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ABSTRACT 

Nowadays, the number of devices connected to the Internet has increased considerably, 

and this had led to the emergence of the term Internet of Things.  Thanks to the Internet 

of things, devices can now decide and share information between them.  Industry 4.0, 

which has recently become very popular, is a term used for data exchange and automation 

for production technologies.   

 

The manufacturing industry produces a large amount of data with the help of the many 

sensors integrated on these devices.  These data can be used to improve processes and 

product quality.  For example, by analyzing these data, anomalies that may occur in the 

lines can be found in advance, the life expectancy of the devices in the factory can be 

calculated, and as a result, active preventive maintenance can be provided for these 

devices.   

 

This study aims to find the remaining useful life of the components by performing time 

series analysis with deep learning methods in the literature.  There are many studies on 

the estimation of the remaining useful life of the components in the literature.  In these 

studies, various methodologies such as artificial neural networks, signal processing, 

regression have been used.  

 

The quality of the data set has great importance in the creation of estimation models.  We 

examined 4 PHM data sets provided by NASA.  In this study, the properties of data, 

sampling frequencies, and pre-applied methods on data sets are summarized.   

 

Femto-ST Bearing data set has been selected for this study.  This dataset has high-

frequency noise; therefore, we applied Discrete Wavelet Transform on the data.  The 

features, such as mean, kurtosis, skewness, standard deviation, root mean square, crest 



 

  

factor, variance, were extracted from this data set.  Also, health indicator values were 

calculated to determine the remaining useful life of the bearings.  We construct the 

remaining useful life prediction model, particularly using the LSTM (long-short-term 

memory) neural network.  We performed various experiments to find the right LSTM 

parameters and to analyze how the prediction model works with different train and test 

sets. 

 

Furthermore, we finally compared the results of our model with the results of previous 

studies on this dataset.  Our results are underperformed compared  by other studies. We 

concluded that, this dataset is not directly applicable to the LSTM network, and 

preprocessing needs more effort. 

 

Keywords: Long-Short Term Memory, Remaining Useful Life, Deep Learning, Active 

Preventive Maintenance 



 
 

 

 

ÖZET 

Günümüzde, internete bağlı cihaz sayısı oldukça artmıştır ve bu da nesnelerin interneti 

teriminin çıkışını sağlamıştır.  Nesnelerin interneti sayesinde cihazlar artık kendileri karar 

verebilir ve aralarında bilgi paylaşabilir hale gelmiştir.  Son zamanlarda çok duyduğumuz 

Endüstri 4.0 ise üretim teknolojileri için veri alışverişi ve otomasyon için kullanılan bir 

terimdir.  

 

Üretim sanayisi cihazların birçok sensora sahip olması nedeniyle oldukça büyük miktarda 

veriye sahiptir.  Bu veriler süreçlerin otomasyonu ve iyileştirilmesi için kullanılabilir.  

Örneğin bu verilerin analiz edilmesi ile üretim hatlarında oluşabilecek anomaliler 

önceden bulunabilir, fabrikadaki cihazların düzgün olarak çalışabilecekleri yaşam 

süreleri hesaplanabilir ve bunların sonucunda da bu cihazlar için aktif önleyici bakımlar 

sağlanabilir.   

 

Bu çalışmanın amacı da derin öğrenme metotlarıyla zaman serisi analizi yaparak 

bileşenlerin kalan faydalı ömürlerini bulmaktır.  Literatüre bakıldığında bileşenlerin kalan 

faydalı ömürlerinin tahminiyle ilgili birçok çalışma bulunduğu görülebilir.  Bu 

çalışmalarda yapay sinir ağları, sinyal işleme, regresyon ve birçok makine öğrenmesi 

teknikleri gibi çeşitli metodolojiler kullanılmıştır.  

 

Veri setinin kalitesi tahmin modellerinin oluşturulmasında büyük önem taşımaktadır.  Bu 

çalışmada NASA’nın 4 PHM veri seti incelenmiştir.  Bu incelemede verinin özellikleri, 

toplanma frekansları ve veri setleri üzerinde önceden uygulanmış metotlar özetlenmiştir.   

 

Bu veri setleri arasından Femto Enstitüsü’nün rulman veri seti seçilmiştir.  Kullanılan bu 

veri setinde yüksek frekanslı gürültü görülmektedir.  Bu nedenle ivmeölçer verisi 

üzerinde Ayrık Dalgacık Dönüşümü uygulanmıştır.  Bu veri seti üzerinden ortalama, 



 

  

basıklık, çarpıklık, standart sapma, varyans, ortalama karekök, kret faktörü gibi özellikler 

çıkarılmıştır.  Ayrıca, rulmanların kalan kullanım ömrünü belirlemek için sağlık 

göstergesi değerleri hesaplanmıştır.  Uzun-kısa süreli bellek(LSTM) sinir ağı kullanılarak 

kalan faydalı ömür tahmin modeli oluşturulmuştur.  Doğru LSTM parametrelerini bulmak 

ve tahmin modelinin farklı öğrenme ve test verileriyle nasıl çalıştığını analiz etmek için 

çeşitli deneyler yaptık. 

 

Son olarak, oluşturduğumuz modelin sonuçlarını, literatürdeki diğer bu veri setini 

kullanan çalışmaların sonuçları ile karşılaştırdık.  Modelimiz, literatürdeki diğer 

çalışmalara göre daha iyi bir performans gösteremedi.  Bu veri seti, LSTM ağı için 

doğrudan uygulanamaz.  Ön işleme adımında oldukça çaba harcanması gerekmektedir. 

 

Anahtar Kelimeler: Uzun Kısa Süreli Bellek, Kalan Faydalı Ömür, Derin Öğrenme, 

Aktif Koruyucu Bakım 
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1. INTRODUCTION 

The current revolution of the Internet and machine-to-machine technologies has led to the 

emergence of the Internet of Things.  The number of devices, “things” connected to the 

Internet, increases widely (Al-Fuqaha et al., 2015).  The IoT makes the objects smart; thus, 

they can share information and coordinates decisions. 

  

Industry 4.0 is a term for automation and data exchange in manufacturing technologies.   

Industry 4.0 contains various information technology paradigms such as cyber-physical 

systems, IoT, cloud computing, and cognitive computing.  Nowadays, the manufacturing 

industry has a large amount of data that can be used to improve processes and product 

quality.  

  

This large amount of data should be analyzed to extract the useful data, and it can be used 

for anomaly detection, lifetime estimation, active preventive maintenance or the amount of 

the used energy in the factory.  These are important for the sustainability of factories and 

automation. 

  

A time series is a series of data points, which is a sequence taken at successive time 

intervals.  Time series analysis is used to predict future values based on previously observed 

values.  Time-series data analysis can be beneficial for factory automation.  

  

The methods to be used in the time series analysis may vary depending on the type of data 

and the information which is intended to be extracted.  For example, simple statistical 

methods or several machine learning methods such as density-based, clustering-based, and 

support-vector machine learning techniques are used to predict anomaly detection.  If it is 

intended to make numerical inferences, such as machine lifetime estimation, regression 

methods are used (Lei et al.).  
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The active preventive maintenance is one of the most critical parts of smart factories.  The 

purpose of the active preventive maintenance is to trigger required maintenance as early as 

possible and to reach just-in-time maintenance.  Thus, it provides near-zero downtime. 

Rapid decision making is important in increasing productivity. 

  

In order to improve processes in the manufacturing industry, the produced sensor data can 

be used.  The processing of that big data into significant information is fundamental for 

sustainable innovation.  Due to the lack of smart analytics tool, big data of the 

manufacturing industry could be analyzed in a limited way, and it prevents the provision of 

Industry 4.0 term.  Therefore, we focus on this topic in order to create a deep learning model 

for such active preventive maintenance.  

  

Main Research Question: 

  

Is it possible to improve processes in industry by analyzing industrial time series data with 

deep learning approaches?  

  

In order to find answers to our research questions, we started our research with a literature 

review.  Previous studies related to time-series analysis with deep learning approaches and 

Industry 4.0 are analyzed.  The literature review shows that the methods to be used in the 

time series analysis may vary depending on the type of data and the information intended 

to be extracted. 

 

 After the literature review, we examined the PHM datasets to do experiments with our 

model.  The quality of the dataset is important.  The challenging part of this study is to find 

the dataset to be analyzed.  Long-term and smooth data could not be reached easily.  The 

results from machine learning models depend highly on the quality of the dataset.  In this 

study, four PHM (Prognostics and Health management) datasets of NASA were examined.  

  

We decided to perform our time-series analysis on Femto-ST Bearing Dataset, which is also 

called as PRONOSTIA dataset (Nectoux et al.).  Firstly, we preprocessed the data due to 

high-frequency noise.  We extracted features from accelerometer sensors and calculated HI 
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values, which indicates the condition of bearing.  We construct the remaining useful life 

prediction model, particularly using the LSTM (long-short-term memory) neural network. 

Various experiments are performed in order to find the right LSTM parameters.  

 

We compared the results of our model with the results of previous studies on this dataset. 

Our results are performed slightly worse than the other studies.  We can say that this 

dataset is imbalanced and cannot be directly applicable to the LSTM network.  Health 

Indicator values could be calculated more precisely.  This thesis summarizes how this 

subject should be studied and how datasets can affect the prediction models. 

 

This thesis is organized as follows: In Section 2, there is a summary of the literature review 

for this study.  In Section 3, examined datasets and previously used techniques on these 

datasets are summarized. Section 4 describes the dataset and the steps of the proposed 

methodology in detail.  In Section 5, the results of our experiments are presented and 

compared with the results of previous studies.  Finally, Section 6 concludes this study with 

some remarks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

2. LITERATURE REVIEW 

This chapter provides an overview of the literature review about Industry 4.0, prognostics 

and health management, and similar studies.   

 

2.1. Industry 4.0 

The Internet of Things is pervading rapidly day by day and aiming to improve the quality 

of life by connecting many smart devices, technologies, and applications.  IoT makes the 

objects smart, so these objects can see, hear, think, and talk and share information among 

themselves and coordinate decisions.  IoT can have important home and business 

applications to improve quality of our lives (Al-Fuqaha et al., 2015).  Automation of 

everything around us can be realized through the IoT.  

 

The Industry 4.0 era will form new thinking of production management and factory 

transformation by the teaming of interconnected systems and intelligent analytics.  The 

manufacturing industry has large amount of data that can be used to improve processes 

and product quality.  This may be possible by analyzing data effectively.  According to 

(Lee et al., 2014), advanced prediction tools are needed in order to process data 

systematically and make more “informed” decisions.  

 

Manufacturing big data consists of device data and product data.  This data can be 

analyzed and used for active preventive maintenance, optimization of a production line, 

and energy consumption optimization (Jiafu et al., 2017).  
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2.2. Prognostics and Health Management 

Prognostics and Health Management is primarily dealing with component wear and 

degradation.  Remaining useful life prediction, fault diagnosis, and fault detection are 

targeted by PHM algorithms in order to provide factory-wide transparency (Lee et al., 

2013).  This can be achieved by analyzing sensory and system-level data.  

 

There are many approaches to analyze the manufacturing data in industry and to create 

models for prognostics, such as the learning-based and signal processing-based 

approaches.  The learning-based approaches are very common in industrial applications 

because they can learn from data without wide expertise about the process knowledge of 

the analyzed data.  But signal processing-based approaches require the knowledge of 

certain parameters of the device (Gillespie & Gupta, 2017).  For the signal processing, 

denoising and filtering processes are necessary and important.  Feature extraction from 

time, frequency and time-frequency domains are needed for learning-based approaches.  

RMS, kurtosis, crest factor, and standard deviation could be given as the examples of 

these features. In this study, we also extract these time-domain features. 

 

In order to select a suitable technique, problems from similar nature, and previously used 

techniques to solve these problems need to be analyzed.  The technique to be used may 

vary according to the nature of the available data.  For example, neural networks can be 

used for analyzing manufacturing data to calculate lifetime under specific processing 

conditions (Jiafu et al., 2017).  

 

Health condition monitoring of machines is a crucial task to guarantee reliability in 

industrial processes.  The quality of the dataset is a critical issue for machine learning 

models.  The real-time data collected from a machine in the field will help to achieve 

optimal flexibility and robustness for handling different situations (Lee et al., 2014).  The 

machine fleet data can be used to build clusters that represent different machine 

performances and working conditions based on similarities of the machines performing 

similar tasks or similar service times.   
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2.3. Similar Studies and RUL Prediction 

For the RUL prediction, there are mainly three steps.  Data acquisition, calculation of 

health indicator values, and prediction of failure time.  According to Guo et al. (2017), 

HI values of a different bearing are different at a failure time; Therefore, the 

determination of a failure threshold is difficult.  The success of the RUL prediction mostly 

depends on the performance of HIs and they focused on the construction of HI.  They 

similarly extracted time-domain features as in our study.  But they used these features 

with the combination of related similarity features while constructing HIs.  While our 

study uses a simple statistical method for calculating HI values, they used the recurrent 

neural network. 

 

The preprocessing is a crucial part of learning models and it affects their performance.  

Hong et al. (2014) proposed a preprocessing model.  They use a wavelet packet-empirical 

mode decomposition for feature extraction and Gaussian Process Regression (GPR) for 

RUL prediction.  They also used the PRONOSTIA dataset for their experiments. 

 

Yoo & Baek (2018) presents a similar study.  They used the same dataset and deep 

learning approaches to predict RUL.  In this study, a novel time-frequency image is 

proposed in order to construct HI (Health Indicator) and predict the RUL (Remaining 

Useful Lifetime).  The Convolutional Neural Network (CNN) is used to automatically 

discover useful features from the raw signal to construct the HI, and the Morlet-based 

CWT was used to extract image features from the raw vibration signal.  CNN is used as 

a regression model to estimate the CWTCNN-HI based on training images.  The HI shows 

the condition of the machine or component.  The RUL is predicted by calculating the 

difference between the time at which the predicted HI reaches the threshold and the 

current time.  A GPR algorithm has been used to predict the RUL of the bearings.  The 

GPR model predicts future CWTCNN-HI by estimated CWTCNN-HI up to the current 

time.   

 

Several studies in the literature use deep learning and feature extraction methods to 

construct HIs and regression methods to create prediction models.  Different than the 

previous approaches, we used the LSTM neural network to create our prediction model 
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and statistical methods for the calculation of HI values.  We used Discrete Wavelet 

Transform to filter data as different from other studies and extracted time-domain features 

as common.



 
 

 

 

3. PHM DATASETS AND PRONOSTIA DATASET 

This chapter presents the examination of the PHM datasets and previously used 

techniques on these datasets.  More detailed analysis of the datasets can be found in the 

paper (Lei et al., 2018).    

 

 

3.1. Summary of the PHM Datasets 

In this section, details of the four PHM datasets are explained.  The selection of the dataset 

is one of the challenging parts of this study because the results from machine learning 

models highly depend on the quality of the dataset.  

 

3.1.1. Turbofan Engine Degradation Dataset 

Run-to-failure data of turbofan engines are described in this dataset1.  The thermo-

dynamical simulation model has been used to create this dataset, and the degradation 

processes have been simulated as realistic as possible.  It contains 4 sets of data, each of 

which is a combination of 2 failure modes and 2 operating conditions.  The dataset 

parameters are unit number, time, 3 operational settings, and 21 sensor measurements.    

The dataset is eligible for data-driven approach since sufficient data and RUL values are 

available with the dataset. 

 

                                                 
1 https://ti.arc.nasa.gov/c/6/ 

 

https://ti.arc.nasa.gov/c/6/
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3.1.2. Femto Bearing Dataset 

This dataset2 contains 17 run-to-failure data of rolling element bearings acquired from a 

PRONOSTIA platform.  This dataset provides more realistic data because of using a real 

experimental platform.  Vibration signals and the temperature values are the parameters 

of this dataset.  The data is sampled with 10 Hz frequency.  Traditional fault diagnostic 

methods based on frequency analysis is not applicable. 

 

3.1.3. IMS Bearing Dataset 

This dataset3 contains run-to-failure data of rolling element bearings.  The data contains 

three sets (each set with four bearings) of tapered rolling element bearings.  The vibration 

data was collected regularly as an indirect health indicator.  The real experimental 

platform is used to create this dataset.  One second vibration signal snapshots recorded at 

specific intervals.  The sampling rate is set at 20 kHz.  The frequency resolution is about 

1 Hz.  Therefore, fault diagnosis based on frequency analysis is possible.  However, the 

data is insufficient for data-driven modeling. 

 

3.1.4. Milling Dataset 

This dataset4 composed of 16 run-to-failure data which sampled from tool wear 

experiments of a milling machine.  This dataset is the most realistic one among the others.  

Acoustic emission signals, vibration signals, and current signals were recorded at a 

frequency of 250 Hz.  There are eight different operating conditions leading to only two 

samples for each operating condition.  Counter for experimental runs in each case, flank 

wear, depth of cut, feed, material, AC spindle motor current, DC spindle motor current, 

table vibration, spindle vibration, acoustic emission at the table, acoustic emission at 

spindle are parameters of this dataset. 

 

                                                 
2 https://ti.arc.nasa.gov/c/18/ 
3 https://ti.arc.nasa.gov/c/3/ 
4 https://ti.arc.nasa.gov/c/4/ 

https://ti.arc.nasa.gov/c/18/
https://ti.arc.nasa.gov/c/3/
https://ti.arc.nasa.gov/c/4/
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3.2. Previously Used Techniques on PHM Datasets 

In this section, we focus on used methods and their objectives.  This summary helped us 

to decide which method to apply differently from previous studies and what we have to 

focus on an objective.  Therefore, this step is important for this study.  Table 3.1 

summarizes the used techniques and goals on Turbofan Engine Degradation Dataset.  

Previous studies mainly focused on remaining useful lifetime on this dataset.   

 

Table 3.1: Used techniques and goals on Turbofan Engine Degradation Dataset 

 

Techniques Goal 

Artificial Intelligence (El-Koujok et al., 

2011; Peng et al., 2012; Xi et al., 2014; 

Xu et al., 2014) 

RUL 

Recurrent Neural Networks (Heimes, 

2008) 

RUL 

Multi feature fusion for developing 

composite health indices (Liu et al., 

2013, Liu et al., 2017)  

Developing Composite Health Indices 

A genetic fuzzy rule-based system 

(Ishibashi & Júnior, 2013) 

RUL 

Similarity Based Prognostic approach 

(Wang et al., 2008) 

RUL 

Bayesian Approaches (Mosallam et al., 

2016) 

RUL 

Hidden Markov Model (Romasso & 

Denoeux, 2014) 

Health Estimation 

Neuro-Fuzzy System (Romasso & 

Gouriveau, 2014) 

RUL 

Support Vector Regression (Khelif et al., 

2017) 

RUL 
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In Table 3.2, it can be seen that Femto Bearing Dataset has been analyzed for various 

goals such as RUL, condition monitoring, and constructing health indicators. 

 

Table 3.2: Used techniques and goals on Femto Bearing Dataset 

 

Techniques Goal 

Signal Processing Constructing Health Indicator(HI)  

Artificial Intelligence Constructing Health Indicator(HI)  

Multi feature fusion and nonlinear 

dimension reduction (Guo et al., 2017) 

Condition Monitoring 

E-support vectors regression (Loutas et 

al., 2013) 

RUL 

Extended Kalman Filtering (Singleton et 

al., 2015) 

RUL 

Monotonic Score Calibration (Carino et 

al., 2015) 

RUL 

Signal Complexity and Gaussian process 

models (Boškoski et al., 2012) 

Fault Prognostics 

Sparse Representation model (Ren et al., 

2015) 

RUL 

Distributed Neuro-Fuzzy System Feature 

Forecasting (Zurita et al., 2014) 

Condition Monitoring 

Proportional Hazard Model (Wang et al., 

2015) 

RUL 

Support Vector Regression (Benkedjouh 

et al., 2013) 

RUL 

Hilbert-Huang Tranform, Support Vector 

Machine, Regression (Soualhi et al., 

2015) 

Health Monitoring 
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Table 3.3 shows that there are few studies for prediction of remaining useful lifetime by 

using IMS Bearing Dataset and previous studies mainly focused on degradation 

assessment and bearing failures. 

 

Table 3.3: Used techniques and goals on IMS Bearing Dataset 

 

Techniques Goal 

Wavelet filter based weak signature 

method (Qui et al., 2006) 

Bearing prognostics 

Empirical Mode Decomposition and 

Artificial Neural Network (Ben Ali et al., 

2015) 

Fault Diagnosis 

Locality preserving projections and 

Gaussian Mixture Models (Yu, 2011) 

Degradation Assessment 

PCA and optimized LS-SVM Model 

(Dong & Luo, 2013) 

Degradation Prediction 

Wavelet filter based method and Self 

Organizing Map (SOM) (Qui et al. 2003) 

Performance Degradation Assessment 

Hidden Markov Model and Adaptive 

Neuro-Fuzzy inference system (Soualhi 

et al. 2014) 

Prognosis of Bearing Failures 

Weibull Distribution and Artificial 

Neural Network (Ali et al., 2015; 

Mohammad et al., 2010) 

RUL 

Proportional Hazard Model and Logistic 

Regression (Liao et al., 2006) 

RUL 

Relevance Vector Machine(RVM) 

(Widodo & Yang, 2011) 

Prediction of Survival Probability of 

Bearing 
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We can see that there are few studies on Milling dataset in Table 3.4.  Various goals have 

been targeted for this dataset.  As mentioned before, the quality of the dataset has an 

important impact on the success of machine learning models. 

 

 

Table 3.4: Used techniques and goals on Milling Dataset 

 

Techniques Goal 

Relevance Vector Machine for 

Estimating Tool Wear and Recursive 

Least Square Algorithm (Zhang, 2011) 

RUL 

Distributed Fusion Filtering from 

Multiple Sensors (Wei et al., 2013) 

Degradation Process Identification 

Adaptive Gaussian Mixture Model (Yu, 

2012) 

Machine Tool Condition Monitoring 

S-transform and Genetic Algorithm (Rad 

et al., 2014)  

Extracting features for tool condition 

monitoring 

The General Path Model(GPM) (Coble & 

Hines, 2014) 

Degradation Based Diagnostics 

 

 

As a result of this examination,  we decided to use  Femto Bearing Dataset and LSTM. 

We chose this dataset because it was created in a realistic experimental environment, the 

bearings were degraded naturally, and the deep learning approaches have not been applied 

widely to predict RUL on this dataset. In this study, our aim was using deep learning 

approaches. LSTM networks are a kind of RNN which are well designed with complex 

blocks to avoid vanishing gradients problem. LSTMs are applied to solve a large variety 

of problems recently. LSTM has not been applied to this data set before and we intend to 

create our model with a deep learning approach. Therefore, we chose LSTM for this 

study.



 

 

 

4. METHODOLOGY 

This chapter provides a comprehensive explanation of the analyzed dataset, the theory of 

LSTM, and expression of our prediction model.  In this thesis, our aim is predicting the 

remaining useful life of bearings accurately, by using the LSTM network.  We also 

intended to show which method is better by comparing our results with the results of 

previous studies on this dataset. 

 

4.1. Analyzed Dataset 

As mentioned in the previous section, this dataset contains 17 run-to-failure data of rolling 

element bearings acquired from a PRONOSTIA platform.  The overview of the 

PRONOSTIA platform is shown in Figure 4.1.  This dataset is constructed under 3 

different operating conditions as follows: 

− First operating conditions: 1800 rpm and 4000 N, 

− Second operating conditions: 1650 rpm and 4200 N, 

− Third operating conditions: 1500 rpm and 5000 N. 

Table 4.1 shows the distribution of bearings under these 3 operating conditions. 

 

The characterization of the bearing’s degradation is based on two data types of sensors: 

vibration and temperature.  The vibration sensors consist of two miniature accelerometers 

positioned on the vertical and the horizontal axis.  The acceleration measures are sampled 

every 10 s for a sample period of 0.1 s at 25.6 kHz frequency, and the temperature ones 

are sampled at 10 Hz.  We did not use the temperature measurements while constructing 

our prediction model. 

 

The bearings were not naturally degraded; therefore, each bearing’s degradation pattern 

is different from each other. 
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Figure 4.1: Overview of PRONOSTIA platform 

 

 

 

Table 4.1: Bearing dataset with operational conditions. 

 

Datasets Condition1 Condition2 Condition3 

Training Datasets Bearing1_1 

Bearing1_2 

Bearing2_1 

Bearing2_2 

Bearing3_1 

Bearing3_2 

Test Datasets Bearing1_3 

Bearing1_4 

Bearing1_5 

Bearing1_6 

Bearing1_7 

Bearing2_3 

Bearing2_4 

Bearing2_5 

Bearing2_6 

Bearing2_7 

Bearing3_3 

 

 

 

4.2. Basic Theory of LSTM 

Long short-term memory is an artificial recurrent neural network which solves the 

vanishing gradients problems.  In a basic implementation of LSTM, the hidden layer is 

replaced by a complex block.  This complex block is composed of gates that trap the error 

in the block (Gamboa, 2017).  Figure 4.2 shows the layers of the recurrent neural networks 

and the complex structure of the LSTM block. As you can see  in Figure 4.2, an LSTM 

layer consists of  an input gate, a cell, a forget gate and an output gate.  
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Figure 4.2: Structure of RNN and LSTM block 

 

 

The cell state flow down through the whole chain, with just a little direct interaction.  It 

acts as a kind of similar structure to a conveyor belt.  Information could not be affected 

and remain unchanged during flow.  The information can be added or removed by the 

LSTM to the cell state.  In the meantime, gates regulate these processes and take decisions 

about letting information through.  These gates are combination of  a sigmoid neural net 

layer and a pointwise multiplication operation.  The sigmoid layer outputs numbers 

between 0 and 1. How much of each component should be let through is described by this 

layer. 

 

4.3. Methodology 

The main goal of this thesis is to create a prediction model for the remaining useful life 

of degraded bearings.  The steps of the building prediction model are described in Figure 

4.3. In first step, we acquired PRONOSTIA dataset. As a second step we preprocessed 

this dataset. In this step we merged accelerometer files for each bearing and removed 

redundant fields from dataset. We also applied discrete wavelet transform and extracted 

features. In third step, Health Indicator values are calculated using statistical methods. As 

a final step we created our prediction model with LSTM network.  
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Figure 4.3: Construction steps of the prediction model 

 

 

Normally, we do not need to calculate features for deep learning algorithms. 

PRONOSTIA dataset only consists of accelerometer data and each bearing has different 

degradation pattern. Therefore, we extracted features and calculated health indicator 

values.   

 

We used python and tensor flow library to build our prediction model.  Google 

Collaboratory Framework is used to run created scripts with python. 

 

4.3.1. Utilized Python Libraries and Tools 

We used python while developing our prediction model.  TensorFlow 5, Keras 6, Sklearn7    

and Pandas8 libraries are used to preprocess the data and build our prediction model.   

Google Colab9 Framework is used to run created scripts with python.  It is an environment 

which allows to write and execute code, providing powerful computing resources. 

 

4.3.2. Preprocessing 

Firstly, we preprocessed the raw data by removing unnecessary fields for analysis.  There 

are many CSV files separately for each sampling of bearing accelerometer sensors. We 

                                                 
5 https://www.tensorflow.org 
6 https://keras.io/ 
7 https://scikit-learn.org/ 
8 https://pandas.pydata.org/ 
9 https://colab.research.google.com 
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combined these CSV files, so there is one file for each bearing.  We did not use the 

temperature data since it is not available for all bearings.   

 

This dataset has high-frequency noise; therefore, we needed to smoothen the data.  

Discrete Wavelet Transform allows us to deconstruct a signal into the low pass and high 

pass coefficients.  High pass coefficients represent the high-frequency part of the signal.  

DWT filters out the high-frequency noise according to the given threshold.  We applied 

Discrete Wavelet Transform on the horizontal and vertical accelerometer data.  Figure 

4.4 shows the smoothed accelerometer signals.  

 

We extract many features such as mean, standard deviation, crest factor, variance, 

skewness, root mean square and kurtosis.  While extracting these features 1-minute 

samples are used.  Time domain feature extraction formulas are shown in Table 4.2.  

 

 

 

 

Figure 4.4: Accelerometer signals and their DWT smoothed versions 
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We also calculated the actual RULs.  Then duplicate lines are removed and all learning 

datasets are merged into one data frame.  We plotted the features throughout the lifetime 

of the bearings.  Figure 4.5 and Figure 4.6 show the plotting of features of Bearing3_1.  

These figures showed us which features are more meaningful and helped to select features 

for Health Indicator calculation.  Preprocessing codes can be examined in Appendix A. 

 

 

Table 4.2: Time domain feature formulas. 

 

Name Formula 

Mean  

𝑥𝑚 =  
∑ 𝑥(𝑛)𝑁

𝑛=1

𝑁
 

SD 

𝑥𝑠𝑡𝑑 =  √
∑ (𝑥(𝑛) − 𝑥𝑚)2𝑁

𝑛=1

𝑁 − 1
 

Crest Factor 
𝑥𝑐 =

𝑚𝑎𝑥|𝑥(𝑛)|

𝑥𝑟𝑚𝑠
 

Variance 
𝑥𝑣 =

∑ (𝑥(𝑛) − 𝑥𝑚)2𝑁
𝑛=1

𝑁 − 1
 

Skewness 
𝑥𝑠𝑘𝑒  =

∑ (𝑥(𝑛) − 𝑥𝑚)3𝑁
𝑛=1

(𝑁 − 1)𝑥𝑠𝑡𝑑
3

 

RMS 
𝑥𝑟𝑚𝑠 =  √∑ 𝑥(𝑛)2𝑁

𝑛=1

𝑁
  

Kurtosis 
𝑥𝑘 =  

∑ (𝑥(𝑛) − 𝑥𝑚)4𝑁
𝑛=1

(𝑁 − 1)𝑥𝑠𝑡𝑑
4
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Figure 4.5: Mean, Variance and Standard Deviation Feature Plottings of Bearing3_1 
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Figure 4.6: Kurtosis, RMS, Skewness and Crest Factor Feature Plottings of Bearing3_1 
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According to Figure 4.5 we can say mean of acc1 and acc2 shows  rising trend after 

degradation started. When we look at Figure 4.5 and  Figure 4.6, the calculated features, 

rms, variance, standard deviation of acc1 and acc2, there are peaks when degradation is 

started. These are important features for Bearing 3_1. We had to select features for all 

bearings to create a better model because the dataset has very variant degradation patterns 

for each bearing.  

 

4.3.3. Health Indicator Calculation 

After feature extraction, we calculated health indicator for the bearings. Firstly, we used 

first 15 minutes as 1 and last 15 minutes  as 0 for the health indicator values. 1 indicates 

a healthy state and 0 indicates a degraded state. Then we calculated remaining health 

indicator values according to correlation of features with the health indicator.  

 

Table 4.3 presents the correlation coefficient between the features and HI. None of the 

sensors have a remarkable high correlation between the features and HI. We decided to 

use features which have correlation coefficients greater than 0.2 to calculate other HI 

values. Here, we used simple ordinary least square(ols) model from statsmodels which is 

a python library. The results of this calculation are shown in Figure 4.7. These results can 

be used to improve Health Indicator calculation. 

 

Then, we calculated health indicators for learning and test data frames. Related codes can 

be found in Appendix B. Figure 4.8 shows the change of health indicator values of 

bearings through lifetime and it presents a degradation pattern.  
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Table 4.3: Correlation values of features with HI 

 

FEATURE HI 

Acc1 Mean -0.077 

Acc2 Mean -0.279 

Acc1 STD -0.287 

Acc2 STD -0.221 

Acc1 Var -0.194 

Acc2 Var -0.125 

Acc1 Kurtosis -0.099 

Acc2 Kurtosis -0.204 

Acc1 RMS -0.287 

Acc2 RMS -0.220 

Acc1 Skew 0.138 

Acc2 Skew 0.054 

Acc1 Crest Factor -0.303 

Acc2 Crest Factor -0.318 

HI 1.00 
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Figure 4.7: OLS regression results 
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Figure 4.8: Health indicators of learning bearings 

 

 

In Figure 4.9, we can see that the health indicators did not fit so well.  This part needs to 

be improved in order to increase the prediction model success. 
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Figure 4.9: Health indicators of test bearings 

 

 

4.3.4. Prediction Model 

As a last step, we construct the deep network.  The first layer is an LSTM layer with 100 

units and another LSTM layer with 50 units follows this layer. The number of units of 

LSTM layers were jut initial values, then we performed experiments to find better values. 

After each LSTM layer, we applied dropout to control overfitting. Dropout  value is set a 

commonly used value of 0.2. And then we add a dense output layer with a single unit and 
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ReLU activation since this is a regression problem.  Figure 4.10 shows the layers of the 

constructed network.    

 
 

Figure 4.10: Layers of the constructed network 

 

 

4.3.5. Experiments 

After we obtained our first results, we did different experiments under three different 

settings and examined the performance results. We changed the parameters of LSTM, 

creating the LSTM network with one bearing dataset and, created different train and test 

data clusters. Then we compared the results. 

 

Mean Absolute Error is used as the performance metric. Formula of the mean absolute 

error is given in Equation 4.1. Related codes are added in Appendix C.  

 

𝑀𝐴𝐸 =
1 

𝑛
 ∑|𝑥𝑖 − 𝑥|

𝑛

𝑖=1

 

 

Equation 4.1: Mean Absolute Error 

Layer (type)                          Output Shape              Param #    

========================================================= 

lstm_1 (LSTM)                    (None, 25, 100)          46800      

_________________________________________________________________ 

dropout_1 (Dropout)            (None, 25, 100)          0          

_________________________________________________________________ 

lstm_2 (LSTM)                    (None, 50)                    30200      

_________________________________________________________________ 

dropout_2 (Dropout)            (None, 50)                    0          

_________________________________________________________________ 

dense_1 (Dense)                   (None, 1)                      51         

_________________________________________________________________ 

activation_1 (Activation)      (None, 1)                      0          

========================================================== 

Total params: 77,051 

Trainable params: 77,051 

Non-trainable params: 0 

__________________________________________________________ 

None 
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Scoring function is also used to compare performances. Percent error function is defined 

in Equation 4.2 which is used for calculating error for each bearing: 

 

𝐸𝑟 = 100 𝑥 
𝐴𝑐𝑡𝑅𝑈𝐿 −  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑅𝑈𝐿

𝐴𝑐𝑡𝑅𝑈𝐿
 

 

Equation 4.2: Percent error of predicted RUL 

 

 

And score is calculated, using Equation 4.3 and Equation 4.4: 

 

 

𝐴𝑖 =  {
𝑒(− ln(0.5).(

𝐸𝑟𝑖
5

) 𝑖𝑓 𝐸𝑟𝑖 ≤ 0

𝑒(+ ln(0.5).(
𝐸𝑟𝑖
20

) 𝑖𝑓 𝐸𝑟𝑖 > 0

 

 

Equation 4.3: Error for each bearing 

 

 

𝑆𝑐𝑜𝑟𝑒 =  
1

11
∑ 𝐴𝑖

11

𝑖=1
 

 

Equation 4.4: Scoring Function 

 

4.3.5.1. Performance of Deep Network with Different Parameters 

In this experiment, we aimed to find the best parameters for our model. Table 4.4 

summarizes the results of this experiment. We used 4 different batch size and 4 different 

learning models with different hidden layers. We did not change the activation function 

or the sequence length. We used 0.2 Dropout after each LSTM layer  and “ ReLU” 

activation for each case. We examined both MAE(Train and Test) and Score values, in 

order to decide on the LSTM parameters.  
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When Table 4.4 is analyzed, we see that generally the LSTM units affect the performance 

of the model. When we compare the Case 5 and Case 8, we see that the score increased 

and MA decreased as the LSTM units increased. The results also shows that batch size 

moderately affects the results. Finally, as a result of this experiment we decided to use 

the parameters of Case 12. 

 

 

Table 4.4: Summary of experiments with different LSTM parameters 

 

Test 

Case 

Batch 

Size 

Epoch 

Size 

Hidden 

Layers 

MAE during 

learning 

MAE (Train 

and Test) 

Score  

Case1 10 200 10-5 151.99 

102.45 

90.55 

53.62 

0.11 

Case2 10 136 25-10 151.27  

100.64 

89.92 

60.14 

0.15 

Case3 10 62 50-25 147.68 

101.06 

90.60 

59.98 

0.15 

Case4 10 41 100-50 142.88 

93.77 

86.65 

58.68 

0.17 

Case5 25 200 10-5 152.14  

120.99 

106.49 

35.14 

0.06 

Case6 25 200 25-10 151.62  

105.59 

93.13 

47.33 

0.07 

Case7 25 129 50-25 149.89 

100.45 

89.94 

59.92 

0.15 

Case8 25 68 100-50 145.59 

94.64 

89.76 

52.09 

0.15 

Case9 50 200 10-5 152.20  

134.15 

118.24 

33.25 

0.24 

Case10 50 200 25-10 152.05 

120.74 

105.65 

35.54 

0.06 

Case11 50 200 50-25 151.02  

100.98 

90.19 

55.13 

0.12 

Case12 50 121 100-50 147.66 

94.60 

85.93 

46.67 

0.23 

Case13 100 200 10-5 152.23  

142.62 

125.98 

37.99 

0.12 

Case14 100 200 25-10 152.15 

133.15 

116.98 

32.56 

0.28 

Case15 100 200 50-25 151.63  

114.69 

101.03 

37.96 

0.10 

Case16 100 200 100-50 149.72 

97.29 

87.86 

49.63 

0.14 
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We could use GridSearchCV from the Sklearn python library for hyperparameter tuning. 

But it would be similar to this experiment. This experiment could be extended by 

changing the activation function or value of the dropout. 

 

4.3.5.2. Performance of Deep Network with One Bearing 

In this experiment, we used parameters of the best result which we described in Table 4.4. 

Instead of combining all the data from all bearings, we performed experiments with only 

one bearing at a time.  Our experiments show that: as the number of samples increased, 

performance of the learning model decreased.  In Table 4.5, when we examine Case 5, 

we see that MAE is 19.18.  Case 5 shows the performance compared to the merged 

dataset.  But when we examine Case 1, it shows rather poor performance. We can say 

that, the dataset is still noisy.  Therefore, the learning becomes difficult as the number of 

samples increases. 

 

 

Table 4.5: Summary of experiments with only one bearing 

 

Test Case Bearing Epoch 

Size 

Train 

Size 

Validate 

Size 

MAE During  

Learning Process 

MAE 

Case 1 Bearing1_1 168 307 132 282.74 

215.97 

160.97 

Case 2 Bearing1_2 86  81       36 75.28 

57.66 

42.65 

Case 3 Bearing2_1 92 86 37 78.77 

60.58 

45.36 

Case 4 Bearing2_2 68 72 32 66.89 

51.08 

37.76 

 

Case 5 Bearing3_1 29 39 18 36.76 

26.08 

19.18 

Case 6 Bearing3_2 143 170 74 157.07 

120.24 

89.15 
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4.3.5.3. Performance of Deep Network with Different Dataset Clusters 

In this experiment, we created different Train and Test data clusters. Train clusters are 

created according to conditions. And we tested this train clusters with all test bearings 

and test clusters which are created according to the conditions as described in Table 4.1. 

Case 3 shows the best performance as summarized in Table 4.6. 

 

 

Table 4.6: Summary of experiments with different train and test data clusters 

 

Test Case Train Bearings Test Bearings MAE During  

Learning Process 

MAE Score  

Case 1 Bearing1_1 

Bearing1_2 

Bearing1_3 

Bearing1_4  

Bearing1_5 

Bearing1_6 

Bearing1_7 

241.26 

192.30 

142.96 

42.81 

0.059 

Case 2 Bearing2_1 

Bearing2_2 

Bearing2_3 

Bearing2_4  

Bearing2_5 

Bearing2_6 

Bearing2_7 

65.21   

34.72 

28.32 

38.65 

0.06 

Case 3 Bearing1_1 

Bearing1_2 

All Bearings 241.26 

192.30 

142.96 

38.2 

0.11 

Case 4 Bearing2_1 

Bearing2_2 

All Bearings 65.21   

34.72 

28.32 

46.58 

0.04 

Case 5 Bearing3_1 

Bearing3_2 

All Bearings 127.58 

92.95 

71.61 

37.75 

0.09 

 



 

 

5. RESULTS 

This chapter presents the comparison of the results of this study with previous studies.  

We chose the prediction model which is created with the parameters of Case 12 for 

comparison. For the selected LSTM network, the batch size is 50 and epoch size is 200.  

We used a merged dataset.  This dataset contains information for each bearing. Mean 

absolute error is used as performance metric of the model. In the first epoch, mean 

absolute error is calculated as 147.66 in train dataset.  And through the fitting process of 

model it reduced to 94.6059. Fitting process lasted 121 epochs. In the figure 5.1, can be 

seen how mean absolute error changed, it is reduced from about 89 to about 67 on test. 

 

 

Figure 5.1: Mean absolute error values for train and test data 



 

 
 

33 

In Figure 5.2, the actual and predicted values of the test bearings can be seen. Mean 

absolute error on the test data is calculated as 46.67.  

 

 

 

Figure 5.2: Predicted and actual remaining useful lifetimes of test bearings 

 

 

We use scoring percent errors and scoring function as performance metrics to compare 

our results with the previous studies which are described respectively as Equation 4.2 and 

Equation 4.4  in previous chapter.  

 

In Table 5.1, the comparison of our prediction model results with previous studies can be 

seen. When we compared our results, even if we have score as 0.23,  mean and standard 

deviation values of errors are higher than the other studies.  

 

A common problem in RUL prediction is that the predicted value remains the same or 

changes within a certain range.  The prediction model exceeded 5817 value and the 

predicted value stayed the same.  The merged dataset contains different bearings which 

shows different degradation patterns and have different life times.  Therefore, same value 

of HI can mean different health condition for each bearing.  Therefore, it causes a large 

variance of the predicted RUL values. 
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The results of our model need improvement.  These results are not just related with our 

model.  Each bearing has different degradation pattern and we do not know the reason of 

degradation.  The lifetime of bearings varies between 30 minutes to 7 hours.  We can say 

that dataset is imbalanced, and the inputs are not sufficient for output.  An LSTM network 

did not perform well on this merged dataset. 

 

 

Table 5.1: Performance comparisons of the proposed method with related researches 

 

Testing 

Dataset 

Total 

Time(s) 

Actual 

RUL(s) 

Predicted 

RUL(s) 

Guo 

et al. 

Hong 

et al.  

Yoe 

and 

Baek 

Proposed 

Method 

Bearing1_3 18010 5730 5231 43.28 -1.04 1.05 8.22 

Bearing1_4 11380 339 5817 67.55 -20.9 20.35 -1839 

Bearing1_5 23010 1610 1223 -22.9 -278 11.18 21.56 

Bearing1_6 23010 1460 1090 21.23 19.18 34.93 24.29 

Bearing1_7 15010 7570 5816 17.83 -7.13 29.19 23.06 

Bearing2_3 12010 7530 5817 37.84 10.49 57.24 22.43 

Bearing2_4 6110 1390 5817 -19.4 51.8 -1.44 -321.55 

Bearing2_5 20010 3090 4456 54.37 28.8 -0.65 -45.63 

Bearing2_6 5710 1290 5817 -13.9 -20.9 -42.64 -361.70 

Bearing2_7 1710 580 5817 -55.1 44.83 8.62 -977.30 

Bearing3_3 3510 820 5817 3.66 -3.66 -1.22 -645.82 

Mean    32.48 44.28 18.96 -371.94 

SD    37.57 90.29 25.59 561.73 

Score    0.26 0.36 0.57 0.23 

 



 

 

6. CONCLUSION 

In order to realize the term Industry 4.0 which is related with factory automation and 

sustainability, lack of smart analytic tools should be removed.  The big data collected 

from various sensors can be used for anomaly detection, life time estimation and active 

preventive maintenance. 

 

We examined 4 PHM datasets of NASA in order to decide which dataset will be used to 

analyze for active preventive maintenance.  The previous methods used on these datasets 

and their goals are also summarized in tables.  So, we can easily focus on which methods 

we can use as distinct from previous studies.  

 

In this thesis, Femto-ST Bearing Dataset is used for time series analysis and we 

constructed a prediction model for remaining useful lifetime of degraded bearings.  While 

we are constructing our model, we used LSTM network.  Time domain feature extraction 

is also applied on dataset before construct the model. 

 

Finally, we compared our prediction model results with the previous studies, and we can 

say that our prediction model needs to be improved.  To create a better model, we have 

to focus on health indicator calculation and LSTM network layers can be differently 

applied.  Deep learning could be used to health indicator calculation. 
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APPENDICES 

Appendix A 

#Discrete Wavelet Transform and Feature Extraction Functions 

 

import pandas as pd 

import numpy as np 

import os 

import pywt 

 

from scipy.stats import kurtosis 

 

def lowpassfilter(signal, thresh = 0.63, wavelet="db4"): 

    thresh = thresh*np.nanmax(signal) 

    coeff = pywt.wavedec(signal, wavelet, mode="per" ) 

    coeff[1:] = (pywt.threshold(i, value=thresh, mode="soft" ) for i in coeff[1:]) 

    reconstructed_signal = pywt.waverec(coeff, wavelet, mode="per" ) 

    return reconstructed_signal 

 

def crest_factor(row): 

    x = np.max(np.abs(row))/np.sqrt(np.mean(np.square(row))) 

    return x 

 

def rms(row): 

    x = np.sqrt(np.mean(np.square(row))) 

    return x 

 

def calculaterul(row, seconds, operationtime): 

    rul = operationtime - seconds 

    return rul 

def createDataFrameWithFeatures(path, operationtime, windowsize): 

  filenames = os.listdir(path) 

  filenames.sort() 

 

  names = ['hours', 'minutes', 'seconds', 'microseconds', 'acc1', 'acc2'] 

  results = pd.DataFrame([], columns = names) 

 

  seconds = 0; 
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  for f in filenames: 

    if f.startswith("acc") and f.endswith(".csv"): 

        namedf = pd.read_csv(os.path.join(path, f), names=names, engine ='python') 

        namedf['time'] = namedf.apply (lambda row: timeconvert(row, seconds), axis=1) 

        namedf['actualrul'] = namedf.apply(lambda row: calculaterul(row, seconds, operati

ontime), axis=1) 

 

        seconds = seconds + 10; 

         

        namedf = namedf.drop("hours", axis=1) 

        namedf = namedf.drop("minutes", axis=1) 

        namedf = namedf.drop("seconds", axis=1) 

        namedf = namedf.drop("microseconds", axis=1) 

 

        results = results.append(namedf, sort = False) 

 

 

  results = results.drop("hours", axis=1) 

  results = results.drop("minutes", axis=1) 

  results = results.drop("seconds", axis=1) 

  results = results.drop("microseconds", axis=1) 

 

  print(results.columns) 

  print(results.shape) 

 

  signalacc1 = results['acc1'].values 

  signalacc2 = results['acc2'].values 

  print(signalacc1) 

 

  rec1 = lowpassfilter(signalacc1, 0.4) 

  rec2 = lowpassfilter(signalacc2, 0.4) 

 

  results['acc1filtered'] = rec1 

  results['acc2filtered'] = rec2 

 

  print(results.head(10)) 

 

  start = time.time() 

  rolling_mean = results['acc1filtered'][0:windowsize].mean() 

 

  results['smoothacc1mean'] = 0 

  results['smoothacc2mean'] = 0 

  results['smoothacc1std'] = 0 

  results['smoothacc2std'] = 0 

  results['smoothacc1var'] = 0 

  results['smoothacc2var'] = 0 

  results['smoothacc1krtss'] = 0 
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  results['smoothacc2krtss'] = 0 

  results['smoothacc1rms'] = 0 

  results['smoothacc2rms'] = 0 

  results['smoothacc1skew'] = 0 

  results['smoothacc2skew'] = 0 

  results['smoothacc1cf'] = 0 

  results['smoothacc2cf'] = 0 

 

  rowcount = results.shape[0] 

  for i in range(0, rowcount, windowsize): 

    results['smoothacc1mean'][i: i + windowsize] = results['acc1filtered'][i: i + windowsiz

e].mean() 

    results['smoothacc2mean'][i: i + windowsize] = results['acc2filtered'][i: i + windowsiz

e].mean() 

    results['smoothacc1std'][i: i + windowsize] = results['acc1filtered'][i: i + windowsize].

std() 

    results['smoothacc2std'][i: i + windowsize] = results['acc2filtered'][i: i + windowsize].

std() 

    results['smoothacc1var'][i: i + windowsize] = results['acc1filtered'][i: i + windowsize]

.var() 

    results['smoothacc2var'][i: i + windowsize] = results['acc2filtered'][i: i + windowsize]

.var() 

    results['smoothacc1krtss'][i: i + windowsize] = results['acc1filtered'][i: i + windowsiz

e].kurtosis() 

    results['smoothacc2krtss'][i: i + windowsize] = results['acc2filtered'][i: i + windowsiz

e].kurtosis() 

    results['smoothacc1skew'][i: i + windowsize] = results['acc1filtered'][i: i + windowsiz

e].skew() 

    results['smoothacc2skew'][i: i + windowsize] = results['acc2filtered'][i: i + windowsiz

e].skew() 

    results['smoothacc1rms'][i: i + windowsize] = rms(results['acc1filtered'][i: i + windo

wsize]) 

    results['smoothacc2rms'][i: i + windowsize] = rms(results['acc2filtered'][i: i + windo

wsize]) 

    results['smoothacc1cf'][i: i + windowsize] = crest_factor(results['acc1filtered'][i: i + 

windowsize]) 

    results['smoothacc2cf'][i: i + windowsize] = crest_factor(results['acc2filtered'][i: i + 

windowsize]) 

def reduceDataFrame(results, bearingId, windowsize): 

  reduced = pd.DataFrame([], columns = results.columns) 

  results['time'] = results['time'] // 60 

  results['actualrul'] = results['actualrul'] // 60 

 

  rowcount = results.shape[0] 

  y = 0 

  for i in range(0, rowcount, windowsize): 

    reduced.loc[y] = results.iloc[i] 
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    y = y + 1 

 

  reduced['id'] = bearingId 

 

  print(reduced.head()) 

  print(reduced.tail()) 

  return reduced 
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Appendix B 

#HI Calculation for train and test bearings 

 

import itertools 

import pandas as pd 

import numpy as np 

import statsmodels.api as sm 

from statsmodels.formula.api import ols 

 

#Read train and test datasets 

traindf = pd.read_csv('/content/gdrive/My Drive/Femto/mergedreducedtrainbearings.csv

', engine = 'python', index_col=False) 

testdf = pd.read_csv('/content/gdrive/My Drive/Femto/mergedreducedtestbearings.csv', 

engine = 'python', index_col=False) 

 

 

temp_df = traindf.copy() 

 

# assigning na to every observation in HI column 

temp_df['HI'] = np.nan     

 

train_bearings = ['b11', 'b12', 'b21', 'b22', 'b31', 'b32'] 

 

for i in range(0,6): 

    print(train_bearings[i]) 

    # assigning one to first 15 observations of every unit 

    temp_df['HI'].iloc[a:a+15] = 1 

     

    a += max(traindf[traindf['id'] == train_bearings [i]]['time']) 

    a = int(a) 

 

    # assigning zero to last 15 observations of every unit 

    temp_df['HI'].iloc[a-15:a+1] = 0 

    a+=1 

     

df_reg = temp_df.copy() 

 

# dropping the unrelated columns 

df_corr = df_reg.copy().drop(['acc1', 'acc2', 'acc1filtered', 'acc2filtered','id', 'time', 'actual

rul'], axis=1) 

 

# correlations are calculated for features to be selected 

df_corr_= df_corr.corr() 

df_corr_[['HI']] 

 



 
 

 
 

47 

m = ols('HI ~ smoothacc2mean+smoothacc1std+smoothacc2std+smoothacc2krtss+smo

othacc1rms+smoothacc2rms+smoothacc1cf+smoothacc2cf', df_corr).fit() 

 

df_test_slice = test_df.drop(['acc1', 'acc2', 'time', 'acc1filtered', 'acc2filtered',  'actualrul', 

'smoothacc1mean', 'smoothacc1var', 'smoothacc2var', 'smoothacc1krtss', 'smoothacc1sk

ew', 'smoothacc2skew', 'id'], axis = 1) 

 

test_df['HI']=m.predict(df_test_slice) 

 

# A function to calculate moving average of the dataframe 

def moving_average(df, unit): 

    temp_df = df[df['id'] == unit] 

    rolling = temp_df['HI'].rolling(window = 5) 

    rolling_mean = rolling.mean() 

    return rolling_mean 

 

test_bearings = ['b13', 'b14', 'b15', 'b16', 'b17', 'b23', 'b24', 'b25', 'b26', 'b27', 'b33'] 

 

 

all_rolling_means = [moving_average(test_df, test_bearings[i]) for i in range(0,11)] 

test_df = test_df.assign(MA_HI = list(itertools.chain.from_iterable(all_rolling_means))) 

test_df.dropna(inplace = True) 

test_df.head() 

 

df_train_slice = traindf.drop(['acc1', 'acc2', 'time', 'acc1filtered',  'acc2filtered', 

'actualrul', 'smoothacc1mean',  'smoothacc1var', 'smoothacc2var', 'smoothacc1krtss', 

'smoothacc1skew', 'smoothacc2skew', 'id'], axis = 1) 

 

traindf['HI'] = m.predict(df_train_slice) 

all_rolling_means = [moving_average(traindf, train_bearings[i]) for i in range(0,6)] 

traindf = traindf.assign(MA_HI = list(itertools.chain.from_iterable(all_rolling_means))) 

traindf.dropna(inplace=True) 

traindf2.head() 
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Appendix C 

#LSTM Network 

 

import keras 

import keras.backend as K 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import matplotlib as mpl 

import matplotlib.cm as cm 

import seaborn as sns 

import os 

 

from sklearn import preprocessing 

from sklearn.metrics import confusion_matrix, recall_score, precision_score 

from keras.models import Sequential, load_model 

from keras.layers import Dense, Dropout, LSTM, Activation 

 

sequence_length = 25 

def gen_sequence(id_df, seq_length, seq_cols): 

    data_matrix = id_df[seq_cols].values 

    num_elements = data_matrix.shape[0] 

    for start, stop in zip(range(0, num_elements  -

seq_length), range(seq_length, num_elements)): 

        yield data_matrix[start:stop, :] 

 

sequence_cols = ['time', 'smoothacc2mean',  'smoothacc1std',  'smoothacc2std', 'smootha

cc2krtss', 'smoothacc1rms',  'smoothacc2rms', 'smoothacc1cf',  'smoothacc2cf', 'MA_HI'] 

 

seq_gen = (list(gen_sequence(traindf[traindf['id']==id], sequence_length, sequence_cols

)) for id in traindf['id'].unique()) 

 

seq_array = np.concatenate(list(seq_gen)).astype(np.float32) 

 

def gen_labels(id_df, seq_length, label): 

    data_matrix = id_df[label].values 

    num_elements = data_matrix.shape[0] 

    return data_matrix[seq_length:num_elements, :] 

 

label_gen = [gen_labels(traindf[traindf['id']==id], sequence_length, ['actualrul'])  

             for id in traindf['id'].unique()] 

 

label_array = np.concatenate(label_gen).astype(np.float32) 
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def r2_keras(y_true, y_pred): 

    SS_res =  K.sum(K.square( y_true - y_pred )) 

    SS_tot = K.sum(K.square( y_true - K.mean(y_true) ) ) 

    return ( 1 - SS_res/(SS_tot + K.epsilon()) ) 

 

nb_features = seq_array.shape[2] 

nb_out = label_array.shape[1] 

 

model = Sequential() 

model.add(LSTM( 

         input_shape=(sequence_length,  nb_features), 

         units=100, 

         return_sequences=True)) 

model.add(Dropout(0.2)) 

model.add(LSTM( 

          units=50, 

          return_sequences=False)) 

model.add(Dropout(0.2)) 

model.add(Dense(units=nb_out)) 

model.add(Activation("relu")) 

model.compile(loss='mean_squared_error', optimizer='rmsprop',metrics=['mae', r2_kera

s]) 

 

model_path = '/content/gdrive/My Drive/Femto/regression_model.h5' 

 

history = model.fit(seq_array, label_array, epochs=200, batch_size=50, validation_split

=0.3, verbose=1, 

          callbacks = [ 

                       keras.callbacks.ModelCheckpoint(model_path,monitor='val_loss', save_b

est_only=True, mode='min', verbose=0)] 

          ) 
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