
A QUANTITATIVE COMPARISON OF REGRESSION MODELS ON

TIMELY EVOLVING DATASETS

(ZAMANLA DEĞIŞEN DATALARDA REGRESYON MODELLERININ NICEL

KARŞILAŞTIRMASI)

by

Mithat Sinan Ergen, B.S.

Thesis

Submitted in Partial Fulfillment

of the requirements

for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

in the

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

of

GALATASARAY UNIVERSITY

JUNE 2019

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Keziban Orman for her unlimited support and

guidance with this thesis and my friends for their moral support.

iii

Table of Contents

ACKNOWLEDGEMENTS . iii

Table of Contents . iv

List of Figures . vii

List of Tables . xi

ABSTRACT . xii

ÖZET . xv

1 INTRODUCTION . 1

1.1 Literature Review . 3

1.2 Objective and Contributions . 6

2 METHODOLOGY . 8

2.1 Data Set . 8

2.1.1 Stock Market Data Set . 8

2.1.2 Cryptocurrency Exchange Data Set 10

2.1.3 Weather Data Sets . 14

2.2 Regression Algorithms’ Comparison Framework 17

2.2.1 CARET Package . 21

2.2.2 Major Parameters’ Values . 21

2.2.3 Model Building Parameters 22

2.2.4 Hypotheses about Data . 24

2.3 Regression Models . 26

2.3.1 Linear Models . 26

2.3.2 Tree-Based Models . 29

2.3.3 Neural Network-Based Models 32

2.3.4 Other Algorithms . 35

2.4 Evaluation . 38

2.5 Comparison Metrics . 38

2.5.1 Mean Absolute Error(MAE) 39

2.5.2 Mean Squared Error(MSE) . 39

2.5.3 Root Mean Square Error(RMSE) 39

2.5.4 R-Squared Error(R2) . 40

2.5.5 Execution Time . 40

v

3 EXPERIMENTS AND RESULTS . 41

3.1 Statistical Analysis Evaluation . 42

3.2 Metric Evaluation . 45

3.3 Data Comparison and Evaluation . 47

3.4 Regular vs Random Training and Testing 49

3.5 Algorithm Comparison and Evaluation 52

3.6 Summary . 54

4 CONCLUSION . 69

REFERENCES . 70

BIOGRAPHICAL SKETCH . 76

vi

List of Figures

2.1 End Value of XU100 Index . 9

2.2 Visual Representation of the Correlation Matrix of XU100 Data . . . 9

2.3 End Value of Bitcoin Prices . 11

2.4 Visual Representation of the Correlation Matrix of Bitcoin Price Data 12

2.5 End Value of Ethereum Prices . 13

2.6 Visual Representation of the Correlation Matrix of Ethereum Data . 14

2.7 Temperature of Hungary Weather . 15

2.8 Visual Representation of the Correlation Matrix of Weather Hungary
Data . 17

2.9 Temperature of Madrid Weather . 19

2.10 Visual Representation of the Correlation Matrix of Spain Weather
Data . 20

3.1 R Squared Values of Hungary Weather Data with Train Regular and
0.7 Training Ratio . 46

3.2 R Squared Values of Ethereum Data with Train Regular and 0.7
Training Ratio . 47

3.3 R Squared Values of Bitcoin Data with Train Regular and 0.7 Training
Ratio . 48

3.4 R Squared Values of Madrid Weather Data with Train Regular and
0.7 Training Ratio . 49

3.5 RMSE Values of Ethereum Data with Same Data Selection and
Prediction Process Type and Training Ratio 50

3.6 RMSE Values of Hungary Weather Data with Same Data Selection
and Prediction Process Type and Training Ratio 51

3.7 RMSE Values of XU100 Data with Same Data Selection and
Prediction Process Type and Training Ratio 52

3.8 RMSE Values of Madrid Weather Data with Same Data Selection
and Prediction Process Type and Training Ratio 53

3.9 MAE of Models for Ethereum Data 54

3.10 MAE of Models for Bitcoin Price Data 55

3.11 MAE of Models for Hungary Weather Data 56

3.12 MAE of Models for Madrid Weather Data 57

3.13 MAE of Models for XU100 Data . 57

3.14 MAE of Models for Train Regular on Madrid Weather Data 58

3.15 MAE of Models for Train Random on Madrid Weather Data 58

3.16 MAE of Models for Test Regular on Madrid Weather Data 59

viii

3.17 MAE of Models for Test Random on Madrid Weather Data 59

3.18 MAE of Models for Train Regular on Bitcoin Price Data 60

3.19 MAE of Models for Train Random on Bitcoin Price Data 60

3.20 MAE of Models for Test Regular on Bitcoin Price Data 61

3.21 MAE of Models for Test Random on Bitcoin Price Data 61

3.22 MAE of Models for Train Regular on Hungary Weather Data 62

3.23 MAE of Models for Train Random on Hungary Weather Data 62

3.24 MAE of Models for Test Regular on Hungary Weather Data 63

3.25 MAE of Models for Test Random on Hungary Weather Data 63

3.26 MAE of Models for Train Regular on Ethereum Price Data 64

3.27 MAE of Models for Train Random on Ethereum Price Data 64

3.28 MAE of Models for Test Regular on Ethereum Price Data 65

3.29 MAE of Models for Test Random on Ethereum Price Data 65

3.30 TestRegular on Stock Market Data 66

3.31 TestRandom on Stock Market Data 66

3.32 TestRegular on Ethereum Price Data 67

ix

3.33 TestRandom on Ethereum Price Data 67

3.34 Execution Time of Models for Different Data 68

x

List of Tables

2.1 Correlation Matrix of XU100 Data 10

2.2 Correlation Matrix of Bitcoin Price 12

2.3 Correlation Matrix of Ethereum Data 13

2.4 Correlation Matrix of Spain Weather Data 16

2.5 Correlation Matrix of Spain Weather Data 18

3.1 ANOVA Results . 43

3.2 MANOVA Results . 44

3.3 Tukey post-hoc Test Results . 45

ABSTRACT

Forecasting is considered as an important task in various domains. It has mass effect

on several real-world systems. Until recent years, this task has often been realized

by statistical approaches. But recently, machine-learning algorithms have been used

for such predictions. Although the performance of machine learning algorithms has

been proven for tasks like image processing and natural language processing(NLP),

one should also prove their accuracy in forecasting and ask the question: “Are

machine learning techniques working accurate enough to totally abandon statistical

methods in forecasting?”

In order to find an answer to this question, Spyros Makridakis started a competition

in 1982 under the name “M-Competitions”. In this competition, 111 sub-samples

selected from 1001 time series were used to program 15 different forecasting methods

with certain variations. The forecasting performances were compared and evaluated.

As a result, it was concluded that complex methods did not give better results than

simple statistical methods. Similar results were achieved in the second competition

held in 1993. Later in 2000, M-3 competition was organized with more researchers

and more methods than before. A total of 3003 time series, which were gathered

from many different domains including finance and industry fields, were used for

evaluation. Five different error metrics were used for the evaluation, and the results

of the competition were then announced in (Makridakis & Hibon, 2000). In the

M4 competition held in 2018, machine learning forecasting methods were used in

addition to the other algorithms from the previous competitions. At the end of

this competition, simple machine learning methods showed lower performance than

statistical methods. Different researchers have conducted various studies with the

data used in M competitions. It is possible to show the work of (Ahmed et al.,

2010) as an example. Ahmad and his colleagues made a comprehensive comparison

project in 2010. They measured the forecasting performance of the most important

machine learning methods and statistical methods on time series data. After this

study, they concluded that the data used in the forecasting was highly influential to

the results.

We have prepared this thesis with similar motivations. Our aim in this project

includes using data from different domains to run various forecasting algorithms.

Then evaluate the performance of these algorithms and report the results. However,

our research does not include fine parameter tuning for each algorithm to increase

their accuracy but a more general performance evaluation. Thus, this research can

give different results depending on the change in various parameters. In this context,

we have collected data in the stock market, cryptocurrency and weather domains.

We put together the daily data of the Istanbul Stock Exchange with the necessary

permits from Borsa İstanbul in a single file, simplified the data set and made it

ready for use. We created datasets with Bitcoin and Ethereum cryptocurrencies’

daily closing values. We used two different weather data which are from Madrid

and Hungary. On these data, we ran 17 different forecasting algorithms including

statistical and machine learning methods. Then we evaluated their performance

according to the error metrics we determined. In terms of error metrics we used

mean absolute error (MAE), mean squared error (MSE), root mean square error

(RMSE), R-squared error (R2) and execution time of the algorithm.

In our study, other than using data from different domains, we also applied different

experimental parameters. The first was to separate the main data at different rates

while creating training and test sets. First, we used 15% of all data as training set

and the rest as test set. We then increased this ratio gradually and finally set 99%

of the main data as training set. With this experiment, we examined the effect of

the size of the training / test sets on the outcome. As the second parameter, we

created regular or random selection from the main data when creating the training

set. In this way, we examined the effect of regular or random selection on the result.

Also, we ran the forecasting algorithms both on the training set and the test set and

compared the error rates.

While evaluating the results, we investigated the parameters that have effect on

the result by statistical analysis method. As a result of this analysis, it was found

that the parameters that had the most effect on the result were the test type, the

algorithm and the data used, and the ratio of the training data did not have much

effect. In the graphical evaluation, we observed that statistical algorithms made

xiii

better forecasting than machine learning algorithms on the data we used in this

research. Particularly, we saw that LSTM, with some exceptions, had the lowest

performance in many cases. But we observed that linear models generally had high

performance. When we compared the execution times, we observed that linear

models worked much faster than machine learning algorithms.

The largest data we used in this research, which is the Hungarian weather data,

contains 96453 lines. The fact that it is not large enough for some algorithms to

perform may have affected the result. Therefore, the same experiments can be

repeated with very large data to expand the findings in this study. However, the

result we obtained from the data we used in this research was that the statistical

methods are faster and more efficient than the machine learning methods when

forecasting with temporal data.

xiv

ÖZET

Günümüzde birçok farklı alanda yapılan çalışmalarda, veriden yola çıkarak tahmin

yapmanın önemli bir etkisi vardır. Bu etki günlük hayattaki problemler için

de geçerlidir. Uzun bir süre, bu tahminler istatistiksel yaklaşımlar kullanılarak

yapılmıştır. Ancak yakın zamanda makine öğrenmesi teknikleri, yaptıkları düşük

hata oranlı tahminlerle bu işlemlerde sıklıkla kullanılmaya başlamıştır. Resim ve dil

işleme alanlarında makine öğrenmesi metotlarıyla ilgili yapılan birçok çalışma bu

tekniklerin performansını kanıtlar niteliktedir. Ancak makine öğrenmesi teknikleri

tahmin işlemlerinde istatistiksel metotları terk etmeye yetecek düzeyde çalışmakta

mıdır?

Spyros Makridakis bu soruya bir yanıt bulmak adına 1982 yılında “M-Competitions”

ismi altında bir yarışma başlatmıştır. Bu yarışmada 1001 zaman serisi içinden

seçilmiş 111 alt örnek üzerinde çalışılarak 15 farklı metot, çeşitli varyasyonlarla

tahmin yapmak üzere programlandı ve bu metotların tahmin performansları

karşılaştırıldı. Sonuç olarak karmaşık metotların basit istatistiksel metotlardan daha

iyi sonuç vermediği ortaya çıktı. 1993 yılında ikincisi düzenlenen yarışmada da

benzer sonuçlar elde edildi. Daha sonra 2000 yılında M-3 yarışması düzenlendi

ve bu yarışmaya önceki yarışmalardan daha fazla araştırmacı, daha fazla metot

ile katıldı. Değerlendirme için finans ve endüstri alanlarını da kapsayan birçok

farklı alandan derlenen toplamda 3003 zaman serisi kullanıldı. Tahminlerin

değerlendirme kriterleri için beş farklı hata metriği kullanıldı ve daha sonra

yarışmanın sonuçları (Makridakis & Hibon, 2000) yayınında açıklandı. 2018

yılında yapılan M4 yarışmasında ise makine öğrenmesi tahmin metotları kullanılan

algoritmalara eklendi. Bu yarışma sonunda sade makine öğrenmesi metotları

istatistiksel metotlara oranla düşük performans gösterdiler. M yarışmalarında

kullanılan verilerle farklı araştırmacılar çeşitli çalışmalar yapmışlardır. Bunlara

(Ahmed et al., 2010)’in yaptığı çalışmayı örnek gösterebiliriz. Ahmad ve çalışma

arkadaşları 2010 yılında geniş kapsamlı bir karşılaştırma projesi yaptılar. Dönemin

en önemli makine öğrenmesi metotlarının ve istatistiksel bazı metotların zaman serisi

verisindeki tahmin performansını ölçtüler. Bu çalışma sonrasında kullanılan verinin

sonuçları fazlasıyla değiştirdiği sonucuna vardılar.

Biz de benzer motivasyonlarla bu tezi hazırladık. Projedeki amacımız; farklı

alanlardan veriler kullanarak farklı tahmin algoritmaları çalıştırmak ve daha sonra

bu algoritmaların performanslarını değerlendirmektir. Ancak, burada amacımız

tek tek algoritma performanslarını yükseğe çekecek parametre ayarları yapmaksızın

genel geçer bir performans değerlendirme deneyi tasarlamaktır. Bu deney çeşitli

parametrelerin değişimine göre farklı sonuçlar verebilir. Bu bağlamda borsa,

kriptopara ve iklim alanlarında veriler topladık. İstanbul borsasının günlük

verilerini Borsa İstanbul’dan gerekli izinleri alarak tek bir dosyada birleştirdik,

veri setini sadeleştirdik ve kullanıma hazır hale getirdik. Bitcoin ve Ethereum

kriptoparalarının günlük değerlerinin olduğu bir veri seti oluşturduk. İklim verisi

olarak da Madrid ve Macaristan olmak üzere iki farklı veri kullandık. Bu veriler

üzerinde, içinde istatistiksel ve makine öğrenmesi metotları bulunan 17 farklı

tahmin algoritmasını çalıştırdık ve belirlemiş olduğumuz hata metriklerine göre

performanslarını değerlendirdik. Hata metrikleri olarak mean absolute error(MAE),

mean squared error(MSE), root mean square error(RMSE), r-squared error(R2) ve

tahmin algoritmasının çalışma süresini kullandık.

Çalışmamızda farklı veriler kullanmamızın haricinde farklı deney parametreleri de

uyguladık. Bunlardan ilki eğitme ve test kümelerini oluştururken ana veriyi farklı

oranlarla parçalamaktı. İlk olarak tüm verinin %15’ini eğitme kümesi, kalanını

test kümesi olarak oluşturduk. Daha sonra bu oranı kademeli olarak arttırarak en

sonda %99 oranında eğitme kümesi olacak şekilde ayarladık. Bu deneyle eğitme/test

kümelerinin büyüklük oranının sonuca olan etkisini inceledik. İkinci parametre

olarak eğitme kümesini oluştururken ana veriden sıralı olarak veya rastgele seçim

yapılmasını sağladık. Böylece sıralı veya rastgele seçimin sonuca olan etkisini

incelemiş olduk. Tahmin algoritmalarını hem eğitme kümesi üzerinde hem de test

kümesi üzerinde çalıştırıp hata oranlarını kıyasladık.

Sonuçları değerlendirirken istatistiksel analiz yöntemiyle sonuca etkisi olan

parametreleri araştırdık. Bu analiz sonucunda sonuca en çok etkisi olan

parametrelerin test tipi, kullanılan algoritma ve veri olduğu, eğitme verisi

oranının ise fazla etkisi olmadığı ortaya çıktı. Grafiksel değerlendirmede ise bu

xvi

çalışmada kullandığımız veriler üzerinde istatistiksel yöntemlerin makine öğrenmesi

yöntemlerine kıyasla daha iyi tahmin yaptığını gözlemledik. Özellikle LSTM’in

bazı istisnalar hariç birçok durumda en düşük performansı gösterdiğini gördük.

Doğrusal modellerin ise genel olarak yüksek performans gösterdiğini gözlemledik.

Çalışma süreleri kıyaslandığında ise yine doğrusal modellerin makine öğrenmesi

algoritmalarına göre çok daha hızlı çalıştığı gözlemlendi.

Bu çalışmada kullandığımız verilerden en büyüğü olan Macaristan iklim verisi 96453

satır içeriyor. Verilerin bazı algoritmaların performans göstermesi için yeterince

büyük olmaması sonucu etkilemiş olabilir. Dolayısıyla bu çalışmadaki bulguları

genişletmek adına çok büyük verilerle aynı deneyler tekrarlanabilir. Ancak bu

çalışmada kullandığımız veriler üzerinden ulaştığımız sonuç, zamansal verilerde

tahmin yaparken istatistiksel metotların makine öğrenmesi metotlarına oranla hem

daha performanslı hem de daha hızlı çalıştığıdır.

xvii

1

1 INTRODUCTION

In time series analysis, forecasting is considered as a crucial task . It helps making

decisions about the studied system. In its most basic form, forecasting can be

defined as predicting the future action of the studied system by using all available

historical data. We encounter these kinds of dynamic systems whose components

vary as time goes by in many different domains such as stock markets, weather,

health etc. Traditionally, forecasting task is realized by using statistical methods.

However, right now, we come across that machine learning (ML) methods start to

be used very commonly for this important task (Ahmed et al., 2010).

Recent studies reveal the distinctive performance of ML methods on different types

of data. We encounter important results of ML methods’ application on real-world

data. For instance, in internal medicine domain, especially in cardiovascular

medicine physicians identify problems and abnormalities by observing diagnostic

images. Since cardiovascular diseases are in the world’s most important causes

of death, these images must be examined carefully to detect the problem. That

is why; ML methods are used to interpret them. They considerably increase the

reliability of the diagnostics. Experiments that were run with several learning

algorithms prove that ML methods could achieve a similar performance to doctors

(Šajn & Kukar, 2011). Another considerable domain that ML methods exhibit high

performance is natural language processing (NLP). Wee Meng Soon et al. proposed

a ML solution to determine if given two expressions allude to the same thing in the

world (Soon et al., 2001).This process is called coreference resolution and in NLP

systems, it is an essential task. They performed ML by using a learning algorithm

on a modest corpus of training data with coreference chains of noun phrases and

they obtained encouraging results. Dynamic systems make use of ML methods as

much as other domains. N. Justesen et al. apply ML to show how to use deep

learning to play video games (Justesen et al., 2017). They present different genres

of video games and observe how deep learning techniques should differ from one

2

genre to another. For basic games, like arcade games, these techniques have better

than human performance but there are still many open challenges in more complex

games. Conferences like the IEEE Conference on Computational Intelligence in

Games organize competitions for game environments.

Although we encounter that ML methods’ usage increases accuracy and consequently

improves the performance of some systems as we explained above, there is only

limited objective evidence to prove their performance as a forecasting method. We

do not come across enough benchmarks to compare the performance of ML methods

with their alternatives in the literature.

Recently, Makridakis et al. aimed at performance evaluation of different methods

on forecasting process(Makridakis et al., 2018b). They evaluate the accuracy and

computational requirements of the machine learning methods by comparing them to

those of statistical methods on a subset of 1045 monthly series from the 3003 of the

M3 Competition. They use eight common statistical methods and eight prominent

ML ones. They build the forecasting model according to the first n-18 observations

where n is the length of the series and then they produce 18 forecasts. They also

record the computational complexity of the methods along with their accuracy. They

use mean absolute percentage error (sMAPE) and the mean absolute scaled error

(MASE) as accuracy measures. As a result, it is observed that the computational

requirements of the machine learning methods are considerably greater than those of

statistical methods and the latter has higher accuracy and makes better forecasting.

This surprising result raises questions if the state-of-art methods’ performance is

as good as the traditional methods’ performance in forecasting tasks on different

data. In this study, we focus on this question. We aim to perform a quantitative

comparison of several algorithms on timely evolving data from different domains such

as stock market, weather and cryptocurrency. This research differs from Makridakis’

work mainly in terms of data used and forecasting models used. We create and

use a new data, which is Borsa Istanbul stock market data, that had not been

used before in similar researches. We do not use fully statistical methods such as

ARIMA instead, we use more linear models, make multivariate instead of univariate

forecasting and most importantly, we do not focus only on making forecasts but we

aim to see the effect of various parameters that are explained further in Chapter 2

to the model’s performance.

3

1.1 Literature Review

In this part, we explain various previous studies that aim at comparing forecasting

methods. Perhaps one of the most prominent research on this topic was proposed

by (Ahmed et al., 2010). In their work, they presented a large scale comparison

for the most important ML models for time series forecasting. They used the

monthly M3 time series competition data. M3 time series competition data

includes data from different domains and types such as micro, industry, macro

and finance. They have different time intervals like yearly, quarterly, monthly and

custom. In this study, Ahmad and his colleagues chose to use the monthly data.

The models they used included multilayer perception, Bayesian neural networks,

CART regression trees, K-nearest neighbor regression, support vector regression,

generalized regression neural networks(kernel regression), radial basis functions and

Gaussian processes. They observed significant differences between different methods.

They deducted multilayer perceptron and Gaussian processes give the best results

in their experiments. But it was concluded that since there were many parameters

to consider while performing a comparison between statistical models and machine

learning methods, the results were mixed. They stated that it would be interesting

to see when a different time series data is used in this comparison. They expect to

have a different ranking in the accuracy of the models when the data changes.

A different comparison research was performed by (Alon et al., 2001). They used

an aggregate retail sales data set with strong trend and seasonal patterns. They

defined the task of forecasting the patterns in a data set as a long-standing issue in

time-series analysis and thus investigated the best model to forecast these patterns.

They used artificial neural networks(ANN) and traditional methods for regression

which they believed were accurate for modeling trend and seasonal fluctuations.

The error metric used in this research was mean absolute percentage error(MAPE)

because of its popularity in the forecasting literature. As a conclusion they declare

that the ANN is the best across different forecasting periods. It is followed

by Box-Jenkins method. They observed that ANN outperformed the traditional

statistical methods where economic conditions were relatively volatile. However,

when the conditions became more stable, statistical methods performed with lower

error rates. Thus, it was assumed that ANN had lower error rates on unstable,

volatile data than traditional statistical methods.

4

Since there were various researches on comparison between different forecasting

models, it was necessary to separate accurate studies from the others. That is why,

a study was performed by (Adya & Collopy, 1998). In this work, they identified 11

guidelines to evaluate the performance of artificial neural networks in forecasting.

They made a research to determine the previous work done on comparing different

regression models. They filtered the researches and ended up with 48 studies

between 1988 and 1994. They filtered the studies according to two questions which

interrogate if the study appropriately evaluates the predictive capabilities of the

proposed network and if the study implements the neural network in a way that

it performs well. They call these two questions effectiveness of validation and

effectiveness of implementation. As a result, they concluded that only 11 out of

48 studies met all of the criteria for effectiveness of validation and implementation.

As a result, they claimed that when neural networks are effectively implemented

and validated, they have a high potential for forecasting and prediction.

A similar study was performed by (Laurent et al., 2011). They claimed that

much of the work of finding new algorithms to use in tasks such as indexing,

classification, regression and segmentation had had two types of experimental flaws.

They defined these flaws as (1) implementation bias and (2) data bias. They claim

that the existence of these flaws made the studies lose their generalizability to real

world problems. Thus, the ”improvement” that was offered by the new algorithms

was artificial and was not reproducible for different data sets. To prove their

point, they reviewed more than 360 papers, included a subset of 57 papers and

tested them on 50 real world, highly diverse data sets. They demonstrated that

many of the results in the literature had very little generalizability to real world

problems. We should note that this was not a study to criticize the papers but

to increase the effectiveness of the researches done. For that purpose, they give

certain suggestions for researchers which involve testing algorithms on a wide range

of data sets, designing the experiments implementation bias-free, using different

similarity measures when comparing and finally sharing all data and code to allow

reproducibility.

In order to evaluate the reliability and accuracy of various forecasting methods,

Makridakis Competitions(M-Competitions) were started in the year 1982 by Spyros

Makridakis. In 1982, a subsample of 111 out of 1001 time series were used to

test 15 methods with different variations. It was concluded that statistically

5

complicated methods did not necessarily provide better forecasts than simpler ones.

The accuracy measures influence the results considerably. A second competition was

held in 1993 which had a larger scale compared to the first one. The results were

similar to the first competition. In the year 2000, M-3 Competition was held, with

the inclusion of more methods and researchers than the ones in M-Competition

and M-2 Competition. 3003 time series from different domains like finance and

industry were used for evaluation. Five measures were used for evaluation of the

forecasting performance which are sMAPE, average ranking, median symmetric

absolute percentage error, percentage better and median relative absolute error.

The results were discussed in the article (Makridakis & Hibon, 2000). After

the M3 Competition has done in the year 2006, Artificial Neural Network and

Computational Intelligence Forecasting Competition(NN3) was introduced. They

were a replication of M3 Competition with a neural network and computational

intelligence(CI) extension to demonstrate the progress made in the passing years

until the last Makridakis Competition (Crone et al., 2011). The competition showed

that ensembles of CI approaches performed with lower error rates than combinations

of statistical methods. Moreover, for the most complex subset of short and seasonal

series, neural networks outperformed all the other methods. This result highlighted

the ability of neural networks to handle complex data.

The latest Makridakis Competition was held in the year 2018 (Makridakis et al.,

2018a). It was called M4 Competition. It referred to the continuation of three

previous competitions. The main goal of M4 was to repeat the results of the

competitions before and extend their scope. They first, considerably increased the

number of series used, second, included ML forecasting methods and third evaluated

both point forecasts and prediction intervals. At the end of the competition, they

concluded that the most accurate methods were generally combinations of mostly

statistical approaches. A surprising result was that a hybrid approach of both

statistical and ML features which averaged almost 10% more accurate than the

combination benchmark. But in general, pure ML methods had low performance

with none of them passing the combination benchmark.

6

1.2 Objective and Contributions

Our main objective is to perform a quantitative comparison on timely evolving data

sets by using different methods including not only traditional statistical methods but

also state-of-art ML methods when training and forecasting. We use a tool called

CARET which stands for Classification and Regression Training to fit the models.

We do not try to fully optimize the parameters of each forecasting model, it is not

the goal of this research. Instead, we let CARET tune the parameters and focus on

evaluating the performance of different parameters. These parameters include using

different percentages of the whole data as training data, selecting data randomly or

regularly for training(data selection type) and making predictions on training data

or test data(prediction process type). We use financial and weather data to test

the algorithms. The methods and the data sets used in this research are explained

in detail further in this paper in Chapter 2. The main contributions of this work

include;

1. A data set of Borsa Istanbul’s XU100 index from the year 2005 to 2018 formed

and preprocessed by us .

2. A quantitative comparison of statistical forecasting models and state-of-art

machine learning models.

(a) Statistical Analysis: by using ANOVA and MANOVA

(b) Error Metrics

(c) Complexity: measured with execution time

3. Testing the forecasting models with certain parameters:

(a) Data Ratio: percentage of data used for training the model

(b) Prediction Process Type: testing the forecasting models on the test set or the

training set

(c) Data Selection Type: picking the training set’s elements in random or in regular

order from the data.

4. Data Comparison: checking if the nature of the data influences the result.

7

We aim to achieve our goals by using 5 different data from 3 domains to test the

forecasting models. We then evaluate their performance according to statistical

analysis with ANOVA and MANOVA and also according to our error metrics which

are explained in Chapter 2. We look for cases of overfitting and underfitting, examine

their possible causes and solutions. In Chapter 2, we present the data sets used in

this research in detail. Then, we explain the details about the CARET tool that

we used for managing model building and testing tasks. In the following part, we

explain the regression algorithms used in this research with their properties. At

last, We present our evaluation criteria and our comparison metrics. In Chapter 3,

we show the results and evaluate them. We first perform statistical analysis, then

we observe the error metrics for the algorithms. We investigate the effect of using

different data, the dependencies to the random or regular data selection when model

building , different prediction process type and we make a summary of the results.

Finally, in Chapter 4 we make a general summary of the research and explain the

future work that can be done.

2 METHODOLOGY

In this part, we present the methodology that we proposed to compare the

accuracy of different algorithms in forecasting. We first define the data used in the

experiments, second we explain our experimental methodology by giving the detail

about how the training and testing processes are performed. We then introduce the

algorithms used in this work to make forecasts. It is followed by explaining how

we evaluate statistically and empirically the results of our experiments. Then we

introduce error metrics that we have used to compare the algorithms quantitative

performance and their speed.

2.1 Data Set

We concentrate on 5 different data sets from 3 different domains; weather, stock

market and cryptocurrency. All of these systems have a nature of evaluation over

time. Hence, they are appropriate for the main purpose of this study. We explain

each of the data set in the following part. To better understand the data, we show

the trends of forecasting area visually and Pearson Correlation Coefficient (PCC)

values between different attributes of each data set.

2.1.1 Stock Market Data Set

Borsa Istanbul is the sole exchange entity of Turkey combining the former

Istanbul Stock Exchange(ISE) and the Derivatives Exchange of Turkey under one

organization. Borsa Istanbul calculates different quality indices for the markets so

that investors can follow the movements in the market. For the Equity Market, a

total of 324 indices are calculated, 54 of which are instantaneous and 270 at the

end of the session. In this work, we extract Istanbul stock exchange (BIST100)

9

data set which is one of these indices. BIST100 Index is used as the basic index

for Borsa Istanbul Equity Market. In order to measure the common performance of

100 shares with the highest market value and transaction volume, traded on Borsa

Istanbul markets. The fact that BIST100 index is one of the most basic indices of

Borsa Istanbul has been effective in selecting this index in our study.

Figure 2.1: End Value of XU100 Index

We collected the raw stock market data between 2005 and 2018 for Borsa Istanbul

from their official data store by taking necessary permissions. Our data includes 2097

entries. It consists of the XU100 index during trading days. This index represents

100 prominent stocks from the market, which have the highest market value and

highest trading volume. We collected, preprocessed and prepared this data to use

for this research. The data includes the fields of [date], [index code], [price index

Figure 2.2: Visual Representation of the Correlation Matrix of XU100 Data

opening value], [price index end value], [price index min value], [price index max

10

value], [traded volume] and [traded amount]. Among them, price index opening

value shows the value of the index for the beginning of the trading day while price

index end value corresponds to the value of the closing of trading day. We show

the trend of end value changes between December 2006 and June 2017 in figure

2.1. Accordingly, we can say that in eleven year, end value exhibit stationary and

very gently non linear increasing trend. Its value increases five times from 20000 to

100000 in about eleven years. In fact, we examine other attributes, i.e. open, min,

max values. They have similar trends with end value.

Table 2.1: Correlation Matrix of XU100 Data

Open Max Min End Traded Volume Traded Amount

Open 1 0.999 0.999 0.998 0.688 0.139

Max 0.999 1 0.999 0.999 0.694 0.147

Min 0.999 0.999 1 0.999 0.683 0.133

End 0.998 0.999 0.999 1 0.689 0.141

Traded Volume 0.688 0.694 0.683 0.689 1 0.702

Traded Amount 0.139 0.147 0.133 0.141 0.702 1

PCC numerical results for each couple of attributes are represented in table 2.1

under the form of symmetric correlation matrix. We also show visual version of

PCC results in figure 2.2. These results show us that there is a very high correlation

between open, max, min and end values. Nevertheless, traded volume and amount

seem non related to other four attributes.

2.1.2 Cryptocurrency Exchange Data Set

Over the last decade, blockchain technology has long gained attention in the

industry. Nowadays scientific community considers the blockchain technology as

a big revolution. The blockchain technology has a wide spectrum of practical

applications in various domains with financial and non-financial approaches.

11

However, economists and the people working in the finance industry address on

its financial benefits. They try to integrate the blockchain technology in the current

banking systems especially to the digital payment systems. Moreover, they attempt

to use this technology in the digital currency and adapt it to current systems. All

these working environments can be considered as a strong indicator of the fact that

the blockchain technology has great potential to be the new engine of progression in

digital economy. Whereas the blockchain is surely more than that compared to the

industry, there is a big gap in the scientific community(Atzori, 2015). During the

past few years, the blockchain technology became one of the most popular research

subjects. The researchers work on how to integrate the blockchain technology and

the working mechanism into other fields(Pilkington, 2016).

Figure 2.3: End Value of Bitcoin Prices

A blockchain is a distributed database that stores the logs of all transactions.

It can be also defined as a public ledger that contains all the transactions.

These transactions are, indeed, the digital events that have been performed

and shared between users. Due to the blockchain technology mechanism, each

executed transaction should absolutely be verified by consensus of a majority of the

participants in the system before storing in the public ledger permanently. Once

a transaction is verified, it can not be undone or modified anymore. Thus, the

blockchain technology provides a log for every transaction performed. Again based

on the mechanism, each participant can have the database of the transactions which

makes to manipulate the system highly difficult. From a data analysis point of

view, the blockchain is a data management technology where the data is stored

in a public ledger where this ledger can be stored in every participant. Anyone

can be a participant of this network, called a node of the network. This public

ledger mechanism provides the secure and anonymous data management with data

integrity without any third party organization in control of the transactions.

12

Table 2.2: Correlation Matrix of Bitcoin Price

Open High Low Close Volume Market Cap

Open 1 0.998 0.997 0.996 0.943 0.999

High 0.998 1 0.998 0.999 0.946 0.998

Low 0.997 0.998 1 0.998 0.932 0.997

Close 0.996 0.999 0.998 1 0.940 0.996

Volume 0.943 0.946 0.932 0.940 1 0.944

Market Cap 0.999 0.998 0.997 0.996 0.944 1

The first cryptocurrency data set is on bitcoin from an anonymous exchange. The

data shows the bitcoin value (USD) and relevant coin information timestamped from

28 April 2013 to 20 March 2018. There are 1760 daily records. We have following

attributes for each record: [Date],[Open],[High],[Low],[Close],[Volume],[Market

Cap]. The change in Close feature according to Date is given in figure 2.3. According

to it, we see that there is a very stable trend until June, 2017. Then, we observe

a very sudden exponential increase until October, 2017. It is followed by sudden

decrease.

Figure 2.4: Visual Representation of the Correlation Matrix of Bitcoin Price Data

13

PCC results are given in table 2.2 and in figure 2.4. We can see that the coefficients

are very close to 1.0 for every couple of attributes. Thus, there is a highly correlated

relationship between features. Dark blue color on the graph represents a high

relationship.

The second cryptocurrency data set is on Ethereum from an anonymous exchange.

It is the second well known coin in blockchain market. The data shows the Ethereum

value(USD) and relevant coin information timestamped from 8 August 2015 to 20

February 2018. There are 928 daily records. We have following attributes in this

data set: [Date], [Open], [High], [Low], [Close], [Volume], [Market Cap].

Figure 2.5: End Value of Ethereum Prices

We show the 928 days trend of end value of Ethereum prices in figure 2.5. As we

observed in bitcoin data set, the values stays stable until March, 2017. Then there

is an step-by-step sudden increases. We observe the main increase between October,

2017 and June, 2018. After June, 2018, a decrease start to be observed.

Table 2.3: Correlation Matrix of Ethereum Data

Volume Low Close High Market Cap Open

Volume 1 0.897 0.913 0.923 0.914 0.913

Low 0.897 1 0.998 0.996 0.995 0.995

Close 0.913 0.998 1 0.998 0.995 0.995

High 0.923 0.996 0.998 1 0.998 0.998

Market Cap 0.914 0.995 0.995 0.998 1 0.999

Open 0.913 0.995 0.995 0.998 0.999 1

14

Figure 2.6: Visual Representation of the Correlation Matrix of Ethereum Data

PCC results are given in table 2.3 and figure 2.6. Here again, we observe a very

high correlation between every couple of attributes as it is for bitcoin data set. It

means there is a strong relation for every attributes.

2.1.3 Weather Data Sets

To compare the methods, the third domain we used is historical weather information

data. Weather data is commonly used in data science studies since they involve a

real-world forecasting activity. The performance of the forecasting models may be

compared to the performance of the forecasting of the physical weather forecasting

tools and calculations. The data is formed by putting together many features of

the weather including detailed features related to temperature, humidity, wind and

pressure. In this study, we used two different weather data sets to compare our

forecasting models.

The first weather data set is from Szeged city from Hungary, timestamped from 1

15

April 2006 to 9 September 2016. We have 96453 hourly records. Each record has

following attributes: [Formatted Date], [Summary], [Precip Type], [Temperature

(C)], [Apparent Temperature(C)], [Humidity], [Wind Speed (km/h)], [Wind Bearing

(degrees)], [Visibility (km)], [Loud Cover], [Pressure (millibars)], [Daily Summary].

One can see the trend of mean temperature for Szeged city in figure 2.7. It seems

Hungary Weather Mean Temperature Value Time Serie

−
20

0
20

40

20
06

−
04

−
01

20
06

−
06

−
06

20
07

−
08

−
28

20
07

−
05

−
24

20
08

−
02

−
19

20
08

−
10

−
14

20
09

−
07

−
11

20
09

−
09

−
06

20
10

−
06

−
03

20
11

−
08

−
26

20
11

−
05

−
21

20
12

−
02

−
16

20
12

−
10

−
12

20
13

−
01

−
09

20
13

−
09

−
30

20
14

−
06

−
28

20
15

−
08

−
23

20
15

−
05

−
19

20
16

−
02

−
14

20
16

−
10

−
01

Figure 2.7: Temperature of Hungary Weather

this value is rather noisy, seems like having a stationary signal with daily changes.

Because the data is collected per hour, we observe sudden but small changes in the

data.

PCC results are given in table 2.4 and in figure 2.8. Accordingly, we observe that

there is no obvious relation between any features except [Apparent Temperature]

and [Temperature]. Indeed this is an expected fact.

The second weather data set is from Madrid city from Spain timestamped from 1

January 1997 to 31 December 2015. There are 6812 daily records. We have following

attributes in this data set: [CET], [Max TemperatureC], [Mean TemperatureC],

[Min TemperatureC], [Dew PointC], [MeanDew PointC], [Min DewpointC], [Max

Humidity], [Mean Humidity], [Min Humidity], [Max Sea Level PressurehPa],

[Mean Sea Level PressurehPa], [Min Sea Level PressurehPa], [Max VisibilityKm],

[Mean VisibilityKm], [Min VisibilitykM], [Max Wind SpeedKm/h], [Mean Wind

SpeedKm/h], [Max Gust SpeedKm/h], [Precipitationmm], [CloudCover], [Events],

[WindDirDegrees].

The 6812 daily trends of mean temperature for Madrid city can be seen in figure

2.9. As it is observed for Szeged weather, we encounter again a stationary signal.

16

T
a
b
le

2
.4

:
C

or
re

la
ti

on
M

at
ri

x
of

S
p
ai

n
W

ea
th

er
D

at
a

H
u
m

id
it

y
V

is
ib

il
it

y
P

re
ss

u
re

W
in

d
S
p

ee
d

W
in

d
B

ea
ri

n
g

A
p
p
ar

en
t

T
em

p
er

at
u
re

T
em

p
er

at
u
re

H
u
m

id
it

y
1

0.
10

3
0.

00
7

-0
.0

17
-0

.0
02

-0
.6

04
-0

.6
34

V
is

ib
il
it

y
0.

10
3

1
-0

.0
01

-0
.0

03
-0

.0
12

-0
.0

92
-0

.6
34

P
re

ss
u
re

0.
00

7
-0

.0
01

1
0.

00
4

-0
.0

09
-0

.0
03

-0
.0

08

W
in

d
S
p

ee
d

-0
.0

17
-0

.0
03

0.
00

4
1

0.
01

2
-0

.0
10

-0
.0

03

W
in

d
B

ea
ri

n
g

-0
.0

02
-0

.0
12

-0
.0

09
0.

01
2

1
0.

03
0

0.
03

1

A
p
p
ar

en
t

T
em

p
er

at
u
re

-0
.6

04
-0

.0
92

-0
.0

03
-0

.0
10

0.
03

0
1

0.
99

2

T
em

p
er

at
u
re

-0
.6

34
-0

.0
92

-0
.0

08
-0

.0
03

0.
03

1
0.

99
2

1

17

Figure 2.8: Visual Representation of the Correlation Matrix of Weather Hungary

Data

However, this signal is less noisy. Hence we see clearly the increase and decrease

points in an annual period.

PCC results are given in table 2.5 and in figure 2.10. Accordingly, we observe

a correlation between few of the features such as between the ”min” and ”max”

values of same features, i.e. max and min humidity.

2.2 Regression Algorithms’ Comparison Framework

In this section we concentrate on the experimental set-up that creates the major

part of this work. The main purpose of this study is to evaluate the quantitative

performance of different regression algorithms by using objective performance

18

T
a
b
le

2
.5

:
C

or
re

la
ti

on
M

at
ri

x
of

S
p
ai

n
W

ea
th

er
D

at
a

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0)

(1
1)

(1
2)

(1
3)

M
ax

H
u
m

id
it

y
(1

)
1.

00
0

0.
73

0
0.

09
8

0.
08

3
0.

25
2

0.
03

4
-0

.0
43

-0
.3

88
-0

.1
54

0.
16

0
-0

.0
61

-0
.7

18
-0

.6
06

M
in

H
u
m

id
it

y
(2

)
0.

73
0

1.
00

0
-0

.0
30

-0
.0

19
0.

36
2

-0
.0

24
-0

.2
10

-0
.4

99
-0

.0
92

0.
23

1
-0

.0
81

-0
.7

58
-0

.4
79

M
ax

S
ea

.L
ev

el
(3

)
0.

09
8

-0
.0

30
1.

00
0

0.
91

4
-0

.0
56

0.
00

4
-0

.0
38

0.
03

9
-0

.4
27

-0
.1

99
-0

.2
65

-0
.0

83
-0

.3
16

P
re

ss
u
re

(4
)

0.
08

3
-0

.0
19

0.
91

4
1.

00
0

-0
.0

73
-0

.0
15

-0
.2

03
-0

.0
25

-0
.4

85
-0

.1
45

-0
.2

25
-0

.0
47

-0
.2

64

S
ea

L
ev

el
P

re
ss

u
re

(5
)

0.
25

2
0.

36
2

-0
.0

56
-0

.0
73

1.
00

0
0.

00
8

-0
.0

50
-0

.0
66

-0
.0

40
0.

02
3

-0
.0

68
-0

.2
85

-0
.1

70

C
lo

u
d
C

ov
er

(6
)

0.
03

4
-0

.0
24

0.
00

4
-0

.0
15

0.
00

8
1.

00
0

0.
03

7
0.

02
3

-0
.0

27
-0

.0
34

-0
.0

16
0.

00
3

-0
.0

56

W
in

d
D

ir
D

eg
re

es
(7

)
-0

.0
43

-0
.2

10
-0

.0
38

-0
.2

03
-0

.0
50

0.
03

7
1.

00
0

0.
38

6
0.

12
9

0.
04

3
0.

09
2

0.
08

4
0.

08
0

M
ax

V
is

ib
il
it

y
(8

)
-0

.3
88

-0
.4

99
0.

03
9

-0
.0

25
-0

.0
66

0.
02

3
0.

38
6

1.
00

0
0.

01
8

-0
.1

12
-0

.0
19

0.
35

0
0.

19
7

M
ax

W
in

d
S
p

ee
d
(9

)
-0

.1
54

-0
.0

92
-0

.4
27

-0
.4

85
-0

.0
40

-0
.0

27
0.

12
9

0.
01

8
1.

00
0

0.
00

2
0.

13
1

0.
03

2
0.

21
8

M
in

D
ew

p
oi

n
t(

10
)

0.
16

0
0.

23
1

-0
.1

99
-0

.1
45

0.
02

3
-0

.0
34

0.
04

3
-0

.1
12

0.
00

2
1.

00
0

0.
80

9
0.

32
6

0.
56

0

D
ew

P
oi

n
t(

11
)

-0
.0

61
-0

.0
81

-0
.2

65
-0

.2
25

-0
.0

68
-0

.0
16

0.
09

2
-0

.0
19

0.
13

1
0.

80
9

1.
00

0
0.

58
3

0.
77

4

M
ax

T
em

p
er

at
u
re

(1
2)

-0
.7

18
-0

.7
58

-0
.0

83
-0

.0
47

-0
.2

85
0.

00
3

0.
08

4
0.

35
0

0.
03

2
0.

32
6

0.
58

3
1.

00
0

0.
85

8

M
in

T
em

p
er

at
u
re

(1
3)

-0
.6

06
-0

.4
79

-0
.3

16
-0

.2
64

-0
.1

70
-0

.0
56

0.
08

0
0.

19
7

0.
21

8
0.

56
0

0.
77

4
0.

85
8

1.
00

0

19

Madrid Weather Mean Temperature Value Time Serie
0

10
25

19
97

−
1−

1

19
98

−
5−

16

19
99

−
9−

28

20
01

−
5−

17

20
02

−
9−

29

20
04

−
3−

12

20
05

−
7−

25

20
06

−
12

−
7

20
08

−
4−

20

20
09

−
9−

2

20
11

−
1−

15

20
12

−
5−

29

20
13

−
10

−
11

20
15

−
2−

23

Figure 2.9: Temperature of Madrid Weather

evaluation metrics on different data which have evolution over time. The main issue

in this evaluation is creating the environment for the experiments. We compare

several algorithms by using various regression evaluation metrics. Each algorithm

has a different prediction strategy. The performance of each algorithm depends on

its input parameters. One can concentrate on optimizing the prediction. For this

purpose, feature selection, algorithms’ parameter regulation or data preparation can

be applied. However, these operations are out of the scope of this work. We want

to see the overall limits of the algorithms depending on our predefined experimental

parameters. These parameters can be listed as follows;

1. Data

2. Algorithm’s Category

3. Evaluation Metric, i.e. Error Metric

4. Model Building Parameters

(a) Data Ratio: percentage of data amount saved for model built

(b) Prediction Process Type: train vs test

(c) Data Selection Type: random vs regular

We create experiment environment by chaining the values of these parameters. We

run each algorithm belonging to different algorithm category. Then we calculate

evaluation metric result for each data. When building the model, we use different

experimental parameters. Here, we want to underline that these are not algorithm

20

Figure 2.10: Visual Representation of the Correlation Matrix of Spain Weather

Data

dependent parameters. For any algorithm, to build the model, we use different

prediction process type, different data selection type and different data ratio.

Among those parameters, the details of data are explained in previous section. The

exhaustive details of algorithms’ category and evaluation metrics will be explained in

the following sections. In this section, we concentrate on CARET, the platform on

which we run the algorithms. Then, we give different values of first three major

parameters that are listed above in our experimental set-up. It is followed by

explaining model building parameters by giving the hypotheses that we expect to

happen as the results of the experiments. Finally, we explain the hypotheses of

different data usage on algorithm’s performance.

21

2.2.1 CARET Package

The main purpose in our research is not to optimize the performance of the

algorithms for each data set separately since this would require testing them with

a vast number of different parameters and comparing the results each time. For

example, in order to optimize the k-nearest neighbor model for the Ethereum data,

we have to run it multiple times with different values of k parameter. There are

already many researches which look into the influence of parameters to the result

in this model(Batista & Silva, 2009) and the optimization of each model is not in

the scope of this particular research. That is why; we make use of a package called

CARET which stands for “Classification and Regression Training”(Kuhn, 2008). It

contains a set of functions to ease the process for creating predictive models. It

has tools to split and preprocess the data. It can also perform tasks like feature

selection, model tuning using resampling and variable importance estimation. It

is open-source and is available on CRAN for use. We mainly use caret to build

our prediction models because it automatically tests each model with multiple

parameters to optimize the results. Since CARET runs the models with multiple

parameters, the execution time of each algorithm is expected to be higher. The

code used to build our experiments is shared in the References part of this research

Github (2018).

2.2.2 Major Parameters’ Values

The major parameters, data, algorithms’ category and evaluation metrics, i.e. error

metrics, of experiments are explained in detail in the previous and following sections

respectively. Here, we mention different algorithm categories and error metrics.

Since CARET package contains around 175 different algorithms, we limit our

experiments on well-known regression algorithms. We concentrate on 17 different

algorithms and separate them into 4 different categories; (1) Linear Models, (2)

Tree-Based Models, (3) Neural Network-Based Models and (4) Other Algorithms.

When creating these categories, our main intuition is to create logical classes that

represent the main model building strategies that the algorithms use. Rather than

evaluating each algorithm separately, we compare algorithms’ categories. We want

22

to evaluate the strategies that they use. These algorithms are explained in detail

later on.

We use 5 different error metrics to compare the algorithms’ performance. The error

metrics we use for our research are (1) root mean square error(RMSE), (2) mean

absolute error(MAE), (3) R squared, (4) mean squared error(MSE) and (5) execution

time. In our experiments, we do not expect that the comparison of the algorithms

will depend on the error metrics. Although we do not expect that the order of

algorithms’ performance will not be affected by those metrics, different metrics can

reveal the difference of the algorithms at different scale. That is why; their usage

can be complementary to each other. The details of each error metric is explained

later on.

2.2.3 Model Building Parameters

At this section, we concentrate on the parameters that we use when building the

models; data ratio which is the percentage of data amount saved for model creation,

prediction process type and data selection type for model creation. We also explain

basic hypotheses that we propose as the expected result of the effect of different

values of those parameters.

Our first model-related parameter is the data ratio parameter. It is the percentage

amount of the total data we are going to use for model creation, a.k.a, training. It

starts from the value of 0.15 which refers to 15% of the total data. So if the value of

this ratio is 0.15, the model will be trained with 15% of the total data and it will be

tested on 85% of the data. After 0.15 value, we use 0.2 then we increase the ratio’s

value by 0.1 each time we run an algorithm until the value of the ratio reaches 0.99.

This results in running the algorithm multiple times and recording the results at

each time. According to the results we may decide how the training data set size

affects the prediction accuracy and what is the optimized ratio for each algorithm

on our particular data sets. Our first hypothesis is as follows;

H1: We expect that the increase of the data that is used for model built will

increase the performance of all algorithms.

23

We propose this hypothesis because the more data that the algorithms use at their

training step, the more robust models they may create. Especially, for neural

network based algorithms, we already know that they improve their model by the

feed of new data income to the system. Indeed proving our hypothesis demands

statistical evidence of this parameter effect on algorithms’ result error metrics. These

details will be explained in the Results section.

Our second model-related parameter is the prediction process type which means

from which process we calculate the error metric results. Naturally, we use two

different prediction process types: train and test. This means, we calculate the

error metrics during the building of the model and also during the model validation.

During model creation, we use 10-fold cross-validation. If an algorithm has an over

fitting tendency by its nature, we expect that its training performance will be very

high but its test performance will be relatively low. If an algorithm learns well from

the data, we will observe an equilibrium at its training and test performance. Our

hypothesis related to this parameter is given as follows;

H2: If an algorithm overfits, its training and test performances will be quite

different. Hence prediction process type parameter will be an indicator for overfitting

algorithm detection.

Indeed, observing train and test performance of the algorithms together will be a

natural proof of this hypothesis. In fact, this expectation should be seen as a claim

rather than a real hypothesis.

Our third model-based parameter is the data selection type. It is the data order

that we use for model built. We use two different data selection types; regular and

random. In the regular selection, when we set the ratio variable, we obtain that

ratio of the data set in order. For example, if the ratio variable is set to 0.2, we have

the first 20% of the data in order as training set and the remaining 80% as the test

set. But in the random selection we split the data randomly. For example, if the

ratio variable is set to 0.5, the training set contains a random 50% portion of the

whole data. These two different training methods help us understand how the time

order in the data affects the performance of the algorithms. Our hypothesis related

to this parameter is given as follow;

24

H3: We expect to have similar error ratios after using random or regular data

selection.

For H3, we also want to underline that, here we compare regression methods. Most

of these methods are not developed for time series analysis naturally. Indeed, they

can be used for this purpose but our assumption is that the order of data does

not have effect on the performance of regression algorithms. We aim to prove this

hypothesis by observing the error metrics for the same data and for the same training

ratio when their training set is picked regularly and randomly.

2.2.4 Hypotheses about Data

Before we start to deepen the algorithms and error metrics, we want to propose

different hypotheses based on the observed nature of each data type. Although all

data sets we used here have a nature of evolution over time, we see that their

evolution has different trends. This causes different expectation for prediction

independent from the algorithms that we use. The difference of data can create a

cross impact on the algorithms’ performance. In this section, we want to underline

the possible cross impact due to the data difference.

For weather data, in general, we observe similar temperature values for each year

in the same period. While, for the stock market data and the cryptocurrency data,

the fluctuations in the closing price value make the data more unpredictable. There

is no pre-defined pattern that we can observe at first sight. Moreover, the closing

value does not depend on seasonality.

H4: We expect to have similar error ratios on stationary data like weather data

when we use random or regular data selection.

Firstly, since we apply different methods on these data, we find it logical to have

varying results for each data as they differ in certain properties as we explained

in previous section. Picking the training set in regular order from the whole data

would result in the algorithm having a narrow look at the data. It might cause

overfitting for all the data sets, especially if we have a low training/test ratio. It

25

would not have accurate predictions in the data without seasonality since it does

not have prior knowledge of the existence of a vast interval of predictions. But,

with adequate ratio of the data given as training set, it may achieve good results in

predicting the output of stationary data, which is the weather data.

H5: We expect to have lower error ratio with stationary data after using

random data selection and higher with regular data selection.

We will prove this hypothesis by testing the models with random and regular training

test types on the weather data which is, by nature, acting similarly in specific times

of the year.

Secondly, if we build the training set by picking the elements randomly from the

whole data set, we may be able to overcome the overfitting problem in all the data

sets since the training set would make the model be aware of outlying cases in the

data. Nevertheless, it may well be possible that we encounter overfitting due to the

fact that random picking elements from the data set does not guarantee picking the

ones that would help the predictions.

H6: We expect to decrease the overfitting problem when we use random data

selection.

We compare the results of training randomly and regularly to see if training

randomly helps solving the overfitting problem in our case.

Lastly, we expect that neural network based models have higher computational

complexity than the other models.

H7: Neural network based models have higher computational complexity than

the other models.

We compare the execution times of the algorithms in order to prove this hypothesis.

26

2.3 Regression Models

In this part, we define the regression models used in this research and explain their

general properties. We used 17 different algorithms which have different modelling

strategies. For the sake of comprehensibility, we separate those algorithms into four

different categories. Each category represents the main idea behind the algorithms

it contains. Each algorithm’s abbreviation in the CARET package is written in

parantheses in the titles.

2.3.1 Linear Models

This section describes the linear models used in this research. Linear models can be

defined as models which describe a continuous response variable in terms of one or

more predictor variables in a function.

2.3.1.1 Linear Regression(lm)

Linear Regression is a statistical method to observe the relationships between

dependent and independent variables. In its most basic form, there is one

independent variable, x, which is also called explanatory or predictor, and the

dependent variable, y, which is also called response or outcome, is explained as

a lineaire function of x. This model is called “simple linear regression”. In general

form, y is explained by several different dependent variables. This time, model is

called “multiple linear regression”.

The model builds an equation of a straight line using these two different types of

variables and assume that the relationship between them fall along a straight line.

When the data points do not fall exactly on a straight line the equation is modified

by adding in a statistical error variable to fit the model(Douglas C. Montgomery,

2012).

It is a very simple and easy to understand model with good interpretability and

requires relatively low resources. But while it is a powerful and widely used method,

27

it has certain drawbacks which limit its application and sometimes require thorough

preprocessing of the data in order to obtain logical results. The base of the model

itself is a limiting factor since it assumes that the data is normally distributed

when it is generally not. Also since the real-life data is not supposed to be 100%

completely linear the linear regression model is very prone to outliers. One can

find the general formula of linear regression in the following equation. Here, when

building the model, β parameters are estimated. There different methods for such

estimation. One of the most common estimation method is least-square method.

The other parameter, ε, reflects the statistical error of the model. More clearly, it

is the error of estimated values.

y = β0 + β1x+ ε (2.1)

Linear regression is used in pattern recognition(Bishop, 2006), astronomy(Isobe

et al., 1990), stock markets and many other domains which provide linear data.

2.3.1.2 Generalized Linear Model(glm)

The standard linear model is not capable of handling nonnormal responses, y, such

as counts or proportions. This fact inspires the urge to develop a new model

which can represent categorical, binary and other response types. These models

are called generalized linear models (Faraway, 2006). To form the model, a vector

of observations y having n components is assumed to be a realization of a random

variable Y whose components are independently distributed with means. The vector

is then specified as in terms of a small number of unknown parameters β1,...,βp

inferred from the data. Thus, the equation can be represented as follows:

µ = X ∗ β (2.2)

where X is the model matrix and β is the vector of parameters(P. McCullagh, 1991).

Generalized Linear Model can deal with categorical predictors and it is relatively

28

easy to build. The equation provides a clear understanding of how each of the

predictors have an effect on the outcome. Even if there are some advantages over

the simple linear regression model, as far as a linear model is concerned, it is not

possible to completely avoid outliers.

Bayesian Generalized Linear Model(bayesglm) is similar to the

generalized linear model but it adopts the Bayesian perspective in the

modeling.

2.3.1.3 Ridge Regression(ridge)

Ridge Regression algorithm is first introduced in 1970 by Arthur E. Hoerl and

Robert W. Kennard (Hoerl & Kennard, 1970). It is a technique to analyze multiple

regression data which have the problem of multicollinearity. Multicollinearity means

having almost linear relationship among independent variables. If variables in a

regression problem have multicollinearity, the first task is to determine if it causes a

problem because it is possible to have division by zero which causes the calculations

to fail. So, in case of multicollinearity, least squares estimates are unbiased when

their variances are relatively large which raises the possibility of them to be far from

the true value. To reduce the standard errors, ridge regression blends in a degree of

bias to the regression estimates in order to stabilize the estimated values.

Ridge regression uses standardization of the variables by subtracting their means

and dividing them by their standard deviations. Ridge regression procedures are

performed on standardized variables and in the end, they are adjusted back into

their original scale.

Ridge regression is very advantageous to use when there is multicollinearity in the

data set since it uses bias to deal with the problem. Also it uses penalties which are

calculated according to the estimates value and this helps to choose the important

features in the data set and increases their influence.

Bayesian Ridge Regression(bridge) that we use in this paper is very

similar to the original ridge regression algorithm. The difference is that

29

we assume each regression coefficient has expectation zero and variance

1/k.

2.3.1.4 Non-Convex Penalized Quantile Regression(rqnc)

Quantile regression is first introduced in a seminar paper in 1978 by Roger Koenker

and Gilbert Bassett Jr (Koenker & Bassett, 1978). It is useful for studying

connections between a response variable and a set of covariates and it is mostly

used efficiently on heterogeneous data. Quantile regression methods estimate

models for the conditional median function and other conditional quantile functions

(Koenker, 2005). It is capable of making an accurate statistical analysis of the

stochastic relationships between random variables. It is possible to use penalization

in quantile regression to increase its efficiency. There are three mostly used

penalty function types which are L1 or Lasso penalty(Tibshirani, 1994), nonconvex

penalty(SCAD)(Fan & Li, 2001) and two-stage adaptive penalty(Stucky & van de

Geer, 2015). L1 penalty has a low computational cost because of its convex structure

and has a relatively high performance. SCAD, on the other hand, resembles L1

penalty but it changes into a quadratic function thus becoming non-convex. In our

research we use non-convex penalization which is SCAD on our quantile regression

algorithm.

Quantile regression allows the user to understand the relationships between different

variables outside of the mean of the data which makes it possible to understand

the outcomes which are not normally distributed and have nonlinear relationships

with predictor variables. It is used in ecology(Cade & Noon, 2003), researches on

education(Eide & Showalter, 1998) and in investigating public-private sector wage

differentials in Germany(Melly, 2005).

2.3.2 Tree-Based Models

This section describes the tree-based models used in this research. Tree-based

models are supervised learning models that can be used for both classification and

regression problems. They are highly flexible and they make it possible to find out

30

complex non-linear relationships in the data. In our research, we use 3 different

tree-based models.

2.3.2.1 CART(rpart)

Classification and regression trees are machine-learning methods for constructing

prediction models from data (Loh, 2011). The data space is recursively partitioned

and each partition is fit using a simple prediction model. As a result, it is possible

to build a decision tree to represent the partitioning. In classification with CART,

dependent variables which have a limited number of unordered values are used and

the error is measured in terms of misclassification cost. Regression trees are also

for dependent variables which have continuous or ordered discrete values and the

prediction error is generally measured by the squared difference between the actual

and the predicted values. CART is similar to a regular decision tree algorithm

so its main elements include rules based on a variable used to split the data in

different branches, rules to stop the branching process and the prediction of the

target variable.

There are some techniques that are used to increase the accuracy of CART. Bagging

treebag builds n classification trees by using bootstrap sampling of the training data

(Breiman, 1996). Bootstrap is a statistical method for estimating a quantity from

a data sample. It separates the data into n samples and calculates the target value

in each sample, then it takes the average of the sum of target values in each sample

and uses the result as the estimate. After bagging uses bootstrap sampling to build

the classification trees, it combines the predictions to create a meta-prediction. We

use the regular CART and bagged CART in our project.

CART has certain advantages and drawbacks. It is not highly affected by the outliers

in the input variables. It can use the same variables multiple times in different parts

of the tree which may reveal complex interdependencies between variables. It can

be used with different prediction methods to pick the input set of variables and it

does not require a specifically distributed data. The most important drawback of

CART is complexity. If the tree is large and has many branches, it becomes very

time-consuming and complex to build the branches and construct the tree.

31

2.3.2.2 Random Forest(rf)

Random Forests combine many tree predictors together so that each tree depends on

the values in a random vector which was sampled independently and with the same

distribution for all trees in the forest (Breiman, 2001). The accuracy of a random

forest depends on the strength of the individual tree classifiers and a measure of the

dependence between them because when random forest is making a prediction, it

takes the average of all the estimates of the individual decision trees in the model.

Random Forest can be used for both regression and classification tasks. It is easy

to use and build because it does not require fine adjustments, parameters are fairly

simple to understand. Overfitting problem is not very common in Random Forest

but the main limitation of the algorithm is the large number of trees which make

the algorithm run slow so it may not be effective to use it for real-time predictions.

Random Forest is commonly used in various fields such as banking, medicine and

stock markets. Banks use it to find the customers who will be eligible to the new

services the bank will offer in the future, it is also used for fraud detection. In stock

markets, it is used to predict a stock’s behavior in the future. In medicine, it is

used to observe the patient’s medical history to make predictions about the future

diseases the patient may have.

2.3.2.3 Stochastic Gradient Boosting(gbm)

Gradient boosting creates additive regression models by sequentially fitting a

simple parameterized function to current “pseudo”-residuals by least-squares at each

iteration(Friedman, 2002). The “pseudo”-residuals refer to the grade of the loss

function being minimized with respect to the model values at each training data

point. In 1996, Breiman proved that putting randomness into function estimation

could increase the performance. The same idea of randomness is put into the

gradient boosting algorithm by drawing a subsample of the training data from the

full training data set with no replacement at each iteration. Instead of the full

sample, this subsample is used to fit the base learner and computations are made

according to this subsample. This procedure is called stochastic gradient boosting.

32

Gradient boosting is commonly used in anomaly detection with supervised learning

on highly unbalanced data such as DNA sequences and credit card transactions.

Since the main task of gradient boosting is to optimize an objective function, it

is possible to use this algorithm in almost all objective functions but they tend to

be more sensitive to overfitting when it is dealing with noisy data and the training

process is often longer.

2.3.3 Neural Network-Based Models

This section describes the neural network-based models used in this research.

A neural network tries to replicate the human brain’s functioning with diverse

mathematical models. That is why, it can be briefly described as a network of

neurons organised in layers.

2.3.3.1 Neural Network(nnet)

A neural network is a compilation of basic processing elements that are named units

or nodes connected together to function just like an animal neuron(Gurney, 2004).

Nodes function just like neurons in the human brain, they fire when they encounter

sufficient amount of stimuli. In a node, the input data is combined with a set of

coefficients or weights which increases or decreases the importance of the input for

the training process. Then the product formed with the input data and the weight

go to the node’s activation function to decide if that signal should go forward in the

network and have a part in the output.

Neural networks can work on almost any data. They do not require prior knowledge

on the data. They also have high fault tolerance so failure of a few cells in the

network does not prevent it from creating output. In spite of all these advantages,

neural networks require powerful processors to run efficiently. Also, it is not easy to

explain the behavior of the network and how the system infers certain outputs.

Neural networks are used in both classification and regression problems in various

domains. Credit card fraud detection(Ghosh & Reilly, 1994), handwriting

33

recognition(Graves & Schmidhuber, 2009), stock market prediction(Kimoto et al.,

1990) are good examples of the real life application of neural networks.

2.3.3.2 Single-Layer Perceptron(mlp)

The term perceptron is first introduced in 1957 by Frank Rosenblatt in his research

in Cornell Aeronautical Laboratory (ROSENBLATT, 1957). He mentions the

growing attention on the possibility of creating a device with human-like functions

like perception, recognition, concept formation and the ability to generalize from

experience. He explains the requirements to construct such a system and calls this

system which operates according to his principles a perceptron.

A single-layer perceptron is a network of n number of artificial neurons in parallel.

Each artificial neuron in the layer produces one network output and it is often linked

to all the external inputs. Each input is given a weight and a sum is calculated by

taking into account this weight variable. The output node has a threshold value

t. If summed input is greater or equal to t, then the output y is 1, otherwise the

output y is 0. The inputs are separated into 2 categories which involve the inputs

that return 1 as output and the inputs that return 0 as output. It then draws a line,

if the points are linearly separable, to separate the points that cause a fire and the

points that do not cause a fire.

SLP is generally used to solve relatively basic problems and it is fast to build and

run with low computational complexity. It cannot be used for data which is not

linearly separable and this raises the famous XOR function problem in SLP. Since

XOR function outputs cannot be represented on a 1 dimension surface, it is not

possible to solve the XOR problem with SLP. This explains the limitation of the

algorithm.

2.3.3.3 Multi-Layer Perceptron(mlpML)

Multi-layer Perceptron is a nonparametric technique which uses backpropagation

procedure in estimation tasks (Werbos, 1974). Backpropagation is a gradient

34

descent-based procedure to calculate the weights in a multilayer feedforward neural

network (Rumelhart et al., 1988). A feedforward neural network contains multiple

neurons which are arranged in layers. Nodes are connected to each other and all the

connections have an assigned weight. There are three types of nodes which are input

nodes that bring information to the network, hidden nodes that have no direct bond

with the outside of the network that transfer the input nodes to the output nodes

and finally the output nodes that make the computations and display the output as

a result. A feedforward network works in only forward direction, it starts from the

input nodes, goes through the hidden nodes and ends in the output nodes without

performing any loops. But in MLP, the model is trained by using an algorithm

called backpropagation. It starts with random weights assigned to each node and

for every input in the training data set, the output is observed and compared to the

desired output. The output is then propagated back to the previous layer and the

weights are then modified according to the error. The process is then repeated until

a predetermined value of error is obtained. Backpropagation is sometimes defined

as learning from mistakes since it repeats the same process by trying to decrease the

error of a certain input.

MLP is used in many domains such as data compression(Blanchet, 1990), speech

recognition(Bourlard & Morgan, 1990) and hand-written character recognition(Basu

et al., 2005).

2.3.3.4 Long Short-Term Memory(lstm)

Long Short-Term Memory model is introduced by Sepp Hochreiter and Jürgen

Schmidhuber in their publication in 1997 entitled ”Long short-term memory”

(Hochreiter & Schmidhuber, 1997). He observed that with conventional

Back-Propagation Through Time or Real-Time Recurrent Learning, error signals

that go backwards in time are inclined to either blow up or vanish. In order to solve

this problem, he introduced Long Short-Term Memory(LSTM) as a novel recurrent

network architecture.

LSTM is actually a type of recurrent neural network(RNN) but it includes additional

units such as a memory cell and forget gates that allow a better control over the

35

gradient flow. Memory cells can hold information for an extended period of time

and gates can decide when the information enters the memory and how it is handled

after it enters the memory.

LSTM has been used in various researches in different topics such as machine

translation(sequence to sequence learning) (Sutskever et al., 2014), image captioning

(Vinyals et al., 2014), question answering (Wang & Nyberg, 2015) and hand writing

generation (Graves, 2013).

2.3.4 Other Algorithms

This section describes the other models used in this research that do not go into the

categories described above.

2.3.4.1 Support Vector Machine(svm)

Support Vector Machine algorithm was introduced at the Computational Learning

Theory(COLT) conference in 1992 by Vladimir Vapnik and his colleagues, it includes

algorithms shaped by the usage of kernels and it is preferred for classification

and regression tasks. It puts together many features already invented before and

forms the maximal margin classifier. These features include, the usage of kernels,

hyperplanes, optimization techniques which were used in pattern recognition and

usage of slack variables to deal with noise in the data. [6] It maps the input vectors

into high dimensional feature space Z by using non-linear mapping. A linear decision

surface is then constructed with particular properties in this space which ensure high

generalization ability of the network. The main problem in this approach is how

to find a separating hyperplane that would generalize well the data which is called

the optimal hyperplane. It is a linear decision function that maximizes the two

classes’ vector margins. To construct these optimized hyperplanes, a small part of

the training data is used which is referred to as support vectors (Cortes & Vapnik,

1995). If it is not possible to divide the training data without error, the goal should

be to separate the data by minimizing the number of errors. In order to do so, the

subset of training errors is excluded from the training set. After the exclusion, it is

36

possible to divide the remaining training set without errors. This is called the soft

margin hyperplane.

It is also possible to perform regression with SVM. A m-dimensional feature space

is filled with mapped values of input by using some non linear mapping and from

this, a linear model is built in the feature space. The estimation quality is given

by the loss function called insensitive loss function which was proposed by Vapnik.

The regression is performed via linear regression in the high-dimension feature space

using the insensitive loss. As mentioned before, SVMs use functions called kernels

for regression and classification problems. The task of the kernel function is to

transform the input data into the required form for the model. There are many

types of kernel functions like linear, nonlinear, polynomial, radial basis and sigmoid.

In our research we use two different SVM kernel functions which are linear and radial

basis. Linear kernel is generally used for linear data and nonlinear kernels such as

radial basis are used for nonlinear data.

SVMs are used in many different domains and they have relatively higher

performance in text classification problems. If an appropriate kernel function is

found, it is possible to solve highly complex problems with SVMs but unfortunately

it takes a lot of effort to find a suitable kernel function for the model. While SVMs

scale relatively well to high dimensional data, they suffer from long training time for

large data sets and the interpretation of the final model is complicated. The real life

application of SVMs include handwriting recognition, breast cancer diagnosis and

intrusion detection.

2.3.4.2 k-Nearest Neighbor(knn)

The nearest neighbor algorithm is a basic nonparametric decisions procedure that is

generally used to determine the class of unclassified test samples by assigning them

the class of the nearest sample in the training set (Cover & Hart, 1967). If we have

an unclassified x and the number of neighbors parameter k is 1(1-NN), then the

rule decides that x should have the class of the nearest neighbor. If the number

of neighbors increase, then the algorithm finds the closest k neighbors and decides

which class the test variable should be assigned to. When the neighbor parameter

37

is very large the effect of the distance factor decreases significantly. On the other

hand, if k is too small, classification will be highly affected by the outliers. So the

main problematic of this algorithm is to decide the k parameter. Three different

distance functions are used to calculate the distance between data points: Euclidean,

Manhattan and Minkowski. In case of categorical variables, Hamming distance is

used.

EuclideanDistance =

√√√√ k∑
i=1

(xi − yi)2 (2.3)

ManhattanDistance =
k∑

i=1

| xi − yi | (2.4)

MinkowskiDistance = (
k∑

i=1

(| xi − yi |)q)
1
q (2.5)

While k-NN is generally used for classification, it can also be used for regression

tasks (Hastie & Tibshirani, 1996). It calculates the average of the numerical target

of the K nearest neighbors. For example, if a graph shows the height in centimeters

and the age of a person in years and we are trying to find the age of a test point,

k-NN simply finds out the closest points to the test point and assumes that they

should have a similar age as the test point. This is called feature similarity.

k-NN is simple to use and implement. It gives relatively good results in classification

tasks if the k value is chosen correctly but computational complexity may be high

depending on which distance measure is used in the algorithm. It can be used for

regression, but it makes predictions in the interval of the training points. So it may

not be possible for k-NN to make an accurate forecast if the data in the future

exceeds the limits of the training set.

38

2.4 Evaluation

In this section we describe how we run our experiments and how we evaluate the

models. As mentioned before, we do not optimize the parameters for each model,

CARET package helps us doing this but instead we use different training and testing

methods to observe their effect on the result.

Firstly, we use statistical analysis technique Analysis of Variance(ANOVA) to

observe the effect of each experimental parameter that we explained before. ANOVA

is a method used in statistical experiments when there is two or more samples to

test if these samples belong to the same population. It has two main parameters

which are between group variation(1) which is the variation that occurs because

of the interaction between the samples and within group variation(2) which is the

variation that appears because of the individual differences within samples. The

results of the ANOVA test is evaluated by the F test statistic which is calculated by

dividing between group variance to the within group variance. If the p value for the

F test is less than 0.05 the samples do not belong to the sample population, thus

statistically the results are different. In our research, sample is the set of results

that are accumulated for a specific parameter.

These parameters include changing the training/testing ratio each time, training in

regular order, training in random order, testing on test data, testing on training data,

using different forecasting algorithms and running the experiment on different data

sets. We use ANOVA test to examine the statistical influence of these parameters

and report them in Chapter 3.

Secondly, we draw plots comparing the error metrics for algorithms depending on the

above techniques. We point out the differences on each plot and talk about possible

reasons for each case such as overfitting, underfitting and high error percentage.

2.5 Comparison Metrics

In the literature for evaluating the accuracy of the methods, there are various

performance evaluation metrics. In this study, for the evaluation metrics we opted

39

for Mean Absolute Error(MAE), Mean Squared Error (MSE), Root Mean Square

Error (RMSE), R Squared Error(R2) and Execution Time.

2.5.1 Mean Absolute Error(MAE)

The mean absolute error(MAE) is the average of all absolute errors which can be

calculated by finding the absolute error for each prediction, adding them up and

then dividing the result to the number of predictions. It is relatively simpler to

calculate than the other error metrics and shows the average difference between the

predicted value and the actual value. The equation of MAE is given in the equation

below.

MAE =
1

n

n∑
i=1

| (y′

i − yi) | (2.6)

2.5.2 Mean Squared Error(MSE)

Mean Squared Error is calculated by squaring the average of the errors which is, the

average squared difference between the estimated values and actual values. It is a

measure of how close a fitted line is to data points. Since the errors are squared,

large errors are penalized in this error metric, so it is beneficent when detecting

large errors is a priority. The equation of MSE is given in the equation below.

MSE =
1

n

n∑
i=1

(y
′

i − yi)
2

(2.7)

2.5.3 Root Mean Square Error(RMSE)

Root Mean Square Error is calculated by finding the standard deviation of the

prediction errors(referred as residuals). Residuals are a measure that shows the

40

distance of the data points from the regression line. RMSE is a measure of how

spread out these residuals are. It presents how concentrated the data is around the

line of best fit. RMSE is generally used in forecasting, climatology and regression

analysis to check experimental results. RMSE gives high weight to large errors

because the errors are squared before they are averaged, thus it is convenient to use

RMSE to detect large errors in forecasting. The equation of RMSE is given in the

equation below.

RMSE =

√∑n
i=1 (y

′
i − yi)

2

n
(2.8)

2.5.4 R-Squared Error(R2)

R-Squared Error(R2) is a statistical error metric that shows the proportion of the

variance for a dependent variable that is represented by one or more independent

variables in a regression model. So, it shows the representation strength of one

variable variance to another variable variance. If the value of R2 is close to 1, it

shows that almost all observed variation can be explained by the model’s inputs. If

the value of R2 is negative, then it is preferred to use the mean value of the data set

as a prediction instead of running the forecasting model. The equation to calculate

R2 is given below.

R2 = 1− ExplainedV ariation

TotalV ariation
(2.9)

2.5.5 Execution Time

Execution time is the last metric for our experiments. It indicates the time passed

in seconds to obtain the result. It also stands for the performance of the chosen

method and shows the time complexity of the algorithm for the particular data set.

3 EXPERIMENTS AND RESULTS

In this section, we introduce the parameter values that we have used in our

experiments and we interpret the results obtained from our tests according to our

error metrics.

Our research consists of performing, evaluating and comparing forecast tasks on

5 data sets from different domains which are stock markets, cryptocurrency and

weather. We evaluate 17 algorithms’ performance coming from 4 categories in the

perspective of 5 error metrics. We observe the change in the results as the model

building parameters; data ratio, prediction process type and data selection type.

We define a ratio variable that decides how to partition the data into training and

testing data. The ratio variable starts from 0.15 which indicates 15% of the data

used as training. The values that follow are 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and

0.99 for the ratio variable. We investigate the effect of different ratios in training

and testing and our results demonstrate the ideal value for the ratio variable for

each data set.

After deciding on the ratio variable, we split the data into train and test sets. These

are two different values of prediction process type parameter. We then consider

the last model building parameter; data selection type. We follow two different

approaches in this part. The first method is sampling the data randomly without

order to form the training data. In this case, we investigate the importance of data

order when forming the training data and observe if this approach has lower error

rate than an ordered approach. We expect to have varying results for different data

sets according to their type and form. Especially if the value interval of the data set

is large, randomization would help the algorithm to expand the forecasting interval,

giving more accurate results. Also it may help to avoid overfitting.

42

The second data selection method we use to form the training data is the regular

method that takes the predefined amount of the data as training data in an

ordered fashion without randomization. We expect to have lower error rates than

randomization in certain data sets but higher error rates on data sets with large

value intervals. Especially if the percentage ratio for the training data is low, then

very little amount of the data will be used as training data and the forecasting

interval will be very narrow, thus ending with worse forecasting results for the data

sets, not to mention the high overfitting possibility.

After partitioning the data into training and test data, we run our forecasting models

on both training data and test data to compare their performance. First, we perform

forecasting on the training data and expect to have lower error rates since the

training data is already introduced to the algorithm in the training part and the

interval of the training data is the same as the forecasting data in this case.

Second, we perform forecasting on the test data and expect to have higher error rates

than testing on the training data since this unseen data by the algorithm may have

output values which are outside the interval of the training data so the algorithm

cannot predict them which lowers the accuracy percentage.

In this section, we evaluate the results both statistically and empirically. The details

of statistical method are introduced before. In this section, we first give the results

of ANOVA tests and interpret them. Then, we will evaluate the graphics of error

metric results and compare the algorithms’ performance.

3.1 Statistical Analysis Evaluation

In this section, we declare the result of the statistical analysis performed to check

the effect of the various parameters used in this experimental research to the result.

Then, we evaluate these findings. As statistical analysis, we performed analysis

of variance(ANOVA) test, multivariate analysis of variance(MANOVA) and Tukey

post-hoc test on all the error metrics. Table 3.1 shows the results of the ANOVA

test on RMSE error metric. We did not share all the test results because they all

point out the same features as the most effective. According to one-way ANOVA

with a single factor and a single response variable, we can observe that test type

43

Table 3.1: ANOVA Results

Df Sum Square Mean Square F value Pr(>F)

test type 3 8.444e+06 2814537 2.703 0.0441

data name 3 2.307e+06 768939 0.738 0.5290

ratios 9 1.805e+06 200557 0.193 0.9950

algorithm 14 2.047e+08 14623282 14.044 <2e-16

test type:data name 9 2.057e+06 228531 0.219 0.9918

test type:ratios 27 5.836e+06 216147 0.208 1

data name:ratios 21 3.259e+06 155188 0.149 1

test type:algorithm 34 1.025e+07 301344 0.289 1

data name:algorithm 13 9.574e+05 73648 0.071 1

test type:data name:ratios 26 2.525e+06 97125 0.093 1

and algorithm have the highest F values and lowest p values which leads us to

observe that they have more significance over the result with a low risk of error.

We also performed two-way and three-way ANOVA to observe the effect of multiple

factors to the result. The factor pairs we used for these were test type-data name,

test type-ratios, data name-ratios, test type-algorithm, data name-algorithm for

two-way and test type-data name-ratios for three-way ANOVA. As a result, we did

not observe a high value of F and the p value was very close to 1.

In order to expand our findings, we used MANOVA on the same factors by using

the pair groups we had in ANOVA as response variables. The results are displayed

in Table 3.2. We can observe that the results are similar to ANOVA with F values

high for prediction process type and algorithm. But we can also see that data name

has a relatively high F value and a low p value. This shows that data name is also

influential like test type and algorithm.

After declaring the results, we look into the hypotheses stated in Chapter 2. We can

observe that since the ratio parameter was not influential to the result according

to statistical analysis as we expected in our first hypothesis, we can tell that this

hypothesis turned out to be false. This might be caused by the high bias forecasting

algorithms used in the research which do not tend to overfit but can underfit training

data in some cases which makes it harder to catch essential regularities. We find out

that the prediction process type has an effect to the result but we do not know if it

44

Table 3.2: MANOVA Results

Df Pillai approx. F num Df2 Pr(>F)

test type 3 0.06762 9.2121 18 <2.2e-16

data name 3 0.01573 2.1059 18 0.004056

ratios 9 0.02778 1.2402 54 0.111148

algorithm 14 0.44461 13.7198 84 <2.2e-16

test type:data name 9 0.02432 1.0855 54 0.310394

test type:ratios 27 0.04304 0.6423 162 0.999873

data name:ratios 21 0.03053 0.5845 126 0.999943

test type:algorithm 34 0.10936 1.3105 204 0.002071

data name:algorithm 13 0.01204 0.3711 78 1

test type:data name:ratios 26 0.03025 0.4677 156 1

has a positive or negative effect. Since our hypothesis states that training randomly

increases the forecasting accuracy, we can not say for sure that hypothesis 3 is true

or false here. Indeed in the next part, when evaluating numerical results of error

metrics we will have more idea about which prediction process type is causing higher

error, as a result we will also have more idea about overfitting algorithms.

While these results give us an idea about the influence of our experiments to the

result, they do not highlight which test types or algorithms have a higher effect

on the result. In order to point out the mostly effective test type, algorithm or

data name, we perform post-hoc tests. Post-hoc tests are used to find where the

differences occurred between groups. Although there are many post-hoc tests to

choose from, it is essential to test with only one. We picked Tukey post-hoc test to

compare the differences between groups. We tested prediction process type together

with the data selection type. We observed that TrainRegular and TestRandom

showed significant difference which points out that changing process type and data

selection effects the results. Tukey test results for RMSE are given in Table 3.3.

Tukey results for every algorithm pair would take a lot of space so we do not share

them but we interpret the algorithms on the error graphs in the following sections.

45

Table 3.3: Tukey post-hoc Test Results

diff lwr upr p

TestRegular-TestRandom 30.6265273 -116.023240 177.2763 0.9500362

TrainRandom-TestRandom 30.4294771 -116.220290 177.0792 0.9509279

TrainRegular-TestRandom 149.8217705 3.172004 296.4715 0.0430776

TrainRandom-TestRegular -0.1970502 -146.846817 146.4527 1

TrainRegular-TestRegular 119.1952432 -27.454524 265.8450 0.1567558

TrainRegular-TrainRandom 119.3922934 -27.257473 266.0421 0.1556243

3.2 Metric Evaluation

In this section, we evaluate the error metrics we used, in terms of how helpful they

are in comparing the accuracy of different algorithms.

The error metrics used in this research and their properties are explained in detail

in Chapter 2. Among them, only R squared error metric has the same value interval

with a maximum value of 1 for all data which indicates that the model is a good fit

for the data. On the other hand, a negative R squared error indicates that using the

mean value as prediction generally would be more efficient than using the forecasting

model. Since the value interval is defined, using R squared error makes it easy to

compare the influence of different data on the forecasting accuracy. In the figures

3.1, 3.2, 3.3, 3.4 R Squared value of different data with same data selection and

prediction process type and training/test ratio are given.

It is easy to compare the performance of models between data even if the predicted

feature’s value intervals are different for each data. The graphs show that almost

all algorithms work well for the ethereum data except LSTM. For bitcoin price

data, LSTM has a similar performance, SLP and MLP have around 0.6 ratio

which is low compared to the other algorithms. For both the Madrid weather and

Hungary weather data, we observe low performance from neural networks and LSTM

algorithms.

The other error metrics, however, have different results for each data since they

take the absolute error as basis which is the absolute value of the difference of the

output and the predicted value. In this case, it is relatively harder to make an

46

Figure 3.1: R Squared Values of Hungary Weather Data with Train Regular and

0.7 Training Ratio

evaluation since the interval ranges from 0 to infinity. In general, there are some

cases to consider when assessing the performance of the algorithms with these error

metrics. For example, the predicted feature’s value interval. If the value interval is

large, then a high RMSE value does not always mean an inaccurate result. In the

figures 3.5, 3.6, 3.7, 3.8 RMSE value of different data with same data selection and

prediction process type and training/test ratio is given.

We observe that the RMSE value interval changes from 0 to 300 for ethereum data,

0 to 20 for Madrid weather data, 0 to 15 for Hungary weather data and 0 to 6000

for XU100 data. So it is not accurate to make the comparison of the same model

between different data just by looking at this graph. Same problem stands for

mean squared error and mean absolute error. Though it is convenient to make

a comparison between models on the same data. On these graphs, we observe a

high error ratio from LSTM in Ethereum, Madrid weather and Hungary weather

data. In XU100 data, LSTM has an average performance and CART has the worst

performance. We can state that linear models have a low error ratio in general.

47

Figure 3.2: R Squared Values of Ethereum Data with Train Regular and 0.7

Training Ratio

3.3 Data Comparison and Evaluation

In this section, we observe using different data’s influence on the performance of

the models. We have data from three different domains which are stock markets,

cryptocurrency and weather.

While not being totally independent of the daily events such as natural disasters

and political speeches, stock market and cryptocurrency data tend to follow a trend

according to certain technical indicators. However, stock market prices are also open

to sudden and unexpected changes. The fluctuations in the prices do not depend

on the month of the year or the season. Plus, the stock market prices do not have

an upper limit. It is well possible to exceed the maximum price in the training data

which would make forecasting difficult for the models that limit their forecasting

values to the value interval in the training data.

Weather data relies more on the month of the year than the stock market data.

We may observe similar temperature and wind speed values each year in the same

period as the year before. This may make forecasting easier for the models that

limit their forecasting interval to the interval of the training data. Figures 3.9, 3.10,

3.11, 3.12, 3.13 show the mean absolute error of models for different data with test

prediction process type and random data selection.

48

Figure 3.3: R Squared Values of Bitcoin Data with Train Regular and 0.7 Training

Ratio

We can observe that linear models have slightly lower error rates with stock market

and cryptocurrency data than with weather data. The reason for this might be

the price following a trend which is appropriate for linear modelling. Error ratios

obtained for SLP and MLP are high for cryptocurrency data, while they are lower

for the weather data and even lower for the stock market data. We observe that

there is overfitting for SLP and MLP algorithms and training randomly does not

decrease the error ratio which disproves the hypothesis 6. On the other hand, using

train as prediction process type and regular as data selection type decreases the

MAE value significantly. We generally observe in our research that Random Forest

algorithm works accurately for all data. Since we use CARET package for building

models to make forecasts and leave the parameter tuning to CARET, some models

may be underperforming than they should. But Random Forest does not require

very fine tuning for its hyper-parameters and they tend to perform well for all data.

That may be the reason why it is outperforming many of the forecasting models in

this research.

Lastly, we may observe different results for data with different sizes. Our Borsa

Istanbul stock market data has 2097, bitcoin price data has 1760, Ethereum data

has 928, Hungary weather data has 96453 and finally Madrid weather data has

6812 entries. We can observe that LSTM and Random Forest models perform at

their best on the Hungary weather data which is the largest data we have in this

49

Figure 3.4: R Squared Values of Madrid Weather Data with Train Regular and

0.7 Training Ratio

research. In general, we observe that LSTM has low performance compared to the

other models. This appears to be the result of having insufficient size of training

data for the model in this research.

3.4 Regular vs Random Training and Testing

In this section, we compare the performance of data selection and prediction process

types we used in our research. They include training in regular order and testing on

training data(TrainRegular) or testing data(TestRegular), training in random order

and testing on training data(TrainRandom) or testing data(TestRandom). These

are explained in detail in the methodology chapter of this paper. The figures 3.14,

3.15, 3.16, 3.17 demonstrate the MAE of the algorithms we used on the Madrid

weather data. Each graph has the same training/testing ratio but different data

selection and prediction process type.

It is possible to observe that TestRandom and TrainRandom have a relatively

lower error ratio than TrainRegular and TestRegular which indicates that random

data selection decreases the error rate. This disproves the hypothesis 3 since the

error rates change after training randomly. While this may be the case for the

Madrid weather data, we should also investigate the effect of the data selection and

50

Figure 3.5: RMSE Values of Ethereum Data with Same Data Selection and

Prediction Process Type and Training Ratio

prediction process types on the algorithm performance with different data. Madrid

weather data has 6812 records while the bitcoin data only has 1760 records. The

graphs for bitcoin price data are displayed in figures 3.18, 3.19, 3.20, 3.21.

Firstly, we can observe that linear models perform with a low error ratio for all data

selection and prediction process types on the bitcoin price data. The results for

LSTM is similar for all data selection and prediction process types. In TestRandom

and TrainRandom, SLP and MLP perform similarly but they have higher error

rate with TestRegular and lower error rate in TrainRegular. Some models like

neural networks, svmRadial, treebag and CART only work well in TrainRegular.

We observe that, in general, the best results were obtained with TrainRegular for

this data. Results for TrainRandom are similar to TrainRegular for some models

but models like SLP, MLP, CART and SVM performed worse in TrainRandom.

The Madrid weather data had very similar results for each data selection and

prediction process type. This complies with the hypothesis 3 since the results do

not change too much after training randomly. The graphs show that bitcoin price

data is more effected from the data selection and prediction process type than the

Madrid weather data. In order to understand this better, we investigate this effect

in the Hungary weather data in figures 3.22, 3.23, 3.24 and 3.25.

51

Figure 3.6: RMSE Values of Hungary Weather Data with Same Data Selection

and Prediction Process Type and Training Ratio

Hungary weather data has a similar MAE graph to the Madrid weather data for

different data selection and prediction process types. We may claim that data

selection and prediction process type has a higher influence on the cryptocurrency

data than the weather data. In order to make this claim, we draw the same graphs

for the ethereum price data. These graphs show similar aspects as the bitcoin price

data. This indicates that data influences the performance of the data selection and

prediction process type. Also, in our case, data selection and prediction process

types have a similar effect on data from same fields like bitcoin price and weather

data. Figures 3.26, 3.27, 3.28 and 3.29 show the mean absolute error of models with

different data selection and prediction process types on Ethereum price data. We

observe that there is overfitting in the cryptocurrency data for models like rpart

and SVM since there is a noticeable difference between the error ratios when the

forecasting models are tested on the training set and the test set. Testing on the

training set gives much lower error ratios. Thus, we can say that hypothesis 2 is

correct, if an algorithm overfits, its training and test performances are quite different.

We can also see that training randomly for Ethereum data increases the error ratios

considerably for models like SLP, MLP and SVM. So, hypothesis 3 and 5 are false

for the Ethereum data in this case. Also, hypothesis 4 which expects lower error

rates when training randomly for seasonal data is disproved when we compare the

TestRandom and TestRegular graphs for the Madrid weather data and Hungary

weather data. The results are very close but as opposed to the hypothesis, training

52

Figure 3.7: RMSE Values of XU100 Data with Same Data Selection and Prediction

Process Type and Training Ratio

regularly gives slightly lower error rates. A general observation in the results is that

with cryptocurrency data which are very unpredictable, models require more insight

of the data to decrease the error. But our cryptocurrency data in this research do

not fit well to the models even with random data selection. Thus, random data

selection with a very large cryptocurrency data fit to an LSTM model might be

a better approach for this type of data to decrease the error rates. Also, since

cryptocurrency is a relatively new domain, it may require several more years for it

to become more stable.

3.5 Algorithm Comparison and Evaluation

In this section, we compare the performance of the algorithms and look for potential

cases of overfitting and underfitting. Overall in our experiments, we observe that

linear models are outperforming all the other models in general except for a few

cases. Since linear models try to find the best line that minimizes the error rate,

they should work with high performance on stable data like weather. Also with

stock market data, in our case, we examine a stable uptrend so a high performance

from linear models is among expectations. For the cryptocurrency data, there is a

sudden change in the price after the year 2017, before 2017, the data looks stable.

Since regular data selection cannot include data from 2017 to the training set, it

53

Figure 3.8: RMSE Values of Madrid Weather Data with Same Data Selection and

Prediction Process Type and Training Ratio

has low performance with cryptocurrency data compared to random selection. Tree

based models have the second best performance. It may be because tree models

are generally used for classification tasks. In order to make forecasting, they create

branches with value intervals and check to which interval belongs the input and

makes the forecasting. But it predicts the same value for multiple inputs if they

belong to the same value interval. This causes the error rates to increase. Neural

network based models, especially LSTM fail to perform efficiently on our data since

the data sizes in our research may not be large enough to train these models enough

for them to perform accurately, so they are underfitting. SLP and MLP performed

relatively well with TestRandom on Borsa Istanbul stock market data. Knn and

SVM models both have acceptable results for almost all cases. Knn is generally

used for classification tasks but it can also be used for regression problems. Its

predictions are generally based on the mean or the median of the nearest neighbor.

Since k value is critical for regression with knn, a better parameter tuning might

increase its forecasting performance.

We can observe on figures 3.30 and 3.31 that TestRandom has considerably lower

error rates than TestRegular for Borsa Istanbul stock market data for certain models

such as knn, gbm, rf and CART. This may be the result of overfitting and shows the

benefit of choosing the training set randomly from the whole data which complies

with hypothesis 6. A similar case exists for the Ethereum data which is shown on

54

Figure 3.9: MAE of Models for Ethereum Data

figures 3.32 and 3.33 . The affected models are gbm, knn, SLP, MLP, rf, rpart,

SVM and CART. This complies with our hypothesis 6 where we expect overfitting

to decrease when the model is trained randomly.

We compare the execution time for each model to determine their time complexity.

We observe that LSTM takes longer to run than the other models for relatively small

data like Ethereum and Madrid weather. But knn, SLP and MLP models’ execution

time exceeds LSTM’s when they are used on a much larger data such as Hungary

weather data with 96453 entries. The most time consuming models are LSTM, SLP,

MLP, Random Forest, SVM and knn. The least time consuming models are glm,

Neural Networks, CART, ridge regression and quantile regression. This shows that

although neural networks have low execution times, in general, neural network based

models like LSTM, SLP and MLP have higher complexity than the other models

which proves the hypothesis 7.

3.6 Summary

This section summarizes the experiments and results part of the research. We

highlight the important findings we encountered during the examination of the error

rates of the forecasting models.

55

Figure 3.10: MAE of Models for Bitcoin Price Data

1. We saw in statistical analysis that data ratio in our experiments was not highly

influential on the result. Statistically, training with different percentage of the data

does not change the performance.

2. The results depend mainly on the data, the forecasting model, the prediction

process type and the data selection according to statistical analysis.

3. Data selection type(random or regular) and prediction process type(train or

test)’s effect depends on the characteristic of the data. For example, using regular

order while training gives acceptable results since weather data is generally stable.

But, in cryptocurrency data, models require random data selection for training since

the target’s values change unpredictably.

4. We did not observe a considerable difference between the properties of the error

metrics since they all concentrate on the actual and the predicted value to calculate

the error rate.

5. We observed that linear models outperformed all the models since they are more

accurate in determining an average trend from the data and they try to optimize the

error metrics we used in this research. This is the result of a quantitative analysis,

this work may be extended with qualitative analysis but it is out of the scope of this

research.

6. We saw that neural network based models like LSTM did not perform accurately

in our research. This may be caused by the data size we used and testing with larger

56

Figure 3.11: MAE of Models for Hungary Weather Data

data may give lower error rates.

7. When we compare the execution times of the algorithms, it is possible to deduce

that neural network based models are more complex than the other models. So,

they require better infrastructure which increases the costs.

8. As a result, hypotheses 2 and 7 turned out to be correct while the other

hypotheses were disproved with examples.

57

Figure 3.12: MAE of Models for Madrid Weather Data

Figure 3.13: MAE of Models for XU100 Data

58

Figure 3.14: MAE of Models for Train Regular on Madrid Weather Data

Figure 3.15: MAE of Models for Train Random on Madrid Weather Data

59

Figure 3.16: MAE of Models for Test Regular on Madrid Weather Data

Figure 3.17: MAE of Models for Test Random on Madrid Weather Data

60

Figure 3.18: MAE of Models for Train Regular on Bitcoin Price Data

Figure 3.19: MAE of Models for Train Random on Bitcoin Price Data

61

Figure 3.20: MAE of Models for Test Regular on Bitcoin Price Data

Figure 3.21: MAE of Models for Test Random on Bitcoin Price Data

62

Figure 3.22: MAE of Models for Train Regular on Hungary Weather Data

Figure 3.23: MAE of Models for Train Random on Hungary Weather Data

63

Figure 3.24: MAE of Models for Test Regular on Hungary Weather Data

Figure 3.25: MAE of Models for Test Random on Hungary Weather Data

64

Figure 3.26: MAE of Models for Train Regular on Ethereum Price Data

Figure 3.27: MAE of Models for Train Random on Ethereum Price Data

65

Figure 3.28: MAE of Models for Test Regular on Ethereum Price Data

Figure 3.29: MAE of Models for Test Random on Ethereum Price Data

66

Figure 3.30: TestRegular on Stock Market Data

Figure 3.31: TestRandom on Stock Market Data

67

Figure 3.32: TestRegular on Ethereum Price Data

Figure 3.33: TestRandom on Ethereum Price Data

68

Figure 3.34: Execution Time of Models for Different Data

4 CONCLUSION

This paper aims to compare different forecasting algorithms on data from different

domains. During these forecasting operations, we use certain parameters that change

the training/testing data ratio, data selection and the prediction process type. These

parameters include partitioning the data into training and testing sets according

to different ratios at each time(data ratio), using different data selection such as

creating the training set by picking the elements from the data in regular order

or random order and testing the model performance on both training and testing

data(prediction process type).

We performed statistical analysis with ANOVA test to determine the effect of

using different parameters(data ratio, data selection, prediction process type) to the

error rates. According to ANOVA test, data selection type(random/regular) and

prediction process type(train/test) are infleuntial to the result. Using different data

and different algorithms also change the result but training with different percentage

of the data does not change the performance.

By observing the error rate graphs of the forecasting algorithms, we concluded that

the data selection and prediction process type’s effect depends on the characteristic

of the data. For the cryptocurrency data, models perform with higher performance

with random data selection while training because cryptocurrency data is more

unstable. But for the weather data, picking the training set in regular order produces

acceptable error rates.

We also observed that neural network based models such as LSTM did not perform

accurately in our research. The reason for this may be the data size since the largest

data we used in this research had 96453 records. The results may differ for larger

data.

70

Also, a comparison between the execution times of the forecasting algorithms

indicate that neural network based models take longer time to use. So they have

relatively higher computational complexity than the other models.

After carefully considering the results, we concluded that linear models have high

forecasting accuracy on our data and it is not necessary to increase the complexity

and the execution time of the forecasting process by picking elaborate machine

learning methods for the data used in this research. While the results may differ

for different data and different tuning parameters for each algorithm, this research

shows that it may well be possible to stick to legacy methods like linear regression

and random forest while making forecasting.

This work can be extended in many different paths. For example, it is possible

to increase the number of algorithms that were used to make forecasting. Making

detailed parameter tuning for each algorithm may change the error rates for each

algorithm. Since this paper only uses data from 3 different domains, it is well

possible to increase the number of data by adding new data from different domains.

This may also increase the validity of the research especially if the new data have

substantially bigger sizes. Different test types may be used, also different error

metrics that are used in multiple regression tasks can be adopted such as mean

absolute percentage error. Another approach would be to make qualitative analysis

to elaborate this research.For example, it is possible to use features that belong only

to the weather domain to increase the regression performance. This may also help

with outlier detection during forecasting.

Since this is a vast subject and there are many different researches that explain

various algorithms, techniques and parameters, this research is open to progression.

71

REFERENCES

Adya, M., & Collopy, F. (1998). How effective are neural networks at forecasting

and prediction? a review and evaluation. Journal of Forecasting , 17 (5-6),

481–495.

Ahmed, N. K., Atiya, A. F., Gayar, N. E., & El-Shishiny, H. (2010). An empirical

comparison of machine learning models for time series forecasting. Econometric

Reviews , 29 (5-6), 594–621.

Alon, I., Qi, M., & Sadowski, R. J. (2001). Forecasting aggregate retail sales:.

Journal of Retailing and Consumer Services , 8 (3), 147–156.

Atzori, M. (2015). Blockchain technology and decentralized governance: Is the

state still necessary? SSRN Electronic Journal .

Basu, S., Das, N., Sarkar, R., Kundu, M., Nasipuri, M., & Basu, D. K. (2005). An

mlp based approach for recognition of handwritten ’bangla’ numerals. In IICAI .

Batista, G. E. A. P. A., & Silva, D. F. (2009). How k-nearest neighbor parameters

affect its performance ?

Bishop, C. M. (2006). Pattern Recognition and Machine Learning . Springer.

Blanchet, P. (1990). Data compression using multilayer perceptrons. In

Neurocomputing , (pp. 237–240). Springer Berlin Heidelberg.

Bourlard, H., & Morgan, N. (1990). A continuous speech recognition system

embedding mlp into hmm. In D. S. Touretzky (Ed.) Advances in Neural

Information Processing Systems 2 , (pp. 186–193). Morgan-Kaufmann.

URL http://papers.nips.cc/paper/222-a-continuous-speech-recognition-system-embedding-mlp-into-hmm.

pdf

Breiman, L. (1996). Bagging predictors. Machine Learning , 24 (2), 123–140.

Breiman, L. (2001). Machine Learning , 45 (1), 5–32.

Cade, B. S., & Noon, B. R. (2003). A gentle introduction to quantile regression for

ecologists. Frontiers in Ecology and the Environment , 1 (8), 412–420.

http://papers.nips.cc/paper/222-a-continuous-speech-recognition-system-embedding-mlp-into-hmm.pdf
http://papers.nips.cc/paper/222-a-continuous-speech-recognition-system-embedding-mlp-into-hmm.pdf

72

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning ,

20 (3), 273–297.

URL https://doi.org/10.1023/A:1022627411411

Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE

Transactions on Information Theory , 13 (1), 21–27.

Crone, S. F., Hibon, M., & Nikolopoulos, K. (2011). Advances in forecasting with

neural networks? empirical evidence from the NN3 competition on time series

prediction. International Journal of Forecasting , 27 (3), 635–660.

Douglas C. Montgomery, G. G. V., Elizabeth A. Peck (2012). Introduction to

Linear Regression Analysis (5th edition). Wiley.

Eide, E., & Showalter, M. H. (1998). The effect of school quality on student

performance: A quantile regression approach. Economics Letters , 58 (3), 345–350.

Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and

its oracle properties. Journal of the American Statistical Association, 96 (456),

1348–1360.

Faraway, J. J. (2006). Extending the Linear Model with R. Chapman & Hall.

Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics &

Data Analysis , 38 (4), 367–378.

Ghosh, & Reilly (1994). Credit card fraud detection with a neural-network. In

Proceedings of the Twenty-Seventh Hawaii International Conference on System

Sciences HICSS-94 . IEEE Comput. Soc. Press.

Github (2018). Experiment codes.

URL https://github.com/msinanergen/regression_analysis

Graves, A. (2013). Generating sequences with recurrent neural networks.

Graves, A., & Schmidhuber, J. (2009). Offline handwriting recognition with

multidimensional recurrent neural networks. In D. Koller, D. Schuurmans,

Y. Bengio, & L. Bottou (Eds.) Advances in Neural Information Processing

Systems 21 , (pp. 545–552). Curran Associates, Inc.

URL http://papers.nips.cc/paper/3449-offline-handwriting-recognition-with-multidimensional-recurrent-neural-networks.

pdf

https://doi.org/10.1023/A:1022627411411
https://github.com/msinanergen/regression_analysis
http://papers.nips.cc/paper/3449-offline-handwriting-recognition-with-multidimensional-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/3449-offline-handwriting-recognition-with-multidimensional-recurrent-neural-networks.pdf

73

Gurney, K. (2004). An Introduction to Neural Networks . Taylor & Francis.

Hastie, T., & Tibshirani, R. (1996). Discriminant adaptive nearest neighbor

classification and regression. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo

(Eds.) Advances in Neural Information Processing Systems 8 , (pp. 409–415).

MIT Press.

URL http://papers.nips.cc/paper/1131-discriminant-adaptive-nearest-neighbor-classification-and-regression.

pdf

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural

Computation, 9 (8), 1735–1780.

Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for

nonorthogonal problems. Technometrics , 12 (1), 55–67.

Isobe, T., Feigelson, E. D., Akritas, M. G., & Babu, G. J. (1990). Linear regression

in astronomy. The Astrophysical Journal , 364 , 104.

Justesen, N., Bontrager, P., Togelius, J., & Risi, S. (2017). Deep learning for video

game playing.

Kimoto, T., Asakawa, K., Yoda, M., & Takeoka, M. (1990). Stock market

prediction system with modular neural networks. In 1990 IJCNN International

Joint Conference on Neural Networks . IEEE.

Koenker, R. (2005). Quantile Regression. Cambridge University Press.

Koenker, R., & Bassett, G. (1978). Regression quantiles. Econometrica, 46 (1), 33.

Kuhn, M. (2008). Building predictive models inRUsing thecaretPackage. Journal

of Statistical Software, 28 (5).

Laurent, S., Rombouts, J. V. K., & Violante, F. (2011). On the forecasting

accuracy of multivariate GARCH models. Journal of Applied Econometrics ,

27 (6), 934–955.

Loh, W.-Y. (2011). Classification and regression trees. Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery , 1 (1), 14–23.

Makridakis, S., & Hibon, M. (2000). The m3-competition: results, conclusions and

implications. International Journal of Forecasting , 16 (4), 451–476.

http://papers.nips.cc/paper/1131-discriminant-adaptive-nearest-neighbor-classification-and-regression.pdf
http://papers.nips.cc/paper/1131-discriminant-adaptive-nearest-neighbor-classification-and-regression.pdf

74

Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018a). The m4 competition:

Results, findings, conclusion and way forward. International Journal of

Forecasting , 34 (4), 802–808.

Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018b). Statistical and

machine learning forecasting methods: Concerns and ways forward. PLOS ONE ,

13 (3), e0194889.

Melly, B. (2005). Public-private sector wage differentials in germany: Evidence

from quantile regression. Empirical Economics , 30 (2), 505–520.

URL https://doi.org/10.1007/s00181-005-0251-y

P. McCullagh, J. N. (1991). Generalized Linear Models . Chapman & Hall.

Pilkington, M. (2016). Blockchain technology: Principles and applications.

Post-print, HAL.

URL https://EconPapers.repec.org/RePEc:hal:journl:halshs-01231205

ROSENBLATT, F. (1957). The Perceptron: A Perceiving and Recognizing

Automaton (Project PARA). Report No. 85-460-1 . Cornell Aeronautical

Laboratory.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1988). Neurocomputing:

Foundations of research. chap. Learning Representations by Back-propagating

Errors, (pp. 696–699). Cambridge, MA, USA: MIT Press.

URL http://dl.acm.org/citation.cfm?id=65669.104451

Šajn, L., & Kukar, M. (2011). Image processing and machine learning for fully

automated probabilistic evaluation of medical images. Computer Methods and

Programs in Biomedicine, 104 (3), e75–e86.

Soon, W. M., Ng, H. T., & Lim, D. C. Y. (2001). A machine learning approach

to coreference resolution of noun phrases. Computational Linguistics , 27 (4),

521–544.

Stucky, B., & van de Geer, S. (2015). Sharp oracle inequalities for square root

regularization.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with

neural networks.

https://doi.org/10.1007/s00181-005-0251-y
https://EconPapers.repec.org/RePEc:hal:journl:halshs-01231205
http://dl.acm.org/citation.cfm?id=65669.104451

75

Tibshirani, R. (1994). Regression shrinkage and selection via the lasso. JOURNAL

OF THE ROYAL STATISTICAL SOCIETY, SERIES B , 58 , 267–288.

Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2014). Show and tell: A neural

image caption generator.

Wang, D., & Nyberg, E. (2015). A long short-term memory model for

answer sentence selection in question answering. In Proceedings of the 53rd

Annual Meeting of the Association for Computational Linguistics and the 7th

International Joint Conference on Natural Language Processing (Volume 2: Short

Papers). Association for Computational Linguistics.

Werbos, P. J. (1974). Beyond Regression: New Tools for Prediction and Analysis

in the Behavioral Sciences . Ph.D. thesis, Harvard University.

BIOGRAPHICAL SKETCH

First Name: Mithat Sinan

Surname: Ergen

Place of Birth and Date of Birth: Şişli/İSTANBUL 1991

Bachelor Degree: Kadir Has University, Information Technology (2014)

Double Major Kadir Has University, Computer Engineering (2014)

PUBLICATIONS

DTSS 2018 Conference - A Comparative Study for Accurate Forecasting

	ACKNOWLEDGEMENTS
	Table of Contents
	List of Figures
	List of Tables
	ABSTRACT
	ÖZET
	INTRODUCTION
	Literature Review
	Objective and Contributions

	METHODOLOGY
	Data Set
	Stock Market Data Set
	Cryptocurrency Exchange Data Set
	Weather Data Sets

	Regression Algorithms' Comparison Framework
	CARET Package
	Major Parameters' Values
	Model Building Parameters
	Hypotheses about Data

	Regression Models
	Linear Models
	Tree-Based Models
	Neural Network-Based Models
	Other Algorithms

	Evaluation
	Comparison Metrics
	Mean Absolute Error(MAE)
	Mean Squared Error(MSE)
	Root Mean Square Error(RMSE)
	R-Squared Error(R2)
	Execution Time

	EXPERIMENTS AND RESULTS
	Statistical Analysis Evaluation
	Metric Evaluation
	Data Comparison and Evaluation
	Regular vs Random Training and Testing
	Algorithm Comparison and Evaluation
	Summary

	CONCLUSION
	REFERENCES
	BIOGRAPHICAL SKETCH

