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ABSTRACT

The aim is to understand the topology of an algebraic function around it’s singular point
which leads to study the topology of the knot. While studying a knot K, one can consider
the topology of the complement of it,which appears as an invariant since all information
about the homotopy of it is contained in its fundamental group.
First the Newton pairs are computed using Newton Polygon Method. Then, the
fundamental group of the branch is stated by computing its generators and relations
between these generators. It has been shown that the characteristic exponents carry out the
information about the topology of the branch. More explicitly, if two branches have the
same characteristic exponent, then the knots associated to the branches are isotopic.

Keywords: Fundamental Group, Newton Polygon, Puiseux Pairs, Newton Pairs, Iterated
Torus Knots



ÖZET

Bu çalışmada cebirsel bir fonksiyonun singüler noktası etrafındaki topolojisinin
anlaşılması hedeflenmiştir. Düğümler, cebirsel fonksiyonların tekilliğinin topolojik imajı
olarak görülür. Bir düğüm çalışılırken, düğümün kendisi yerine, tümleyeni çalışılabilir.
Temel grubunda homotopisi ile ilgili bütün bilgiler olduğundan, bu tümleyen aslında bir
düğüm invaryantıdır.
Öncelikle Newton Poligonu yöntemi ile Newton çiftleri bulunur. Daha sonra dalların
temel grupları yazılır, bu temel grubun üreteçleri arasındaki ilişkiler Newton çiftleri ile
gösterilebildiğinden karakteristik kuvvetlerin dalın topolojisi hakkında bütün bilgiyi
taşıdığı sonucuna varılır. Daha farklı bir ifade ile, eğer karakteristik kuvvetleri aynı olan
iki dal varsa, bu dallarla ilişkilendirilen düğümler aynıdır.

Anahtar Sözcükler: Temel Grup, Newton Poligonu, Puiseux çifleri, Newton Çiftleri,
Yinelemeli Torus Düğümleri
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1. INTRODUCTION

We begin with an algebraic function f(x, y) of two complex variable x, y of the form

f(x, y) = yn + a1(x)yn−1 + ...+ an−1y
1 + an(x) = 0

where ai(x) ∈ C[x]. We utilized Newton’s algorithm to compute Puiseux and Newton
pairs of this algebraic function.
In chapter 2, we compute the fundamental groups of branches and show that we have
k + 1 generators and k relations for kth fundamental group of the branch. We use Zariski
(1932)’s construction for that. We show that the characteristic pairs determine the relation
between generators of fundamental group.
In Chapter 3, after giving a brief summary of knots, we consider the set of zeros of the
polynomial f(x, y). A point (x0, y0) in the zero set for which y0 is a multiple root of the
polynomial f(x0, y) is called a branch point and we prove that the stereographic
projection of the intersection of the singularity consisting of one branch with the boundary
of a small neighbourhood is a torus knot via Brauner (1928)’s construction. In the second
section, we introduce iterated torus knots and compute the linking number of these knots,
both in terms of Puiseux pairs and also of Newton pairs using homological tools.



2. PRELIMINARIES

2.1 Homotopy

Definition 2.1.1. Two directed curves on a surface F are called homotopic if they can be
continously deformed into each other on F while their beginning points and end points
remain fixed.

Remark that beginning and end points of one curve must coincide with the beginning and
end points of the other curve and F is a connected surface in space or Riemann region over
the z-sphere.
If A and B are two homotopic curves, we say that A ∼ B.

Definition 2.1.2. Let I be the closed interval [0, 1] of R and let X, Y be two topological
spaces and f0 : X → Y and f1 : X → Y be two continuous maps. A continuous map
F : X x I → Y is called homotopy between continuous maps from f0 to f1 if it satisfies
the following condition for all x ∈ X;

F (x, 0) = f0(x)

F (x, 1) = f1(x)

If there exists a homotopy from f0 to f1, then we say that they are homotopic.

Definition 2.1.3. A closed curve issuing from η is homotopic to zero if and only if with n
no longer fixed, it is possible to contract the curve continuously on the surface to any
point.

Theorem 2.1.1. Homotopy is an equivalence relation.

Proof:

• A ∼ B implies that B ∼ A.

• A ∼ B and B ∼ C implies that A ∼ C.

• A ∼ A for all A.

Since we showed that homotopy is an equivalence relation, we can talk about homotopy
classes. If the beginning point of a curve A2 is same as the end point of another curve A1,
then A1A2 is the joint curve where we first traverse A1 and then A2.
If A1 ∼ B1 and A2 ∼ B2, then A1A2 ∼ B1B2.
Remark that multiplication is well defined and associative, i.e. (A1A2)A3 = A1(A2A3).
A−1 is the curve obtained from A by reversing its direction. (A−1)−1 = A,
(AB)−1 = B−1A−1 and A ∼ B implies that A−1 ∼ B−1.
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Consider curves A, B on the surface F with common beginning and end points η, that is
closed curves issuing from η. First introduce the degenerate curve E consisting of the
single point η. The curve E has the property AE = EA = A If A ∼ E, then A is
homotopic to zero. Furthermore C.C−1 ∼ E and C ∼ D implies that DC−1 ∼ E.
We seperate the closed curves issuing from η into homotopy classes, α, β, etc. where A1

and A2 belong to the same class if, and only if A1 ∼ A2.
We define the product of two homotopy classes, αβ as the class containing the product
AB of a curve A in the class α and B in the class β. Remark that A and B are chosen
arbitrarily, hence αβ is independent of the particular choice of A and B. Now, we have
proved the following theorem;

Theorem 2.1.2. Homotopy class form a group under multiplication with unit element, E,
consisting of the curves homotopic to zero.

Definition 2.1.4. A surface is simply connected if and only if its fundamental group
consists of identity alone.

The group described above is called the Fundamental Group of the given surface. Let η∗

be another point of the surface and let H be a fixed curve on F, joining η to η∗. If A∗ is a
closed curve issuing from η∗ the HA∗H−1 = A is a closed curve issuing from η. If
A∗ ∼ B∗ and B = HB∗H−1, then A ∼ B. The relation HA∗H−1 = A associates with
every homotopy class α∗ relative to η∗ a unique homotopy class α relative to η.
Conversely, if A is a closed curve issuing from η, then A∗ = H−1AH is a closed curve
issuing from η and we have HA∗H−1 = HH−1AHH−1 ∼ EAE = A Hence our
correspondence is one-to-one. Since, in addition,
(A1A2)

∗ = H−1A1A2H ∼ H−1A1HH
−1A2H = A∗1A

∗
2. So, we conclude that the

correspondence from A to A∗ defines an isomorphism of the two fundamental groups.
This implies that the homotopy group of a surface determined up to isomorphism by the
surface alone (Siegel, 1969).



3. NEWTON POLYGONS AND PUISEUX EXPANSIONS

3.1 Introduction

Let f(x, y) be a complex polynomial in 2 complex variables, x and y. In the
neighbourhood of a smooth point of the curve f(x, y) = 0, the equation can be solved for
one of the variables in terms of the other, but around a singular point one needs further
calculations. In this case the power series expansion of the function f(x, y) at the singular
point is very useful to make the local investigation of plane curves. The straightforward
method for doing this is The Newton-Polygon Method. The method can be explained
briefly as solving the polynomial f(x, y) for y in terms of x by means of a power series
whose powers are rational numbers near the singular point, namely near the point
x = y = 0 , i.e. view f ∈ K[x, y] as a polynomial of y with coefficients from K[x, y],
where K[x, y] is the field of formal Puisseux series (Brieskorn and Knörrer, 1986).

3.2 The Algorithm

The general description of the algorithm is by following the below steps (Willis et al.,
2008);

1. Let the equation below be given.

f(x, y) =
∑
i

i finite

kix
aiybi = 0

Draw the Newton polygon of f(x, y) by plotting (ai, bi) for each term of f , where
ki is any complex coefficient.

2. Take a segment of the Newton polygon from the set of segments, such that no point
is plotted below or to the left side of segments.

3. The first exponent, γ1, is the negative of the slope of this segment.

4. Find f(x, xγ1(c1 + y1))

5. Take the lowest terms in x alone. Since f(x, y)=0, these must cancel and therefore
solving for c1 is possible.

6. Taking the values of γ1 and c1 and β = x-intercept on the Newton polygon of the
segment that has been chosen, f1(x, y1) has been found;

f1(x, y1) = x−βf(x, xγ1(c1 + y1))
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Figure 3.1: Plotting the points

7. Repeat the process for f1(x, y1) to find γ2 and c2.

8. Continue until one of two happens;

• fn(x, yn) has a factor of yn.

• Newton polygon consists of a single segment with only two vertices one on
each axis.

Example 3.2.1. f(x, y)= 2x4 + x2y + 4xy2 + 4y3=0

Solution: This polynomial has a solution of the form y = c1xγ1 + c2x
γ1+γ2 + ..., where

γi’s are negatives of the slopes of the lower segments of Newton polygon.
Step 1: First of all, we plot the the points (0,4), (1,2), (2,1) and (3,0) as shown in Figure
3.1
Now we can draw the convex hull using these points Figure 3.2;
Step 2: We take the leftmost segment such that no point is plotted below or to the left of it.
This is the blue segment in Figure Figure 3.3.
Step 3: The slope of the blue segment is -2 and the first exponent, γ1, is the negative of
the slope of this segment. So γ1= −(−2)=2.
Step 4: We now factor xγ1 out of y = c1x

γ1 + c2x
γ1+γ2 + ...

We get y = x2(c1 + y1) and substitute that into f(x, y);

f(x, y) = 2x4 + x2.x2(c1 + y1) + 4x.x4(c1 + y1)
2 + 4x6(c1 + y1)

3

= x4(2 + (c1 + y1) + 4x(c1 + y1)
2 + 4x2(c1 + y1)

3)

Step 5: The terms with lowest degree in x is 2 + c1. Then 2 + c1 = 0 i.e. c1 = −2.
Step 6: Subsitute c1 and divide by x4. So we get;

f1(x, y) = y1 + 4x(y1 − 2)2 + 4x2(y1 − 2)3

= y1 + 4xy21 − 16xy1 + 16x+ 4x2(y31 − 6y21 + 12y1 − 8)
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Figure 3.2: Newton Polygon for f(x, y)
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Figure 3.3: Newton Polygon for f(x, y)
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Figure 3.4: Plotting the points
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Now, we repeat the same process for y2 and γ2 to find f2. The slope of the segment in
Figure: 3.4 is -1, which implies that γ2 = 1 and x-intercept of the line is 1.

y1 = x(c2 + y2) β2 = 1 y1 = c2x+ c3x
2 + ...

Substitute y1 into f1(x, y).

f1(x, y) = y1 + 4x(y1 − 2)2 + 4x2(y1 − 2)3

= y1 + 4xy21 − 16xy1 + 16x+ 4x2(y31 − 6y21 + 12y1 − 8)

= x(c2 + y2) + 4x3(c2 + y2)
2 − 16x2(c2 + y2) + 16x+ 4x5(c2 + y2)

3−
24x4(c2 + y2)

2 + 48x3(c2 + y2)− 32x2

We let the terms of lowest degree in x alone equal zero. c2 + 16=0 implies that c2=-16.
Substitute c2 and divide by x.

f2(x, y) = y2 + 4x2(y2 − 16)2 − 16x(y2 − 16)+

4x4(y2 − 16)3 − 24x3(y2 − 16)2 + 48x2(y2 − 16)− 32x

γ3 = 1 β3 = 1 y2 = x(c3 + y3)

c3 − 16c2 − 32=0 implies that c3=224
This process can be continued similarly, so far we reached the below solution;

y = -2x2 − 16x3 − 224x4 + ...
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We have examined the case γ1 = 2 and now we must return to the original polynomial
f(x, y) and examine the case γ1 = 1.

f(x, y) = 2x4 + x2y + 4xy2 + 4y3 = 0

y = x(c1 + y1)

f(x, y) = 2x4 + x3(c1 + y1) + 4x3(c1 + y1)
2 + 4x3(c1 + y1)

3 = 0

So let the coefficients of x3 terms equal to zero;

c1x
3 + 4c21x

3 + 4c31x
3 = 0

⇒ c1 = 0,−1/2

Since we are considering only nonzero cases, assume c1 = −1/2.
By substituting c1 = −1/2 into f(x, y) we get;

x3(2x+ (y1 − 1/2) + 4(y1 − 1/2)2 + 4(y1 − 1/2)3) = 0

f1(x, y) = 4y31 − 2y21 + 2x

Here we have the following points to plot; (0, 1), (2, 0), (3, 0). Clearly the slope of the
graph is −1/2, so γ2 = 1/2 and y1 = x1/2(c2 + y2). Now, subsitute these into f1(x, y);

f1(x, y) = 4x3/2(c2 + y2)
3 − 2x(c2 + y2)

2 + 2x

Let the coefficients of x terms equal to zero;

−2c22 + 2 = 0

c2 = 1

Substitute c2 into the equation of f1(x, y) and divide by x;

4x1/2(1 + y2)
3 − 2(1 + y2)

2 + 2 = 4x1/2 + 12x1/2y2 + 12x1/2y22 + 4x1/2y32 − 2− 4y2 − 2y22 + 2

γ3 = 1/2 and y2 = x1/2(c3 + y3), subsitute these into f2(x, y) and let the coefficients of
x1/2 terms equal to zero;

−4c3 + 4 = 0

c3 = 1

Continue similarly and get another solution of y for f(x, y) as in the former case;

y = −1/2x+ x3/2 + x2 + ..

Definition 3.2.1. The series y(x) = Σaix
i/n is a Puiseux expansion for the curve with

equation f(x, y) = 0.
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3.3 Puiseux Pairs and Newton Pairs

Definition 3.3.1. The pairs satisfying the following conditions (p1, q1), ..., (pk, qk) are
called the Puiseux pairs of f.

• q1 < p1

• pj−1qj < pj for j ≥ 2

• gcd (pj, qj) = 1 for j = 1, ..., k

Example 3.3.1. Let y = x3/2 + x7/4, rewrite this equation keeping qi’s in the
denominators of the latter powers;

y = x3/2 + x7/2.2

The Puiseux pairs are; (2,3) and (2,7)

Example 3.3.2. Let y = x3/2 + x5/3 + x37/2 Rewrite this equation;

y = x3/2 + x5.2/2.3 + x37.3/2.3

(p1, q1) = (2, 3), (p2, q2) = (3, 10)

That is to say that we obtain a sequence of approximations of the form;

y1 = b1x
m1/n1 y2 = xm1/n1(b1 + b2x

m2/n1n2)) etc.

where gcd(mi, ni) = 1 and both mi and ni are greater than zero. By this method, all
solutions of f(x, y) = 0 near origin can be found. Writing these solutions in the form of
fractional power series, i.e. in the form of Puiseux series, we get;

y = c1x
q1/p1 + c2x

q2/p1p2 + ... gcd(qi, pi) = 1,ci 6= 0, q1/p1 < q2/p1p2 < ...

If we write the solutions in the multiplicative form we get;

y = xm1/n1(a1 + xm2/n1n2(a2 + ...(as−1 + xms/n1...n2(as + ...)...)))

with mi, ni > 0 and gcd(mi, ni) = 1 for all i.

Definition 3.3.2. The pairs (mi, ni) are called the Newton pairs of the expansion.

If we rearrange the expression in the above example and write it as described above, we
get;

y = x3/2(1 + x1/2.2)

So, we have the following Newton pairs;

(n1,m1) = (2, 3)

(n2,m2) = (2, 1)
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Newton pairs can easily be computed from Puiseux pairs. Obviously, ni = pi for all i and
m1 = q1. q2 = m1n2 +m2, substitute p2 for n2 and q1 for m1 and then we get the
following equation for m2

m2 = q2 − q1p2

We continue in the same pattern for q3,

q3 = m1n2n3 +m2n3 +m3 = q1p2p3 + (q2 − q1p2)p3 +m3

⇒ m3 = q3 − p3q2

We have then an algorithm between these pairs by doing similar computations for the rest
of them.

Corollary 3.3.0.1. Puiseux pairs (pi, qi) can be determined by the Newton pairs (mi, ni)
by the following formulas;

pi = ni, q1 = m1, qi = mi +mi−1ni

for i > 1.

From this point on, we can associate singular points of plane curves with Puiseux pairs.
The number of the characteristic pairs is the genus of the branch.

3.4 About the Association of Puiseux Pairs, Braids and Coverings

The substitution of x1/n with z enables to get rid of the fractional exponent and it converts
the Puiseux expansion into power series. Furthermore, this parametrisation is actually just
the resolution of singularities. Let X be a space such that

X = {(x, y) ∈ C|yn = xm}

So, we have a solution of y in terms of x, namely y = x(m/n). Let’s do the parametrisation;

x = zn.

obviously we have that;

y = zm

To sum up, for any closed curve x, we have m different continuous functions y. Now
consider the curve C = {(x, y) ∈ C2|f(x, y) = 0} and let f(x, y) = ym − xn. This curve
has m branches. Let x makes one turn around the unit circle, i.e.

x(t) = e2πit

We have m different solutions for y.

y1(t) = e2πi
n
m
t y2(t) = we2πi

n
m
t y3(t) = w2e2πi

n
m
t ...

y = x
n
m yi = wix

n
m w = e

2πi
m
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For example, consider y2 − x3 = 0. Since there are two solutions for y, we have;

y1(t) = e2πi
3
2
t y2(t) = −e2πi

3
2
t

The associated Puiseux expansion is

y = x
3
2 yi = wix

3
2 w = e

2πi
2

Let C = {(x, y) ∈ C2|f(x, y) = 0}. Consider the maps;

π : C ⊂ C2 → D φ : C̃ → D π̃ : C̃ → C

(x, y) 7→ x x 7→ xm x 7→ (xm, y(x))

For all x in D − {0}, we have m different solutions of the equation f(x, y) = 0

yi(x) = y(e2πi/mx1/m)

The graphs of these lie on a cylinder and if we consider the projection of this graph, we
remark that it is a braid of m strands. Hence we have the result that a singularity can be
associated with a braid, where braids are the results of the association of each point in the
interval [0, 1] with m different complex numbers in a continuous way. In other words,each
closed curve x(t) ∈ D − {0} may be lifted to m distinct paths; y1(t), ..., ym(t), where yi’s
are complex valued continuous functions from [0, 1] interval to C such that yi 6= yj for
i 6= j.

{y1(0), ..., ym(0)} = {y1(1), ..., ym(1)}

We consider the set Ym as the space of all complex polynomials of degree m with distinct
roots. Now we can give the definition of braid;

Definition 3.4.1. A braid, being the homotopy class of a closed path with initial and final
point, is an element of the group π1(Ym, ȳ), where is the initial point.

Puiseux pairs are also called characteristic pairs, since they report all the necessary
topological information of the given algebraic equation. By comparing two examples, it
becomes clearer;

Example 3.4.1. Let the function f have the Puiseux expansion

y = x3/2

As discussed earlier, the Puiseux pair is (2,3) and this gives a two strand braid.

Example 3.4.2. Let the function f2 have the Puiseux expansion

y = x3/2 + x37/2

Although there are two terms in the expansion, there is only one characteristic pair and
that is (2,3). This gives also a two strand braid.
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We obtain Puiseux pairs from the Puiseux expansion. If we try to obtain Puiseux
expansion from Puiseux pairs, that is also possible but one loses some information in this
case such that the higher order terms, which cause oscillations in braid and the coefficients
of the terms in the expansion. Now we are ready to prove the following theorem which
states that Puiseux pairs suffice to describe the braid.

Theorem 3.4.1. Puiseux expansions with the same Puiseux pair yield equivalent braids.

Proof. Let M be a curve around the point x = y = 0 such that the caharacteristic pair
(m,n) for this point is relatively prime. Around this point we do the following convergent
parametrization;

x = tm(am + tam+1 + ...)y = tn

where gcd(m,n) = 1 and am 6= 0. Now we allocate another curve M0 with same pair
such that it has the following parametrization;

x = tmam

y = tn

We choose (x1, x2)-plane where y is constant and intersects both of the curves. We denote
the intersection points with M as x1, x2, ..., xn and the intersection points with M0 as
x01, x02, ..., x0n.
t0 is a parameter value that gives one of x1, x2, ..., xn. Without loss of generality, we call it
x1 and so the same t0 provides also a point from x01, x02, ..., x0n, without loss of
generality, we call it x01. All the other intersection points in both sequences is resulted
then by εit0 for i = 1, 2, ..., n− 1 where εi is the nth unit root.
Now we consider the parametrization of M and M0 and for two points xi and x0i, we have;

| xi − x0i | =| tm+1 || am+1 + tam+2 + ... |

| xj − x0i | =| (εmj − εmi )amt
m + (εjt

)m+1am+1 + ... |

Since we are in the convergence neighbourhood, for | t |< k where k > 0 we have that;

| am+1 + tam+2 + ... |≤ A

This implies for t < m(εmj −εmi )

2A

| xi − x0i ≤| tm+1 | A

| xj − x0i |≥| (εmj − εmi )am || tm | + | tm+1 | A

Then we obtain this inequality for i, j, r = 1, 2..., n and i 6= j:

| xj − x0i |>| xr − x0r |

Now we combine the points xi and x0i by line in each plane near the origin. So the line
parts give a bijective transformation of M into M0 şf we consider the parts of our
manifolds that lie near the origin. So we conclude that the topological behaviour of M has
been replaced by of M0 in the small neighbourhood of origin. Hence the topological
behaviour is determnined completely by characteristic pair.

The number of the characteristic pairs is the genus of the branch.



4. FUNDAMENTAL GROUP OF BRANCH

Let the order of the branch be n and let us have non-intersecting loops g0, g1, ..., gn−1 each
surrounding the points y0, y1, ..., yn−1 and P1 be the circuit surrounding all the points yi.
Furthermore, P1 is the product of loops gi and hence gi’s are the generators of the
fundamental group of the singularity. Let T1 be the transformation when x makes one turn
around origin, x = 0. The loops gi’s are affected by the turn of x and each gi is deformed
into a new loops g′i. The new set of loops are still non-intersecting. We will obtain general
relations of fundamental group by expressing the new loops in terms of old loops using
Zariski-Van-Kampen Theorem (Zariski, 1932) by putting

g′i = gi i = 0, 1, ..., n− 1.

Now, we will find the fundamental group of the branch step by step beginning with an
expansion with only one term.

4.1 The Fundamental Group of the Branch with genus one

We compute the fundamental group G1 of the branch y = xm1/n1 .
If x makes one turn around the origin, gi will transform into a suitable gj for
i, j = 0, ..., n1. Let m1 = h1n1 + l1 for n1, h1, l1 ∈ Z and n1 > l1 ≥ 0. Then; we have
the following relation for the transformation of the loops for P1 = g0g1...gn1−1;

gi+l1 = P h1
1 giP

−h1
1 i = 0, 1, ..., n1 − l1 − 1 (4.1)

gi = P h1+1
1 gn1−l1+iP

−h1−1
1 i = 0, 1, ..., l1 − 1 (4.2)

These are the generating relations for the fundamental group.
We see for the general case;

Pm1
1 g0 = g0P

m1
1 (4.3)

Let x1, y1 be two positive integers such that

x1m1 = y1n1 + 1

Then we have the following generating relations obtained by 4.8 and 4.9;

gi+1 = P y1
1 giP

−y1
1 i = 0, 1, ..., n1 − 2 (4.4)

gi = P y1+1
1 gn1−1+iP

−y1−1
1 i = 0 (4.5)

g1 = P y1
1 g0P

−y1
1 ⇒ g0 = P−y11 g1P

y1
1
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Using the equation 4.10, we continue in this way;

Pm1
1 g0 = Pm1

1 P−y11 g1P
y1
1 = P−y11 g1P

y1
1 P

m1
1 = g0P

m1
1

Pm1
1 and P y1

1 commute, so;

P−y11 Pm1
1 g1P

y1
1 = P−y11 g1P

m1
1 P y1

1

Evidently, we have the following result as the first relation between g0 and P1;

g1P
m1
1 = Pm1

1 g1 (4.6)

Computing gi’s from 4.11, we have;

g1 = P y1
1 g0P

−y1
1

g2 = P y1
1 g1P

−y1
1 = P 2y1

1 g0P
−2y1
1

g3 = P y1
1 g2P

−y1
1 = P 3y1

1 g0P
−3y1
1

.

.

.

gn1−1 = P
(n1−1)y1
1 g0P

−(n1−1)y1
1

We have the following equation obtained by the generalization of this algorithm;

gi+1 = P
(i+1)y1
1 g0P

−(i+1)y1
1 i = 0, 1, ..., n1 − 2 (4.7)

Recalling that P1 is the product of loops gi’s, we compute this multiplication gradually;

g1g2 = P y1
1 g0P

−y1
1 P 2y1

1 g0P
−2y1
1 =P y1

1 g0P
y1
1 g0P

−2y1
1

g1g2g3 = P y1
1 g0P

y1
1 g0P

−2y1
1 P 3y1

1 g0P
−3y1
1 =P y1

1 g0P
y1
1 g0P

y1
1 g0P

−3y1
1

.

.

.

g0g1g2...gn1−1 = g0 (P y1
1 g0)...(P

y1
1 g0)︸ ︷︷ ︸

(n1 − 1)times

P
−(n1−1)y1
1 =P1

g0(P
y1
1 g0)

n1−1P
−(n1−1)y1
1 = P1

g0(P
y1
1 g0)

n1(P y1
1 g0)

−1 = P
(n1−1)y1+1
1
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(P y1
1 g0)

n1 = g−10 P
(n1−1)y1+1+y1
1 g0

Since x1m1 = y1n1 + 1;

(P y1
1 g0)

n1 = g−10 P x1m1
1 g0

Since Pm1
1 and g0 commute;

(P y1
1 g0)

n1 = P x1m1
1 (4.8)

This is the second relation between g0 and P1.
We are not just trying to find relations for the fundamental group, we aim to find their most
compact expression. Therefore we continue by introducing a new generator Q1 in addition
to the other generator P1 such that

Q1 = P−m1y1
1 (P y1

1 g0)
m1 (4.9)

due to (4.3)
Compute Qx1

1 due to (4.3);

Qx1
1 = (P y1

1 g0)
m1x1P−m1y1x1

1

= (P y1
1 g0)(P

y1
1 g0)

m1x1−1P−m1y1x1
1

The power of second term in paranthesis, (P y1
1 g0) is m1x1 − 1 and that is n1y1,

Qx1
1 = (P y1

1 g0)(P
y1
1 g0)

n1y1P−m1y1x1
1

Since (P y1
1 g0)

n1 = P x1m1
1 by (4.8);

Qx1
1 = (P y1

1 g0)P
m1x1y1
1 P−m1y1x1

1

Qx1
1 = (P y1

1 g0) (4.10)

When we compute Qn1
1 , we get the following relation due to (4.3);

Qn1
1 = (P y1

1 g0)
m1n1P−m1y1n1

1

By substitution using the equalities (P y1
1 g0)

n1 = P x1m1
1 and y1n1 = x1m1 − 1 we get;

Qn1
1 = (Pm1x1

1 )m1P−m1y1n1

1

= P
m2

1x1−m2
1x1+m1

1

Qn1
1 = Pm1

1 (4.11)

Hence, we have obtained two generators, P1 and Q1 of G1 and the relation Qn1
1 = Pm1

1 for
the first fundamental group G1. In other words G1 is generated by P1 and Q1 and they
satisfy the relation (4.11).
Let us examine an example and study it via Zariski’s construction (Zariski, 1932).
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Example 4.1.1.

y3 = x7

Let x vary on the unit circle |x| = 1. We have 3 branches and in general

yk = e2πikm/n (4.12)

where k = 0, ..., n− 1. Hence for our case; we have 3 solutions of y.

y0 = e2πi0(7/3) = 1

y1 = e2πi(7/3)

y2 = e2πi2(7/3)

If m1 were 1, the equation would look like y = x1/3. If x makes one turn around the origin
g′0 will transform into g1 clearly and g1 will transform into g2. In that case g2’s
transformed version can be expressed as P−11 g0P1 where P1 = g0g1g2. We conclude that
T1(P1) = P1, where T1 is the induced transformation of the loops in fiber space.

(a) Lops g0, g1, g2, P1 (b) Transformed loops T (g0), T (g1), T (g2)

Figure 4.1: Loops initially and after one complete turn of x around origin

In (4.1.1) m1 is 7 and m1 = h1n1 + l1 for n1, h1, l1 ∈ Z and n1 > l1 ≥ 0. This
formulation leads in our example as;

7 = 2.3 + 1

Now we can write the transformed loops for that case, namely;

g0 = g′0 = P−21 g1P
2
1 (4.13)

g1 = g′1 = P−21 g2P
2
1 (4.14)

g2 = g′2 = P−31 g0P
3
1 (4.15)

The first equality is due to Zariski Van Kampen Theorem.
The equalities between gi’s and P−21 gjP

2
1 lead to more useful ones in view of (3.2),(3.3)

and (3.4) for P1 = g0g1...gn1−1;

g1 = P 2
1 g0P

−2
1 (4.16)

g2 = P 2
1 g1P

−2
1 (4.17)

g0 = P 3
1 g2P

−3
1 (4.18)
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(a) T1(g0) (b) T1(g1)

(c) T1(g2)

Figure 4.2: Transformed loops

If we substitute P 2
1 g1P

−2
1 in (4.18) and then P 2

1 g0P
−2
1 in that new equation, we get that

g0 = P 7
1 g0P

−7
1 ⇒ g0P

7
1 = P 7

1 g0

Hence we can conclude that P 7
1 and g0 commute. Obviously, the power of P1 is not a

coincide in that case.
To make it clear, we state that we have the following values for the given parameters;
m1 = 7, n1 = 3, h1 = 2, l1 = 1, x1 = 1, y1 = 2 When we apply (3.17) to the example we
get;

(P 2
1 g0)

3 = P 7
1

We can substitute it into the definition of Q1

Q1 = (P 2
1 g0)

7P−141 = (P 2
1 g0)

7(P 2
1 g0)

−6 = P 2
1 g0

g1 = P 2
1 g0P

−2
1

g2 = P 4
1 g0P

−4
1

P1 = g0g1g2 = g0P
2
1 g0P

2
1 g0P

−4
1

P 5
1 = g0P

2
1 g0P

2
1 g0

P 7
1 = P 2

1 g0P
2
1 g0P

2
1 g0

= (P 2
1 g0)

3

P 7
1 = Q3

1 (4.19)
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4.2 The Fundamental Group of the Branch with genus two

We find the fundamental group G2 of the branch y = xm1/n1 + xm1/n1+m2/n1n2 . We have
n1n2 values of y for x = 1. For a fixed i, n2-many points lie on the circle with center yi.
Each of these points is denoted by yij , where j = 0, ..., n2 − 1. The non-intersecting loops
gi,0, gi,1, ..., gi,n2−1 surround the points yij such that gi is the circuit surrounding all the
points yij , hence gi surrounds also the point yi.

gi,0gi,1...gi,n2−1 = gi

In this context we can say that gi is nothing but P2.
Let T2 be the transformation of the loops gi,j affected by a complete turn of the point x
around the origin such that it induces a transformation of the loops gi that coincides with
T1. That means that the first set of generating relations of G2 are the generating relations
of G1.
Now, we will consider T n1

2 obtained by letting the variable x make n1 complete turns
around the origin. Let us do the following substitution;

x = zn1

y = xm1/n1 + xm1/n1+m2/n1n2 = zm1 + zm1+m2/n2

In this case, we consider that z makes one turn around z = 0 and we have;

z → e2πiz

T n1
2 (x) = e2πin1x

Let m2 = h2n2 + l2 for n2, h2, l2 ∈ Z

g′0,j = g−h20 P−m1
1 g0,j+l2P

m1
1 gh20 j = 0, ..., n2 − l2 − 1 (4.20)

g′0,n2−l2+j = g−h2−10 P−m1
1 g0,jP

m1
1 gh2+1

0 j = 0, ..., l2 − 1 (4.21)

Similar to the previous case, we do the same substitutions and get the relations below in
view of (4.20) and (4.21);

g0,j+l2 = Pm1
1 gh20 g0,jg

−h2
0 P−m1

1 j = 0, ..., n2 − l2 − 1 (4.22)

g0,j = Pm1
1 gh2+1

0 g0,n2−l2+jg
−h2−1
0 P−m1

1 j = 0, ..., l2 − 1 (4.23)

We substitute 0 in both of the equations above and get;

g0,0 = Pm1
1 gh2+1

0 g0,n2−l2g
−h2−1
0 P−m1

1

g0,l2 = Pm1
1 gh20 g0,0g

−h2
0 P−m1

1
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If we repeat the latter operation n2-times we get;

g0,l2n2 = Pm1n2
1 gh2n2

0 g0,0g
−h2n2
0 P−m1n2

1

Furthermore we have

g0,l2n2 = g−l20 g0,0g
l2
0 (4.24)

This is because we have;

g0,j+n2 = g−10 g0,jg0

g0,0 = Pm1n2
1 gh2n2+l2

0 g0,0g
−h2n2−l2
0 P−m1n2

1

We rearrange the equation below as follows;

g0,0 = Pm1n2
1 gm2

0 g0,0g
−m2
0 P−m1n2

1 (4.25)

This is the generating relation of G2 together with (4.11) . So, the only generators of G2

are g0,0, P1, Q1. If we rearrange (4.25), we get that

Pm1n2
1 gm2

0 g0,0 = g0,0P
m1n2
1 gm2

0

Since Pm1
1 and g0 commute by (4.3), we can write (4.25) as below;

Pm1n2
1 gm2

0 g0,0 = g0,0g
m2
0 Pm1n2

1

So we have shown that Pm1n2
1 g0 and g0,0 commute by the following equation.

Pm1n2
1 gm2

0 g0,0 = g0,0P
m1n2
1 gm2

0 (4.26)

As (m2, n2) are coprime, we can define two positive integers x2, y2 such that after Euclid
algorithm;

x2m2 = y2n2 + 1 (4.27)

A quick proof of existence of such x2 and y2 is given by the following procedure. If the
equation (4.27) holds, then we have

x2m2 = x2(h2n2 + l2) = x2h2n2 + x2l2 = y2n2 + 1

This implies that

x2l2 ≡ 1(modn2)

Hence there exists an integer k2 such that

x2l2 = k2n2 + 1 (4.28)
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So,

x2m2 = x2h2n2 + x2l2 = x2h2n2 + k2n2 + 1

= (x2h2 + k2)n2 + 1

So, we have proved the existence of x2 and y2 for the following case;

y2 = x2h2 + k2 (4.29)

Now consider (4.20) and (4.21);

g0,j = g−h2x20 P−m1x2
1 g0,j+x2l2P

m1x2
1 gh2x20

by (4.28)

= (gh20 P
m1
1 )−x2g0,j+k2n2+1(P

m1
1 gh20 )x2

by (4.24)

= (gh20 P
m1
1 )−x2g−k20 g0,j+1g

k2
0 (Pm1

1 gh20 )x2

= P−m1x2
1 g−h2x2−k20 g0,j+1g

h2x2+k2
0 Pm1x2

1 (4.30)

Let us define a new operator B such that;

B = Pm1x2
1 gy20 (4.31)

Then (4.30) can be stated as below;

g0,j = B−1g0,j+1B

As a result we have;

g0,j+1 = Bg0,jB
−1 j = 0, ..., n2 − 2 (4.32)

If we write down gij’s according to (4.32), we get;

g0,1 = Bg0,0B
−1

g0,2 = Bg0,1B
−1 = B2g0,0B

−2

.

.

.

g0,n2−1 = Bg0,n2−2B
−1 = Bn2−1g0,0B

−(n2−1)

Bg0,n2−1B
−1 = Bn2g0,0B

−n2 (4.33)
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By (4.32),

g0,0 = Bg0,−1B
−1 (4.34)

and by (4.24),

g0,n2−1 = g−10 g0,−1g0 (4.35)

If we rearrange (4.35) we get;

g0,−1 = g0g0,n2−1g
−1
0 (4.36)

Now we substitute (4.36) in (4.34);

g0,0 = Bg0g0,n2−1g
−1
0 B−1 (4.37)

Now we substitute (4.37) into (4.33);

Bg0,n2−1B
−1 = Bn2Bg0g0,n2−1g

−1
0 B−1B−n2

g0,n2−1 = Bn2g0g0,n2−1g
−1
0 B−n2 (4.38)

By (4.38) and (4.27) we have the following equations;

g0,j+l2 = Bl2g0,jB
−l2 j = 0, ..., n2 − l2 − 1 (4.39)

g0,j = Bl2g0g0,n2−l2+jg
−1
0 B−l2 j = 0, ..., l2 − 1 (4.40)

We have now two important equations (4.32) and (4.37).
Now we want to prove that (y2l2−h2)n2 = (x2l2− 1)m2. We already know by (4.28) that

x2l2 − 1 = k2n2 (4.41)

So we need to show that

y2l2 − h2 = k2m2 = k2(h2n2 + l2) (4.42)

By the last step of the previous proof that leads us to the existence of x2 and y2, we can
denote y2 as x2h2 + k2. We rewrite (4.41) and get (4.42)

(x2h2 + k2)l2 − h2 = x2h2l2 + k2l2 − h2 = (x2l2 − 1)︸ ︷︷ ︸
k2n2

h2 + k2l2

We will use these algebraic relations by computing the generating relations of G2 as
follows;

Bl2 =( Pm1x2
1 gy20 )l2

= Pm1x2l2
1 gy2l20
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By (4.28) and (4.29)

= P
(k2n2+1)m1

1 gk2m2+h2
0

Since g0 and Pm1
1 commute by (4.3);

= (gm2
0 Pm1n2

1 )k2Pm1
1 gh20

Now it is time for simplifying the generating relations of G2. So we are going to derive
several equations using previous results.
We have by (4.22)

g0,0 = (Pm1x2
1 gy20 )−1g0,1P

m1x2
1 gy20

We replace g0,0 in (4.26) by the above expression and get;

gm2
0 Pm1n2

1 (Pm1x2
1 gy20 )−1g0,1P

m1x2
1 gy20 = (Pm1x2

1 gy20 )−1g0,1P
m1x2
1 gy20 g

m2
0 Pm1n2

1

If we use the result that Pm1
1 and g0 commute, we can rearrange this equation above and

write it as;

(Pm1x2
1 gy20 )−1︸ ︷︷ ︸

B−1

gm2
0 Pm1n2

1 g0,1 P
m1x2
1 gy20︸ ︷︷ ︸

B

= (Pm1x2
1 gy20 )−1︸ ︷︷ ︸

B−1

g0,1g
m2
0 Pm1n2

1 Pm1x2
1 gy20︸ ︷︷ ︸

B

This means that g0,1 and gm2
0 Pm1n2

1 commute.
Using (4.32) we can write equations for the loops g0,j where j = 0, ..., n2 − 1.

g0,1 = Bg0,0B
−1

g0,2 = Bg0,1B
−1

= B2g0,0B
−2

.

.

.

g0,n2−1 = Bn2−1g0,0B
−(n2−1)

g0,1g0,2 = Bg0,0Bg0,0B
−2

g0,1g0,2g0,3 = Bg0,0Bg0,0Bg0,0B
−3
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.

.

.

g0,0g0,1...g0,n2−1 = g0,0 (Bg0,0)(Bg0,0)...(Bg0,0)︸ ︷︷ ︸
(n2−1)times

B−(n2−1)

Remember that g0 is the circuit surrounding all points yij and it is the product of loops
g0,j’s for j = 0, ..., n2 − 1.

g0 = g0,0(Bg0,0)
n2−1B−(n2−1)

We substitute the expression of B into the above equation and rearrange it;

g0(P
m1x2
1 gy20 )n2−1 = g0,0(P

m1x2
1 gy20 g0,0)

n2−1

g0(g
y2
0 P

m1x2
1 )n2 = (g0,0g

y2
0 P

m1x2
1 )n2

gy2n2+1
0 Pm1x2n2

1 = (g0,0g
y2
0 P

m1x2
1 )n2

By (4.27),

Pm1x2n2
1 gx2m2

0 = (g0,0g
y2
0 P

m1x2
1 )n2 (4.43)

Let us define Q2 in a way similar to the definition of Q1 in (4.9)

Q2 = (g0,0g
y2
0 P

m1x2
1 )m2(gm2

0 Pm1n2
1 )−y2

= (Bg0,1)
m2(gm2

0 Pm1n2
1 )−y2

In this case,

Qx2
2 = (g0,0g

y2
0 P

m1x2
1 )x2m2(gm2

0 Pm1n2
1 )−x2y2

By (4.43)

= gx2m2
0,0 (gy2x2m2

0 Pm1x2m2x2
1 )(g0,0g

y2
0 P

m1x2
1 )−n2y2

= g0,0g
y2
0 P

m1x2
1 (4.44)

= g0,0B (4.45)

The last step of the equation shows us that Q2 can be used as one of the generators of G2,
instead of g0,0.

Qn2
2 = (g0,0g

y2
0 P

m1x2
1 )m2n2(gm2

0 Pm1n2
1 )−y2n2
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By (4.43)

= (gm2x2
0 Pm1n2x2

1 )m2(gm2
0 Pm1n2

1 )−y2n2

= gm2
0 Pm1n2

1

By (4.11)

= gm2
0 Qn1n2

1 (4.46)

Hence we have obtained three elements, P1, Q1 and Q2 as generators of G2 satisfying the
following conditions;

Qn1
1 = Pm1

1

Qn2
2 = Pm2

2 Qn1n2
1

where P2 surrounds n2 points y0,j and P1 surround n1n2 points yi,j for 0 ≤ i ≤ n1 − 1,
and 0 ≤ j ≤ n2 − 1

Example 4.2.1.

y = x3/2 + x7/4 = x3/2 + x3/2+1/2.2

In this case we have the following values for our parameters;

m1 = 3 n1 = 2

m2 = 1 n2 = 2

m2 = h2n2 + l2 h2 = 0 l2 = 1

First of all we write the relations for this example based on the results we have obtained in
previous section; By (4.3),

g0P
3
1 = P 3

1 g0

By (4.11),

Q2
1 = P 3

1

By definition of Q1,

Q1 = (P1g0)
3P−31

Now we write the relations of loops g0,0 and g0,1 with help of (4.20) and (4.21);

g′0,0 = P−31 g0,1P
3
1 (4.47)
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Figure 4.3: Loops in genus two case

g′0,1 = g−10 P−31 g0,0P
3
1 g0 (4.48)

By Zariski-Van-Kampen,

g′0,0 = g0,0 g′0,1 = g0,1

In the figure below, the loops for this example has been drawn. The red one is P1

surrounding y0 and y1, the gray one is g0 surrounding y0 and black and blue loops are g00
and g01 surrounding y00 and y01.
We rearrange (4.47) and (4.53) and get the following equations respectively;

g0,1 = P 3
1 g0,0P

−3
1 (4.49)

g0,0 = P 3
1 g0g0,1g

−1
0 P−31 (4.50)

If we replace g0,1 in (4.50) with (4.49) we get that;

g0,0 = P 3
1 g0P

3
1 g0,0P

−3
1 g−10 P−31

Since g0 and P 3
1 commute; we get the generating relation of G2 as follows;

g0,0 = P 6
1 g0g0,0g

−1
0 P−61

This is (4.25), indeed.
This enables us to write the following equation;

g0,0g0P
6
1 = P 6

1 g0g0,0

This is obviously (4.26).
The positive integers x2 and y2 are 3 and 1,respectively and k2 is 1. B is P 9

1 g0.
By (4.49), we have that

g0,0 = P−31 g0,1P
3
1

and if we repeat this 3 times since x2 = 3;

g0,0 = P−91 g0,3P
9
1

We replace g0,3 in this equation by another expression of it using (4.24);

g0,0 = P−91 g−10︸ ︷︷ ︸
B−1

g01 g0P
9
1︸︷︷︸

B
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g0,1 = Bg0,0B
−1 (4.51)

This is the result we obtained in (4.32).
Since (4.51) and the fact that g0,0 and P 6

1 g0 commute, we can write the following equation;

P 6
1 g0(P

9
1 g0)

−1g0,1P
9
1 g0 = (P 9

1 g0)
−1g0,1P

9
1 g0

Since P 3
1 and g0 commute we can rearrange the above equation and obtain the latter one;

g0,1 = (P 6
1 g0)

−1g0,1P
6
1 g0

Hence g0,1 and P 6
1 g0 commute, also.

Now we can say that

g0,0 = Bg0,−1B
−1

Furthermore, we have the following equation by (4.24);

g0,−1 = g0g0,1g
−1
0

Now, we substitute the latter equation in the former one and get;

g0,0 = Bg0g0,1g
−1
0 B−1 (4.52)

This is the result we obtained in (4.37).
We can have the following equation by (4.51), obviously;

Bg0,1B
−1 = B2g0,0B

−2

If we replace g0,0 here with its expression in (4.52) , we get that;

Bg0,1B
−1 = B2Bg0g0,1g

−1
0 B−1B−2

This implies immediately;

g0,1 = B2g0g0,1g
−1
0 B−2

This is the result we obtained in (4.38).
Now we can use the fact that g0 is obtained by multiplication of the loops g0,0 and g0,1.

g0 = g0,0g0,1 = g0,0Bg0,0B
−1

This implies that

g0B = g0,0Bg0,0

If we replace B by its expansion;

g0(g0P
9
1 ) = g0,0(g0P

9
1 g0,0)

Since g0,0 and g0P 6
1 commute we may write;

g0(g0P
9
1 )2 = g20,0(g0P

9
1 )2
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g30P
18
1 = (g0,0g0P

9
1 )2 (4.53)

This is the result we obtained in (4.43).
Now we introduce the new parameter Q2 defined as;

Q2 = (g0,0g0P
9
1 )(g0P

6
1 )−1

Then Q3
2 yields to;

Q3
2 = (g0,0g0P

9
1 )3(g0P

6
1 )−3

If we write this equation clearly;

= g30,0g
3
0P

27
1 (g−30 P−181 )

By (4.53),

= g30,0g
3
0P

27
1 (g0,0g0P

9
1 )−2

Hence we get that;

Q3
2 = g0,0g0P

9
1

Similarly;

Q2
2 = (g0,0g0P

9
1 )2(g0P

6
1 )−2

By (4.53),

= (g30P
18
1 )(g0P

6
1 )−2

Hence

Q2
2 = g0P

6
1

By the relations we obtained for Q1 and P1

Q2
2 = g0Q

4
1

According to our notation; g0 is P2, hence

Q2
2 = P2Q

4
1 (4.54)

4.3 The Fundamental Group of the Branch with genus k

We find the fundamental group Gp of the branch
y = xm1/n1 + xm1/n1+m2/n1n2 + ...+ xm1/n1+m2/n1n2+...mk/n1n2...nk . Our aim in this
chapter is to prove the following theorem.
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Theorem 4.3.1. The group Gp is generated by p+ 1 elements,P1, Q1, Q2, ...Qp. The
generating relations of Gp are the following;

Qni
i = Pmi

i Q
ni−1ni
i−1 i = 1, 2, ..., p Q0 = 1

Pi+1P
yi
i Q

ni−1xi
i−1 = Qxi

i i = 1, 2, ..., p− 1

Here xi and yi are positive integers such that

ximi = yini + 1

Moreover, if an element Pp+1 is defined as;

Pp+1P
yp
p Q

np−1xp
p−1 = Qxp

p

the elements Pi’s are the loops surrounding nini+1...np of the values of the function y for
x = 1.

We are proving this theorem by induction. Section 4.1 is for the case where p = 1 and
Section 4.2 is for the case p = 2. We have got the following results; For the case p = 1;

Qn1
1 = Pm1

1 (4.11)

P y1
1 g0︸︷︷︸

P2

= Qx1
1 (4.10)

For the case p = 2;

g0,0︸︷︷︸
P3

gy20︸︷︷︸
P
y2
2

Pm1x2
1︸ ︷︷ ︸
Q
n1x2
1

= Qx1
1 (4.44)

Qn2
2 = Pm2

2 Qn1n2
1 (4.46)

Now in this third section we will study the inductive step. Assume the statement is true for
p− 1 and namely for the branch Γp−1. Then we have for the group Gp−1 the following
relations;

Qni
i = Pmi

i Q
ni−1ni
i−1 i = 1, 2, ..., p− 1 (4.55)

Pi+1P
yi
i Q

ni−1xi
i−1 = Qxi

i i = 1, 2, ..., p− 1 (4.56)

Here Pi’s are the loops of y for x = 1 surrounding ni...np−1 points. They can also be
considered as generators/elements of Gp, where each Pi surrounds nini+1...np points of
yij . Here, we introduce an simpler notation, namely, instead of writing y 0, ..., 0︸ ︷︷ ︸

p−1−many

,j we
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write y0,j and for the loops surrounding them we write g0,j instead of g0, 0, ..., 0︸ ︷︷ ︸
p−1−many

,j . They

surround points y0,0, y0,1, ..., y0,p−1 respectively such that

g0,0g0,1...g0,np−1 = Pp

The elements g0,j together with P1, Q1, ..., Qp−1 are the generators of Gp−1.
Now, for the inductive step we may think that x makes n1n2...np−1 turns around origin. In
other words, we think of the transformation Tp of the loops g0, j which will give the new
generating relations of Gp that coincide with generating relations of Gp−1. Obviously we
can keep the algebraic tools that we use;

mp = hpnp + lp 0 ≤ lp < np (4.57)

g0,j+lp = Ag0,jA
−1 j = 0, 1, ..., np − lp − 1 (4.58)

gj = APpgnp−lp+jP
−1
p A−1 j = 0, 1, ..., lp − 1 (4.59)

where

A = P
m1n2n3...np−1

1 P
m2n3...np−1

2 ...P
mp−1

p−1 P hp
p

We try to find a simpler expression for A;

P
m1n2n3...np−1

1 P
m2n3...np−1

2 = (Pm1n2
1 Pm2

2 )n3...np−1

= Q
n2n3...np−1

2

Q
n2n3...np−1

2 P
m3n4...np−1

3 = (Qn2n3
2 Pm3

3 )n4...np−1

= Q
n3n4...np−1

3

This pattern inductively yields;

A = Q
np−1

p−1 P
hp
p (4.60)

We prove that Pi commutes with Qni−1

i−1 .
For i = 2, P2 is g0 which commutes with Pm1

1 by (4.3) and which is equal to Qn1
1 by

(4.11). We assume this is true for a given i and prove it for i+ 1. Then by hypothesis, we
have that Pi commutes with Qni−1

i−1 . That means;

PiQ
ni−1

i−1 = Q
ni−1

i−1 Pi (4.61)

Lemma 4.3.2. Pi commmutes with Qni
i ;
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Proof. In the first step, we just use the expression for Qni
i given in (4.55)

Qni
i Pi = Pmi

i Q
ni−1ni
i−1 Pi

By (4.61);

= PiQ
ni−1ni
i−1 Pmi

i

= PiQ
ni
i

Lemma 4.3.3. Qni
i commutes with Qni−1

i−1

Proof. Similar to the above lemma’s proof, we use the expression for Qni
i given in (4.55);

Qni
i Pi = Pmi

i Q
ni−1ni
i−1 Pi

By (4.61),

= PiQ
ni−1ni
i−1 Pmi

i

= PiQni
i

Lemma 4.3.4. Pi+1 commutes with Qni
i .

Proof. First; we write an expression for Pi+1 using (4.56) first;

Pi+1 = Qxi
i Q

−ni−1xi
i−1 P−yii

Secondly, we compute Pi+1Q
ni
i ;

Pi+1Q
ni
i = Qxi

i Q
−ni−1xi
i−1 P−yii Qni

i

By (4.3.2),

= Qxi
i Q

−ni−1xi
i−1 Qni

i P
−yi
i

By (4.3.3),

= Qxi
i Q

ni
i Q

−ni−1xi
i−1 P−yii

= Qni
i Pi+1
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Now we try to find new relations between generators P1, Q1, Q2, ...Qp−1 following similar
paths that we have done in previous sections. We consider (4.58),

glp = Ag0A
−1

g2lp = A2g0A
−2

.

.

.

gnplp = Anpg0A
−np

By (4.24) and (4.60),

P−lpp g0P
lp
p = (Q

np−1

p−1 P
hp
p )npg0(Q

np−1

p−1 P
hp
p )−np

We rewrite this equation for g0;

g0 = P lp
p Q

np−1np
p−1 P hpnp

p g0Q
−np−1np

p−1 P−hpnpp P−lpp

Since Pi commutes with Qni−1

i−1 ;

g0 = Q
np−1np
p−1 Pmp

p g0(Q
np−1np
p−1 Pmp

p )−1 (4.62)

Let xp and yp are two non-negative integers such that;

xpmp = ypnp + 1

Then define B as;

B = P
xpm1n2n3...np−1

1 P
xpm2n3...np−1

2 ...P
xpmp−1

p−1 P yp
p

After an arrangement similar to that used in (4.60)

B = Q
xpnp−1

p−1 P yp
p

In this case we have, by (4.58) and (4.59) the following relations, respectively,

g0,j+1 = Bg0,jB
−1 j = 0, ..., np − 2 (4.63)

g0,0 = BPpg0,np−1P
−1
p A−1 (4.64)

(4.63) and (4.64) are actually the relations for the transformation T xpp . Now we can
compute gi’s according to the relation given in (4.63) for i = 0, ..., np − 1;

g0,1 = Bg0,0B
−1

g0,2 = Bg0,1B
−1

= B2g0,0B
−2
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.

.

.

g0,j = Bjg0,0B
−j j = 0, ..., np − 1

We know that Pp = g0g1...gnp−1, so we compute multiplication of these loops;

g0,1g0,2 = Bg0Bg0B
−2

g0,1g0,2g0,3 = Bg0,0Bg0,0Bg0,0B
−3

Pp = g0,0g0,1g0,2...g0,np−1 = g0 (Bg0,0)(Bg0,0)...(Bg0,0)︸ ︷︷ ︸
(np−1)−times

B−(np−1)

Pp = g0(Bg0)
np−1B−(np−1)

Pp(Q
xpnp−1

p−1 P yp
p )np−1 = g0(Q

xpnp−1

p−1 P yp
p )np−1g

np−1
0

(Pmp
p Q

npnp−1

p−1 )xp = (g0P
yp
p Q

xpnp−1

p−1 )np (4.65)

Taking this relation into account we define Qp as follows;

Qp = (g0P
yp
p Q

xpnp−1

p−1 )mp(Pmp
p Q

npnp−1

p−1 )−yp

Then we compute Qxp
p by the above relation;

Qxp
p = (g0P

yp
p Q

xpnp−1

p−1 )mpxp(Pmp
p Q

npnp−1

p−1 )−ypxp

By (4.65);

= (g0P
yp
p Q

xpnp−1

p−1 )mpxp(g0P
yp
p Q

xpnp−1

p−1 )−npyp

By (4.57);

= g0P
yp
p Q

xpnp−1

p−1 (4.66)

Qp is a generator of Gp and it satisfies the following relation

Qnp
p = (g0P

yp
p Q

xpnp−1

p−1 )mpnp(Pmp
p Q

npnp−1

p−1 )−ypnp

Similar to the above case, by (4.65),

= (Pmp
p Q

npnp−1

p−1 )mpxp(Pmp
p Q

npnp−1

p−1 )−ypnp

= Pmp
p Q

npnp−1

p−1

Hence we proved the theorem (Zariski, 1932).



5. KNOTS

A link L is a closed smooth submanifold in the three dimensional sphere S3 such that each
connected component is homeomorphic to S1. A connected link is called a knot (Dimca,
1992).
A knot K is a topological embedding of S1 into R3 or S3. In other words it is a subset of
S3 homeomorphic to S1. Two knots are equivalent, when there is an orientation preserving
homeomorphism;

φ : S3 → S3

K 7→ K ′

Here S3 is regarded in two ways;

S3 = {(x, y) ∈ C2||x|2 + |y|2 = r}
S3 = R3 ∪ {∞}

Furthermore it can be written as a union of two toris

T1 = {(x, y) ∈ C2||x|2 + |y|2 = 1, |x| ≤ |y|}
T2 = {(x, y) ∈ C2||x|2 + |y|2 = 1, |x| ≥ |y|}

By orientation preserving we mean that the map respects over and undercrossings. The
image of the embedding of S1 into S3 is also regarded as knot i.e. the knot K = C ∩ S is
the image of a circle S1, where

S1 = {t ∈ C||t| = c}

• The simplest knot, S1x {0} ⊂ S1 x D2 ⊂ S3, is the trivial knot which can be
defined by the complex equation x = 0. This is the torus knot of Oth order.

• The simplest nontrivial knot is the so-called trefoil knot. It is (2, 3) torus knot of
first order.

Figure 5.1: Trivial Knot
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Figure 5.2: Trefoil Knot

We may consider the map j such that

j : S1xS1 → S3

j(x, y) = (x/
√

2, y/
√

2)

and another map e such that

e : S1 → S1xS1

e(z) = (zq, zp)

where p, q are two positive integers such that gcd(p, q) = 1. Then (q, p)- torus knot,
denoted as Kq,p is resulted by composition of the two maps above; j ◦ e. Kq,p can
also be expressed as below;

Kq,p = {(x, y) ∈ S3|xp + yq = 0}

• In general, Ki is the torus knot of ith order with the Puiseux pairs (q1, p1), ..., (qi, pi).
These torus knots of higher order are iterated torus knots i.e. cable knots.

A cable knot is obtained in the following manner, firstly we start with an ordinary torus
knot, K1, placed on an unknotted torus and with a tubular neighbourhood around K1. We
replace K1 by a knot K2 placed on the boundary of neighbourhood of K1. So, we
construct a cable knot K2 around K1 and so on, we construct inductively a cable knot Ki

around Ki−1. In this context; Ki is called an iterated torus knot.
Let us state formally what we have described;

Definition 5.0.1. The knot with the given below Puiseux expansion

y = x
q1
p1 + x

q2
p1p2 + ...+ x

qk
p1...pk

with Puiseux pairs

(q1, p1), ..., (qk, pk)

corresponds to the iterated torus knot of order k.

This definition makes more sense when one recalls that knots are resulted by braids when
the initial and final points are identified.
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5.1 Torus knots

Brauner (1928) regards torus knots as topological images of singularities of algebraic
functions of two complex variables. He shows that the stereographic projection of the
intersection of the singularity consisting of one branch with the boundary of a small
neighbourhood is a knot. Let us investigate the case for an irreducible curve.
We first take an analytic function of complex variables x and y such that

f(x, y) = 0

as the equation of 2-parameter real curve in 4-dimensional space R4(x1, x2, y1, y2)
Let this aforementioned irreducible curve equation be the following;

axn + bym = 0

where gcd(n,m) = 1 and x, y are complex variables such that;

x = x1 + ix2

y = y1 + iy2

These variables should satisfy the following equation;

x21 + x22 + x23 + x24 = r2 (5.1)

Around the point x = y = 0 we may have the following parametrization with respect to
the complex parameter t;

x = αtm y = βtn

where α and β are constants that depend only to a and b. Therefore we can go on by the
following parametrizations;

α = aeic β = beid t = ρeiφ

Then two-parametric real curve M in R4 has the following parametrization;

x = aeic(ρeiφ)m y = beid(ρeiφ)n

It gives rise to the following parametrizations;

x1 = aρmcos(mφ+ c) x2 = aρmsin(mφ+ c)

y1 = bρncos(nφ+ d) y2 = bρnsin(nφ+ d)

If the curve M intersects with the projection’s sphere z, we will get a condition for the
parameter. If we substitute the parameters in (5.1) for x1, x2, x3 and x4, the parameter will
have the following condition;

b2ρ2n + a2ρ2m = r2

where φ is free. Here one should remark that the equation above gives a monotone
increasing function of ρ. For positive and real values of r, ρ has two roots.
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Let σ be a positive root of ρ. So we find for our intersection curve Γ of our curve with the
sphere z,

x1 = aσmcos(mφ+ c) x2 = aσmsin(mφ+ c)

y1 = bσncos(nφ+ d) y2 = bσnsin(nφ+ d)

We consider the following substitution;

τ = mφ+ c ψ = nφ+ d

We project the points x1, x2, y1 and y2 on a point such that

x1 = x2 = y1 = 0

y2 = r

As orthogonal projection’s coordinate axes we choose ξ, η, ζ such that they are parallel to
x1, x2, y1 axes of R4, respectively. Hence;

ξ =
2r

r − y2
x1 η =

2r

r − y2
x2 ζ =

2r

r − y2
y1 (5.2)

Now we can substitute the parameters into (5.2) and so we get the following equations;

ξ =
2raσmcosφ

r − bσnsinψ
η =

2raσmsinφ

r − bσnsinψ
ζ =

2rbσncosψ

r − bσnsinψ

where φ and ψ are independent parameters. So we have a torus equation of the form;

ζ2 + (µ− 2r2

aσm
)2 = (

2rbσn−m

a
)2

where µ is

µ =
√
ξ2 + η2

Therefore, we conclude that the surface is a torus.

5.2 Iterated Torus Knots

Let f(x, y) be a complex polynomial vanishing at the origin and let
C = {(x, y)|f(x, y) = 0} be the equation of the plane algebraic curve. For all sufficiently
small ε, we have a sphere

Sε = {(x, y)|
√
x2 + y2 = ε}

So far, we have found out that if the curve C intersects this sphere, we get the knot K. To
describe it, we may solve f(x, y) = 0 for y in terms of x and obtain the aforementioned
Puiseux series. Each fractional power series solution gives rise to a branch of the curve.
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Let us denote the trivial knot by K0 and take the first approximation. This is indeed the
(q1, p1) torus knot namely;

y = a1x
q1/p1

Let x = εtθ such that Arg(t) ∈ [0, 2π] i.e. it turns once around the complex unit circle S1.
Then we have for y;

y = a1(ε)
q1/p1tq1

Clearly, y is a constant times tq1 . So, while t makes one turn around S1, (x,y) makes p1
turns in longitudional direction in R, which is x-axis and q1 turns in meridianal drection of
R, which is y-axis. This is the knot K1 lying in the neighbourhood of K0.
For the general case, we can write the following expression as;

K1 ∼ n1L0 +m1M0 (5.3)

As a second approximation to the knot K, we consider the knot K2, which lies in the
ε-neighbourhood of K1 and it will be a cable on K1 such that it makes n2 turns in
longitudional direction. Generally speaking; since longitudional turn of Ki around Ki−1
needs to be ni, we have the following for i = 1, ..., k where k is the number of Newton
pairs;

Li ∼ n1Li−1 (5.4)

Since M0 − n1M1 is zero-homologous in the neighbourhood of K1, we have the following
for all i;

Mi−1 ∼ niMi (5.5)

K2 is given by the following equation;

y = a1x
m1/n1 + a2x

m1/n1+m2/n1n2

In this case, we update the parametrization of x to

x = εtn1n2

So, we have for y;

y = a1ε
m1/n1tm1n2 + a2ε

m1/n1+m2/n1n2tm1n2+m2

Similar to K1 in the neighbourhood of K0, K2 turns m2 + n1n2m1 in meridianal direction
in neighbourhood of K1

Definition 5.2.1. The number of meridianal turns of Ki+1 in the neighbourhood of Ki is
ai.

So K2 is infact (n2, a2) cable on K1 for a2 = m2 + n1n2m1. Our aim is to find a general
formula for ai for all i.
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Theorem 5.2.1. The ai above are given by Newton pairs such that

• a1 = m1

• ai+1 = mi+1 + nini+1ai for i≥1

For K2 we can say that

K2 ∼ n2K1 +m2M1

Substitute (5.3) in this expression;

K2 ∼ n2(n1L0 +m1M0) +m2M1

By (5.4) and (5.5);

K2 ∼ n2(L1 +m1n1M1) +m2M1

Finally we get;

K2 ∼ n2L1 + (m1n1 +m2)M1

Hence K2 makes n2 turns in longitudional direction and m1n1 +m2 turns in meridianal
direction.
Let L be the knot obtained by shifting each point of Ki for a small distance directly away
from Ki−1, hence it is perturbation of Ki and therefore they are homologous. L can be
expressed parametrically as following for sufficiently small δ;

y = xm1/n1(a1 + (a2x
m2/n2 + ...(ai−1 + xmi/n1n2...ni(ai + δ)))...))

L ∼ Ki ∼ ni+1Li + ai+1Mi

K2 is homologous to p2L1 + (q2 + p1p2q1)M1 where L1 and M1 are longitude and
meridian of K2 in the neighbourhood of K1 respectively.
Continuing in this manner, we can say that Ki is a cable knot (ni, ai) in the
neighbourhood of (ni−1, ai−1)-knot where ai’s are suitable integers in this context.
So, we have proved the theorem (5.2.1) (Eisenbud and Neumann, 1985).
The topological meaning of ai is that it is the linking number between Ki and Ki+1, where
the linking number can be explained briefly as the number of times each pair of
components turn about each other (Rolfsen, 2003). The linking number is symmetric by
its definition and changes sign if the orientation of one of the knots Ki or Ki−1 is reversed.
When we consider that the result we proved in (5.2.1) is for Newton pairs, we can find a
similar algorithm for Puiseux pairs as well. In other words, we seek for another algorithm
to compute wi’s, which are same as ai’s for Puiseux pairs. Let vi be the number of double
points in the projection of torus knots. In this case, v0 will be zero, since the double point
for a circle is zero. For K1 a torus knot of type (n1,m1) it is (n1 − 1)m1. If we consider
the trefoil knot, the number of double points is just 3. This algorithm for wi is as follows
(Burau, 1933) for i = 1, ..., k ;

wi = pivi−1 + qi (5.6)
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Theorem 5.2.2. We can find a recurrence relation for vi and work out it’s value
recursively. Namely, it yields to be;

v0 = 0 (5.7)
vi = vi−1p

2
i + (pi − 1)qi (5.8)

Proof. By (5.2.1) we have for ai+1;

ai+1 = mi+1 + nini+1ai

Since ai+1 is equal to wi+1 and by (5.6) we have that

mi+1 + nini+1ai = pi+1vi + qi+1

We replace the expression of ai in the above relation with its definition given in (5.6);

pi+1vi + qi+1 = mi+1 + nini+1(pivi−1 + qi)

By (3.3.0.1), for all i, we have ni = pi; and mi = qi − piqi−1. So we do the necessary
substituions to the above relation and get;

pi+1vi + qi+1 = qi+1 − pi+1qi + p2i pi+1vi−1 + pipi+1qi

Clearly we get that;

vi = vi−1p
2
i + piqi − qi (5.9)

Example 5.2.1.

y = x3/2 + x7/4

In order to have a consistent notation, we rearrange the expression and get;

y = x3/2(1 + x1/2.2)

So, we have the following Newton pairs recalling definition (3.3.2);

n1 = 2 m1 = 3

n2 = 2 m2 = 1

K0 is the trivial knot, K1 is (2, 3)-torus knot. That enables us to consider K1 as it makes 2
turns in longitudional direction and 3 turns in meridianal direction. In other words;

K1 ∼ 2L0 + 3M0

Similar to that, we have the following;

K2 ∼ 2L1 + (1 + 2.2.3)M1
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y = x3/2 + x3/2+1/22

We have

L ∼ L1 + n1m1M1 = L1 + 6M1

K2 ∼ n2L+m2M1 = 2L+M1 = 2L1 + 13M1

The topological meaning of these expressions are; K2 i.e. (4, 7)-knot makes twice
longitudional turns around L1 and 13 meridianal turn around M1. Let x = tn1n2 = t4, then
y = t6 + t7 where t = e2πi(7/4)t.
Now we can compute the linking number for our example:

a1 = m1 = q1 = w1 = 3

a2 = 1 + 2.2.3 = 13

= 2.3 + 7 = w2



6. CONCLUSION

Our efforts to understand the topology of an algebraic function around it’s singular point,
lead us to study the topology of the knot. While studying a knot K, we can consider the
topology of the complement of it, denoted as S3 \K, which appears as an invariant since
all information about the homotopy type of this space is contained in its fundamental
group π = π1(S

3). For example we showed that for the (q, p)− torus knot K we have

π = π1(S
3 \K) = {a, b; aq = bp}

That means; π is the group with two generators and just one relation. We showed this in
Chapter 2 and computed the generators of the fundamental groups of branches. The
relation between these generators are determined by the characteristic exponents, that
carry out the information about the topology of the branch. More explicitly, if two
branches have the same characteristic exponent, then the knots associated to the branches
are isotopic.
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