

EVALUATION OF COSINE SIMILARITY FEATURE RESULTS WITH

DIFFERENT EXPERIMENTAL SETUPS FOR NAMED ENTITY

RECOGNITION ON TWEETS

(VARLIK İSMİ TANIMLAMA ÜZERİNE KOSİNÜS BENZERLİĞİ ÖZELLİĞİNİN

FARKLI ÖRNEKLEMLERDE DEĞERLENDİRİLMESİ)

by

O n u r B ü y ü k t o p a ç , B . S .

Thesis

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

in the

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

of

GALATASARAY UNIVERSITY

Supervisor: Prof. Dr. Tankut ACARMAN

June 2019

This is to certify that the thesis entitled

EVALUATION OF COSINE SIMILARITY FEATURE RESULTS WITH

DIFFERENT EXPERIMENTAL SETUPS FOR NAMED ENTITY

RECOGNITION ON TWEETS

prepared by Onur BÜYÜKTOPAÇ in partial fulfillment of the requirements for the

degree of Master of Science in Computer Engineering at Galatasaray University is

approved by the

Examining Committee:

Prof. Dr. Tankut ACARMAN (Supervisor)

Department of Computer Engineering

Galatasaray University -------------------------

Assist. Prof. Dr. Murat Akın

Department of Computer Engineering

Galatasaray University -------------------------

Assist. Prof. Dr. Cemal Okan Şakar

Department of Computer Engineering

Bahçeşehir University -------------------------

Date: -------------------------

ii

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to Prof. Dr. Tankut Acarman for his

patient guidance, enthusiastic encouragement, and useful critiques during the planning

and development of this thesis.

I am particularly grateful for the assistance given by Mete Taşpınar. I am very thankful

to him for sharing his knowledge about his research. I would also like to thank Dr. Ömer

Farukhan Güneş co-founder of the company Oxtractor for sharing their dataset.

Finally, I wish to thank my wife Burcu Kantarcı Büyüktopaç for her support and

encouragement throughout my study.

June 2019

Onur BÜYÜKTOPAÇ

TABLE OF CONTENTS

Acknowledgements ... ii

Table of Contents ... iii

List of Symbols .. v

List of Figures ... vi

List of Tables ... vii

Abstract ... viii

Özet .. x

1 Introduction ... 1

2 Literature Review .. 3

3 Machine Learning ... 6

3.1 State-of-the-art ... 6

3.1.1 Definition of Machine Learning ... 6

3.1.2 Named Entity Recognition .. 7

3.2 Features .. 7

3.3 Classifiers ... 10

3.3.1 Logistic Regression ... 10

3.3.2 Support Vector Machines ... 11

3.3.3 K-Nearest Neighbor .. 11

3.3.4 Decision Tree .. 12

3.3.5 Random Forest .. 12

3.3.6 Naïve Bayes .. 12

iv

4 NER Evaluation ... 14

4.1 Datasets .. 14

4.1.1 NEEL 2016 Challenge .. 14

4.1.2 Oxtractor ... 15

4.1.3 Manually labeled ... 16

4.2 Performance Measures ... 19

4.2.1 Confusion Matrix .. 20

4.2.2 Precision .. 20

4.2.3 Recall .. 21

4.2.4 F1 Score .. 21

4.3 Approach .. 21

4.4 Implementation .. 22

4.4.1 Building the model .. 22

4.4.2 Evaluating the model .. 24

5 Evaluation Results ... 26

5.1 Related Work Comparison ... 26

5.2 Performance Metrics Based On Features ... 28

5.3 Performance Metrics of the Classifiers .. 29

5.4 Performance Metrics Based On The Training and Testing Splitting Ratio 33

6 Conclusion .. 35

6.1 Objective Completion .. 35

6.2 Future Work ... 36

References .. 37

Appendices ... 40

Software Source Code. ... 40

LIST OF SYMBOLS

F : F-Measure

FN : False Negative

FP : False Negative

ML : Machine Learning

NE : Named Entity

NEEL : Named Entity rEcognition and Linking

NER : Named Entity Recognition

NLP : Natural Language Processing

P : Precision

POS : Part-of-Speech

R : Recall

TN : True Negative

TP : True Positive

LIST OF FIGURES

Figure 3.1: an example of the “cos” feature ... 9

Figure 4.1: Twitter Tagger tool interface .. 18

Figure 4.2: the flowchart of the building stage ... 23

Figure 4.3: the flowchart of the evaluation stage .. 25

Figure 5.1: the average F1, recall and precision scores of each dataset. “A” represents the

features with cosine similarity “B” represents the features without cosine similarity.

Feature sets are ordered by manual dataset F1 scores. ... 28

Figure 5.2: the manual dataset F1 scores of each classifier. “A” represents the features

with cosine similarity “B” represents the features without cosine similarity. Classifiers

are ordered by average F1 scores. ... 30

Figure 5.3: NEEL 2016 dataset F1 scores of each classifier. “A” represents the features

with cosine similarity “B” represents the features without cosine similarity. Classifiers

are ordered by average F1 scores. ... 31

Figure 5.4: Oxtractor dataset F1 scores of each classifier. “A” represents the features with

cosine similarity “B” represents the features without cosine similarity. Classifiers are

ordered by average F1 scores. ... 31

Figure 5.5: the average F1, recall and precision scores of each split ratio of the manual

dataset. “A” represents the features with cosine similarity “B” represents the features

without cosine similarity. .. 33

Figure 5.6: the average F1 scores with "cos" for each sampling 34

Figure 5.7: the highest precision, recall and F1 metric values provided by Random Forest

for each training/testing splitting ratio .. 34

LIST OF TABLES

Table 4.1: Word occurrences for each split ratio of the manual labeled corpus. 19

Table 4.2: Type occurrences in training and testing datasets. .. 19

Table 4.3: Layout of the confusion matrix ... 20

Table 5.1: Confusion matrix of SVM classifier with RBF kernel with “cos”, “all capital”

and “#” features for 7 label types .. 27

Table 5.2: The classification report of the features .. 27

Table 5.3: The performance of our approach is compared with other studies 28

Table 5.4: the F1 scores of the presence and the absence of each feature with “cos” feature.

 .. 29

Table 5.5: with cos, without cos and average F1 scores for each dataset. 32

Table 5.6: the highest F1 scores for each dataset. .. 33

Table 5.7: the best scores of the manual corpus according to the split ratio 34

ABSTRACT

Today, social media is a huge part of our world and it continues to grow exponentially.

Enormous content is being created with these platforms and it draws the attention of

people for personal and professional levels. However, extracting meaningful information

from this volume of content with human capabilities is not possible. Machine learning

approaches are used to discover knowledge with the help of computer power.

Natural Language Processing (NLP) is a branch of artificial intelligence which is focused

on interacting humans and computers using the natural language. By the aid of machine

learning, NLP can achieve tasks from text such as tokenization, classification, sentiment

analysis, Named Entity Recognition (NER). These tasks produce successful results for

well-structured texts like newspapers, articles, and books. But, working with unstructured

texts from social media is still challenging. These types of texts contain emoticons,

abbreviations, grammar mistakes, and code-switching making data unpredictable and

dirty.

Twitter is one of the most popular microblog among social media platforms. It provides

texts which are publicly posted and contains topic-specific opinions. It is a valuable

source for collecting data. On the other hand, the content is unstructured because of

character limitation and casual writing.

In this study, we present a NER system and we evaluate baseline classifiers for

unstructured texts. We develop a cosine similarity feature, and we evaluate and test each

classifier subject to different combinations of features including cosine similarity. Our

experimental results show that the presented system is reached at 0.74 level in precision,

0.68 in recall and 0.67 in F1 (micro average), respectively for Named Entity rEcognition

and Linking (NEEL) 2016 Challenge dataset. The corpus is created from Twitter.

ix

In addition, we evaluate our system using 2 different datasets with different label

distribution and types. One dataset is generated by a startup company called Oxtractor. It

has 3 label types; “Person”, “Organization”, and “Location”. Also, we present dataset

which is labeled manually from specific topics of tweets. It has 7 types of the label;

Person”, “Thing”, “Organization”, “Location”, “Product”, “Event”, and “Character”. We

check the prediction results and compare classifiers along with feature sets. Logistic

regression, SVM, and Random forest are producing the highest results with cosine

similarity feature. The results obtained with different feature sets show that supportive

features for cosine similarly do not impact the results significantly. The diversity of

named entity is distinctive when working with cosine similarity feature.

Finally, we compare prediction results with different testing/training split ratios for the

manually labeled dataset from 90/10 to 50/50. The cosine similarity feature does not affect

the split ratio remarkably.

Keywords: Named entity recognition, Information Extraction, Twitter, Word

embedding, Classification, Machine learning, Cosine Similarity.

ÖZET

Sosyal medya günlük hayatımızın hızla büyüyen bir parçası olmuştur. Sosyal medya

kullanımının artışı ile birlikte her geçen gün muazzam büyüklükte içerik oluşmakta ve bu

içerik hem araştırmacıların hem de iş modeli geliştiricilerin dikkatini çekmektedir. Bu

boyuttaki veri ile çalışmak ve anlamlı sonuçlar elde etmek için bilgisayarların işlem

gücüne ihtiyaç duyulmaktadır. Bu noktada da makine öğrenme yaklaşımları geliştirilerek

problemlere çözüm üretilmesi hedeflenmektedir.

Doğal Dil İşleme, yapay zeka uygulamalarının bir alt kategorisidir ve bilgisayar ile insan

arasındaki etkileşimi dil üzerinden çözmeye odaklanır. Doğal Dil İşleme’de, Makine

öğrenmesi uygulamalarının yardımıyla, metinleri parçalara ayırma, sınıflandırma, duygu

analizi yapma, varlık ismi tanımlama gibi işlemler yapılabilmektedir. Gazete, makale,

kitap gibi düzgün yapıdaki metinlerde bu çalışmalar başarılı sonuçlar verirken sosyal

medyadan elde edilen içerikleri işlemek farklı zorlukları da beraberinde getirmektedir. Bu

tarz metinler içerisinde pek çok dil bilgisi hatası, kısaltma, “emoji” ve çoklu dil kullanımı

bulundurması sebebiyle öngörülemez.

Twitter en çok kullanılan mikro blog sosyal medya platformlarından biridir. Kişisel metin

paylaşımlarının yanı sıra, belli bir konuda ve başlık altında da içerik paylaşımları

yapılabilmektedir. Bu yönüyle Twitter değerli ve ilgi çekici bir veri kaynağı haline

gelmiştir. Buna karşın karakter kısıtlaması, gündelik dil kullanımı ve “emoji” kullanımı

gibi sebeplerden ötürü “tweet” verileri yapısal olarak karmaşıktırlar.

Bu çalışmada, temel sınıflandırma algoritmaları kullanılarak mikro blog verisi üzerinde

varlık ismi tanımlama sistemi geliştirilmektedir. Kosinüs benzerliği özelliğini

geliştirerek, tüm temel sınıflandırma algoritmaları üzerinde farklı özellik kümeleri ile

birlikte uygulanmaktadır. Çalışmalarımızın sonuçları 0,74 hassasiyet, 0,68 duyarlılık ve

0,67 F1 skoru ile Named Entity rEcognition and Linking (NEEL) 2016 Challenge veri

kümesine uygulanarak alınmıştır.

İlaveten, çalışmamızı farklı dağılımlarda ve özelliklerdeki 2 veri kümesi üzerinde

genişlettik. Birinci veri kümemiz Oxtractor isimli bir start-up firmasına aittir. Veri kümesi

“Kişi”, “Organizasyon” ve “Konum” bilgi etiketlerini içermektedir. İkinci veri kümesi ise

Twitter belli başlıklarda konular üzerinden etiketlediğimiz kendi setimizdir. Bu veri

kümesi içerisinde “Kişi”, “Varlık”, “Organizasyon”, “Konum”, “Ürün”, “Etkinlik” ve

“Karakter” gibi 7 bilgi etiketi bulunmaktadır. Elde ettiğimiz çoklu sınıf tahminleme

sonuçlarını karşılaştırdığımızda “Logistic regression”, “SVM” ve “Random forest”

sınıflandırma algoritmalarının yaklaşımımızda en yüksek sonuçları ürettiğini

gözlemledik. Farklı özellik kombinasyonlarındaki sonuçlar incelendiğinde ise yardımcı

özelliklerin kosinüs benzerliği özelliğinin sonuçlarına kayda değer bir katkısı olmadığı

gözlendi. Varlık isim kümesinin çeşitliliği kosinüs benzerliği özelliği için ayırıcı bir

faktör olarak görünmektedir.

Son olarak, veri kümelerini 90/10’dan 50/50’ye kadar değişen oranlarda öğrenme/test

etme bölümlerine ayırdığımızda kosinüs benzerliği özelliği kullanılan çalışmaların

sonuçlarında dikkate değer farkların oluşmadığı gözlemlenmiştir.

1

1 INTRODUCTION

The growing amount of data stored and shared in social media enables powerful tools to

extract information and to discover features. Natural Language Processing (NLP) studies

are gaining importance in this context. NLP is the field of study focusing on interacting

human language and computer. Understanding natural language as a machine is a general

purpose and it can be divided into tasks such as summarization, question answering,

translation, and Named Entity Recognition (NER). NER is a task of identifying and

categorizing textual contents such as person, thing, organization, location, product, event,

and character. If the sentence “Lemmy Kilmister founded Motörhead in 1975.” is

identified by applying NER task, the sentence would be labeled according to pre-defined

classes as:

[Lemmy Kilmister]Person founded [Motörhead]Organization in [1975]Year.

While traditional hand-made rule-based NER approaches produce successful results

when working with well-structured texts, the prediction scores are much lower on

unstructured microblog texts like Twitter. In general, these types of texts contain

emoticons, abbreviations, grammar mistakes, and code-switching making data

unpredictable and dirty, i.e. difficult to be interpreted by a machine. Machine Learning

(ML) approaches are applied to extract features from large scale observational data

complicated by unstructured environments to improve the NER methodology. Currently,

NER studies are focusing on Deep Learning (DL). However, feature engineering is still

important since feature-inferring neural network models outperform state-of-the-art

applications according to [1]. In this study, we present an improved approach using

syntactic, semantic and domain-specific features while augmenting the data worked on.

We evaluate the performance of the feature by altering corpus, feature combinations, and

classifiers at each time. We investigate 3 corpora which consist of complete (NEEL) 2016

2

Challenge dataset with 4369 unique tweets and 7 NER types, dataset published by a

startup company Oxtractor in England with 4608 unique tweets and 3 NER types, and a

new dataset manually labeled during the study with 3310 unique tweets and 7 NER types.

7 baseline classifiers and 9 features including cosine similarity are evaluated and tested

in our study. We have implemented all classifiers with feature combinations over all

datasets and we compared the results. We observed that cosine similarity improves F1

statistical metric value and always outperforms other features which are used during the

evaluation process.

2 LITERATURE REVIEW

NER has been introduced at the Sixth Message Understanding Conference Sundheim in

1996. NER recognizes entity names such as people, organizations, place names, temporal

expressions, and numerical expressions. The first study on NER was carried out by

Grishman and Sundheim in 1996 [2]. Early NER research was focussed on handcraft

rules, lexicons, orthographic features, and ontologies. Then, neural network NER systems

have been presented along with minimal feature engineering which leads to domain-

independent systems without lexicons or orthology requirement.

Early researches are based on word-based features (“bag of words”). Bag of Words

(BoW) depends on the text describing the occurrence of words within a document. The

model focus on only occurrences of known words in the document, but not the location

in the document. And, it neither covers the wealth of word knowledge. To overcome these

limitations new approaches are proposed with using common-sense and domain-specific

knowledge to enrich the BoW [3].

Adapting NER to microblogs has been a challenging task. The classical NER approaches

for structured texts were applied to tweets in [4]. An SVM-based classifier for classifying

person, location, and organization assured the statistical metric values such as 0.74

precision, 0.49 recall, and 0.59 F1 scores.

Twitter is one of the most successful microblogging services. Researches over data

gathered from Twitter are not only limited to the content of tweets. They also consider

user networks and profile classifications. For this kind of improved analysis, domain-

specific linguistic features should be determined and constructed. As an example of user

classification, observable information such as the user behavior, network structure and

4

the linguistic content of the user’s Twitter feed are considered to classify users in 3

categories [5].

Even the domain-specific features implementation techniques serve simplicity and

robustness, they are limited in many tasks. To have significant results, they should be

supported by new architecture models. Vector representation of words is designed

depending on neural network based language models. However, some techniques for

measuring the quality of the resulting vector representations do not cover multiple degrees

of similarity. word2vec model offers to represent words considering multiple degrees of

similarity [6].

This study is an extension of [7] while focusing on the most representative feature set

analysis and the improvement of the classifier’s performance. The most effective feature

in the study [7] is a word embedding based cosine similarity measure. For cosine

similarity, each labeled word represented as a vector using the precomputed word2vec

model and averaging all the vectors belonging to a particular label type. As a word2vec

model, the study used a corpus of 400 million tweets [8]. Despite the large word2vec

corpus, some of the words cannot be represented as a vector. These words are extracted

from the dataset. The approach applied to NEEL 2016 dataset [9] with logistic regression

classifier and achieved 0.71 precision, 0.56 recall, and 0.58 F1 score.

The study [7] was selected some of the researches from the NEEL 2016 in order to

compare results. The other approaches from the challenge mentioned in [10], [11], and

[12].

In [10] a feature-based system combining existing NER systems and domain-specific

Part-Of-Speech (POS) tagger is presented. The main idea of the work is to recognize

entities and their types from Twitter microposts and link them to another corresponding

dataset. There are 4 main steps followed in this work; mention detection, mention type

classification, mention linking, and NIL clustering. They develop a hybrid system by

using Stanford Named Entity Recognizer and ARK Twitter Part of Speech Tagger

approaches and run 3 test scenarios by using various classifiers with different feature sets.

5

Candidate name generation and classical NER systems such as Stanford NER, MITIE,

twitter_nlp, and TwitIE are used in [11]. An adapted Kanopy system for the Twitter

domain is implemented in [12]. Both studies are focussed on the solution of the problem

of adapting traditional natural language processing to microposts. The approaches consist

of having two pipelines where on the one pipeline the linked entity mentions are

processed.

3 MACHINE LEARNING

In this section, we describe the state-of-the-art machine learning methods, features, and

classifiers used in our study. We first explain the machine learning concept. In the

following, we represent the features which are used with cosine similarity. Finally, we

elaborate on the classifiers.

3.1 State-of-the-art

3.1.1 Definition of Machine Learning

ML is a method that automates rational decisions. Instead of explicitly programming,

machine learning can recognize meaningful patterns from given data with the training

process and adapt them to the current problem. Pattern recognition can be achieved by

two main techniques; supervised and unsupervised learning.

With supervised learning, the system has both the input variables (X) and the output

variable (y). Each input is labeled with the desired output with a mapping function. The

formula (1) can describe the supervised learning.

 𝑦 = 𝑓(𝑋) (1)

Unsupervised learning, however, only knows the input variable. The goal of the system

is developing and organizing the data and finding the underlying structure of it.

Machine learning can be used for two types of prediction; classification and regression.

Classification predicts discrete numbers. Output variables are often called label or class.

7

Regression estimates the continuous quantity. Output values can be an integer or a

floating number.

There are various domains using machine learning. Recommendation, recognition, route

prediction is the most used solutions. Google offers, Netflix video recommendation,

Spotify daily mixes, Amazon related products are the recommendation examples. Siri and

Cortana are voice recognition solutions. Facebook uses DeepFace algorithm to tag people

from photos. Microsoft Kinect human pose recognition algorithm runs with random

forest. Google Maps and Uber calculate the fastest routes and arrival time with machine

learning. Fraud detection that PayPal uses is also an ML solution.

3.1.2 Named Entity Recognition

NER is a machine learning application area which is used for identifying pre-defined

nouns (person, location, organization, etc.) in a given text.

NER is an important area in ML since it is a useful tool for many real-world solutions

such as classifying print media and social media contexts, content recommendation,

efficient search algorithm, customer support, chatbots.

NER systems for structured texts is a well-studied domain, and they can perform near-

human results particularly in English [13]. However, prediction scores of informal and

noisy texts such as social media posts, are much lower than formal texts.

3.2 Features

In [7], the authors have presented an approach aiming to identify different classes of

named entities in short and noisy texts, mainly tweets, with simple but fast and effective

supervised machine learning approach by using word embedding features. The study [7]

has evaluated 6 features for the feature vector which were, “hashtag”, “at’”, “capital

letter”, “all capital”, “part-of-speech (POS) tagger”, “the similarity to the class centroid

(cosine similarity)”.

8

In addition to the features, we include 3 additional features. These are, “next word POS

tagger”, “previous word POS tagger”, and “position”. Each feature represented by a

numeric or Boolean value in the feature vector. The feature details are explained below.

The abbreviations of the features are noted in parenthesis at titles.

Hashtag (#). The feature searches whether any word of a named entity is hashtagged,

written with “#” symbol. The hashtag symbol is used on Twitter to index and highlight

topics and keywords. Hashtagged keyword does not contain any space or punctuation and

can be included anywhere in a tweet. The feature returns a Boolean value.

At (@). The feature has the same process with the hashtag but it seeks ‘at’ sign, written

as “@” symbol, instead of “#”. At sign is used for addressing another Twitter user. Twitter

usernames can only contain alphanumeric characters and underscore which guarantees

mentioned user belongs in NE or not. It returns a Boolean value.

Capital letter (title). The feature checks whether all words in named entity start with an

upper-case letter and the rest of them are lower-case. Symbols and numbers are ignored.

It returns a Boolean value.

All capital (all_capital). The feature checks whether all letters of the named entity are

upper-case. Symbols and numbers are also ignored. It returns a Boolean value.

Part-of-Speech (POS) Tagger (pos). The feature assigns a part-of-speech tag to each

word of NE such as “noun”, “verb”, “adjective”. We use Stanford POS tagger [14] for

this task. We tag each word of NE separately and check whether all words have the same

tag. If they all have the same POS tag, then NE is assigned with the tag. Otherwise, the

NE is labeled as “mixed POS”. To apply the results to the feature vector, we mapped the

tags with numeric values.

Next word POS Tagger (next_pos). The feature assigns a POS tag the following word

after NE. If NE is the last word then the feature returns “0”.

9

Previous word POS Tagger (prev_pos). The feature assigns a POS tag the previous

word of NE. If NE is the first word then feature returns “0”.

Position ratio (position). The feature presents the position of NE in a tweet. It splits

tweet by space and indexes them starting from 1. The first word of NE is accepted as an

index of NE. Comparing indexes from different tweets is inconsistent because the index

is depended on tweet length. Hence, we normalized the index and define a relative

position as shown in (2).

 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 =
𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑤𝑜𝑟𝑑 𝑜𝑓 𝑁𝐸

𝑇𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑑 𝑐𝑜𝑢𝑛𝑡
 (2)

The similarity to the class centroid (cos). The feature computes the cosine similarity

between NE’s vector and the centroid vector of each NER type. All words present in NE’s

are defined as a vector using the precomputed word2vec model, the corpus of 400 million

tweets [8]. Each NE is represented by a single vector computed by the weighted average

of all word vectors within.

Figure 3.1: an example of the “cos” feature

An example of “cos” feature is represented in Figure 3.1, NE vectors are grouped by NER

types to calculate the average vectors of “Person” and “Location”. Each NE has a distance

10

degree between each average vector. For this example, new NE has 2 hidden features as

a part of the “cos” feature; one for “avgperson” and one for “avglocation”. 𝑋1 = cos (𝛼) and

𝑋2 = cos (𝛽) are calculated while preparing the feature vector.

In this study, we use 7 NER types. Therefore, similarity to class centroid consists of 7

hidden features. Each hidden feature returns a numeric value.

3.3 Classifiers

We use 6 supervised baseline classification algorithms;

 Logistic Regression,

 Support Vector Machines (SVM) with “RBF” and “linear” kernels,

 k-Nearest Neighbors (k-NN), k is 5,

 Naive Bayes (NB) with Gaussian distribution,

 Decision Tree with “Gini index” and

 Random Forest with 100 estimator trees as parameters.

3.3.1 Logistic Regression

Logistic regression is a statistical method for analyzing datasets. The method generates a

coefficient for each feature as an independent variable and predicts the probability of

belonging of the feature to a single NER type which is a dependent variable [15].

 𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑖𝑥𝑖 (3)

In the simplified version of logistic regression, shown in (3), “y” is the dependent variable,

“β” is the coefficient of the independent variable, “x” is the independent variable, and “i”

is the number of independent variables.

Logistic regression provides a useful means for modeling the dependence of response

variable on features. However, it requires a large size of samples. Also, independent

11

variables should not be tightly correlated, and an extensive set of features can cause

overfitting problem.

3.3.2 Support Vector Machines

SVM is a supervised machine learning algorithm aiming to define the maximum

separation between two classes [16]. The idea is finding the NER type instances which

are the most likely to the other type, to draw a boundary in-between. These instances are

called support vectors. The hyperplane which leaves the maximum margin from the

support vectors is named as the decision boundary.

Simple SVM can be applied to linearly separable data. In order to use SVM on non-

separable models, a new dimension (deterministic feature) is included in the model to

make the data separable. The method is known as “kernel trick.” In our study, we use two

different kernel options which are “RBF” and “linear.”

SVM can deal with a large number of features but mapping a higher dimensional space

causes highly intensive computation.

3.3.3 K-Nearest Neighbor

k-NN is a simple instance based, lazy-learning algorithm. The algorithm assumes that

there is a proximity between the subjects of the same type within a dataset. The prediction

of the type of input is determined by calculating the average of the closest k training

instances [17]. Selecting k is crucial since it affects the predictions directly. For noisy

datasets, k should be high enough to eliminate noise. For small type instance sets, k should

be low to prevent different class instances. We use k as 5.

Although the algorithm does not require calculation and generalization for training, it has

to store the whole train set. As a result, it needs more storage then computation power.

12

3.3.4 Decision Tree

Decision tree learning is a logic-based tree algorithm. In order to construct a decision tree,

based on feature values, instances are split and sorted accordingly. Each node in the tree

represents a feature, and each branch represents a split condition [18].

There are two critical points for an optimal decision tree; the selection order of features

and the quality of dividing values. Decision tree uses split criterion heuristics with the

intention of the well-constructed tree. We choose “Gini index” for split criterion as our

features produce continuous values, and they can be split into several conditions.

3.3.5 Random Forest

Random forest is an ensemble of n decision trees. Each tree uses a random sub-sample of

a dataset. Complete forest votes for the prediction and average of them used as a final

prediction [19]. A decision tree is heavily dependent on data distribution. Only one tree

can cause an over-fitting problem. Using multiple decision trees with random samples

improves accuracy and controls over-fitting. We use 100 estimator trees in our

experiments.

3.3.6 Naïve Bayes

Naïve Bayes is a learning technique based on Bayes’ theorem with the independence of

predictors [20]. It is called “naïve” because classifier assumes that all the features are

independent. Naïve Bayes calculates the likelihood of an input belonging to each type to

find out the highest probability.

As the assumption is not correct for most of the feature sets, it generally produces less

accurate results than sophisticated classifiers. Despite the low accuracy rate, the primary

advantage of the algorithm is short computational time for training.

13

 𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 (4)

General Bayes formula is given in formula (4) where, P (A|B) indicates the posterior

probability, P (B|A) does the likelihood, P (A) does prior probability, and P (B) does the

marginal likelihood. We use Naïve Bayes classifier with Gaussian likelihood mean in our

study.

4 NER EVALUATION

4.1 Datasets

We consume Named Entities (NE) from 3 different corpora with different layouts for the

study. For unifying the layouts, we create a common format. The common format is tab-

separated and it stores the “tweet id”, “tweet text”, “NE starting index”, “NE ending

index”, “NER type” and “NE” information as follows:

[tweet_ID] [text] [NE_starting_index] [ne_ending_index] [NER_type]

[NE]

One tweet can contain multiple NEs but all NEs are stored individually.

4.1.1 NEEL 2016 Challenge

For benchmarking purposes, we use a publicly available dataset provided by NEEL 2016

Challenge [9]. The source contains only labeled word information and tweet id. The

template of the source file can be described as follows:

[tweet_ID] [word_start_index] [word_end_index] [word_DBpedia_link]

[confidence_score] [NER_type]

For instance:

674869443671941120 93 101 http://dbpedia.org/resource/Egyptians

1 Thing

Since some features require the content of tweet to calculate its score, we should merge

the information above with the tweet. Finding tweets from the tweet ID is a challenging

15

task which is also mentioned in [7] because either some tweets were already deleted or

they are private. Therefore, we cannot retrieve tweets from Twitter. Instead, we have

found all tweets from an open source project from GitHub called Webpack Bundle

Analyzer [21].

The collected tweets are harmonized and merged with the NEEL dataset and stored in a

format where each sample contains the following information: tweet identifier, tweet,

start index of the word, end index of the word, NER type and the word. The resulting

form is illustrated as follows:

674869443671941120 RT @EntheosShines: Just As Some Parents Have A

Favorite Child, Obama Has Favorites (sign at Egyptian Airport)

@chirofrenzy @PatVPeters htt…| 93 101 Thing Egyptian

The corpus contains 4369 unique tweets with 9687 labeled words. It consists of 7 different

labels which are “Person”, “Thing”, “Organization”, “Location”, “Product”, “Event”, and

“Character”. The split ratio is 0.10 which is constituted by training dataset of 4073 unique

tweets and 8665 labeled words and testing dataset of 296 unique tweets and 1022 labeled

words.

4.1.2 Oxtractor

The second corpus is provided by a startup company called Oxtractor focussing on social

data. The corpus holds several information fields about the tweet including text, id,

retweet count, user profile information, media information, language. However, we only

focus on the text, id, entities, language, tokens, and annotation offsets as JSON format.

We have simplified the properties for our study and the data structure of a tweet has

become the following structure:

{

 "text": "Ukraine's pro-Russia rebels hand over Malaysia Airlines

 #MH17's black boxes http://t.co/sWs4wDau3m

 http://t.co/9GyZCurIkM",

 "id": 491401326845510000,

 "entities": ["B-loc", "O", "O", "B-loc", "O", "O", "O", "B-org",

 "I-org", "O", "O", "O", "O", "O"],

 "lang": "en",

 "tokens": ["Ukraine", "'s","pro-", "Russia", "rebels", "hand",

 "over", "Malaysia", "Airlines", "#MH17's", "black",

16

 "boxes", "http://t.co/sWs4wDau3m",

 "http://t.co/9GyZCurIkM"],

 "annotation_offsets": [[0,7], [7,9], [10,14], [14,20], [21,27],

 [28,32], [33,37], [38,46], [47,55],

 [56,61], [64,69], [70,75], [76,98],

 [99,121]]

}

As it is seen in the sample, BIO encoding was applied for tokenizing. There are four

labeled words and three named entities. “B” key represents the beginning of a named

entity, and “I” key represents inside of a named entity. We have applied the tab-separated

format; then the example transforms into three separate samples for our model.

491401326845510000 Ukraine's pro-Russia rebels hand over Malaysia

Airlines #MH17's black boxes http://t.co/sWs4wDau3m

http://t.co/9GyZCurIkM 0 7 Location Ukraine

491401326845510000 Ukraine's pro-Russia rebels hand over Malaysia

Airlines #MH17's black boxes http://t.co/sWs4wDau3m

http://t.co/9GyZCurIkM 14 20 Location Russia

491401326845510000 Ukraine's pro-Russia rebels hand over Malaysia

Airlines #MH17's black boxes http://t.co/sWs4wDau3m

http://t.co/9GyZCurIkM 38 55 Organization Malaysia Airlines

The corpus has only 3 label types; “Person”, “Organization”, and “Location”. It contains

4608 unique tweets with 8264 labeled words. We have split the data into training and

testing by the same ratio used in the previous dataset. Finally, the training dataset consists

of 4056 unique tweets with 7395 labeled words and the testing dataset is constituted by

552 unique tweets with 869 labeled words.

4.1.3 Manually labeled

The third corpus has been created manually during the period of 4 months starting July

6th, 2018 and ending October 21st, 2018. We have collected English tweets posted in 2018

from Twitter Search API1. Keywords cover multiple memorable events mentioned in this

period including

 “World Cup 2018”,

 “U.S. China trade war”,

1 https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets.html

17

 “Death of Anthony Bourdain”,

 “Wacken 2018”,

 “Syrian refugee”,

 “Climate Change”,

 “Marvel”,

 “Avengers”.

While the API provides much information about tweet itself, we only consider “id”,

“text”, and “lang” properties. The basic version of the data is given below:

{

 "statuses":[

 {

 "id": 1014639601313636352,

 "text": "4 of 5 stars to Kitchen Confidential by Anthony

Bourdain https://t.co/6wpo4qZHIG",

 "lang": "en"

 }

]

}

We exclude retweets by a script and we enrich the data with tokenized sentence

information:

{

 "id": 1014639601313636400,

 "text": "4 of 5 stars to Kitchen Confidential by Anthony Bourdain

https://t.co/6wpo4qZHIG",

 "tokens": ["4", "of", "5", "stars", "to", "Kitchen",

"Confidential", "by", "Anthony", "Bourdain",

"https://t.co/6wpo4qZHIG"]

}

Furthermore, we filter the auto-posts from such as news channels and YouTube manually.

Then we label the tweets according to 7 label types which are “Person”, “Thing”,

“Organization”, “Location”, “Product”, “Event”, and “Character”. Labeling process has

been handled manually by using a custom developed tool named Twitter Tagger. The user

interface of the tool is presented in Figure 4.1.

https://t.co/6wpo4qZHIG

18

Figure 4.1: Twitter Tagger tool interface

After labeling, the raw data is transformed into a tab-separated format which is

compatible with our model:

1014639601313636400 4 of 5 stars to Kitchen Confidential by Anthony

Bourdain https://t.co/6wpo4qZHIG 16 36 Product Kitchen Confidential

1014639601313636400 4 of 5 stars to Kitchen Confidential by Anthony

Bourdain https://t.co/6wpo4qZHIG 40 56 Person Anthony Bourdain

There are 3310 unique tweets and 8339 labeled words in the last dataset. We keep the

split ratio close to the other datasets. Training dataset contains 3048 unique tweets and

7505 labeled words, and the testing dataset contains 262 unique tweets and 834 labeled

words.

In addition, we split the manual labeled corpus by 80/20, 70/30, 60/40, and 50/50 train

and test datasets for further evaluation results. The samplings are randomly selected. The

distribution of word occurrences is shown in Table 4.1.

19

Table 4.1: Word occurrences for each split ratio of the manual labeled corpus.

 80/20 70/30 60/40 50/50

 Training Testing Training Testing Training Testing Training Testing

Person 2932 772 2577 1127 2203 1501 1846 1858

Location 915 231 813 333 710 436 568 578

Organization 1060 290 925 425 776 574 643 707

Product 416 87 348 155 285 218 237 266

Event 704 145 618 231 532 317 456 393

Thing 584 125 506 203 445 264 377 332

Character 61 17 48 30 53 25 41 37

TOTAL 6672 1667 5835 2504 5004 3335 4168 4171

The labeled word occurrences for each dataset are represented in Table 4.2.

Table 4.2: Type occurrences in training and testing datasets.

 NEEL 2016 Challenge Oxtractor Manually labeled

 Training Testing Training Testing Training Testing

Person 2845 (32.83%) 337 (32.97%) 3124 (42.24%) 531 (61.10%) 3338 (44.48%) 366 (43.88%)

Location 1868 (21.56%) 43 (4.21%) 2120 (28.67%) 122 (14.04%) 1023 (13.63%) 123 (14.75%)

Organization 1641 (18.94%) 158 (15.46%) 2151 (29.09%) 216 (24.86%) 1196 (15.94%) 154 (18.47%)

Product 1196 (13.80%) 354 (34.64%) - - 458 (6.10%) 45 (5.40%)

Event 482 (5.56%) 24 (2.35%) - - 779 (10.38%) 70 (8.39%)

Thing 570 (6.58%) 49 (4.79%) - - 644 (8.58%) 65 (7.79%)

Character 63 (0.73%) 57 (5.58%) - - 67 (0.89%) 11 (1.32%)

TOTAL 8665 (100%) 1022 (100%) 7395 (100%) 869 (100%) 7505 (100%) 834 (100%)

4.2 Performance Measures

To evaluate the relevance of the results, we choose Precision, Recall, and F1-score. We

also use a confusion matrix to visualize a specific outcome.

Before explaining the statistical metric values, we should define true positive, true

negative, false positive and false negative. These parameters are the basics of the

measurement calculations.

True positive (TP) is the result when the predicted and the actual values are both positive.

True negative (TN) is the result when the predicted and the actual values are both

negative.

20

False positive (FP) is the result when the prediction is positive, but the actual value is

negative.

False negative (FN) is the result when the prediction is negative, but actual is positive.

For a multiclass NER problem, the parameters can be defined for a selected class “C” as

follows:

 All instances of “C” which are predicted as “C” are TP.

 All instances of “non-C” classes which are predicted as “non-C” classes are TN.

 All instances of “non-C” classes which are predicted as “C” are FP.

 All instances of “C” which are predicted as “non-C” classes are FN.

4.2.1 Confusion Matrix

Confusion matrix also known as error matrix is a table layout to describe the performance

of a classification model with comparing actual and predicted results. A simple matrix

layout is given in Table 4.3.

Table 4.3: Layout of the confusion matrix

 Predicted Positive Predicted Negative

Actual Positive TP FP

Actual Negative FN TN

4.2.2 Precision

Precision (P) is the ratio of correct positive results to total positive predictions, as given

in (5). It is a good measure to determine when the cost of FP is high.

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5)

21

4.2.3 Recall

Recall (R) is the ratio of correct positive results to total actual positive values, as given in

(6). When FN is important for the results, recall is the considered measure.

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6)

4.2.4 F1 Score

F1 Score (F1) is the harmonic mean of precision and recall, as given in (7). When we

focus on TP and TN values, F1 Score might give a better result with balancing between

precision and recall [22].

 𝐹1 = 2 ×
𝑃 × 𝑅

𝑃 + 𝑅
 (7)

The notion of the measurements can be applied only to binary classification problems.

Since our classification is multiclass, we practice “micro” and “macro” averaging

approaches. Macro averaging ignores the class-based results and calculates metrics by

counting values globally. And, micro averaging calculates scores for each class and finds

the unweighted mean.

4.3 Approach

Let us describe our approach in this section in terms of steps followed for each dataset.

To compare cosine similarity efficiency for each experimental setup, we split all 3 corpora

to training/testing datasets with a ratio of approximate 0.9 respectively. We run each

corpus with 7 different classifiers with all the combinations of the 9 features. Our

experiment environment consists of 10731 test results as described in (8).

𝐶𝑜𝑟𝑝𝑢𝑠 𝑐𝑜𝑢𝑛𝑡 × 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 𝑐𝑜𝑢𝑛𝑡 × 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑆𝑢𝑏𝑠𝑒𝑡𝑠

= 3 × 7 × (29 − 1) = 10731
(8)

22

We consider micro-averaged F1score of all the results to balance between precision and

recall. We sort feature subsets by F1 scores for each classifier and average of classifier

results in each corpus. Finally, we compare the effects of absence and presence of cosine

similarity on F1 scores and investigated the highest and lowest supportive features of

cosine similarity.

4.4 Implementation

We implement our algorithm using Python 3.6.3 programming language with the

following open source libraries:

 “gensim” [23] for executing word embedding through “word2vec”.

 “NumPy” [24] and “pandas” [25] for handling array calculations.

 “scikit-learn” [26] for feature scaling and classifying trained and tested results.

 “nltk” [27] for tokenizing the tweets and the Part-of-Speech (POS) tagging. It

provides an adaptor for Stanford POS Tagger, which is written in Java.

In addition, we code Twitter Tagger as a Windows Application with .NET Framework

4.5 (C#.) We inspect results and draw charts using Notepad++ and Microsoft Excel.

Our implementation strategy consists of two steps; building the model and evaluating the

model.

4.4.1 Building the model

The stage is dedicated to collecting raw data from various sources, enriching the raw data

with additional information and creating the common format toward the evaluation stage.

As mentioned in 4.1, each corpus has a different layout with different information hence,

we apply separate approaches for each of them. Figure 4.2 shows the overall flow of

building each dataset from their corpora.

23

Figure 4.2: the flowchart of the building stage

NEER 2016 files are stored as tab-separated format and tweet texts are not included in

the file. The texts are collected from another source [21] which is also tab-separated. We

split source files by tab character “\t” line by line, obtained the tweet id, got the matched

id from [21], and merged tweet text with original files to create the common format.

Oxtractor holds every information that our model requires. The source file is stored as

JSON. We parse the JSON objects, remove the unnecessary properties, and convert BIO

format to the common format.

Manual corpus consumed tweets through Twitter Search API with search key “q” and

language key “lang” parameters. We filter tweets starting with “RT” to prevent retweets

and keep only “status.id” and “status.text” fields from responses. We tokenize the

text using “word_tokenize” and “CoreNLPParser” combined from “nltk” library [27] and

add to the response. Each tweet is stored as a single lined separate JSON object in a file

for the labeling tool Twitter Tagger.

Twitter Tagger uses the input file as a stack, it reads the first line, parses the JSON object

and sends the tweet to the interface for tagging. The user marks the word/words from the

interface, selects the NER type then, adds to list, and finally submits the list. After the

submission, each entity is written to the output file as a line compatible with the common

format. The user can also choose to skip a tweet if it is not qualified for tagging. Submitted

or skipped tweets are removed from the input file and return to the beginning until the

input file is empty.

24

Our model also requires POS tagging for tweets, and tagging is a time-consuming process.

To reduce evaluation time we tag the tweets at this step and stored them as a JSON file.

The final task of the stage is splitting the corpora to training and testing datasets. NEEL

2016 corpus was presented as pre-divided training and testing datasets. We implement a

splitting script for Oxtractor and Manual corpora. By giving a testing NE ratio, the script

selects tweets randomly and creates training and testing files. It also divides the POS

tagging file accordingly.

4.4.2 Evaluating the model

Prediction and scoring are calculated in this stage. First, we import the “word2vec” model

using “gensim” library [23], then we import datasets and convert to python dictionaries.

We calculate the centroid class vectors from NEs for the “cos” feature. After we define

the feature set, we calculate “independent variables” (X) from the feature set and define

“dependent variable” (y) from NE for training and testing. As the distance-based

classifiers need normalized values to define more accurate distances, we apply feature

scaling method to X. Next, we run classification algorithms from “scikit-learn” library

[26] and score the predictions. Finally, all the results are printed to output as “csv”

friendly in a detailed format. The flowchart of the implementation is represented in Figure

4.3. During the process, we also use “NumPy” [24] and “pandas” [25] libraries for handling

the array operations.

25

Figure 4.3: the flowchart of the evaluation stage

Due to code optimization made on the previous work [7], calculating all mentioned

classifiers for a feature set takes approximately 10 seconds at Intel Core i7 @ 2.30GHz

CPU and 8 GB RAM. This performance improvement allows us to run all possible feature

set combinations and obtain more detailed outcomes.

5 EVALUATION RESULTS

In this section, we evaluate the results of the combination of 9 different features with 3

different datasets using different split ratios under the baseline classifiers. First, we

compare our measurement metrics with previous works [7], [10], [11], and [12].

Secondly, we focus on feature combinations with cosine similarity feature and

demonstrate the efficiency of it with different corpora and try to find contributive features

of cosine similarity according to average F1 scores. Thirdly, we test and elaborate on the

classifier based F1 scores. Finally, we examine the impact of the training/testing spit ratio

using manual corpus.

5.1 Related Work Comparison

Evaluations of the combinations in the previous study [7] show that there are more

representative feature sets for NEEL 2016 dataset. The SVM classifier with RBF kernel

using the feature “title”, “position”, “next_pos”, and “cos” achieves the highest

statistical metric values; the precision of 0.74, recall of 0.68 and an F1 micro average of

0.67. The classifier predicts 691 true label types correctly from 921 ground truth label

type.

27

Table 5.1: Confusion matrix of SVM classifier with RBF kernel with “cos”, “all capital”

and “#” features for 7 label types

 Prediction

 Person Org. Location Thing Product Event Character

A
ct

u
a

l

Person 321 7 1 4 4 0 0

Organization 69 61 2 18 7 1 0

Location 7 3 29 2 2 0 0

Thing 5 4 0 38 2 0 0

Product 134 8 3 4 203 2 0

Event 10 1 0 1 0 12 0

Character 19 2 0 0 9 0 27

The label “Person” carries the highest portion of the labeled data. According to the

confusion matrix of the experiment, given in Table 5.1, the majority of the misclassified

NEs are labeled as “Person” even though most of the actual “Person” NEs are labeled

correctly. It causes high on recall but low on precision. In contrast, the “Character” label

has no false positive value but half of the actual values is falsely labeled. “Location” has

the highest F1 score with 0.74 and “Organization” has the lowest F1 score with 0.5. Table

5.2 represents the details of the classification results for each feature.

Table 5.2: The classification report of the features

 precision recall F1 score

Person 0.57 0.95 0.71

Organization 0.71 0.39 0.5

Location 0.83 0.67 0.74

Thing 0.57 0.78 0.66

Product 0.89 0.57 0.7

Event 0.8 0.5 0.62

Character 1 0.47 0.64

In Table 5.3 the precision, recall, and F1 statistical metric values are benchmarked by

using the dataset provided by NEEL 2016 Challenge [9]. The methods in [10] [11] and

[12] presented during the NEEL 2016 workshop and the method presented by [7]

evaluates these three methods while testing the same dataset.

28

Table 5.3: The performance of our approach is compared with other studies

Study Precision Recall F1 micro avg.

SVM with RBF, 3 features + Cosine Similarity 0.74 0.68 0.676

A feature-based approach performing Stanford NER, [10] 0.729 0.626 0.674

Logistic Regression, 5 features + Cosine Similarity, [7] 0.71 0.56 0.58

TwitIE (CRF Model), [12] 0.435 0.459 0.447

Stanford NER, MITIE, twitter_nlp and TwitIE, [11] 0.587 0.287 0.386

5.2 Performance Metrics Based On Features

The average scores of all experiments in terms of datasets are represented in Figure 5.1.

All datasets draw the same pattern wherein the absence of cosine similarity a dramatic

drop is observed. There are 3 parameters that we may examine: the count of label types,

the volumes and the label distribution of training/testing datasets.

Figure 5.1: the average F1, recall and precision scores of each dataset. “A” represents the

features with cosine similarity “B” represents the features without cosine similarity.

Feature sets are ordered by manual dataset F1 scores.

When we concentrate on comparing dataset results, the most successful results are

achieved by Manual dataset even though higher prediction scores are expected from

Oxtractor as it has 3 label types. However, without cosine similarity, although the F1

scores decrease, Oxtractor results give the highest scores as expected. Cosine similarity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A B

S
C

O
R

E
S

FEATURE SETS

manual_average_f1 manual_average_recall manual_average_precision

neel_average_f1 neel_average_recall neel_average_precision

oxtractor_average_f1 oxtractor_average_recall oxtractor_average_precision

29

feature averages the named entity vectors by their label types. When the diversity of NE

reduces, average vectors become more accurate. As the manual dataset focuses on

specific topics, clusters of NEs are smaller than the other datasets using this study.

In terms of the volume of the datasets, we have noted that there is not a notable difference

between the datasets.

The other distinguishing parameter is the label distribution of training/testing datasets. It

is seen in Table 4.2 that Manual dataset has the most similar distribution of

training/testing datasets while the most variable distribution of training/testing datasets

of NEEL 2016. We have come to the conclusion that cosine similarity might be applied

more efficiently to evenly distribute training/testing datasets.

Our final task is finding supportive features with cosine similarity. We analyze the

average F1 scores in the absence and presence of the features along with cosine similarity

as seen in Table 5.4. “next_pos” and “position” features decrease scores for all datasets.

The other features have positive and negative effects according to the dataset. However,

the impacts are negligible compared to the cosine similarity itself.

Table 5.4: the F1 scores of the presence and the absence of each feature with “cos”

feature.

 NEEL 2016 Oxtractor Manual

 Presence Absence Ratio Presence Absence Ratio Presence Absence Ratio

0.523 0.546 -4.21% 0.755 0.748 0.94% 0.737 0.747 -1.34%

@ 0.532 0.537 -0.93% 0.750 0.753 -0.40% 0.742 0.742 0.00%

title 0.535 0.533 0.38% 0.750 0.753 -0.40% 0.740 0.743 -0.40%

all_capital 0.537 0.532 0.94% 0.753 0.751 0.27% 0.742 0.741 0.13%

pos 0.531 0.538 -1.30% 0.750 0.753 -0.40% 0.744 0.739 0.68%

next_pos 0.533 0.536 -0.56% 0.750 0.753 -0.40% 0.739 0.744 -0.67%

prev_pos 0.537 0.532 0.94% 0.750 0.753 -0.40% 0.741 0.742 -0.13%

position 0.531 0.538 -1.30% 0.749 0.754 -0.66% 0.741 0.742 -0.13%

5.3 Performance Metrics of the Classifiers

Since the average scores are an acceptable level, to further elaborate the performance of

multi-class NER prediction, we analyze F1 score patterns of each classifier for each

30

corpus. In Figure 5.2, Figure 5.3, and Figure 5.4 for each classifier using the datasets, the

responses of the F1 metric value with respect to the feature suite constituted by the

combination of 8 features and the cosine similarity feature are compared. Each stand-

alone feature is combined with the cosine similarity and then, the suite is varied by

combining these features and augmenting with the cosine similarity. Overall, there are 8

features and the cosine similarity, which gives 511 combinations. The F1 metric values

for the presence of the cosine similarity are plotted under the area denoted by A. Then,

the F1 metric values for the absence of the cosine similarity are plotted under the area B.

The results show that the behaviors of the classifiers do not change dramatically when the

corpus is changed. All classifiers produce higher scores when the feature “cos” is included

in the feature set and there is a significant drop at scores when “cos” is excluded. The

only exception of the pattern is Gaussian NB at Oxtractor dataset. It evaluates

unpredictable scores within the range of 0.563 and 0.252.

Figure 5.2: the manual dataset F1 scores of each classifier. “A” represents the features

with cosine similarity “B” represents the features without cosine similarity. Classifiers

are ordered by average F1 scores.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A B

S
C

O
R

E
S

FEATURE SETS

f1_logistic_regression f1_svm_rbf f1_svm_linear

f1_knn f1_gaussian f1_decision_tree

f1_random_forest average_f1

31

Figure 5.3: NEEL 2016 dataset F1 scores of each classifier. “A” represents the features

with cosine similarity “B” represents the features without cosine similarity. Classifiers

are ordered by average F1 scores.

Figure 5.4: Oxtractor dataset F1 scores of each classifier. “A” represents the features with

cosine similarity “B” represents the features without cosine similarity. Classifiers are

ordered by average F1 scores.

The “cos” feature has a significant impact on the classifier performance in comparison

with respect to the suite of other 8 features. In Table 5.5, the F1 statistical metric value

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A B

S
C

O
R

E
S

FEATURE SETS

f1_logistic_regression f1_svm_rbf f1_svm_linear

f1_knn f1_gaussian f1_decision_tree

f1_random_forest average_f1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A B

S
C

O
R

E
S

FEATURE SETS

f1_logistic_regression f1_svm_rbf f1_svm_linear

f1_knn f1_gaussian f1_decision_tree

f1_random_forest average_f1

32

achieved by classifiers with and without (denoted by ‘w/o’) the presence of the “cos”

feature in the feature suite are compared. The highest F1 metric values assured by 3

classifiers using the feature suite including the “cos” feature are logistic regression, SVM

and random forest. The ranking varies among 3 classifiers depending on the particular

dataset. The performance of logistic regression and SVM decreases dramatically when

the “cos” feature is excluded. The most successful 3 classifiers using the combination of

features excluding the “cos” feature are random forest, decision tree, and k-NN.

Table 5.5: with cos, without cos and average F1 scores for each dataset.

 Manual NEEL 2016 Oxtractor

 w/ cos

avg.

w/o cos

avg.

avg. w/ cos

avg.

w/o cos

avg.

avg. w/ cos

avg.

w/o cos

avg.

avg.

Logistic

Regression

0.795 0.172 0.484 0.569 0.129 0.349 0.744 0.431 0.588

SVM with

RBF

0.785 0.238 0.512 0.578 0.143 0.361 0.729 0.451 0.590

SVM with

Linear

0.810 0.181 0.496 0.576 0.117 0.347 0.742 0.421 0.582

k-NN 0.764 0.297 0.531 0.477 0.146 0.312 0.680 0.450 0.565

Gaussian

NB

0.574 0.158 0.367 0.341 0.120 0.231 0.478 0.396 0.437

Decision

Tree

0.640 0.314 0.477 0.370 0.153 0.262 0.653 0.475 0.564

Random

Forest

0.824 0.323 0.574 0.512 0.157 0.335 0.717 0.481 0.599

Additionally, we note the highest F1 scores during the experiments shown as in Table

5.6. As the average scores in Figure 5.1, the highest result belongs to the Manual dataset

followed by Oxtractor and NEEL 2016. The scores are produced by different classifiers.

All three feature sets contain the features “title”, and “cos” however as we already

mention in section 5.2 the features except “cos” have not a significant impact on

evaluation results individually.

33

Table 5.6: the highest F1 scores for each dataset.

 Score Classifier Feature set

Manual 0.847 Random Forest @, title, all_capital, next_pos, prev_pos, cos

NEEL 2016 0.652 SVM with RBF title, position, next_pos, and cos

Oxtractor 0.767 Logistic Regression @, title, pos, position, prev_pos, and cos

5.4 Performance Metrics Based On The Training and Testing Splitting Ratio

Our final task is to evaluate the scores when training versus testing split ratio is changed.

We choose manual corpus for the experiment to investigate its behavior under different

samplings since it is generated in the wild during this study. Whereas samplings are

random as mentioned in section 4.1, NER type occurrence rates are similar, see for

instance Table 4.2.

Figure 5.5: the average F1, recall and precision scores of each split ratio of the manual

dataset. “A” represents the features with cosine similarity “B” represents the features

without cosine similarity.

The average F1 results with “cos” vary between 0.697 and 0.774. Though the highest and

the lowest points of the results are similar in Figure 5.5. However when we average F1

scores with “cos”, 80/20 ratio is the optimum sampling for the corpus as seen in Figure

5.6.

0

0.2

0.4

0.6

0.8

1

A B

S
C

O
R

E
S

FEATURE SETS

average_f1 average_recall average_precision

20_average_f1 20_average_recall 20_average_precision

30_average_f1 30_average_recall 30_average_precision

40_average_f1 40_average_recall 40_average_precision

50_average_f1 50_average_recall 50_average_precision

34

Figure 5.6: the average F1 scores with "cos" for each sampling

Random Forest classifier reaches the highest F1 scores independent of the sampling sizes.

The highest F1 score is achieved with 0.859 by using 80/20 splitting ratio. We also inspect

that using smaller splitting ratio causes relatively low scores as seen in Table 5.7.

Table 5.7: the best scores of the manual corpus according to the split ratio

splitting ratio classifier precision recall f1-score

90/10 Random Forest 0.882 0.819 0.847

80/20 Random Forest 0.903 0.824 0.859

70/30 Random Forest 0.862 0.784 0.816

60/40 Random Forest 0.860 0.799 0.826

50/50 Random Forest 0.848 0.767 0.802

For better understanding, the results given in Table 5.7 is visualized in Figure 5.7. Each

splitting ratio is represented by 3 metrics; precision, recall, and F1 score respectively.

Figure 5.7: the highest precision, recall and F1 metric values provided by Random

Forest for each training/testing splitting ratio

0.690

0.700

0.710

0.720

0.730

0.740

0.750

90/10 80/20 70/30 60/40 50/50
F

1
 S

C
O

R
E

TRAINING/TESTING RATIO

0.882
0.903

0.862 0.86
0.848

0.819 0.824

0.784
0.799

0.767

0.847
0.859

0.816 0.826
0.802

0.65

0.7

0.75

0.8

0.85

0.9

0.95

90/10 80/20 70/30 60/40 50/50

V
A

L
U

E
S

TRAINING/TESTING RATIO

precision recall f1-score

6 CONCLUSION

6.1 Objective Completion

Because of the unstructured nature of the tweets, supervised classification features, which

are effective on more structured texts like newspapers or articles, do not have an impact

on the classifiers. To discover the more representative features, we investigate and

analyze syntactic, semantic and domain-specific features on different corpora. First, we

gathered all tweets of NEEL 2016 Challenge used in [7] to work on. Second, we reach to

another tweet corpus from a start-up focussing on NLP on social media called Oxtractor.

Finally, we create our own corpus manually from Twitter in the wild.

The study [7] already states that “cos” is an effective feature for predicting NEs from

tweet data. To examine the performance of the feature we add three new supportive

features to the study and execute all combinations of features overall selected classifiers

for each dataset. We use the confusion matrix, precision, recall, and F1 score to evaluate

results.

Through applying all possible feature sets to each classifier, we may find the best fitting

combination for NEEL 2016 Challenge dataset. SVM with RBF kernel achieved 0.67 F1

scores with “title”, “position”, “next_pos”, and “cos” features.

Focusing on “cos” shows that, neither corpus volume nor NER type count is critical for

the performance of the feature. We expect that Oxtractor corpus should achieve the best

scores since it contains 3 NER types. However, manual corpus with 7 NER types has the

best scores with “cos”. It leads us to the point that results of working on datasets which

are focusing on narrowed topics are more successful with “cos”. Despite the fact that

36

“cos” is the most significant feature for all experiments, we may not find any specific

supportive feature for “cos” since there is not any common feature among the feature sets

which carries higher FI scores.

We should also analyze the behaviors of classifiers when “cos” is included in the feature

sets. Besides the fact that the positive impact of “cos” is observable over all classifiers,

the outcomes of Logistic regression, SVM (with 2 different kernels) and random forest

are dramatically increased. As random forest, decision tree, and k-NN reach higher scores

with feature sets non-including “cos”, the overall results highlight that random forest is

significantly adaptive for both cases.

In addition, the split ratio of training/testing datasets does not affect outcomes

significantly on manual corpus nevertheless, dividing corpus by 80/20 gives slightly

better results among the other experiments.

6.2 Future Work

Looking forward, further attempts could be built by feature-inferring neural network

models approach with using the “cos” feature in order to challenge the state-of-the-art

“cos” implementation performance on our new presented corpus. We believe that deep

learning application with “cos” feature can improve our results.

REFERENCES

[1] V. Yadav and S. Bethard, "A Survey on Recent Advances in Named Entity

Recognition from Deep Learning models," in COLING, 2018.

[2] R. Grishman and B. Sundheim, "Message Understanding Conference-6: A Brief

History," in Proceedings of the 16th Conference on Computational Linguistics -

Volume 1, Stroudsburg, Association for Computational Linguistics, 1996, pp. 466-

471.

[3] E. Gabrilovich and S. Markovitch, "Feature generation for text categorization using

world knowledge.," in IJCAI, Edinburgh, 2005.

[4] B. W. Locke, "Named entity recognition: adapting to microblogging," in Computer

Science Undergraduate Contributions, 2009.

[5] M. Pennacchiotti and A. M. Popescu, "A machine learning approach to twitter user

classification," in Fifth International AAAI Conference on Weblogs and Social

Media, Barcelona, 2011.

[6] M. Tomas, C. Kai, C. Greg and D. Jeffrey, "Efficient estimation of word

representations in vector space," in ICLR Workshop, Scottsdale, 2013.

[7] M. Taşpınar, M. C. Ganiz and T. Acarman, "A Feature Based Simple Machine

Learning Approach with Word Embeddings to Named Entity Recognition on

Tweets," in Natural Language Processing and Information Systems, Liège, 2017.

[8] G. Fréderic, V. Baptist, D. N. Wesley and V. d. W. Rik, "Named Entity Recognition

for Twitter Microposts using Distributed Word Representations," in Proceedings of

the Workshop on Noisy User-generated Text, Beijing, 2015.

[9] G. Rizzo, M. v. Erp, J. Plu and R. Troncy, "Making Sense of Microposts

(#Microposts2016) Named Entity rEcognition and Linking (NEEL) Challenge," in

38

6th Workshop on 'Making Sense of Microposts' co-located with the 25th

International World Wide Web Conference (WWW 2016), Montréal, 2016.

[10] S. Ghosh, P. Maitra and D. Das, "Feature Based Approach to Named Entity

Recognition and Linking for Tweets," in #Microposts, 2016.

[11] K. Greenfield, R. S. Caceres, M. Coury, K. Geyer, Y. Gwon, J. Matterer, A.

Mensch, C. S. Sahin and O. Simek, "A Reverse Approach to Named Entity

Extraction and Linking in Microposts," in #Microposts, 2016.

[12] P. Torres-Tramón, H. Hromic, B. Walsh, B. R. Heravi and C. Hayes,

"Kanopy4Tweets: Entity Extraction and Linking for Twitter," in #Microposts,

2016.

[13] W. J. Black, F. Rinaldi and D. Mowatt, "FACILE: Description of the NE System

Used for MUC-7," in Seventh Message Understanding Conference (MUC-7):

Proceedings of a Conference Held in Fairfax, Virginia, April 29 - May 1, 1998,

Virginia, 1998.

[14] K. Toutanova, D. Klein, C. D. Manning and Y. Singer, "Feature-rich Part-of-speech

Tagging with a Cyclic Dependency Network," in Proceedings of the 2003

Conference of the North American Chapter of the Association for Computational

Linguistics on Human Language Technology - Volume 1, Edmonton, 2003.

[15] J. A. Nelder and R. W. M. Wedderburn, "Generalized Linear Models," Journal of

the Royal Statistical Society: Series A (General), vol. 135, no. 3, pp. 370-384, 1972.

[16] V. N. Vapnik, The Nature of Statistical Learning Theory, Berlin, Heidelberg:

Springer-Verlag, 1995.

[17] M.-L. Zhang and Z.-H. Zhou, "ML-KNN: A lazy learning approach to multi-label

learning," in Pattern Recognition, Volume 40, Issue 7, Nanjing, Elsevier, 2007, pp.

2038-2048.

[18] J. R. Quinlan, "Induction of Decision Trees," Mach. Learn., vol. 1, no. 1, pp. 81-

106, 1986.

[19] L. Breiman, "Random Forests," Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.

39

[20] D. K. Lewis, "Naive (Bayes) at forty: The independence assumption in information

retrieval," in Machine Learning: ECML-98, Berlin, Heidelberg, Springer Berlin

Heidelberg, 1998, pp. 4-15.

[21] Y. Grunin and V. Laakso, "Github," 2016. [Online]. Available:

https://github.com/webpack-contrib/webpack-bundle-analyzer.

[22] N. Chinchor, "MUC-4 Evaluation Metrics," in Proceedings of the 4th Conference

on Message Understanding, Stroudsburg, Association for Computational

Linguistics, 1992, pp. 22-29.

[23] R. Řehůřek and P. Sojka, "Software Framework for Topic Modelling with Large

Corpora," in Proceedings of LREC 2010 workshop New Challenges for NLP

Frameworks, Valletta, University of Malta, 2010, pp. 46-50.

[24] T. E. Oliphant, Guide to NumPy, CreateSpace Independent Publishing Platform,

2015.

[25] W. McKinney, "Data Structures for Statistical Computing in Python," in

Proceedings of the 9th Python in Science Conference, 2010.

[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.

Cournapeau, M. Brucher, M. Perrot and É. Duchesnay, "Scikit-learn: Machine

Learning in Python," J. Mach. Learn. Res., Vols. 12, 2/1/2011, pp. 2825-2830,

2011.

[27] S. Bird, E. Klein and E. Loper, Natural Language Processing with Python, O'Reilly

Media, 2009.

APPENDICES

Software Source Code.

main.py

from Session import Session

from ner.constants import Constants

from ner.ner_experiment import NerExperiment

import sys

import warnings

if not sys.warnoptions:

 warnings.simplefilter("ignore")

features = [

 Constants.FEATURE_HASHTAG,

 Constants.FEATURE_AT,

 Constants.FEATURE_TITLE,

 Constants.FEATURE_ALL_CAPITAL,

 Constants.FEATURE_POS,

 Constants.FEATURE_POSITION,

 Constants.FEATURE_NEXT_POS,

 Constants.FEATURE_PREV_POS,

 Constants.FEATURE_COSINE

]

train_path = 'source/ner/manual_neel_train.txt'

test_path = 'source/ner/manual_neel_test.txt'

data_train = []

data_test = []

with open(train_path, encoding="utf8") as file:

 for row in file:

 data_train.append(row)

with open(test_path, encoding="utf8") as file:

 for row in file:

 data_test.append(row)

experiment = NerExperiment([])

session = Session(features, data_train, data_test, type(experiment))

session.run(Session.OutputType.csv_friendly, True)

session.py

import itertools

from enum import Enum

from sklearn import metrics, svm

from sklearn.ensemble import RandomForestClassifier

from sklearn.linear_model import LogisticRegression

from sklearn.naive_bayes import GaussianNB

from sklearn.neighbors import KNeighborsClassifier

from sklearn.preprocessing import StandardScaler

from sklearn.tree import DecisionTreeClassifier

41

import Experiment

class Session:

 class OutputType(Enum):

 detailed = 0

 csv_friendly = 1

 LOGISTIC_REGRESSION = 'logistic_regression'

 SVM_RBF = 'svm_rbf'

 SVM_LINEAR = 'svm_linear'

 KNN = 'knn'

 GAUSSIAN = 'gaussian'

 DECISION_TREE = 'decision_tree'

 RANDOM_FOREST = 'random_forest'

 def __init__(self, feature_set: list, train_data: list, test_data: list,

 experiment: Experiment):

 self.experiment = experiment

 self.train_data = train_data

 self.test_data = test_data

 self.feature_set = feature_set

 self.output = []

 self.classifier_set = [self.LOGISTIC_REGRESSION,

 self.SVM_RBF,

 self.SVM_LINEAR,

 self.KNN,

 self.GAUSSIAN,

 self.DECISION_TREE,

 self.RANDOM_FOREST]

 def run(self, output_type: OutputType, create_all_combinations=False):

 if create_all_combinations:

 all_combinations = itertools.chain(

 *[itertools.combinations(self.feature_set, i + 1)

 for i, _ in enumerate(self.feature_set)])

 feature_sets = list(all_combinations)

 else:

 feature_sets = [self.feature_set]

 complete_percentage = -1

 for index, feature_set in enumerate(feature_sets):

 if complete_percentage < int(index / len(feature_sets) * 100):

 complete_percentage = int(index / len(feature_sets) * 100)

 print('0% [{}{}] 100% - {}%'.format('=' * complete_percentage,

 '.' * (100 -

complete_percentage),

 complete_percentage))

 self.__add_to_output('feature_set', feature_set, True)

 experiment = self.experiment(feature_set)

 scalar = StandardScaler()

 X_train, y_train = experiment.run(self.train_data, True)

 X_train = scalar.fit_transform(X_train)

 X_test, y_test = experiment.run(self.test_data, False)

 X_test = scalar.transform(X_test)

 for classifier_name in self.classifier_set:

 y_prediction = self.__predict_by_classifier(classifier_name,

X_train,

 y_train, X_test)

 self.__calculate_score_and_to_output(y_test, y_prediction,

classifier_name)

 if output_type == Session.OutputType.detailed:

 self.__print_detailed_output()

 elif output_type == Session.OutputType.csv_friendly:

 self.__print_csv_friendly_output()

 self.output = []

42

 def __predict_by_classifier(self, classifier_name, X_train, y_train,

X_test):

 if classifier_name == self.LOGISTIC_REGRESSION:

 return self.__run_logistic_regression(X_train, y_train, X_test)

 if classifier_name == self.SVM_RBF:

 return self.__run_svc_rbf(X_train, y_train, X_test)

 if classifier_name == self.SVM_LINEAR:

 return self.__run_svc_linear(X_train, y_train, X_test)

 if classifier_name == self.KNN:

 return self.__run_k_neighbors(X_train, y_train, X_test)

 if classifier_name == self.GAUSSIAN:

 return self.__run_gaussian(X_train, y_train, X_test)

 if classifier_name == self.DECISION_TREE:

 return self.__run_decision_tree(X_train, y_train, X_test)

 if classifier_name == self.RANDOM_FOREST:

 return self.__run_random_forest(X_train, y_train, X_test)

 return None

 def __run_logistic_regression(self, X_train, y_train, X_test):

 classifier = LogisticRegression(random_state=0)

 classifier.fit(X_train, y_train)

 return classifier.predict(X_test)

 def __run_svc_rbf(self, X_train, y_train, X_test):

 classifier = svm.SVC(kernel='rbf', random_state=0)

 classifier.fit(X_train, y_train)

 return classifier.predict(X_test)

 def __run_svc_linear(self, X_train, y_train, X_test):

 classifier = svm.SVC(kernel='linear', random_state=0)

 classifier.fit(X_train, y_train)

 return classifier.predict(X_test)

 def __run_k_neighbors(self, X_train, y_train, X_test):

 classifier = KNeighborsClassifier(p=2)

 classifier.fit(X_train, y_train)

 return classifier.predict(X_test)

 def __run_gaussian(self, X_train, y_train, X_test):

 classifier = GaussianNB()

 classifier.fit(X_train, y_train)

 return classifier.predict(X_test)

 def __run_decision_tree(self, X_train, y_train, X_test):

 classifier = DecisionTreeClassifier(random_state=0)

 classifier.fit(X_train, y_train)

 return classifier.predict(X_test)

 def __run_random_forest(self, X_train, y_train, X_test):

 classifier = RandomForestClassifier(n_estimators=100, random_state=0)

 classifier.fit(X_train, y_train)

 return classifier.predict(X_test)

 def __calculate_score_and_to_output(self, y_test, y_prediction,

classifier):

 self.__add_to_output('never_predicted_' + classifier,

 set(y_test) - set(y_prediction))

 self.__add_to_output('confusion_matrix_' + classifier,

 metrics.confusion_matrix(y_test, y_prediction))

 self.__add_to_output('classification_report_' + classifier,

 metrics.classification_report(y_test,

y_prediction))

 self.__add_to_output('f1_macro_' + classifier,

 metrics.f1_score(y_test, y_prediction,

average='macro'))

 self.__add_to_output('f1_micro_' + classifier,

43

 metrics.f1_score(y_test, y_prediction,

average='micro'))

 self.__add_to_output('recall_' + classifier,

 metrics.recall_score(y_test, y_prediction,

average='macro'))

 self.__add_to_output('precision_' + classifier,

 metrics.precision_score(y_test, y_prediction,

 average='macro'))

 def __add_to_output(self, key, value, is_new_element=False):

 if is_new_element or len(self.output) == 0:

 self.output.append({})

 self.output[-1][key] = value

 def __print_detailed_output(self):

 last_feature_set = []

 for element in self.output:

 if last_feature_set != element['feature_set']:

 print('+++ Features: {} +++'.format(element['feature_set']))

 last_feature_set = element['feature_set']

 for classifier in self.classifier_set:

 print('++ {} ++'.format(classifier))

 print('+ Confusion Matrix +')

 print(element['confusion_matrix_' + classifier])

 print('+ Classification Report +')

 print(element['classification_report_' + classifier])

 print('+ F1 Micro Average +')

 print(element['f1_micro_' + classifier])

 print('+ F1 Macro Average +')

 print(element['f1_macro_' + classifier])

 print('+ No Predicted Labels +')

 print(element['never_predicted_' + classifier])

 def __print_csv_friendly_output(self):

 line = ''

 for classifier in self.classifier_set:

 line += '\tf1_{}'.format(classifier)

 for classifier in self.classifier_set:

 line += '\trecall_{}'.format(classifier)

 for classifier in self.classifier_set:

 line += '\tprecision_{}'.format(classifier)

 print(line)

 line = ''

 for element in self.output:

 line += '{}'.format(element['feature_set'])

 for classifier in self.classifier_set:

 line += '\t{}'.format(element['f1_macro_' + classifier])

 for classifier in self.classifier_set:

 line += '\t{}'.format(element['recall_' + classifier])

 for classifier in self.classifier_set:

 line += '\t{}'.format(element['precision_' + classifier])

 print(line)

experiment.py

class Experiment:

 def __init__(self, features: list):

 self.features = features

 def run(self, data: list, is_train: bool):

 pass

ner_experiment.py

44

import json

import gensim

import pandas as pd

from numpy.core.multiarray import array

from Experiment import Experiment

from ner.constants import Constants

from ner.features import Features

from ner.calculations import ner_to_numeric

from ner.utils import get_micropost_data_with_model

class NerExperiment(Experiment):

 word2vec_path = "ner/source/word2vec_twitter_model.bin"

 pos_test_path = "ner/source/POS_manual_neel_test.json"

 pos_train_path = "ner/source/POS_manual_neel_train.json"

 word2vec = None

 pos_train = None

 pos_test = None

 data_train = None

 data_test = None

 average_train = None

 average_test = None

 def __init__(self, features: list):

 if NerExperiment.word2vec is None:

 NerExperiment.word2vec =

gensim.models.KeyedVectors.load_word2vec_format(

 NerExperiment.word2vec_path,

 binary=True,

 unicode_errors='ignore')

 if NerExperiment.pos_train is None:

 NerExperiment.pos_train = json.loads(

 open(NerExperiment.pos_train_path, encoding='utf8').read())

 if NerExperiment.pos_test is None:

 NerExperiment.pos_test = json.loads(

 open(NerExperiment.pos_test_path, encoding='utf8').read())

 super(NerExperiment, self).__init__(features)

 def run(self, data: list, is_train: bool):

 if is_train and NerExperiment.data_train is None:

 NerExperiment.data_train, NerExperiment.average_train = \

 get_micropost_data_with_model(

 data,

 NerExperiment.word2vec)

 if not is_train and NerExperiment.data_test is None:

 NerExperiment.data_test, NerExperiment.average_test = \

 get_micropost_data_with_model(

 data,

 NerExperiment.word2vec)

 if is_train:

 words = NerExperiment.data_train

 pos = NerExperiment.pos_train

 averages = NerExperiment.average_train

 else:

 words = NerExperiment.data_test

 pos = NerExperiment.pos_test

 averages = NerExperiment.average_test

 y = []

 X = {}

 for f in self.features:

 if f == Constants.FEATURE_COSINE:

 X[Constants.AVG_PERSON] = []

 X[Constants.AVG_ORGANIZATION] = []

 X[Constants.AVG_LOCATION] = []

 '''7 NER'''

45

 X[Constants.AVG_THING] = []

 X[Constants.AVG_PRODUCT] = []

 X[Constants.AVG_EVENT] = []

 X[Constants.AVG_CHARACTER] = []

 else:

 X[f] = []

 features = Features(words)

 for i in range(len(words)):

 y.append(ner_to_numeric(words[i]['NER']))

 for f in self.features:

 if f == Constants.FEATURE_HASHTAG:

 X = features.get_hashtag_feature(X, i)

 if f == Constants.FEATURE_AT:

 X = features.get_at_feature(X, i)

 if f == Constants.FEATURE_TITLE:

 X = features.get_title_feature(X, i)

 if f == Constants.FEATURE_ALL_CAPITAL:

 X = features.get_all_capital_feature(X, i)

 if f == Constants.FEATURE_POS:

 X = features.get_pos_feature(X, i, pos)

 if f == Constants.FEATURE_POSITION:

 X = features.get_position_feature(X, i)

 if f == Constants.FEATURE_COSINE:

 X = features.get_cosine_similarity_features(X, i, averages,

NerExperiment.word2vec)

 if f == Constants.FEATURE_NEXT_POS:

 X = features.get_next_pos_feature(X, i, pos)

 if f == Constants.FEATURE_PREV_POS:

 X = features.get_prev_pos_feature(X, i, pos)

 X = pd.DataFrame(X)

 y = array(y)

 return X, y

calculations.py

def score_to_numeric(score):

 """For Stanford POS tagger String to Numeric value"""

 score_dic = {

 'CC': 1, 'CD': 2, 'DT': 3, 'EX': 4, 'FW': 5, 'IN': 6, 'JJ': 7, 'JJR': 8,

 'JJS': 9, 'LS': 10, 'MD': 11, 'NN': 12, 'NNS': 13, 'NNP': 14, 'NNPS':

15,

 'PDT': 16, 'POS': 17, 'PRP': 18, 'PRP$': 19, 'RB': 20, 'RBR': 21, 'RBS':

22,

 'RP': 23, 'SYM': 24, 'TO': 25, 'UH': 26, 'VB': 27, 'VBD': 28, 'VBG': 29,

 'VBN': 30, 'VBP': 31, 'VBZ': 32, 'WDT': 33, 'WP': 34, 'WP$': 35, 'WRB':

36,

 '.': 37, ':': 38, ',': 39, '``': 40, '#': 41, '$': 42, '"': 43, '(': 44,

')': 45

 }

 return score_dic.get(score, 46)

def ner_to_numeric(ner):

 """For NER Types String to Numeric value"""

 ner_dic = {

 'Person': 1,

 'Organization': 2,

 'Location': 3,

 'Thing': 4,

 'Product': 5,

 'Event': 6,

 'Character': 7

 }

46

 result = ner_dic.get(ner, 0)

 if result == 0:

 print(ner)

 return result

constants.py

class Constants:

 FEATURE_HASHTAG = 'Hashtag'

 FEATURE_AT = 'At'

 FEATURE_TITLE = 'Title'

 FEATURE_ALL_CAPITAL = 'All Capital'

 FEATURE_POS = 'POS Tagger'

 FEATURE_POSITION = 'Position'

 FEATURE_NEXT_POS = 'Next POS Tagger'

 FEATURE_PREV_POS = 'Prev POS Tagger'

 FEATURE_COSINE = 'Cosine'

 AVG_PERSON = 'Avg Person'

 AVG_ORGANIZATION = 'Avg Organization'

 AVG_LOCATION = 'Avg Location'

 AVG_THING = 'Avg Thing'

 AVG_PRODUCT = 'Avg Product'

 AVG_EVENT = 'Avg Event'

 AVG_CHARACTER = 'Cos Character'

features.py

import numpy as np

from scipy import spatial

from ner.constants import Constants

from ner.calculations import score_to_numeric

class Features:

 def __init__(self, words):

 self.words = words

 def get_hashtag_feature(self, X, index):

 dic = self.words[index]

 X[Constants.FEATURE_HASHTAG].append(

 '#' in dic['word'] or dic['tweet'][dic['start'] - 1] == '#')

 return X

 def get_at_feature(self, X, index):

 dic = self.words[index]

 X[Constants.FEATURE_AT].append(

 '@' in dic['word'] or dic['tweet'][dic['start'] - 1] == '@')

 return X

 def get_title_feature(self, X, index):

 word = self.words[index]['word']

 X[Constants.FEATURE_TITLE].append(word.istitle())

 return X

 def get_all_capital_feature(self, X, index):

 word = self.words[index]['word']

 X[Constants.FEATURE_ALL_CAPITAL].append(word.isupper())

 return X

47

 def get_pos_feature(self, X, index, pos):

 dic = self.words[index]

 tags = pos.get('{}_{}_{}'.format(dic['id'], dic['start'], dic['word']),

[])

 if not tags:

 X[Constants.FEATURE_POS].append(0)

 else:

 # 47 for mixed POS tags

 tag = tags[0][1]

 is_same = True

 for item in tags:

 is_same = tag == item[1]

 if not is_same:

 break

 if is_same:

 X[Constants.FEATURE_POS].append(score_to_numeric(tag))

 else:

 X[Constants.FEATURE_POS].append(47)

 return X

 def get_prev_pos_feature(self, X, index, pos):

 dic = self.words[index]

 tags = pos.get('{}_{}_{}'.format(dic['id'], dic['start'] - 1,

dic['word']), [])

 if not tags:

 X[Constants.FEATURE_PREV_POS].append(0)

 else:

 X[Constants.FEATURE_PREV_POS].append(score_to_numeric(tags[1]))

 return X

 def get_next_pos_feature(self, X, index, pos):

 dic = self.words[index]

 tags = pos.get('{}_{}_{}'.format(dic['id'], dic['start'] + 1,

dic['word']), [])

 if not tags:

 X[Constants.FEATURE_NEXT_POS].append(0)

 else:

 X[Constants.FEATURE_NEXT_POS].append(score_to_numeric(tags[1]))

 return X

 def get_position_feature(self, X, index):

 dic = self.words[index]

 word_before = dic['tweet'][: dic['start']]

 X[Constants.FEATURE_POSITION].append(

 (word_before.count(' ') + 1) / (dic['tweet'].count(' ') + 1))

 return X

 def get_cosine_similarity_features(self, X, index, averages, model):

 dic = self.words[index]

 value_organization = []

 value_person = []

 value_location = []

 value_thing = []

 value_product = []

 value_event = []

 value_character = []

 for ner_word_split in dic['word'].split(' '):

 cleaned_word = ner_word_split.replace('@', '')

 cleaned_word = cleaned_word.replace('#', '')

 if cleaned_word in model.vocab:

 value_organization.append(model[cleaned_word])

48

 value_person.append(model[cleaned_word])

 value_location.append(model[cleaned_word])

 value_thing.append(model[cleaned_word])

 value_product.append(model[cleaned_word])

 value_event.append(model[cleaned_word])

 value_character.append(model[cleaned_word])

 value_organization = np.array(value_organization)

 value_person = np.array(value_person)

 value_location = np.array(value_location)

 value_thing = np.array(value_thing)

 value_product = np.array(value_product)

 value_event = np.array(value_event)

 value_character = np.array(value_character)

 if len(value_organization) == 0:

 X[Constants.AVG_PERSON].append(0)

 X[Constants.AVG_ORGANIZATION].append(0)

 X[Constants.AVG_LOCATION].append(0)

 '''7 NER'''

 X[Constants.AVG_THING].append(0)

 X[Constants.AVG_PRODUCT].append(0)

 X[Constants.AVG_EVENT].append(0)

 X[Constants.AVG_CHARACTER].append(0)

 else:

 X[Constants.AVG_PERSON].append(

 1 - spatial.distance.cosine(averages['person'],

 np.average(value_person, axis=0)))

 X[Constants.AVG_ORGANIZATION].append(

 1 - spatial.distance.cosine(averages['organization'],

 np.average(value_organization, axis=0)))

 X[Constants.AVG_LOCATION].append(

 1 - spatial.distance.cosine(averages['location'],

 np.average(value_location, axis=0)))

 '''7 NER'''

 X[Constants.AVG_THING].append(

 1 - spatial.distance.cosine(averages['thing'],

 np.average(value_thing, axis=0)))

 X[Constants.AVG_PRODUCT].append(

 1 - spatial.distance.cosine(averages['product'],

 np.average(value_product, axis=0)))

 X[Constants.AVG_EVENT].append(

 1 - spatial.distance.cosine(averages['event'],

 np.average(value_event, axis=0)))

 X[Constants.AVG_CHARACTER].append(

 1 - spatial.distance.cosine(averages['character'],

 np.average(value_character, axis=0)))

 return X

utils.py

import numpy as np

def get_micropost_data_with_model(data, word2vec_model):

 words = []

 value_organization = []

 value_person = []

 value_location = []

 value_thing = []

 value_product = []

 value_event = []

 value_character = []

 '''

 line[0] -> tweetId

 line[1] -> tweet

 line[2] -> word start

 line[3] -> word end

 line[4] -> NER Type

49

 line[5] -> retweet count

 line[6] -> favorite count

 line[7] -> word

 '''

 index_1 = 0

 index_2 = 0

 for row in data:

 line = row.rstrip().split('\t')

 index_1 += 1

 if len(line) != 8:

 continue

 index_2 += 1

 words.append(

 {'id': line[0], 'tweet': line[1], 'start': int(line[2]), 'end':

int(line[3]),

 'word': line[7],

 'NER': line[4]})

 for ner_word_split in line[7].split(' '):

 word = ner_word_split.replace('@', '')

 word = word.replace('#', '')

 if word in word2vec_model.vocab:

 if line[4] == 'Organization':

 value_organization.append(word2vec_model[word])

 elif line[4] == 'Person':

 value_person.append(word2vec_model[word])

 elif line[4] == 'Location':

 value_location.append(word2vec_model[word])

 elif line[4] == 'Thing':

 value_thing.append(word2vec_model[word])

 elif line[4] == 'Product':

 value_product.append(word2vec_model[word])

 elif line[4] == 'Event':

 value_event.append(word2vec_model[word])

 elif line[4] == 'Character':

 value_character.append(word2vec_model[word])

 value_organization = np.array(value_organization)

 value_person = np.array(value_person)

 value_location = np.array(value_location)

 value_thing = np.array(value_thing)

 value_product = np.array(value_product)

 value_event = np.array(value_event)

 value_character = np.array(value_character)

 averages = {

 'organization': np.average(value_organization, axis=0),

 'person': np.average(value_person, axis=0),

 'location': np.average(value_location, axis=0),

 'thing': np.average(value_thing, axis=0),

 'product': np.average(value_product, axis=0),

 'event': np.average(value_event, axis=0),

 'character': np.average(value_character, axis=0)

 }

 return words, averages

BIOGRAPHICAL SKETCH

Onur Büyüktopaç is a software architect at Yemeksepeti in Turkey. He received his BSc

degree at Computer Engineering Department of Galatasaray University. In his graduation

project, he has worked on strategy building on game theory. He is currently pursuing his

MSc degree in Science and Engineering Faculty of the same university and focusing on

NLP and machine learning algorithms.

