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ABSTRACT 

 

 

 

Today, social media is a huge part of our world and it continues to grow exponentially. 

Enormous content is being created with these platforms and it draws the attention of 

people for personal and professional levels. However, extracting meaningful information 

from this volume of content with human capabilities is not possible. Machine learning 

approaches are used to discover knowledge with the help of computer power. 

 

Natural Language Processing (NLP) is a branch of artificial intelligence which is focused 

on interacting humans and computers using the natural language. By the aid of machine 

learning, NLP can achieve tasks from text such as tokenization, classification, sentiment 

analysis, Named Entity Recognition (NER). These tasks produce successful results for 

well-structured texts like newspapers, articles, and books. But, working with unstructured 

texts from social media is still challenging. These types of texts contain emoticons, 

abbreviations, grammar mistakes, and code-switching making data unpredictable and 

dirty. 

 

Twitter is one of the most popular microblog among social media platforms. It provides 

texts which are publicly posted and contains topic-specific opinions. It is a valuable 

source for collecting data. On the other hand, the content is unstructured because of 

character limitation and casual writing. 

 

In this study, we present a NER system and we evaluate baseline classifiers for 

unstructured texts. We develop a cosine similarity feature, and we evaluate and test each 

classifier subject to different combinations of features including cosine similarity. Our 

experimental results show that the presented system is reached at 0.74 level in precision, 

0.68 in recall and 0.67 in F1 (micro average), respectively for Named Entity rEcognition 

and Linking (NEEL) 2016 Challenge dataset. The corpus is created from Twitter. 



 

 

ix 

In addition, we evaluate our system using 2 different datasets with different label 

distribution and types. One dataset is generated by a startup company called Oxtractor. It 

has 3 label types; “Person”, “Organization”, and “Location”. Also, we present dataset 

which is labeled manually from specific topics of tweets. It has 7 types of the label; 

Person”, “Thing”, “Organization”, “Location”, “Product”, “Event”, and “Character”. We 

check the prediction results and compare classifiers along with feature sets. Logistic 

regression, SVM, and Random forest are producing the highest results with cosine 

similarity feature. The results obtained with different feature sets show that supportive 

features for cosine similarly do not impact the results significantly. The diversity of 

named entity is distinctive when working with cosine similarity feature. 

 

Finally, we compare prediction results with different testing/training split ratios for the 

manually labeled dataset from 90/10 to 50/50. The cosine similarity feature does not affect 

the split ratio remarkably. 

 

Keywords: Named entity recognition, Information Extraction, Twitter, Word 

embedding, Classification, Machine learning, Cosine Similarity. 

 



 

 

  

ÖZET 

 

 

 

Sosyal medya günlük hayatımızın hızla büyüyen bir parçası olmuştur. Sosyal medya 

kullanımının artışı ile birlikte her geçen gün muazzam büyüklükte içerik oluşmakta ve bu 

içerik hem araştırmacıların hem de iş modeli geliştiricilerin dikkatini çekmektedir. Bu 

boyuttaki veri ile çalışmak ve anlamlı sonuçlar elde etmek için bilgisayarların işlem 

gücüne ihtiyaç duyulmaktadır. Bu noktada da makine öğrenme yaklaşımları geliştirilerek 

problemlere çözüm üretilmesi hedeflenmektedir. 

 

Doğal Dil İşleme, yapay zeka uygulamalarının bir alt kategorisidir ve bilgisayar ile insan 

arasındaki etkileşimi dil üzerinden çözmeye odaklanır. Doğal Dil İşleme’de, Makine 

öğrenmesi uygulamalarının yardımıyla, metinleri parçalara ayırma, sınıflandırma, duygu 

analizi yapma, varlık ismi tanımlama gibi işlemler yapılabilmektedir. Gazete, makale, 

kitap gibi düzgün yapıdaki metinlerde bu çalışmalar başarılı sonuçlar verirken sosyal 

medyadan elde edilen içerikleri işlemek farklı zorlukları da beraberinde getirmektedir. Bu 

tarz metinler içerisinde pek çok dil bilgisi hatası, kısaltma, “emoji” ve çoklu dil kullanımı 

bulundurması sebebiyle öngörülemez. 

 

Twitter en çok kullanılan mikro blog sosyal medya platformlarından biridir. Kişisel metin 

paylaşımlarının yanı sıra, belli bir konuda ve başlık altında da içerik paylaşımları 

yapılabilmektedir. Bu yönüyle Twitter değerli ve ilgi çekici bir veri kaynağı haline 

gelmiştir. Buna karşın karakter kısıtlaması, gündelik dil kullanımı ve “emoji” kullanımı 

gibi sebeplerden ötürü “tweet” verileri yapısal olarak karmaşıktırlar. 

 

Bu çalışmada, temel sınıflandırma algoritmaları kullanılarak mikro blog verisi üzerinde 

varlık ismi tanımlama sistemi geliştirilmektedir. Kosinüs benzerliği özelliğini 

geliştirerek, tüm temel sınıflandırma algoritmaları üzerinde farklı özellik kümeleri ile 

birlikte uygulanmaktadır. Çalışmalarımızın sonuçları 0,74 hassasiyet, 0,68 duyarlılık ve 



 

 

 

0,67 F1 skoru ile Named Entity rEcognition and Linking (NEEL) 2016 Challenge veri 

kümesine uygulanarak alınmıştır. 

 

İlaveten, çalışmamızı farklı dağılımlarda ve özelliklerdeki 2 veri kümesi üzerinde 

genişlettik. Birinci veri kümemiz Oxtractor isimli bir start-up firmasına aittir. Veri kümesi 

“Kişi”, “Organizasyon” ve “Konum” bilgi etiketlerini içermektedir. İkinci veri kümesi ise 

Twitter belli başlıklarda konular üzerinden etiketlediğimiz kendi setimizdir. Bu veri 

kümesi içerisinde “Kişi”, “Varlık”, “Organizasyon”, “Konum”, “Ürün”, “Etkinlik” ve 

“Karakter” gibi 7 bilgi etiketi bulunmaktadır. Elde ettiğimiz çoklu sınıf tahminleme 

sonuçlarını karşılaştırdığımızda “Logistic regression”, “SVM” ve “Random forest” 

sınıflandırma algoritmalarının yaklaşımımızda en yüksek sonuçları ürettiğini 

gözlemledik. Farklı özellik kombinasyonlarındaki sonuçlar incelendiğinde ise yardımcı 

özelliklerin kosinüs benzerliği özelliğinin sonuçlarına kayda değer bir katkısı olmadığı 

gözlendi. Varlık isim kümesinin çeşitliliği kosinüs benzerliği özelliği için ayırıcı bir 

faktör olarak görünmektedir. 

 

Son olarak, veri kümelerini 90/10’dan 50/50’ye kadar değişen oranlarda öğrenme/test 

etme bölümlerine ayırdığımızda kosinüs benzerliği özelliği kullanılan çalışmaların 

sonuçlarında dikkate değer farkların oluşmadığı gözlemlenmiştir.  
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1 INTRODUCTION 

 

 

 

The growing amount of data stored and shared in social media enables powerful tools to 

extract information and to discover features. Natural Language Processing (NLP) studies 

are gaining importance in this context. NLP is the field of study focusing on interacting 

human language and computer. Understanding natural language as a machine is a general 

purpose and it can be divided into tasks such as summarization, question answering, 

translation, and Named Entity Recognition (NER). NER is a task of identifying and 

categorizing textual contents such as person, thing, organization, location, product, event, 

and character. If the sentence “Lemmy Kilmister founded Motörhead in 1975.” is 

identified by applying NER task, the sentence would be labeled according to pre-defined 

classes as: 

 

[Lemmy Kilmister]Person founded [Motörhead]Organization in [1975]Year. 

 

While traditional hand-made rule-based NER approaches produce successful results 

when working with well-structured texts, the prediction scores are much lower on 

unstructured microblog texts like Twitter. In general, these types of texts contain 

emoticons, abbreviations, grammar mistakes, and code-switching making data 

unpredictable and dirty, i.e. difficult to be interpreted by a machine. Machine Learning 

(ML) approaches are applied to extract features from large scale observational data 

complicated by unstructured environments to improve the NER methodology. Currently, 

NER studies are focusing on Deep Learning (DL). However, feature engineering is still 

important since feature-inferring neural network models outperform state-of-the-art 

applications according to [1]. In this study, we present an improved approach using 

syntactic, semantic and domain-specific features while augmenting the data worked on. 

We evaluate the performance of the feature by altering corpus, feature combinations, and 

classifiers at each time. We investigate 3 corpora which consist of complete (NEEL) 2016 
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Challenge dataset with 4369 unique tweets and 7 NER types, dataset published by a 

startup company Oxtractor in England with 4608 unique tweets and 3 NER types, and a 

new dataset manually labeled during the study with 3310 unique tweets and 7 NER types. 

 

7 baseline classifiers and 9 features including cosine similarity are evaluated and tested 

in our study. We have implemented all classifiers with feature combinations over all 

datasets and we compared the results. We observed that cosine similarity improves F1 

statistical metric value and always outperforms other features which are used during the 

evaluation process. 



 

 

  

2 LITERATURE REVIEW 

 

 

 

NER has been introduced at the Sixth Message Understanding Conference Sundheim in 

1996. NER recognizes entity names such as people, organizations, place names, temporal 

expressions, and numerical expressions. The first study on NER was carried out by 

Grishman and Sundheim in 1996 [2]. Early NER research was focussed on handcraft 

rules, lexicons, orthographic features, and ontologies. Then, neural network NER systems 

have been presented along with minimal feature engineering which leads to domain-

independent systems without lexicons or orthology requirement. 

 

Early researches are based on word-based features (“bag of words”). Bag of Words 

(BoW) depends on the text describing the occurrence of words within a document. The 

model focus on only occurrences of known words in the document, but not the location 

in the document. And, it neither covers the wealth of word knowledge. To overcome these 

limitations new approaches are proposed with using common-sense and domain-specific 

knowledge to enrich the BoW [3]. 

 

Adapting NER to microblogs has been a challenging task. The classical NER approaches 

for structured texts were applied to tweets in [4]. An SVM-based classifier for classifying 

person, location, and organization assured the statistical metric values such as 0.74 

precision, 0.49 recall, and 0.59 F1 scores. 

 

Twitter is one of the most successful microblogging services. Researches over data 

gathered from Twitter are not only limited to the content of tweets. They also consider 

user networks and profile classifications. For this kind of improved analysis, domain-

specific linguistic features should be determined and constructed. As an example of user 

classification, observable information such as the user behavior, network structure and 
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the linguistic content of the user’s Twitter feed are considered to classify users in 3 

categories [5]. 

 

Even the domain-specific features implementation techniques serve simplicity and 

robustness, they are limited in many tasks. To have significant results, they should be 

supported by new architecture models. Vector representation of words is designed 

depending on neural network based language models. However, some techniques for 

measuring the quality of the resulting vector representations do not cover multiple degrees 

of similarity. word2vec model offers to represent words considering multiple degrees of 

similarity [6]. 

 

This study is an extension of [7] while focusing on the most representative feature set 

analysis and the improvement of the classifier’s performance. The most effective feature 

in the study [7] is a word embedding based cosine similarity measure. For cosine 

similarity, each labeled word represented as a vector using the precomputed word2vec 

model and averaging all the vectors belonging to a particular label type. As a word2vec 

model, the study used a corpus of 400 million tweets [8]. Despite the large word2vec 

corpus, some of the words cannot be represented as a vector. These words are extracted 

from the dataset. The approach applied to NEEL 2016 dataset [9] with logistic regression 

classifier and achieved 0.71 precision, 0.56 recall, and 0.58 F1 score. 

 

The study [7] was selected some of the researches from the NEEL 2016 in order to 

compare results. The other approaches from the challenge mentioned in [10], [11], and 

[12].  

 

In [10] a feature-based system combining existing NER systems and domain-specific 

Part-Of-Speech (POS) tagger is presented. The main idea of the work is to recognize 

entities and their types from Twitter microposts and link them to another corresponding 

dataset. There are 4 main steps followed in this work; mention detection, mention type 

classification, mention linking, and NIL clustering. They develop a hybrid system by 

using Stanford Named Entity Recognizer and ARK Twitter Part of Speech Tagger 

approaches and run 3 test scenarios by using various classifiers with different feature sets. 
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Candidate name generation and classical NER systems such as Stanford NER, MITIE, 

twitter_nlp, and TwitIE are used in [11]. An adapted Kanopy system for the Twitter 

domain is implemented in [12]. Both studies are focussed on the solution of the problem 

of adapting traditional natural language processing to microposts. The approaches consist 

of having two pipelines where on the one pipeline the linked entity mentions are 

processed.



 

 

  

3 MACHINE LEARNING 

 

 

 

In this section, we describe the state-of-the-art machine learning methods, features, and 

classifiers used in our study. We first explain the machine learning concept. In the 

following, we represent the features which are used with cosine similarity. Finally, we 

elaborate on the classifiers. 

 

3.1 State-of-the-art 

 

3.1.1 Definition of Machine Learning 

 

ML is a method that automates rational decisions. Instead of explicitly programming, 

machine learning can recognize meaningful patterns from given data with the training 

process and adapt them to the current problem. Pattern recognition can be achieved by 

two main techniques; supervised and unsupervised learning. 

 

With supervised learning, the system has both the input variables (X) and the output 

variable (y). Each input is labeled with the desired output with a mapping function. The 

formula (1) can describe the supervised learning. 

 

 𝑦 = 𝑓(𝑋) (1) 

 

Unsupervised learning, however, only knows the input variable. The goal of the system 

is developing and organizing the data and finding the underlying structure of it. 

 

Machine learning can be used for two types of prediction; classification and regression. 

Classification predicts discrete numbers. Output variables are often called label or class. 
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Regression estimates the continuous quantity. Output values can be an integer or a 

floating number. 

 

There are various domains using machine learning. Recommendation, recognition, route 

prediction is the most used solutions. Google offers, Netflix video recommendation, 

Spotify daily mixes, Amazon related products are the recommendation examples. Siri and 

Cortana are voice recognition solutions. Facebook uses DeepFace algorithm to tag people 

from photos. Microsoft Kinect human pose recognition algorithm runs with random 

forest. Google Maps and Uber calculate the fastest routes and arrival time with machine 

learning. Fraud detection that PayPal uses is also an ML solution. 

 

3.1.2 Named Entity Recognition 

 

NER is a machine learning application area which is used for identifying pre-defined 

nouns (person, location, organization, etc.) in a given text. 

 

NER is an important area in ML since it is a useful tool for many real-world solutions 

such as classifying print media and social media contexts, content recommendation, 

efficient search algorithm, customer support, chatbots. 

 

NER systems for structured texts is a well-studied domain, and they can perform near-

human results particularly in English [13].  However, prediction scores of informal and 

noisy texts such as social media posts, are much lower than formal texts. 

 

3.2 Features 

 

In [7], the authors have presented an approach aiming to identify different classes of 

named entities in short and noisy texts, mainly tweets, with simple but fast and effective 

supervised machine learning approach by using word embedding features. The study [7] 

has evaluated 6 features for the feature vector which were, “hashtag”, “at’”, “capital 

letter”, “all capital”, “part-of-speech (POS) tagger”, “the similarity to the class centroid 

(cosine similarity)”.  
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In addition to the features, we include 3 additional features. These are, “next word POS 

tagger”, “previous word POS tagger”, and “position”. Each feature represented by a 

numeric or Boolean value in the feature vector. The feature details are explained below. 

The abbreviations of the features are noted in parenthesis at titles. 

 

Hashtag (#). The feature searches whether any word of a named entity is hashtagged, 

written with “#” symbol. The hashtag symbol is used on Twitter to index and highlight 

topics and keywords. Hashtagged keyword does not contain any space or punctuation and 

can be included anywhere in a tweet. The feature returns a Boolean value. 

 

At (@). The feature has the same process with the hashtag but it seeks ‘at’ sign, written 

as “@” symbol, instead of “#”. At sign is used for addressing another Twitter user. Twitter 

usernames can only contain alphanumeric characters and underscore which guarantees 

mentioned user belongs in NE or not. It returns a Boolean value. 

 

Capital letter (title). The feature checks whether all words in named entity start with an 

upper-case letter and the rest of them are lower-case. Symbols and numbers are ignored. 

It returns a Boolean value. 

 

All capital (all_capital). The feature checks whether all letters of the named entity are 

upper-case. Symbols and numbers are also ignored. It returns a Boolean value. 

 

Part-of-Speech (POS) Tagger (pos). The feature assigns a part-of-speech tag to each 

word of NE such as “noun”, “verb”, “adjective”. We use Stanford POS tagger [14] for 

this task. We tag each word of NE separately and check whether all words have the same 

tag. If they all have the same POS tag, then NE is assigned with the tag. Otherwise, the 

NE is labeled as “mixed POS”. To apply the results to the feature vector, we mapped the 

tags with numeric values. 

 

Next word POS Tagger (next_pos). The feature assigns a POS tag the following word 

after NE. If NE is the last word then the feature returns “0”. 
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Previous word POS Tagger (prev_pos). The feature assigns a POS tag the previous 

word of NE. If NE is the first word then feature returns “0”. 

 

Position ratio (position). The feature presents the position of NE in a tweet. It splits 

tweet by space and indexes them starting from 1. The first word of NE is accepted as an 

index of NE. Comparing indexes from different tweets is inconsistent because the index 

is depended on tweet length. Hence, we normalized the index and define a relative 

position as shown in (2). 

 

 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 =
𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑤𝑜𝑟𝑑 𝑜𝑓 𝑁𝐸

𝑇𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑑 𝑐𝑜𝑢𝑛𝑡
 (2) 

 

The similarity to the class centroid (cos). The feature computes the cosine similarity 

between NE’s vector and the centroid vector of each NER type. All words present in NE’s 

are defined as a vector using the precomputed word2vec model, the corpus of 400 million 

tweets [8]. Each NE is represented by a single vector computed by the weighted average 

of all word vectors within. 

 

 

Figure 3.1: an example of the “cos” feature 

 

An example of “cos” feature is represented in Figure 3.1, NE vectors are grouped by NER 

types to calculate the average vectors of “Person” and “Location”. Each NE has a distance 
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degree between each average vector. For this example, new NE has 2 hidden features as 

a part of the “cos” feature; one for “avgperson” and one for “avglocation”. 𝑋1 = cos (𝛼) and 

𝑋2 = cos (𝛽) are calculated while preparing the feature vector. 

 

In this study, we use 7 NER types. Therefore, similarity to class centroid consists of 7 

hidden features. Each hidden feature returns a numeric value. 

 

3.3  Classifiers 

 

We use 6 supervised baseline classification algorithms;  

 Logistic Regression,  

 Support Vector Machines (SVM) with “RBF” and “linear” kernels,  

 k-Nearest Neighbors (k-NN), k is 5,  

 Naive Bayes (NB) with Gaussian distribution,  

 Decision Tree with “Gini index” and  

 Random Forest with 100 estimator trees as parameters. 

 

3.3.1 Logistic Regression 

 

Logistic regression is a statistical method for analyzing datasets. The method generates a 

coefficient for each feature as an independent variable and predicts the probability of 

belonging of the feature to a single NER type which is a dependent variable [15]. 

 

 𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑖𝑥𝑖 (3) 

 

In the simplified version of logistic regression, shown in (3), “y” is the dependent variable, 

“β” is the coefficient of the independent variable, “x” is the independent variable, and “i” 

is the number of independent variables. 

 

Logistic regression provides a useful means for modeling the dependence of response 

variable on features. However, it requires a large size of samples. Also, independent 
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variables should not be tightly correlated, and an extensive set of features can cause 

overfitting problem. 

 

3.3.2 Support Vector Machines 

 

SVM is a supervised machine learning algorithm aiming to define the maximum 

separation between two classes [16]. The idea is finding the NER type instances which 

are the most likely to the other type, to draw a boundary in-between. These instances are 

called support vectors. The hyperplane which leaves the maximum margin from the 

support vectors is named as the decision boundary. 

 

Simple SVM can be applied to linearly separable data. In order to use SVM on non-

separable models, a new dimension (deterministic feature) is included in the model to 

make the data separable. The method is known as “kernel trick.” In our study, we use two 

different kernel options which are “RBF” and “linear.” 

 

SVM can deal with a large number of features but mapping a higher dimensional space 

causes highly intensive computation. 

 

3.3.3 K-Nearest Neighbor 

 

k-NN is a simple instance based, lazy-learning algorithm. The algorithm assumes that 

there is a proximity between the subjects of the same type within a dataset. The prediction 

of the type of input is determined by calculating the average of the closest k training 

instances [17]. Selecting k is crucial since it affects the predictions directly. For noisy 

datasets, k should be high enough to eliminate noise. For small type instance sets, k should 

be low to prevent different class instances. We use k as 5. 

 

Although the algorithm does not require calculation and generalization for training, it has 

to store the whole train set. As a result, it needs more storage then computation power. 
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3.3.4 Decision Tree 

 

Decision tree learning is a logic-based tree algorithm. In order to construct a decision tree, 

based on feature values, instances are split and sorted accordingly. Each node in the tree 

represents a feature, and each branch represents a split condition [18]. 

 

There are two critical points for an optimal decision tree; the selection order of features 

and the quality of dividing values. Decision tree uses split criterion heuristics with the 

intention of the well-constructed tree. We choose “Gini index” for split criterion as our 

features produce continuous values, and they can be split into several conditions. 

 

3.3.5 Random Forest 

 

Random forest is an ensemble of n decision trees. Each tree uses a random sub-sample of 

a dataset. Complete forest votes for the prediction and average of them used as a final 

prediction [19]. A decision tree is heavily dependent on data distribution. Only one tree 

can cause an over-fitting problem. Using multiple decision trees with random samples 

improves accuracy and controls over-fitting. We use 100 estimator trees in our 

experiments. 

 

3.3.6 Naïve Bayes 

 

Naïve Bayes is a learning technique based on Bayes’ theorem with the independence of 

predictors [20]. It is called “naïve” because classifier assumes that all the features are 

independent. Naïve Bayes calculates the likelihood of an input belonging to each type to 

find out the highest probability. 

 

As the assumption is not correct for most of the feature sets, it generally produces less 

accurate results than sophisticated classifiers. Despite the low accuracy rate, the primary 

advantage of the algorithm is short computational time for training. 

 



13 

 

 

 

 

 𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 (4) 

 

General Bayes formula is given in formula (4) where, P (A|B) indicates the posterior 

probability, P (B|A) does the likelihood, P (A) does prior probability, and P (B) does the 

marginal likelihood. We use Naïve Bayes classifier with Gaussian likelihood mean in our 

study. 



 

 

  

4 NER EVALUATION 

 

 

 

4.1 Datasets 

 

We consume Named Entities (NE) from 3 different corpora with different layouts for the 

study. For unifying the layouts, we create a common format. The common format is tab-

separated and it stores the “tweet id”, “tweet text”, “NE starting index”, “NE ending 

index”, “NER type” and “NE” information as follows: 

 

[tweet_ID] [text] [NE_starting_index] [ne_ending_index] [NER_type]  

[NE] 

 

One tweet can contain multiple NEs but all NEs are stored individually. 

 

4.1.1 NEEL 2016 Challenge 

 

For benchmarking purposes, we use a publicly available dataset provided by NEEL 2016 

Challenge [9]. The source contains only labeled word information and tweet id. The 

template of the source file can be described as follows: 

 

[tweet_ID] [word_start_index] [word_end_index] [word_DBpedia_link]  

[confidence_score] [NER_type] 

 

For instance: 

 

674869443671941120  93 101    http://dbpedia.org/resource/Egyptians  

1  Thing 

 

Since some features require the content of tweet to calculate its score, we should merge 

the information above with the tweet. Finding tweets from the tweet ID is a challenging 
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task which is also mentioned in [7] because either some tweets were already deleted or 

they are private. Therefore, we cannot retrieve tweets from Twitter. Instead, we have 

found all tweets from an open source project from GitHub called Webpack Bundle 

Analyzer [21]. 

 

The collected tweets are harmonized and merged with the NEEL dataset and stored in a 

format where each sample contains the following information: tweet identifier, tweet, 

start index of the word, end index of the word, NER type and the word. The resulting 

form is illustrated as follows: 

 

674869443671941120  RT @EntheosShines: Just As Some Parents Have A 

Favorite Child, Obama Has Favorites (sign at  Egyptian Airport) 

@chirofrenzy @PatVPeters htt…|  93 101    Thing Egyptian 

 

The corpus contains 4369 unique tweets with 9687 labeled words. It consists of 7 different 

labels which are “Person”, “Thing”, “Organization”, “Location”, “Product”, “Event”, and 

“Character”. The split ratio is 0.10 which is constituted by training dataset of 4073 unique 

tweets and 8665 labeled words and testing dataset of 296 unique tweets and 1022 labeled 

words. 

 

4.1.2 Oxtractor 

 

The second corpus is provided by a startup company called Oxtractor focussing on social 

data. The corpus holds several information fields about the tweet including text, id, 

retweet count, user profile information, media information, language. However, we only 

focus on the text, id, entities, language, tokens, and annotation offsets as JSON format. 

We have simplified the properties for our study and the data structure of a tweet has 

become the following structure: 

 

{ 

 "text": "Ukraine's pro-Russia rebels hand over Malaysia Airlines  

    #MH17's black boxes http://t.co/sWs4wDau3m  

    http://t.co/9GyZCurIkM",  

 "id": 491401326845510000, 

 "entities": ["B-loc", "O", "O", "B-loc", "O", "O", "O", "B-org",  

        "I-org", "O", "O", "O", "O", "O"], 

 "lang": "en", 

 "tokens": ["Ukraine", "'s","pro-", "Russia", "rebels", "hand",  

        "over", "Malaysia", "Airlines", "#MH17's", "black", 
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        "boxes", "http://t.co/sWs4wDau3m",  

        "http://t.co/9GyZCurIkM"], 

 "annotation_offsets": [[0,7], [7,9], [10,14], [14,20], [21,27],  

           [28,32], [33,37], [38,46], [47,55],  

             [56,61], [64,69], [70,75], [76,98],  

             [99,121]] 

} 

 

As it is seen in the sample, BIO encoding was applied for tokenizing. There are four 

labeled words and three named entities. “B” key represents the beginning of a named 

entity, and “I” key represents inside of a named entity. We have applied the tab-separated 

format; then the example transforms into three separate samples for our model. 

 

491401326845510000 Ukraine's pro-Russia rebels hand over Malaysia 

Airlines #MH17's black boxes http://t.co/sWs4wDau3m 

http://t.co/9GyZCurIkM 0 7 Location Ukraine 

 

491401326845510000 Ukraine's pro-Russia rebels hand over Malaysia 

Airlines #MH17's black boxes http://t.co/sWs4wDau3m 

http://t.co/9GyZCurIkM 14 20 Location Russia 

 

491401326845510000 Ukraine's pro-Russia rebels hand over Malaysia 

Airlines #MH17's black boxes http://t.co/sWs4wDau3m 

http://t.co/9GyZCurIkM 38 55 Organization Malaysia Airlines 

 

The corpus has only 3 label types; “Person”, “Organization”, and “Location”. It contains 

4608 unique tweets with 8264 labeled words. We have split the data into training and 

testing by the same ratio used in the previous dataset. Finally, the training dataset consists 

of 4056 unique tweets with 7395 labeled words and the testing dataset is constituted by 

552 unique tweets with 869 labeled words. 

 

4.1.3 Manually labeled 

 

The third corpus has been created manually during the period of 4 months starting July 

6th, 2018 and ending October 21st, 2018. We have collected English tweets posted in 2018 

from Twitter Search API1. Keywords cover multiple memorable events mentioned in this 

period including 

 “World Cup 2018”, 

 “U.S. China trade war”, 

                                                 

1 https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets.html 
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 “Death of Anthony Bourdain”, 

 “Wacken 2018”, 

 “Syrian refugee”, 

 “Climate Change”, 

 “Marvel”, 

 “Avengers”. 

 

While the API provides much information about tweet itself, we only consider “id”, 

“text”, and “lang” properties. The basic version of the data is given below: 

 

{ 

 "statuses":[ 

  { 

   "id": 1014639601313636352, 

   "text": "4 of 5 stars to Kitchen Confidential by Anthony 

Bourdain         https://t.co/6wpo4qZHIG", 

   "lang": "en" 

  } 

 ] 

} 

 

We exclude retweets by a script and we enrich the data with tokenized sentence 

information: 

 

{ 

 "id": 1014639601313636400, 

 "text": "4 of 5 stars to Kitchen Confidential by Anthony Bourdain 

https://t.co/6wpo4qZHIG", 

 "tokens": ["4", "of", "5", "stars", "to", "Kitchen", 

"Confidential", "by",       "Anthony", "Bourdain", 

"https://t.co/6wpo4qZHIG"] 

} 

 

Furthermore, we filter the auto-posts from such as news channels and YouTube manually. 

Then we label the tweets according to 7 label types which are “Person”, “Thing”, 

“Organization”, “Location”, “Product”, “Event”, and “Character”. Labeling process has 

been handled manually by using a custom developed tool named Twitter Tagger. The user 

interface of the tool is presented in Figure 4.1. 

 

https://t.co/6wpo4qZHIG
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Figure 4.1: Twitter Tagger tool interface 

 

After labeling, the raw data is transformed into a tab-separated format which is 

compatible with our model: 

 

1014639601313636400 4 of 5 stars to Kitchen Confidential by Anthony 

Bourdain https://t.co/6wpo4qZHIG 16 36 Product Kitchen Confidential 

 

1014639601313636400 4 of 5 stars to Kitchen Confidential by Anthony 

Bourdain https://t.co/6wpo4qZHIG 40 56 Person Anthony Bourdain 

 

There are 3310 unique tweets and 8339 labeled words in the last dataset. We keep the 

split ratio close to the other datasets. Training dataset contains 3048 unique tweets and 

7505 labeled words, and the testing dataset contains 262 unique tweets and 834 labeled 

words. 

 

In addition, we split the manual labeled corpus by 80/20, 70/30, 60/40, and 50/50 train 

and test datasets for further evaluation results. The samplings are randomly selected. The 

distribution of word occurrences is shown in Table 4.1. 
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Table 4.1: Word occurrences for each split ratio of the manual labeled corpus. 

 80/20 70/30 60/40 50/50 

 Training Testing Training Testing Training Testing Training Testing 

Person 2932 772 2577 1127 2203 1501 1846 1858 

Location 915 231 813 333 710 436 568 578 

Organization 1060 290 925 425 776 574 643 707 

Product 416 87 348 155 285 218 237 266 

Event 704 145 618 231 532 317 456 393 

Thing 584 125 506 203 445 264 377 332 

Character 61 17 48 30 53 25 41 37 

TOTAL 6672 1667 5835 2504 5004 3335 4168 4171 

 

The labeled word occurrences for each dataset are represented in Table 4.2. 

 

Table 4.2: Type occurrences in training and testing datasets. 

 NEEL 2016 Challenge Oxtractor Manually labeled 

 Training Testing Training Testing Training Testing 

Person 2845 (32.83%) 337 (32.97%) 3124 (42.24%) 531 (61.10%) 3338 (44.48%) 366 (43.88%) 

Location 1868 (21.56%) 43 (4.21%) 2120 (28.67%) 122 (14.04%) 1023 (13.63%) 123 (14.75%) 

Organization 1641 (18.94%) 158 (15.46%) 2151 (29.09%) 216 (24.86%) 1196 (15.94%) 154 (18.47%) 

Product 1196 (13.80%) 354 (34.64%) - - 458 (6.10%) 45 (5.40%) 

Event 482 (5.56%) 24 (2.35%) - - 779 (10.38%) 70 (8.39%) 

Thing 570 (6.58%) 49 (4.79%) - - 644 (8.58%) 65 (7.79%) 

Character 63 (0.73%) 57 (5.58%) - - 67 (0.89%) 11 (1.32%) 

TOTAL 8665 (100%) 1022 (100%) 7395 (100%) 869 (100%) 7505 (100%) 834 (100%) 

 

4.2 Performance Measures 

 

To evaluate the relevance of the results, we choose Precision, Recall, and F1-score. We 

also use a confusion matrix to visualize a specific outcome. 

 

Before explaining the statistical metric values, we should define true positive, true 

negative, false positive and false negative. These parameters are the basics of the 

measurement calculations. 

 

True positive (TP) is the result when the predicted and the actual values are both positive. 

 

True negative (TN) is the result when the predicted and the actual values are both 

negative. 
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False positive (FP) is the result when the prediction is positive, but the actual value is 

negative. 

 

False negative (FN) is the result when the prediction is negative, but actual is positive. 

For a multiclass NER problem, the parameters can be defined for a selected class “C”  as 

follows: 

 All instances of  “C” which are predicted as “C” are TP. 

 All instances of  “non-C” classes which are predicted as “non-C” classes are TN. 

 All instances of  “non-C” classes which are predicted as “C” are FP. 

 All instances of  “C” which are predicted as “non-C” classes are FN. 

 

4.2.1 Confusion Matrix 

 

Confusion matrix also known as error matrix is a table layout to describe the performance 

of a classification model with comparing actual and predicted results. A simple matrix 

layout is given in Table 4.3. 

 

Table 4.3: Layout of the confusion matrix 

 Predicted Positive Predicted Negative 

Actual Positive TP FP 

Actual Negative FN TN 

 

4.2.2 Precision 

 

Precision (P) is the ratio of correct positive results to total positive predictions, as given 

in (5). It is a good measure to determine when the cost of FP is high. 

 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5) 
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4.2.3 Recall 

 

Recall (R) is the ratio of correct positive results to total actual positive values, as given in 

(6). When FN is important for the results, recall is the considered measure. 

 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6) 

4.2.4 F1 Score 

 

F1 Score (F1) is the harmonic mean of precision and recall, as given in (7). When we 

focus on TP and TN values, F1 Score might give a better result with balancing between 

precision and recall [22]. 

 

 𝐹1 = 2 ×
𝑃 × 𝑅

𝑃 + 𝑅
 (7) 

 

The notion of the measurements can be applied only to binary classification problems. 

Since our classification is multiclass, we practice “micro” and “macro” averaging 

approaches. Macro averaging ignores the class-based results and calculates metrics by 

counting values globally. And, micro averaging calculates scores for each class and finds 

the unweighted mean. 

 

4.3 Approach 

 

Let us describe our approach in this section in terms of steps followed for each dataset. 

To compare cosine similarity efficiency for each experimental setup, we split all 3 corpora 

to training/testing datasets with a ratio of approximate 0.9 respectively. We run each 

corpus with 7 different classifiers with all the combinations of the 9 features. Our 

experiment environment consists of 10731 test results as described in (8). 

 

 
𝐶𝑜𝑟𝑝𝑢𝑠 𝑐𝑜𝑢𝑛𝑡 × 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 𝑐𝑜𝑢𝑛𝑡 ×  𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑆𝑢𝑏𝑠𝑒𝑡𝑠

= 3 × 7 × (29 − 1) = 10731 
(8) 
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We consider micro-averaged F1score of all the results to balance between precision and 

recall. We sort feature subsets by F1 scores for each classifier and average of classifier 

results in each corpus. Finally, we compare the effects of absence and presence of cosine 

similarity on F1 scores and investigated the highest and lowest supportive features of 

cosine similarity. 

 

4.4 Implementation 

 

We implement our algorithm using Python 3.6.3 programming language with the 

following open source libraries: 

 “gensim” [23] for executing word embedding through “word2vec”. 

 “NumPy” [24] and “pandas” [25] for handling array calculations. 

 “scikit-learn” [26] for feature scaling and classifying trained and tested results. 

 “nltk” [27] for tokenizing the tweets and the Part-of-Speech (POS) tagging. It 

provides an adaptor for Stanford POS Tagger, which is written in Java. 

 

In addition, we code Twitter Tagger as a Windows Application with .NET Framework 

4.5 (C#.) We inspect results and draw charts using Notepad++ and Microsoft Excel. 

 

Our implementation strategy consists of two steps; building the model and evaluating the 

model. 

 

4.4.1 Building the model 

 

The stage is dedicated to collecting raw data from various sources, enriching the raw data 

with additional information and creating the common format toward the evaluation stage. 

As mentioned in 4.1, each corpus has a different layout with different information hence, 

we apply separate approaches for each of them. Figure 4.2 shows the overall flow of 

building each dataset from their corpora. 
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Figure 4.2: the flowchart of the building stage 

 

NEER 2016 files are stored as tab-separated format and tweet texts are not included in 

the file. The texts are collected from another source [21] which is also tab-separated. We 

split source files by tab character “\t” line by line, obtained the tweet id, got the matched 

id from [21], and merged tweet text with original files to create the common format. 

 

Oxtractor holds every information that our model requires. The source file is stored as 

JSON. We parse the JSON objects, remove the unnecessary properties, and convert BIO 

format to the common format. 

 

Manual corpus consumed tweets through Twitter Search API with search key “q” and 

language key “lang” parameters. We filter tweets starting with “RT” to prevent retweets 

and keep only “status.id” and “status.text” fields from responses. We tokenize the 

text using “word_tokenize” and “CoreNLPParser” combined from “nltk” library [27] and 

add to the response. Each tweet is stored as a single lined separate JSON object in a file 

for the labeling tool Twitter Tagger. 

 

Twitter Tagger uses the input file as a stack, it reads the first line, parses the JSON object 

and sends the tweet to the interface for tagging. The user marks the word/words from the 

interface, selects the NER type then, adds to list, and finally submits the list. After the 

submission, each entity is written to the output file as a line compatible with the common 

format. The user can also choose to skip a tweet if it is not qualified for tagging. Submitted 

or skipped tweets are removed from the input file and return to the beginning until the 

input file is empty. 
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Our model also requires POS tagging for tweets, and tagging is a time-consuming process. 

To reduce evaluation time we tag the tweets at this step and stored them as a JSON file. 

 

The final task of the stage is splitting the corpora to training and testing datasets. NEEL 

2016 corpus was presented as pre-divided training and testing datasets. We implement a 

splitting script for Oxtractor and Manual corpora. By giving a testing NE ratio, the script 

selects tweets randomly and creates training and testing files. It also divides the POS 

tagging file accordingly. 

4.4.2 Evaluating the model 

 

Prediction and scoring are calculated in this stage. First, we import the “word2vec” model 

using “gensim” library [23], then we import datasets and convert to python dictionaries. 

We calculate the centroid class vectors from NEs for the “cos” feature. After we define 

the feature set, we calculate “independent variables” (X) from the feature set and define 

“dependent variable” (y) from NE for training and testing. As the distance-based 

classifiers need normalized values to define more accurate distances, we apply feature 

scaling method to X. Next, we run classification algorithms from “scikit-learn” library 

[26] and score the predictions. Finally, all the results are printed to output as “csv” 

friendly in a detailed format. The flowchart of the implementation is represented in Figure 

4.3. During the process, we also use “NumPy” [24] and “pandas” [25] libraries for handling 

the array operations. 
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Figure 4.3: the flowchart of the evaluation stage 

 

Due to code optimization made on the previous work [7], calculating all mentioned 

classifiers for a feature set takes approximately 10 seconds at Intel Core i7 @ 2.30GHz 

CPU and 8 GB RAM. This performance improvement allows us to run all possible feature 

set combinations and obtain more detailed outcomes. 



 

 

  

5 EVALUATION RESULTS 

 

 

 

In this section, we evaluate the results of the combination of 9 different features with 3 

different datasets using different split ratios under the baseline classifiers. First, we 

compare our measurement metrics with previous works [7], [10], [11], and [12]. 

Secondly, we focus on feature combinations with cosine similarity feature and 

demonstrate the efficiency of it with different corpora and try to find contributive features 

of cosine similarity according to average F1 scores. Thirdly, we test and elaborate on the 

classifier based F1 scores. Finally, we examine the impact of the training/testing spit ratio 

using manual corpus. 

 

5.1 Related Work Comparison 

Evaluations of the combinations in the previous study [7] show that there are more 

representative feature sets for NEEL 2016 dataset. The SVM classifier with RBF kernel 

using the feature “title”, “position”, “next_pos”, and “cos” achieves the highest 

statistical metric values; the precision of 0.74, recall of 0.68 and an F1 micro average of 

0.67.  The classifier predicts 691 true label types correctly from 921 ground truth label 

type. 
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Table 5.1: Confusion matrix of SVM classifier with RBF kernel with “cos”, “all capital” 

and “#” features for 7 label types 

  Prediction 

  Person Org. Location Thing Product Event Character 

A
ct

u
a

l 

 

Person 321 7 1 4 4 0 0 

Organization 69 61 2 18 7 1 0 

Location 7 3 29 2 2 0 0 

Thing 5 4 0 38 2 0 0 

Product 134 8 3 4 203 2 0 

Event 10 1 0 1 0 12 0 

Character 19 2 0 0 9 0 27 

 

The label “Person” carries the highest portion of the labeled data. According to the 

confusion matrix of the experiment, given in Table 5.1, the majority of the misclassified 

NEs are labeled as “Person” even though most of the actual “Person” NEs are labeled 

correctly. It causes high on recall but low on precision. In contrast, the “Character” label 

has no false positive value but half of the actual values is falsely labeled. “Location” has 

the highest F1 score with 0.74 and “Organization” has the lowest F1 score with 0.5. Table 

5.2 represents the details of the classification results for each feature. 

 

Table 5.2: The classification report of the features 

  precision recall F1 score 

Person 0.57 0.95 0.71 

Organization 0.71 0.39 0.5 

Location 0.83 0.67 0.74 

Thing 0.57 0.78 0.66 

Product 0.89 0.57 0.7 

Event 0.8 0.5 0.62 

Character 1 0.47 0.64 

 

In Table 5.3 the precision, recall, and F1 statistical metric values are benchmarked by 

using the dataset provided by NEEL 2016 Challenge [9]. The methods in [10] [11] and 

[12] presented during the NEEL 2016 workshop and the method presented by [7] 

evaluates these three methods while testing the same dataset. 
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Table 5.3: The performance of our approach is compared with other studies 

Study Precision Recall F1 micro avg. 

SVM with RBF, 3 features + Cosine Similarity 0.74 0.68 0.676 

A feature-based approach performing Stanford NER, [10] 0.729 0.626 0.674 

Logistic Regression, 5 features + Cosine Similarity, [7] 0.71 0.56 0.58 

TwitIE (CRF Model), [12] 0.435 0.459 0.447 

Stanford NER, MITIE, twitter_nlp and TwitIE, [11] 0.587 0.287 0.386 

 

5.2 Performance Metrics Based On Features 

The average scores of all experiments in terms of datasets are represented in Figure 5.1. 

All datasets draw the same pattern wherein the absence of cosine similarity a dramatic 

drop is observed. There are 3 parameters that we may examine: the count of label types, 

the volumes and the label distribution of training/testing datasets. 

 

 

Figure 5.1: the average F1, recall and precision scores of each dataset. “A” represents the 

features with cosine similarity “B” represents the features without cosine similarity. 

Feature sets are ordered by manual dataset F1 scores. 

 

When we concentrate on comparing dataset results, the most successful results are 

achieved by Manual dataset even though higher prediction scores are expected from 

Oxtractor as it has 3 label types. However, without cosine similarity, although the F1 

scores decrease, Oxtractor results give the highest scores as expected. Cosine similarity 
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feature averages the named entity vectors by their label types. When the diversity of NE 

reduces, average vectors become more accurate. As the manual dataset focuses on 

specific topics, clusters of NEs are smaller than the other datasets using this study. 

 

In terms of the volume of the datasets, we have noted that there is not a notable difference 

between the datasets. 

 

The other distinguishing parameter is the label distribution of training/testing datasets. It 

is seen in Table 4.2 that Manual dataset has the most similar distribution of 

training/testing datasets while the most variable distribution of training/testing datasets 

of NEEL 2016. We have come to the conclusion that cosine similarity might be applied 

more efficiently to evenly distribute training/testing datasets. 

 

Our final task is finding supportive features with cosine similarity. We analyze the 

average F1 scores in the absence and presence of the features along with cosine similarity 

as seen in Table 5.4. “next_pos” and “position” features decrease scores for all datasets. 

The other features have positive and negative effects according to the dataset. However, 

the impacts are negligible compared to the cosine similarity itself. 

 

Table 5.4: the F1 scores of the presence and the absence of each feature with “cos” 

feature. 

 NEEL 2016 Oxtractor Manual 

 Presence  Absence Ratio Presence  Absence Ratio Presence  Absence Ratio 

# 0.523 0.546 -4.21% 0.755 0.748 0.94% 0.737 0.747 -1.34% 

@ 0.532 0.537 -0.93% 0.750 0.753 -0.40% 0.742 0.742 0.00% 

title 0.535 0.533 0.38% 0.750 0.753 -0.40% 0.740 0.743 -0.40% 

all_capital 0.537 0.532 0.94% 0.753 0.751 0.27% 0.742 0.741 0.13% 

pos 0.531 0.538 -1.30% 0.750 0.753 -0.40% 0.744 0.739 0.68% 

next_pos 0.533 0.536 -0.56% 0.750 0.753 -0.40% 0.739 0.744 -0.67% 

prev_pos 0.537 0.532 0.94% 0.750 0.753 -0.40% 0.741 0.742 -0.13% 

position 0.531 0.538 -1.30% 0.749 0.754 -0.66% 0.741 0.742 -0.13% 

 

5.3 Performance Metrics of the Classifiers 

Since the average scores are an acceptable level, to further elaborate the performance of 

multi-class NER prediction, we analyze F1 score patterns of each classifier for each 
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corpus. In Figure 5.2, Figure 5.3, and Figure 5.4 for each classifier using the datasets, the 

responses of the F1 metric value with respect to the feature suite constituted by the 

combination of 8 features and the cosine similarity feature are compared. Each stand-

alone feature is combined with the cosine similarity and then, the suite is varied by 

combining these features and augmenting with the cosine similarity. Overall, there are 8 

features and the cosine similarity, which gives 511 combinations. The F1 metric values 

for the presence of the cosine similarity are plotted under the area denoted by A. Then, 

the F1 metric values for the absence of the cosine similarity are plotted under the area B. 

The results show that the behaviors of the classifiers do not change dramatically when the 

corpus is changed. All classifiers produce higher scores when the feature “cos” is included 

in the feature set and there is a significant drop at scores when “cos” is excluded. The 

only exception of the pattern is Gaussian NB at Oxtractor dataset. It evaluates 

unpredictable scores within the range of 0.563 and 0.252. 

 

 

Figure 5.2: the manual dataset F1 scores of each classifier. “A” represents the features 

with cosine similarity “B” represents the features without cosine similarity. Classifiers 

are ordered by average F1 scores. 
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Figure 5.3: NEEL 2016 dataset F1 scores of each classifier. “A” represents the features 

with cosine similarity “B” represents the features without cosine similarity. Classifiers 

are ordered by average F1 scores. 

 

 

Figure 5.4: Oxtractor dataset F1 scores of each classifier. “A” represents the features with 

cosine similarity “B” represents the features without cosine similarity. Classifiers are 

ordered by average F1 scores. 
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achieved by classifiers with and without (denoted by ‘w/o’) the presence of the “cos” 

feature in the feature suite are compared. The highest F1 metric values assured by 3 

classifiers using the feature suite including the “cos” feature are logistic regression, SVM 

and random forest. The ranking varies among 3 classifiers depending on the particular 

dataset. The performance of logistic regression and SVM decreases dramatically when 

the “cos” feature is excluded. The most successful 3 classifiers using the combination of 

features excluding the “cos” feature are random forest, decision tree, and k-NN. 

 

Table 5.5: with cos, without cos and average F1 scores for each dataset. 

 Manual NEEL 2016 Oxtractor 

 w/ cos 

avg. 

w/o cos 

avg. 

avg. w/ cos 

avg. 

w/o cos 

avg. 

avg. w/ cos 

avg. 

w/o cos 

avg. 

avg. 

Logistic 

Regression 

0.795 0.172 0.484 0.569 0.129 0.349 0.744 0.431 0.588 

SVM with 

RBF 

0.785 0.238 0.512 0.578 0.143 0.361 0.729 0.451 0.590 

SVM with 

Linear 

0.810 0.181 0.496 0.576 0.117 0.347 0.742 0.421 0.582 

k-NN 0.764 0.297 0.531 0.477 0.146 0.312 0.680 0.450 0.565 

Gaussian 

NB 

0.574 0.158 0.367 0.341 0.120 0.231 0.478 0.396 0.437 

Decision 

Tree 

0.640 0.314 0.477 0.370 0.153 0.262 0.653 0.475 0.564 

Random 

Forest 

0.824 0.323 0.574 0.512 0.157 0.335 0.717 0.481 0.599 

 

Additionally, we note the highest F1 scores during the experiments shown as in Table 

5.6. As the average scores in Figure 5.1, the highest result belongs to the Manual dataset 

followed by Oxtractor and NEEL 2016. The scores are produced by different classifiers. 

All three feature sets contain the features “title”, and “cos” however as we already 

mention in section 5.2 the features except “cos” have not a significant impact on 

evaluation results individually. 
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Table 5.6: the highest F1 scores for each dataset. 

 Score Classifier Feature set 

Manual 0.847 Random Forest @, title, all_capital, next_pos, prev_pos, cos 

NEEL 2016 0.652 SVM with RBF title, position, next_pos, and cos  

Oxtractor 0.767 Logistic Regression  @, title, pos, position, prev_pos, and cos  

 

5.4 Performance Metrics Based On The Training and Testing Splitting Ratio 

Our final task is to evaluate the scores when training versus testing split ratio is changed. 

We choose manual corpus for the experiment to investigate its behavior under different 

samplings since it is generated in the wild during this study. Whereas samplings are 

random as mentioned in section 4.1, NER type occurrence rates are similar, see for 

instance Table 4.2. 

 

 

Figure 5.5: the average F1, recall and precision scores of each split ratio of the manual 

dataset. “A” represents the features with cosine similarity “B” represents the features 

without cosine similarity. 

 

The average F1 results with “cos” vary between 0.697 and 0.774. Though the highest and 

the lowest points of the results are similar in Figure 5.5. However when we average F1 

scores with “cos”, 80/20 ratio is the optimum sampling for the corpus as seen in Figure 

5.6. 
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Figure 5.6: the average F1 scores with "cos" for each sampling 

 

Random Forest classifier reaches the highest F1 scores independent of the sampling sizes. 

The highest F1 score is achieved with 0.859 by using 80/20 splitting ratio. We also inspect 

that using smaller splitting ratio causes relatively low scores as seen in Table 5.7. 

 

Table 5.7: the best scores of the manual corpus according to the split ratio 

splitting ratio classifier precision recall f1-score 

90/10 Random Forest 0.882 0.819 0.847 

80/20 Random Forest 0.903 0.824 0.859 

70/30 Random Forest 0.862 0.784 0.816 

60/40 Random Forest 0.860 0.799 0.826 

50/50 Random Forest 0.848 0.767 0.802 

 

For better understanding, the results given in Table 5.7 is visualized in Figure 5.7. Each 

splitting ratio is represented by 3 metrics; precision, recall, and F1 score respectively. 

 

 

Figure 5.7: the highest precision, recall and F1 metric values provided by Random 

Forest for each training/testing splitting ratio 
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6 CONCLUSION 

 

 

 

6.1 Objective Completion 

Because of the unstructured nature of the tweets, supervised classification features, which 

are effective on more structured texts like newspapers or articles, do not have an impact 

on the classifiers. To discover the more representative features, we investigate and 

analyze syntactic, semantic and domain-specific features on different corpora. First, we 

gathered all tweets of NEEL 2016 Challenge used in [7] to work on. Second, we reach to 

another tweet corpus from a start-up focussing on NLP on social media called Oxtractor. 

Finally, we create our own corpus manually from Twitter in the wild. 

 

The study [7] already states that “cos” is an effective feature for predicting NEs from 

tweet data. To examine the performance of the feature we add three new supportive 

features to the study and execute all combinations of features overall selected classifiers 

for each dataset. We use the confusion matrix, precision, recall, and F1 score to evaluate 

results. 

 

Through applying all possible feature sets to each classifier, we may find the best fitting 

combination for NEEL 2016 Challenge dataset. SVM with RBF kernel achieved 0.67 F1 

scores with “title”, “position”, “next_pos”, and “cos” features. 

 

Focusing on “cos” shows that, neither corpus volume nor NER type count is critical for 

the performance of the feature. We expect that Oxtractor corpus should achieve the best 

scores since it contains 3 NER types. However, manual corpus with 7 NER types has the 

best scores with “cos”. It leads us to the point that results of working on datasets which 

are focusing on narrowed topics are more successful with “cos”. Despite the fact that 
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“cos” is the most significant feature for all experiments, we may not find any specific 

supportive feature for “cos” since there is not any common feature among the feature sets 

which carries higher FI scores. 

 

We should also analyze the behaviors of classifiers when “cos” is included in the feature 

sets. Besides the fact that the positive impact of “cos” is observable over all classifiers, 

the outcomes of Logistic regression, SVM (with 2 different kernels) and random forest 

are dramatically increased. As random forest, decision tree, and k-NN reach higher scores 

with feature sets non-including “cos”, the overall results highlight that random forest is 

significantly adaptive for both cases. 

 

In addition, the split ratio of training/testing datasets does not affect outcomes 

significantly on manual corpus nevertheless, dividing corpus by 80/20 gives slightly 

better results among the other experiments. 

 

6.2 Future Work 

Looking forward, further attempts could be built by feature-inferring neural network 

models approach with using the “cos” feature in order to challenge the state-of-the-art 

“cos” implementation performance on our new presented corpus. We believe that deep 

learning application with “cos” feature can improve our results. 
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APPENDICES 

 

 

 

Software Source Code. 

# main.py 

 

from Session import Session 

from ner.constants import Constants 

from ner.ner_experiment import NerExperiment 

import sys 

import warnings 

 

if not sys.warnoptions: 

  warnings.simplefilter("ignore") 

 

features = [ 

  Constants.FEATURE_HASHTAG, 

  Constants.FEATURE_AT, 

  Constants.FEATURE_TITLE, 

  Constants.FEATURE_ALL_CAPITAL, 

  Constants.FEATURE_POS, 

  Constants.FEATURE_POSITION, 

  Constants.FEATURE_NEXT_POS, 

  Constants.FEATURE_PREV_POS, 

  Constants.FEATURE_COSINE 

] 

 

train_path = 'source/ner/manual_neel_train.txt' 

test_path = 'source/ner/manual_neel_test.txt' 

 

data_train = [] 

data_test = [] 

 

with open(train_path, encoding="utf8") as file: 

  for row in file: 

    data_train.append(row) 

 

with open(test_path, encoding="utf8") as file: 

  for row in file: 

    data_test.append(row) 

 

experiment = NerExperiment([]) 

session = Session(features, data_train, data_test, type(experiment)) 

session.run(Session.OutputType.csv_friendly, True) 

 

# session.py 

 

import itertools 

from enum import Enum 

 

from sklearn import metrics, svm 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.linear_model import LogisticRegression 

from sklearn.naive_bayes import GaussianNB 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.preprocessing import StandardScaler 

from sklearn.tree import DecisionTreeClassifier 
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import Experiment 

 

 

class Session: 

  class OutputType(Enum): 

    detailed = 0 

    csv_friendly = 1 

 

  LOGISTIC_REGRESSION = 'logistic_regression' 

  SVM_RBF = 'svm_rbf' 

  SVM_LINEAR = 'svm_linear' 

  KNN = 'knn' 

  GAUSSIAN = 'gaussian' 

  DECISION_TREE = 'decision_tree' 

  RANDOM_FOREST = 'random_forest' 

 

  def __init__(self, feature_set: list, train_data: list, test_data: list, 

               experiment: Experiment): 

    self.experiment = experiment 

    self.train_data = train_data 

    self.test_data = test_data 

    self.feature_set = feature_set 

 

    self.output = [] 

    self.classifier_set = [self.LOGISTIC_REGRESSION, 

                           self.SVM_RBF, 

                           self.SVM_LINEAR, 

                           self.KNN, 

                           self.GAUSSIAN, 

                           self.DECISION_TREE, 

                           self.RANDOM_FOREST] 

 

  def run(self, output_type: OutputType, create_all_combinations=False): 

    if create_all_combinations: 

      all_combinations = itertools.chain( 

        *[itertools.combinations(self.feature_set, i + 1) 

          for i, _ in enumerate(self.feature_set)]) 

      feature_sets = list(all_combinations) 

    else: 

      feature_sets = [self.feature_set] 

 

    complete_percentage = -1 

    for index, feature_set in enumerate(feature_sets): 

      if complete_percentage < int(index / len(feature_sets) * 100): 

        complete_percentage = int(index / len(feature_sets) * 100) 

        print('0% [{}{}] 100% - {}%'.format('=' * complete_percentage, 

                                            '.' * (100 - 

complete_percentage), 

                                            complete_percentage)) 

 

      self.__add_to_output('feature_set', feature_set, True) 

 

      experiment = self.experiment(feature_set) 

 

      scalar = StandardScaler() 

 

      X_train, y_train = experiment.run(self.train_data, True) 

      X_train = scalar.fit_transform(X_train) 

 

      X_test, y_test = experiment.run(self.test_data, False) 

      X_test = scalar.transform(X_test) 

 

      for classifier_name in self.classifier_set: 

        y_prediction = self.__predict_by_classifier(classifier_name, 

X_train, 

                                                    y_train, X_test) 

        self.__calculate_score_and_to_output(y_test, y_prediction, 

classifier_name) 

 

    if output_type == Session.OutputType.detailed: 

      self.__print_detailed_output() 

    elif output_type == Session.OutputType.csv_friendly: 

      self.__print_csv_friendly_output() 

    self.output = [] 
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  def __predict_by_classifier(self, classifier_name, X_train, y_train, 

X_test): 

    if classifier_name == self.LOGISTIC_REGRESSION: 

      return self.__run_logistic_regression(X_train, y_train, X_test) 

 

    if classifier_name == self.SVM_RBF: 

      return self.__run_svc_rbf(X_train, y_train, X_test) 

 

    if classifier_name == self.SVM_LINEAR: 

      return self.__run_svc_linear(X_train, y_train, X_test) 

 

    if classifier_name == self.KNN: 

      return self.__run_k_neighbors(X_train, y_train, X_test) 

 

    if classifier_name == self.GAUSSIAN: 

      return self.__run_gaussian(X_train, y_train, X_test) 

 

    if classifier_name == self.DECISION_TREE: 

      return self.__run_decision_tree(X_train, y_train, X_test) 

 

    if classifier_name == self.RANDOM_FOREST: 

      return self.__run_random_forest(X_train, y_train, X_test) 

 

    return None 

 

  def __run_logistic_regression(self, X_train, y_train, X_test): 

    classifier = LogisticRegression(random_state=0) 

    classifier.fit(X_train, y_train) 

    return classifier.predict(X_test) 

 

  def __run_svc_rbf(self, X_train, y_train, X_test): 

    classifier = svm.SVC(kernel='rbf', random_state=0) 

    classifier.fit(X_train, y_train) 

    return classifier.predict(X_test) 

 

  def __run_svc_linear(self, X_train, y_train, X_test): 

    classifier = svm.SVC(kernel='linear', random_state=0) 

    classifier.fit(X_train, y_train) 

    return classifier.predict(X_test) 

 

  def __run_k_neighbors(self, X_train, y_train, X_test): 

    classifier = KNeighborsClassifier(p=2) 

    classifier.fit(X_train, y_train) 

    return classifier.predict(X_test) 

 

  def __run_gaussian(self, X_train, y_train, X_test): 

    classifier = GaussianNB() 

    classifier.fit(X_train, y_train) 

    return classifier.predict(X_test) 

 

  def __run_decision_tree(self, X_train, y_train, X_test): 

    classifier = DecisionTreeClassifier(random_state=0) 

    classifier.fit(X_train, y_train) 

    return classifier.predict(X_test) 

 

  def __run_random_forest(self, X_train, y_train, X_test): 

    classifier = RandomForestClassifier(n_estimators=100, random_state=0) 

    classifier.fit(X_train, y_train) 

    return classifier.predict(X_test) 

 

  def __calculate_score_and_to_output(self, y_test, y_prediction, 

classifier): 

    self.__add_to_output('never_predicted_' + classifier, 

                         set(y_test) - set(y_prediction)) 

    self.__add_to_output('confusion_matrix_' + classifier, 

                         metrics.confusion_matrix(y_test, y_prediction)) 

    self.__add_to_output('classification_report_' + classifier, 

                         metrics.classification_report(y_test, 

y_prediction)) 

    self.__add_to_output('f1_macro_' + classifier, 

                         metrics.f1_score(y_test, y_prediction, 

average='macro')) 

    self.__add_to_output('f1_micro_' + classifier, 
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                         metrics.f1_score(y_test, y_prediction, 

average='micro')) 

    self.__add_to_output('recall_' + classifier, 

                         metrics.recall_score(y_test, y_prediction, 

average='macro')) 

    self.__add_to_output('precision_' + classifier, 

                         metrics.precision_score(y_test, y_prediction, 

                                                 average='macro')) 

 

  def __add_to_output(self, key, value, is_new_element=False): 

    if is_new_element or len(self.output) == 0: 

      self.output.append({}) 

 

    self.output[-1][key] = value 

 

  def __print_detailed_output(self): 

    last_feature_set = [] 

 

    for element in self.output: 

      if last_feature_set != element['feature_set']: 

        print('+++ Features: {} +++'.format(element['feature_set'])) 

        last_feature_set = element['feature_set'] 

 

      for classifier in self.classifier_set: 

        print('++ {} ++'.format(classifier)) 

        print('+ Confusion Matrix +') 

        print(element['confusion_matrix_' + classifier]) 

        print('+ Classification Report +') 

        print(element['classification_report_' + classifier]) 

        print('+ F1 Micro Average +') 

        print(element['f1_micro_' + classifier]) 

        print('+ F1 Macro Average +') 

        print(element['f1_macro_' + classifier]) 

        print('+ No Predicted Labels +') 

        print(element['never_predicted_' + classifier]) 

 

  def __print_csv_friendly_output(self): 

    line = '' 

    for classifier in self.classifier_set: 

      line += '\tf1_{}'.format(classifier) 

    for classifier in self.classifier_set: 

      line += '\trecall_{}'.format(classifier) 

    for classifier in self.classifier_set: 

      line += '\tprecision_{}'.format(classifier) 

 

    print(line) 

 

    line = '' 

    for element in self.output: 

      line += '{}'.format(element['feature_set']) 

      for classifier in self.classifier_set: 

        line += '\t{}'.format(element['f1_macro_' + classifier]) 

      for classifier in self.classifier_set: 

        line += '\t{}'.format(element['recall_' + classifier]) 

      for classifier in self.classifier_set: 

        line += '\t{}'.format(element['precision_' + classifier]) 

 

    print(line) 

 

# experiment.py 

 

class Experiment: 

 

  def __init__(self, features: list): 

    self.features = features 

 

  def run(self, data: list, is_train: bool): 

    pass 

 

# ner_experiment.py 
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import json 

import gensim 

import pandas as pd 

from numpy.core.multiarray import array 

 

from Experiment import Experiment 

from ner.constants import Constants 

from ner.features import Features 

from ner.calculations import ner_to_numeric 

from ner.utils import get_micropost_data_with_model 

 

 

class NerExperiment(Experiment): 

  word2vec_path = "ner/source/word2vec_twitter_model.bin" 

  pos_test_path = "ner/source/POS_manual_neel_test.json" 

  pos_train_path = "ner/source/POS_manual_neel_train.json" 

 

  word2vec = None 

  pos_train = None 

  pos_test = None 

  data_train = None 

  data_test = None 

  average_train = None 

  average_test = None 

 

  def __init__(self, features: list): 

    if NerExperiment.word2vec is None: 

      NerExperiment.word2vec = 

gensim.models.KeyedVectors.load_word2vec_format( 

        NerExperiment.word2vec_path, 

        binary=True, 

        unicode_errors='ignore') 

 

    if NerExperiment.pos_train is None: 

      NerExperiment.pos_train = json.loads( 

        open(NerExperiment.pos_train_path, encoding='utf8').read()) 

 

    if NerExperiment.pos_test is None: 

      NerExperiment.pos_test = json.loads( 

        open(NerExperiment.pos_test_path, encoding='utf8').read()) 

 

    super(NerExperiment, self).__init__(features) 

 

  def run(self, data: list, is_train: bool): 

    if is_train and NerExperiment.data_train is None: 

      NerExperiment.data_train, NerExperiment.average_train = \ 

          get_micropost_data_with_model( 

        data, 

        NerExperiment.word2vec) 

 

    if not is_train and NerExperiment.data_test is None: 

      NerExperiment.data_test, NerExperiment.average_test = \ 

          get_micropost_data_with_model( 

        data, 

        NerExperiment.word2vec) 

 

    if is_train: 

      words = NerExperiment.data_train 

      pos = NerExperiment.pos_train 

      averages = NerExperiment.average_train 

    else: 

      words = NerExperiment.data_test 

      pos = NerExperiment.pos_test 

      averages = NerExperiment.average_test 

 

    y = [] 

    X = {} 

 

    for f in self.features: 

      if f == Constants.FEATURE_COSINE: 

        X[Constants.AVG_PERSON] = [] 

        X[Constants.AVG_ORGANIZATION] = [] 

        X[Constants.AVG_LOCATION] = [] 

        '''7 NER''' 



45 

 

 

  

 

        X[Constants.AVG_THING] = [] 

        X[Constants.AVG_PRODUCT] = [] 

        X[Constants.AVG_EVENT] = [] 

        X[Constants.AVG_CHARACTER] = [] 

      else: 

        X[f] = [] 

 

    features = Features(words) 

    for i in range(len(words)): 

      y.append(ner_to_numeric(words[i]['NER'])) 

 

      for f in self.features: 

        if f == Constants.FEATURE_HASHTAG: 

          X = features.get_hashtag_feature(X, i) 

        if f == Constants.FEATURE_AT: 

          X = features.get_at_feature(X, i) 

        if f == Constants.FEATURE_TITLE: 

          X = features.get_title_feature(X, i) 

        if f == Constants.FEATURE_ALL_CAPITAL: 

          X = features.get_all_capital_feature(X, i) 

        if f == Constants.FEATURE_POS: 

          X = features.get_pos_feature(X, i, pos) 

        if f == Constants.FEATURE_POSITION: 

          X = features.get_position_feature(X, i) 

        if f == Constants.FEATURE_COSINE: 

          X = features.get_cosine_similarity_features(X, i, averages, 

                                                      

NerExperiment.word2vec) 

        if f == Constants.FEATURE_NEXT_POS: 

          X = features.get_next_pos_feature(X, i, pos) 

        if f == Constants.FEATURE_PREV_POS: 

          X = features.get_prev_pos_feature(X, i, pos) 

 

    X = pd.DataFrame(X) 

    y = array(y) 

 

    return X, y 

 

# calculations.py 

 

def score_to_numeric(score): 

  """For Stanford POS tagger String to Numeric value""" 

 

  score_dic = { 

    'CC': 1, 'CD': 2, 'DT': 3, 'EX': 4, 'FW': 5, 'IN': 6, 'JJ': 7, 'JJR': 8, 

    'JJS': 9, 'LS': 10, 'MD': 11, 'NN': 12, 'NNS': 13, 'NNP': 14, 'NNPS': 

15, 

    'PDT': 16, 'POS': 17, 'PRP': 18, 'PRP$': 19, 'RB': 20, 'RBR': 21, 'RBS': 

22,  

    'RP': 23, 'SYM': 24, 'TO': 25, 'UH': 26, 'VB': 27, 'VBD': 28, 'VBG': 29,  

    'VBN': 30, 'VBP': 31, 'VBZ': 32, 'WDT': 33, 'WP': 34, 'WP$': 35, 'WRB': 

36,  

    '.': 37, ':': 38, ',': 39, '``': 40, '#': 41, '$': 42, '"': 43, '(': 44, 

')': 45 

  } 

 

  return score_dic.get(score, 46) 

 

 

def ner_to_numeric(ner): 

  """For NER Types String to Numeric value""" 

 

  ner_dic = { 

    'Person': 1, 

    'Organization': 2, 

    'Location': 3, 

    'Thing': 4, 

    'Product': 5, 

    'Event': 6, 

    'Character': 7 

  } 
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  result = ner_dic.get(ner, 0) 

 

  if result == 0: 

    print(ner) 

 

  return result 

 

# constants.py 

 

class Constants: 

  FEATURE_HASHTAG = 'Hashtag' 

  FEATURE_AT = 'At' 

  FEATURE_TITLE = 'Title' 

  FEATURE_ALL_CAPITAL = 'All Capital' 

  FEATURE_POS = 'POS Tagger' 

  FEATURE_POSITION = 'Position' 

  FEATURE_NEXT_POS = 'Next POS Tagger' 

  FEATURE_PREV_POS = 'Prev POS Tagger' 

  FEATURE_COSINE = 'Cosine' 

 

  AVG_PERSON = 'Avg Person' 

  AVG_ORGANIZATION = 'Avg Organization' 

  AVG_LOCATION = 'Avg Location' 

  AVG_THING = 'Avg Thing' 

  AVG_PRODUCT = 'Avg Product' 

  AVG_EVENT = 'Avg Event' 

  AVG_CHARACTER = 'Cos Character' 

 

# features.py 

 

import numpy as np 

from scipy import spatial 

 

from ner.constants import Constants 

from ner.calculations import score_to_numeric 

 

 

class Features: 

  def __init__(self, words): 

    self.words = words 

 

  def get_hashtag_feature(self, X, index): 

    dic = self.words[index] 

 

    X[Constants.FEATURE_HASHTAG].append( 

      '#' in dic['word'] or dic['tweet'][dic['start'] - 1] == '#') 

 

    return X 

 

  def get_at_feature(self, X, index): 

    dic = self.words[index] 

 

    X[Constants.FEATURE_AT].append( 

      '@' in dic['word'] or dic['tweet'][dic['start'] - 1] == '@') 

 

    return X 

 

  def get_title_feature(self, X, index): 

    word = self.words[index]['word'] 

 

    X[Constants.FEATURE_TITLE].append(word.istitle()) 

 

    return X 

 

  def get_all_capital_feature(self, X, index): 

    word = self.words[index]['word'] 

 

    X[Constants.FEATURE_ALL_CAPITAL].append(word.isupper()) 

 

    return X 
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  def get_pos_feature(self, X, index, pos): 

    dic = self.words[index] 

 

    tags = pos.get('{}_{}_{}'.format(dic['id'], dic['start'], dic['word']), 

[]) 

 

    if not tags: 

      X[Constants.FEATURE_POS].append(0) 

    else: 

      # 47 for mixed POS tags 

      tag = tags[0][1] 

      is_same = True 

 

      for item in tags: 

        is_same = tag == item[1] 

        if not is_same: 

          break 

 

      if is_same: 

        X[Constants.FEATURE_POS].append(score_to_numeric(tag)) 

      else: 

        X[Constants.FEATURE_POS].append(47) 

 

    return X 

 

  def get_prev_pos_feature(self, X, index, pos): 

    dic = self.words[index] 

    tags = pos.get('{}_{}_{}'.format(dic['id'], dic['start'] - 1, 

dic['word']), []) 

 

    if not tags: 

      X[Constants.FEATURE_PREV_POS].append(0) 

    else: 

      X[Constants.FEATURE_PREV_POS].append(score_to_numeric(tags[1])) 

 

    return X 

 

  def get_next_pos_feature(self, X, index, pos): 

    dic = self.words[index] 

    tags = pos.get('{}_{}_{}'.format(dic['id'], dic['start'] + 1, 

dic['word']), []) 

 

    if not tags: 

      X[Constants.FEATURE_NEXT_POS].append(0) 

    else: 

      X[Constants.FEATURE_NEXT_POS].append(score_to_numeric(tags[1])) 

 

    return X 

 

  def get_position_feature(self, X, index): 

    dic = self.words[index] 

    word_before = dic['tweet'][: dic['start']] 

 

    X[Constants.FEATURE_POSITION].append( 

      (word_before.count(' ') + 1) / (dic['tweet'].count(' ') + 1)) 

 

    return X 

 

  def get_cosine_similarity_features(self, X, index, averages, model): 

    dic = self.words[index] 

    value_organization = [] 

    value_person = [] 

    value_location = [] 

    value_thing = [] 

    value_product = [] 

    value_event = [] 

    value_character = [] 

 

    for ner_word_split in dic['word'].split(' '): 

      cleaned_word = ner_word_split.replace('@', '') 

      cleaned_word = cleaned_word.replace('#', '') 

 

      if cleaned_word in model.vocab: 

        value_organization.append(model[cleaned_word]) 
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        value_person.append(model[cleaned_word]) 

        value_location.append(model[cleaned_word]) 

        value_thing.append(model[cleaned_word]) 

        value_product.append(model[cleaned_word]) 

        value_event.append(model[cleaned_word]) 

        value_character.append(model[cleaned_word]) 

 

    value_organization = np.array(value_organization) 

    value_person = np.array(value_person) 

    value_location = np.array(value_location) 

    value_thing = np.array(value_thing) 

    value_product = np.array(value_product) 

    value_event = np.array(value_event) 

    value_character = np.array(value_character) 

 

    if len(value_organization) == 0: 

      X[Constants.AVG_PERSON].append(0) 

      X[Constants.AVG_ORGANIZATION].append(0) 

      X[Constants.AVG_LOCATION].append(0) 

      '''7 NER''' 

      X[Constants.AVG_THING].append(0) 

      X[Constants.AVG_PRODUCT].append(0) 

      X[Constants.AVG_EVENT].append(0) 

      X[Constants.AVG_CHARACTER].append(0) 

    else: 

      X[Constants.AVG_PERSON].append( 

        1 - spatial.distance.cosine(averages['person'], 

                                    np.average(value_person, axis=0))) 

      X[Constants.AVG_ORGANIZATION].append( 

        1 - spatial.distance.cosine(averages['organization'], 

                                    np.average(value_organization, axis=0))) 

      X[Constants.AVG_LOCATION].append( 

        1 - spatial.distance.cosine(averages['location'], 

                                    np.average(value_location, axis=0))) 

      '''7 NER''' 

      X[Constants.AVG_THING].append( 

        1 - spatial.distance.cosine(averages['thing'], 

                                    np.average(value_thing, axis=0))) 

      X[Constants.AVG_PRODUCT].append( 

        1 - spatial.distance.cosine(averages['product'], 

                                    np.average(value_product, axis=0))) 

      X[Constants.AVG_EVENT].append( 

        1 - spatial.distance.cosine(averages['event'], 

                                    np.average(value_event, axis=0))) 

      X[Constants.AVG_CHARACTER].append( 

        1 - spatial.distance.cosine(averages['character'], 

                                    np.average(value_character, axis=0))) 

 

    return X 

 

# utils.py 

 

import numpy as np 

 

 

def get_micropost_data_with_model(data, word2vec_model): 

  words = [] 

 

  value_organization = [] 

  value_person = [] 

  value_location = [] 

  value_thing = [] 

  value_product = [] 

  value_event = [] 

  value_character = [] 

 

  ''' 

  line[0] -> tweetId 

  line[1] -> tweet 

  line[2] -> word start 

  line[3] -> word end 

  line[4] -> NER Type 
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  line[5] -> retweet count 

  line[6] -> favorite count 

  line[7] -> word  

  ''' 

  index_1 = 0 

  index_2 = 0 

  for row in data: 

    line = row.rstrip().split('\t') 

    index_1 += 1 

    if len(line) != 8: 

      continue 

 

    index_2 += 1 

    words.append( 

      {'id': line[0], 'tweet': line[1], 'start': int(line[2]), 'end': 

int(line[3]), 

       'word': line[7], 

       'NER': line[4]}) 

 

    for ner_word_split in line[7].split(' '): 

      word = ner_word_split.replace('@', '') 

      word = word.replace('#', '') 

 

      if word in word2vec_model.vocab: 

        if line[4] == 'Organization': 

          value_organization.append(word2vec_model[word]) 

        elif line[4] == 'Person': 

          value_person.append(word2vec_model[word]) 

        elif line[4] == 'Location': 

          value_location.append(word2vec_model[word]) 

        elif line[4] == 'Thing': 

          value_thing.append(word2vec_model[word]) 

        elif line[4] == 'Product': 

          value_product.append(word2vec_model[word]) 

        elif line[4] == 'Event': 

          value_event.append(word2vec_model[word]) 

        elif line[4] == 'Character': 

          value_character.append(word2vec_model[word]) 

 

  value_organization = np.array(value_organization) 

  value_person = np.array(value_person) 

  value_location = np.array(value_location) 

  value_thing = np.array(value_thing) 

  value_product = np.array(value_product) 

  value_event = np.array(value_event) 

  value_character = np.array(value_character) 

 

  averages = { 

    'organization': np.average(value_organization, axis=0), 

    'person': np.average(value_person, axis=0), 

    'location': np.average(value_location, axis=0), 

    'thing': np.average(value_thing, axis=0), 

    'product': np.average(value_product, axis=0), 

    'event': np.average(value_event, axis=0), 

    'character': np.average(value_character, axis=0) 

  } 

 

  return words, averages 
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