GALATASARAY UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

USING BEHAVIORAL BIOMETRIC SENSORS OF MOBILE PHONES FOR USER AUTHENTICATION

Nurhak KARAKAYA

June 2019

USING BEHAVIORAL BIOMETRIC SENSORS OF MOBILE PHONES FOR USER AUTHENTICATION

by

N u r h a k K a r a k a y a , B . S .

Thesis

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

MASTERS of SCIENCE

in

COMPUTER ENGINEERING

in the

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

of

GALATASARAY UNIVERSITY

Supervisor: Assoc. Prof. Dr. Gülfem Işıklar Alptekin

June 2019

This is to certify that the thesis entitled

USING BEHAVIORAL BIOMETRIC SENSORS OF MOBILE PHONES FOR USER AUTHENTICATION

prepared by **Nurhak KARAKAYA** in partial fulfillment of the requirements for the degree of **Master in Computer Engineering** at the **Galatasaray University** is approved by the

Examining Committee:

Assoc. Prof. Dr. Gülfem Işıklar Alptekin (Supervisor) **Department of Computer Engineering Galatasaray University -------------------------**

Dr. Günce Keziban Orman **Department of Computer Engineering Galatasaray University -------------------------**

Dr. Ayşe Tosun Kühn **Department of Computer Engineering Istanbul Technical University -------------------------**

Date: **-------------------------**

ACKNOWLEDGEMENTS

I very appreciate to first of all my thesis supervisor Gülfem Işıklar Alptekin for her helps, patience and advices.

I also very appreciate for helps to Özlem Durmaz İncel. I appreciate to Galatasaray University members for their enduring to my long master years. I appreciate to my family and to my friends for their mental supports. This research has been financially supported by the Galatasaray University Research Fund, project number: 19.401.005.

May 2019 Nurhak Karakaya

TABLE OF CONTENTS

LIST OF SYMBOLS

LIST OF FIGURES

LIST OF TABLES

TERMINOLOGY

ABSTRACT

In this paper, we use Hand Movement Orientation and Grasp (HMOG) sensor data to authenticate smart phone users. The way a user holds, grasps a mobile phone or touches to it are all key factors for authentication. At the moment of a user makes an event on his/her smart phone, three sensors automatically collect data about magnitude, angular speed and acceleration. Moreover, touching and holding events also produce data about pressure and coordinates. In this paper, we build four types of machine learning algorithms (Decision Forest, Boosted Decision Tree, Support Vector Machine, and Logistic Regression) to predict user authentication. The data used in this experiment (HMOG) are collected from 100 attenders. We compare the results of the algorithms and for our scenario, we show that boosted decision tree algorithm with de normalized data gives the results with highest accuracy.

ÖZET

Bu makalede, El Hareketi Yönlendirme ve Kavrama (EHYK) algılayıcı verilerini kullanarak akıllı telefon kullanıcılarının kimliklerini doğrulamaya çalışmaktayız. Bir kullanıcının akıllı telefonunu tutma şekli, kaldırma hızı / döndürme hızı, ya da telefonunu kavraması veya ona dokunması, kimlik doğrulama için anahtar faktörlerdir. Cep telefonumuzu elimize alıp kullanmaya başladığımızda; üç algılayıcı otomatik olarak büyüklük, açısal hız ve ivme hakkında bilgi toplar. Ayrıca, telefona dokunmamız, harflere basmamız ya da ekranda elimizi oynatmamız da veri üretir. Bu makalede, telefonda yer alan algılayıcıların okuduğu bilgilerden faydalanıp çeşitli makina öğrenme algoritmaları kullanarak kimlik tanımaya çalıştık. Dört tür makine öğrenme algoritması kullandık. Bunlar: Karar Ormanı, Artırılmış Karar Ağacı, Destek Vektör Makinesi ve Lojistik Regresyon gibi algoritmalardır. Bu deneyde kullanılan veriler (EHYK) 100 mobil cihaz kullanıcısından toplanan algılayıcı verilerdir. Yaptığımız çalışmalar sonrasında, Artırılmış Karar Ağacı'nın normalize edilmemiş veri ile en yüksek kesinlik değeri verdiğini gördük.

1. INTRODUCTION

Statistics from 2016 [1] show that from 2 to 2.5 billion people use smartphones. Same research also shows that smartphones are not used just for calling and texting but also for looking for a job, finding a date, reading a book or making an online shopping. Online banking, mailing, playing games can also be added to this list. Same Research Center survey found that 28% of U.S. smartphone owners say they do not use a screen lock or other features to secure their phone. 14% say they never update their phone's operating system, while 10% say they do not update the apps on their phone. With combining those two analyses, securing mobile devices is a main security challenge, because it depends on human attitude or preferences to take necessary security precautions. Regarding to this behavior, researches which focus on passive security are gaining importance to answer questions about how to solve those security challenges. Hence, the main research questions that we focus on are as follows:

Is it possible to implement a continuous authentication procedure into mobile devices to distinguish whether the original owner is using or not by analyzing behavioral biometric data?, and

Which machine learning algorithm(s) and feature set(s) will be most accurate to distinguish true owner? Can we also use artificial neural networks to avoid manual feature extraction, or will it be expensive in manner of resource consumption?

In current mobile phone structure, there are different kinds of user authentication methods to prevent unauthorized accesses. Some of them are authentication with fingerprint, text passwords and crossing shapes. When a user use such type of authentication methods, he or she should remember the crossing shapes or the paswords to access his/her mobile phone. And also, the user should cange the passwords in some time interval so that he or she can make his/her mobile phone more secure. In some cases, these authentication

methods can still be insufficient to prevent unauthorized entry. Besides, some users can keep their mobile phone in available mode for long time. Therefore, in near future, we believe that several additional techniques need to be proposed to prevent unauthorized accesses.

In this paper, we aim to differentiate mobile phone user by using Hand Movement, Orientation, and Grasp (HMOG) data, which are collected during experiments [2],[26]. In these experiments [2], some kind of event and sensor data from attenders of the experiment is recorded. The recorded data in experiment [2] contains: User information, event information, and information from three sensors: Accelerometer (measures acceleration minus Gx), Gyroscope (measures angular speed) and Magnetometer (measures ambient magnetic field). For each sensor, X, Y and Z coordinate values and time of these values are stored. For this paper, we also created a magnitude metric, which is the square root of sum of squares of X, Y and $Z(\sqrt{x^2 + y^2 + z^2})$.

We proposed algorithms to identify and continuously authenticate a smart phone user by analysing his/her previous data, in order to prevent unauthorized entry to his/her mobile phone. We used Microsoft Azure Machine Learning platform for building our models. Decision Forest (DF), Boosted Decision Tree (BD), Support Vector Machine (SVM) and Logistic Regression (LR) are selected as algorithms. In each of our experiments, we used two-class models, which is different from [2], where one-class models are used

After presenting related works in Section 2, in Section 3, we define project methodology together with the project motivation. In section 4, we show the data collection steps for HMOG. In Section 5, we represent data cleaning and data preparation process. Section 6 introduces the proposed model and Section 7 includes the results and related discussion.

2. RELATED WORK

Authentication is the process of validating the true user of a system. There are three main approaches to provide authentication. First and the most commonly used one on mobile devices is knowledge-based authentication. This technique is based on using a unique and private information which is expected to be known only by the user. This type of authentication mechanism could be a password, an id number or a secret security question. The second one is object-based authentication. The object-based authentication is based on possession of a distinguishing physical object. A security token, an id card or another trusted object can be used. The third one is biometrics. Biometrics are based on an individual's characterized physical or behavioral attributes. Common examples are fingerprints, keystroke dynamic models of the owner of the device.

There are two survey papers [3, 4] that investigate the use of biometrics for continuous authentication on smart phones. In [3], it was emphasized that sensors such as camera, microphone, etc. can be used to collect physical data, while components such as accelerometers, gyroscopes, touch screens can be used to collect behavioural biometric data such as walking, screen touch gestures, and hand gestures. In the other review paper [4], the studies in the literature were examined in terms of the type and size of data collected, classifiers used in identification, and results obtained. We should note that these papers also investigate the use of physical biometrics for authentication, but here, we specifically focus on studies using behavioural biometrics.

Touch screens are used as input medium on a great majority of smartphones. A touch screen is an electronic visual display for inputs and outputs. By applying classification algorithms to the data collected from touch- screen interactions of users such as micro movements, pressure, finger movements, etc., it is possible to recognize authorized users. There exists various research that focus on touch screen that is based authentication in the

literature. In these researches, password patterns [4], tapping behavior [5], touch gestures [6][7][8] etc. are examined for the purpose of creating a model to decide whether user is authorized or not. In [8], touch screen data of 58 attenders were used and for authentication, they also used two class models like Random Forest, k-NN and Support Vector Machine. Data collection for [8] is also similar to [2], in [8] they created an application and attenders did some tasks by scrolling and touching screen. In [9], they used sensor data from some attenders. The number of attenders in [9] was 85 and they collected data during sitting, walking or standing. In [9], they claim that every user has a different locking type and different dragging type of the phone to ears. In [10], they used kernel based algorithms for sensor data. In [11], they used Accelerometer data and Wi-Fi networks for user authentication. In [12] they used just sensor data, and also they used support vector machine, random forest and k-NN as classification algorithms and used feature reduction.

3. PROPOSED METHODOLOGY

We divide the overall experiment into three parts: Data collection and data discovery part, modeling part and comparing the results part. The first part is the data discovery part. In that part, we apply data preparation and analysis steps. For data discovery, we worked on Sybase IQ. For modeling and presentation part we worked on Microsoft Azure ML studio.

The authors in [2] include user data to train their models. They use just the data of user that they want to authenticate, whereas we used both user and other users' data to train our models. We used two class machine learning algorisms for our experiment. We used LR, SVM, BD and DF as our machine learning algorithms for our models.

For each model, we supplied five different data flows: Data with only Accelerometer fields (ACC), data with only Gyroscope fields (GRY), data with only Magnetometer fields (MAG), all fields including three sensors and touch event (ALL), and thirty most predictive fields (30COLS). For all data flows, we used both normalized and denormalized data. Principal Component Analysis (PCA) is used for reducing dimensionality. We used ACC, GRY and MAG models in our experiments to see if any of the three sensors will be enough to catch a user. We also used 30 attributes to create a smaller model and we want to see if these 30 attributes will be enough to catch a user.

For both normalized and de-normalized data, we use four ML algorithms: BD, DF, SVM and LR for prediction. We created separate experiments for each algorithm. Moreover, for BD, DF and LR, we used both normalized and de normalized data. For SVM, we only used normalized data. Therefore, totally we had 7 experiments (2 for BD, 2 for DF, 2 for LR and 1 for SVM) for our models. We used %70 of data as training and %30 for testing. The performances of the models are compared in terms of accuracy.

In each experiment, we had five data flows (Figure 3.1): ACC, GYR, MAG, ALL and 30COLS. For 30COLS, we used Pearson correlation to find the most correlated attributes with target. For ACC, GYR, MAG and ALL, we also used PCA. However, for 30COLS we did not use PCA. Therefore, we had in total 9 different data supplies (ACC, ACC with PCA, GYR, GYR with PCA, MAG, MAG with PCA, ALL, ALL with PCA and 30COLS). For PCA, we chose dimension count as: Attribute count / 3. For example, ALL has 168 variables, so in ALL with PCA we have 55 dimensions. We also used feature selection and correlation tests to eliminate some attributes from our models.

For BD, SVM and LR, we made parameter tuning. We used 10-fold cross validation for tuning. Then, we used these parameter values for our models. Normally, we decided to tune parameters for all users then use those parameters for models. When we tuned parameters for first six users, we saw that the parameter values for those six users are same. So, we stopped tuning and used those six users' parameters for all users. For DF we did not tune parameters. The overall methodology is illustrated in Figure 3.1.

Figure 3.1: Project information flow

4. DATA COLLECTION

The Hand Movement, Orientation, and Grasp (HMOG) data, which are collected during experiments [2], is available at [26], and it is about 6 GB of zipped files. In HMOG data collection experiment, there are 100 attenders all of them have same kind of mobile phones (Samsung Galaxy S4). All of the attenders do some tasks in 24 sessions. Each of these sessions are done in 5 to 15 minutes.

In one session there are three tasks that an attender should do by using his/her mobile phone. The tasks are: reading documents, writing text, and navigation on Map. When doing these three tasks, the attenders do specific actions; such that they type massage, they scroll screen, they touch to screen, they press keys, etc. The attenders do their tasks on real time touches. When doing these tasks, the sensors and touch events data are recorded simultaneously with 100Hz reading speed.

The experiments are done either by walking or by siting. After each experiment, 11 data files were created. These files keep activity and user information, event information, and information from three sensors. These files are: Accelerometer.csv, Activity.csv, Gyroscope.csv, KeyPressEvent.csv, Magnetometer.csv, OneFingerTouchEvent.csv, PinchEvent.csv, ScrollEvent.csv, StrokeEvent.csv, and TouchEvent.csv. Moreover in every sessions there are three files for questions. We loaded data files but did not work on question files.

The sensor files are: Accelerometer.csv, Gyroscope.csv and Magnetometer.csv. The sensors detect any changes made in smart phone. The changes can be acceleration, orientation or magnetic field. Accelerometer measures acceleration and motions like shaking and rotating in smartphones. It detects acceleration in X, Y, Z coordinates; in other words, it detects the direction and position of the acceleration, without measuring

gravitational acceleration. On the other hand, gyroscope is a sensor that measures the orientation by using Earth gravity. It helps to determine which way a phone is oriented. Magnetometer measures the magnetic field, whom changes can be critical for smart phone users. Moreover, there are events that occur when you do something on smart phones: You touch your smartphone, you scroll downward or upward on your smart phone, you pinch your smart phone, you press a key, etc.

As the next step, the data files are loaded to Sybase database. We prefer Sybase database because of the easiness of data manipulation in it. It enables creating temporary tables for data manipulations and gives good performance for aggregation functions. There are two points to consider when downloading files: firstly, some files have carriage return at the end of line, and secondly some files have new line at the end of line. We solved both problems in order not to miss any information. First of all, we downloaded all files to its own table. In total we have 10 tables: One for Activity, three for sensors and six for event tables. There are 100 attenders * each attenders has 24 sessions * in every session there are 10 files. So in total we loaded: $100 * 24 * 10 = 24000$ files.

5. DATA DISCOVERY

HMOG data [1] includes files for 100 different users and a pdf file that explains the structure of files. The files are in separate zip files, which needs to be extracted. The corrupted files constitute a minor part of the whole data.

We created 10 tables to load data files to relational database. All of the created tables for our experiment are in Appendix A. There are two kinds of tables: tables with normal name and tables whose name ends wits " STR". There are corruptions in some files. So we first loaded these files as a complete string to a STR table than manually converted data of those tables to our original format. So in total we have 20 table, 10 for original data and 10 for error fixes.

The data in files are formatted as coma separated. The end of line for files are not uniquely defined; some of them ends with carriage return, whereas the others with new line. We check for carriage return and new line. For one user, there are about 24 sessions. For some users the number of sessions are less than 24. In every sessions there are 10 files (three sensor files, one activity file and six event files). We created two loops and dynamic SQL to load files into Sybase database. The first loop reads the users, and the second loop reads the sessions. Appendix B shows the load codes for all tables.

After loading all these files into the database tables, we checked data quality and data compliance issues. For data quality issues, we checked all tables one by one. For each column in a table; we checked: null count, not null count, ratios of null count, ratios of not null count, distinct count, max count and min count.

Additionally,

- We controlled most frequently encountered values of a column.
- We checked the values in files with the values in data description files. In some files there are values which are not in data description files.
- We controlled the uniqueness of any column with respect to time variables.
- We grouped column values with descending order to see where the data is cumulated.

After data quality check our first problem is the uniqueness of data. We deleted duplicate rows from our original tables. Moreover, in some tables the sequence of columns are different from the structure of data description file. So we changed the column sequence and loaded files correctly.

We did not delete null values. We find the position of null values in raw files and manually updated null values. Additionally, in data, we discovered that there are several values, which are beyond to the values in data description file. These are usually categorical values. We did not delete these rows instead we took them into account.

Some numerical data were also null because the data file contains "E". For example, some records contains values like that 3.0543262E-4. When we load these records to our tables, the records get null. For numerical columns we created codes to convert these types of nulls to normal data format. At Figure 5.1, we show a code part in which we convert a column into normal format.

Figure 5.1: A part of the code for converting data in Sybase table

After data quality checks, we examined to the data compliance check.

- We controlled if the activity table is compliant to sensor tables with respect to time and activity numbers.
- We controlled if the sensor tables are also compliant to each other by time and activity id.
- We controlled if the activity table is compliant to event tables.

We represent an example of compliance test in Figure 5.2.

Figure 5.2: Compliance tests

The results of compliance test is like that:

- There are some activates in activity table in which there are no events for that activity. It is possible, because in some activates an attender does not need to scroll, or does not need to press a key.
- There are no event in which the activity number is not in activity table. It is normal and as we expected. The activity table should cover all event tables.
- There are sensor records whose ids are not in activity table. For our expectation activity table should cover sensor tables. So we did not expect such kind of problems. We called this problem as ACTIVITY_ID_PROBLEM

The reason of ACTIVITY_ID_PROBLEM is that the activity id consist of SubjectID $+$ Session nember + ContentID + Runtime determined Counter value, at Table 4.1 we show all details. When we controlled the non-matching IDS, we see that they match for first 9 digits: SubjectID + Session nember + ContentID, but the "Runtime determined Counter value" differs for some records. To solve this problem, we created another ACTIVITY ID and called it as ACTIVITY ID FIRST 9 which get the first nine digit of original activity ID. The first nine digit compose of "SubjectID + Session_nember + ContentID". But in that case when we join tables with respect to ACTIVITY_ID_FIRST_9, some duplicate records and wrong matches occurred. So we decided to eliminate such type of records from our list.

After analyzing our data, we saw that there are more touches than any other events. On average in a session, there are about 1741 one-finger touch events, 800 pinch events, 1741 scroll events, 45 stroke and 4705 touch events. Moreover there are about 50800 sensor records for one session. Instead of creating a highly complex data with lots of null values in it, we only used touch table for our models. For our experiments, we use three sensor tables (Accelerometer, Gyroscope and Magnetometer), user and activity identification table (Activity) and touch event table (TouchEvent).

Activity table has 9 attributes, given in Table 5.1 in details. We give accelerometer table in Table 4.2. Gyroscope and Magnetometer tables have the same structure as Table 5.2. We computed M as magnitude, which is equal to $\sqrt{X^2 + Y^2 + Z^2}$, and M is not in the data file. Finally, we worked with touch event table, which has 11 attributes (Table 5.3).

The time variables in tables are absolute time stamp, or relative time stamp. We use in our project absolute time variables. A Timestamp is the number of milliseconds elapsed since midnight Coordinated Universal Time (UTC) of January 1, 1970.

SYSTIME	numeric(20,0)	Absolute timestamp
EVENTTIME	numeric(20,0)	Sensor event relative timestamp
ACTIVITY_ID	numeric(20,0)	Belonged activity
POINTER COUNT	numeric(2,0)	1: Single touch
		2: Multi touch
POINTER ID	numeric(2,0)	0: Single touch, or first pointer in multi touch
		1: Second pointer in multi touch
		0 or 5: DOWN
ACTION ID	numeric(2,0)	1 or 6: UP
		2: MOVE
$\boldsymbol{\mathrm{X}}$	numeric(15,0)	Touch location in X coordination
\mathbf{Y}	numeric(15,0)	Touch location in Y coordination
PRESSURE	numeric(15,0)	Touch pressure
CONTACT SIZE	numeric(15,0)	Touch contact size
		0: Portrait and no rotate
PHONE ORIENTATION	numeric(2,0)	1: Device rotated 90 degrees counter clockwise
		3: Device rotated 90 degrees clockwise

Table 5.3: Touch event table attributes

The final table is built using these five tables. First, we merged activity table with touch event table. We get SUBJECT_ID, GESTURE_SCENARIO, TASK_ID and CONTENT_ID from Activity table and all columns from Touch table. In total, we obtained 14 attributes. We stored the data of new table into a temporary table called #acc_evt.

Then, we merged #acc_evt table with sensor tables on ACTIVITY_ID and SYSTIME. We first merged #acc_evt table with Accelerometer. We first found the maximum sensor system time which is the biggest sensor system time that has value of event system time – 100 ms. Then, we found minimum sensor system time which is the smallest sensor system time that has value of event system time + 100 ms.

Now for our new table, we have three time points: Touch event time, biggest sensor reading before Touch event time – 100 ms, smallest sensor reading after Touch event time + 100 ms. For example, for Accelerometer sensor; we called these three time points as SYSTIME, SEN_SYSTIME_ACC_BEFORE, SEN_SYSTIME_ACC_AFTER in Figure 5.3.

Figure 5.3: Time points

After we calculated all time variables for three sensors, we calculated new variables by using those time variables and X, Y, Z and M attributes from sensor tables. We will explain how we calculated those variables by using Accelerometer table and X column for Accelerometer. (The calculation of other variables and other sensors will follow the same way). We first calculate minimum value of X, maximum value of X, average value of X and standard deviation of X between SEN_SYSTIME_ACC_BEFORE and SYSTEMTIME. Then, we calculated; minimum value of X, maximum value of X, average value of X and standard deviation of X between SYSTEMTIME and SEN_SYSTIME_ACC_AFTER. We call all these variables as numeric variables. Then, we calculated the values of difference between before system time and after system time. For example, X_ACC_MIN_DIFF will be the difference between minimum values of X after system time and minimum values of X before system time.

X_ACC_MIN_DIFF = X_ACC_MIN_AFTER - X_ACC_MIN_BEFORE

The new variables for X column of Accelerometer table are in figure 5.4.

```
X ACC MEAN BEFORE numeric (15,10).
X_ACC_MAX_BEFORE numeric(15,10),
X ACC MIN BEFORE numeric (15,10),<br>X ACC STDV BEFORE numeric (15,10),
X ACC MEAN AFTER numeric (15,10),
X_ACC_MAX_AFTER numeric(15,10),<br>X_ACC_MAX_AFTER numeric(15,10),<br>X_ACC_MIN_AFTER numeric(15,10),
X ACC STDV AFTER numeric(15,10),
X ACC MEAN DIFF numeric (15,10),
X ACC MAX DIFF numeric (15,10),
X_ACC_MIN_DIFF numeric(15,10),
X ACC STDV DIFF numeric (15,10),
```
Figure 5.4: New calculated variables

In total, we calculated 144 numerical variables: we have 4 directions $(X, Y, Z, M) * 12$ variables (variables in Figure 4.5) $*$ 3 sensors = 144 new variables. For these new 144 variables, if the value of variable is null, we set it to zero.

After we calculated numerical variables, we computed binary variables. In our data set there are 7 categorical variables: GESTURE_SCENARIO, TASK_ID, POINTER_COUNT, POINTER_ID, ACTION_ID, CONTENT_ID and PHONE ORIENTATION. If a categorical variable has n distinct values, we created n-1 distinct dummy binary variables from that categorical variable.

POINTER_COUNT has three values: 1, 2 and 3. 1 for single touch, 2 for multiple touch and 3. Normally from data definition [2], PONINTER_COUNT should have 1 and 2 as value, but in some cases it has value of 3. So, we have to consider about this new value. Hence, we created 2 new binary variables: POINTER_COUNT_S (set its value $= 1$, if single touch, 0 otherwise), POINTER_COUNT_M (set its value $= 1$ if multiple touch 0 otherwise).

TASK_ID has 24 different values. Instead of creating 24-1 different dummy variables for TASK_ID, we created 5 dummy variables, because TASK_ID can be grouped into 6 groups as in Table 5.4.

Table 5.4: TASK_ID groups

1, 7, 13, 19	$Reading + Sitting$
2, 8, 14, 20	$Reading + Walking$
3, 9, 15, 21	Writing $+$ Sitting
4, 10, 16, 22	Writing + Walking
5, 11, 17, 23	$Map + Sitting$
6, 12, 18, 24	$Map + Walking$

GESTURE_SCENARIO has two values. 1 for sit and 2 for walk. We created GESTURE SCENARIO SIT F as our dummy variable. And set its value to 1 if GESTURE_SCENARIO is 1, 0 otherwise.

POINTER ID has three values. 0 for single touch and 1 for multi-touch, 2 is undefined. Normally from data definition [2], POINTER_ID should have 0 and 1 as value, but in some cases it has value of 2. So, we have to consider about this new value. Hence, we created 2 new binary variables: POINTER_ID_ST (set its value $= 1$, if single touch, 0 otherwise), POINTER_ID_MT (set its value $= 1$ if multiple touch 0 otherwise).

ACTION_ID has 5 different values. But it can be grouped into 3 groups.

- \bullet 0 or 5: DOWN
- 1 or 6: UP
- 2: MOVE

So, we created two dummy variables: ACTION _ID_DOWN (set its value = 1, if $ACTION$ _{ID} = 0 or 5, 0 otherwise), $ACTION$ _{ID} UP (set its value = 1 if $ACTION$ _{ID} $= 1$ or 6, 0 otherwise).

PHONE_ORIENTATION has three different values.

- 0: Portrait and no rotate
- 1: device rotated 90 degrees counter-clockwise
- 3: device rotated 90 degrees clockwise

We created two dummy variables for PHONE ORIENTATION. PHONE ORIENTATION1 (set its value = 1 if PHONE ORIENTATION = $1, 0$ otherwise) , PHONE_ORIENTATION0 (set its value = 1 if PHONE_ORIENTATION = 0 , 0 otherwise).

CONTENT_ID has 6 different values. For that reason we created 5 dummy variables. These variables are: CONTENT_ID1, CONTENT_ID2, CONTENT_ID3, CONTENT_ID4, and CONTENT_ID5.

After creating dummy variables, we deleted original categorical variables from our list. Because categorical variables will be correlated to dummy variables. We show some part of code for creating dummy variable in Figure 5.5.

```
BEGIN
alter table TABLE FINAL add TASK ID RS numeric(1);
alter table TABLE FINAL add TASK ID RW numeric(1);
alter table TABLE FINAL add TASK ID WS numeric(1);
alter table TABLE FINAL add TASK ID WW numeric(1);
alter table TABLE FINAL add TASK ID MS numeric(1);
update TABLE FINAL set
    TASK ID RS = 0,
    TASK ID RW = 0,TASK ID WS = 0,
    TASK ID WW = 0,TASK ID MS = 0;
commit;
UPDATE TABLE FINAL set TASK ID RS = 1 where TASK ID in (1, 7, 13, 19);
commit:UPDATE TABLE FINAL set TASK ID RW = 1 where TASK ID in (2, 8, 14, 20);
commit:UPDATE TABLE FINAL set TASK ID WS = 1 where TASK ID in (3, 9, 15, 21);
commit:
UPDATE TABLE FINAL set TASK ID WW = 1 where TASK ID in (4, 10, 16, 22);
commit;UPDATE TABLE FINAL set TASK ID MS = 1 where TASK ID in (5, 11, 17, 23);
commit:alter table TABLE FINAL drop TASK ID;
commit:
-EMD
```
Figure 5.5: A part of the code for creating dummy variable

After deleting categorical variables, we have in total 177 variables. These are: 10 identification and time variables, 144 calculated numerical variables and 20 dummy variables and 3 floating variables from table TOUCH. We called the final table as USER_TABLE.

In table USER_TABLE, there are 100 users. We randomly chose 20 users from those 100 users. The SubjectIDs for the randomly selected users are: 745224, 352716, 219303, 501973, 264325, 527796, 862649, 663153, 556357, 841866, 923862, 815316, 733162, 472761, 897652, 186676, 998757, 872895, 240168, and 151985. We show in Figure 5.6 random user selection code from our list of users. We first create a Sybase temporary table and add a random user to that table. If the new random id is in the table then we select another random number otherwise we add that user to the list. We continue this operation for 20 times.

```
BEGIN
 declare @seed int;
declare (seed int;<br>declare y\_rand\_index numeric(10);<br>declare counter numeric(10);<br>declare y\_sumCT\_ID numeric(10);<br>declare y\_cnt numeric(3);<br>set (seed=0;
set counter = 1;<br>while counter <= 20 loop<br>set v_rand_index = ROUND(((99 - 1) * RAND() + 1), 0);
           select SUBJECT_ID into V_SUBJECT_ID from #all_ind2 where IDX = v_rand_index;
          \begin{tabular}{ll} \texttt{select count(*) into v\_cnt from } \texttt{from } \texttt{f} \texttt{r} \texttt{on} & \texttt{where } \texttt{IND} = \texttt{V\_SUBJECT\_ID} \texttt{;} \\ \texttt{while v\_cnt > 0 loop} & & \\ & \texttt{set v\_rand\_index} = \texttt{ROWID}((\texttt{09 - 1}) * \texttt{RAND() + 1}), \texttt{0}; \\ & \texttt{select } \texttt{SUBJECT\_ID} & \texttt{into } \texttt{V\_SUBJECT\_ID} & \texttt{from } \texttt{fall\_ind2} & \texttt{where } \texttt{IDX} = \texttt{ v\_rand\_indexselect count(*) into v ont from #rndl where IND = V SUBJECT ID;
          end loop;
          insert into #rnd1 (IND) values (V SUBJECT ID);
set counter = counter + 1;<br>end loop;
 commit;<br>END;
```
Figure 5.6: Random user selection

From randomly chosen 20 users in table USER_TABLE, we create a new table called MODEL_TABLE. The model table has all columns of USER_TABLE and a new column called TARGET. We add all records of those 20 users one by one to MODEL_TABLE. The data process is like this:

- Take one of 20 chosen users from USER TABLE and add all records of those user to MODEL TABLE, and set TARGET value as: "USER". For one user in USER_TABLE there are approximately 100.000 records.
- Take randomly 500.000 records from USER_TABLE whose ids is different from the id in step one and add them to table MODEL_TABLE, and set TARGET value as: "NO_USER".
- Continue with next user from 20 users in table USER TABLE.

In total, for our experiment, we had 20 model user, where each case involves about 100.000 USER and 500.000 NO_USER records. In total for one model user there are about 600.000 records. After creating 20 model users, we downloaded those model user into text files one by one. One text file takes about 1.2 GB of space at disk. So we have 1.2 * 20 = 24 GB of files. In that case it is very hard to load those files to Microsoft Azure. For that reason we take zip version of the files. In that case, one file takes about 400 MB of disk space.

In order to work in Microsoft Azure environment, we create a Microsoft account for Azure ML studio. Azure ML gives for an account 10 GB of free space for your data and experiments. One model user takes about 400 MB of disk space in zipped format. When we run our models for one model user in total it takes about 7 GB of space. For that reason we loaded one model user; run all models with respect to that model user, save its results and then finally clear all space. We do all those steps for all chosen model users which means 20 times. Note: Microsoft Azure also calls a working area as experiment, so we use experiment here as "Microsoft Azure experiment".

Our overall project looks like as in Figure 3.1. For every steps we create an Azure ML experiment. In total we have 12 experiments: one for saving ID, 3 for tuning, one for finding attribute correlation with TARGET, 7 for models.

Our first experiment is to save ID of user to table ID_TABLE. This table is used to add ID to statistical results. We save the user ID to ID_TABLE by using "Enter Data Manually" item. Note: we need such a table because we delete identification variables from our data set. We will explain it later.

We continue like this: at section 6.1 we explained data normalization and Feature Selection steps, at section 6.2 we explained parameter tuning and also we explained the some details of used machine learning algorithms, at section 6.3 we explained the correlation steps. And finally, at section 6.4 we explained model structures.

6.1 Data Normalization and Feature Selection

Our second experiment is to create normalized and DE normalized version of our original data. We show this experiment in Figure 6.1.

Figure 6.1: Creating normalized and de normalized data

The data for a model user is zipped because of space usage. At first step in Figure 6.1, we unzip it by using "Unpack Zipped Dataset" UZD item. Then we use a "Select Columns in Dataset" SCD item so that we eliminate last empty column. When we load a text file into Azure environment, Azure creates an empty last column so we delete it.

In Azure environment after loading data to Azure, we saw that column names in current table are in "Col1","Col2","Col3" format. So, we have to give their exact names like "TARGET", "SUBJECT_ID", "SYSTIME". To convert column names to our original format in Figure 6.1 we use an "Edit Metadata" ED item.

Before data normalization process we made attribute selections. We eliminate some attributes. For each experiment, we first excluded identification variables and time variables from our data set. The reason is that some attenders do all tasks in a specific time interval; for that reason, for those attenders time variables are highly correlated to target variable. So, we excluded all time variables and identification variables from our dataset. We add attribute selection step to our second experiment. The second SCD in Figure 6.1 is for that purpose. It eliminates time and identification variables.

There were some null variables in our list. Normally we converted null values to zero at Sybase but still there were some null values. So in Figure 6.1, we use a "Clean Missing Data" CMD item to convert nulls to zero.

Then in Figure 6.1, we use an "Execute R Script" ERS item because; normally we make dummy variables at Sybase IQ but when we check our list, we see: we do not convert PHONE_ORIENTATION and CONTENT_ID into dummy variables. At that step we convert them into dummy variables and delete the original ones. At section 5, we explained it in detail.

Finally in Figure 6.1, we normalize data by using "LogNormal" normalization. We store ERS result as "denorm" table and normalization result as "norm" table. We will use those tables in our all remaining experiments.

6.2 Parameter Tuning and Machine Learning Algorithms

We make three experiments for parameter tuning (for SVM, BD and LR). For all of parameter tuning, we use normalized data and then we use calculated parameters for all modeling experiments. At Figure 6.2, we show the overall structure for LR parameter tuning. The structure is same for SVM and BD also, just the classifier changes: for LR we use Two-Class Logistic Regression [13], for SVM we use Two class Support Vector Machine [18], for BD we use Two-Class Boosted Decision Tree [22]. For DF we did not tune parameters.

Figure 6.2: LR parameter tuning

In Figure 6.2, we use norm table, then we use "Split Data" SD item to split the data for parameter tuning. We just use %20 of all data for tuning, because the tuning takes long time. So we have to a small portion of overall data. But still, %20 of data contains about 120.000 records for one model user.
In Figure 6.2, we use Partition and Sample item to use 10 fold cross validation. This item is used when multiple parameters is used for a model. It gives 10 distinct datasets. We then use Tune Model Hyperparameters (TMH), it gets folds from Portion and Sample and parameter range from classifier and finds best tuned values.

In Figure 6.2, ID_TABLE stores the user ID for that experiment. The ERS adds ID to THH results. "lr_cross_validation" table stores the results of all LR parameters. Finally; we use an Add Row item to add last user tuning results to "lr_cross_validation" table.

We store results of LR tuning in lr_cross_validation table, SVM results in svm_cross_validation table and BD results in bd_cross_validation table.

In Two Class Logistic Regression item, we use "Create trainer mode" as Parameter Range to inform Azure this will be not a single parameter but a list of parameters. The list of parameter range for Two Class Logistic Regression item are in Figure 6.3.

Figure 6.3: Parameter Range for LR

Two class logistic regression in Azure is a logistic regression model and is used to predict a data set which has two outcomes. It is a supervised learning method so you have to have a data set which has two results. In our experiment, we have USER and NO_USER labels. First of all, you have to inform azure which column will be predicted. In our case, it is TARGET column. Then, we set "Create trainer mode" to "Parameter range". For parameter optimization we will use that option. But after we get best parameter values, we will use "Single Parameter" for "Create trainer mode".

Since here we used "Parameter Range", in our experiment after "two class logistic regression" we add a TMH and a Partition and Sample item. If we use "Single Parameter", we have to add "Train Model" item for training. Note: after parameter tuning for all remaining experiments we add "Train Model" item.

"Optimization tolerance" sets a threshold value for optimizing the model. When the improvement between iterations falls below that value the algorithm thinks it reached an optimal value and training stops.

To create less complex models when you have lots of features in your dataset you can use regularization to prevent over fitting. In Azure, we have L1 and L2 regularization. A model that uses L1 regularization is called Lasso regression [14], and a model that uses L2 regularization is called Ridge regression [15]. The main difference between Ridge and Lasso regression is the penalty term. They add different terms as penalty to loss functions. Ridge regression adds squared value of coefficient to loss function whereas Lasso adds absolute value of coefficient as penalty term.

Ridge regression adds a penalty term to original loss function such that all coefficients are squared. Here lambda is the penalty parameter.

$$
\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \tag{1}
$$

If lambda is zero then Ridge regression becomes original loss function. If lambda is too much then it will add high weights and makes model so simple. In that case under fitting occurs.

Lasso regression adds a penalty term to original loss function such that all coefficients are in absolute value. Here lambda is the penalty parameter.

$$
\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \tag{2}
$$

If lambda is zero then Lasso regression becomes original loss function. If lambda is too much then it will add high weights and makes model so simple. In that case under fitting occurs. In both Lasso and Ridge regressions the value of lambda is an important factor for model prediction.

Lasso shrinks less important attributes' coefficient to zero and removes all those attributes from the model. So those methods are powerful for feature selection if the attribute count is high and data is abundant. Ridge makes coefficient of less important attributes small so they have little effect on model.

Azure supports a linear combination of L1 and L2 regularization. It uses a combination of regularization for linear span. If we set L1 as x and L2 as y then $ax + by = c$ will be a linear span of the regularization term.

"Memory size for L-BFGS" [16], [17] is a popular algorithm and used for parameter estimation. The algorithm starts with an initial value of optimal value of X_0 , then iteratively tries to find a better estimate of $X_1, X_2, ...$ This parameter limits the amount of memory that will be used to compute next step and direction.

"Random number seed" is used for multiple runs. If you want to take in every run the same results, you have to set a seed value. For our experiment we set seed as 0. If you don't set a seed value, next time when you run your model again you can have a slightly different results.

"Allow unknown category" is used to automatically assign values for null categorical attributes. In our experiments we don't have such type of values.

Normally, we can do just one experiment and tune all models in that experiment. But, when we tried to do this our disk space finished and we could not finish tuning. Then, we decided to separate all tuning experiments.

For BD and SVM we have two more experiments for tuning. We saved SVM results in "svm_cross_validation" table and BD results in "bd_cross_validation" table.

SVM [18],[19],[20] is one of the popular machine learning algorithms. It is one of the earliest algorithms and still very popular. It can be used for both regression and classification. It divides training set with respect to their class labels into hyperplanes that maximizes margins between two classes. In our experiment, we used two class support vector machine. This one uses linear kernel. For other kernel types Azure have another SVM called Two-Class Locally Deep Support Vector Machine [21]. In [2] they used RBF kernel, for our experiment we used linear kernel.

Again as in LR, we user "Parameter Range" for parameter tuning and after we tuned parameters we used "Single Parameter" for modelling. Again as in LR, we used Portion and Sample for 10 fold cross validation and TMH to find best parameter values. The parameter range for SVM is in Figure 6.4.

Figure 6.4: Parameter Range for SVM

"Number of iterations" is used to find how long the model will run until to find best hyperplane that divides maximum margin. In that case there will be a trade of between model speed and accuracy. Bigger numbers will result in slower models.

"Lambda" is the regularization parameter for SVM. SVM encounters optimization of two problems: maximizing the margin and minimizing the mis-classification. If lambda is larger, then more mis-classified examples are allowed in training set. If the lambda is small, then less misclassified examples are allowed. If lambda is zero this means no misclassified examples occurs in training set. But in that case, there will be overfitting in test data. So there is a tradeoff. Smaller lambdas are usually good but too smalls can result in overfitting.

In Figure 6.4, we don't set "Normalize features" for parameter tuning and models. For SVM we used normalized data. And before using SVM we have already normalized the data. So there is no need to normalize data again.

Two-Class Boosted Decision Tree creates a classifier which has only two results. In our case it is USER and NO_USER. The algorithm in Azure ML studio depends on boosted decision trees [23].

28

Boosted decision tree is an ensemble algorithm in which a new tree corrects the errors of the previous one. Here second tree corrects the errors of the first tree, and third tree corrects the errors of the second tree and so on. Finally prediction depends on the result of entire trees. The main principle in boosted decision tree: week trees come together to create a strong learner. When an input is misclassified its weight is increased so that the next tree most probably will classify it correctly. The algorithm in our experiment gives the best results, but it is a bit slower than the other algorithms.

The algorithm starts with weak learners at every step it calculates the loss function and increase the weight of misclassified inputs. For next step the new tree tries to recover the loss.

For BD models, as in SVM and LR, when we tune parameters. We used Parameter range for "Create trainer mode" and when we run models Single Parameter for "Create trainer mode". Again as in LR and SVM, we used Portion and Sample for 10 fold cross validation and TMH to find best parameter values for BD parameter tuning. The parameter range for BD is in Figure 6.5.

Figure 6.5: Parameter Range for BD

"Maximum number of leaves per tree" indicates the maximum number of leaf node in any tree. When you increase that value, the precision of model can increase but can also cause overfitting. Increasing this also can cause slower models.

"Minimum number of samples per leaf node" indicates the number of cases that is needed to create a node. If you increase this number, to create a new node more cases are required. If the number is just one, then any different case will create a node.

"Learning rate" it is the regularization parameter for BD. It slows down or make faster the training. Low learning rate which means more shrinkage results in more iterations to reach same accuracy. New trees are added to make correct previous trees' errors. Adding more trees can fit the model quickly but can also cause over fitting.

"Number of trees constructed" indicates the total number of tree that will be created in ensemble. Increasing the number most probably will make better precision models but will also cause longer training times.

"Random Number seed" and "Allow unknown categorical levels" are same as in SVM and LR.

The results of tuned parameter values for BD are given as in Table 6.1, for SVM in Table 6.2 and for LR in Table 6.3. We run our models with these parameters for 20 users separately.

Table 6.1: Tuned parameter values for boosted decision tree

	Number of leaves Minimum leaf instances Learning rate Number of trees		
90		0.375257	350

Table 6.2: Tuned parameter values for support vector machine

Table 6.3: Tuned parameter values for logistic regression

For Two-Class Decision Forest [25] we did not tune parameters. We used as parameter values as default values. The parameters for DF is ate Figure 6.6.

For DF, we used bagging or bootstrap aggregating [24] as "Resampling method". When you use a training set *T* of size n, begging creates m number of T_i new training set by randomly sampling from original training set T . In that case when we create new sets from original training set some records will be unique on the other hand other records will be repeating. This type of sampling is called bootstrap sampling. Then bagging will create m models and fit m bootstrap samples. Then will vote the results and give final prediction. For our case, if we have 5 bagged decision trees and they give: USER, NO_USER, USER, USER, NO_USER. The overall votes will give results as USER.

Since we did not tune parameters for DF, we used "Single Parameter" as "Create trainer mode". The parameter values are default Azure parameter values for bagging DF.

"Number of decision trees" specifies the number of tree that will be created. If you create more trees, then you can get better precision but models can be slower.

"Maximum depth of the decision trees" indicates that in any tree how many levels /depths can be created. Increased depths may cause overfitting and longer training times but it can also increase the precision.

"Minimum number of samples per leaf node" indicates the number of cases that is needed to create a node. If you increase this number, to create a new node more cases are required. If the number is just one, then any different case will create a node.

"Random Number seed" and "Allow unknown categorical levels" are same as in other machine learning algorithms used in our experiments.

Figure 6.6: Parameters for DF

6.3 Finding Most Predictive Attributes

In our experiment, we try to measure a smaller model which uses a small number of attributes to recognize user. For this we create a separate experiment in which we use 30 most predictive attributes for user authentication. The overall structure to find the best 30 attributes for authentication is in Figure 6.7.

Figure 6.7: 30 Cols Attribute Selection

As in parameter tuning we use here also the normalized data. We used a "Filter Based Feature Selection" (FBFS) item to find most correlated attributes with our target. In our FBFS we use Pearson Correlation and set the number of desired features to 30. We again as in parameter tuning, use ID_TABLE to identify user.

Our ERS item connects FBFS item with ID_TABLE to add ID to FBFS results. 30Cols table stores the attribute correlation values with target. We use an Add Row item to add last user result to 30Cols table.

In 30Cols table we save all correlation results to see most correlated and less correlated attributes. In some users Magnetometer attributes are most predictive, in some users Accelerometer attributes are more predictive, and in some users Gyroscope attributes are most predictive moreover we have users in which phone orientation or touch events are

more predictive. It shows that the prediction of attributes completely differs from user to user. So our smaller model which use most predictive 30 attributes completely changes from user to user.

6.4 Models

After calculating tuned parameters for models and 30 most predictive attributes, we make 7 different experiments for models. In our models; we use BD, DF, SVM and LR. We have 2 experiments for BD (BD with normalized data and BD with de-normalized data), 2 experiments for LR (LR with normalized data and LR with de-normalized data), 2 experiments for DF (DF with normalized data and DF with de-normalized data) and finally one experiment for SVM, for SVM we just used normalized data.

In every experiment, we create such type of data flows: data flow using Accelerometer fields (ACC), data flow using Accelerometer fields PCA taken (ACC with PCA), data flow using Gyroscope fields (GRY), data flow using Gyroscope fields PCA taken (GRY with PCA) , data flow using Magnetometer fields (MAG), data flow using Magnetometer fields PCA taken (MAG with PCA) , data flow using all fields (ALL), data flow using ALL fields PCA taken (ALL with PCA) , and thirty most predictive fields (30COLS).

So in total we have 7 experiments and in every experiment we have 9 data flows. So in total we have $7*9 = 63$ model runs. In Figure 6.8, we show an experiment. This experiment is BD with normalized data. The other experiments are also similar just the classifier and the data changes. If the experiment uses moralized data we load "norm" table otherwise we load "denorm" table.

Here we will just explain BD with normalized data and we will write all about it. In Figure 6.8, first we load norm table. After that we connect three SCD items to norm table to split the data. These first three SCD items are used for sensor attribute separation. First SCD takes Accelerometer fields, second Magnetometer fields and the third SCD takes Gyroscope fields. By using these first three SCD items we are sure to create three data flows for sensors.

Figure 6.8: Two Class BD normalized experiment

The three data flows are similar just the used attributes changes. In Figure 6.9, we show Accelerometer attributes. In total there are 60 fields: 1 for target, 11 for dummy variables created from Activity table and 48 Accelerometer fields. In all sensor models, we use Activity table fields because the sensor values can change from type of activity. For example, sitting or walking can directly change all sensors. So, we add all activity table fields for our sensor models.

> M_ACC_STDV_BEFORE M ACC MEAN AFTER M ACC MAX AFTER M ACC MIN AFTER M ACC STDV AFTER M_ACC_MEAN_DIFF M ACC MAX DIFF M ACC MIN DIFF M_ACC_STDV_DIFF GESTURE SCENARIO SIT F TASK_ID_RS TASK ID RW TASK ID WS TASK ID WW TASK_ID_MS

60 columns selected

Figure 6.9: Some of Accelerometer fields

After selecting columns, we have two connections one for splitting data and the other for PCA. For all models except 30COLS, we have two flows: data without PCA and data with PCA. In Figure 6.10, we show in detail. Note: Figure 6.10 is a part of Figure 6.8.

Figure 6.10: Data flow for Accelerometer model

Here for PCA, we take "Number of dimensions to reduce to" as $1/3$ of attribute count. For Accelerometer, we have 60 fields. One of them is target. If we exclude target we have 59 fields, one third of 59 is: $59 / 3 = 19$. So for PCA, we take "Number of dimensions to reduce to" as 19.

In Figure 6.10, we have two Split data items. One of it splitting data for PCA taken, and the other is splitting data without PCA. For our models, we use %70 or data for training and % 30 of data for testing.

For BD, we use Two Class Boosted Decision Tree classifier. And we set its parameters as the values in Table 5.1. Note: for all 9 BD data flows in this experiment we use parameters from Table 5.1.

After Classifier we have two Train model items. We train the models with %70 of data coming from Split Data item.

After training model, we use Score model to score the model. For scoring model, we use remaining %30 of data.

After that, we evaluate model to see model performances. The Evaluate model calculates; Accuracy, F1 Score, Precision, Recall, Negative Precision, Negative Recall, and Cumulative AUC for model performance. It divides all records by 10 percent probability bins. (90-100] bins keeps the last probability. It also shows the concussion matrix and ROC curve for the model.

At Figure 6.11, we show confusion matrix for BD with normalized data for user 841866. The data flow is ALL model. At Table 6.4, we show Accuracy for all Score Bins. Note: at confusion matrix we show overall accuracy and other matrices. In Figure 6.12, we show ROC curve for same run.

True Positive	False Negative	Accuracy	Precision
23561	2075	0.984	0.974
False Positive	True Negative	Recall	F1 Score
618	146067	0.919	0.946
Positive Label	Negative Label		
	USER NO USER		

Figure 6.11: Confusion Matrix

Table 6.4: Accuracy for all Score Bins

Figure 6.12: ROC curve

Finally we add ACC results and ACC with PCA results for evaluating all model performances.

In this experiment, we modeled sensor attributes alone to see if any of three sensor will be enough for user authentication. Maybe data flow from one sensor can corrupt but if the other sensors are alive, getting separate sensor models will help for user authentication in any case. Moreover, using one sensor models can be cheaper and needs less energy for authentication. For all these reasons, we create 6 sensor models (2 for ACC, 2 for GRY, and 2 for MAG) and evaluate their performances.

In Figure 6.7, we have three more connection coming from "norm" table. The two connections for ALL models (ALL and ALL with PCA) and the other is for 30COLS. For ALL again we used data as without PCA or data with PCA. For 30COLS, we did not take PCA.

In Figure 6.13, we show some part of ALL and 30COLS models. Note: Figure 6.13 is a part of Figure 6.8.

Figure 6.13: Some part of ALL and 30COLS models

Here first two connections from right of the figure 6.13 are for ALL models. Again we take PCA for ALL fields. We use 1/3 of total attributes for PCA. In ALL fields we have

168 attribute. If we exclude target we have 167 attributes. Then, one third of 167 is: 167 $/ 3 = 55$. We take 55 dimensions for ALL with PCA.

For 30COLS, we use Filter Based Feature Selection and use Pearson Correlation for feature selection. We set "Number of Desired Feature" to 30. We are sure now, we select first 30 most correlated attributes with target.

Then for all three models (ALL, ALL with PCA and 30COLS), we have Split Data item. Here again we use %70 of data for training and %30 for testing. Again we use Two Class Boosted Decision Tree for classification. And set its parameters from Table 5. Then we score model by using remaining %30 of data. After scoring data we use Evaluate Model item to see performance of models. Finally we add all evaluation result to see overall performance.

At the end of Figure 6.7, we take all evaluation results of models together and save the results. We show this in Figure 6.14 in detail. The first two Add Rows items join rows coming from sensors and from the others respectively. Again we use ID_TABLE to store user ID. The R Script connects results coming from models and ID_TABLE. We store all results in gsu_results table. At every run, we connect gsu_result table with the final results and store the union again into gsu_results table. We do the storing process manually.

Figure 6.14: Saving Results

After running all experiments for every user we are ready to compare results of models. For one user we run 7 experiments and in total we have $20 * 7 = 140$ runs.

7. RESULTS

The first results are obtained by taking the average of all 20 users' results. Although various metrics are given, the models are compared by the accuracy perspective. We also store precision and recall results. Our first results about the parameter tuning. For BD, LR and SVM we tuned parameters. For DF we did not tune parameters. We use DF parameters as Azure initial values.

We first tuned SVM parameters. The results of SVM parameters are at Table 7.1: we used Number of iterations as 98, Lambda as 0.003046. These values give the best Accuracy.

Number of iterations	Lambda	Accuracy	Precision	Recall
98	0.003046	0.828229	0.708693	0.52781
86	0.099535	0.794518	0.604628	0.507398
29	0.046737	0.794302	0.603957	0.507584
68	0.031466	0.794209	0.603346	0.50898
63	0.046956	0.794186	0.60363	0.507553

Table 7.1. SVM Parameter Values

Then we tuned LR parameters. The results of LR parameters are at Table 7.2: we used Optimization Tolerance as 0.00003, L1 weight as 0.381005, L2 weight as 0.34971 and Memory Size as 48. These values give the best Accuracy.

OptimizationTolerance	L1Weight	L2Weight	MemorySize	Accuracy	Precision	Recall
0.000003	0.381005	0.34971	48	0.884355	0.804311	0.708379
0.000055	0.08111	0.195253	25	0.881447	0.799972	0.699197
0.00003	0.988544	0.64627	39	0.87745	0.799459	0.678537
0.00007	0.526284	0.934678	35	0.87462	0.79484	0.669882
0.000082	0.848052	0.991983	6	0.860216	0.765888	0.632534

Table 7.2. LR Parameter Values

Then we tuned BD parameters. The results of BD parameters are at Table 7.3: we used Number of Leaves as 90, Minimum Leaf instances as 26, and Learning rate as 0.375257 and Number of trees as 350. These values give the best Accuracy.

Table 7.3 : BD Parameter Values

Number of leaves	Minimum leaf instances	Learning rate	Number of trees	Accuracy	Precision	Recall
90	26	0.375257	350	0.993196	0.987077	0.975555
39	49	0.266012	386	0.99266	0.983	0.976745
70	4	0.095172	237	0.98912	0.979687	0.960403
104	42	0.396963	35	0.988199	0.973712	0.96141
5	19	0.153678	479	0.981704	0.955555	0.943832

We compared sensor performances. While for some users ACC models performs better, for the others MAG model performs better. The reason is that: When we use Pearson correlation to find the correlation of target with attributes, we saw that sometimes it is the magnetometer attributes, which gets higher results than accelerometer attributes, and sometimes it is the opposite case. In Table 7.4, we show top five most correlated attributes with TARGET for all users.

ID	CORRELATED 1	CORRELATED 2	CORRELATED 3	CORRELATED 4	CORRELATED 5
	Y_ACC_MAX_BEFORE	Y_ACC_MAX_AFTER	Z_ACC_MEAN_BEFORE	Y_ACC_MEAN_AFTER	Y_ACC_MEAN_BEFORE
745224	0.526101477917448	0.526027094774484	0.522512065817992	0.517671665718106	0.517449449850825
	Z_ACC_MAX_BEFORE	Y_ACC_MIN_AFTER	Y_ACC_MIN_BEFORE	Z_ACC_MAX_AFTER	Z_ACC_MEAN_BEFORE
352716	0.31494038435346	0.289254903725818	0.288017204636527	0.28704661486678	0.273874370108157
219303	Y_MAG_MIN_AFTER	Y_MAG_MEAN_AFTER	Y_MAG_MAX_AFTER	Y_MAG_MIN_BEFORE	Y_MAG_MEAN_BEFORE
	0.275500852736378	0.275243046883244	0.27496804219146	0.272805645166704	0.272492784722381
	CONTACT_SIZE	M_GYR_MAX_AFTER	M_ACC_STDV_AFTER	M_GYR_MEAN_AFTER	M_ACC_MAX_BEFORE
501973	0.301796412920593	0.238582206332669	0.229281328856425	0.225511080336985	0.225108059171782
	X_MAG_MAX_BEFORE	X_MAG_MEAN_BEFORE	X_MAG_MIN_BEFORE	X_MAG_MAX_AFTER	X_MAG_MEAN_AFTER
264325	0.268759433468619	0.268461737089369	0.26822403387547	0.267922212908424	0.267660345187204
	X_GYR_STDV_AFTER	Z_ACC_STDV_AFTER	M_ACC_STDV_AFTER	X_GYR_STDV_BEFORE	Z_ACC_STDV_BEFORE
527796	0.336968464687707	0.333874416733462	0.326149157965839	0.319573415872206	0.295362838411421
	X_ACC_MIN_BEFORE	Y_MAG_MAX_BEFORE	Y_MAG_MAX_AFTER	Y_MAG_MEAN_BEFORE	Y_MAG_MEAN_AFTER
862649	0.152423855213381	0.151665152754996	0.151243843796255	0.151060324524325	0.150699822174548
663153	PHONE_ORIENTATION1	PHONE_ORIENTATION0	X_ACC_MAX_BEFORE	X_ACC_MEAN_BEFORE	X_ACC_MEAN_AFTER
	0.653784286723699	0.589865039787968	0.528486460795191	0.528277768166644	0.527682453389752
556357	Z_MAG_MIN_BEFORE	Z_MAG_MEAN_BEFORE	Z_MAG_MAX_BEFORE	Z_MAG_MIN_AFTER	Z_MAG_MEAN_AFTER
	0.267229361060606	0.267008026163402	0.266757442851155	0.254351616657512	0.25426544228856
923862	M_ACC_MEAN_AFTER	M_ACC_MEAN_BEFORE	M_ACC_MIN_AFTER	M_ACC_MAX_AFTER	M_ACC_MAX_BEFORE
	0.286352911307566	0.280610217036483	0.258239428924014	0.247442679474636	0.244429037975945
815316	PHONE_ORIENTATION0	Y_ACC_MAX_BEFORE	Y_ACC_MAX_AFTER	Y_ACC_MEAN_BEFORE	Y_ACC_MEAN_AFTER
	0.896122822699534	0.784132912462087	0.771949335739134	0.743498858762641	0.734805086511852
733162	Z_ACC_MIN_BEFORE	Z_ACC_MIN_AFTER	Z_ACC_MEAN_BEFORE	Z_ACC_MEAN_AFTER	Z_ACC_MAX_BEFORE
	0.391518650967635	0.387015884185687	0.374153409295053	0.367525068939596	0.353763303540903
472761	Z_ACC_MAX_BEFORE	Z_ACC_MAX_AFTER	M_ACC_MAX_BEFORE	Z_ACC_MEAN_AFTER	Z_ACC_MEAN_BEFORE
	0.294705192453602	0.291713758896863	0.278452885709171	0.27467140204743	0.274397884308291
897652	Y_MAG_MIN_AFTER	Y_MAG_MEAN_AFTER	Y_MAG_MIN_BEFORE	Y_MAG_MAX_AFTER	Y_MAG_MEAN_BEFORE
	0.349747792237405	0.349375898770985	0.349203661091282	0.348967851406809	0.348799815368137
186676	M_ACC_MIN_AFTER	M_ACC_MIN_BEFORE	M_ACC_MEAN_BEFORE	M_ACC_MEAN_AFTER	M_MAG_MAX_AFTER
	0.355140113982211	0.346975516833136	0.322640215508059	0.311971895598156	0.266452236290741
998757	Y_ACC_MEAN_BEFORE	Y_ACC_MIN_BEFORE	Y_ACC_MAX_BEFORE	Y_ACC_MIN_AFTER	Y_ACC_MEAN_AFTER
	0.463621596093162	0.463141254211321	0.45931382519527	0.452386156859775	0.451366805284635
872895	X_MAG_MIN_AFTER	X_MAG_MIN_BEFORE	X_MAG_MEAN_AFTER	X_MAG_MAX_AFTER	X_MAG_MEAN_BEFORE
	0.333847952479681	0.33296365440044	0.332794896893683	0.331772985523584	0.331558306075711
240168	M_ACC_MAX_BEFORE	M_ACC_MAX_AFTER	M_ACC_MEAN_BEFORE	M_ACC_MEAN_AFTER	M_ACC_MIN_AFTER

Table 7.4: Most correlated attributes with TARGET

For correlation test we also measure the how many times an attribute comes in first five location. At Table 7.5 we show how many times an attribute comes as a most correlated attribute, as a second most correlated attribute, as a third most correlated attribute etc.

CORRELATED 1	#	CORRELATED 2	#	CORRELATED 3	#	CORRELATED 4	#	CORRELATED 5	$\#$
CONTACT SIZE	\overline{c}	Y_ACC_MAX_AFTER	$\sqrt{2}$	M ACC MEAN BEFORE	$\,2$	M_ACC_MEAN_AFTER	$\sqrt{2}$	M_ACC_MAX_BEFORE	$\overline{2}$
Y_MAG_MIN_AFTER	$\overline{\mathcal{L}}$	Y_MAG_MEAN_AFTER	\overline{c}	M_ACC_STDV_AFTER	2	X_MAG_MAX_AFTER	$\overline{2}$	Y_ACC_MEAN_AFTER	$\overline{2}$
Z_ACC_MAX_BEFORE	$\overline{2}$	M_ACC_MAX_AFTER		Y_ACC_MAX_BEFORE	2	Y_ACC_MEAN_AFTER	$\overline{2}$	Y_ACC_MEAN_BEFORE	$\overline{2}$
M_ACC_MAX_BEFORE		M_ACC_MEAN_BEFORE		Y_MAG_MAX_AFTER	2	Z_ACC_MEAN_AFTER	2	Y_MAG_MEAN_BEFORE	$\overline{2}$
M_ACC_MEAN_AFTER		M_ACC_MIN_BEFORE		Z ACC MEAN BEFORE	2	M ACC MAX AFTER		Z ACC MEAN BEFORE	2
M_ACC_MIN_AFTER		M_GYR_MAX_AFTER		M_ACC_MAX_BEFORE	$\mathbf{1}$	M_GYR_MEAN_AFTER		M_ACC_MIN_AFTER	1
M MAG MAX BEFORE		M_MAG_MEAN_BEFORE		M_ACC_MIN_AFTER	$\mathbf{1}$	M_MAG_MAX_AFTER		M_MAG_MAX_AFTER	$\mathbf{1}$
PHONE ORIENTATION0		PHONE ORIENTATION0		M MAG MIN BEFORE	1	X_ACC_MEAN_BEFORE		M MAG MEAN AFTER	$\mathbf{1}$
PHONE_ORIENTATION1		X_MAG_MEAN_BEFORE		X_ACC_MAX_BEFORE	$\mathbf{1}$	X_GYR_STDV_BEFORE		X_ACC_MEAN_AFTER	$\mathbf{1}$
X_ACC_MIN_BEFORE		X_MAG_MIN_BEFORE		X_MAG_MEAN_AFTER	$\mathbf{1}$	Y_ACC_MEAN_BEFORE		X_MAG_MEAN_AFTER	$\mathbf{1}$
X_GYR_STDV_AFTER	-1	Y_ACC_MAX_BEFORE		X_MAG_MIN_BEFORE	$\mathbf{1}$	Y_ACC_MIN_AFTER		X_MAG_MEAN_BEFORE	$\mathbf{1}$
X_MAG_MAX_BEFORE		Y_ACC_MIN_AFTER		Y_ACC_MAX_AFTER	$\mathbf{1}$	Y_MAG_MAX_AFTER		Y_MAG_MEAN_AFTER	$\mathbf{1}$
X_MAG_MIN_AFTER		Y_ACC_MIN_BEFORE		Y_ACC_MIN_BEFORE	$\mathbf{1}$	Y_MAG_MEAN_BEFORE		Z_ACC_MAX_BEFORE	$\mathbf{1}$
Y_ACC_MAX_BEFORE		Y_MAG_MAX_BEFORE		Y_MAG_MIN_BEFORE	$\mathbf{1}$	Y_MAG_MIN_BEFORE		Z_ACC_STDV_BEFORE	$\mathbf{1}$
Y_ACC_MEAN_BEFORE		Z_ACC_MAX_AFTER		Z_MAG_MAX_BEFORE	$\mathbf{1}$	Z_ACC_MAX_AFTER		Z_MAG_MEAN_AFTER	$\mathbf{1}$
Z_ACC_MIN_BEFORE	$\mathbf{1}$	Z_ACC_MIN_AFTER	1			Z_MAG_MIN_AFTER	$\mathbf{1}$		
Z_MAG_MIN_BEFORE		Z_ACC_STDV_AFTER	1						
		Z MAG MEAN BEFORE	1						

Table 7.5. How many times an attribute is one of most correlated

It shows us that the parameters completely changes from user to user. In some users sensor data gives best results for some users touch event data gives best results.

When we compare sensor results with respect to models we see that Magnetometer performs better in DF and BD but Accelerometer performs better in LR and SVM. But the values of Magnetometer and Accelerometer are so close. So we can not say that Magnetometer gives better perfomace.

In Table 7.6, we show DF results for sensor, in Table 7.7 we show BD results for sensors, in Table 7.8 we show LR results for sensor and in Table 7.9 we show SVM results for sensors. In all tables there are 18 results because we use both normalized and de normalized data for BD,LR and DF. But for SVM we have 9 results because for SVM we just used normalized data. Note : the results are avarage of all 20 model users.

Flow	Data	Accuracy	Precision	Recall	Flow	Data	Accuracy	Precision	Recall
ALL	Normalized	0.992055	0.981225	0.967784	ALL	De- Normalized	0.994229	0.987369	0.9761
MAG	Normalized	0.984081	0.953795	0.946984	MAG	De- Normalized	0.993593	0.978965	0.98182
30COLS	Normalized	0.968247	0.923459	0.86851	ALL with PCA	De- Normalized	0.989785	0.982921	0.95112
ACC	Normalized	0.964171	0.917219	0.859335	MAG with PCA	De- Normalized	0.988962	0.973025	0.95909
ALL with PCA	Normalized	0.961614	0.942086	0.80115	30COLS	De- Normalized	0.97816	0.95089	0.9168
MAG with PCA	Normalized	0.960821	0.909617	0.839957	ACC	De- Normalized	0.967054	0.92807	0.87400
ACC with PCA	Normalized	0.950292	0.888859	0.797156	ACC with PCA	De- Normalized	0.963162	0.922011	0.85620
GRY	Normalized	0.916732	0.875118	0.614414	GRY	De- Normalized	0.918862	0.884842	0.6300:
GRY with PCA	Normalized	0.902699	0.853346	0.541459	GRY with PCA	De- Normalized	0.912008	0.85397	0.61463

Table 7.6: DF Results. Normalized and De Normalized data

Flow	Data	Accuracy	Precision	Recall
ALL	De- Normalized	0.994229	0.987369	0.976155
MAG	De- Normalized	0.993593	0.978965	0.981824
ALL with PCA	De- Normalized	0.989785	0.982921	0.951127
MAG with PCA	De- Normalized	0.988962	0.973025	0.959094
30COLS	De- Normalized	0.97816	0.95089	0.916837
ACC	De- Normalized	0.967054	0.92807	0.874002
ACC with PCA	De- Normalized	0.963162	0.922011	0.856201
GRY	De- Normalized	0.918862	0.884842	0.630053
GRY with PCA	De- Normalized	0.912008	0.85397	0.614659

Table 7.7: BD Results. Normalized and De Normalized data

Flow	Data	Accuracy	Precision	Recall
AI.	De- Normalized	0.918873	0.790926	0.652578
ALL with PCA	De- Normalized	0.905617	0.767943	0.569884
30COLS	De- Normalized	0.889927	0.723636	0.479914
MAG	De- Normalized	0.870602	0.653397	0.348817
ACC	De- Normalized	0.86594	0.653944	0.374243
MAG with PCA	De- Normalized	0.861988	0.580987	0.279547
ACC with PCA	De- Normalized	0.858432	0.612202	0.326387
GRY	De- Normalized	0.829698	0.45738	0.129285
GRY with PCA	De- Normalized	0.825401	0.457932	0.102514

Table 7.8: LR Results. Normalized and De Normalized data

Table 7.9: SVM Results

Flow	Data	Accuracy	Precision	Recall
ALL	Normalized	0.913508	0.786037	0.618775
ALL with PCA	Normalized	0.897431	0.766317	0.531923
30COLS	Normalized	0.890139	0.743792	0.502651
ACC	Normalized	0.869704	0.678231	0.409189
ACC with PCA	Normalized	0.860143	0.622211	0.347434
MAG	Normalized	0.859586	0.637857	0.25921
MAG with PCA	Normalized	0.855579	0.625727	0.234166
GRY	Normalized	0.830493	0.420945	0.131047
GRY with PCA	Normalized	0.825175	0.322237	0.084511

Since the most correlated attributes changes from user to user, the 30COLS models usually use different attributes. PCA used model performances are lower compared to models without PCA. But again the results are so close, so we cannot say taking PCA lowers the Accuracy.

During the experiments, we explored that in all cases, BD usually gives higher accuracy. Following BD, DF has the second rank among accuracy comparisons. In some cases DF gives better results. Note: we do not take parameter tuning in DF. Maybe it will give better results if we tune it. From Table 7.10 to Table 7.18, we show machine learning algorithm results for different data flow. These are avarage of 20 model users' results.

Table 7.10: 30COLS Results. Normalized and De Normalized data

Table 7.11: ACC Results. Normalized and De Normalized data

Table 7.13: ALL Results. Normalized and De Normalized data

Model	Data	Accuracy	Precision	Recall
BD	Normalized	0.996111	0.982467	0.991248
DF	Normalized		0.981225	0.967784
L _R	Normalized	0.924224	0.789046	0.686001
SVM	Normalized	0.913508	0.786037	0.618775

Table 7.16: GRY with PCA Results. Normalized and De Normalized data

Model	Data		Precision	Recall	
DF	Normalized	0.902699	0.853346	0.541459	
BD	Normalized	0.8837	0.682679	0.612755	
L _R	Normalized	0.828695	0.387521	0.078386	
SVM	Normalized	0.825175	0.322237	0.084511	

Table 7.18: MAG with PCA Results. Normalized and De Normalized data

Model	Data	Accuracy	Precision	Recall
DF	Normalized	0.960821	0.909617	0.839957
BD	Normalized	0.960447	0.87903	0.881583
LR.	Normalized	0.856722	0.548401	0.233163
SVM	Normalized	0.855579	0.625727	0.234166

The accuracy values of each algorithm for each data flow are presented in Figure 7.1- Figure 7.5. We were expecting normalizing data will give better results but after our results come, we see that in nearly all cases de normalized data gave better results. But again, the value are so close so we cannot easily say that data normalization or de normalization helps for predictions.

Figure 7.1: (a) Accuracy values for 'ALL' data flow; (b) Accuracy values for 'ALL with PCA' data flow.

Figure 7.2: (a) Accuracy values for 'MAG' data flow; (b) Accuracy values for 'MAG with PCA' data flow.

Figure 7.3: (a) Accuracy values for 'ACC' data flow; (b) Accuracy values for 'ACC with PCA' data flow.

Figure 7.4: (a) Accuracy values for 'GYR' data flow; (b) Accuracy values for 'GYR with PCA' data flow.

Figure 7.5: Accuracy values for '30COLS' data flow.

At table 7.19, we show for all model users the most predictive model and its Accuracy, Precision and Recall values.

ID	Model	Flow	Data	Accuracy	Precision	Recall
151985	BD	ALL	De-Normalized	0.99946	0.99883	$\mathbf{1}$
186676	BD	ALL	De-Normalized	0.998534	0.993622	0.998129
219303	BD	ALL with PCA	De-Normalized	0.995971	0.976074	0.99034
240168	BD	ALL	De-Normalized	0.999348	0.997093	0.998694
264325	BD	ALL	De-Normalized	0.996835	0.989106	0.998692
352716	BD	ALL	De-Normalized	0.998839	0.995469	0.998243
472761	BD	ALL	De-Normalized	0.997507	0.988085	0.994633
501973	BD	ALL	De-Normalized	0.997879	0.987144	0.992931
527796	BD	ALL	De-Normalized	0.996583	0.989336	0.997303
556357	BD	ALL	De-Normalized	0.998304	0.992823	0.989831
663153	BD	ALL	De-Normalized	0.998783	0.99532	0.99579
733162	BD	ALL	De-Normalized	0.999023	0.996741	0.997265
745224	BD	ALL	De-Normalized	0.997706	0.993516	0.997285
815316	BD	ALL	Normalized	0.999643	0.998656	0.999388
841866	BD	ALL	Normalized	0.996727	0.987251	0.990794
862649	BD	ALL	De-Normalized	0.99816	0.990044	0.99809
872895	BD	ALL	De-Normalized	0.999048	0.994367	0.996566
897652	BD	ALL	De-Normalized	0.99947	0.997567	0.999684
923862	BD	ALL	De-Normalized	0.997682	0.991213	0.99695
998757	BD	ALL	De-Normalized	0.99737	0.988199	0.997415

Table 7.19 Most predictive model for all user

At table 7.20, we show for all model users the most predictive sensor model and its Accuracy, Precision and Recall values.

ID	Model	Flow	Data	Accuracy	Precision	Recall
151985	DF	MAG	De-Normalized	0.998633	0.997197	0.999844
186676	DF	MAG	De-Normalized	0.996185	0.986931	0.991595
219303	BD	MAG	De-Normalized	0.994998	0.97564	0.9824
240168	BD	MAG	De-Normalized	0.997416	0.985944	0.997499
264325	BD	MAG	De-Normalized	0.988493	0.966474	0.989575
352716	BD	MAG	De-Normalized	0.996658	0.986258	0.995729
472761	BD	MAG	De-Normalized	0.992713	0.9694	0.980199
501973	BD	MAG	De-Normalized	0.993339	0.961979	0.975746
527796	DF	MAG	De-Normalized	0.990525	0.972644	0.990579
556357	DF	MAG	De-Normalized	0.997462	0.989403	0.984621
663153	DF	MAG	De-Normalized	0.995501	0.981069	0.986168
733162	BD	MAG	De-Normalized	0.992866	0.96927	0.987519
745224	DF	MAG	De-Normalized	0.991516	0.979207	0.986838
815316	DF	ACC	De-Normalized	0.997381	0.989046	0.996697
841866	BD	MAG	Normalized	0.9901	0.96358	0.97012
862649	DF	MAG	De-Normalized	0.994157	0.973599	0.988877
872895	DF	MAG	De-Normalized	0.996448	0.980545	0.985682
897652	BD	MAG	De-Normalized	0.997085	0.986842	0.998164
923862	BD	MAG	De-Normalized	0.992026	0.973724	0.985712
998757	DF	MAG	De-Normalized	0.995247	0.983171	0.990767

Table 7.20 Most predictive Sensor model for all users

At Table 7,21 we show the sensors with highest scored model, and the same model with diffrent sensors. For example, for user 745224 DF with De-normalized data with MAG fields gets hishest accurcy value. So we show DF with De-normalized data for other two sensors.

ID	Model	Data	Flow	Accuracy	Flow(2)	Accuracy (2)	Flow (3)	Accuracy (3)
745224	DF	De-Normalized	MAG	0.991516	ACC	0.969815	GRY	0.906342
352716	BD	De-Normalized	MAG	0.996658	ACC	0.978078	GRY	0.917494
219303	BD	De-Normalized	MAG	0.994998	ACC	0.976587	GRY	0.937014
501973	BD	De-Normalized	MAG	0.993339	ACC	0.969966	GRY	0.945009
264325	BD	De-Normalized	MAG	0.988493	ACC	0.946867	GRY	0.86838

Table 7.21 Accuracy values for All sensors

At table 7.22, we show average values of Accuracy, Precision and Recall of all users for all models.

Table 7.22: All Results together.

8. CONCLUSION

In this paper; the data set of HMOG, which is a set of behavioural biometric features for continuous authentication of smartphone users, is used. The changes in the sensors in terms of acceleration, orientation and magnetic field are detected using different machine learning algorithms. Each data model aims to differentiate the real user of the mobile phone from non-users. The accuracy values of different algorithms with different data flows are presented. The results demonstrate the efficiency of the usage of sensors for continuous user authentication.

From three sensor Magnetometer in terms of accuracy gives best results but values for Accelerometer in terms of Accuracy are so close to Magnetometer Accuracy values. So we cannot easily say that which sensor performs better. But Gyroscope Accuracy values are lower than the Accuracy values of these two sensors.

Taking normalization a bit made Accuracy values lower. But here again the values of Accuracy for normalized and de normalized data are so close for same type of data flow. So we cannot easily say that normalization or de normalization of data affects Accuracy.

Algorithms strongly affects accuracy. BD and DF gives good result compared to SVM and LR. Here boosting and bagging algorisms archives better accuracy. We used linear kernel for SVM and lasso and ridge for logistic regression but two of them gave worse results compared to DF and BD. So we can easily say ensemble algorithms gives better performance.

Taking PCA a bit made Accuracy values lower. But here again the values of Accuracy for data with PCA and data without PCA are so close for same type of data flow. So we cannot easily say that taking PCA of data affects Accuracy.

9. FURTHER RESEARCH

In this experiment we examined different kind of machine learning algorithms for mobile phone user authentication. We used PCA and normalization for data manipulation moreover we used different data flows to see different behaviours. In our experiment, we did not measure how quickly our models detect a mobile phone users. We have very high accuracies for ensemble algorithms but we don't know how quickly these algorithms will detect a mobile phone users. So an android application can be done to detect how quickly these algorism performs. If the time for authentication is too slow these type of authentication will be useless.

Moreover, in real time we did not measure how much energy is required for training a model. We used 7 different kind of models and all of them has 9 data flows. But we don't know in real live how much energy will consume those $7 * 9 = 63$ models. And we don't know if the energy consumption will be enough for model training in real life. Additionally after model training, how much energy will be consumed for implementation phrase. If the energy consumption is too high for model training, these type of authentication will be useless. And also, after model training if the energy consumption is still too high for authentication again these type of attentions will be useless.

Additionally, to train a model we need about 1.2 GB of data. And when we run all models a model user about 7 GB of space is used. This is a bit high for authentication in mobile phones. So how much of data will be required for authentication in mobile phones. If the data is so abundant then there won't be enough disk space in mobile phones. Here both the space for data collection and space for training data should be considered. After collection of data there should be available space for training and for implementation phrase.

The final question is about required CPU and memory usage. To train such kind of models in mobile phone, there should be enough memory and CPU for training. When we try to implement such kind of models, current mobile phones may need extra memory or CPU space.

REFERENCES

[1] Portal, T.S. (2016) "Number of smartphone users world-wide from 2014 to 2020", online: **URL:** *https://www.statista.com/statistics/330695/number-of-smartphone-usersworldwide.*

[2] Sitova, Z., Sedenka, J., Yang, Q., Peng, P., Zhou, G., Gasti, P., Balagani, K.S. (2016) "HMOG: New Behavioral Biometric Features for Continuous Authentication of Smartphone Users." *IEEE Transactions on Information Forensics and Security* **11(5)**: 877-892.

[3] Patel, V.M, Chellappa, R., Chandra, D., Barbello, B. (2016) "Continuous User Authentication on Mobile Devices: Recent progress and remaining challenges." *IEEE Signal Processing Magazine* **33(4)**, 49-61, doi:10.1109/MSP.2016.2555335.

[4] Alzubaidi, A., Kalita, J. (2016) "Authentication of Smartphone Users Using Behavioral Biometrics." *IEEE Communications Surveys & Tutorials* **18(3)**: 1998-2026.

[5] De Luca, A., Brudy, F., Linder, C., Hang, A., Hussman, H. (2012) "Touch me ones and I know it's you!: Implicit Authentication based on touch screen patterns" *ACM Annual Conf. Hum. Factors Computer System*: 987–996.

[6] Zeng, N, Huang, H., Bai, K., Wang, H. (2014) "You are how you touch: User verification on smartphones via tapping behaviors." *IEEE Int. Conference Networks and Protocols (ICNP)*: 221–232.

[7] Zhao, X, Feng, T., Shi, W. (2013) "Continuous mobile authentication using a novel graphic touch gesture feature." *IEEE 6th International Conference Biom: Theory Appl. Syst.(BTAS)*: 1–6.

[8] Antal, M., Szabo, L.,Z. (2015) "Biometric authentication based on touchscreen swipe patterns." *9th International Conference Interdisciplinarity in Engineering*: 862-869.

[9] Buriro, A., Crispo, B., Conti, M. (2018) "A bimodal behavioral biometric-based user authentication scheme for smartphones." *Journal of Information Security and Applications:* 89-103.
[10] Li, Y., Hu, H., Zhao, G. (2018) "Sensor-Based Continuous Authentication Using Cost-Effective Kernel Ridge Regression." *Digital Object Identifier 10.1109/ACCESS.2018.2841347:*

[11] Li, G., Bours, P. (2018) "Studying WiFi and Accelerometer Data Based Authentication Method on Mobile Phones." *ICBEA '18, May 16-18, 2018, Amsterdam, Netherlands. https://doi.org/10.1145/3230820.3230824:*

[12] Yuksel, A., S., Senel, F., A., Cankaya, I., A. (2018) "Classification of Soft Keyboard Typing Behaviors Using Mobile Device Sensors with Machine Learning." *Arabian Journal for Science and Engineering https://doi.org/10.1007/s13369-018-03703-8:*

[13] Two-Class Logistic Regression **URL:** [https://docs.microsoft.com/en](https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/two-class-logistic-regression)[us/azure/machine-learning/studio-module-reference/two-class-logistic-regression](https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/two-class-logistic-regression)

[14] James G., Witten D., Hastie T., Tibshirani R. "An Introduction to Statistical Learning" 219-227 (2013)

[15] James G.,Witten D., Hastie T., Tibshirani R. "An Introduction to Statistical Learning" 215-219 (2013)

[16] Broyden Fletcher Goldfarb Shanno algorithm URL:

https://en.wikipedia.org/wiki/Broyden-Fletcher-Goldfarb-Shanno_algorithm

[17] Xiao, Y., Wei, Z., Wang, Z. (2008) "A limited memory BFGS-type method for large-scale unconstrained optimization." *Computers and Mathematics with Applications 56:* 1001-1009

[18] Two-Class Support Vector Machine **URL:** [https://docs.microsoft.com/en](https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/two-class-support-vector-machine)[us/azure/machine-learning/studio-module-reference/two-class-support-vector-machine](https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/two-class-support-vector-machine)

[19] James G.,Witten D., Hastie T., Tibshirani R. "An Introduction to Statistical Learning" 337-268 (2013)

[20] Alpaydın, E. "Introduction to Machine Learning" 218-225 (2004)

[21] Two-Class Locally Deep Support Vector Machine **URL:** https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/twoclass-locally-deep-support-vector-machine

[22] Two-Class Boosted Decision Tree **URL:** [https://docs.microsoft.com/en](https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/two-class-boosted-decision-tree)[us/azure/machine-learning/studio-module-reference/two-class-boosted-decision-tree](https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/two-class-boosted-decision-tree)

[23] Gradient boosting. **URL:** https://en.wikipedia.org/wiki/Gradient_boosting

[24] Bagging https://en.wikipedia.org/wiki/Bootstrap_aggregating

- [25] Two-Class Decision Forest **URL:** [https://docs.microsoft.com/en-us/azure/machine](https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/two-class-decision-forest)[learning/studio-module-reference/two-class-decision-forest](https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/two-class-decision-forest)
- [26] HMOG data **URL:** <http://www.cs.wm.edu/~qyang/hmog.html>
- [27] Compute absolute time stamp **URL**: https://www.timestampconvert.com/

APPENDICES

Appendix A

TABLE_ACCELEROMETER_STR:

STR_VAL varchar(2000)

TABLE_ACTIVITY:

TABLE_ACTIVITY_STR:

STR_VAL varchar(2000)

TABLE_GYROSCROPE:

TABLE_GYROSCROPE_STR:

STR_VAL varchar(2000)

TABLE_KEYPRESS:

TABLE_KEYPRESS_STR:

STR_VAL varchar(2000

TABLE_MAGNETOMETER: SYSTIME numeric(20,0) NULL , EVENTTIME numeric(20,0) NULL , ACTIVITY_ID numeric(20,0) NULL X numeric(15,10) NULL , Y numeric(15,10) NULL Z numeric(15,10) NULL M numeric(15,10) NULL, PHONE_ORIENTATION numeric(2,0) NULL

TABLE_MAGNETOMETER_STR

STR_VAL varchar(2000)

TABLE_ONEFINGERTOUCH

NULL $\overline{}$

PHONE_ORIENTATION numeric(2,0) NULL

TABLE_ONEFINGERTOUCH_STR

STR_VAL varchar(2000)

TABLE_PINCH

TABLE_PINCH_STR

STR_VAL varchar(2000)

TABLE_SCROLL

CURRENT_Y numeric(15,10) NULL CURRENT_PRESSURE numeric(15,10) NULL CURRENT_SIZE numeric(15,10) NULL , DISTANCE_X numeric(15,10) NULL, DICTANCE_Y numeric(15,10) NULL, PHONE_ORIENTATION numeric(2,0) NULL TABLE_SCROLL_STR

(STR_VAL varchar(2000)

TABLE_STROKE

SYSTIME numeric(20,0) NULL BEGINTIME numeric(20,0) NULL , ENDTIME numeric(20,0) NULL , ACTIVITY_ID numeric(20,0) NULL SCROLL_ID numeric(20,0) NULL , START_ACTION_TYPE numeric(2,0) NULL START_X numeric(15,10) NULL START_Y numeric(15,10) NULL , START_PRESSURE numeric(15,10) NULL START_SIZE numeric(15,10) NULL END_ACTION_TYPE numeric(2,0) NULL END_X numeric(15,10) NULL END_Y numeric(15,10) NULL END_PRESSURE numeric(15,10) NULL END_SIZE numeric(15,10) NULL, SPEED_X numeric(15,10) NULL , SPEED_Y numeric(15,10) NULL , PHONE_ORIENTATION numeric(2,0) NULL

TABLE_STROKE_STR

STR_VAL varchar(2000)

TABLE_TOUCH

TABLE_TOUCH_STR

STR_VAL varchar(2000)

Appendix B

begin

declare v_root varchar(200); declare v_text varchar(200); declare v_file varchar(200); declare v_user_count numeric(10);
declare user_counter numeric(10);
declare session_counter numeric(2); declare v_usr_id numeric(6);

declare SQL_STR varchar(2000);

set v_root = '/data/hmog_dataset/public_dataset/';

CREATE TABLE #user_ids (usr_id NUMERIC(6));

insert into #user_ids (usr_id) values(100669); insert into #user_ids (usr_id) values(151985); -- ... -- insert all user ids

--- ...
commit;

select count() into v_user_count from #user_ids;

select ROWID(usr1) as IDX,usr_id into #user_ids2 from #user_ids as usr1;

commit; set user_counter $= 1$; user_loop: loop

if user_counter $> v$ user_count then leave user_loop end if;

select usr_id into v_usr_id from #user_ids2 where IDX = user_counter; set session_counter = 1 : session_loop: loop

if session_counter > 24 then leave session_loop end if;

set v_text =

v_root \parallel convert(varchar(10),v_usr_id) + '/' \parallel convert(varchar(10),v_usr_id) \parallel '/' \parallel
convert(varchar(10),v_usr_id) \parallel '_session_' \parallel convert(varchar(2),session_counter) \parallel '/';

if session_counter = 1 then
message v _text type info to client; end if;

begin

```
set v_file = v_text || 'Activity.csv';
SET SQL_STR = 'LOAD table TABLE_ACTIVITY ' 
||'( '
                            ||' ID '','','
 ||' SUBJECT_ID '','','
||' SESSION_NUMBER '','','
||' START_TIME '','','
 ||' END_TIME '','','
||' RELATIVE_START_TIME '','','
||' RELATIVE_END_TIME '','','
||' GESTURE_SCENARIO '','','
 ||'              TASK_ID  ",",'<br>||'                  CONTENT_ID "\\x0a") '
 ||' FROM ''' || v_file ||''''<br>||' QUOTES OFF '<br>||' ESCAPES OFF; ';
execute immediate SQL_STR;
```
COMMIT;

```
COMMIT;
```
exception when others then

```
set v_file = v_text || 'Activity.csv';
SET SQL_STR = 'LOAD table TABLE_ACTIVITY ' 
||'( '
                       ||' ID '','','
```

```
||' SUBJECT_ID ",",'<br>||' SESSION_NUMBER ",",<br>||' START_TIME ",",'<br>||' END_TIME ",",'
||' RELATIVE_START_TIME '','','
||' RELATIVE_END_TIME '','','
||' GESTURE_SCENARIO '','','
||' TASK_ID '','','
                             \overline{L} CONTENT_ID "\\x0d") '
\parallel" || FROM \parallel"' || v_file ||'
```

```
||' QUOTES OFF ' 
||' ESCAPES OFF; ';
execute immediate SQL_STR;
```

```
COMMIT;
```

```
end;
```

```
begin
                         set v_file = v_text || 'Accelerometer.csv';
SET SQL_STR = 'load table TABLE_ACCELEROMETER '
                       ||'( '<br>||'( '<br>||'
                         ||' SYSTIME '','','
||' EVENTTIME '','','
||' ACTIVITY_ID '','','
                         ||' X '',','<br>||' Y '',',<br>||' Z '','',
                                               PHONE<sub>_</sub>ORIENTATION "\rangle x0a")'
                         ||' FROM ''' || v_file ||''''<br>||' QUOTES OFF '<br>||' ESCAPES OFF; ';
                        execute immediate SQL_STR;
                        COMMIT;
                        exception
                           when others then
                                                                         set v_file = v_text || 'Accelerometer.csv';
                                                                         SET SQL_STR = 'load table TABLE_ACCELEROMETER '
                                                                        ||'( '
                                                                          ||' SYSTIME '','','
||' EVENTTIME '','','
||' ACTIVITY_ID '','','
                                                                          \begin{matrix} \| \| & & X \ \| \ \|' & & Y \ \| \end{matrix}^n\overline{z}\sum_{i=1}^{n}, PHONE_ORIENTATION \sqrt[n]{x0d}||' FROM ''' || v_file ||''''
                                                                         ||' QUOTES OFF ' 
                                                                         ||' ESCAPES OFF; ';
                                                                         execute immediate SQL_STR;
                                                                         COMMIT<sup>.</sup>
                         set v_file = v_text || 'Gyroscope.csv';
SET SQL_STR = 'load table TABLE_GYROSCROPE '
                        \parallel ( '||' SYSTIME '','','
||' EVENTTIME '','','
||' ACTIVITY_ID '','','
                         \begin{matrix} \| \| \ \| \ \| \ \| \ \| \end{matrix} \qquad \qquad \begin{matrix} \text{X} & \text{``}, \text{''}, \ \text{Y} & \text{''}, \text{''}, \ \text{Y} & \text{''}, \text{''}, \ \text{Z} & \text{''}, \text{''}, \end{matrix}PHONE_ORIENTATION "\\x0a") '
                         ||' FROM ''' || v_file ||''''<br>||' QUOTES OFF '<br>||' ESCAPES OFF; ';
                         execute immediate SQL_STR;
COMMIT;
                        exception
                           when others then
                                                                          set v_file = v_text || 'Gyroscope.csv';
SET SQL_STR = 'load table TABLE_GYROSCROPE '
                                                                        ||'( '
                                                                          ||' SYSTIME ",",'<br>||' EVENTTIME ",",'<br>||' ACTIVITY_ID ",",'<br>||' X ",",'<br>||' Y ",",'
                                                                                                 \overline{z} "
                                                                                                 PHONE_ORIENTATION "\\x0d")
                                                                          ||' FROM ''' || v_file ||''''
||' QUOTES OFF ' 
                                                                         ||' ESCAPES OFF; ';
                                                                          execute immediate SQL_STR;
COMMIT;
end;
begin
                         set v_file = v_text || 'Magnetometer.csv';
SET SQL_STR = 'load table TABLE_MAGNETOMETER '
                       \frac{1}{\|C\|}||' SYSTIME '','','<br>||' ACTIVITY_ID '','',<br>||' ACTIVITY_ID ','',<br>||' Y '',','<br>||' Z ',',',
                                                HONE_ORIENTATION "\\x0a") '
                         ||' FROM ''' || v_file ||''''<br>||' QUOTES OFF '<br>||' ESCAPES OFF; ';
                        execute immediate SQL_STR;
                        COMMIT;
                        exception
                          when others then
```

```
end;
begin
```

```
set v_file = v_text || 'Magnetometer.csv';
SET SQL_STR = 'load table TABLE_MAGNETOMETER '
```

```
\begin{array}{l} \|C\| \\ \|T\| \\ \|T\| \end{array}||' SYSTIME '','','
||' EVENTTIME '','','
||' ACTIVITY_ID '','','
   ||' X '',',<br>||' Y '',,<br>||' Z '',',
                                                  \sum_{i=1}^{n}, \sum_{i=1}^{n}, \sum_{i=1}^{n} |' FROM ''' || v_file ||''''
||' QUOTES OFF ' 
 ||' ESCAPES OFF; ';
```

```
execute immediate SQL_STR;
COMMIT;
```
end;

begin

```
set v_file = v_text || 'TouchEvent.csv';<br>SET SQL_STR = 'load table TABLE_TOUCH '
||'( '
 ||' BVSTIME '','',<br>||' EVENTTIME '',','<br>||' ACTIVITY_ID '','',<br>||' POINTER_ID '','',<br>||' ACTION_ID '',','<br>||' ACTION_ID '',','
 ||' Y '','','
||' PRESSURE '','','
||' CONTACT_SIZE '','','
||' PHONE_ORIENTATION ''\\x0a'') ' 
 ||' FROM ''' || v_file ||''''
 ||' QUOTES OFF ' 
 ||' ESCAPES OFF; ';
```

```
execute immediate SQL_STR;
COMMIT;
```

```
exception
 when others then
```

```
set v_file = v_text || 'TouchEvent.csv';<br>SET SQL_STR = 'load table TABLE_TOUCH ||'( '
```

```
||' SYSTIME '','','
||' EVENTTIME '','','
||' ACTIVITY_ID '','','
||' POINTER_COUNT '','','
||' POINTER_ID ",",<br>||' ACTION_ID ",",'<br>||' X ",",'<br>||' Y ",",'
                          PRESSURE ",","
||' CONTACT_SIZE '','','
||' PHONE_ORIENTATION ''\\x0d'') ' 
||' FROM ''' || v_file ||''''<br>||' QUOTES OFF '<br>||' ESCAPES OFF; ';
```
execute immediate SQL_STR; COMMIT;

end;

```
begin
```

```
set v_file = v_text || 'KeyPressEvent.csv';
SET SQL_STR = 'load table TABLE_KEYPRESS '
||'( '
 ||'     SYSTIME ",",'<br>||'     PRESSTIME ",",'<br>||'      RCTIVITY_ID ",",'<br>||'      KEY_ID ",",',<br>||'      KEY_ID ",",',<br>||'      PHONE_ORIENTATION "\\x0a") '
 ||' FROM ''' || v_file ||''''<br>||' QUOTES OFF '<br>||' ESCAPES OFF; ';
execute immediate SQL_STR;
COMMIT;
exception
   when others then
                                                        set v_file = v_text || 'KeyPressEvent.csv';
SET SQL_STR = 'load table TABLE_KEYPRESS '
                                                      ||'( '
                                                        ||' SYSTIME '','','
||' PRESSTIME '','','
||' ACTIVITY_ID '','','
||' PRESSTYPE '','','
                                                        ||' KEY_ID '','','
||' PHONE_ORIENTATION ''\\x0d'') ' 
                                                        ||' FROM ''' || v_file ||''''<br>||' QUOTES OFF '<br>||' ESCAPES OFF; ';
                                                       execute immediate SQL_STR;
```
COMMIT;

end;

```
set v_file = v_text || 'OneFingerTouchEvent.csv';
SET SQL_STR = 'load table TABLE_ONEFINGERTOUCH '
||'( '
 ||' SYSTIME ",",'<br>||' PRESSTIME ",",'<br>||' ACTIVITY_ID ",",<br>||' TAP_TYPE ",",'
 ||' ACTION_TYPE ",",<br>||' X ",",
 ||' Y '','','
||' PRESSURE '','','
||' CONTACT_SIZE '','','
||' PHONE_ORIENTATION ''\\x0a'') ' 
||' FROM ''' || v_file ||''''
  ||' QUOTES OFF ' 
||' ESCAPES OFF; ';
 execute immediate SQL_STR;
COMMIT;
exception
    when others then
                                                  set v_file = v_text || 'OneFingerTouchEvent.csv';
SET SQL_STR = 'load table TABLE_ONEFINGERTOUCH '
                                                ||'( '
                                                  ||' SYSTIME ",",'<br>||' PRESSTIME ",",'<br>||' ACTIVITY_ID ",",<br>||' TAP_TYPE ",",'
                                                  ||' ACTION_TYPE '','','
||' X '','','
||' Y '','','
                                                  ||' PRESSURE '','','
||' CONTACT_SIZE '','','
||' PHONE_ORIENTATION ''\\x0d'') ' 
                                                 ||' FROM ''' || v_file ||''''
                                                  ||' QUOTES OFF ' 
||' ESCAPES OFF; ';
                                                 execute immediate SQL_STR;
                                                 COMMIT;
 set v_file = v_text || 'PinchEvent.csv';
SET SQL_STR = 'load table TABLE_PINCH '
\prod_{i=1}^n||' SYSTIME '','','
||' PRESSTIME '','','
||' ACTIVITY_ID '','','
||' EVENT_TYPE '','','
||' PINCH_ID '','','
||' TIME_DELTA '','','
 ||' FOCUS_X ",",<br>||' FOCUS_Y ",",
 ||' SPAN '','','
||' SPAN_X '','','
||' SPAN_Y '','','
 ||' SCALE_FACTOR '','','
||' PHONE_ORIENTATION ''\\x0a'') ' 
 ||' FROM ''' || v_file ||''''
||' QUOTES OFF ' 
 ||' ESCAPES OFF; ';
execute immediate SOL_STR;
COMMIT;
 exception
 when others then
                                                 set v_file = v_text || 'PinchEvent.csv';
                                                 SET SQL_STR = 'load table TABLE_PINCH '
                                                 ||'( '
                                                  ||' SYSTIME '','','
||' PRESSTIME '','','
||' ACTIVITY_ID '','','
||' EVENT_TYPE '','','
||' PINCH_ID '','','
||' TIME_DELTA '','','
                                                  ||' FOCUS_X '','','
||' FOCUS_Y '','','
                                                  ||' SPAN '','','
||' SPAN_X '','','
||' SPAN_Y '','','
||' SCALE_FACTOR '','','
||' PHONE_ORIENTATION ''\\x0d'') ' 
                                                  ||' FROM ''' || v_file ||''''<br>||' QUOTES OFF '<br>||' ESCAPES OFF; ';
                                                 execute immediate SQL_STR;
                                                 COMMIT;
```

```
end;
```
begin

end; begin

```
begin
```

```
set v_file = v_text || 'ScrollEvent.csv';
SET SQL_STR = 'load table TABLE_SCROLL '
||'( '
 ||' SYSTIME '','','
||' BEGINTIME '','','
 ||' CURRENTTIME ",",'<br>||' ACTIVITY_ID ",",'<br>||' SCROLL_ID ",",'<br>||' START_X ",",'<br>||' START_X ",",'
 ||' START_Y '','','
||' START_PRESSURE '','','
||' START_SIZE '','','
||' CURRENT_ACTION_TYPE '','','
 ||' CURRENT_X '','','
||' CURRENT_Y '','','
||' CURRENT_PRESSURE '','','
||' CURRENT_SIZE '','','
 ||' DISTANCE_X '','','
||' DICTANCE_Y '','','
                         ||' PHONE_ORIENTATION ''\\x0a'') ' 
 \parallel' FROM \parallel" \parallel v_file \parallel"
  ||' QUOTES OFF ' 
 ||' ESCAPES OFF; ';
```
||'('

execute immediate SQL_STR; COMMIT; exception when others then

> set v_file = v_text || 'ScrollEvent.csv'; SET SQL_STR = 'load table TABLE_SCROLL ' ||' SYSTIME '','',' ||' BEGINTIME '','',' ||' CURRENTTIME ",",'
||' ACTIVITY_ID ",",'
||' START_ACTION_TYPE ",", ||' START_X '','',' ||' START_Y '','',' ||' START_PRESSURE '','',' ||' START_SIZE '','',' ||' CURRENT_ACTION_TYPE '','',' ||' CURRENT_X '','',' ||' CURRENT_Y '','',' ||' CURRENT_PRESSURE '','',' ||' CURRENT_SIZE '','',' ||' DISTANCE_X '','',' ||' DICTANCE_Y '','',' ||' PHONE_ORIENTATION ''\\x0d'') ' ||' FROM ''' || v_file ||'''' ||' QUOTES OFF ' ||' ESCAPES OFF; ';

execute immediate SQL_STR; COMMIT;

end;

begin

```
set v_file = v_text || 'StrokeEvent.csv';
SET SQL_STR = 'load table TABLE_STROKE '
||'( '
 ||' BEGINTIME '','',<br>||' BEGINTIME '',','<br>||' ACTIVITY_ID '','',<br>||' START_ACTION_TYPE '',',<br>||' START_X '','',<br>||' START_PRESSURE '','',<br>||' START_SIZE '',','
 \parallel<br>\parallel END_ACTION_TYPE ",",'<br>\parallel END X ",",'
 ||' END_X '','','
||' END_Y '','','
||' END_PRESSURE '','','
 ||' END_SIZE '','','
||' SPEED_X '','','
||' SPEED_Y '','','
||' PHONE_ORIENTATION ''\\x0a'') ' 
 ||' FROM ''' || v_file ||''''
||' QUOTES OFF ' 
||' ESCAPES OFF; ';
execute immediate SQL_STR;
COMMIT;
exception
   when others then
                                                            set v_file = v_text || 'StrokeEvent.csv';
SET SQL_STR = 'load table TABLE_STROKE '
                                                          \frac{1}{\| \cdot \|}||' SYSTIME '','','
||' BEGINTIME '','','
||' ENDTIME '','','
||' ACTIVITY_ID '','','
||' START_ACTION_TYPE '','','
||' START_X '','','
||' START_Y '','','
```
 $\begin{tabular}{ll} || & \multicolumn{2}{c}{\textbf{START_PRESSURE "",''}} \\ || & \multicolumn{2}{c}{\textbf{START_SISE "',''}} \\ ||' & \multicolumn{2}{c}{\textbf{EXP_ACTION_TYPE "',''}} \\ ||' & \multicolumn{2}{c}{\textbf{END_X "',''}} \\ ||' & \multicolumn{2}{c}{\textbf{END_Y "',''}} \\ ||' & \multicolumn{2}{c}{\textbf{END_SIZE "',''}} \\ ||' & \multicolumn{2}{c}{\textbf{SPED_X "',''}} \\ ||' & \multicolumn{2}{c}{\textbf{SPEED_X "',''}} \\ ||' & \multicolumn{2}{c$ ||' FROM ''' || v_file ||''''
||' QUOTES OFF '
||' ESCAPES OFF; ';

execute immediate SQL_STR; COMMIT;

message SQL_STR type info to client;

end;

set session_counter = session_counter+1

end loop session_loop;

set user_counter = user_counter+1;

end loop user_loop;

exception when others then

set sp_sqlstate = sqlstate;
set sp_sqlcode = sqlcode;
rollback work;
signal sp_exception;
return 1
end;

BIOGRAPHICAL SKETCH

Nurhak Karakaya was born in Kars 1982. He graduated from Milliyet Anadolu High School at 2001. Same year he started Computer Engineering (B.S) at Bogazici University. He graduated from Bogazici University at 2006. At 2017 he started MEF University on Big Data Analytics (M.S.), his first thesis was about "Carbon Price Forecasting". He graduated M.S degree from MEF University at 2018. Same year, he started his second thesis in Galatasaray University. He is working as a computer engineer in banking sector.

