

GALATASARAY UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

USING BEHAVIORAL BIOMETRIC SENSORS OF

MOBILE PHONES FOR USER AUTHENTICATION

Nurhak KARAKAYA

June 2019

i

USING BEHAVIORAL BIOMETRIC SENSORS OF MOBILE PHONES FOR

USER AUTHENTICATION

by

N u r h a k K a r a k a y a , B . S .

Thesis

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

MASTERS of SCIENCE

in

COMPUTER ENGINEERING

in the

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

of

GALATASARAY UNIVERSITY

Supervisor: Assoc. Prof. Dr. Gülfem Işıklar Alptekin

June 2019

ii

This is to certify that the thesis entitled

USING BEHAVIORAL BIOMETRIC SENSORS OF MOBILE PHONES FOR

USER AUTHENTICATION

prepared by Nurhak KARAKAYA in partial fulfillment of the requirements for the

degree of Master in Computer Engineering at the Galatasaray University is approved

by the

Examining Committee:

Assoc. Prof. Dr. Gülfem Işıklar Alptekin (Supervisor)

Department of Computer Engineering

Galatasaray University -------------------------

Dr. Günce Keziban Orman

Department of Computer Engineering

Galatasaray University -------------------------

Dr. Ayşe Tosun Kühn

Department of Computer Engineering

Istanbul Technical University -------------------------

Date: -------------------------

iii

Date: -------------------------

ACKNOWLEDGEMENTS

I very appreciate to first of all my thesis supervisor Gülfem Işıklar Alptekin for her helps,

patience and advices.

I also very appreciate for helps to Özlem Durmaz İncel. I appreciate to Galatasaray

University members for their enduring to my long master years. I appreciate to my family

and to my friends for their mental supports. This research has been financially supported

by the Galatasaray University Research Fund, project number: 19.401.005.

May 2019

Nurhak Karakaya

iv

TABLE OF CONTENTS

LIST OF SYMBOLS .. v

LIST OF FIGURES ... vi

LIST OF TABLES .. viii

TERMINOLOGY .. x

ABSTRACT .. xi

ÖZET ... xii

1. INTRODUCTION .. 1

2. RELATED WORK ... 3

3. PROPOSED METHODOLOGY ... 5

4. DATA COLLECTION ... 7

5. DATA DISCOVERY .. 9

6. DATA MODELING ... 20

6.1 Data Normalization and Feature Selection ... 21

6.2 Parameter Tuning and Machine Learning Algorithms 23

6.3 Finding Most Predictive Attributes ... 33

6.4 Models .. 35

7. RESULTS ... 42

8. CONCLUSION .. 55

9. FURTHER RESEARCH ... 57

REFERENCES .. 59

APPENDICES ... 62

Appendix A .. 62

Appendix B .. 65

BIOGRAPHICAL SKETCH ... 71

v

LIST OF SYMBOLS

HMOG : Hand Movement Orientation and Grasp

DF : Decision Forest

BD : Boosted Decision Tree

SVM : Support Vector Machine

LR : Logistic Regression

ACC : Data with only Accelerometer fields

GRY : Data with only Gyroscope fields

MAG : Data with only Magnetometer fields

ALL : All data including three sensors and touch event fields

30COLS : Data with thirty most predictive fields

PCA : Principal Component Analysis

UZD : Unpack Zipped Dataset

SCD : Select Columns in Dataset

ED : Edit Metadata

CMD : Clean Missing Data

ERS : Execute R Script

TMH : Tune Model Hyperparameters

SD : Split Data

FBFS : Filter Based Feature Selection

ML : Machine Learning

vi

LIST OF FIGURES

Figure 3.1: Project information flow. ... 6

Figure 5.1: A part of the code for converting data in Sybase table 11

Figure 5.2: Compliance tests. ... 12

Figure 5.3: Time points. ... 14

Figure 5.4: New calculated variables ... 15

Figure 5.5: A part of the code for creating dummy variable .. 18

Figure 5.6: Random user selection ... 19

Figure 6.1: Creating normalized and de normalized data ... 21

Figure 6.2: LR parameter tuning ... 23

Figure 6.3: Parameter Range for LR ... 24

Figure 6.4: Parameter Range for SVM .. 28

Figure 6.5: Parameter Range for BD .. 29

Figure 6.6: Parameters for DF ... 32

Figure 6.7: 30 Cols Attribute Selection ... 33

Figure 6.8: Two Class BD normalized experiment ... 36

Figure 6.9: Some of Accelerometer fields ... 36

Figure 6.10: Data flow for Accelerometer model .. 37

Figure 6.11: Confusion Matrix ... 38

Figure 6.12: ROC curve .. 39

Figure 6.13: Some part of ALL and 30COLS models .. 40

Figure 6.14: Saving Results .. 41

vii

Figure 7.1-a: Accuracy values for ‘ALL’ data flow. ... 50

Figure 7.1-b: Accuracy values for ‘ALL with PCA’ data flow 50

Figure 7.2-a: Accuracy values for ‘MAG’ data flow. ... 50

Figure 7.2-b: Accuracy values for ‘MAG with PCA’ data flow 50

Figure 7.3-a: Accuracy values for ‘ACC’ data flow ... 50

Figure 7.3-b: Accuracy values for ‘ACC with PCA’ data flow 50

Figure 7.4-a: Accuracy values for ‘GYR’ data flow. .. 50

Figure 7.4-b: Accuracy values for ‘GYR with PCA’ data flow 50

Figure 7.5: Accuracy values for ‘30COLS’ data flow .. 51

viii

LIST OF TABLES

Table 5.1: Activity table attributes .. 13

Table 5.2: Accelerometer table attributes ... 13

Table 5.3: Touch event table attributes ... 14

Table 5.4: TASK_ID groups ... 16

Table 6.1: Tuned parameter values for boosted decision tree 30

Table 6.2: Tuned parameter values for support vector machine. 30

Table 6.3: Tuned parameter values for logistic regression. .. 31

Table 6.4: Accuracy for all Score Bins. ... 39

Table 7.1: SVM Parameter Values ... 42

Table 7.2: LR Parameter Values. .. 43

Table 7.3: BD Parameter Values .. 43

Table 7.4: Most correlated attributes with TARGET ... 44

Table 7.5: How many times an attribute is one of most correlated 45

Table 7.6: DF Results. Normalized and De Normalized data 46

Table 7.7: BD Results. Normalized and De Normalized data 46

Table 7.8: LR Results. Normalized and De Normalized data. 47

Table 7.9: SVM Results .. 47

ix

Table 7.10: 30COLS Results. Normalized and De Normalized data. 48

Table 7.11: ACC Results. Normalized and De Normalized data 48

Table 7.12: ACC with PCA Results. Normalized and De Normalized data 48

Table 7.13: ALL Results. Normalized and De Normalized data 48

Table 7.14: ALL with PCA Results. Normalized and De Normalized data 48

Table 7.15: GRY Results. Normalized and De Normalized data 49

Table 7.16: GRY with PCA Results. Normalized and De Normalized data 49

Table 7.17: MAG Results. Normalized and De Normalized data 49

Table 7.18: MAG with PCA Results. Normalized and De Normalized data 49

Table 7.19: Most predictive model for all user .. 51

Table 7.20: Most predictive Sensor model for all users .. 52

Table 7.21: Accuracy values for All sensors ... 52

Table 7.22: All Results together ... 53

x

TERMINOLOGY

Time Variables : The time variables that are coming from touch event table,

activity table or calculated time variables from sensor system

time.

Numeric Variables : The variables that are calculated using X,Y,Z and M columns of

senssor tables.

Binary Variables : The variables that are calculted from categorical variables.

USER_TABLE : The table that is calculated by combaning three sensor tables,

touch event tables and activivty tables. This table contains the

new calculated numerical variables and time variables. This table

contains 100 users with their own records.

User : An attender and all calculated fields that belongs to the same

attender. A user comes from USER_TABLE. And in

USER_TABLE there are 100 users.

MODEL_TABLE :The table that contains records which has target attribute. Target

attribute contains USER labeled records whose values come from

same attender and NO_USER labeled records whose valuse come

from other athenders.

Model User : It is a combination of user and non user records. It gets all data

from a user and 500.000 records from other users.

USER / NO USER : In MODEL_TABLE we created an attribute named TARGET. If

the records come from the user that we want to authenticate then

we set TAGET value as USER. If the records come from other

users then we labeled those records as NO_USER in TARGET

attribute.

Experiment : Experiment is also used for Microsoft Azure code part.

xi

ABSTRACT

In this paper, we use Hand Movement Orientation and Grasp (HMOG) sensor data to

authenticate smart phone users. The way a user holds, grasps a mobile phone or touches

to it are all key factors for authentication. At the moment of a user makes an event on

his/her smart phone, three sensors automatically collect data about magnitude, angular

speed and acceleration. Moreover, touching and holding events also produce data about

pressure and coordinates. In this paper, we build four types of machine learning

algorithms (Decision Forest, Boosted Decision Tree, Support Vector Machine, and

Logistic Regression) to predict user authentication. The data used in this experiment

(HMOG) are collected from 100 attenders. We compare the results of the algorithms and

for our scenario, we show that boosted decision tree algorithm with de normalized data

gives the results with highest accuracy.

xii

ÖZET

Bu makalede, El Hareketi Yönlendirme ve Kavrama (EHYK) algılayıcı verilerini

kullanarak akıllı telefon kullanıcılarının kimliklerini doğrulamaya çalışmaktayız. Bir

kullanıcının akıllı telefonunu tutma şekli, kaldırma hızı / döndürme hızı, ya da telefonunu

kavraması veya ona dokunması, kimlik doğrulama için anahtar faktörlerdir. Cep

telefonumuzu elimize alıp kullanmaya başladığımızda; üç algılayıcı otomatik olarak

büyüklük, açısal hız ve ivme hakkında bilgi toplar. Ayrıca, telefona dokunmamız, harflere

basmamız ya da ekranda elimizi oynatmamız da veri üretir. Bu makalede, telefonda yer

alan algılayıcıların okuduğu bilgilerden faydalanıp çeşitli makina öğrenme algoritmaları

kullanarak kimlik tanımaya çalıştık. Dört tür makine öğrenme algoritması kullandık.

Bunlar: Karar Ormanı, Artırılmış Karar Ağacı, Destek Vektör Makinesi ve Lojistik

Regresyon gibi algoritmalardır. Bu deneyde kullanılan veriler (EHYK) 100 mobil cihaz

kullanıcısından toplanan algılayıcı verilerdir. Yaptığımız çalışmalar sonrasında,

Artırılmış Karar Ağacı’nın normalize edilmemiş veri ile en yüksek kesinlik değeri

verdiğini gördük.

1

1. INTRODUCTION

Statistics from 2016 [1] show that from 2 to 2.5 billion people use smartphones. Same

research also shows that smartphones are not used just for calling and texting but also for

looking for a job, finding a date, reading a book or making an online shopping. Online

banking, mailing, playing games can also be added to this list. Same Research Center

survey found that 28% of U.S. smartphone owners say they do not use a screen lock or

other features to secure their phone. 14% say they never update their phone’s operating

system, while 10% say they do not update the apps on their phone. With combining those

two analyses, securing mobile devices is a main security challenge, because it depends

on human attitude or preferences to take necessary security precautions. Regarding to this

behavior, researches which focus on passive security are gaining importance to answer

questions about how to solve those security challenges. Hence, the main research

questions that we focus on are as follows:

• Is it possible to implement a continuous authentication procedure into mobile

devices to distinguish whether the original owner is using or not by analyzing behavioral

biometric data?, and

• Which machine learning algorithm(s) and feature set(s) will be most accurate to

distinguish true owner? Can we also use artificial neural networks to avoid manual feature

extraction, or will it be expensive in manner of resource consumption?

In current mobile phone structure, there are different kinds of user authentication methods

to prevent unauthorized accesses. Some of them are authentication with fingerprint, text

passwords and crossing shapes. When a user use such type of authentication methods, he

or she should remember the crossing shapes or the paswords to access his/her mobile

phone. And also, the user should cange the passwords in some time interval so that he or

she can make his/her mobile phone more secure. In some cases, these authentication

2

methods can still be insufficient to prevent unauthorized entry. Besides, some users can

keep their mobile phone in available mode for long time. Therefore, in near future, we

believe that several additional techniques need to be proposed to prevent unauthorized

accesses.

In this paper, we aim to differentiate mobile phone user by using Hand Movement,

Orientation, and Grasp (HMOG) data, which are collected during experiments [2],[26].

In these experiments [2], some kind of event and sensor data from attenders of the

experiment is recorded. The recorded data in experiment [2] contains: User information,

event information, and information from three sensors: Accelerometer (measures

acceleration minus Gx), Gyroscope (measures angular speed) and Magnetometer

(measures ambient magnetic field). For each sensor, X, Y and Z coordinate values and

time of these values are stored. For this paper, we also created a magnitude metric, which

is the square root of sum of squares of X, Y and Z (
2 2 2

X Y Z).

We proposed algorithms to identify and continuously authenticate a smart phone user by

analysing his/her previous data, in order to prevent unauthorized entry to his/her mobile

phone. We used Microsoft Azure Machine Learning platform for building our models.

Decision Forest (DF), Boosted Decision Tree (BD), Support Vector Machine (SVM) and

Logistic Regression (LR) are selected as algorithms. In each of our experiments, we used

two-class models, which is different from [2], where one-class models are used

After presenting related works in Section 2, in Section 3, we define project methodology

together with the project motivation. In section 4, we show the data collection steps for

HMOG. In Section 5, we represent data cleaning and data preparation process. Section 6

introduces the proposed model and Section 7 includes the results and related discussion.

3

2. RELATED WORK

Authentication is the process of validating the true user of a system. There are three main

approaches to provide authentication. First and the most commonly used one on mobile

devices is knowledge-based authentication. This technique is based on using a unique and

private information which is expected to be known only by the user. This type of

authentication mechanism could be a password, an id number or a secret security

question. The second one is object-based authentication. The object-based authentication

is based on possession of a distinguishing physical object. A security token, an id card or

another trusted object can be used. The third one is biometrics. Biometrics are based on

an individual’s characterized physical or behavioral attributes. Common examples are

fingerprints, keystroke dynamic models of the owner of the device.

There are two survey papers [3, 4] that investigate the use of biometrics for continuous

authentication on smart phones. In [3], it was emphasized that sensors such as camera,

microphone, etc. can be used to collect physical data, while components such as

accelerometers, gyroscopes, touch screens can be used to collect behavioural biometric

data such as walking, screen touch gestures, and hand gestures. In the other review paper

[4], the studies in the literature were examined in terms of the type and size of data

collected, classifiers used in identification, and results obtained. We should note that these

papers also investigate the use of physical biometrics for authentication, but here, we

specifically focus on studies using behavioural biometrics.

Touch screens are used as input medium on a great majority of smartphones. A touch

screen is an electronic visual display for inputs and outputs. By applying classification

algorithms to the data collected from touch- screen interactions of users such as micro

movements, pressure, finger movements, etc., it is possible to recognize authorized users.

There exists various research that focus on touch screen that is based authentication in the

4

literature. In these researches, password patterns [4], tapping behavior [5], touch gestures

[6][7][8] etc. are examined for the purpose of creating a model to decide whether user is

authorized or not. In [8], touch screen data of 58 attenders were used and for

authentication, they also used two class models like Random Forest, k-NN and Support

Vector Machine. Data collection for [8] is also similar to [2], in [8] they created an

application and attenders did some tasks by scrolling and touching screen. In [9], they

used sensor data from some attenders. The number of attenders in [9] was 85 and they

collected data during sitting, walking or standing. In [9], they claim that every user has a

different locking type and different dragging type of the phone to ears. In [10], they used

kernel based algorithms for sensor data. In [11], they used Accelerometer data and Wi-Fi

networks for user authentication. In [12] they used just sensor data, and also they used

support vector machine, random forest and k-NN as classification algorithms and used

feature reduction.

5

3. PROPOSED METHODOLOGY

We divide the overall experiment into three parts: Data collection and data discovery part,

modeling part and comparing the results part. The first part is the data discovery part. In

that part, we apply data preparation and analysis steps. For data discovery, we worked on

Sybase IQ. For modeling and presentation part we worked on Microsoft Azure ML studio.

The authors in [2] include user data to train their models. They use just the data of user

that they want to authenticate, whereas we used both user and other users’ data to train

our models. We used two class machine learning algorisms for our experiment. We used

LR, SVM, BD and DF as our machine learning algorithms for our models.

For each model, we supplied five different data flows: Data with only Accelerometer

fields (ACC), data with only Gyroscope fields (GRY), data with only Magnetometer

fields (MAG), all fields including three sensors and touch event (ALL), and thirty most

predictive fields (30COLS). For all data flows, we used both normalized and de-

normalized data. Principal Component Analysis (PCA) is used for reducing

dimensionality. We used ACC, GRY and MAG models in our experiments to see if any

of the three sensors will be enough to catch a user. We also used 30 attributes to create a

smaller model and we want to see if these 30 attributes will be enough to catch a user.

For both normalized and de-normalized data, we use four ML algorithms: BD, DF, SVM

and LR for prediction. We created separate experiments for each algorithm. Moreover,

for BD, DF and LR, we used both normalized and de normalized data. For SVM, we only

used normalized data. Therefore, totally we had 7 experiments (2 for BD, 2 for DF, 2 for

LR and 1 for SVM) for our models. We used %70 of data as training and %30 for testing.

The performances of the models are compared in terms of accuracy.

6

In each experiment, we had five data flows (Figure 3.1): ACC, GYR, MAG, ALL and

30COLS. For 30COLS, we used Pearson correlation to find the most correlated attributes

with target. For ACC, GYR, MAG and ALL, we also used PCA. However, for 30COLS

we did not use PCA. Therefore, we had in total 9 different data supplies (ACC, ACC with

PCA, GYR, GYR with PCA, MAG, MAG with PCA, ALL, ALL with PCA and

30COLS). For PCA, we chose dimension count as: Attribute count / 3. For example, ALL

has 168 variables, so in ALL with PCA we have 55 dimensions. We also used feature

selection and correlation tests to eliminate some attributes from our models.

For BD, SVM and LR, we made parameter tuning. We used 10-fold cross validation for

tuning. Then, we used these parameter values for our models. Normally, we decided to

tune parameters for all users then use those parameters for models. When we tuned

parameters for first six users, we saw that the parameter values for those six users are

same. So, we stopped tuning and used those six users’ parameters for all users. For DF

we did not tune parameters. The overall methodology is illustrated in Figure 3.1.

Figure 3.1: Project information flow

Data preperation

Normalized data Denormalized data

ACC GYR MAG

Data flows

ALL 30 COL

with PCA without PCA

Algorithms

Support

vector

machine

Logistic

regression
Decision

forest

Boosted

decision tree

7

4. DATA COLLECTION

The Hand Movement, Orientation, and Grasp (HMOG) data, which are collected during

experiments [2], is available at [26], and it is about 6 GB of zipped files. In HMOG data

collection experiment, there are 100 attenders all of them have same kind of mobile

phones (Samsung Galaxy S4). All of the attenders do some tasks in 24 sessions. Each of

these sessions are done in 5 to 15 minutes.

In one session there are three tasks that an attender should do by using his/her mobile

phone. The tasks are: reading documents, writing text, and navigation on Map. When

doing these three tasks, the attenders do specific actions; such that they type massage,

they scroll screen, they touch to screen, they press keys, etc. The attenders do their tasks

on real time touches. When doing these tasks, the sensors and touch events data are

recorded simultaneously with 100Hz reading speed.

The experiments are done either by walking or by siting. After each experiment, 11 data

files were created. These files keep activity and user information, event information, and

information from three sensors. These files are: Accelerometer.csv, Activity.csv,

Gyroscope.csv, KeyPressEvent.csv, Magnetometer.csv, OneFingerTouchEvent.csv,

PinchEvent.csv, ScrollEvent.csv, StrokeEvent.csv, and TouchEvent.csv. Moreover in

every sessions there are three files for questions. We loaded data files but did not work

on question files.

The sensor files are: Accelerometer.csv, Gyroscope.csv and Magnetometer.csv. The

sensors detect any changes made in smart phone. The changes can be acceleration,

orientation or magnetic field. Accelerometer measures acceleration and motions like

shaking and rotating in smartphones. It detects acceleration in X, Y, Z coordinates; in

other words, it detects the direction and position of the acceleration, without measuring

8

gravitational acceleration. On the other hand, gyroscope is a sensor that measures the

orientation by using Earth gravity. It helps to determine which way a phone is oriented.

Magnetometer measures the magnetic field, whom changes can be critical for smart phone

users. Moreover, there are events that occur when you do something on smart phones:

You touch your smartphone, you scroll downward or upward on your smart phone, you

pinch your smart phone, you press a key, etc.

As the next step, the data files are loaded to Sybase database. We prefer Sybase database

because of the easiness of data manipulation in it. It enables creating temporary tables for

data manipulations and gives good performance for aggregation functions. There are two

points to consider when downloading files: firstly, some files have carriage return at the

end of line, and secondly some files have new line at the end of line. We solved both

problems in order not to miss any information. First of all, we downloaded all files to its

own table. In total we have 10 tables: One for Activity, three for sensors and six for event

tables. There are 100 attenders * each attenders has 24 sessions * in every session there

are 10 files. So in total we loaded: 100 * 24 * 10 = 24000 files.

9

5. DATA DISCOVERY

HMOG data [1] includes files for 100 different users and a pdf file that explains the

structure of files. The files are in separate zip files, which needs to be extracted. The

corrupted files constitute a minor part of the whole data.

We created 10 tables to load data files to relational database. All of the created tables for

our experiment are in Appendix A. There are two kinds of tables: tables with normal name

and tables whose name ends wits “_STR”. There are corruptions in some files. So we first

loaded these files as a complete string to a _STR table than manually converted data of

those tables to our original format. So in total we have 20 table, 10 for original data and

10 for error fixes.

The data in files are formatted as coma separated. The end of line for files are not uniquely

defined; some of them ends with carriage return, whereas the others with new line. We

check for carriage return and new line. For one user, there are about 24 sessions. For some

users the number of sessions are less than 24. In every sessions there are 10 files (three

sensor files, one activity file and six event files). We created two loops and dynamic SQL

to load files into Sybase database. The first loop reads the users, and the second loop reads

the sessions. Appendix B shows the load codes for all tables.

After loading all these files into the database tables, we checked data quality and data

compliance issues. For data quality issues, we checked all tables one by one. For each

column in a table; we checked: null count, not null count, ratios of null count, ratios of

not null count, distinct count, max count and min count.

10

Additionally,

 We controlled most frequently encountered values of a column.

 We checked the values in files with the values in data description files. In some

files there are values which are not in data description files.

 We controlled the uniqueness of any column with respect to time variables.

 We grouped column values with descending order to see where the data is

cumulated.

After data quality check our first problem is the uniqueness of data. We deleted duplicate

rows from our original tables. Moreover, in some tables the sequence of columns are

different from the structure of data description file. So we changed the column sequence

and loaded files correctly.

We did not delete null values. We find the position of null values in raw files and manually

updated null values. Additionally, in data, we discovered that there are several values,

which are beyond to the values in data description file. These are usually categorical

values. We did not delete these rows instead we took them into account.

Some numerical data were also null because the data file contains “E”. For example, -

some records contains values like that 3.0543262E-4. When we load these records to our

tables, the records get null. For numerical columns we created codes to convert these

types of nulls to normal data format. At Figure 5.1, we show a code part in which we

convert a column into normal format.

11

Figure 5.1: A part of the code for converting data in Sybase table

After data quality checks, we examined to the data compliance check.

 We controlled if the activity table is compliant to sensor tables with respect to

time and activity numbers.

 We controlled if the sensor tables are also compliant to each other by time and

activity id.

 We controlled if the activity table is compliant to event tables.

We represent an example of compliance test in Figure 5.2.

12

Figure 5.2: Compliance tests

The results of compliance test is like that:

 There are some activates in activity table in which there are no events for that

activity. It is possible, because in some activates an attender does not need to

scroll, or does not need to press a key.

 There are no event in which the activity number is not in activity table. It is normal

and as we expected. The activity table should cover all event tables.

 There are sensor records whose ids are not in activity table. For our expectation

activity table should cover sensor tables. So we did not expect such kind of

problems. We called this problem as ACTIVITY_ID_PROBLEM

The reason of ACTIVITY_ID_PROBLEM is that the activity id consist of SubjectID +

Session_nember + ContentID + Runtime determined Counter value, at Table 4.1 we show

all details. When we controlled the non-matching IDS, we see that they match for first 9

digits: SubjectID + Session_nember + ContentID, but the “Runtime determined Counter

value” differs for some records. To solve this problem, we created another

ACTIVITY_ID and called it as ACTIVITY_ID_FIRST_9 which get the first nine digit

of original activity ID. The first nine digit compose of “SubjectID + Session_nember +

ContentID”. But in that case when we join tables with respect to

ACTIVITY_ID_FIRST_9, some duplicate records and wrong matches occurred. So we

decided to eliminate such type of records from our list.

After analyzing our data, we saw that there are more touches than any other events. On

average in a session, there are about 1741 one-finger touch events, 800 pinch events, 1741

scroll events, 45 stroke and 4705 touch events. Moreover there are about 50800 sensor

records for one session. Instead of creating a highly complex data with lots of null values

in it, we only used touch table for our models. For our experiments, we use three sensor

tables (Accelerometer, Gyroscope and Magnetometer), user and activity identification

table (Activity) and touch event table (TouchEvent).

13

Activity table has 9 attributes, given in Table 5.1 in details. We give accelerometer table

in Table 4.2. Gyroscope and Magnetometer tables have the same structure as Table 5.2.

We computed M as magnitude, which is equal to
2 2 2

X Y Z , and M is not in the data

file. Finally, we worked with touch event table, which has 11 attributes (Table 5.3).

The time variables in tables are absolute time stamp, or relative time stamp. We use in

our project absolute time variables. A Timestamp is the number of milliseconds elapsed

since midnight Coordinated Universal Time (UTC) of January 1, 1970.

Table 5.1. Activity table attributes

ID numeric(20,0)
Composed as: SubjectID + Session_nember + ContentID + Runtime determined Counter
value

SUBJECT_ID numeric(6,0) 6 digits: ID of current subject

SESSION_NUMBER numeric(2,0) 1-24: Session number for current subject

START_TIME numeric(20,0) Start time of current activity, in absolute timestamps

END_TIME numeric(20,0) End time of current activity, in absolute timestamps

RELATIVE_START_TIME numeric(20,0) Start time of current activity, relative to system boot

RELATIVE_END_TIME numeric(20,0) End time of current activity, relative to system boot

GESTURE_SCENARIO numeric(2,0) 1: Sit 2: Walk

TASK_ID numeric(2,0)

1,7,13,19: Reading + Sitting

2,8,14,20: Reading + Walking
3,9,15,21: Writing + Sitting

6, 12, 18, 24: Map + Walking

CONTENT_ID numeric(2,0)
1: First sub-task
2: Second sub-task

3: Third sub-task

Table 5.2: Accelerometer table attributes

SYSTIME numeric(20,0) Absolute time-stamp

EVENTTIME numeric(20,0) Sensor event relative time-stamp

ACTIVITY_ID numeric(20,0) Belonged activity

X numeric(15,0) Acceleration minus Gx on the x-axis

Y numeric(15,0) Acceleration minus Gx on the y-axis

Z numeric(15,0) Acceleration minus Gx on the z-axis

M numeric(15,0) Square root of sum of squares X,Y and Z

PHONE_ORIENTATION numeric(2,0)

0: Portrait and no rotate

1: Device rotated 90 degrees counter-clockwise

3: Device rotated 90 degrees clockwise

14

Table 5.3: Touch event table attributes

SYSTIME numeric(20,0) Absolute timestamp

EVENTTIME numeric(20,0) Sensor event relative timestamp

ACTIVITY_ID numeric(20,0) Belonged activity

POINTER_COUNT numeric(2,0)
1: Single touch

2: Multi touch

POINTER_ID numeric(2,0)
0: Single touch, or first pointer in multi touch
1: Second pointer in multi touch

ACTION_ID numeric(2,0)

0 or 5: DOWN

1 or 6: UP
2: MOVE

X numeric(15,0) Touch location in X coordination

Y numeric(15,0) Touch location in Y coordination

PRESSURE numeric(15,0) Touch pressure

CONTACT_SIZE numeric(15,0) Touch contact size

PHONE_ORIENTATION numeric(2,0)

0: Portrait and no rotate

1: Device rotated 90 degrees counter clockwise

3: Device rotated 90 degrees clockwise

The final table is built using these five tables. First, we merged activity table with touch

event table. We get SUBJECT_ID, GESTURE_SCENARIO, TASK_ID and

CONTENT_ID from Activity table and all columns from Touch table. In total, we

obtained 14 attributes. We stored the data of new table into a temporary table called

#acc_evt.

Then, we merged #acc_evt table with sensor tables on ACTIVITY_ID and SYSTIME.

We first merged #acc_evt table with Accelerometer. We first found the maximum sensor

system time which is the biggest sensor system time that has value of event system time

– 100 ms. Then, we found minimum sensor system time which is the smallest sensor

system time that has value of event system time + 100 ms.

Now for our new table, we have three time points: Touch event time, biggest sensor

reading before Touch event time – 100 ms, smallest sensor reading after Touch event time

+ 100 ms. For example, for Accelerometer sensor; we called these three time points as

SYSTIME, SEN_SYSTIME_ACC_BEFORE, SEN_SYSTIME_ACC_AFTER in Figure

5.3.

Figure 5.3: Time points

SEN_SYSTIME_ACC_BE

FORE (system time –

100 ms)

SYSTEMTIME SEN_SYSTIME_ACC_AF

TER (system time + 100

ms)

15

After we calculated all time variables for three sensors, we calculated new variables by

using those time variables and X, Y, Z and M attributes from sensor tables. We will

explain how we calculated those variables by using Accelerometer table and X column

for Accelerometer. (The calculation of other variables and other sensors will follow the

same way). We first calculate minimum value of X, maximum value of X, average value

of X and standard deviation of X between SEN_SYSTIME_ACC_BEFORE and

SYSTEMTIME. Then, we calculated; minimum value of X, maximum value of X,

average value of X and standard deviation of X between SYSTEMTIME and

SEN_SYSTIME_ACC_AFTER. We call all these variables as numeric variables. Then,

we calculated the values of difference between before system time and after system time.

For example, X_ACC_MIN_DIFF will be the difference between minimum values of X

after system time and minimum values of X before system time.

 X_ACC_MIN_DIFF = X_ACC_MIN_AFTER - X_ACC_MIN_BEFORE

The new variables for X column of Accelerometer table are in figure 5.4.

Figure 5.4: New calculated variables

In total, we calculated 144 numerical variables: we have 4 directions (X, Y, Z, M) * 12

variables (variables in Figure 4.5) * 3 sensors = 144 new variables. For these new 144

variables, if the value of variable is null, we set it to zero.

After we calculated numerical variables, we computed binary variables. In our data set

there are 7 categorical variables: GESTURE_SCENARIO, TASK_ID,

POINTER_COUNT, POINTER_ID, ACTION_ID, CONTENT_ID and

PHONE_ORIENTATION. If a categorical variable has n distinct values, we created n-1

distinct dummy binary variables from that categorical variable.

16

POINTER_COUNT has three values: 1, 2 and 3. 1 for single touch, 2 for multiple touch

and 3. Normally from data definition [2], PONINTER_COUNT should have 1 and 2 as

value, but in some cases it has value of 3. So, we have to consider about this new value.

Hence, we created 2 new binary variables: POINTER_COUNT_S (set its value = 1, if

single touch, 0 otherwise), POINTER_COUNT_M (set its value = 1 if multiple touch 0

otherwise).

TASK_ID has 24 different values. Instead of creating 24-1 different dummy variables for

TASK_ID, we created 5 dummy variables, because TASK_ID can be grouped into 6

groups as in Table 5.4.

Table 5.4: TASK_ID groups

1, 7, 13, 19 Reading + Sitting

2, 8, 14, 20 Reading + Walking

3, 9, 15, 21 Writing + Sitting

4, 10, 16, 22 Writing + Walking

5, 11, 17, 23 Map + Sitting

6, 12, 18, 24 Map + Walking

GESTURE_SCENARIO has two values. 1 for sit and 2 for walk. We created

GESTURE_SCENARIO_SIT_F as our dummy variable. And set its value to 1 if

GESTURE_SCENARIO is 1, 0 otherwise.

POINTER_ID has three values. 0 for single touch and 1 for multi-touch, 2 is undefined.

Normally from data definition [2], POINTER_ID should have 0 and 1 as value, but in

some cases it has value of 2. So, we have to consider about this new value. Hence, we

created 2 new binary variables: POINTER_ID_ST (set its value = 1, if single touch, 0

otherwise), POINTER_ID_MT (set its value = 1 if multiple touch 0 otherwise).

ACTION_ID has 5 different values. But it can be grouped into 3 groups.

 0 or 5: DOWN

 1 or 6: UP

 2: MOVE

17

So, we created two dummy variables: ACTION_ID_DOWN (set its value = 1, if

ACTION_ID = 0 or 5, 0 otherwise), ACTION_ID_UP (set its value = 1 if ACTION_ID

= 1 or 6, 0 otherwise).

PHONE_ORIENTATION has three different values.

 0: Portrait and no rotate

 1: device rotated 90 degrees counter-clockwise

 3: device rotated 90 degrees clockwise

We created two dummy variables for PHONE_ORIENTATION.

PHONE_ORIENTATION1 (set its value = 1 if PHONE_ORIENTATION = 1 , 0

otherwise) , PHONE_ORIENTATION0 (set its value = 1 if PHONE_ORIENTATION =

0 , 0 otherwise).

CONTENT_ID has 6 different values. For that reason we created 5 dummy variables.

These variables are: CONTENT_ID1, CONTENT_ID2, CONTENT_ID3,

CONTENT_ID4, and CONTENT_ID5.

After creating dummy variables, we deleted original categorical variables from our list.

Because categorical variables will be correlated to dummy variables. We show some

part of code for creating dummy variable in Figure 5.5.

18

Figure 5.5: A part of the code for creating dummy variable

After deleting categorical variables, we have in total 177 variables. These are: 10

identification and time variables, 144 calculated numerical variables and 20 dummy

variables and 3 floating variables from table TOUCH. We called the final table as

USER_TABLE.

In table USER_TABLE, there are 100 users. We randomly chose 20 users from those 100

users. The SubjectIDs for the randomly selected users are: 745224, 352716, 219303,

501973, 264325, 527796, 862649, 663153, 556357, 841866, 923862, 815316, 733162,

472761, 897652, 186676, 998757, 872895, 240168, and 151985. We show in Figure 5.6

random user selection code from our list of users. We first create a Sybase temporary

table and add a random user to that table. If the new random id is in the table then we

select another random number otherwise we add that user to the list. We continue this

operation for 20 times.

19

Figure 5.6: Random user selection

From randomly chosen 20 users in table USER_TABLE, we create a new table called

MODEL_TABLE. The model table has all columns of USER_TABLE and a new column

called TARGET. We add all records of those 20 users one by one to MODEL_TABLE.

The data process is like this:

 Take one of 20 chosen users from USER_TABLE and add all records of those

user to MODEL_TABLE, and set TARGET value as: ”USER”. For one user in

USER_TABLE there are approximately 100.000 records.

 Take randomly 500.000 records from USER_TABLE whose ids is different from

the id in step one and add them to table MODEL_TABLE, and set TARGET value

as: ”NO_USER”.

 Continue with next user from 20 users in table USER_TABLE.

In total, for our experiment, we had 20 model user, where each case involves about

100.000 USER and 500.000 NO_USER records. In total for one model user there are

about 600.000 records. After creating 20 model users, we downloaded those model user

into text files one by one. One text file takes about 1.2 GB of space at disk. So we have

1.2 * 20 = 24 GB of files. In that case it is very hard to load those files to Microsoft Azure.

For that reason we take zip version of the files. In that case, one file takes about 400 MB

of disk space.

20

6. DATA MODELING

In order to work in Microsoft Azure environment, we create a Microsoft account for

Azure ML studio. Azure ML gives for an account 10 GB of free space for your data and

experiments. One model user takes about 400 MB of disk space in zipped format. When

we run our models for one model user in total it takes about 7 GB of space. For that reason

we loaded one model user; run all models with respect to that model user, save its results

and then finally clear all space. We do all those steps for all chosen model users which

means 20 times. Note: Microsoft Azure also calls a working area as experiment, so we

use experiment here as “Microsoft Azure experiment”.

Our overall project looks like as in Figure 3.1. For every steps we create an Azure ML

experiment. In total we have 12 experiments: one for saving ID, 3 for tuning, one for

finding attribute correlation with TARGET, 7 for models.

Our first experiment is to save ID of user to table ID_TABLE. This table is used to add

ID to statistical results. We save the user ID to ID_TABLE by using “Enter Data

Manually” item. Note: we need such a table because we delete identification variables

from our data set. We will explain it later.

We continue like this: at section 6.1 we explained data normalization and Feature

Selection steps, at section 6.2 we explained parameter tuning and also we explained the

some details of used machine learning algorithms, at section 6.3 we explained the

correlation steps. And finally, at section 6.4 we explained model structures.

21

6.1 Data Normalization and Feature Selection

Our second experiment is to create normalized and DE normalized version of our original

data. We show this experiment in Figure 6.1.

Figure 6.1: Creating normalized and de normalized data

The data for a model user is zipped because of space usage. At first step in Figure 6.1, we

unzip it by using “Unpack Zipped Dataset” UZD item. Then we use a “Select Columns

in Dataset” SCD item so that we eliminate last empty column. When we load a text file

into Azure environment, Azure creates an empty last column so we delete it.

In Azure environment after loading data to Azure, we saw that column names in current

table are in “Col1”,”Col2”,”Col3” format. So, we have to give their exact names like

“TARGET”, ”SUBJECT_ID”, “SYSTIME”. To convert column names to our original

format in Figure 6.1 we use an “Edit Metadata” ED item.

22

Before data normalization process we made attribute selections. We eliminate some

attributes. For each experiment, we first excluded identification variables and time

variables from our data set. The reason is that some attenders do all tasks in a specific

time interval; for that reason, for those attenders time variables are highly correlated to

target variable. So, we excluded all time variables and identification variables from our

dataset. We add attribute selection step to our second experiment. The second SCD in

Figure 6.1 is for that purpose. It eliminates time and identification variables.

There were some null variables in our list. Normally we converted null values to zero at

Sybase but still there were some null values. So in Figure 6.1, we use a “Clean Missing

Data” CMD item to convert nulls to zero.

Then in Figure 6.1, we use an “Execute R Script” ERS item because; normally we make

dummy variables at Sybase IQ but when we check our list, we see: we do not convert

PHONE_ORIENTATION and CONTENT_ID into dummy variables. At that step we

convert them into dummy variables and delete the original ones. At section 5, we

explained it in detail.

Finally in Figure 6.1, we normalize data by using “LogNormal” normalization. We store

ERS result as “denorm” table and normalization result as “norm” table. We will use those

tables in our all remaining experiments.

23

6.2 Parameter Tuning and Machine Learning Algorithms

We make three experiments for parameter tuning (for SVM, BD and LR). For all of

parameter tuning, we use normalized data and then we use calculated parameters for all

modeling experiments. At Figure 6.2, we show the overall structure for LR parameter

tuning. The structure is same for SVM and BD also, just the classifier changes: for LR

we use Two-Class Logistic Regression [13], for SVM we use Two class Support Vector

Machine [18], for BD we use Two-Class Boosted Decision Tree [22]. For DF we did not

tune parameters.

Figure 6.2: LR parameter tuning

In Figure 6.2, we use norm table, then we use “Split Data” SD item to split the data for

parameter tuning. We just use %20 of all data for tuning, because the tuning takes long

time. So we have to a small portion of overall data. But still, %20 of data contains about

120.000 records for one model user.

24

In Figure 6.2, we use Partition and Sample item to use 10 fold cross validation. This item

is used when multiple parameters is used for a model. It gives 10 distinct datasets. We

then use Tune Model Hyperparameters (TMH), it gets folds from Portion and Sample and

parameter range from classifier and finds best tuned values.

In Figure 6.2, ID_TABLE stores the user ID for that experiment. The ERS adds ID to

THH results. “lr_cross_validation” table stores the results of all LR parameters. Finally;

we use an Add Row item to add last user tuning results to “lr_cross_validation” table.

We store results of LR tuning in lr_cross_validation table, SVM results in

svm_cross_validation table and BD results in bd_cross_validation table.

In Two Class Logistic Regression item, we use “Create trainer mode” as Parameter Range

to inform Azure this will be not a single parameter but a list of parameters. The list of

parameter range for Two Class Logistic Regression item are in Figure 6.3.

Figure 6.3: Parameter Range for LR

25

Two class logistic regression in Azure is a logistic regression model and is used to predict

a data set which has two outcomes. It is a supervised learning method so you have to have

a data set which has two results. In our experiment, we have USER and NO_USER labels.

First of all, you have to inform azure which column will be predicted. In our case, it is

TARGET column. Then, we set “Create trainer mode” to “Parameter range”. For

parameter optimization we will use that option. But after we get best parameter values,

we will use “Single Parameter” for “Create trainer mode”.

Since here we used “Parameter Range”, in our experiment after “two class logistic

regression” we add a TMH and a Partition and Sample item. If we use “Single Parameter”,

we have to add “Train Model” item for training. Note: after parameter tuning for all

remaining experiments we add “Train Model” item.

“Optimization tolerance” sets a threshold value for optimizing the model. When the

improvement between iterations falls below that value the algorithm thinks it reached an

optimal value and training stops.

To create less complex models when you have lots of features in your dataset you can use

regularization to prevent over fitting. In Azure, we have L1 and L2 regularization. A

model that uses L1 regularization is called Lasso regression [14], and a model that uses

L2 regularization is called Ridge regression [15]. The main difference between Ridge and

Lasso regression is the penalty term. They add different terms as penalty to loss functions.

Ridge regression adds squared value of coefficient to loss function whereas Lasso adds

absolute value of coefficient as penalty term.

Ridge regression adds a penalty term to original loss function such that all coefficients

are squared. Here lambda is the penalty parameter.

∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗

𝑝

𝑗=1

𝑥𝑖𝑗)

2

+ 𝜆 ∑ 𝛽𝑗
2

𝑝

𝑗=1

𝑛

𝑖=1

(1)

26

If lambda is zero then Ridge regression becomes original loss function. If lambda is too

much then it will add high weights and makes model so simple. In that case under

fitting occurs.

Lasso regression adds a penalty term to original loss function such that all coefficients

are in absolute value. Here lambda is the penalty parameter.

∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗

𝑝

𝑗=1

𝑥𝑖𝑗)

2

+ 𝜆 ∑ |𝛽𝑗|

𝑝

𝑗=1

𝑛

𝑖=1

(2)

If lambda is zero then Lasso regression becomes original loss function. If lambda is too

much then it will add high weights and makes model so simple. In that case under fitting

occurs. In both Lasso and Ridge regressions the value of lambda is an important factor

for model prediction.

Lasso shrinks less important attributes’ coefficient to zero and removes all those attributes

from the model. So those methods are powerful for feature selection if the attribute count

is high and data is abundant. Ridge makes coefficient of less important attributes small

so they have little effect on model.

Azure supports a linear combination of L1 and L2 regularization. It uses a combination

of regularization for linear span. If we set L1 as x and L2 as y then ax + by = c will be a

linear span of the regularization term.

“Memory size for L-BFGS” [16], [17] is a popular algorithm and used for parameter

estimation. The algorithm starts with an initial value of optimal value of X0, then

iteratively tries to find a better estimate of X1, X2, ..This parameter limits the amount of

memory that will be used to compute next step and direction.

“Random number seed” is used for multiple runs. If you want to take in every run the

same results, you have to set a seed value. For our experiment we set seed as 0. If you

27

don’t set a seed value, next time when you run your model again you can have a slightly

different results.

“Allow unknown category” is used to automatically assign values for null categorical

attributes. In our experiments we don’t have such type of values.

Normally, we can do just one experiment and tune all models in that experiment. But,

when we tried to do this our disk space finished and we could not finish tuning. Then, we

decided to separate all tuning experiments.

For BD and SVM we have two more experiments for tuning. We saved SVM results in

“svm_cross_validation” table and BD results in “bd_cross_validation” table.

SVM [18],[19],[20] is one of the popular machine learning algorithms. It is one of the

earliest algorithms and still very popular. It can be used for both regression and

classification. It divides training set with respect to their class labels into hyperplanes that

maximizes margins between two classes. In our experiment, we used two class support

vector machine. This one uses linear kernel. For other kernel types Azure have another

SVM called Two-Class Locally Deep Support Vector Machine [21]. In [2] they used RBF

kernel, for our experiment we used linear kernel.

Again as in LR, we user “Parameter Range” for parameter tuning and after we tuned

parameters we used “Single Parameter” for modelling. Again as in LR, we used Portion

and Sample for 10 fold cross validation and TMH to find best parameter values. The

parameter range for SVM is in Figure 6.4.

28

Figure 6.4: Parameter Range for SVM

“Number of iterations” is used to find how long the model will run until to find best

hyperplane that divides maximum margin. In that case there will be a trade of between

model speed and accuracy. Bigger numbers will result in slower models.

“Lambda” is the regularization parameter for SVM. SVM encounters optimization of two

problems: maximizing the margin and minimizing the mis-classification. If lambda is

larger, then more mis-classified examples are allowed in training set. If the lambda is

small, then less misclassified examples are allowed. If lambda is zero this means no mis-

classified examples occurs in training set. But in that case, there will be overfitting in test

data. So there is a tradeoff. Smaller lambdas are usually good but too smalls can result in

overfitting.

In Figure 6.4, we don’t set “Normalize features” for parameter tuning and models. For

SVM we used normalized data. And before using SVM we have already normalized the

data. So there is no need to normalize data again.

Two-Class Boosted Decision Tree creates a classifier which has only two results. In our

case it is USER and NO_USER. The algorithm in Azure ML studio depends on boosted

decision trees [23].

29

Boosted decision tree is an ensemble algorithm in which a new tree corrects the errors of

the previous one. Here second tree corrects the errors of the first tree, and third tree

corrects the errors of the second tree and so on. Finally prediction depends on the result

of entire trees. The main principle in boosted decision tree: week trees come together to

create a strong learner. When an input is misclassified its weight is increased so that the

next tree most probably will classify it correctly. The algorithm in our experiment gives

the best results, but it is a bit slower than the other algorithms.

The algorithm starts with weak learners at every step it calculates the loss function and

increase the weight of misclassified inputs. For next step the new tree tries to recover the

loss.

For BD models, as in SVM and LR, when we tune parameters. We used Parameter range

for “Create trainer mode” and when we run models Single Parameter for “Create trainer

mode”. Again as in LR and SVM, we used Portion and Sample for 10 fold cross validation

and TMH to find best parameter values for BD parameter tuning. The parameter range

for BD is in Figure 6.5.

Figure 6.5: Parameter Range for BD

30

“Maximum number of leaves per tree” indicates the maximum number of leaf node in

any tree. When you increase that value, the precision of model can increase but can also

cause overfitting. Increasing this also can cause slower models.

“Minimum number of samples per leaf node” indicates the number of cases that is needed

to create a node. If you increase this number, to create a new node more cases are required.

If the number is just one, then any different case will create a node.

“Learning rate” it is the regularization parameter for BD. It slows down or make faster

the training. Low learning rate which means more shrinkage results in more iterations to

reach same accuracy. New trees are added to make correct previous trees’ errors. Adding

more trees can fit the model quickly but can also cause over fitting.

“Number of trees constructed” indicates the total number of tree that will be created in

ensemble. Increasing the number most probably will make better precision models but

will also cause longer training times.

“Random Number seed” and “Allow unknown categorical levels” are same as in SVM

and LR.

The results of tuned parameter values for BD are given as in Table 6.1, for SVM in Table

6.2 and for LR in Table 6.3. We run our models with these parameters for 20 users

separately.

Table 6.1: Tuned parameter values for boosted decision tree

Number of leaves Minimum leaf instances Learning rate Number of trees

90 26 0.375257 350

Table 6.2: Tuned parameter values for support vector machine

Number of iterations Lambda

98 0.003046

31

Table 6.3: Tuned parameter values for logistic regression

Optimization tolerance L1 regularization weight L2 regularization weight Memory size for L-BFGS

0.000003 0.381005 0.34971 48

For Two-Class Decision Forest [25] we did not tune parameters. We used as parameter

values as default values. The parameters for DF is ate Figure 6.6.

For DF, we used bagging or bootstrap aggregating [24] as “Resampling method”. When

you use a training set T of size n, begging creates m number of Ti
 new training set by

randomly sampling from original training set T . In that case when we create new sets

from original training set some records will be unique on the other hand other records

will be repeating. This type of sampling is called bootstrap sampling. Then bagging will

create m models and fit m bootstrap samples. Then will vote the results and give final

prediction. For our case, if we have 5 bagged decision trees and they give: USER,

NO_USER, USER, USER, NO_USER. The overall votes will give results as USER.

Since we did not tune parameters for DF, we used “Single Parameter” as “Create trainer

mode”. The parameter values are default Azure parameter values for bagging DF.

“Number of decision trees” specifies the number of tree that will be created. If you create

more trees, then you can get better precision but models can be slower.

“Maximum depth of the decision trees” indicates that in any tree how many levels /depths

can be created. Increased depths may cause overfitting and longer training times but it

can also increase the precision.

“Minimum number of samples per leaf node” indicates the number of cases that is needed

to create a node. If you increase this number, to create a new node more cases are required.

If the number is just one, then any different case will create a node.

32

“Random Number seed” and “Allow unknown categorical levels” are same as in other

machine learning algorithms used in our experiments.

Figure 6.6: Parameters for DF

33

6.3 Finding Most Predictive Attributes

In our experiment, we try to measure a smaller model which uses a small number of

attributes to recognize user. For this we create a separate experiment in which we use 30

most predictive attributes for user authentication. The overall structure to find the best 30

attributes for authentication is in Figure 6.7.

Figure 6.7: 30 Cols Attribute Selection

As in parameter tuning we use here also the normalized data. We used a “Filter Based

Feature Selection” (FBFS) item to find most correlated attributes with our target. In our

FBFS we use Pearson Correlation and set the number of desired features to 30. We again

as in parameter tuning, use ID_TABLE to identify user.

Our ERS item connects FBFS item with ID_TABLE to add ID to FBFS results. 30Cols

table stores the attribute correlation values with target. We use an Add Row item to add

last user result to 30Cols table.

In 30Cols table we save all correlation results to see most correlated and less correlated

attributes. In some users Magnetometer attributes are most predictive, in some users

Accelerometer attributes are more predictive, and in some users Gyroscope attributes are

most predictive moreover we have users in which phone orientation or touch events are

34

more predictive. It shows that the prediction of attributes completely differs from user to

user. So our smaller model which use most predictive 30 attributes completely changes

from user to user.

35

6.4 Models

After calculating tuned parameters for models and 30 most predictive attributes, we make

7 different experiments for models. In our models; we use BD, DF, SVM and LR. We

have 2 experiments for BD (BD with normalized data and BD with de-normalized data),

2 experiments for LR (LR with normalized data and LR with de-normalized data), 2

experiments for DF (DF with normalized data and DF with de-normalized data) and

finally one experiment for SVM, for SVM we just used normalized data.

In every experiment, we create such type of data flows: data flow using Accelerometer

fields (ACC), data flow using Accelerometer fields PCA taken (ACC with PCA), data

flow using Gyroscope fields (GRY), data flow using Gyroscope fields PCA taken (GRY

with PCA) , data flow using Magnetometer fields (MAG), data flow using Magnetometer

fields PCA taken (MAG with PCA) , data flow using all fields (ALL), data flow using

ALL fields PCA taken (ALL with PCA) , and thirty most predictive fields (30COLS).

So in total we have 7 experiments and in every experiment we have 9 data flows. So in

total we have 7*9 = 63 model runs. In Figure 6.8, we show an experiment. This

experiment is BD with normalized data. The other experiments are also similar just the

classifier and the data changes. If the experiment uses moralized data we load “norm”

table otherwise we load “denorm” table.

Here we will just explain BD with normalized data and we will write all about it. In Figure

6.8, first we load norm table. After that we connect three SCD items to norm table to split

the data. These first three SCD items are used for sensor attribute separation. First SCD

takes Accelerometer fields, second Magnetometer fields and the third SCD takes

Gyroscope fields. By using these first three SCD items we are sure to create three data

flows for sensors.

36

Figure 6.8: Two Class BD normalized experiment

The three data flows are similar just the used attributes changes. In Figure 6.9, we show

Accelerometer attributes. In total there are 60 fields: 1 for target, 11 for dummy variables

created from Activity table and 48 Accelerometer fields. In all sensor models, we use

Activity table fields because the sensor values can change from type of activity. For

example, sitting or walking can directly change all sensors. So, we add all activity table

fields for our sensor models.

Figure 6.9: Some of Accelerometer fields

37

After selecting columns, we have two connections one for splitting data and the other for

PCA. For all models except 30COLS, we have two flows: data without PCA and data

with PCA. In Figure 6.10, we show in detail. Note: Figure 6.10 is a part of Figure 6.8.

Figure 6.10: Data flow for Accelerometer model

Here for PCA, we take “Number of dimensions to reduce to” as 1/3 of attribute count.

For Accelerometer, we have 60 fields. One of them is target. If we exclude target we have

59 fields, one third of 59 is: 59 / 3 = 19. So for PCA, we take “Number of dimensions to

reduce to” as 19.

In Figure 6.10, we have two Split data items. One of it splitting data for PCA taken, and

the other is splitting data without PCA. For our models, we use %70 or data for training

and % 30 of data for testing.

For BD, we use Two Class Boosted Decision Tree classifier. And we set its parameters

as the values in Table 5.1. Note: for all 9 BD data flows in this experiment we use

parameters from Table 5.1.

38

After Classifier we have two Train model items. We train the models with %70 of data

coming from Split Data item.

After training model, we use Score model to score the model. For scoring model, we use

remaining %30 of data.

After that, we evaluate model to see model performances. The Evaluate model calculates;

Accuracy, F1 Score, Precision, Recall, Negative Precision, Negative Recall, and

Cumulative AUC for model performance. It divides all records by 10 percent probability

bins. (90-100] bins keeps the last probability. It also shows the concussion matrix and

ROC curve for the model.

At Figure 6.11, we show confusion matrix for BD with normalized data for user 841866.

The data flow is ALL model. At Table 6.4, we show Accuracy for all Score Bins. Note:

at confusion matrix we show overall accuracy and other matrices. In Figure 6.12, we show

ROC curve for same run.

Figure 6.11: Confusion Matrix

39

Table 6.4: Accuracy for all Score Bins

Score Bin
Positive

Examples

Negative

Examples

Fraction

Above

Threshold

Accuracy F1 Score Precision Recall

(0.900,1.000] 14812 30 0.086 0.937 0.732 0.998 0.578

(0.800,0.900] 4360 52 0.112 0.962 0.854 0.996 0.748

(0.700,0.800] 2682 150 0.128 0.977 0.916 0.989 0.852

(0.600,0.700] 1698 383 0.140 0.984 0.946 0.975 0.919

(0.500,0.600] 1009 829 0.151 0.985 0.951 0.944 0.958

(0.400,0.500] 7 6 0.151 0.985 0.951 0.944 0.958

(0.300,0.400] 591 1752 0.165 0.979 0.932 0.887 0.981

(0.200,0.300] 296 4167 0.190 0.956 0.871 0.775 0.993

(0.100,0.200] 134 13191 0.268 0.880 0.713 0.554 0.998

(0.000,0.100] 47 126125 1.000 0.149 0.259 0.149 1.000

Figure 6.12: ROC curve

Finally we add ACC results and ACC with PCA results for evaluating all model

performances.

In this experiment, we modeled sensor attributes alone to see if any of three sensor will

be enough for user authentication. Maybe data flow from one sensor can corrupt but if

40

the other sensors are alive, getting separate sensor models will help for user authentication

in any case. Moreover, using one sensor models can be cheaper and needs less energy for

authentication. For all these reasons, we create 6 sensor models (2 for ACC, 2 for GRY,

and 2 for MAG) and evaluate their performances.

In Figure 6.7, we have three more connection coming from “norm” table. The two

connections for ALL models (ALL and ALL with PCA) and the other is for 30COLS. For

ALL again we used data as without PCA or data with PCA. For 30COLS, we did not take

PCA.

In Figure 6.13, we show some part of ALL and 30COLS models. Note: Figure 6.13 is a

part of Figure 6.8.

 Figure 6.13: Some part of ALL and 30COLS models

Here first two connections from right of the figure 6.13 are for ALL models. Again we

take PCA for ALL fields. We use 1/3 of total attributes for PCA. In ALL fields we have

41

168 attribute. If we exclude target we have 167 attributes. Then, one third of 167 is: 167

/ 3 = 55. We take 55 dimensions for ALL with PCA.

For 30COLS, we use Filter Based Feature Selection and use Pearson Correlation for

feature selection. We set “Number of Desired Feature” to 30. We are sure now, we select

first 30 most correlated attributes with target.

Then for all three models (ALL, ALL with PCA and 30COLS), we have Split Data item.

Here again we use %70 of data for training and %30 for testing. Again we use Two Class

Boosted Decision Tree for classification. And set its parameters from Table 5. Then we

score model by using remaining %30 of data. After scoring data we use Evaluate Model

item to see performance of models. Finally we add all evaluation result to see overall

performance.

At the end of Figure 6.7, we take all evaluation results of models together and save the

results. We show this in Figure 6.14 in detail. The first two Add Rows items join rows

coming from sensors and from the others respectively. Again we use ID_TABLE to store

user ID. The R Script connects results coming from models and ID_TABLE. We store all

results in gsu_results table. At every run, we connect gsu_result table with the final results

and store the union again into gsu_results table. We do the storing process manually.

Figure 6.14: Saving Results

After running all experiments for every user we are ready to compare results of models.

For one user we run 7 experiments and in total we have 20 * 7 = 140 runs.

42

7. RESULTS

The first results are obtained by taking the average of all 20 users’ results. Although

various metrics are given, the models are compared by the accuracy perspective. We also

store precision and recall results. Our first results about the parameter tuning. For BD, LR

and SVM we tuned parameters. For DF we did not tune parameters. We use DF

parameters as Azure initial values.

We first tuned SVM parameters. The results of SVM parameters are at Table 7.1: we used

Number of iterations as 98, Lambda as 0.003046. These values give the best Accuracy.

Table 7.1. SVM Parameter Values

Number of iterations Lambda Accuracy Precision Recall

98 0.003046 0.828229 0.708693 0.52781

86 0.099535 0.794518 0.604628 0.507398

29 0.046737 0.794302 0.603957 0.507584

68 0.031466 0.794209 0.603346 0.50898

63 0.046956 0.794186 0.60363 0.507553

Then we tuned LR parameters. The results of LR parameters are at Table 7.2: we used

Optimization Tolerance as 0.00003, L1 weight as 0.381005, L2 weight as 0.34971 and

Memory Size as 48. These values give the best Accuracy.

43

Table 7.2. LR Parameter Values

OptimizationTolerance L1Weight L2Weight MemorySize Accuracy Precision Recall

0.000003 0.381005 0.34971 48 0.884355 0.804311 0.708379

0.000055 0.08111 0.195253 25 0.881447 0.799972 0.699197

0.00003 0.988544 0.64627 39 0.87745 0.799459 0.678537

0.00007 0.526284 0.934678 35 0.87462 0.79484 0.669882

0.000082 0.848052 0.991983 6 0.860216 0.765888 0.632534

Then we tuned BD parameters. The results of BD parameters are at Table 7.3: we used

Number of Leaves as 90, Minimum Leaf instances as 26, and Learning rate as 0.375257

and Number of trees as 350. These values give the best Accuracy.

Table 7.3 : BD Parameter Values

Number of leaves
Minimum leaf

instances

Learning

rate

Number of

trees
Accuracy Precision Recall

90 26 0.375257 350 0.993196 0.987077 0.975555

39 49 0.266012 386 0.99266 0.983 0.976745

70 4 0.095172 237 0.98912 0.979687 0.960403

104 42 0.396963 35 0.988199 0.973712 0.96141

5 19 0.153678 479 0.981704 0.955555 0.943832

We compared sensor performances. While for some users ACC models performs better,

for the others MAG model performs better. The reason is that: When we use Pearson

correlation to find the correlation of target with attributes, we saw that sometimes it is the

magnetometer attributes, which gets higher results than accelerometer attributes, and

sometimes it is the opposite case. In Table 7.4, we show top five most correlated attributes

with TARGET for all users.

44

Table 7.4: Most correlated attributes with TARGET

ID CORRELATED 1 CORRELATED 2 CORRELATED 3 CORRELATED 4 CORRELATED 5

745224

Y_ACC_MAX_BEFORE Y_ACC_MAX_AFTER Z_ACC_MEAN_BEFORE Y_ACC_MEAN_AFTER Y_ACC_MEAN_BEFORE

0.526101477917448 0.526027094774484 0.522512065817992 0.517671665718106 0.517449449850825

352716

Z_ACC_MAX_BEFORE Y_ACC_MIN_AFTER Y_ACC_MIN_BEFORE Z_ACC_MAX_AFTER Z_ACC_MEAN_BEFORE

0.31494038435346 0.289254903725818 0.288017204636527 0.28704661486678 0.273874370108157

219303

Y_MAG_MIN_AFTER Y_MAG_MEAN_AFTER Y_MAG_MAX_AFTER Y_MAG_MIN_BEFORE Y_MAG_MEAN_BEFORE

0.275500852736378 0.275243046883244 0.27496804219146 0.272805645166704 0.272492784722381

501973

CONTACT_SIZE M_GYR_MAX_AFTER M_ACC_STDV_AFTER M_GYR_MEAN_AFTER M_ACC_MAX_BEFORE

0.301796412920593 0.238582206332669 0.229281328856425 0.225511080336985 0.225108059171782

264325

X_MAG_MAX_BEFORE X_MAG_MEAN_BEFORE X_MAG_MIN_BEFORE X_MAG_MAX_AFTER X_MAG_MEAN_AFTER

0.268759433468619 0.268461737089369 0.26822403387547 0.267922212908424 0.267660345187204

527796

X_GYR_STDV_AFTER Z_ACC_STDV_AFTER M_ACC_STDV_AFTER X_GYR_STDV_BEFORE Z_ACC_STDV_BEFORE

0.336968464687707 0.333874416733462 0.326149157965839 0.319573415872206 0.295362838411421

862649

X_ACC_MIN_BEFORE Y_MAG_MAX_BEFORE Y_MAG_MAX_AFTER Y_MAG_MEAN_BEFORE Y_MAG_MEAN_AFTER

0.152423855213381 0.151665152754996 0.151243843796255 0.151060324524325 0.150699822174548

663153

PHONE_ORIENTATION1 PHONE_ORIENTATION0 X_ACC_MAX_BEFORE X_ACC_MEAN_BEFORE X_ACC_MEAN_AFTER

0.653784286723699 0.589865039787968 0.528486460795191 0.528277768166644 0.527682453389752

556357

Z_MAG_MIN_BEFORE Z_MAG_MEAN_BEFORE Z_MAG_MAX_BEFORE Z_MAG_MIN_AFTER Z_MAG_MEAN_AFTER

0.267229361060606 0.267008026163402 0.266757442851155 0.254351616657512 0.25426544228856

923862

M_ACC_MEAN_AFTER M_ACC_MEAN_BEFORE M_ACC_MIN_AFTER M_ACC_MAX_AFTER M_ACC_MAX_BEFORE

0.286352911307566 0.280610217036483 0.258239428924014 0.247442679474636 0.244429037975945

815316

PHONE_ORIENTATION0 Y_ACC_MAX_BEFORE Y_ACC_MAX_AFTER Y_ACC_MEAN_BEFORE Y_ACC_MEAN_AFTER

0.896122822699534 0.784132912462087 0.771949335739134 0.743498858762641 0.734805086511852

733162

Z_ACC_MIN_BEFORE Z_ACC_MIN_AFTER Z_ACC_MEAN_BEFORE Z_ACC_MEAN_AFTER Z_ACC_MAX_BEFORE

0.391518650967635 0.387015884185687 0.374153409295053 0.367525068939596 0.353763303540903

472761

Z_ACC_MAX_BEFORE Z_ACC_MAX_AFTER M_ACC_MAX_BEFORE Z_ACC_MEAN_AFTER Z_ACC_MEAN_BEFORE

0.294705192453602 0.291713758896863 0.278452885709171 0.27467140204743 0.274397884308291

897652

Y_MAG_MIN_AFTER Y_MAG_MEAN_AFTER Y_MAG_MIN_BEFORE Y_MAG_MAX_AFTER Y_MAG_MEAN_BEFORE

0.349747792237405 0.349375898770985 0.349203661091282 0.348967851406809 0.348799815368137

186676

M_ACC_MIN_AFTER M_ACC_MIN_BEFORE M_ACC_MEAN_BEFORE M_ACC_MEAN_AFTER M_MAG_MAX_AFTER

0.355140113982211 0.346975516833136 0.322640215508059 0.311971895598156 0.266452236290741

998757

Y_ACC_MEAN_BEFORE Y_ACC_MIN_BEFORE Y_ACC_MAX_BEFORE Y_ACC_MIN_AFTER Y_ACC_MEAN_AFTER

0.463621596093162 0.463141254211321 0.45931382519527 0.452386156859775 0.451366805284635

872895

X_MAG_MIN_AFTER X_MAG_MIN_BEFORE X_MAG_MEAN_AFTER X_MAG_MAX_AFTER X_MAG_MEAN_BEFORE

0.333847952479681 0.33296365440044 0.332794896893683 0.331772985523584 0.331558306075711

240168 M_ACC_MAX_BEFORE M_ACC_MAX_AFTER M_ACC_MEAN_BEFORE M_ACC_MEAN_AFTER M_ACC_MIN_AFTER

45

0.444019869519928 0.438917418637273 0.416556642510241 0.411703916002569 0.30807696781216

151985

M_MAG_MAX_BEFORE M_MAG_MEAN_BEFORE M_MAG_MIN_BEFORE M_MAG_MAX_AFTER M_MAG_MEAN_AFTER

0.751201252427723 0.750532188464783 0.749848916132387 0.704952367349935 0.704333207327102

841866

CONTACT_SIZE Y_ACC_MAX_AFTER Y_ACC_MAX_BEFORE Y_ACC_MEAN_AFTER Y_ACC_MEAN_BEFORE

0.28135342230165 0.253835484000719 0.252479429249677 0.233841627542155 0.231490271890425

For correlation test we also measure the how many times an attribute comes in first five

location. At Table 7.5 we show how many times an attribute comes as a most correlated

attribute, as a second most correlated attribute, as a third most correlated attribute etc.

Table 7.5. How many times an attribute is one of most correlated

CORRELATED 1 # CORRELATED 2 # CORRELATED 3 # CORRELATED 4 # CORRELATED 5 #

CONTACT_SIZE 2 Y_ACC_MAX_AFTER 2 M_ACC_MEAN_BEFORE 2 M_ACC_MEAN_AFTER 2 M_ACC_MAX_BEFORE 2

Y_MAG_MIN_AFTER 2 Y_MAG_MEAN_AFTER 2 M_ACC_STDV_AFTER 2 X_MAG_MAX_AFTER 2 Y_ACC_MEAN_AFTER 2

Z_ACC_MAX_BEFORE 2 M_ACC_MAX_AFTER 1 Y_ACC_MAX_BEFORE 2 Y_ACC_MEAN_AFTER 2 Y_ACC_MEAN_BEFORE 2

M_ACC_MAX_BEFORE 1 M_ACC_MEAN_BEFORE 1 Y_MAG_MAX_AFTER 2 Z_ACC_MEAN_AFTER 2 Y_MAG_MEAN_BEFORE 2

M_ACC_MEAN_AFTER 1 M_ACC_MIN_BEFORE 1 Z_ACC_MEAN_BEFORE 2 M_ACC_MAX_AFTER 1 Z_ACC_MEAN_BEFORE 2

M_ACC_MIN_AFTER 1 M_GYR_MAX_AFTER 1 M_ACC_MAX_BEFORE 1 M_GYR_MEAN_AFTER 1 M_ACC_MIN_AFTER 1

M_MAG_MAX_BEFORE 1 M_MAG_MEAN_BEFORE 1 M_ACC_MIN_AFTER 1 M_MAG_MAX_AFTER 1 M_MAG_MAX_AFTER 1

PHONE_ORIENTATION0 1 PHONE_ORIENTATION0 1 M_MAG_MIN_BEFORE 1 X_ACC_MEAN_BEFORE 1 M_MAG_MEAN_AFTER 1

PHONE_ORIENTATION1 1 X_MAG_MEAN_BEFORE 1 X_ACC_MAX_BEFORE 1 X_GYR_STDV_BEFORE 1 X_ACC_MEAN_AFTER 1

X_ACC_MIN_BEFORE 1 X_MAG_MIN_BEFORE 1 X_MAG_MEAN_AFTER 1 Y_ACC_MEAN_BEFORE 1 X_MAG_MEAN_AFTER 1

X_GYR_STDV_AFTER 1 Y_ACC_MAX_BEFORE 1 X_MAG_MIN_BEFORE 1 Y_ACC_MIN_AFTER 1 X_MAG_MEAN_BEFORE 1

X_MAG_MAX_BEFORE 1 Y_ACC_MIN_AFTER 1 Y_ACC_MAX_AFTER 1 Y_MAG_MAX_AFTER 1 Y_MAG_MEAN_AFTER 1

X_MAG_MIN_AFTER 1 Y_ACC_MIN_BEFORE 1 Y_ACC_MIN_BEFORE 1 Y_MAG_MEAN_BEFORE 1 Z_ACC_MAX_BEFORE 1

Y_ACC_MAX_BEFORE 1 Y_MAG_MAX_BEFORE 1 Y_MAG_MIN_BEFORE 1 Y_MAG_MIN_BEFORE 1 Z_ACC_STDV_BEFORE 1

Y_ACC_MEAN_BEFORE 1 Z_ACC_MAX_AFTER 1 Z_MAG_MAX_BEFORE 1 Z_ACC_MAX_AFTER 1 Z_MAG_MEAN_AFTER 1

Z_ACC_MIN_BEFORE 1 Z_ACC_MIN_AFTER 1 Z_MAG_MIN_AFTER 1

Z_MAG_MIN_BEFORE 1 Z_ACC_STDV_AFTER 1

 Z_MAG_MEAN_BEFORE 1

It shows us that the parameters completely changes from user to user. In some users

sensor data gives best results for some users touch event data gives best results.

46

When we compare sensor results with respect to models we see that Magnetometer

performs better in DF and BD but Accelerometer performs better in LR and SVM. But

the values of Magnetometer and Accelerometer are so close. So we can not say that

Magnetometer gives better perfomace.

In Table 7.6, we show DF results for sensor, in Table 7.7 we show BD results for sensors,

in Table 7.8 we show LR results for sensor and in Table 7.9 we show SVM results for

sensors. In all tables there are 18 results because we use both normalized and de

normalized data for BD,LR and DF. But for SVM we have 9 results because for SVM we

just used normalized data. Note : the results are avarage of all 20 model users.

Table 7.6: DF Results. Normalized and De Normalized data

Flow Data Accuracy Precision Recall

Flow Data Accuracy Precision Recall

ALL Normalized 0.992055 0.981225 0.967784

ALL
De-

Normalized
0.994229 0.987369 0.976155

MAG Normalized 0.984081 0.953795 0.946984

MAG
De-

Normalized
0.993593 0.978965 0.981824

30COLS Normalized 0.968247 0.923459 0.86851

ALL with

PCA

De-

Normalized
0.989785 0.982921 0.951127

ACC Normalized 0.964171 0.917219 0.859335

MAG with

PCA

De-

Normalized
0.988962 0.973025 0.959094

ALL with

PCA
Normalized 0.961614 0.942086 0.80115

30COLS

De-

Normalized
0.97816 0.95089 0.916837

MAG with

PCA
Normalized 0.960821 0.909617 0.839957

ACC

De-

Normalized
0.967054 0.92807 0.874002

ACC with

PCA
Normalized 0.950292 0.888859 0.797156

ACC with

PCA

De-

Normalized
0.963162 0.922011 0.856201

GRY Normalized 0.916732 0.875118 0.614414

GRY
De-

Normalized
0.918862 0.884842 0.630053

GRY with

PCA
Normalized 0.902699 0.853346 0.541459

GRY with

PCA

De-

Normalized
0.912008 0.85397 0.614659

Table 7.7: BD Results. Normalized and De Normalized data

Flow Data Accuracy Precision Recall

Flow Data Accuracy Precision Recall

ALL Normalized 0.996111 0.982467 0.991248

ALL
De-

Normalized
0.997317 0.987706 0.994475

ALL with

PCA
Normalized 0.983862 0.953004 0.947445

ALL with

PCA

De-

Normalized
0.994193 0.978985 0.983608

MAG Normalized 0.983041 0.943442 0.954194

MAG
De-

Normalized
0.992348 0.970046 0.984742

30COLS Normalized 0.972161 0.910419 0.920293

MAG with

PCA

De-

Normalized
0.986981 0.955986 0.96781

ACC Normalized 0.963021 0.886518 0.895616

30COLS
De-

Normalized
0.983635 0.946876 0.957458

MAG with

PCA
Normalized 0.960447 0.87903 0.881583

ACC

De-

Normalized
0.969493 0.907356 0.918888

ACC with

PCA
Normalized 0.948162 0.844382 0.846266

ACC with

PCA

De-

Normalized
0.963485 0.890274 0.897898

GRY Normalized 0.905658 0.745916 0.697098

GRY
De-

Normalized
0.914418 0.774275 0.740073

GRY with

PCA
Normalized 0.8837 0.682679 0.612755

GRY with

PCA

De-

Normalized
0.895709 0.722844 0.675208

47

Table 7.8: LR Results. Normalized and De Normalized data

Flow Data Accuracy Precision Recall

Flow Data Accuracy Precision Recall

ALL Normalized 0.924224 0.789046 0.686001

ALL
De-

Normalized
0.918873 0.790926 0.652578

ALL with

PCA
Normalized 0.905942 0.73715 0.588172

ALL with

PCA

De-

Normalized
0.905617 0.767943 0.569884

30COLS Normalized 0.892781 0.709761 0.520253

30COLS
De-

Normalized
0.889927 0.723636 0.479914

ACC Normalized 0.87534 0.654405 0.431529

MAG
De-

Normalized
0.870602 0.653397 0.348817

MAG Normalized 0.862697 0.606739 0.272891

ACC
De-

Normalized
0.86594 0.653944 0.374243

ACC with

PCA
Normalized 0.862243 0.600669 0.345911

MAG with

PCA

De-

Normalized
0.861988 0.580987 0.279547

MAG with

PCA
Normalized 0.856722 0.548401 0.233163

ACC with

PCA

De-

Normalized
0.858432 0.612202 0.326387

GRY Normalized 0.835687 0.499719 0.154874

GRY
De-

Normalized
0.829698 0.45738 0.129285

GRY with

PCA
Normalized 0.828695 0.387521 0.078386

GRY with

PCA

De-

Normalized
0.825401 0.457932 0.102514

Table 7.9: SVM Results

Flow Data Accuracy Precision Recall

ALL Normalized 0.913508 0.786037 0.618775

ALL with PCA Normalized 0.897431 0.766317 0.531923

30COLS Normalized 0.890139 0.743792 0.502651

ACC Normalized 0.869704 0.678231 0.409189

ACC with PCA Normalized 0.860143 0.622211 0.347434

MAG Normalized 0.859586 0.637857 0.25921

MAG with PCA Normalized 0.855579 0.625727 0.234166

GRY Normalized 0.830493 0.420945 0.131047

GRY with PCA Normalized 0.825175 0.322237 0.084511

Since the most correlated attributes changes from user to user, the 30COLS models

usually use different attributes. PCA used model performances are lower compared to

models without PCA. But again the results are so close, so we cannot say taking PCA

lowers the Accuracy.

During the experiments, we explored that in all cases, BD usually gives higher accuracy.

Following BD, DF has the second rank among accuracy comparisons. In some cases DF

gives better results. Note: we do not take parameter tuning in DF. Maybe it will give

better results if we tune it. From Table 7.10 to Table 7.18, we show machine learning

algorithm results for different data flow. These are avarage of 20 model users’ results.

48

Table 7.10: 30COLS Results. Normalized and De Normalized data

Model Data Accuracy Precision Recall

Model Data Accuracy Precision Recall

BD Normalized 0.972161 0.910419 0.920293

BD De-Normalized 0.983635 0.946876 0.957458

DF Normalized 0.968247 0.923459 0.86851

DF De-Normalized 0.97816 0.95089 0.916837

LR Normalized 0.892781 0.709761 0.520253

LR De-Normalized 0.889927 0.723636 0.479914

SVM Normalized 0.890139 0.743792 0.502651

Table 7.11: ACC Results. Normalized and De Normalized data

Model Data Accuracy Precision Recall

Model Data Accuracy Precision Recall

DF Normalized 0.964171 0.917219 0.859335

BD De-Normalized 0.969493 0.907356 0.918888

BD Normalized 0.963021 0.886518 0.895616

DF De-Normalized 0.967054 0.92807 0.874002

LR Normalized 0.87534 0.654405 0.431529

LR De-Normalized 0.86594 0.653944 0.374243

SVM Normalized 0.869704 0.678231 0.409189

Table 7.12: ACC with PCA Results. Normalized and De Normalized data

Model Data Accuracy Precision Recall

Model Data Accuracy Precision Recall

DF Normalized 0.950292 0.888859 0.797156

BD De-Normalized 0.963485 0.890274 0.897898

BD Normalized 0.948162 0.844382 0.846266

DF De-Normalized 0.963162 0.922011 0.856201

LR Normalized 0.862243 0.600669 0.345911

LR De-Normalized 0.858432 0.612202 0.326387

SVM Normalized 0.860143 0.622211 0.347434

Table 7.13: ALL Results. Normalized and De Normalized data

Model Data Accuracy Precision Recall

Model Data Accuracy Precision Recall

BD Normalized 0.996111 0.982467 0.991248

BD De-Normalized 0.997317 0.987706 0.994475

DF Normalized 0.992055 0.981225 0.967784

DF De-Normalized 0.994229 0.987369 0.976155

LR Normalized 0.924224 0.789046 0.686001

LR De-Normalized 0.918873 0.790926 0.652578

SVM Normalized 0.913508 0.786037 0.618775

Table 7.14: ALL with PCA Results. Normalized and De Normalized data

Model Data Accuracy Precision Recall

Model Data Accuracy Precision Recall

BD Normalized 0.983862 0.953004 0.947445

BD De-Normalized 0.994193 0.978985 0.983608

DF Normalized 0.961614 0.942086 0.80115

DF De-Normalized 0.989785 0.982921 0.951127

LR Normalized 0.905942 0.73715 0.588172

LR De-Normalized 0.905617 0.767943 0.569884

SVM Normalized 0.897431 0.766317 0.531923

49

Table 7.15: GRY Results. Normalized and De Normalized data

Model Data Accuracy Precision Recall

Model Data Accuracy Precision Recall

DF Normalized 0.916732 0.875118 0.614414

DF De-Normalized 0.918862 0.884842 0.630053

BD Normalized 0.905658 0.745916 0.697098

BD De-Normalized 0.914418 0.774275 0.740073

LR Normalized 0.835687 0.499719 0.154874

LR De-Normalized 0.829698 0.45738 0.129285

SVM Normalized 0.830493 0.420945 0.131047

Table 7.16: GRY with PCA Results. Normalized and De Normalized data

Model Data Accuracy Precision Recall

Model Data Accuracy Precision Recall

DF Normalized 0.902699 0.853346 0.541459

DF De-Normalized 0.912008 0.85397 0.614659

BD Normalized 0.8837 0.682679 0.612755

BD De-Normalized 0.895709 0.722844 0.675208

LR Normalized 0.828695 0.387521 0.078386

LR De-Normalized 0.825401 0.457932 0.102514

SVM Normalized 0.825175 0.322237 0.084511

Table 7.17: MAG Results. Normalized and De Normalized data

Model Data Accuracy Precision Recall

Model Data Accuracy Precision Recall

DF Normalized 0.984081 0.953795 0.946984

DF De-Normalized 0.993593 0.978965 0.981824

BD Normalized 0.983041 0.943442 0.954194

BD De-Normalized 0.992348 0.970046 0.984742

LR Normalized 0.862697 0.606739 0.272891

LR De-Normalized 0.870602 0.653397 0.348817

SVM Normalized 0.859586 0.637857 0.25921

Table 7.18: MAG with PCA Results. Normalized and De Normalized data

Model Data Accuracy Precision Recall

Model Data Accuracy Precision Recall

DF Normalized 0.960821 0.909617 0.839957

DF De-Normalized 0.988962 0.973025 0.959094

BD Normalized 0.960447 0.87903 0.881583

BD De-Normalized 0.986981 0.955986 0.96781

LR Normalized 0.856722 0.548401 0.233163

LR De-Normalized 0.861988 0.580987 0.279547

SVM Normalized 0.855579 0.625727 0.234166

The accuracy values of each algorithm for each data flow are presented in Figure 7.1-

Figure 7.5. We were expecting normalizing data will give better results but after our

results come, we see that in nearly all cases de normalized data gave better results. But

again, the value are so close so we cannot easily say that data normalization or de

normalization helps for predictions.

50

Figure 7.1: (a) Accuracy values for ‘ALL’ data flow; (b) Accuracy values for ‘ALL with PCA’ data flow.

Figure 7.2: (a) Accuracy values for ‘MAG’ data flow; (b) Accuracy values for ‘MAG with PCA’ data flow.

Figure 7.3: (a) Accuracy values for ‘ACC’ data flow; (b) Accuracy values for ‘ACC with PCA’ data flow.

Figure 7.4: (a) Accuracy values for ‘GYR’ data flow; (b) Accuracy values for ‘GYR with PCA’ data flow.

0,994193 0,989785 0,983862
0,961614

0,905942 0,905617 0,897431

BD,
DENORM

DF,
DENORM

BD,
NORM

DF,
NORM

LR,
NORM

LR,
DENORM

SVM,
NORM

0,993593 0,992348 0,984081 0,983041

0,870602 0,862697 0,859586

DF,
DENORM

BD,
DENORM

DF,
NORM

BD,
NORM

LR,
DENORM

LR-NORM SVM,
NORM

0,988962 0,986981

0,960821 0,960447

0,861988 0,856722 0,855579

DF,
DENORM

BD,
DENORM

DF,
NORM

BD,
NORM

LR,
DENORM

LR,
NORM

SVM,
NORM

0,969493 0,967054 0,964171 0,963021

0,87534 0,869704 0,86594

BD,
DENORM

DF,
DENORM

DF,
NORM

BD,
NORM

LR,
NORM

SVM,
NORM

LR,
DENORM

0,963485 0,963162
0,950292 0,948162

0,862243 0,860143 0,858432

BD,
DENORM

DF,
DENORM

DF,
NORM

BD-NORM LR,
NORM

SVM,
NORM

LR,
DENORM

0,918862 0,916732 0,914418
0,905658

0,835687
0,830493 0,829698

DF,
DENORM

DF,
NORM

BD,
DENORM

BD,
NORM

LR,
NORM

SVM,
NORM

LR,
DENORM

0,912008
0,902699

0,895709

0,8837

0,828695 0,825401 0,825175

DF,
DENORM

DF,
NORM

BD,
DENORM

BD-NORM LR,
NORM

LR,
DENORM

SVM,
NORM

0,997317 0,996111 0,994229 0,992055

0,924224 0,918873 0,913508

BD,
DENORM

BD,
NORM

DF,
DENORM

DF,
NORM

LR,
NORM

LR,
DENORM

SVM,
NORM

51

 Figure 7.5: Accuracy values for ‘30COLS’ data flow.

At table 7.19, we show for all model users the most predictive model and its Accuracy,

Precision and Recall values.

Table 7.19 Most predictive model for all user

ID Model Flow Data Accuracy Precision Recall

151985 BD ALL De-Normalized 0.99946 0.99883 1

186676 BD ALL De-Normalized 0.998534 0.993622 0.998129

219303 BD ALL with PCA De-Normalized 0.995971 0.976074 0.99034

240168 BD ALL De-Normalized 0.999348 0.997093 0.998694

264325 BD ALL De-Normalized 0.996835 0.989106 0.998692

352716 BD ALL De-Normalized 0.998839 0.995469 0.998243

472761 BD ALL De-Normalized 0.997507 0.988085 0.994633

501973 BD ALL De-Normalized 0.997879 0.987144 0.992931

527796 BD ALL De-Normalized 0.996583 0.989336 0.997303

556357 BD ALL De-Normalized 0.998304 0.992823 0.989831

663153 BD ALL De-Normalized 0.998783 0.99532 0.99579

733162 BD ALL De-Normalized 0.999023 0.996741 0.997265

745224 BD ALL De-Normalized 0.997706 0.993516 0.997285

815316 BD ALL Normalized 0.999643 0.998656 0.999388

841866 BD ALL Normalized 0.996727 0.987251 0.990794

862649 BD ALL De-Normalized 0.99816 0.990044 0.99809

872895 BD ALL De-Normalized 0.999048 0.994367 0.996566

897652 BD ALL De-Normalized 0.99947 0.997567 0.999684

923862 BD ALL De-Normalized 0.997682 0.991213 0.99695

998757 BD ALL De-Normalized 0.99737 0.988199 0.997415

0,983635 0,97816 0,972161 0,968247

0,892781 0,890139 0,889927

BD,
DENORM

DF,
DENORM

BD,
NORM

DF,
NORM

LR,
NORM

SVM,
NORM

LR,
DENORM

52

At table 7.20, we show for all model users the most predictive sensor model and its

Accuracy, Precision and Recall values.

Table 7.20 Most predictive Sensor model for all users

ID Model Flow Data Accuracy Precision Recall

151985 DF MAG De-Normalized 0.998633 0.997197 0.999844

186676 DF MAG De-Normalized 0.996185 0.986931 0.991595

219303 BD MAG De-Normalized 0.994998 0.97564 0.9824

240168 BD MAG De-Normalized 0.997416 0.985944 0.997499

264325 BD MAG De-Normalized 0.988493 0.966474 0.989575

352716 BD MAG De-Normalized 0.996658 0.986258 0.995729

472761 BD MAG De-Normalized 0.992713 0.9694 0.980199

501973 BD MAG De-Normalized 0.993339 0.961979 0.975746

527796 DF MAG De-Normalized 0.990525 0.972644 0.990579

556357 DF MAG De-Normalized 0.997462 0.989403 0.984621

663153 DF MAG De-Normalized 0.995501 0.981069 0.986168

733162 BD MAG De-Normalized 0.992866 0.96927 0.987519

745224 DF MAG De-Normalized 0.991516 0.979207 0.986838

815316 DF ACC De-Normalized 0.997381 0.989046 0.996697

841866 BD MAG Normalized 0.9901 0.96358 0.97012

862649 DF MAG De-Normalized 0.994157 0.973599 0.988877

872895 DF MAG De-Normalized 0.996448 0.980545 0.985682

897652 BD MAG De-Normalized 0.997085 0.986842 0.998164

923862 BD MAG De-Normalized 0.992026 0.973724 0.985712

998757 DF MAG De-Normalized 0.995247 0.983171 0.990767

At Table 7,21 we show the sensors with highest scored model, and the same model with

diffrent sensors. For example, for user 745224 DF with De-normalized data with MAG

fields gets hishest accurcy value. So we show DF with De-normalized data for other two

sensors.

Table 7.21 Accuracy values for All sensors

ID Model Data Flow Accuracy Flow (2)
Accuracy

(2)

Flow

(3)
Accuracy (3)

745224 DF De-Normalized MAG 0.991516 ACC 0.969815 GRY 0.906342

352716 BD De-Normalized MAG 0.996658 ACC 0.978078 GRY 0.917494

219303 BD De-Normalized MAG 0.994998 ACC 0.976587 GRY 0.937014

501973 BD De-Normalized MAG 0.993339 ACC 0.969966 GRY 0.945009

264325 BD De-Normalized MAG 0.988493 ACC 0.946867 GRY 0.86838

53

527796 DF De-Normalized MAG 0.990525 ACC 0.956157 GRY 0.892178

862649 DF De-Normalized MAG 0.994157 ACC 0.958806 GRY 0.927815

663153 DF De-Normalized MAG 0.995501 ACC 0.984793 GRY 0.94117

556357 DF De-Normalized MAG 0.997462 ACC 0.972422 GRY 0.958968

841866 BD Normalized MAG 0.9901 ACC 0.967816 GRY 0.914201

815316 DF De-Normalized ACC 0.997381 MAG 0.996074 GRY 0.949063

472761 BD De-Normalized MAG 0.992713 ACC 0.963858 GRY 0.914449

897652 BD De-Normalized MAG 0.997085 ACC 0.977373 GRY 0.911441

186676 DF De-Normalized MAG 0.996185 ACC 0.965079 GRY 0.915062

998757 DF De-Normalized MAG 0.995247 ACC 0.968441 GRY 0.916677

872895 DF De-Normalized MAG 0.996448 ACC 0.975998 GRY 0.951928

240168 BD De-Normalized MAG 0.997416 ACC 0.985992 GRY 0.941615

151985 DF De-Normalized MAG 0.998633 ACC 0.942081 GRY 0.826891

923862 BD De-Normalized MAG 0.992026 ACC 0.947643 GRY 0.903371

733162 BD De-Normalized MAG 0.992866 ACC 0.981226 GRY 0.906829

At table 7.22, we show average values of Accuracy, Precision and Recall of all users for

all models.

Table 7.22: All Results together.

Model Flow Data Accuracy Precision Recall

BD ALL De-Normalized 0.997317 0.987706 0.994475

BD ALL Normalized 0.996111 0.982467 0.991248

DF ALL De-Normalized 0.994229 0.987369 0.976155

BD ALL with PCA De-Normalized 0.994193 0.978985 0.983608

DF MAG De-Normalized 0.993593 0.978965 0.981824

BD MAG De-Normalized 0.992348 0.970046 0.984742

DF ALL Normalized 0.992055 0.981225 0.967784

DF ALL with PCA De-Normalized 0.989785 0.982921 0.951127

DF MAG with PCA De-Normalized 0.988962 0.973025 0.959094

BD MAG with PCA De-Normalized 0.986981 0.955986 0.96781

DF MAG Normalized 0.984081 0.953795 0.946984

BD ALL with PCA Normalized 0.983862 0.953004 0.947445

BD 30COLS De-Normalized 0.983635 0.946876 0.957458

BD MAG Normalized 0.983041 0.943442 0.954194

DF 30COLS De-Normalized 0.97816 0.95089 0.916837

BD 30COLS Normalized 0.972161 0.910419 0.920293

BD ACC De-Normalized 0.969493 0.907356 0.918888

DF 30COLS Normalized 0.968247 0.923459 0.86851

DF ACC De-Normalized 0.967054 0.92807 0.874002

DF ACC Normalized 0.964171 0.917219 0.859335

BD ACC with PCA De-Normalized 0.963485 0.890274 0.897898

DF ACC with PCA De-Normalized 0.963162 0.922011 0.856201

54

BD ACC Normalized 0.963021 0.886518 0.895616

DF ALL with PCA Normalized 0.961614 0.942086 0.80115

DF MAG with PCA Normalized 0.960821 0.909617 0.839957

BD MAG with PCA Normalized 0.960447 0.87903 0.881583

DF ACC with PCA Normalized 0.950292 0.888859 0.797156

BD ACC with PCA Normalized 0.948162 0.844382 0.846266

LR ALL Normalized 0.924224 0.789046 0.686001

LR ALL De-Normalized 0.918873 0.790926 0.652578

DF GRY De-Normalized 0.918862 0.884842 0.630053

DF GRY Normalized 0.916732 0.875118 0.614414

BD GRY De-Normalized 0.914418 0.774275 0.740073

SVM ALL Normalized 0.913508 0.786037 0.618775

DF GRY with PCA De-Normalized 0.912008 0.85397 0.614659

LR ALL with PCA Normalized 0.905942 0.73715 0.588172

BD GRY Normalized 0.905658 0.745916 0.697098

LR ALL with PCA De-Normalized 0.905617 0.767943 0.569884

DF GRY with PCA Normalized 0.902699 0.853346 0.541459

SVM ALL with PCA Normalized 0.897431 0.766317 0.531923

BD GRY with PCA De-Normalized 0.895709 0.722844 0.675208

LR 30COLS Normalized 0.892781 0.709761 0.520253

SVM 30COLS Normalized 0.890139 0.743792 0.502651

LR 30COLS De-Normalized 0.889927 0.723636 0.479914

BD GRY with PCA Normalized 0.8837 0.682679 0.612755

LR ACC Normalized 0.87534 0.654405 0.431529

LR MAG De-Normalized 0.870602 0.653397 0.348817

SVM ACC Normalized 0.869704 0.678231 0.409189

LR ACC De-Normalized 0.86594 0.653944 0.374243

LR MAG Normalized 0.862697 0.606739 0.272891

LR ACC with PCA Normalized 0.862243 0.600669 0.345911

LR MAG with PCA De-Normalized 0.861988 0.580987 0.279547

SVM ACC with PCA Normalized 0.860143 0.622211 0.347434

SVM MAG Normalized 0.859586 0.637857 0.25921

LR ACC with PCA De-Normalized 0.858432 0.612202 0.326387

LR MAG with PCA Normalized 0.856722 0.548401 0.233163

SVM MAG with PCA Normalized 0.855579 0.625727 0.234166

LR GRY Normalized 0.835687 0.499719 0.154874

SVM GRY Normalized 0.830493 0.420945 0.131047

LR GRY De-Normalized 0.829698 0.45738 0.129285

LR GRY with PCA Normalized 0.828695 0.387521 0.078386

LR GRY with PCA De-Normalized 0.825401 0.457932 0.102514

SVM GRY with PCA Normalized 0.825175 0.322237 0.084511

55

8. CONCLUSION

In this paper; the data set of HMOG, which is a set of behavioural biometric features for

continuous authentication of smartphone users, is used. The changes in the sensors in

terms of acceleration, orientation and magnetic field are detected using different machine

learning algorithms. Each data model aims to differentiate the real user of the mobile

phone from non-users. The accuracy values of different algorithms with different data

flows are presented. The results demonstrate the efficiency of the usage of sensors for

continuous user authentication.

From three sensor Magnetometer in terms of accuracy gives best results but values for

Accelerometer in terms of Accuracy are so close to Magnetometer Accuracy values. So

we cannot easily say that which sensor performs better. But Gyroscope Accuracy values

are lower than the Accuracy values of these two sensors.

Taking normalization a bit made Accuracy values lower. But here again the values of

Accuracy for normalized and de normalized data are so close for same type of data flow.

So we cannot easily say that normalization or de normalization of data affects Accuracy.

Algorithms strongly affects accuracy. BD and DF gives good result compared to SVM

and LR. Here boosting and bagging algorisms archives better accuracy. We used linear

kernel for SVM and lasso and ridge for logistic regression but two of them gave worse

results compared to DF and BD. So we can easily say ensemble algorithms gives better

performance.

56

Taking PCA a bit made Accuracy values lower. But here again the values of Accuracy

for data with PCA and data without PCA are so close for same type of data flow. So we

cannot easily say that taking PCA of data affects Accuracy.

57

9. FURTHER RESEARCH

In this experiment we examined different kind of machine learning algorithms for mobile

phone user authentication. We used PCA and normalization for data manipulation

moreover we used different data flows to see different behaviours. In our experiment, we

did not measure how quickly our models detect a mobile phone users. We have very high

accuracies for ensemble algorithms but we don’t know how quickly these algorithms will

detect a mobile phone users. So an android application can be done to detect how quickly

these algorism performs. If the time for authentication is too slow these type of

authentication will be useless.

Moreover, in real time we did not measure how much energy is required for training a

model. We used 7 different kind of models and all of them has 9 data flows. But we don’t

know in real live how much energy will consume those 7 *9 = 63 models. And we don’t

know if the energy consumption will be enough for model training in real life.

Additionally after model training, how much energy will be consumed for

implementation phrase. If the energy consumption is too high for model training, these

type of authentication will be useless. And also, after model training if the energy

consumption is still too high for authentication again these type of attentions will be

useless.

Additionally, to train a model we need about 1.2 GB of data. And when we run all models

a model user about 7 GB of space is used. This is a bit high for authentication in mobile

phones. So how much of data will be required for authentication in mobile phones. If the

data is so abundant then there won’t be enough disk space in mobile phones. Here both

the space for data collection and space for training data should be considered. After

collection of data there should be available space for training and for implementation

phrase.

58

The final question is about required CPU and memory usage. To train such kind of models

in mobile phone, there should be enough memory and CPU for training. When we try to

implement such kind of models, current mobile phones may need extra memory or CPU

space.

59

REFERENCES

[1] Portal, T.S. (2016) “Number of smartphone users world-wide from 2014 to 2020”,

online: URL: https://www.statista.com/statistics/330695/number-of-smartphone-users-

worldwide.

[2] Sitova, Z., Sedenka, J., Yang, Q., Peng, P., Zhou, G., Gasti, P., Balagani, K.S. (2016)

“HMOG: New Behavioral Biometric Features for Continuous Authentication of

Smartphone Users.” IEEE Transactions on Information Forensics and Security 11(5):

877-892.

[3] Patel, V.M, Chellappa, R., Chandra, D., Barbello, B. (2016) “Continuous User

Authentication on Mobile Devices: Recent progress and remaining challenges.” IEEE

Signal Processing Magazine 33(4), 49-61, doi:10.1109/MSP.2016.2555335.

[4] Alzubaidi, A., Kalita, J. (2016) “Authentication of Smartphone Users Using

Behavioral Biometrics.” IEEE Communications Surveys & Tutorials 18(3): 1998-2026.

[5] De Luca, A., Brudy, F., Linder, C., Hang, A., Hussman, H. (2012) “Touch me ones

and I know it’s you!: Implicit Authentication based on touch screen patterns” ACM

Annual Conf. Hum. Factors Computer System: 987–996.

[6] Zeng, N, Huang, H., Bai, K., Wang, H. (2014) “You are how you touch: User

verification on smartphones via tapping behaviors.” IEEE Int. Conference Networks and

Protocols (ICNP): 221–232.

[7] Zhao, X, Feng, T., Shi, W. (2013) “Continuous mobile authentication using a novel

graphic touch gesture feature.” IEEE 6th International Conference Biom: Theory Appl.

Syst.(BTAS): 1–6.

[8] Antal, M., Szabo, L.,Z. (2015) “Biometric authentication based on touchscreen swipe

patterns.” 9th International Conference Interdisciplinarity in Engineering: 862-869.

[9] Buriro, A., Crispo, B., Conti, M. (2018) “A bimodal behavioral biometric-based user

authentication scheme for smartphones.” Journal of Information Security and

Applications: 89-103.

60

[10] Li, Y., Hu, H., Zhao, G. (2018) “Sensor-Based Continuous Authentication Using

Cost-Effective Kernel Ridge Regression.” Digital Object Identifier

10.1109/ACCESS.2018.2841347:

[11] Li, G., Bours, P. (2018) “Studying WiFi and Accelerometer Data Based

Authentication Method on Mobile Phones.” ICBEA '18, May 16-18, 2018, Amsterdam,

Netherlands. https://doi.org/10.1145/3230820.3230824:

[12] Yuksel, A., S., Senel, F., A., Cankaya, I., A. (2018) “Classification of Soft Keyboard

Typing Behaviors Using Mobile Device Sensors with Machine Learning.” Arabian

Journal for Science and Engineering https://doi.org/10.1007/s13369-018-03703-8:

[13] Two-Class Logistic Regression URL: https://docs.microsoft.com/en-

us/azure/machine-learning/studio-module-reference/two-class-logistic-regression

[14] James G.,Witten D., Hastie T., Tibshirani R. “An Introduction to Statistical Learning”

219-227 (2013)

[15] James G.,Witten D., Hastie T., Tibshirani R. “An Introduction to Statistical Learning”

215-219 (2013)

[16] Broyden Fletcher Goldfarb Shanno algorithm URL:

https://en.wikipedia.org/wiki/Broyden-Fletcher-Goldfarb-Shanno_algorithm

[17] Xiao, Y., Wei, Z., Wang, Z. (2008) “A limited memory BFGS-type method for

large-scale unconstrained optimization.” Computers and Mathematics with Applications

56: 1001-1009

[18] Two-Class Support Vector Machine URL: https://docs.microsoft.com/en-

us/azure/machine-learning/studio-module-reference/two-class-support-vector-machine

[19] James G.,Witten D., Hastie T., Tibshirani R. “An Introduction to Statistical

Learning” 337-268 (2013)

[20] Alpaydın, E. “Introduction to Machine Learning” 218-225 (2004)

[21] Two-Class Locally Deep Support Vector Machine URL:

https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/two-

class-locally-deep-support-vector-machine

[22] Two-Class Boosted Decision Tree URL: https://docs.microsoft.com/en-

us/azure/machine-learning/studio-module-reference/two-class-boosted-decision-tree

[23] Gradient boosting. URL: https://en.wikipedia.org/wiki/Gradient_boosting

[24] Bagging https://en.wikipedia.org/wiki/Bootstrap_aggregating

https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/two-class-logistic-regression
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/two-class-logistic-regression
https://en.wikipedia.org/wiki/Broyden-Fletcher-Goldfarb-Shanno_algorithm
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/two-class-support-vector-machine
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/two-class-support-vector-machine
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/two-class-boosted-decision-tree
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/two-class-boosted-decision-tree
https://en.wikipedia.org/wiki/Bootstrap_aggregating

61

[25] Two-Class Decision Forest URL: https://docs.microsoft.com/en-us/azure/machine-

learning/studio-module-reference/two-class-decision-forest

[26] HMOG data URL: http://www.cs.wm.edu/~qyang/hmog.html

[27] Compute absolute time stamp URL: https://www.timestampconvert.com/

https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/two-class-decision-forest
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/two-class-decision-forest
http://www.cs.wm.edu/~qyang/hmog.html

62

APPENDICES

Appendix A

TABLE_ACCELEROMETER:
SYSTIME numeric(20,0) NULL ,

 EVENTTIME numeric(20,0) NULL ,

 ACTIVITY_ID numeric(20,0) NULL ,

 X numeric(15,10) NULL ,

 Y numeric(15,10) NULL ,

 Z numeric(15,10) NULL ,

 M numeric(15,10) NULL ,

 PHONE_ORIENTATION numeric(2,0) NULL

TABLE_ACCELEROMETER_STR:

STR_VAL varchar(2000)

TABLE_ACTIVITY:

 ID numeric(20,0) NULL ,

 SUBJECT_ID numeric(6,0) NULL ,

 SESSION_NUMBER numeric(2,0) NULL ,

 START_TIME numeric(20,0) NULL ,

 END_TIME numeric(20,0) NULL ,

 RELATIVE_START_TIME numeric(20,0) NULL ,

 RELATIVE_END_TIME numeric(20,0) NULL ,

 GESTURE_SCENARIO numeric(2,0) NULL ,

 TASK_ID numeric(2,0) NULL ,

 CONTENT_ID numeric(2,0) NULL ,

 USER_ID numeric(6,0) NULL ,

 SESSION_ID numeric(2,0) NULL

TABLE_ACTIVITY_STR:

 STR_VAL varchar(2000)

TABLE_GYROSCROPE:

 SYSTIME numeric(20,0) NULL ,

 EVENTTIME numeric(20,0) NULL ,

 ACTIVITY_ID numeric(20,0) NULL ,

 X numeric(15,10) NULL ,

 Y numeric(15,10) NULL ,

 Z numeric(15,10) NULL ,

 M numeric(15,10) NULL ,

 PHONE_ORIENTATION numeric(2,0) NULL

TABLE_GYROSCROPE_STR:

STR_VAL varchar(2000)

TABLE_KEYPRESS:

SYSTIME numeric(20,0) NULL ,

 PRESSTIME numeric(20,0) NULL ,

 PRESSTYPE numeric(2,0) NULL ,

 ACTIVITY_ID numeric(20,0) NULL ,

 KEY_ID numeric(4,0) NULL ,

 PHONE_ORIENTATION numeric(2,0) NULL

TABLE_KEYPRESS_STR:

STR_VAL varchar(2000

63

TABLE_MAGNETOMETER:

SYSTIME numeric(20,0) NULL ,

 EVENTTIME numeric(20,0) NULL ,

 ACTIVITY_ID numeric(20,0) NULL ,

 X numeric(15,10) NULL ,

 Y numeric(15,10) NULL ,

 Z numeric(15,10) NULL ,

 M numeric(15,10) NULL ,

 PHONE_ORIENTATION numeric(2,0) NULL

TABLE_MAGNETOMETER_STR

STR_VAL varchar(2000)

TABLE_ONEFINGERTOUCH

SYSTIME numeric(20,0) NULL ,

 PRESSTIME numeric(20,0) NULL ,

 ACTIVITY_ID numeric(20,0) NULL ,

 TAP_ID numeric(10,0) NULL ,

 TAP_TYPE numeric(2,0) NULL ,

 ACTION_TYPE numeric(2,0) NULL ,

 X numeric(15,10) NULL ,

 Y numeric(15,10) NULL ,

 PRESSURE numeric(15,10) NULL ,

 CONTACT_SIZE numeric(15,10) NULL ,

 PHONE_ORIENTATION numeric(2,0) NULL

TABLE_ONEFINGERTOUCH_STR

STR_VAL varchar(2000)

TABLE_PINCH

SYSTIME numeric(20,0) NULL ,

 PRESSTIME numeric(20,0) NULL ,

 ACTIVITY_ID numeric(20,0) NULL ,

 EVENT_TYPE numeric(2,0) NULL ,

 PINCH_ID numeric(20,0) NULL ,

 TIME_DELTA numeric(20,0) NULL ,

 FOCUS_X numeric(15,10) NULL ,

 FOCUS_Y numeric(15,10) NULL ,

 SPAN numeric(15,10) NULL ,

 SPAN_X numeric(15,10) NULL ,

 SPAN_Y numeric(15,10) NULL ,

 SCALE_FACTOR numeric(15,10) NULL ,

 PHONE_ORIENTATION numeric(2,0) NULL

TABLE_PINCH_STR

STR_VAL varchar(2000)

TABLE_SCROLL

SYSTIME numeric(20,0) NULL ,

 BEGINTIME numeric(20,0) NULL ,

 CURRENTTIME numeric(20,0) NULL ,

 ACTIVITY_ID numeric(20,0) NULL ,

 SCROLL_ID numeric(20,0) NULL ,

 START_ACTION_TYPE numeric(2,0) NULL ,

 START_X numeric(15,10) NULL ,

 START_Y numeric(15,10) NULL ,

 START_PRESSURE numeric(15,10) NULL ,

 START_SIZE numeric(15,10) NULL ,

 CURRENT_ACTION_TYPE numeric(2,0) NULL ,

 CURRENT_X numeric(15,10) NULL ,

64

 CURRENT_Y numeric(15,10) NULL ,

 CURRENT_PRESSURE numeric(15,10) NULL ,

 CURRENT_SIZE numeric(15,10) NULL ,

 DISTANCE_X numeric(15,10) NULL ,

 DICTANCE_Y numeric(15,10) NULL ,

 PHONE_ORIENTATION numeric(2,0) NULL

TABLE_SCROLL_STR

(STR_VAL varchar(2000)

TABLE_STROKE

SYSTIME numeric(20,0) NULL ,

 BEGINTIME numeric(20,0) NULL ,

 ENDTIME numeric(20,0) NULL ,

 ACTIVITY_ID numeric(20,0) NULL ,

 SCROLL_ID numeric(20,0) NULL ,

 START_ACTION_TYPE numeric(2,0) NULL ,

 START_X numeric(15,10) NULL ,

 START_Y numeric(15,10) NULL ,

 START_PRESSURE numeric(15,10) NULL ,

 START_SIZE numeric(15,10) NULL ,

 END_ACTION_TYPE numeric(2,0) NULL ,

 END_X numeric(15,10) NULL ,

 END_Y numeric(15,10) NULL ,

 END_PRESSURE numeric(15,10) NULL ,

 END_SIZE numeric(15,10) NULL ,

 SPEED_X numeric(15,10) NULL ,

 SPEED_Y numeric(15,10) NULL ,

 PHONE_ORIENTATION numeric(2,0) NULL

TABLE_STROKE_STR

STR_VAL varchar(2000)

TABLE_TOUCH

SYSTIME numeric(20,0) NULL ,

 EVENTTIME numeric(20,0) NULL ,

 ACTIVITY_ID numeric(20,0) NULL ,

 POINTER_COUNT numeric(2,0) NULL ,

 POINTER_ID numeric(2,0) NULL ,

 ACTION_ID numeric(2,0) NULL ,

 X numeric(15,10) NULL ,

 Y numeric(15,10) NULL ,

 PRESSURE numeric(15,10) NULL ,

 CONTACT_SIZE numeric(15,10) NULL ,

 PHONE_ORIENTATION numeric(2,0) NULL

TABLE_TOUCH_STR

STR_VAL varchar(2000)

65

Appendix B

begin

 declare v_root varchar(200);

 declare v_text varchar(200);

 declare v_file varchar(200);

 declare v_user_count numeric(10);

 declare user_counter numeric(10);

 declare session_counter numeric(2);

 declare v_usr_id numeric(6);

 declare SQL_STR varchar(2000);

 set v_root = '/data/hmog_dataset/public_dataset/';

 CREATE TABLE #user_ids

 (usr_id NUMERIC(6));

 insert into #user_ids (usr_id) values(100669);

 insert into #user_ids (usr_id) values(151985);

 -- ...

 -- insert all user ids

 --- ...

 commit;

 select count() into v_user_count from #user_ids;

 select ROWID(usr1) as IDX,usr_id into #user_ids2 from #user_ids as usr1;

 commit;

 set user_counter = 1;

 user_loop: loop

 if user_counter > v_user_count then leave user_loop

 end if;

 select usr_id into v_usr_id from #user_ids2 where IDX = user_counter;

 set session_counter = 1;

 session_loop: loop

 if session_counter > 24 then leave session_loop

 end if;

 set v_text =

 v_root || convert(varchar(10),v_usr_id) + '/' || convert(varchar(10),v_usr_id) || '/' ||

convert(varchar(10),v_usr_id) ||'_session_' || convert(varchar(2),session_counter) || '/';

 if session_counter = 1 then

 message v_text type info to client;

 end if;

 begin

 set v_file = v_text || 'Activity.csv';

 SET SQL_STR = 'LOAD table TABLE_ACTIVITY '

 ||'('

 ||' ID '','','

 ||' SUBJECT_ID '','','

 ||' SESSION_NUMBER '','','

 ||' START_TIME '','','

 ||' END_TIME '','','

 ||' RELATIVE_START_TIME '','','

 ||' RELATIVE_END_TIME '','','

 ||' GESTURE_SCENARIO '','','

 ||' TASK_ID '','','

 ||' CONTENT_ID ''\\x0a'') '

 ||' FROM ''' || v_file ||''''

 ||' QUOTES OFF '

 ||' ESCAPES OFF; ';

 execute immediate SQL_STR;

 COMMIT;

 COMMIT;

 exception

 when others then

 set v_file = v_text || 'Activity.csv';

 SET SQL_STR = 'LOAD table TABLE_ACTIVITY '

 ||'('

 ||' ID '','','

 ||' SUBJECT_ID '','','

 ||' SESSION_NUMBER '','','

 ||' START_TIME '','','

 ||' END_TIME '','','

 ||' RELATIVE_START_TIME '','','

 ||' RELATIVE_END_TIME '','','

 ||' GESTURE_SCENARIO '','','

 ||' TASK_ID '','','

 ||' CONTENT_ID ''\\x0d'') '

 ||' FROM ''' || v_file ||''''

 ||' QUOTES OFF '

 ||' ESCAPES OFF; ';

 execute immediate SQL_STR;

 COMMIT;

66

 end;

 begin

 set v_file = v_text || 'Accelerometer.csv';

 SET SQL_STR = 'load table TABLE_ACCELEROMETER '

 ||'('

 ||' SYSTIME '','','

 ||' EVENTTIME '','','

 ||' ACTIVITY_ID '','','

 ||' X '','','

 ||' Y '','','

 ||' Z '','','

 ||' PHONE_ORIENTATION ''\\x0a'') '

 ||' FROM ''' || v_file ||''''

 ||' QUOTES OFF '

 ||' ESCAPES OFF; ';

 execute immediate SQL_STR;

 COMMIT;

 exception

 when others then

 set v_file = v_text || 'Accelerometer.csv';

 SET SQL_STR = 'load table TABLE_ACCELEROMETER '

 ||'('

 ||' SYSTIME '','','

 ||' EVENTTIME '','','

 ||' ACTIVITY_ID '','','

 ||' X '','','

 ||' Y '','','

 ||' Z '','','

 ||' PHONE_ORIENTATION ''\\x0d'') '

 ||' FROM ''' || v_file ||''''

 ||' QUOTES OFF '

 ||' ESCAPES OFF; ';

 execute immediate SQL_STR;

 COMMIT;

 end;

 begin

 set v_file = v_text || 'Gyroscope.csv';

 SET SQL_STR = 'load table TABLE_GYROSCROPE '

 ||'('

 ||' SYSTIME '','','

 ||' EVENTTIME '','','

 ||' ACTIVITY_ID '','','

 ||' X '','','

 ||' Y '','','

 ||' Z '','','

 ||' PHONE_ORIENTATION ''\\x0a'') '

 ||' FROM ''' || v_file ||''''

 ||' QUOTES OFF '

 ||' ESCAPES OFF; ';

 execute immediate SQL_STR;

 COMMIT;

 exception

 when others then

 set v_file = v_text || 'Gyroscope.csv';

 SET SQL_STR = 'load table TABLE_GYROSCROPE '

 ||'('

 ||' SYSTIME '','','

 ||' EVENTTIME '','','

 ||' ACTIVITY_ID '','','

 ||' X '','','

 ||' Y '','','

 ||' Z '','','

 ||' PHONE_ORIENTATION ''\\x0d'') '

 ||' FROM ''' || v_file ||''''

 ||' QUOTES OFF '

 ||' ESCAPES OFF; ';

 execute immediate SQL_STR;

 COMMIT;

 end;

 begin

 set v_file = v_text || 'Magnetometer.csv';

 SET SQL_STR = 'load table TABLE_MAGNETOMETER '

 ||'('

 ||' SYSTIME '','','

 ||' EVENTTIME '','','

 ||' ACTIVITY_ID '','','

 ||' X '','','

 ||' Y '','','

 ||' Z '','','

 ||' PHONE_ORIENTATION ''\\x0a'') '

 ||' FROM ''' || v_file ||''''

 ||' QUOTES OFF '

 ||' ESCAPES OFF; ';

 execute immediate SQL_STR;

 COMMIT;

 exception

 when others then

 set v_file = v_text || 'Magnetometer.csv';

 SET SQL_STR = 'load table TABLE_MAGNETOMETER '

67

 ||'('

 ||' SYSTIME '','','

 ||' EVENTTIME '','','

 ||' ACTIVITY_ID '','','

 ||' X '','','

 ||' Y '','','

 ||' Z '','','

 ||' PHONE_ORIENTATION ''\\x0d'') '

 ||' FROM ''' || v_file ||''''

 ||' QUOTES OFF '

 ||' ESCAPES OFF; ';

 execute immediate SQL_STR;

 COMMIT;

 end;

 begin

 set v_file = v_text || 'TouchEvent.csv';

 SET SQL_STR = 'load table TABLE_TOUCH '

 ||'('

 ||' SYSTIME '','','

 ||' EVENTTIME '','','

 ||' ACTIVITY_ID '','','

 ||' POINTER_COUNT '','','

 ||' POINTER_ID '','','

 ||' ACTION_ID '','','

 ||' X '','','

 ||' Y '','','

 ||' PRESSURE '','','

 ||' CONTACT_SIZE '','','

 ||' PHONE_ORIENTATION ''\\x0a'') '

 ||' FROM ''' || v_file ||''''

 ||' QUOTES OFF '

 ||' ESCAPES OFF; ';

 execute immediate SQL_STR;

 COMMIT;

 exception

 when others then

 set v_file = v_text || 'TouchEvent.csv';

 SET SQL_STR = 'load table TABLE_TOUCH '

 ||'('

 ||' SYSTIME '','','

 ||' EVENTTIME '','','

 ||' ACTIVITY_ID '','','

 ||' POINTER_COUNT '','','

 ||' POINTER_ID '','','

 ||' ACTION_ID '','','

 ||' X '','','

 ||' Y '','','

 ||' PRESSURE '','','

 ||' CONTACT_SIZE '','','

 ||' PHONE_ORIENTATION ''\\x0d'') '

 ||' FROM ''' || v_file ||''''

 ||' QUOTES OFF '

 ||' ESCAPES OFF; ';

 execute immediate SQL_STR;

 COMMIT;

 end;

 begin

 set v_file = v_text || 'KeyPressEvent.csv';

 SET SQL_STR = 'load table TABLE_KEYPRESS '

 ||'('

 ||' SYSTIME '','','

 ||' PRESSTIME '','','

 ||' ACTIVITY_ID '','','

 ||' PRESSTYPE '','','

 ||' KEY_ID '','','

 ||' PHONE_ORIENTATION ''\\x0a'') '

 ||' FROM ''' || v_file ||''''

 ||' QUOTES OFF '

 ||' ESCAPES OFF; ';

 execute immediate SQL_STR;

 COMMIT;

 exception

 when others then

 set v_file = v_text || 'KeyPressEvent.csv';

 SET SQL_STR = 'load table TABLE_KEYPRESS '

 ||'('

 ||' SYSTIME '','','

 ||' PRESSTIME '','','

 ||' ACTIVITY_ID '','','

 ||' PRESSTYPE '','','

 ||' KEY_ID '','','

 ||' PHONE_ORIENTATION ''\\x0d'') '

 ||' FROM ''' || v_file ||''''

 ||' QUOTES OFF '

 ||' ESCAPES OFF; ';

 execute immediate SQL_STR;

 COMMIT;

 end;

68

 begin

 set v_file = v_text || 'OneFingerTouchEvent.csv';

 SET SQL_STR = 'load table TABLE_ONEFINGERTOUCH '

 ||'('

 ||' SYSTIME '','','

 ||' PRESSTIME '','','

 ||' ACTIVITY_ID '','','

 ||' TAP_ID '','','

 ||' TAP_TYPE '','','

 ||' ACTION_TYPE '','','

 ||' X '','','

 ||' Y '','','

 ||' PRESSURE '','','

 ||' CONTACT_SIZE '','','

 ||' PHONE_ORIENTATION ''\\x0a'') '

 ||' FROM ''' || v_file ||''''

 ||' QUOTES OFF '

 ||' ESCAPES OFF; ';

 execute immediate SQL_STR;

 COMMIT;

 exception

 when others then

 set v_file = v_text || 'OneFingerTouchEvent.csv';

 SET SQL_STR = 'load table TABLE_ONEFINGERTOUCH '

 ||'('

 ||' SYSTIME '','','

 ||' PRESSTIME '','','

 ||' ACTIVITY_ID '','','

 ||' TAP_ID '','','

 ||' TAP_TYPE '','','

 ||' ACTION_TYPE '','','

 ||' X '','','

 ||' Y '','','

 ||' PRESSURE '','','

 ||' CONTACT_SIZE '','','

 ||' PHONE_ORIENTATION ''\\x0d'') '

 ||' FROM ''' || v_file ||''''

 ||' QUOTES OFF '

 ||' ESCAPES OFF; ';

 execute immediate SQL_STR;

 COMMIT;

 end;

 begin

 set v_file = v_text || 'PinchEvent.csv';

 SET SQL_STR = 'load table TABLE_PINCH '

 ||'('

 ||' SYSTIME '','','

 ||' PRESSTIME '','','

 ||' ACTIVITY_ID '','','

 ||' EVENT_TYPE '','','

 ||' PINCH_ID '','','

 ||' TIME_DELTA '','','

 ||' FOCUS_X '','','

 ||' FOCUS_Y '','','

 ||' SPAN '','','

 ||' SPAN_X '','','

 ||' SPAN_Y '','','

 ||' SCALE_FACTOR '','','

 ||' PHONE_ORIENTATION ''\\x0a'') '

 ||' FROM ''' || v_file ||''''

 ||' QUOTES OFF '

 ||' ESCAPES OFF; ';

 execute immediate SQL_STR;

 COMMIT;

 exception

 when others then

 set v_file = v_text || 'PinchEvent.csv';

 SET SQL_STR = 'load table TABLE_PINCH '

 ||'('

 ||' SYSTIME '','','

 ||' PRESSTIME '','','

 ||' ACTIVITY_ID '','','

 ||' EVENT_TYPE '','','

 ||' PINCH_ID '','','

 ||' TIME_DELTA '','','

 ||' FOCUS_X '','','

 ||' FOCUS_Y '','','

 ||' SPAN '','','

 ||' SPAN_X '','','

 ||' SPAN_Y '','','

 ||' SCALE_FACTOR '','','

 ||' PHONE_ORIENTATION ''\\x0d'') '

 ||' FROM ''' || v_file ||''''

 ||' QUOTES OFF '

 ||' ESCAPES OFF; ';

 execute immediate SQL_STR;

 COMMIT;

 end;

 begin

69

 set v_file = v_text || 'ScrollEvent.csv';

 SET SQL_STR = 'load table TABLE_SCROLL '

 ||'('

 ||' SYSTIME '','','

 ||' BEGINTIME '','','

 ||' CURRENTTIME '','','

 ||' ACTIVITY_ID '','','

 ||' SCROLL_ID '','','

 ||' START_ACTION_TYPE '','','

 ||' START_X '','','

 ||' START_Y '','','

 ||' START_PRESSURE '','','

 ||' START_SIZE '','','

 ||' CURRENT_ACTION_TYPE '','','

 ||' CURRENT_X '','','

 ||' CURRENT_Y '','','

 ||' CURRENT_PRESSURE '','','

 ||' CURRENT_SIZE '','','

 ||' DISTANCE_X '','','

 ||' DICTANCE_Y '','','

 ||' PHONE_ORIENTATION ''\\x0a'') '

 ||' FROM ''' || v_file ||''''

 ||' QUOTES OFF '

 ||' ESCAPES OFF; ';

 execute immediate SQL_STR;

 COMMIT;

 exception

 when others then

 set v_file = v_text || 'ScrollEvent.csv';

 SET SQL_STR = 'load table TABLE_SCROLL '

 ||'('

 ||' SYSTIME '','','

 ||' BEGINTIME '','','

 ||' CURRENTTIME '','','

 ||' ACTIVITY_ID '','','

 ||' SCROLL_ID '','','

 ||' START_ACTION_TYPE '','','

 ||' START_X '','','

 ||' START_Y '','','

 ||' START_PRESSURE '','','

 ||' START_SIZE '','','

 ||' CURRENT_ACTION_TYPE '','','

 ||' CURRENT_X '','','

 ||' CURRENT_Y '','','

 ||' CURRENT_PRESSURE '','','

 ||' CURRENT_SIZE '','','

 ||' DISTANCE_X '','','

 ||' DICTANCE_Y '','','

 ||' PHONE_ORIENTATION ''\\x0d'') '

 ||' FROM ''' || v_file ||''''

 ||' QUOTES OFF '

 ||' ESCAPES OFF; ';

 execute immediate SQL_STR;

 COMMIT;

 end;

 begin

 set v_file = v_text || 'StrokeEvent.csv';

 SET SQL_STR = 'load table TABLE_STROKE '

 ||'('

 ||' SYSTIME '','','

 ||' BEGINTIME '','','

 ||' ENDTIME '','','

 ||' ACTIVITY_ID '','','

 ||' START_ACTION_TYPE '','','

 ||' START_X '','','

 ||' START_Y '','','

 ||' START_PRESSURE '','','

 ||' START_SIZE '','','

 ||' END_ACTION_TYPE '','','

 ||' END_X '','','

 ||' END_Y '','','

 ||' END_PRESSURE '','','

 ||' END_SIZE '','','

 ||' SPEED_X '','','

 ||' SPEED_Y '','','

 ||' PHONE_ORIENTATION ''\\x0a'') '

 ||' FROM ''' || v_file ||''''

 ||' QUOTES OFF '

 ||' ESCAPES OFF; ';

 execute immediate SQL_STR;

 COMMIT;

 exception

 when others then

 set v_file = v_text || 'StrokeEvent.csv';

 SET SQL_STR = 'load table TABLE_STROKE '

 ||'('

 ||' SYSTIME '','','

 ||' BEGINTIME '','','

 ||' ENDTIME '','','

 ||' ACTIVITY_ID '','','

 ||' START_ACTION_TYPE '','','

 ||' START_X '','','

 ||' START_Y '','','

70

 ||' START_PRESSURE '','','

 ||' START_SIZE '','','

 ||' END_ACTION_TYPE '','','

 ||' END_X '','','

 ||' END_Y '','','

 ||' END_PRESSURE '','','

 ||' END_SIZE '','','

 ||' SPEED_X '','','

 ||' SPEED_Y '','','

 ||' PHONE_ORIENTATION ''\\x0d'') '

 ||' FROM ''' || v_file ||''''

 ||' QUOTES OFF '

 ||' ESCAPES OFF; ';

 execute immediate SQL_STR;

 COMMIT;

 end;

 set session_counter = session_counter+1

 end loop session_loop;

 set user_counter = user_counter+1;

 end loop user_loop;

exception

 when others then

 message SQL_STR type info to client;

 set sp_sqlstate = sqlstate;

 set sp_sqlcode = sqlcode;

 rollback work;

 signal sp_exception;

 return 1

end;

71

BIOGRAPHICAL SKETCH

Nurhak Karakaya was born in Kars 1982. He graduated from Milliyet Anadolu High

School at 2001. Same year he started Computer Engineering (B.S) at Bogazici

University. He graduated from Bogazici University at 2006. At 2017 he started MEF

University on Big Data Analytics (M.S.), his first thesis was about "Carbon Price

Forecasting". He graduated M.S degree from MEF University at 2018. Same year, he

started his second thesis in Galatasaray University. He is working as a computer

engineer in banking sector.

