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ABSTRACT

Stress level among people is rising through years and passive sensing data from mobile

phones or other ubiquitous devices have started to found its place in applications of

mental health observation. With the ultimate goal of creating an automatic human

mental health assistant that helps people to have a better mental condition, a step is

taken by creating a stress recognition model. In previous works, the researchers have

found correlations between sensor data and mental health conditions and attempted

to predict the stress level of the user. Due to there is no direct link between any

sensor data with mental health, Machine Learning algorithms are employed to uncover

relations with multiple sensors and mental well-being. The utilized machine learning

algorithms for prediction work with non-sequence data hence the researchers need to

extract features that represent historical sensor data with instant features. However,

extracted features cannot completely represent a sequence of time data. Within the

scope of this study, we showed that LSTM, CNN and CNN-LSTM algorithms which

accept sequences of data as input and reaches exceptional performances in different

applications can also work in passive mobile phone sensor data to predict human mental

stress. The performance of the model on StudentLife dataset which includes passive

mobile sensing data of college students has 62.83% accuracy on 460 test instances by

training with 800 instances with LSTM model. Diversity and size of the data are

very small and the data-hungry LSTM model could not generalize on adapted features

with the small sample size. Although we did not adapt complex features, the results

are promising and encourage us to improve data size and continue to research on this

topic.

Keywords : stress, mental health, deep learning, mobile sensor, lstm



ÖZET

İnsanlar arasındaki stres seviyesi yıllar geçtikçe artmakta ve cep telefonlarından ya

da diğer yaygın cihazlardan gelen pasif algılayıcı verileri, zihinsel sağlık gözlemi uygu-

lamalarında yerini bulmaya başlamıştır. İnsanların daha iyi bir zihinsel sağlığa sahip

olmalarına yardımcı olan otomatik bir insan zihinsel sağlık asistanı oluşturma hede-

fiyle, stres tanıma modeli oluşturularak bir adım atılmaktadır. Daha önceki çalışma-

larda, araştırmacılar sensör verileri ve zihinsel sağlık durumları arasında korelasyon

bulmuş ve kullanıcının stres seviyesini tahmin etmeye çalışmışlardır. Zihin sağlığı ile

herhangi bir sensör verisi arasında doğrudan bir bağlantı olmadığı için, çoklu sensör-

ler ve zihinsel sağlık ile ilişkileri ortaya çıkarmak için Makine Öğrenimi algoritmaları

kullanılmıştır. Önceki çalışmalarda tahmin için kullanılan Makine Öğrenme algorit-

maları, sıralı olmayan verilerle çalışıyordu, bu nedenle araştırmacıların, geçmiş sensör

verilerini temsil eden öznitelikleri anlık çıkarmaları gerekir. Bununla birlikte, çıkartılan

öznitelikler bir zaman verisi dizisini tamamen temsil edememektedir. Bu çalışma kap-

samında, sıralı (zaman serisi) verilerini girdi olarak kabul eden ve farklı uygulamalarda

istisnai performanslara ulaşan LSTM, CNN ve CNN-LSTM algoritmalarının, insan zi-

hinsel stresini tahmin etmek için pasif cep telefonu sensörü verilerinde çalışabileceğini

gösterdik. Modelin, üniversite öğrencilerinin pasif mobil algılama verilerini içeren Stu-

dentLife veri setindeki performansı, LSTM modeliyle 800 örnekle eğitilerek 460 test

örneğinde %62,83 doğruluğa ulaşılmıştır. Verilerin çeşitliliği ve boyutu çok küçük ol-

duğu için LSTM modeli küçük örneklem boyutu ile eğitilerek genelleme yapamamıştır.

Her ne kadar karmaşık öznitelikleri uyarlamamış olsak da, sonuçlar ilk aşamada umut

verici gözükmekte, veri boyutunu geliştirmemiz ve bu konuda araştırma yapmaya de-

vam etmemiz yönünde bizleri teşvik etmektedir.

Anahtar Kelimeler : stres, ruh sağlığı, derin öğrenme, mobil sensör, lstm
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1 INTRODUCTION

Stress level among people is raising with modern life (Weiten et al., 2014). Chasing

success, academic and work pressures are some of the main contributors to the stress.

Increased stress level among people advances the risk of a lot of mental and physio-

logical health problems. In the work of life stress and health review (Slavich, 2016),

life stress has a lot of contributions to asthma, rheumatoid arthritis, anxiety disorders,

depression, cardiovascular disease, chronic pain, HIV/AIDS, stroke, cancer and accele-

rated biological aging and premature mortality. Furthermore, a decline in the number

of brain cells and reduced brain size (Kang et al., 2012) can be related to stress.

In addition to the physiological diseases from stress which may cause damage or even

death of people, many psychological discomforts can make people decide to end their

lives. The latest work (Liu et al., 2019) which includes 67,000 college students reveals

that 75% of students have at least one stressful time period in the past year and 20%

of them have more than 5 stressful times. Additionally, students were directly asked

about suicidal thoughts, 20% of students responded that they had thought about suicide

and 10% of them were attempted. The percentage of suicidal thoughts and attempts

among college students were more than double of average U.S. citizens’ attempts.

In the work (Landow, 2006), researchers reported that anxiety levels are broadening

among college students. 83 schools reported increased use of mental health services in

the last three years and more than half of the schools did not know how many of the

students are seeking for help. Even though stress levels and their major effects are rising

among people, it is possible to take precautions such as meditation (Hölzel et al., 2009;

Smith, 2013), exercise (Viveros and Schramm, 2018), getting enough sleep (Kushlev

and Dunn, 2015), limiting the frequency of checking email (Brown and Gerbarg, 2009),

yoga (Cervellin and Lippi, 2011), listening music (Rapaport et al., 2010), massage

(Scholey et al., 2009) and chewing gum (Fehske et al., 2011) to lessen the consequences

of stress. As a result of the studies that we discussed, we can note that stress can have

tremendous influences on people, and the life of many people can get better with the

precautions at the beginning phase of stress.

It is essential to recognize a student or person has a stressful period so they or their

institution can take precautions. Because of stress or anxiety is not a permanent mental

issue, it can be solved with eliminating and limiting the causes. Nevertheless, it is not

obvious to understand who has stressful times or not. Every person with different
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background and lifestyle has different elements that produce stress over her/him. To

understand the stressful people and stress determinants, the chosen approach should

extract stress generator patterns from people’s daily behaviors.

Every 10 years since the 70s, a new generation of computing devices have risen and the

adaptation to certain computing devices has been growing. With certain advancements

in every era, hardware capability of computation power grows and becomes more affor-

dable with smaller devices. The most adapted generation of those computing devices is

(smart) mobile phones (Sanou, 2017). They are miniature, energy efficient and highly

computationally skilled devices that are in the pockets of 2 out 3 people in the world

(DaSilva et al., 2019). There are a lot of sensors that were embedded in mobile phones

throughout the years. With enhanced computation ability and new sensors, it became

accessible to collect real-time data from different aspects of human life.

Data-driven modeling is more focused on understanding the manner of work of the

world with experiments by exploiting high-performance computation devices. Conse-

quently, a lot of studies with mobile phones were done from human activity recognition

to mental health recognition because activity, call and SMS logs, location, social net-

works and so forth can be recorded without spending time and resource excessively.

Continuously growing personal data by ubiquitous devices that are related to activi-

ties, routines, and social interactions creates a lot of new opportunities solve primary

problems of our societies in several areas. To create a better social life, these resources

help to build predictive and assisting models. Thanks to advances in Artificial Intelli-

gence and, in particular, Machine Learning, a lot of new frontiers for computation have

emerged. These new developments created new interdisciplinary fields that have appli-

cations in academia and business. The combination of human behavior understanding

and computational sciences created Computational Social Science which focuses on the

improvement of human life by the applications of new technologies.

In the last 50 years, there were a lot of developments in Machine Learning algorithms.

These algorithms divided into Supervised, Unsupervised and Reinforcement Learning.

Supervised Learning learns a function that maps input and output data according

to different examples. Unsupervised Learning learns without labels (output data). In

Reinforcement Learning, the aim is to maximize cumulative reward with choosing the

best actions in an environment so the model learns how to reach the best possible

outcome. With the increasing computation power, there were a lot of advancements
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in all of these areas in the last years. In recent years, most the developments were in

Neural Networks, in particular, Deep Learning which can have an unlimited number of

layers to learn the most complex function that fits the input data if the dataset contains

too many of them. Ultimately, our aim is to evaluate and improve human mental health

conditions by utilizing behavioral data and artificially intelligent algorithms. Our focus

is especially on mobile phone data because it is cheap and available to everyone. We are

interested in the prediction of human mental comfort that requires response data that

we predict in future cases. With respect to the point, historical data and algorithmic

methods were tested.

Our focus is on one of the biggest problems in modern life -stress. Cumulative stress in

a period of time has terrible effects on different parts of the human psychological and

physiological systems. Therefore, it is a great challenge to recognize stress in daily life

to take precautions to prevent risky situations for human life. There were interesting

results in several studies where stress levels detected by physiological sensors (Huang

et al., 2016; Zhai and Barreto, 2006; Giannakakis et al., 2017; Hosseini and Khalilzadeh,

2010). However, if stress levels during daily life are aimed, the sensors should be easily

wearable. Therefore, smartphones should be considered as a data collection tool for

human psychology because stress levels could be associated with the daily activities

that also includes smartphone activities such as phone calls, e-mails, SMS and so forth.

In the thesis, we attempted the automatic recognition of daily stress with two classes

(Stressed and Not-Stressed) as a Machine Learning classification task which was based

on passive sensor data from smartphones. People’s physical activities (4 types of ac-

tivities: stationary, walking, running, unknown) were represented by features that are

extracted from accelerometer and gyroscope sensors. Audio features (4 types of audio

data: silence, voice, noise, unknown) were collected via microphone. The information

about how many people and Wi-Fi access points around the user were calculated from

Bluetooth and Wi-Fi antennas. The data about the status (locked, charging or in the

dark) of the mobile phone were extracted to understand if the user employs the phone

or not. Lastly, SMS and call log were collected from the mobile phone, and deadlines

and hour of the day were added to the dataset to let the algorithm unveils relationships

between stress and features.

The main scientific contribution of the thesis contains application of one of the best al-

gorithms for sequence data types on daily stress recognition from passive mobile phone
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data. Recurrent Neural Network (RNN) gave some of the best results for sequential

data in recent years. Because of the working structure of the RNN, uncovering relation-

ships between each feature and carrying significant aspect from the beginning of the

sequence to the end are the main gains of the method. Due to the dataset that we use

have time-series features, we can generate sequences for different time periods to make

it suitable to feed into RNN. We explored use cases in stress recognition with Machine

Learning by utilizing Recurrent Neural Network because it decreases the labor cost of

feature engineering that affects the solution time in a positive manner. Here, we hy-

pothesized that because of RNNs’ functioning structure and our input type, RNN can

predict the stressful students from time-varying features set. To confirm the assump-

tion of the appropriateness of RNN to stress recognition from mobile phone data, we

used StudentLife dataset and formed an LSTM model to classify the people who are

stressed or not. Other than LSTM, chosen algorithms (LSTM, CNN and CNN-LSTM)

were compared according to validation methods. With all features that we extracted,

we have reached 62.83% accuracy on the test set with LSTM model.

Rest of the paper is organized as follows: In Chapter 1, we summarize the motiva-

tion and developments to enable researches in this area. Next, research goal, scientific

contribution and structure of the thesis is explained. In Section 2, we present the rela-

ted work and how our method differs from the related studies. Section 3 presents our

methodology particularly the parameters and experiments considered in this study. In

Section 4 and Section 5, we present the results of the experiments and discuss our

findings in respectively. Finally, Section 6 concludes the paper and includes the future

studies.
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2 LITERATURE REVIEW

Some of the research communities that spent time on stress recognition concentrated

on data from physiological implications. Researchers found that there is a relationship

with gaze and click patterns and human stress levels. Moreover, acceleration, mean

and maximum intensity of the touch and duration are associated with stress when

interacting with electronic devices. Blood volume pulse, galvanic skin response, pupil

diameter, and skin temperature have a strong correlation with stressful mental state.

There are some other experimentation of stress detection from speech, video, EEG and

psycho-physiological signals are experimented in last years. The mentioned studies have

been prepared by collecting data through special equipment in a laboratory environ-

ment. The data used in these studies are not easily adaptable to daily life. Other than

these laboratory specific studies, researchers collected information from a person’ life

for specific time periods which were obtained by daily or weekly diaries which include

thoughts to activities of a person. Though, these types of specific time period data

collection depends only on a person’s memories. Even if they may remember most of

the things, they cannot explain every scenario in a small time span. Besides, the data

collection procedure could set a barrier because it takes an effort to complete the pro-

cess. Accordingly, the data collection procedure that is entirely reliant on the efforts of

humans generates small and highly biased (on responder’s memory) data.

Therefore, researchers conducted similar studies with data that could be more easily

applied in daily life. Mobile phones and wearable devices, which are frequently used by

people in the recent period, are the leading in this area. Mobile phones have an advan-

tage over any other data collection method which is the having ability of both passive

and active data collection. Passive and active data acquisition can be accomplished via

sensors and instantaneous interactions respectively.

There are a lot of correlations for stress with different types of things that people do in

daily life without thinking. Moreover, the consequences of these stress determinants can

change according to the exposure time. There can be interconnected links which may

not be interpreted easily with basic statistical approaches as a result of complex life

situations involves a lot of decisions and actions. Compounded actions and reactions

may reveal hidden reasons for the results better. There are some studies which tried to

correlate passive mobile phone sensing data with mental health conditions. These works

attempted to recognize links between stress and time-varying features and predicts
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stress levels.

In a lot of work, it was shown that there are relationships between sensor data and

mental health conditions. The results vary in related to the application types; mood

or stress prediction with sensor data is not highly accurate in generalized applications.

These methods use algorithms that have no time-varying relationship extractor, resear-

chers extract features to exhibit time-dependent features. In the following Table 2.1,

some of the research about mental state recognition and the tools that were used to

achieve this goal are summarized according to the publication date.

Table2.1: Related Works

Author

and Year

Title Summarized Information

(Picard

et al.,

2001)

Toward Machine

Emotional Intel-

ligence: Analy-

sis of Affective

Physiological

State

In this work, the authors collected their dataset

for eight emotional states from a subject. They

presented and compared feature-based recogni-

tion of human emotion. They reached 81% accu-

racy for the subject for emotional state recogni-

tion.

(Healey

et al.,

2005)

Detecting Stress

During Real-

World Driving

Tasks Using

Physiological

Sensors

Electrocardiogram, electromyogram, skin conduc-

tance and respiration were recorded from drivers.

The data was used for the stress level of a dri-

ver. It was shown that automatically calculated

physiological features can be used to determine

stress levels.
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(Zhai and

Barreto,

2006)

Stress Recog-

nition Using

Non-invasive

Technology

The authors created a system that recognizes

negative emotional states (stress) when a user

interacts with a computer. Four types of signals

were used which were Blood Volume Pulse, Gal-

vanic Skin Response, Pupil Diameter and Skin

Temperature. These data were monitored during

the computer-user interaction period for 32 ex-

perimental subjects. Then, collected data was

analyzed to reveal affective states in the user.

They used signal processing techniques to extract

features and feed them into three different clas-

sification algorithms (Naïve Bayes, Decision Tree

and Support Vector Machines). The results sho-

wed that monitored physiological signals are cor-

related with the changes in an emotional state.

It was shown that classification algorithms can

reach an accuracy level of up to 90% in a control-

led environment.

(Hosseini

and Kha-

lilzadeh,

2010)

Emotional stress

recognition sys-

tem using EEG

and psycho-

physiological

signals: Using

new labelling

process of EEG

signals in emo-

tional stress

state

In the work, the authors collected EEG and psy-

chophysiological signals from participants. They

preprocessed EEG signals according to psycho-

physiological data and extracted suitable seg-

ments of EEG signals for stress recognition sys-

tem. The extracted Linear and Non-Linear fea-

tures of EEG signal segments and associates

them with labels. The features that were used in

the process are Wavelet coefficients and chaotic

invariants like the fractal dimension by Higuchi’s

algorithm and correlation dimension. The final

classification accuracy of two emotional states

was 82.7% by using Elman classifier.
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(Rachuri

et al.,

2010)

EmotionSense:

A Mobile

Phones based

Adaptive Plat-

form for Expe-

rimental Social

Psychology Re-

search

The authors created a platform to recognize

users’ emotions and other aspects. They eva-

luated the system on Nokia Symbian phones.

Moreover, they tested in a meeting where spea-

kers and participants’ emotions were detected.

There were 5 different types of emotions which

are happy, sad, fear, angry and neutral. Gaussian

Mixture Models were used for the recognition

process.

(Epp

et al.,

2011)

Identifying

Emotional

States using

Keystroke Dy-

namics

The work was done to determine user emotion

from the rhythm of typing patterns on a key-

board. The accuracy results were in between 77%

and 88%.

(Bauer

and Lu-

kowicz,

2012)

Can smart-

phones detect

stress-related

changes in the

behaviour of

individuals?

The authors wanted to detect behavior changes

according to stress by using smartphone data.

They collected data from 7 students. The results

showed that behavior modification can easily be

observed.

(Carneiro

et al.,

2012)

Multimodal be-

havioral analysis

for non-invasive

stress detection

In this work, human stress level recognition du-

ring the interaction with technological devices

was performed. The data was collected from 19

participants for different stress levels. In the vir-

tual environment, each user participated in the

conflict resolution. The authors extracted 8 fea-

tures which are behavioral, physical and cogni-

tive features. They used a non-parametric statis-

tical hypothesis test to select statistically signifi-

cant features. They found that acceleration, the

mean and maximum intensity of the touch are

the most correlated features with stress.
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(Grünerbl

et al.,

2012)

Towards smart

phone based

monitoring of

bipolar disorder

In this work, the data was collected from the ru-

ral area of Austria for state monitoring of bipolar

disorder by mobile phone sensors. The results

showed that simple features like location, motion

and phone calls are decent indicators.

(Sharma

and Ge-

deon,

2012)

Objective mea-

sures, sensors

and computatio-

nal techniques

for stress re-

cognition and

classification: A

survey

The survey paper that reviews sensors that were

used in stress recognition and modeling tech-

niques for stress. Then, it gives an overview of

possible direction for further research.

(LiKamWa

et al.,

2013)

MoodScope:

Building a

Mood Sensor

from Smart-

phone Usage

Patterns

MoodScope is a service that recognizes the mood

of the user according to his/her phone usage. It

is a context-aware system that analyzes com-

munication history and application usage pat-

terns. The data was collected from 32 users for 2

months. Initial accuracy was 66% but it improves

until 93% after 2 months of personalized training

periods.

(Sano and

Picard,

2013)

Stress Recog-

nition using

Wearable Sen-

sors and Mobile

Phones

The authors aimed to reveal physiological and

behavioral markers for stress. They collected sen-

sor, phone usage and survey data. They elimina-

ted unnecessary features by correlation analysis

and fed important features to machine learning

models. They reached 75% accuracy by using

screen on, mobility, call or activity level informa-

tion.
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(Wang

et al.,

2014)

StudentLife: As-

sessing Mental

Health, Aca-

demic Perfor-

mance and Be-

havioral Trends

of College Stu-

dents using

Smartphones

In the StudentLife work, continuous sensor data

from mobile phones and feedback from students

were collected from 48 students at Dartmouth

College. It also collected stress, sleep, activity,

mood, sociability, mental well-being and acade-

mic performance data from these students. In

the work, the authors found a correlation bet-

ween sensor data from mobile phones and mental

health and educational outcomes. They also ana-

lyzed Dartmouth lifecycle in the data and repor-

ted some changes in the students’ life during the

term. The research showed that interpersonal re-

lationships and academic life in college are stress

determinants for students.

(Ma et al.,

2014)

Infer Daily

Mood using

Mobile Phone

Sensing

In the work, the authors proposed a framework

called MoodMiner which work with mobile phone

sensor data and communication data. The frame-

work was created to assess and analyze mood in

life. They used a factor-graph based model called

SFFG and it reached 70% accuracy with minimal

user interaction.

(Bogomo-

lov et al.,

2014)

Pervasive stress

recognition for

sustainable li-

ving

The authors indicated that daily stress can be re-

cognized from mobile phone activity data. They

increased the feature size by using different fea-

ture extraction methods and they selected fea-

tures by Gini index. Moreover, the classification

algorithms were Random Forest and Gradient

Boosting and they reached 72.39% accuracy for

2-class classification.
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(Hernan-

dez et al.,

2014)

Under Pressure:

Sensing Stress

of Computer

Users

The study was done by using a pressure-sensitive

keyboard and a capacitive mouse. In a laboratory

environment, the authors tried to determine re-

laxed or stressful participants by using keyboard

and mouse data. Expressive writing, text trans-

cription and mouse clicking data were collected

from 24 participants. As a result, typing pressure

and mouse contact were increased in stressful

conditions.

(Sun

et al.,

2014)

MouStress: De-

tecting Stress

from Mouse Mo-

tion

The authors wanted to measure the stress level

from a common computer mouse. They used

arm-hand dynamics to capture muscle stiffness.

They argued that mouse sensing for stress recog-

nition may be feasible.

(Ben-Zeev,

Wang, Ab-

dullah,

Brian,

Scherer,

Mistler,

Hauser,

Kane,

Camp-

bell and

Choud-

hury,

2015)

Mobile Behavio-

ral Sensing for

Outpatients and

Inpatients With

Schizophrenia

The authors aimed the behavioral sensing among

schizophrenia by examining feasibility, acceptabi-

lity and utility. Sensors from mobile phones were

utilized to collect data from 9 outpatients and

11 inpatients for one-two week periods. In the

end, they took feedbacks and decided that model

behavior sensing was a feasible, acceptable and

informative approach for data collection.
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(Ben-Zeev,

Scherer,

Wang,

Xie and

Campbell,

2015)

Next-

Generation Psy-

chiatric Assess-

ment: Using

Smartphone

Sensors to Mo-

nitor Behavior

and Mental

Health

The work aimed to examine the relationships

between multi-modal smartphone sensors and

mental health. The data was collected from 47

participants for over 10-week period. Geospatial

activity, sleep duration, variability in geospatial

activity were related to human stress levels. In

the end, the authors suggested that smartphones

can be utilized for monitoring and analyzing in-

dicators of mental health.

(Canzian

and Muso-

lesi, 2015)

Trajectories

of Depression:

Unobtrusive

Monitoring

of Depressive

States by means

of Smartphone

Mobility Traces

Analysis

The authors aimed to create a system that only

analyzes mobility patterns from GPS traces of

individuals from mobile phones to monitor de-

pressive mood disorders. They collected truth

labels periodically by creating a smartphone ap-

plication. They found that there is a significant

correlation between GPS traces and depressive

moods. The features are the total distance co-

vered, the maximum distance between two loca-

tions, the radius of gyration, the standard devia-

tion of the displacements, the maximum distance

from home, the number of different places vi-

sited, the number of different significant places

visited and the routine index.

(Saeb

et al.,

2016)

The relationship

between mo-

bile phone loca-

tion sensor data

and depressive

symptom seve-

rity

The authors tried to identify depressive symptom

severity by using GPS sensors. They used the da-

taset from (Wang et al., 2014) work. They found

that location variance, entropy, and circadian

movement were correlated with Patient Health

Questionnaire results. They concluded that GPS

features may be used for the prediction of depres-

sive symptom severity.
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(Wahle

et al.,

2016)

Mobile Sensing

and Support

for People With

Depression: A

Pilot Trial in

the Wild

It was aimed to identify clinically meaningful de-

pression level of subjects from daily-life behavior

based on sensor information. 126 participants

used a smartphone app for collecting sensor in-

formation. They included real-time learning sys-

tem to optimize recommendations to each sub-

ject according to time, location and personal pre-

ference. Participants answered the depression

survey bi-weekly. 120 features were created to

feed into the model and binary classification mo-

del results were 60.1% and 59.1% accuracy for

Random Forest and Support Vector Machines.

(Huang

et al.,

2016)

StressClick:

Sensing Stress

from Gaze-Click

Patterns

In the work, the relationship between human

gaze behaviors during the mouse-click event and

mental stress was investigated. The results in-

dicated that gaze-click patterns are affected by

mental stress. For the study, the data was col-

lected via computer webcam and mouse. During

the data collection period, the participants solved

different level of math questions under different

stress levels. The authors suggested that it is

possible to detect stress non-intrusively without

specialized equipment.

(Alberdi

et al.,

2016)

Towards an au-

tomatic early

stress recogni-

tion system for

office environ-

ments based

on multimodal

measurements:

A review

This work focused on preventing the stress be-

coming chronic by detecting at an early stage.

However, there was no automatic stress detection

method. Therefore, the authors reviewed some

of the works to bring together recent works of

automatic stress recognition. The paper gives in-

formation about the measurement of stress levels,

collected data types, the scope of applications,

multimodal techniques and open challenges.
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(Gian-

nakakis

et al.,

2017)

Stress and an-

xiety detection

using facial cues

from videos

By video-recorded facial cues, detection and ana-

lysis of stress/anxiety detecting framework were

created. The features were about eye-related

events, mouth activity, head motion parameters

and heart rate through camera-based photople-

thysmography. They used KNN, SVM, Generali-

zed Likelihood Ratio, Naïve Bayes and AdaBoost

classification algorithms. The result showed that

it is possible to discriminate stress and anxiety

through specific facial cues.
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3 MATERIALS AND METHODS

Materials and methods section divided into four parts, in which dataset explanation,

experimental procedure choices during preprocessing, methods that are utilized for

classification task and verification processes.

3.1 Dataset

StudentLife dataset (Wang et al., 2014) was used for stress recognition task. It was

preferred in consequence of passive and automatic data collection procedure that we

aim for our ultimate target. The data was collected from 48 Dartmouth students for a

10-week spring term. During the data collection process, each student has an Android-

based smart mobile phone in which StudentLife app (sensing and feedback software)

had run 24/7 to collect automatic measures and take feedbacks. The software does

not interrupt users in everyday usage of the phone when collecting data, it runs in the

background and accumulates data without any interference. It comprised pre and post-

survey responses, sensor data, EMA data, educational data, and app usage data. The

stress information was obtained from self-reported feedbacks through mobile phones.

We did not practice all of the data because we intended to guess human stress from

auto-collected time-series data. The dataset was anonymized to secure privacy concerns

of students so we worked on anonymized data. We know that the collected data was

from young people but we do not know their roots or cultural background.

3.1.1 Sensor Data

The dataset carries 10 sub-directories which includes 10 different sensor data which

collected 24/7 without any interaction can be seen on Table 3.1. GPS and Wi-Fi

location data were discarded because of the collected data only contains information

about a college campus.
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3.1.1.1 Activity Inference

For physical activity, there are 3 main (Stationary, Walking, Running) and 1 Unknown

activity labels for timestamps. For each timestamp, there is a one Id information that

describes the current activity of the user. A physical activity classifier was employed to

generate these labels for every 2-3 seconds with an accuracy of 94%. Table 3.2 shows

the first few lines of the user’s physical activity inference data and Table 3.3 represents

each type of activity inference’s descriptions. Activity inference is categorical data and

it was one hot encoded to feed into the model.

3.1.1.2 Audio Inference

Audio inference also consists of 4 labels which are Silence, Voice, Noise and Unknown

and the employed algorithm generated a label for each 2-3 seconds. In the same way

as activity inference, there is an audio inference for each timestamp. Table 3.4 shows

Table3.1: Sensing Data

Sensing Data
Physical activity
Audio inferences
Conversation inferences
Bluetooth
Light sensor
GPS
Phone charge
Phone lock
Wi-Fi
Wi-Fi location

Table3.2: Physical Activity Data

Timestamp Activity Inference
1364356751 0
1364356754 0
1364356756 0

Table3.3: Physical Activity Inference ID Descriptions

Inference ID Description
0 Stationary
1 Walking
2 Running
3 Unknown
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the first few lines of the user’s audio inference data and Table 3.5 represents each type

of audio inference’s descriptions. The audio inference is categorical data and it is one

hot encoded to feed into the model.

3.1.1.3 Conversation

Conversation classifier was used to label when the student having a conversation. If the

classifier caught a conversation from audio data, it continued to accumulate conversa-

tion data until the end. The data contains start and end timestamp information about

a conversation. Therefore, it is easy to know in which period a conversation happens

for a user.

3.1.1.4 Bluetooth

Every 10 minutes, Bluetooth antenna scanned the environment and gathered the list

of the other Bluetooth devices which were in the vicinity. With the signal level infor-

mation from other devices, Bluetooth antenna determined other devices nearby for a

specific time. For a specific timestamp, Bluetooth data includes MAC information of

surrounding Bluetooth devices, general characteristics and capabilities of a device and

signal strength from the device. In Table 3.7, a sample data from a user is represented.

Table3.4: Audio Inference Data

Timestamp Audio inference
1364356751 0
1364356754 0
1364356756 0

Table3.5: Audio Inference ID Description

Inference ID Description
0 Silence
1 Voice
2 Noise
3 Unknown

Table3.6: Conversation Data

Start Timestamp End Timestamp
1364424646 1364424737
1364426649 1364426940
1364427041 1364428374



18

Rows that share the same timestamp belong to a single Bluetooth scan. We generated

new features for Bluetooth; average and standard deviation of Bluetooth level were

calculated and these levels were grouped into different sections. These sections des-

cribe how many devices were in the given sections for specific Bluetooth search at a

particular time. These section levels are (-100 to -90), (-90 to -80), (-80 to -65), (-65

to 0).

3.1.1.5 Wi-Fi

Wi-Fi scans were performed in a similar way like Bluetooth scans but hold information

about Wi-Fi antennas that surrounds itself and it scanned more frequently. For a

specific timestamp, Wi-Fi data includes BSSID (AP’s MAC Address) information of

surrounding Wi-Fi antennas, AP’s working channel frequency and signal strength from

the AP. In Table 3.8, a sample data from a user is represented. Rows that share the

same timestamp belong to a single Wi-Fi scan. SSID is removed for privacy concerns.

3.1.1.6 Light, Phone Lock and Phone Charge

The light data were recorded when the phone’s light sensor could not detect light for

more than 1 hour. Phone lock was obtained when phone locked for more than 1 hour,

same in light data. Lastly, the phone charge was obtained when the phone charged for

Table3.7: Bluetooth Data

Timestamp MAC Class Id Level
1364358431 00:26:08:C9:80:E2 1000000 -67
1364358431 68:A8:6D:24:D9:8F 1000001 -89
1364361734 68:A8:6D:24:D9:8F 1000001 -93
1364389312 00:26:08:D2:B5:E9 1000000 -79
1364394036 00:26:08:B8:D2:CF 1000001 -85
1364394036 44:2A:60:FB:B7:59 1000001 -91

Table3.8: Wi-Fi Data

Time BSSID Freq Level
1364356813 d0:57:4c:57:58:00 2216 -82
1364356813 dc:7b:94:87:29:b0 2321 -91
1364357295 d0:57:4c:57:58:00 2216 -73
1364357295 dc:7b:94:87:29:b0 2321 -79
1364357677 d0:57:4c:57:58:00 2216 -71
1364357677 dc:7b:94:87:46:f2 2134 -92
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more than 1 hour. All of them have a similar data type but for different goals. There are

two fields which are start timestamp and end timestamp. As in the conversation data,

these timestamps represent the time period in which the phone was locked, charged or

in the dark.

3.1.2 EMA Data

Responses to the EMA questions (stress reports) were secured when the user inter-

acts with the phone. The responses alter according to question types, some of them

are multi-choice and others are user inputs. The questions are about stress, behavior,

Boston bombing reaction, canceled classes, class opinion, comment, Dartmouth now,

Dimension incident, Dimension protest, dining halls, events, exercise, Green Key, lab,

mood, loneliness, social and study spaces. There are several questions on these self-

reports, we only extracted questions and their answers that are not directly about a

specific location and more generalizable to every situation in general. Therefore, we

only used Stress and Mood data for stress recognition task as in Table 3.12.

Table3.9: Light Sensor Data

Start Timestamp End Timestamp
1364359234 1364387741
1364397243 1364400918
1364402931 1364418191
1364423891 1364432321

Table3.10: Phone Lock Data

Start Timestamp End Timestamp
1364359212 1364387191
1364395275 1364402832
1364402871 1364409312
1364427153 1364432457

Table3.11: Phone Charge Data

Start Timestamp End Timestamp
1364359114 1364387101
1364531231 1364560520
1364622641 1364657599
1364703192 1364739961
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3.1.3 Other Data

To be able to use the time of the day information (day, night, and so forth), we extracted

hour from the timestamp as a new feature. Consequently, the algorithm can correlate

the time of the day with other features. Other than that, different types of data collected

from students but we practiced educational, SMS, call log and app usage data in our

model because the data other than stated above are not time-series (only one-shot

data). For the reason that we want to use the type of RNN algorithms, these one-shot

type data does not highly valuable in our input format.

Class information, deadlines, grades (grades, term GPA, cumulative GPA), piazza data

were given in educational data. However, we only chose deadlines data to apply in our

model because others could not create a sequence. Deadlines data include homework,

projects, quiz, mid-terms and finals data. They were collected daily from each student

and the total values were recorded for each day. SMS data holds information about

when the student sends or receives an SMS and each student has a different file for

themselves which has timestamp and call information. Likewise, call log indicates that

how many calls were made or received for given timestamps. Ordinarily, it should have

duration of calls but some users’ data do not include that information. App usage

includes names and the total number of running apps for each running tasks for each

timestamp.

3.2 Data Preprocessing and Feature Extraction

There are different files for each student in separate directories for each type of data.

The preprocessing was performed to create a dataset which contains input instances

and outputs.

3.2.1 Labels

Labels were extracted from EMA responses which contain stress-related questions.

Students need to choose 1 of the 5 choices to specify their stress level. Accordingly, we

dismissed the redundant answers and picked Stress and Mood 2 questions and their

answers to create the labels. The questions and their possible answers are in Table 3.12.
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Labels converted in the form of binary classification (Stressed or Not Stressed). To

convert the answers to binary labels, we took any answer that implies stress as stressed

and others as not stressed. For Stress data, choice 1-3 converted to ‘Stressed’ label

and choice 4-5 converted to ‘Not Stressed’. Similarly, we took choice 2 in mood 2 as

’Stressed’ and choice 1 as ’Not Stressed’.

3.2.2 Sensor Data

Sensor data includes broadly two types of data retention. One has a value for each

timestamp and other define time range for particular actions. The data preparation of

the sensor data consists of different procedures for each retention. The process starts

with activity data. There were data collection problems which created multiple similar

timestamps. We eliminated this problem by taking the most frequent data for each

timestamp if there were more than one. Furthermore, as a result of we have an activity

inference for every 2 seconds, we resampled our data to seconds frequency with the

backward filling method (fills missing values with next value). Consequently, we created

all data collection timeline for a student in the frequency of seconds, that makes it easy

to merge all other collected data on specific timestamp.

3.2.3 Other Data

As a new feature for deadlines from educational data, we used every days’ total deadline

values to merge it with our dataset. Therefore, each timestamp includes how much

total deadlines a student has for each day. We merged SMS data with our dataset

on timestamp and assigned "1" for timestamps where an SMS sent or received, 0 is

for timestamps that have no information about SMS. We created two features for call

log data, one represent if there is a call at that time, other is for call duration. The

app usage data was grouped by timestamp and counted how many applications were

Table3.12: Creating Labels

Data Stress Mood 2
Question Right now, I am... How are you right now?
Choice 1 A little stressed Happy
Choice 2 Definitely stressed Stressed
Choice 3 Stressed out Tired
Choice 4 Feeling good
Choice 5 Feeling great
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Figure 3.1: Data Preparation

running for each timestamp.

The creation process of each feature from every data types, and instance creation from

these features can be seen in Fig. 3.1 and Fig. 3.2, in respectively.

3.2.4 Creating Same Length Instances

Because of the feedback from students can have different time interval, when we extract

instances according to stress labels, some instances became too long and some short.

We generated the same length instances to feed into the model by padding. If getting

feedback from a student took more than 12 hours, we only took the last 12 hours. In

similar, if it took less than 12 hours, we added zeros to the forefront of the sequence to

create the same sequence as 12 hours. Lastly, if the time interval between two feedback

was less than 2 hours, we moved to the next feedback to create an instance. We chose

2-12 hours period because training with very short time interval data which combined

with very long time interval can have too many zeros because of padding.
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Figure 3.2: Instance Creation for RNN

3.2.5 Normalization

Data normalization is one of the most utilized data preparation processes in Neural

Networks. It makes all input values in a similar range and thus makes the model

can learn optimal parameters faster and converges quicker. Moreover, it reduces the

probability of getting stuck in the local optima and increase the probability to reach

global optima.

We practiced Yeo-Johnson Transformation (Yeo and Johnson, 2000) for data normaliza-

tion process. It is a more complex calculation than basic normalization/transformation

techniques like Min-Max scaling or log transformation but it has some advantages.

If the data has non-normal distribution, we can use Box-Cox transformation or Yeo-

Johnson transformation to transform data into a normal distribution. However, Yeo-

Johnson allows transformation for negative data without worrying about the domain.

Yeo-Johnson transformation is defined by

ψ(λ, y) =



(
(y + 1)λ − 1

)
/λ if λ 6= 0, y ≥ 0

log(y + 1) if λ = 0, y ≥ 0

−
[
(−y + 1)2−λ − 1

)
]/(2− λ) if λ 6= 2, y < 0

− log(−y + 1) if λ = 2, y < 0

(3.1)

where y is a list of n strictly positive numbers, and λ includes the important special

cases of untransformed, inverse, logarithmic, and square and cube root.

The final format of the data was like in Fig. 3.3. In there, each instance has a sequence

data for each feature and a label for it. For a multi-dimensional array with the shape
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Figure 3.3: Input Shape

of (m x s x f), ’m’ is the total number of instances, ’s’ is the sequence length of each

instance and ’f’ is the total number of features. Additionally, there were labels for each

instance in the shape of (m x 1). Lastly, the list of final input features for the model

can be seen on Table 3.13.

Table3.13: List of Features to Feed into Model

Features
Activity (Stationary, Walking, Running, Unknown)
Audio (Silence, Voice, Noise, Unknown)
Is there any conversation?
Average signal level to other Bluetooth Devices
Standard deviation of signal levels to other Bluetooth Devices
Total number of Bluetooth devices around
Total number of far Bluetooth devices
Total number of farther Bluetooth devices
Total number of near Bluetooth devices
Total number of nearer Bluetooth devices
Call log
Total number of deadlines
Hour of the day
Is the phone charging?
Is the phone in the dark?
Is the phone locked?
Total number of running apps
SMS
Average signal level to Wi-Fi spots
Standard deviation of signal levels to Wi-Fi spots
Total number of Bluetooth devices around
Total number of far Bluetooth devices
Total number of near Bluetooth devices
Total number of nearer Bluetooth devices
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3.3 Model Building

In the model building section we discussed, what type of model we built, which algo-

rithms we chose, why we chose these algorithms, what were the model architectures

and which validation tools we utilized.

3.3.1 Classification

Because of our discrete outputs, we need to employ a classification method to reach au-

tomatic stress recognition goal. In the classification process, the output label is known

and the algorithm tries to separate data into discrete groups. Therefore, we generated

2 classes ("Stressed" and "Not-Stressed") to create a binary classification problem.

Label 0 represents "Not-Stressed" and label 1 represents "Stressed" in our task. The

percentages for the distributions of the two classes were 68.74% for "Stressed" and

31.26% for "Not-Stressed". In general, people expect to have less stressful times and

more relaxed times but the distribution was the exact opposite for this dataset. It could

be because users may have a tendency to reply to feedback prompts when they were

stressed. There are different methods that can be used for classification process and

most used ones are Logistic Regression, Nearest Neighbors, Naive Bayes, Support Vec-

tor Machines, Decision Trees and Artificial Neural Networks (Multi-Layer Perceptron).

These type of methods employed on early works for this subject that we mentioned

earlier. However, we would like to try a promising algorithm for sequence data which

is Recurrent Neural Network for this classification process. In this work, we utilized

Long Short-Term Memory which is a special kind of RNN. Therefore, we prepared our

dataset to make it ready to feed as sequence data. To compare results with similar

dataset, we chose 2 new and promising algorithms which and CNN (Convolutional

Neural Network) and CNN-LSTM (Convolutional Neural Network - Long Short-Term

Memory).

3.3.2 Long Short-Term Memory

For the classification process, the model needs a mapped input instance and an output.

The classification methods that were mentioned before RNN need each instance as

one shot (fixed-size of a vector). In other words, there is no internal state getting
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Figure 3.4: LSTM Cell

updated in time. Therefore, if there are sequence data, we need to find a way to

represent time-varying data in the shape that the model accepts. To decrease the shape

of time-series data of an instance, descriptive statistics such as sum, mean, standard

deviation, skewness and so forth are usually calculated. Besides, there are some tools

for specific domains to represent time-series data in an alternate representation such as

Fourier Transformation. However, none of these methods can represent sequence data

completely. There is always something missing from the data such as data dependencies.

Due to the structure of the Recurrent Neural Network (RNN), we can train a classi-

fication model without the preprocessing to decrease the shape of sequence features

to one shot vector. RNN models have an internal state which updates in time during

model training. Therefore, it can identify the relationships between each sequence to

represent the data better. We can think of RNN as multiple copies of a network in

a loop and information can pass through a network to another in that loop. There-

fore, it can transport data from one step to another in a sequence. Natural language

processing (speech recognition, language modeling, translation, etc.) and other types

of applications which have sequence data are the areas that utilized RNN to reach

exceptional results. Nevertheless, because of the vanishing or exploding gradient pro-

blem of RNN, it can only work well on short-term dependencies (Bengio et al., 1994).

Accordingly, Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997)

was emerged to solve this short-term dependency problem and make the network to

remember longer dependencies. In addition to RNN structure, LSTM has cell state

which transfers the information through each LSTM cell with a minor change in the
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information. Consequently, the network’s default behavior is to remember long-term

dependencies. Furthermore, LSTM structure includes three gates (forget gate, update

gate, output gate) which decide about the information that goes to the next cell. For-

get gate decides what information is eliminated, the input gate selects which values

to update and output gate determines what is the output of the cell. An LSTM cell

structure and LSTM data workflow can be seen in Fig. 3.4 and Fig. 3.5, respectively.

Mathematical calculations of LSTM cell is at Equation. 3.2 where Fi is the forget gate,

Ii is the input gate and Oi is the output gate of the cell. xi is the input values, W with

different underscores represent weight matrix of each data and underscore i is for the

sequence (time) in the LSTM network. c̃i, ci are the update values for previous cell

state and the new cell state, in respectively. hi represents the output of the cell.

Fi = σ (WF [hi−1, xi] + bF )

Ii = σ (WI [hi−1, xi] + bI)

c̃i = tanh (Wc [hi−1, xi] + bc)

ci = Fi ◦ ci−1 + Ii ◦ c̃i
Oi = σ (WO [hi−1, xi] + bO)

hi = Oi ◦ tanh (ci)

(3.2)

To increase the performance of the LSTM, a lot of model structure and layer combina-

tions have emerged. In this work, we have tried two more models to compare the results

of time-series classification. Because of the latest well-performing results in different ap-

plication, we chose to try Convolutional Neural Networks (CNN) (LeCun et al., 1995).

Additionally, the combination of CNN and LSTM (Wang et al., 2016) was utilized due

to the state-of-the-art results (Karim et al., 2018).

3.3.3 Model Architecture

To reach the best result from the dataset, we tried different model architectures. All

the final architectures of LSTM, CNN and CNN-LSTM models can be seen on Fig. 3.6.

Binary cross-entropy/logarithmic loss and Adam optimizer are used for loss function

and optimization in respectively.
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Figure 3.5: A LSTM Instance
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Figure 3.6: Model architectures of LSTM, CNN and CNN-LSTM
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3.4 Validation

Models should uncover hidden insights from the data without memorizing the trai-

ning data (overfitting). We utilized different performance metrics to understand the

model performance. In classification models, Accuracy, Precision, Recall (Sensitivity),

F1-Score and ROC-AUC are on the go metrics that decides about the model’s per-

formance. Accuracy is the ratio of accurate estimates in the system to all estimates.

Precision is a measure of how accurately all classes are predicted. Recall indicates how

successful the positive states are predicted. F1-Score is the harmonic average of Re-

call and Precision. ROC Curve (Receiver Operating Characteristic Curve) (Hanley and

McNeil, 1982) is a graph that represents the classification performance of the model

for distinguishing between the True Positives and True Negatives at all classification

thresholds. Its axes are True Positive Rate and False Positive Rate. The area under

the ROC curve (AUC) is a calculation that measures the performance of the model

across all possible thresholds. We calculated these metrics to measure the performance

of the model on the test set of our dataset to observe the performance of the model for

unseen data.

Accuracy, Precision, Recall, and F1-Score are calculated from the data that come from

the Confusion Matrix. The Confusion matrix shows the prediction results for a classi-

fication problem. The correct and incorrect predictions are compared with real values

according to the classes. The matrix shows how much the model confused when pre-

dicting classes. Confusion matrix has 4 different values which are True Positive, False

Positive, True Negative, False Negative. In True Positive, the real value and predic-

tion are all positive. The real value is negative but the prediction is positive in False

Positive. In True Negative, the real value is negative and the model predicts it as a

negative. The real value is positive but the model predicts it as a negative in False

Negative. From these values, we can calculate our performance metrics for the results

of all models.

Precision =
TP

TP + FP
(3.3)

Recall =
TP

TP + FN
(3.4)
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Figure 3.7: Confusion Matrix

Accuracy =
TP + TN

TP + TN + FP + FN
(3.5)

F1 =

(
Recall−1 + Precision −1

2

)−1

= 2 · Precision · Recall
Precision + Recall

(3.6)
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4 EXPERIMENTAL RESULTS

Using continuous passive sensing data of college students, we were able to decide with

%62.83 confidence if the student is stressed or not by looking at their last 2-12 hours

mobile sensing data. To train this model, we used 800 training instances, 200 validation

instances and 460 test instances, and all of them were balanced dataset. Our sequence

length for each instance was 24 and each member of the instance represents 30 min

data which means that we look at the data of the student at most 12 hours.

We aimed to test LSTM because continuous sensor data is time-varying and we thought

that the LSTM learning algorithm is very suitable for this dataset. We can feed the

time-series data as a sequence to let LSTM discover relationships and dependencies

between each time’s feature values.

Accuracy and loss graph of the training process can be seen on Fig. 4.1. As we can see

that our training and test loss were decreasing until specific epoch and after that point,

training loss was decreasing but test loss was increasing. Consequently, we trained our

model until that epoch to reach our best generalizable performance. In our tests, if we

increase the number of epochs, training performance reaches 100% accuracy but test

performance drops. This is a very clear indicator of overfitting and we tried different

methods such as using dropout or decreasing the complexity of the model but none of

them helped to solve overfitting problem. We think that this problem occurs because

of the data that we have. Adding new features or expanding the size of the data with

different samples may help the algorithm to discover more generalizable differences

between each class. Precision, Recall, and F1-Score for each class in test data indicate

that our model can predict stressed students slightly better which can be seen on

Table 4.1. We trained 3 different models and as it is seen in the Table 4.2, all three

models’ performances were similar to each other but LSTM performs slightly better.

Table4.1: Model Results

Data Accuracy Precision Recall F1-Score Support
Not Stressed 0.63 0.62 0.63 0.63 230
Stressed 0.63 0.63 0.63 0.63 230
Average 0.63 0.63 0.63 0.63 460
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Figure 4.1: Accuracy and Loss progress in training

Figure 4.2: ROC Curve of 3 Algorithms

Table4.2: Comparison of Algorithms

Metric LSTM CNN CNN-LSTM
Accuracy 62.83% 60.43% 60%
Precision 0.63 0.6 0.6
Recall 0.63 0.6 0.6
F1-Score 0.63 0.6 0.6
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5 DISCUSSION

Stress is one of the most important problem in our society in last decades. Continual

information retrieval, increased physical and mental workload, pressure on school and

work, demanding society and other similar factors conduce stress in daily life. In some

examples, when the stress level changes, people can realize the problem and seek help.

However, most of the time people have chronic stress but they cannot detect without

any help. Even if a little stress helps in the situations that needs increased attention,

chronic or high level stress can have several physiological and psychological results as

we discussed earlier.

The ultimate goal to create an human mental health assistant, we implemented the

first initiative approach that is automatic stress recognition algorithm. In the final

form of the goal, the system will use passive sensor data from mobile phones and

daily life wearables such as smart watches, smart glasses, etc. There will be an app

which will always run in the background and automatically (without any interaction)

detect human emotions (happiness, stress, etc.) during the day. In the end of the day,

week and month, the app will create a report of mental health phase changes instead

of alerting user with the finding. It will give information about when the user had

most stressful or happy moments, and what was s/he doing during these moments.

Moreover, it will find relationships between the moments and the emotions for each

specific user. Therefore, it would orient people to do thing that will improve their

mental health. Online learning will be a part of the system so it will adapt to the

user and continually improve as time progresses. Therefore, this technology will prove

a cost-effective and reliable tool for human mental health improvement. Even if the

system will give report and recommendations to people, the system would be utilized

by therapists, psychiatrist, health organizations, etc.

Stress is a major problem in any environmental condition, but it can have very im-

portant personal and crowd-affecting consequences in crowded and interpersonal envi-

ronments. Therefore, this system can be occupied to detect stress before becoming a

bigger problem to support the person. Stress awareness is one of the first steps people

should take to avoid stress and prevent stress. As a result, they can reach a healthy

mood by taking steps to prevent stress and improve the quality of life and lead to a

better life. Most applications developed for stress recognition aim to stimulate people
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in stressful situations and to offer stress management and relaxation techniques to re-

duce stress levels. However, we do not think that stimulation will be very successful in

stress management because when people are stressed, it is very difficult for people to

eliminate it. Instead, a report that summarizes what they do before, when they are not

stressed, what they may have been experiencing discomfort, what factors might affect

them, what they do when they are not stressed, and what they can do to avoid stress,

will do more for people.

In this first step to the final system, our first algorithm detects daily stress with an ac-

curacy of 62.83% combining passive sensor data and logs from mobile phones. Creating

a stress recognition system was the first but essential step because the ultimate system

cannot be done without recognizing the stress. The works that were done previously

in similar datasets does not show very accurate results for predictive models (Wang

et al., 2014; DaSilva et al., 2019; Becker et al., 2016; Pratap et al., 2019). However,

they have found that there are relationships between mobile passive sensing data and

stress. They were also showed that user based models outperform general models in

prediction performance. Nevertheless, we created a general model which means that

the results are not for a specific student, they are valid for all students. In that case, the

algorithm should find general pattern between each stressful and not stressful student

so it is a harder task than user specific developments and needs more data to uncover

hidden common relationships between stress and passive sensor data.

Because we are trying to make a general model in our work, we did not use any data

that cannot generalize well on every condition. When the new data will be collected

to create more diversity in the dataset, we can insert to improve the performance

of the model. Our ultimate objective is to predict stress and orient people to have

a less stressful life. There were studies that we discussed earlier were also trying to

predict a person’s mood or stress with different algorithms; however, we tried one of

the most successful algorithms (LSTM) for time-series data in latest years to improve

the performance. Even if the algorithm gave great promises for time-series application

at first, our features and sample size cannot generate great results but encourage us to

improve the dataset and features to reach our goal.

The limitations encountered in reaching very good performance from the developed

algorithm and the steps that can be taken to develop a better and more applicable

model should be addressed in order to create a successful automatic human mental
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health assistant. Here is the outline of some key aspects that influence the model

performance.

— The dataset that we used in this work is publicly available dataset and there

are some problems with data quality. Because of we cannot reach the raw data,

we need to use some labeled data to train our model that may decrease our

performance.

— Our dataset contains a lot of discrete data. However, Neural Network architec-

tures perform better with continuous data. Therefore, the performance of the

model can be related to data type.

— Our sample comes from a college student population who spent most of their

times in college campus. Therefore, they do not represent whole population and

the results could be highly biased to specific type of people.

— The data used only comes from people who have collected data. We do not have

enough access to social interactions because there is not enough data from people

around them.

— The performance of the model can be improved with data from a variety of

sources. Some studies have tried to improve the performance of the model by

adding attributes such as weather. By adding different attributes like this, the

model can be enabled to find links between them.

— The diversity of data from the social life of people can be increased. For example,

there may be a lot of people around the user, but these people can be friends

at work. Instead, they can be happier when they spend time with their families

with less people.

— The data used is the biggest problem experienced in the desired model to be

developed. Algorithms that require high amounts of data, such as RNN, find it

difficult to generalize when they cannot see a sufficient variety of samples. This

LSTM model, which has been trained with 800 samples, does not perform very

well, but it motivates us to collect more data.

Accordingly, we aim to collect more data in the following works to increase the size of

our dataset, so we can compare user-specific models and general models. Additionally,

more data may improve our results from 62.83% accuracy for the general model.
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6 CONCLUSION AND FUTURE WORK

In this work, we created a model to predict the stress levels of students for the purpose

of our ultimate goal which is a system that analyses human previous passive data

and makes predictions about mental health conditions and give insights about findings

to users. We used StudentLife dataset which has mobile sensing and stress feedback

data from college students. The data was preprocessed to make it ready for RNN

algorithm structure. Specifically, LSTM algorithm was adopted to classify stressed

and not stressed students with time-series features. The accuracy of the model on the

balanced test set is 62.83%. Further research will be directed to include more diverse

data from people from different background and to increase feature size to improve the

model’s performance. Furthermore, after creating a base model which has a satisfactory

results, we want to adopt the online learning technique to make the model adapt to

the user with new data. In the end, it is aimed that there will be an automatic human

mental health assistant which always controls mental state in the background, and give

a report and mental health improvement methods.
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