABA 2,34 FMO 0,80 HTY 0,09 TEQ 0,01
DUS 20,53 MRS 7,50 IFN 2,32 Sl 0,80 BJV 0,09 ISE 0,01

AUH 20,40 IKA 7,38 SAW 2,25 HRK 0,67 OoGU 0,08 KFS 0,01
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Technology main factor inconsistency report

2. Node comparisons with respect to Techonology Factor
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