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TERMINOLOGY 

 

 

 

Time Variables : The time variables that are coming from touch event table, 

activity table or calculated time variables from sensor system 

time.  

Numeric Variables : The variables that are calculated using X,Y,Z and M columns of 

senssor tables. 

Binary Variables : The variables that are calculted from categorical variables. 

USER_TABLE : The table that is calculated by combaning three sensor tables, 

touch event tables and activivty tables. This table contains the 

new calculated numerical variables and time variables. This table 

contains 100 users with their own records. 

User  : An attender and all calculated fields that belongs to the same 

attender. A user comes from USER_TABLE. And in 

USER_TABLE there are 100 users. 

MODEL_TABLE  :The table that contains records which has target attribute. Target 

attribute contains USER labeled records whose values come from 

same attender and NO_USER labeled records whose valuse come 

from other athenders. 

Model User  : It is a combination of user and non user records. It gets all data 

from a user and 500.000 records from other users. 

USER / NO USER  : In MODEL_TABLE we created an attribute named TARGET. If 

the records come from the user that we want to authenticate then 

we set TAGET value as USER. If the records come from other 

users then we labeled those records as NO_USER in TARGET 

attribute. 

Experiment : Experiment is also used for Microsoft Azure  code part. 
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ABSTRACT 

 

 

 

In this paper, we use Hand Movement Orientation and Grasp (HMOG) sensor data to 

authenticate smart phone users. The way a user holds, grasps a mobile phone or touches 

to it are all key factors for authentication. At the moment of a user makes an event on 

his/her smart phone, three sensors automatically collect data about magnitude, angular 

speed and acceleration. Moreover, touching and holding events also produce data about 

pressure and coordinates. In this paper, we build four types of machine learning 

algorithms (Decision Forest, Boosted Decision Tree, Support Vector Machine, and 

Logistic Regression) to predict user authentication. The data used in this experiment 

(HMOG) are collected from 100 attenders. We compare the results of the algorithms and 

for our scenario, we show that boosted decision tree algorithm with de normalized data 

gives the results with highest accuracy. 
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ÖZET 

 

 

 

Bu makalede, El Hareketi Yönlendirme ve Kavrama (EHYK) algılayıcı verilerini 

kullanarak akıllı telefon kullanıcılarının kimliklerini doğrulamaya çalışmaktayız. Bir 

kullanıcının akıllı telefonunu tutma şekli, kaldırma hızı / döndürme hızı, ya da telefonunu 

kavraması veya ona dokunması, kimlik doğrulama için anahtar faktörlerdir. Cep 

telefonumuzu elimize alıp kullanmaya başladığımızda; üç algılayıcı otomatik olarak 

büyüklük, açısal hız ve ivme hakkında bilgi toplar. Ayrıca, telefona dokunmamız, harflere 

basmamız ya da ekranda elimizi oynatmamız da veri üretir. Bu makalede, telefonda yer 

alan algılayıcıların okuduğu bilgilerden faydalanıp çeşitli makina öğrenme algoritmaları 

kullanarak kimlik tanımaya çalıştık. Dört tür makine öğrenme algoritması kullandık. 

Bunlar: Karar Ormanı, Artırılmış Karar Ağacı, Destek Vektör Makinesi ve Lojistik 

Regresyon gibi algoritmalardır. Bu deneyde kullanılan veriler (EHYK) 100 mobil cihaz 

kullanıcısından toplanan algılayıcı verilerdir. Yaptığımız çalışmalar sonrasında, 

Artırılmış Karar Ağacı’nın normalize edilmemiş veri ile en yüksek kesinlik değeri 

verdiğini gördük.  
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1. INTRODUCTION 

 

 

 

Statistics from 2016 [1] show that from 2 to 2.5 billion people use smartphones. Same 

research also shows that smartphones are not used just for calling and texting but also for 

looking for a job, finding a date, reading a book or making an online shopping. Online 

banking, mailing, playing games can also be added to this list. Same Research Center 

survey found that 28% of U.S. smartphone owners say they do not use a screen lock or 

other features to secure their phone. 14% say they never update their phone’s operating 

system, while 10% say they do not update the apps on their phone. With combining those 

two analyses, securing mobile devices is a main security challenge, because it depends 

on human attitude or preferences to take necessary security precautions. Regarding to this 

behavior, researches which focus on passive security are gaining importance to answer 

questions about how to solve those security challenges. Hence, the main research 

questions that we focus on are as follows: 

 

• Is it possible to implement a continuous authentication procedure into mobile 

devices to distinguish whether the original owner is using or not by analyzing behavioral 

biometric data?, and 

• Which machine learning algorithm(s) and feature set(s) will be most accurate to 

distinguish true owner? Can we also use artificial neural networks to avoid manual feature 

extraction, or will it be expensive in manner of resource consumption? 

 

In current mobile phone structure, there are different kinds of user authentication methods 

to prevent unauthorized accesses. Some of them are authentication with fingerprint, text 

passwords and crossing shapes. When a user use such type of  authentication methods, he 

or she should remember the crossing shapes or the paswords to access his/her mobile 

phone. And also, the user should cange the passwords in some time interval so that he or 

she can make his/her mobile phone more secure. In some cases, these authentication 
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methods can still be insufficient to prevent unauthorized entry. Besides, some users can 

keep their mobile phone in available mode for long time. Therefore, in near future, we 

believe that several additional techniques need to be proposed to prevent unauthorized 

accesses. 

 

In this paper, we aim to differentiate mobile phone user by using Hand Movement, 

Orientation, and Grasp (HMOG) data, which are collected during experiments [2],[26]. 

In these experiments [2], some kind of event and sensor data from attenders of the 

experiment is recorded. The recorded data in experiment [2] contains: User information, 

event information, and information from three sensors: Accelerometer (measures 

acceleration minus Gx), Gyroscope (measures angular speed) and Magnetometer 

(measures ambient magnetic field). For each sensor, X, Y and Z coordinate values and 

time of these values are stored. For this paper, we also created a magnitude metric, which 

is the square root of sum of squares of X, Y and Z (
2 2 2

X Y Z  ).  

 

We proposed algorithms to identify and continuously authenticate a smart phone user by 

analysing his/her previous data, in order to prevent unauthorized entry to his/her mobile 

phone. We used Microsoft Azure Machine Learning platform for building our models. 

Decision Forest (DF), Boosted Decision Tree (BD), Support Vector Machine (SVM) and 

Logistic Regression (LR) are selected as algorithms. In each of our experiments, we used 

two-class models, which is different from [2], where one-class models are used 

 

After presenting related works in Section 2, in Section 3, we define project methodology 

together with the project motivation.  In section 4, we show the data collection steps for 

HMOG. In Section 5, we represent data cleaning and data preparation process. Section 6 

introduces the proposed model and Section 7 includes the results and related discussion. 
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2. RELATED WORK 

 

 

 

Authentication is the process of validating the true user of a system. There are three main 

approaches to provide authentication. First and the most commonly used one on mobile 

devices is knowledge-based authentication. This technique is based on using a unique and 

private information which is expected to be known only by the user. This type of 

authentication mechanism could be a password, an id number or a secret security 

question. The second one is object-based authentication. The object-based authentication 

is based on possession of a distinguishing physical object. A security token, an id card or 

another trusted object can be used. The third one is biometrics. Biometrics are based on 

an individual’s characterized physical or behavioral attributes. Common examples are 

fingerprints, keystroke dynamic models of the owner of the device.  

 

There are two survey papers [3, 4] that investigate the use of biometrics for continuous 

authentication on smart phones. In [3], it was emphasized that sensors such as camera, 

microphone, etc. can be used to collect physical data, while components such as 

accelerometers, gyroscopes, touch screens can be used to collect behavioural biometric 

data such as walking, screen touch gestures, and hand gestures. In the other review paper 

[4], the studies in the literature were examined in terms of the type and size of data 

collected, classifiers used in identification, and results obtained. We should note that these 

papers also investigate the use of physical biometrics for authentication, but here, we 

specifically focus on studies using behavioural biometrics. 

 

Touch screens are used as input medium on a great majority of smartphones. A touch 

screen is an electronic visual display for inputs and outputs. By applying classification 

algorithms to the data collected from touch- screen interactions of users such as micro 

movements, pressure, finger movements, etc., it is possible to recognize authorized users. 

There exists various research that focus on touch screen that is based authentication in the 
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literature. In these researches, password patterns [4], tapping behavior [5], touch gestures 

[6][7][8] etc. are examined for the purpose of creating a model to decide whether user is 

authorized or not. In [8], touch screen data of 58 attenders were used and for 

authentication, they also used two class models like Random Forest, k-NN and Support 

Vector Machine. Data collection for [8] is also similar to [2], in [8] they created an 

application and attenders did some tasks by scrolling and touching screen. In [9], they 

used sensor data from some attenders. The number of attenders in [9] was 85 and they 

collected data during sitting, walking or standing. In [9], they claim that every user has a 

different locking type and different dragging type of the phone to ears.  In [10], they used 

kernel based algorithms for sensor data. In [11], they used Accelerometer data and Wi-Fi 

networks for user authentication. In [12] they used just sensor data, and also they used 

support vector machine, random forest and k-NN as classification algorithms and used 

feature reduction. 
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3. PROPOSED METHODOLOGY 

 

 

We divide the overall experiment into three parts: Data collection and data discovery part, 

modeling part and comparing the results part. The first part is the data discovery part. In 

that part, we apply data preparation and analysis steps. For data discovery, we worked on 

Sybase IQ. For modeling and presentation part we worked on Microsoft Azure ML studio.  

 

The authors in [2] include user data to train their models. They use just the data of user 

that they want to authenticate, whereas we used both user and other users’ data to train 

our models. We used two class machine learning algorisms for our experiment. We used 

LR, SVM, BD and DF as our machine learning algorithms for our models. 

 

For each model, we supplied five different data flows: Data with only Accelerometer 

fields (ACC), data with only Gyroscope fields (GRY), data with only Magnetometer 

fields (MAG), all fields including three sensors and touch event (ALL), and thirty most 

predictive fields (30COLS). For all data flows, we used both normalized and de-

normalized data. Principal Component Analysis (PCA) is used for reducing 

dimensionality. We used ACC, GRY and MAG models in our experiments to see if any 

of the three sensors will be enough to catch a user. We also used 30 attributes to create a 

smaller model and we want to see if these 30 attributes will be enough to catch a user. 

 

For both normalized and de-normalized data, we use four ML algorithms: BD, DF, SVM 

and LR for prediction. We created separate experiments for each algorithm. Moreover, 

for BD, DF and LR, we used both normalized and de normalized data. For SVM, we only 

used normalized data. Therefore, totally we had 7 experiments (2 for BD, 2 for DF, 2 for 

LR and 1 for SVM) for our models. We used %70 of data as training and %30 for testing. 

The performances of the models are compared in terms of accuracy. 
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In each experiment, we had five data flows (Figure 3.1): ACC, GYR, MAG, ALL and 

30COLS. For 30COLS, we used Pearson correlation to find the most correlated attributes 

with target. For ACC, GYR, MAG and ALL, we also used PCA. However, for 30COLS 

we did not use PCA. Therefore, we had in total 9 different data supplies (ACC, ACC with 

PCA, GYR, GYR with PCA, MAG, MAG with PCA, ALL, ALL with PCA and 

30COLS). For PCA, we chose dimension count as: Attribute count / 3. For example, ALL 

has 168 variables, so in ALL with PCA we have 55 dimensions. We also used feature 

selection and correlation tests to eliminate some attributes from our models.  

 

For BD, SVM and LR, we made parameter tuning. We used 10-fold cross validation for 

tuning. Then, we used these parameter values for our models. Normally, we decided to 

tune parameters for all users then use those parameters for models. When we tuned 

parameters for first six users, we saw that the parameter values for those six users are 

same. So, we stopped tuning and used those six users’ parameters for all users. For DF 

we did not tune parameters. The overall methodology is illustrated in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Project information flow
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4. DATA COLLECTION 

 

 

 

The Hand Movement, Orientation, and Grasp (HMOG) data, which are collected during 

experiments [2], is available at [26], and it is about 6 GB of zipped files. In HMOG data 

collection experiment, there are 100 attenders all of them have same kind of mobile 

phones (Samsung Galaxy S4). All of the attenders do some tasks in 24 sessions. Each of 

these sessions are done in 5 to 15 minutes.  

 

In one session there are three tasks that an attender should do by using his/her mobile 

phone. The tasks are: reading documents, writing text, and navigation on Map. When 

doing these three tasks, the attenders do specific actions; such that they type massage, 

they scroll screen, they touch to screen, they press keys, etc. The attenders do their tasks 

on real time touches. When doing these tasks, the sensors and touch events data are 

recorded simultaneously with 100Hz reading speed. 

 

The experiments are done either by walking or by siting. After each experiment, 11 data 

files were created. These files keep activity and user information, event information, and 

information from three sensors. These files are: Accelerometer.csv, Activity.csv, 

Gyroscope.csv, KeyPressEvent.csv, Magnetometer.csv, OneFingerTouchEvent.csv, 

PinchEvent.csv, ScrollEvent.csv, StrokeEvent.csv, and TouchEvent.csv. Moreover in 

every sessions there are three files for questions. We loaded data files but did not work 

on question files. 

 

The sensor files are: Accelerometer.csv, Gyroscope.csv and Magnetometer.csv. The 

sensors detect any changes made in smart phone. The changes can be acceleration, 

orientation or magnetic field. Accelerometer measures acceleration and motions like 

shaking and rotating in smartphones. It detects acceleration in X, Y, Z coordinates; in 

other words, it detects the direction and position of the acceleration, without measuring 
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gravitational acceleration. On the other hand, gyroscope is a sensor that measures the 

orientation by using Earth gravity. It helps to determine which way a phone is oriented. 

Magnetometer measures the magnetic field, whom changes can be critical for smart phone 

users. Moreover, there are events that occur when you do something on smart phones: 

You touch your smartphone, you scroll downward or upward on your smart phone, you 

pinch your smart phone, you press a key, etc.  

 

 

As the next step, the data files are loaded to Sybase database. We prefer Sybase database 

because of the easiness of data manipulation in it. It enables creating temporary tables for 

data manipulations and gives good performance for aggregation functions. There are two 

points to consider when downloading files: firstly, some files have carriage return at the 

end of line, and secondly some files have new line at the end of line. We solved both 

problems in order not to miss any information. First of all, we downloaded all files to its 

own table. In total we have 10 tables: One for Activity, three for sensors and six for event 

tables. There are 100 attenders * each attenders has 24 sessions * in every session there 

are 10 files. So in total we loaded: 100 * 24 * 10 = 24000 files.  
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5. DATA DISCOVERY 

 

 

 

HMOG data [1] includes files for 100 different users and a pdf file that explains the 

structure of files. The files are in separate zip files, which needs to be extracted. The 

corrupted files constitute a minor part of the whole data. 

 

We created 10 tables to load data files to relational database. All of the created tables for 

our experiment are in Appendix A. There are two kinds of tables: tables with normal name 

and tables whose name ends wits “_STR”. There are corruptions in some files. So we first 

loaded these files as a complete string to a _STR table than manually converted data of 

those tables to our original format. So in total we have 20 table, 10 for original data and 

10 for error fixes. 

 

The data in files are formatted as coma separated. The end of line for files are not uniquely 

defined; some of them ends with carriage return, whereas the others with new line. We 

check for carriage return and new line. For one user, there are about 24 sessions. For some 

users the number of sessions are less than 24. In every sessions there are 10 files (three 

sensor files, one activity file and six event files). We created two loops and dynamic SQL 

to load files into Sybase database. The first loop reads the users, and the second loop reads 

the sessions. Appendix B shows the load codes for all tables. 

 

After loading all these files into the database tables, we checked data quality and data 

compliance issues. For data quality issues, we checked all tables one by one. For each 

column in a table; we checked: null count, not null count, ratios of null count, ratios of 

not null count, distinct count, max count and min count. 
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Additionally,  

 We controlled most frequently encountered values of a column.  

 We checked the values in files with the values in data description files. In some 

files there are values which are not in data description files.  

 We controlled the uniqueness of any column with respect to time variables.  

 We grouped column values with descending order to see where the data is 

cumulated.  

 

After data quality check our first problem is the uniqueness of data. We deleted duplicate 

rows from our original tables. Moreover, in some tables the sequence of columns are 

different from the structure of data description file. So we changed the column sequence 

and loaded files correctly.  

 

We did not delete null values. We find the position of null values in raw files and manually 

updated null values. Additionally, in data, we discovered that there are several values, 

which are beyond to the values in data description file. These are usually categorical 

values. We did not delete these rows instead we took them into account. 

 

Some numerical data were also null because the data file contains “E”. For example, -

some records contains values like that 3.0543262E-4. When we load these records to our 

tables, the records get null. For numerical columns we created codes to convert these 

types of nulls to normal data format. At Figure 5.1, we show a code part in which we 

convert a column into normal format.  
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Figure 5.1: A part of the code for converting data in Sybase table 

 

 

After data quality checks, we examined to the data compliance check.  

 We controlled if the activity table is compliant to sensor tables with respect to 

time and activity numbers.  

 We controlled if the sensor tables are also compliant to each other by time and 

activity id.  

 We controlled if the activity table is compliant to event tables.  

 

We represent an example of compliance test in Figure 5.2.  
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Figure 5.2: Compliance tests 

 

The results of compliance test is like that: 

 There are some activates in activity table in which there are no events for that 

activity. It is possible, because in some activates an attender does not need to 

scroll, or does not need to press a key.  

 There are no event in which the activity number is not in activity table. It is normal 

and as we expected. The activity table should cover all event tables. 

 There are sensor records whose ids are not in activity table. For our expectation 

activity table should cover sensor tables. So we did not expect such kind of 

problems. We called this problem as ACTIVITY_ID_PROBLEM 

The reason of ACTIVITY_ID_PROBLEM is that the activity id consist of SubjectID + 

Session_nember + ContentID + Runtime determined Counter value, at Table 4.1 we show 

all details. When we controlled the non-matching IDS, we see that they match for first 9 

digits: SubjectID + Session_nember + ContentID, but the “Runtime determined Counter 

value” differs for some records. To solve this problem, we created another 

ACTIVITY_ID and called it as ACTIVITY_ID_FIRST_9 which get the first nine digit 

of original activity ID. The first nine digit compose of “SubjectID + Session_nember + 

ContentID”. But in that case when we join tables with respect to 

ACTIVITY_ID_FIRST_9, some duplicate records and wrong matches occurred. So we 

decided to eliminate such type of records from our list. 

After analyzing our data, we saw that there are more touches than any other events. On 

average in a session, there are about 1741 one-finger touch events, 800 pinch events, 1741 

scroll events, 45 stroke and 4705 touch events. Moreover there are about 50800 sensor 

records for one session. Instead of creating a highly complex data with lots of null values 

in it, we only used touch table for our models. For our experiments, we use three sensor 

tables (Accelerometer, Gyroscope and Magnetometer), user and activity identification 

table (Activity) and touch event table (TouchEvent).  
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Activity table has 9 attributes, given in Table 5.1 in details. We give accelerometer table 

in Table 4.2. Gyroscope and Magnetometer tables have the same structure as Table 5.2. 

We computed M as magnitude, which is equal to 
2 2 2

X Y Z  , and M is not in the data 

file. Finally, we worked with touch event table, which has 11 attributes (Table 5.3). 

 

The time variables in tables are absolute time stamp, or relative time stamp. We use in 

our project absolute time variables. A Timestamp is the number of milliseconds elapsed 

since midnight Coordinated Universal Time (UTC) of January 1, 1970. 

 

Table 5.1. Activity table attributes 

 

ID numeric(20,0) 
Composed as: SubjectID + Session_nember + ContentID + Runtime determined Counter 
value 

SUBJECT_ID numeric(6,0) 6 digits: ID of current subject 

SESSION_NUMBER numeric(2,0) 1-24: Session number for current subject 

START_TIME numeric(20,0) Start time of current activity, in absolute timestamps 

END_TIME numeric(20,0) End time of current activity, in absolute timestamps 

RELATIVE_START_TIME numeric(20,0) Start time of current activity, relative to system boot 

RELATIVE_END_TIME numeric(20,0) End time of current activity, relative to system boot 

GESTURE_SCENARIO numeric(2,0) 1: Sit 2: Walk 

TASK_ID numeric(2,0) 

1,7,13,19: Reading + Sitting 

2,8,14,20: Reading + Walking 
3,9,15,21: Writing + Sitting 

6, 12, 18, 24: Map + Walking 

CONTENT_ID numeric(2,0) 
1: First sub-task 
2: Second sub-task 

3: Third sub-task 

 

 

Table 5.2: Accelerometer table attributes 
 
 

SYSTIME numeric(20,0) Absolute time-stamp 

EVENTTIME numeric(20,0) Sensor event relative time-stamp 

ACTIVITY_ID numeric(20,0) Belonged activity 

X numeric(15,0) Acceleration minus Gx on the x-axis 

Y numeric(15,0) Acceleration minus Gx on the y-axis 

Z numeric(15,0) Acceleration minus Gx on the z-axis 

M numeric(15,0) Square root of sum of squares X,Y and Z 

PHONE_ORIENTATION numeric(2,0) 

0: Portrait and no rotate 

1: Device rotated 90 degrees counter-clockwise 

3: Device rotated 90 degrees clockwise 
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Table 5.3: Touch event table attributes 

 
SYSTIME numeric(20,0) Absolute timestamp 

EVENTTIME numeric(20,0) Sensor event relative timestamp 

ACTIVITY_ID numeric(20,0) Belonged activity 

POINTER_COUNT numeric(2,0) 
1: Single touch 

2: Multi touch 

POINTER_ID numeric(2,0) 
0: Single touch, or first pointer in multi touch 
1: Second pointer in multi touch 

ACTION_ID numeric(2,0) 

0 or 5: DOWN 

1 or 6: UP 
2: MOVE 

X numeric(15,0) Touch location in X coordination  

Y numeric(15,0) Touch location in Y coordination 

PRESSURE numeric(15,0) Touch pressure 

CONTACT_SIZE numeric(15,0) Touch contact size 

PHONE_ORIENTATION numeric(2,0) 

0: Portrait and no rotate 

1: Device rotated 90 degrees counter clockwise 

3: Device rotated 90 degrees clockwise 

 

The final table is built using these five tables. First, we merged activity table with touch 

event table. We get SUBJECT_ID, GESTURE_SCENARIO, TASK_ID and 

CONTENT_ID from Activity table and all columns from Touch table. In total, we 

obtained 14 attributes. We stored the data of new table into a temporary table called 

#acc_evt.  

 

Then, we merged #acc_evt table with sensor tables on ACTIVITY_ID and SYSTIME. 

We first merged #acc_evt table with Accelerometer. We first found the maximum sensor 

system time which is the biggest sensor system time that has value of event system time 

– 100 ms. Then, we found minimum sensor system time which is the smallest sensor 

system time that has value of event system time + 100 ms. 

 

Now for our new table, we have three time points: Touch event time, biggest sensor 

reading before Touch event time – 100 ms, smallest sensor reading after Touch event time 

+ 100 ms. For example, for Accelerometer sensor; we called these three time points as 

SYSTIME, SEN_SYSTIME_ACC_BEFORE, SEN_SYSTIME_ACC_AFTER in Figure 

5.3.  

 

 

 

Figure 5.3: Time points 

SEN_SYSTIME_ACC_BE

FORE (system time – 

100 ms) 

SYSTEMTIME SEN_SYSTIME_ACC_AF

TER (system time + 100 

ms) 
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After we calculated all time variables for three sensors, we calculated new variables by 

using those time variables and X, Y, Z and M attributes from sensor tables. We will 

explain how we calculated those variables by using Accelerometer table and X column 

for Accelerometer. (The calculation of other variables and other sensors will follow the 

same way). We first calculate minimum value of X, maximum value of X, average value 

of X and standard deviation of X between SEN_SYSTIME_ACC_BEFORE and 

SYSTEMTIME. Then, we calculated; minimum value of X, maximum value of X, 

average value of X and standard deviation of X between SYSTEMTIME and 

SEN_SYSTIME_ACC_AFTER. We call all these variables as numeric variables. Then, 

we calculated the values of difference between before system time and after system time. 

For example, X_ACC_MIN_DIFF will be the difference between minimum values of X 

after system time and minimum values of X before system time. 

 

 X_ACC_MIN_DIFF = X_ACC_MIN_AFTER - X_ACC_MIN_BEFORE 

 

The new variables for X column of Accelerometer table are in figure 5.4. 

 

 

Figure 5.4:  New calculated variables 

 

In total, we calculated 144 numerical variables: we have 4 directions (X, Y, Z, M) * 12 

variables (variables in Figure 4.5) * 3 sensors = 144 new variables. For these new 144 

variables, if the value of variable is null, we set it to zero.  

 

After we calculated numerical variables, we computed binary variables. In our data set 

there are 7 categorical variables: GESTURE_SCENARIO, TASK_ID, 

POINTER_COUNT, POINTER_ID, ACTION_ID, CONTENT_ID and 

PHONE_ORIENTATION. If a categorical variable has n distinct values, we created n-1 

distinct dummy binary variables from that categorical variable.   
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POINTER_COUNT has three values: 1, 2 and 3. 1 for single touch, 2 for multiple touch 

and 3. Normally from data definition [2], PONINTER_COUNT should have 1 and 2 as 

value, but in some cases it has value of 3. So, we have to consider about this new value. 

Hence, we created 2 new binary variables: POINTER_COUNT_S (set its value = 1, if 

single touch, 0 otherwise), POINTER_COUNT_M (set its value = 1 if multiple touch 0 

otherwise).  

 

TASK_ID has 24 different values. Instead of creating 24-1 different dummy variables for 

TASK_ID, we created 5 dummy variables, because TASK_ID can be grouped into 6 

groups as in Table 5.4. 

 

 

Table 5.4: TASK_ID groups 

 
1, 7, 13, 19 Reading + Sitting 

2, 8, 14, 20 Reading + Walking 

3, 9, 15, 21 Writing + Sitting 

4, 10, 16, 22 Writing + Walking 

5, 11, 17, 23 Map + Sitting 

6, 12, 18, 24 Map + Walking 

 

GESTURE_SCENARIO has two values. 1 for sit and 2 for walk. We created 

GESTURE_SCENARIO_SIT_F as our dummy variable. And set its value to 1 if 

GESTURE_SCENARIO is 1, 0 otherwise.  

 

POINTER_ID has three values. 0 for single touch and 1 for multi-touch, 2 is undefined. 

Normally from data definition [2], POINTER_ID should have 0 and 1 as value, but in 

some cases it has value of 2. So, we have to consider about this new value. Hence, we 

created 2 new binary variables: POINTER_ID_ST (set its value = 1, if single touch, 0 

otherwise), POINTER_ID_MT (set its value = 1 if multiple touch 0 otherwise). 

 

ACTION_ID has 5 different values. But it can be grouped into 3 groups.  

 0 or 5: DOWN 

 1 or 6: UP 

 2: MOVE 
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So, we created two dummy variables: ACTION_ID_DOWN (set its value = 1, if 

ACTION_ID = 0 or 5, 0 otherwise), ACTION_ID_UP (set its value = 1 if ACTION_ID  

= 1 or 6, 0 otherwise). 

 

PHONE_ORIENTATION has three different values.  

 0: Portrait and no rotate 

 1: device rotated 90 degrees counter-clockwise 

 3: device rotated 90 degrees clockwise 

 

We created two dummy variables for PHONE_ORIENTATION. 

PHONE_ORIENTATION1 (set its value = 1 if PHONE_ORIENTATION = 1 , 0 

otherwise) , PHONE_ORIENTATION0 (set its value = 1 if PHONE_ORIENTATION = 

0 , 0 otherwise). 

 

CONTENT_ID has 6 different values. For that reason we created 5 dummy variables. 

These variables are: CONTENT_ID1, CONTENT_ID2, CONTENT_ID3, 

CONTENT_ID4, and CONTENT_ID5. 

 

After creating dummy variables, we deleted original categorical variables from our list. 

Because categorical variables will be correlated to dummy variables. We show some 

part of code for creating dummy variable in Figure 5.5. 
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Figure 5.5: A part of the code for creating dummy variable 

 

After deleting categorical variables, we have in total 177 variables. These are: 10 

identification and time variables, 144 calculated numerical variables and 20 dummy 

variables and 3 floating variables from table TOUCH. We called the final table as 

USER_TABLE. 

In table USER_TABLE, there are 100 users. We randomly chose 20 users from those 100 

users. The SubjectIDs for the randomly selected users are: 745224, 352716, 219303, 

501973, 264325, 527796, 862649, 663153, 556357, 841866, 923862, 815316, 733162, 

472761, 897652, 186676, 998757, 872895, 240168, and 151985. We show in Figure 5.6 

random user selection code from our list of users. We first create a Sybase temporary 

table and add a random user to that table. If the new random id is in the table then we 

select another random number otherwise we add that user to the list. We continue this 

operation for 20 times. 
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Figure 5.6: Random user selection 

 

From randomly chosen 20 users in table USER_TABLE, we create a new table called 

MODEL_TABLE. The model table has all columns of USER_TABLE and a new column 

called TARGET. We add all records of those 20 users one by one to MODEL_TABLE. 

The data process is like this:  

 Take one of 20 chosen users from USER_TABLE and add all records of those 

user to MODEL_TABLE, and set TARGET value as: ”USER”. For one user in 

USER_TABLE there are approximately 100.000 records. 

 Take randomly 500.000 records from USER_TABLE whose ids is different from 

the id in step one and add them to table MODEL_TABLE, and set TARGET value 

as: ”NO_USER”. 

 Continue with next user from 20 users in table USER_TABLE. 

 

In total, for our experiment, we had 20 model user, where each case involves about 

100.000 USER and 500.000 NO_USER records. In total for one model user there are 

about 600.000 records. After creating 20 model users, we downloaded those model user 

into text files one by one. One text file takes about 1.2 GB of space at disk. So we have 

1.2 * 20 = 24 GB of files. In that case it is very hard to load those files to Microsoft Azure. 

For that reason we take zip version of the files. In that case, one file takes about 400 MB 

of disk space. 
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6. DATA MODELING 

 

 

 

In order to work in Microsoft Azure environment, we create a Microsoft account for 

Azure ML studio. Azure ML gives for an account 10 GB of free space for your data and 

experiments. One model user takes about 400 MB of disk space in zipped format. When 

we run our models for one model user in total it takes about 7 GB of space. For that reason 

we loaded one model user; run all models with respect to that model user, save its results 

and then finally clear all space. We do all those steps for all chosen model users which 

means 20 times. Note: Microsoft Azure also calls a working area as experiment, so we 

use experiment here as “Microsoft Azure experiment”. 

 

Our overall project looks like as in Figure 3.1. For every steps we create an Azure ML 

experiment. In total we have 12 experiments: one for saving ID, 3 for tuning, one for 

finding attribute correlation with TARGET, 7 for models.  

 

Our first experiment is to save ID of user to table ID_TABLE. This table is used to add 

ID to statistical results. We save the user ID to ID_TABLE by using “Enter Data 

Manually” item. Note: we need such a table because we delete identification variables 

from our data set. We will explain it later.  

 

We continue like this: at section 6.1 we explained data normalization and Feature 

Selection steps, at section 6.2 we explained parameter tuning   and also we explained the 

some details of used machine learning algorithms, at section 6.3 we explained the 

correlation steps.  And finally, at section 6.4 we explained model structures.   
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6.1 Data Normalization and Feature Selection 

 

Our second experiment is to create normalized and DE normalized version of our original 

data. We show this experiment in Figure 6.1.  

 

 

Figure 6.1: Creating normalized and de normalized data 

 

The data for a model user is zipped because of space usage. At first step in Figure 6.1, we 

unzip it by using “Unpack Zipped Dataset” UZD item. Then we use a “Select Columns 

in Dataset” SCD item so that we eliminate last empty column. When we load a text file 

into Azure environment, Azure creates an empty last column so we delete it.   

 

In Azure environment after loading data to Azure, we saw that column names in current 

table are in “Col1”,”Col2”,”Col3” format. So, we have to give their exact names like 

“TARGET”, ”SUBJECT_ID”, “SYSTIME”. To convert column names to our original 

format in Figure 6.1 we use an “Edit Metadata” ED item.  
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Before data normalization process we made attribute selections. We eliminate some 

attributes. For each experiment, we first excluded identification variables and time 

variables from our data set. The reason is that some attenders do all tasks in a specific 

time interval; for that reason, for those attenders time variables are highly correlated to 

target variable. So, we excluded all time variables and identification variables from our 

dataset. We add attribute selection step to our second experiment. The   second SCD in 

Figure 6.1 is for that purpose. It eliminates time and identification variables.  

 

There were some null variables in our list. Normally we converted null values to zero at 

Sybase but still there were some null values. So in Figure 6.1, we use a “Clean Missing 

Data” CMD item to convert nulls to zero.  

 

Then in Figure 6.1, we use an “Execute R Script” ERS item because; normally we make 

dummy variables at Sybase IQ but when we check our list, we see: we do not convert 

PHONE_ORIENTATION and CONTENT_ID into dummy variables. At that step we 

convert them into dummy variables and delete the original ones. At section 5, we 

explained it in detail. 

 

Finally in Figure 6.1, we normalize data by using “LogNormal” normalization. We store 

ERS result as “denorm” table and normalization result as “norm” table. We will use those 

tables in our all remaining experiments. 
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6.2 Parameter Tuning and Machine Learning Algorithms 

 

We make three experiments for parameter tuning (for SVM, BD and LR). For all of 

parameter tuning, we use normalized data and then we use calculated parameters for all 

modeling experiments. At Figure 6.2, we show the overall structure for LR parameter 

tuning. The structure is same for SVM and BD also, just the classifier changes: for LR 

we use Two-Class Logistic Regression [13], for SVM we use Two class Support Vector 

Machine [18], for BD we use Two-Class Boosted Decision Tree [22]. For DF we did not 

tune parameters. 

 

 

 

 

Figure 6.2: LR parameter tuning 

 

In Figure 6.2, we use norm table, then we use “Split Data” SD item to split the data for 

parameter tuning. We just use %20 of all data for tuning, because the tuning takes long 

time. So we have to a small portion of overall data. But still, %20 of data contains about 

120.000 records for one model user.  
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In Figure 6.2, we use Partition and Sample item to use 10 fold cross validation. This item 

is used when multiple parameters is used for a model. It gives 10 distinct datasets. We 

then use Tune Model Hyperparameters (TMH), it gets folds from Portion and Sample and 

parameter range from classifier and finds best tuned values. 

 

In Figure 6.2, ID_TABLE stores the user ID for that experiment. The ERS adds ID to 

THH results. “lr_cross_validation” table stores the results of all LR parameters. Finally; 

we use an Add Row item to add last user tuning results to “lr_cross_validation” table. 

 

We store results of LR tuning in lr_cross_validation table, SVM results in 

svm_cross_validation table and BD results in bd_cross_validation table.  

 

In Two Class Logistic Regression item, we use “Create trainer mode” as Parameter Range 

to inform Azure this will be not a single parameter but a list of parameters. The list of 

parameter range for Two Class Logistic Regression item are in Figure 6.3.  

 

 

 

Figure 6.3: Parameter Range for LR 
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Two class logistic regression in Azure is a logistic regression model and is used to predict 

a data set which has two outcomes. It is a supervised learning method so you have to have 

a data set which has two results. In our experiment, we have USER and NO_USER labels.  

First of all, you have to inform azure which column will be predicted. In our case, it is 

TARGET column. Then, we set “Create trainer mode” to “Parameter range”. For 

parameter optimization we will use that option. But after we get best parameter values, 

we will use “Single Parameter” for “Create trainer mode”.  

 

Since here we used “Parameter Range”, in our experiment after “two class logistic 

regression” we add a TMH and a Partition and Sample item. If we use “Single Parameter”, 

we have to add “Train Model” item for training. Note: after parameter tuning for all 

remaining experiments we add “Train Model” item. 

 

“Optimization tolerance” sets a threshold value for optimizing the model. When the 

improvement between iterations falls below that value the algorithm thinks it reached an 

optimal value and training stops.    

 

To create less complex models when you have lots of features in your dataset you can use 

regularization to prevent over fitting.  In Azure, we have L1 and L2 regularization. A 

model that uses L1 regularization is called Lasso regression [14], and a model that uses 

L2 regularization is called Ridge regression [15]. The main difference between Ridge and 

Lasso regression is the penalty term. They add different terms as penalty to loss functions. 

Ridge regression adds squared value of coefficient to loss function whereas Lasso adds 

absolute value of coefficient as penalty term.  

 

Ridge regression adds a penalty term to original loss function such that all coefficients 

are squared. Here lambda is the penalty parameter. 

 

∑ (𝑦𝑖 −  𝛽0 − ∑ 𝛽𝑗

𝑝

𝑗=1

𝑥𝑖𝑗)

2

+  𝜆 ∑ 𝛽𝑗
2

𝑝

𝑗=1

𝑛

𝑖=1

 

 

(1) 
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If lambda is zero then Ridge regression becomes original loss function. If lambda is too 

much then it will add high weights and makes model so simple. In that case under 

fitting occurs. 

Lasso regression adds a penalty term to original loss function such that all coefficients 

are in absolute value. Here lambda is the penalty parameter. 

 

 

∑ (𝑦𝑖 −  𝛽0 − ∑ 𝛽𝑗

𝑝

𝑗=1

𝑥𝑖𝑗)
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+  𝜆 ∑ |𝛽𝑗|

𝑝

𝑗=1

𝑛

𝑖=1

 

 

(2) 

 

If lambda is zero then Lasso regression becomes original loss function. If lambda is too 

much then it will add high weights and makes model so simple. In that case under fitting 

occurs. In both Lasso and Ridge regressions the value of lambda is an important factor 

for model prediction.  

 

Lasso shrinks less important attributes’ coefficient to zero and removes all those attributes 

from the model. So those methods are powerful for feature selection if the attribute count 

is high and data is abundant. Ridge makes coefficient of less important attributes small 

so they have little effect on model. 

  

Azure supports a linear combination of L1 and L2 regularization. It uses a combination 

of regularization for linear span. If we set L1 as x and L2 as y then ax + by = c will be a 

linear span of the regularization term.  

 

“Memory size for L-BFGS” [16], [17] is a popular algorithm and used for parameter 

estimation. The algorithm starts with an initial value of optimal value of X0, then 

iteratively tries to find a better estimate of X1, X2, ..This parameter limits the amount of 

memory that will be used to compute next step and direction. 

 

“Random number seed” is used for multiple runs. If you want to take in every run the 

same results, you have to set a seed value. For our experiment we set seed as 0. If you 
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don’t set a seed value, next time when you run your model again you can have a slightly 

different results. 

 

“Allow unknown category” is used to automatically assign values for null categorical 

attributes. In our experiments we don’t have such type of values.  

 

Normally, we can do just one experiment and tune all models in that experiment. But, 

when we tried to do this our disk space finished and we could not finish tuning. Then, we 

decided to separate all tuning experiments. 

 

For BD and SVM we have two more experiments for tuning. We saved SVM results in 

“svm_cross_validation” table and BD results in “bd_cross_validation” table.  

 

SVM [18],[19],[20] is one of the popular machine learning algorithms. It is one of the 

earliest algorithms and still very popular. It can be used for both regression and 

classification. It divides training set with respect to their class labels into hyperplanes that 

maximizes margins between two classes. In our experiment, we used two class support 

vector machine. This one uses linear kernel. For other kernel types Azure have another 

SVM called Two-Class Locally Deep Support Vector Machine [21]. In [2] they used RBF 

kernel, for our experiment we used linear kernel.  

 

Again as in LR, we user “Parameter Range” for parameter tuning and after we tuned 

parameters we used “Single Parameter” for modelling. Again as in LR, we used Portion 

and Sample for 10 fold cross validation and TMH to find best parameter values. The 

parameter range for SVM is in Figure 6.4. 
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Figure 6.4: Parameter Range for SVM 

 

 

“Number of iterations” is used to find how long the model will run until to find best 

hyperplane that divides maximum margin. In that case there will be a trade of between 

model speed and accuracy. Bigger numbers will result in slower models.  

 

“Lambda” is the regularization parameter for SVM. SVM encounters optimization of two 

problems: maximizing the margin and minimizing the mis-classification. If lambda is 

larger, then more mis-classified examples are allowed in training set. If the lambda is 

small, then less misclassified examples are allowed. If lambda is zero this means no mis-

classified examples occurs in training set. But in that case, there will be overfitting in test 

data. So there is a tradeoff. Smaller lambdas are usually good but too smalls can result in 

overfitting. 

 

In Figure 6.4, we don’t set “Normalize features” for parameter tuning and models. For 

SVM we used normalized data. And before using SVM we have already normalized the 

data. So there is no need to normalize data again. 

 

Two-Class Boosted Decision Tree creates a classifier which has only two results. In our 

case it is USER and NO_USER. The algorithm in Azure ML studio depends on boosted 

decision trees [23].  

 



29 
 

 
 

Boosted decision tree is an ensemble algorithm in which a new tree corrects the errors of 

the previous one. Here second tree corrects the errors of the first tree, and third tree 

corrects the errors of the second tree and so on. Finally prediction depends on the result 

of entire trees. The main principle in boosted decision tree: week trees come together to 

create a strong learner. When an input is misclassified its weight is increased so that the 

next tree most probably will classify it correctly. The algorithm in our experiment gives 

the best results, but it is a bit slower than the other algorithms.  

 

The algorithm starts with weak learners at every step it calculates the loss function and 

increase the weight of misclassified inputs. For next step the new tree tries to recover the 

loss.  

 

For BD models, as in SVM and LR, when we tune parameters. We used Parameter range 

for “Create trainer mode” and when we run models Single Parameter for “Create trainer 

mode”. Again as in LR and SVM, we used Portion and Sample for 10 fold cross validation 

and TMH to find best parameter values for BD parameter tuning. The parameter range 

for BD is in Figure 6.5. 

 

 

Figure 6.5: Parameter Range for BD 
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“Maximum number of leaves per tree” indicates the maximum number of leaf node in 

any tree. When you increase that value, the precision of model can increase but can also 

cause overfitting. Increasing this also can cause slower models.  

 

“Minimum number of samples per leaf node” indicates the number of cases that is needed 

to create a node. If you increase this number, to create a new node more cases are required. 

If the number is just one, then any different case will create a node.  

 

“Learning rate” it is the regularization parameter for BD. It slows down or make faster 

the training. Low learning rate which means more shrinkage results in more iterations to 

reach same accuracy. New trees are added to make correct previous trees’ errors. Adding 

more trees can fit the model quickly but can also cause over fitting.  

 

“Number of trees constructed” indicates the total number of tree that will be created in 

ensemble. Increasing the number most probably will make better precision models but 

will also cause longer training times. 

 

“Random Number seed” and “Allow unknown categorical levels” are same as in SVM 

and LR. 

 

The results of tuned parameter values for BD are given as in Table 6.1, for SVM in Table 

6.2 and for LR in Table 6.3. We run our models with these parameters for 20 users 

separately. 

 

Table 6.1: Tuned parameter values for boosted decision tree 
 

Number of leaves Minimum leaf instances Learning rate Number of trees 

90 26 0.375257 350 

 

 
 

Table 6.2: Tuned parameter values for support vector machine 
 

Number of iterations Lambda 

98 0.003046 
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Table 6.3: Tuned parameter values for logistic regression 

 
Optimization tolerance L1 regularization weight L2 regularization weight Memory size for L-BFGS 

0.000003 0.381005 0.34971 48 

 

 

For Two-Class Decision Forest [25] we did not tune parameters. We used as parameter 

values as default values. The parameters for DF is ate Figure 6.6. 

 

For DF, we used bagging or bootstrap aggregating [24] as “Resampling method”. When 

you use a training set T of size n, begging creates m number of Ti
  new training set by 

randomly sampling from original training set T . In that case when we create new sets 

from original training set some records will be unique on the other hand other records 

will be repeating. This type of sampling is called bootstrap sampling. Then bagging will 

create m models and fit m bootstrap samples. Then will vote the results and give final 

prediction. For our case, if we have 5 bagged decision trees and they give: USER, 

NO_USER, USER, USER, NO_USER. The overall votes will give results as USER. 

 

Since we did not tune parameters for DF, we used “Single Parameter” as “Create trainer 

mode”. The parameter values are default Azure parameter values for bagging DF. 

 

“Number of decision trees” specifies the number of tree that will be created. If you create 

more trees, then you can get better precision but models can be slower. 

 

“Maximum depth of the decision trees” indicates that in any tree how many levels /depths 

can be created. Increased depths may cause overfitting and longer training times but it 

can also increase the precision. 

 

“Minimum number of samples per leaf node” indicates the number of cases that is needed 

to create a node. If you increase this number, to create a new node more cases are required. 

If the number is just one, then any different case will create a node. 
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“Random Number seed” and “Allow unknown categorical levels” are same as in other 

machine learning algorithms used in our experiments. 

 

 

 

Figure 6.6: Parameters for DF 
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6.3 Finding Most Predictive Attributes 

 

In our experiment, we try to measure a smaller model which uses a small number of 

attributes to recognize user. For this we create a separate experiment in which we use 30 

most predictive attributes for user authentication. The overall structure to find the best 30 

attributes for authentication is in Figure 6.7.  

 

 

Figure 6.7: 30 Cols Attribute Selection 

 

As in parameter tuning we use here also the normalized data. We used a “Filter Based 

Feature Selection” (FBFS) item to find most correlated attributes with our target. In our 

FBFS we use Pearson Correlation and set the number of desired features to 30. We again 

as in parameter tuning, use ID_TABLE to identify user.  

 

Our ERS item connects FBFS item with ID_TABLE to add ID to FBFS results. 30Cols 

table stores the attribute correlation values with target. We use an Add Row item to add 

last user result to 30Cols table.   

 

In 30Cols table we save all correlation results to see most correlated and less correlated 

attributes.  In some users Magnetometer attributes are most predictive, in some users 

Accelerometer attributes are more predictive, and in some users Gyroscope attributes are 

most predictive moreover we have users in which phone orientation or touch events are 
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more predictive. It shows that the prediction of attributes completely differs from user to 

user. So our smaller model which use most predictive 30 attributes completely changes 

from user to user. 
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6.4 Models 

 

After calculating tuned parameters for models and 30 most predictive attributes, we make 

7 different experiments for models. In our models; we use BD, DF, SVM and LR. We 

have 2 experiments for BD (BD with normalized data and BD with de-normalized data), 

2 experiments for LR (LR with normalized data and LR with de-normalized data), 2 

experiments for DF (DF with normalized data and DF with de-normalized data) and 

finally one experiment for SVM, for SVM we just used normalized data. 

 

In every experiment, we create such type of data flows: data flow using Accelerometer 

fields (ACC), data flow using Accelerometer fields PCA taken (ACC with PCA), data 

flow using Gyroscope fields (GRY), data flow using Gyroscope fields PCA taken (GRY 

with PCA) , data flow using Magnetometer fields (MAG), data flow using Magnetometer 

fields PCA taken (MAG with PCA) , data flow using all fields (ALL), data flow using 

ALL fields PCA taken (ALL with PCA) , and thirty most predictive fields (30COLS). 

 

So in total we have 7 experiments and in every experiment we have 9 data flows. So in 

total we have 7*9 = 63 model runs. In Figure 6.8, we show an experiment. This 

experiment is BD with normalized data. The other experiments are also similar just the 

classifier and the data changes. If the experiment uses moralized data we load “norm” 

table otherwise we load “denorm” table. 

 

Here we will just explain BD with normalized data and we will write all about it. In Figure 

6.8, first we load norm table. After that we connect three SCD items to norm table to split 

the data. These first three SCD items are used for sensor attribute separation. First SCD 

takes Accelerometer fields, second Magnetometer fields and the third SCD takes 

Gyroscope fields. By using these first three SCD items we are sure to create three data 

flows for sensors. 

 



36 
 

 
 

 

Figure 6.8: Two Class BD normalized experiment 

The three data flows are similar just the used attributes changes. In Figure 6.9, we show 

Accelerometer attributes. In total there are 60 fields: 1 for target, 11 for dummy variables 

created from Activity table and 48 Accelerometer fields. In all sensor models, we use 

Activity table fields because the sensor values can change from type of activity. For 

example, sitting or walking can directly change all sensors. So, we add all activity table 

fields for our sensor models. 

 

 

 

 

Figure 6.9: Some of Accelerometer fields 
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After selecting columns, we have two connections one for splitting data and the other for 

PCA. For all models except 30COLS, we have two flows: data without PCA and data 

with PCA. In Figure 6.10, we show in detail. Note: Figure 6.10 is a part of Figure 6.8. 

 

 

Figure 6.10: Data flow for Accelerometer model 

 

 

Here for PCA, we take “Number of dimensions to reduce to” as 1/3 of attribute count. 

For Accelerometer, we have 60 fields. One of them is target. If we exclude target we have 

59 fields, one third of 59 is: 59 / 3 = 19. So for PCA, we take “Number of dimensions to 

reduce to” as 19.  

 

In Figure 6.10, we have two Split data items. One of it splitting data for PCA taken, and 

the other is splitting data without PCA. For our models, we use %70 or data for training 

and % 30 of data for testing.  

 

For BD, we use Two Class Boosted Decision Tree classifier. And we set its parameters 

as the values in Table 5.1. Note: for all 9 BD data flows in this experiment we use 

parameters from Table 5.1.  
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After Classifier we have two Train model items. We train the models with %70 of data 

coming from Split Data item. 

 

After training model, we use Score model to score the model. For scoring model, we use 

remaining %30 of data. 

 

After that, we evaluate model to see model performances. The Evaluate model calculates; 

Accuracy, F1 Score, Precision, Recall, Negative Precision, Negative Recall, and 

Cumulative AUC for model performance. It divides all records by 10 percent probability 

bins. (90-100] bins keeps the last probability. It also shows the concussion matrix and 

ROC curve for the model.  

 

At Figure 6.11, we show confusion matrix for BD with normalized data for user 841866. 

The data flow is ALL model. At Table 6.4, we show Accuracy for all Score Bins. Note: 

at confusion matrix we show overall accuracy and other matrices. In Figure 6.12, we show 

ROC curve for same run. 

 

 

Figure 6.11: Confusion Matrix 
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Table 6.4: Accuracy for all Score Bins 

 

Score Bin 
Positive 

Examples 

Negative 

Examples 

Fraction 

Above 

Threshold 

Accuracy F1 Score Precision Recall 

(0.900,1.000] 14812 30 0.086 0.937 0.732 0.998 0.578 

(0.800,0.900] 4360 52 0.112 0.962 0.854 0.996 0.748 

(0.700,0.800] 2682 150 0.128 0.977 0.916 0.989 0.852 

(0.600,0.700] 1698 383 0.140 0.984 0.946 0.975 0.919 

(0.500,0.600] 1009 829 0.151 0.985 0.951 0.944 0.958 

(0.400,0.500] 7 6 0.151 0.985 0.951 0.944 0.958 

(0.300,0.400] 591 1752 0.165 0.979 0.932 0.887 0.981 

(0.200,0.300] 296 4167 0.190 0.956 0.871 0.775 0.993 

(0.100,0.200] 134 13191 0.268 0.880 0.713 0.554 0.998 

(0.000,0.100] 47 126125 1.000 0.149 0.259 0.149 1.000 

 

 

Figure 6.12: ROC curve 

 

Finally we add ACC results and ACC with PCA results for evaluating all model 

performances. 

 

In this experiment, we modeled sensor attributes alone to see if any of three sensor will 

be enough for user authentication. Maybe data flow from one sensor can corrupt but if 
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the other sensors are alive, getting separate sensor models will help for user authentication 

in any case. Moreover, using one sensor models can be cheaper and needs less energy for 

authentication. For all these reasons, we create 6 sensor models (2 for ACC, 2 for GRY, 

and 2 for MAG) and evaluate their performances. 

 

In Figure 6.7, we have three more connection coming from “norm” table. The two 

connections for ALL models (ALL and ALL with PCA) and the other is for 30COLS. For 

ALL again we used data as without PCA or data with PCA. For 30COLS, we did not take 

PCA.  

In Figure 6.13, we show some part of ALL and 30COLS models. Note: Figure 6.13 is a 

part of Figure 6.8.  

 

 Figure 6.13: Some part of ALL and 30COLS models 

 

Here first two connections from right of the figure 6.13 are for ALL models. Again we 

take PCA for ALL fields. We use 1/3 of total attributes for PCA. In ALL fields we have 
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168 attribute. If we exclude target we have 167 attributes. Then, one third of 167 is: 167 

/ 3 = 55. We take 55 dimensions for ALL with PCA.  

For 30COLS, we use Filter Based Feature Selection and use Pearson Correlation for 

feature selection.  We set “Number of Desired Feature” to 30. We are sure now, we select 

first 30 most correlated attributes with target.  

Then for all three models (ALL, ALL with PCA and 30COLS), we have Split Data item. 

Here again we use %70 of data for training and %30 for testing. Again we use Two Class 

Boosted Decision Tree for classification. And set its parameters from Table 5. Then we 

score model by using remaining %30 of data. After scoring data we use Evaluate Model 

item to see performance of models. Finally we add all evaluation result to see overall 

performance. 

At the end of Figure 6.7, we take all evaluation results of models together and save the 

results. We show this in Figure 6.14 in detail. The first two Add Rows items join rows 

coming from sensors and from the others respectively. Again we use ID_TABLE to store 

user ID. The R Script connects results coming from models and ID_TABLE. We store all 

results in gsu_results table. At every run, we connect gsu_result table with the final results 

and store the union again into gsu_results table. We do the storing process manually. 

 

Figure 6.14: Saving Results 

 

After running all experiments for every user we are ready to compare results of models. 

For one user we run 7 experiments and in total we have 20 * 7 = 140 runs. 
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7. RESULTS 

 

 

The first results are obtained by taking the average of all 20 users’ results. Although 

various metrics are given, the models are compared by the accuracy perspective. We also 

store precision and recall results. Our first results about the parameter tuning. For BD, LR 

and SVM we tuned parameters. For DF we did not tune parameters. We use DF 

parameters as Azure initial values. 

 

We first tuned SVM parameters. The results of SVM parameters are at Table 7.1: we used 

Number of iterations as 98, Lambda as 0.003046. These values give the best Accuracy. 

 

Table 7.1. SVM Parameter Values 
 

Number of iterations Lambda Accuracy Precision Recall 

98 0.003046 0.828229 0.708693 0.52781 

86 0.099535 0.794518 0.604628 0.507398 

29 0.046737 0.794302 0.603957 0.507584 

68 0.031466 0.794209 0.603346 0.50898 

63 0.046956 0.794186 0.60363 0.507553 

 

Then we tuned LR parameters. The results of LR parameters are at Table 7.2: we used 

Optimization Tolerance as 0.00003, L1 weight as 0.381005, L2 weight as 0.34971 and  

Memory Size as 48. These values give the best Accuracy. 
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Table 7.2. LR Parameter Values 

 

OptimizationTolerance L1Weight L2Weight MemorySize Accuracy Precision Recall 

0.000003 0.381005 0.34971 48 0.884355 0.804311 0.708379 

0.000055 0.08111 0.195253 25 0.881447 0.799972 0.699197 

0.00003 0.988544 0.64627 39 0.87745 0.799459 0.678537 

0.00007 0.526284 0.934678 35 0.87462 0.79484 0.669882 

0.000082 0.848052 0.991983 6 0.860216 0.765888 0.632534 

 

Then we tuned BD parameters. The results of BD parameters are at Table 7.3: we used 

Number of Leaves as 90, Minimum Leaf instances as 26, and Learning rate as 0.375257 

and Number of trees as 350. These values give the best Accuracy. 

 

Table 7.3 : BD Parameter Values 

 

Number of leaves 
Minimum leaf 

instances 

Learning 

rate 

Number of 

trees 
Accuracy Precision Recall 

90 26 0.375257 350 0.993196 0.987077 0.975555 

39 49 0.266012 386 0.99266 0.983 0.976745 

70 4 0.095172 237 0.98912 0.979687 0.960403 

104 42 0.396963 35 0.988199 0.973712 0.96141 

5 19 0.153678 479 0.981704 0.955555 0.943832 

 

We compared sensor performances. While for some users ACC models performs better, 

for the others MAG model performs better. The reason is that: When we use Pearson 

correlation to find the correlation of target with attributes, we saw that sometimes it is the 

magnetometer attributes, which gets higher results than accelerometer attributes, and 

sometimes it is the opposite case. In Table 7.4, we show top five most correlated attributes 

with TARGET for all users.  

 

 

 

 



44 
 

 
 

Table 7.4: Most correlated attributes with TARGET 

 

ID CORRELATED 1 CORRELATED 2 CORRELATED 3 CORRELATED 4 CORRELATED 5 

745224 

Y_ACC_MAX_BEFORE Y_ACC_MAX_AFTER Z_ACC_MEAN_BEFORE Y_ACC_MEAN_AFTER Y_ACC_MEAN_BEFORE 

0.526101477917448 0.526027094774484 0.522512065817992 0.517671665718106 0.517449449850825 

352716 

Z_ACC_MAX_BEFORE Y_ACC_MIN_AFTER Y_ACC_MIN_BEFORE Z_ACC_MAX_AFTER Z_ACC_MEAN_BEFORE 

0.31494038435346 0.289254903725818 0.288017204636527 0.28704661486678 0.273874370108157 

219303 

Y_MAG_MIN_AFTER Y_MAG_MEAN_AFTER Y_MAG_MAX_AFTER Y_MAG_MIN_BEFORE Y_MAG_MEAN_BEFORE 

0.275500852736378 0.275243046883244 0.27496804219146 0.272805645166704 0.272492784722381 

501973 

CONTACT_SIZE M_GYR_MAX_AFTER M_ACC_STDV_AFTER M_GYR_MEAN_AFTER M_ACC_MAX_BEFORE 

0.301796412920593 0.238582206332669 0.229281328856425 0.225511080336985 0.225108059171782 

264325 

X_MAG_MAX_BEFORE X_MAG_MEAN_BEFORE X_MAG_MIN_BEFORE X_MAG_MAX_AFTER X_MAG_MEAN_AFTER 

0.268759433468619 0.268461737089369 0.26822403387547 0.267922212908424 0.267660345187204 

527796 

X_GYR_STDV_AFTER Z_ACC_STDV_AFTER M_ACC_STDV_AFTER X_GYR_STDV_BEFORE Z_ACC_STDV_BEFORE 

0.336968464687707 0.333874416733462 0.326149157965839 0.319573415872206 0.295362838411421 

862649 

X_ACC_MIN_BEFORE Y_MAG_MAX_BEFORE Y_MAG_MAX_AFTER Y_MAG_MEAN_BEFORE Y_MAG_MEAN_AFTER 

0.152423855213381 0.151665152754996 0.151243843796255 0.151060324524325 0.150699822174548 

663153 

PHONE_ORIENTATION1 PHONE_ORIENTATION0 X_ACC_MAX_BEFORE X_ACC_MEAN_BEFORE X_ACC_MEAN_AFTER 

0.653784286723699 0.589865039787968 0.528486460795191 0.528277768166644 0.527682453389752 

556357 

Z_MAG_MIN_BEFORE Z_MAG_MEAN_BEFORE Z_MAG_MAX_BEFORE Z_MAG_MIN_AFTER Z_MAG_MEAN_AFTER 

0.267229361060606 0.267008026163402 0.266757442851155 0.254351616657512 0.25426544228856 

923862 

M_ACC_MEAN_AFTER M_ACC_MEAN_BEFORE M_ACC_MIN_AFTER M_ACC_MAX_AFTER M_ACC_MAX_BEFORE 

0.286352911307566 0.280610217036483 0.258239428924014 0.247442679474636 0.244429037975945 

815316 

PHONE_ORIENTATION0 Y_ACC_MAX_BEFORE Y_ACC_MAX_AFTER Y_ACC_MEAN_BEFORE Y_ACC_MEAN_AFTER 

0.896122822699534 0.784132912462087 0.771949335739134 0.743498858762641 0.734805086511852 

733162 

Z_ACC_MIN_BEFORE Z_ACC_MIN_AFTER Z_ACC_MEAN_BEFORE Z_ACC_MEAN_AFTER Z_ACC_MAX_BEFORE 

0.391518650967635 0.387015884185687 0.374153409295053 0.367525068939596 0.353763303540903 

472761 

Z_ACC_MAX_BEFORE Z_ACC_MAX_AFTER M_ACC_MAX_BEFORE Z_ACC_MEAN_AFTER Z_ACC_MEAN_BEFORE 

0.294705192453602 0.291713758896863 0.278452885709171 0.27467140204743 0.274397884308291 

897652 

Y_MAG_MIN_AFTER Y_MAG_MEAN_AFTER Y_MAG_MIN_BEFORE Y_MAG_MAX_AFTER Y_MAG_MEAN_BEFORE 

0.349747792237405 0.349375898770985 0.349203661091282 0.348967851406809 0.348799815368137 

186676 

M_ACC_MIN_AFTER M_ACC_MIN_BEFORE M_ACC_MEAN_BEFORE M_ACC_MEAN_AFTER M_MAG_MAX_AFTER 

0.355140113982211 0.346975516833136 0.322640215508059 0.311971895598156 0.266452236290741 

998757 

Y_ACC_MEAN_BEFORE Y_ACC_MIN_BEFORE Y_ACC_MAX_BEFORE Y_ACC_MIN_AFTER Y_ACC_MEAN_AFTER 

0.463621596093162 0.463141254211321 0.45931382519527 0.452386156859775 0.451366805284635 

872895 

X_MAG_MIN_AFTER X_MAG_MIN_BEFORE X_MAG_MEAN_AFTER X_MAG_MAX_AFTER X_MAG_MEAN_BEFORE 

0.333847952479681 0.33296365440044 0.332794896893683 0.331772985523584 0.331558306075711 

240168 M_ACC_MAX_BEFORE M_ACC_MAX_AFTER M_ACC_MEAN_BEFORE M_ACC_MEAN_AFTER M_ACC_MIN_AFTER 
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0.444019869519928 0.438917418637273 0.416556642510241 0.411703916002569 0.30807696781216 

151985 

M_MAG_MAX_BEFORE M_MAG_MEAN_BEFORE M_MAG_MIN_BEFORE M_MAG_MAX_AFTER M_MAG_MEAN_AFTER 

0.751201252427723 0.750532188464783 0.749848916132387 0.704952367349935 0.704333207327102 

841866 

CONTACT_SIZE Y_ACC_MAX_AFTER Y_ACC_MAX_BEFORE Y_ACC_MEAN_AFTER Y_ACC_MEAN_BEFORE 

0.28135342230165 0.253835484000719 0.252479429249677 0.233841627542155 0.231490271890425 

 

 

 

For correlation test we also measure the how many times an attribute comes in first five 

location. At Table 7.5 we show how many times an attribute comes as a most correlated 

attribute, as a second most correlated attribute, as a third  most correlated attribute etc. 

 

Table 7.5. How many times an attribute is one of most correlated 

 

CORRELATED 1 # CORRELATED 2 # CORRELATED 3 # CORRELATED 4 # CORRELATED 5 # 

CONTACT_SIZE 2 Y_ACC_MAX_AFTER 2 M_ACC_MEAN_BEFORE 2 M_ACC_MEAN_AFTER 2 M_ACC_MAX_BEFORE 2 

Y_MAG_MIN_AFTER 2 Y_MAG_MEAN_AFTER 2 M_ACC_STDV_AFTER 2 X_MAG_MAX_AFTER 2 Y_ACC_MEAN_AFTER 2 

Z_ACC_MAX_BEFORE 2 M_ACC_MAX_AFTER 1 Y_ACC_MAX_BEFORE 2 Y_ACC_MEAN_AFTER 2 Y_ACC_MEAN_BEFORE 2 

M_ACC_MAX_BEFORE 1 M_ACC_MEAN_BEFORE 1 Y_MAG_MAX_AFTER 2 Z_ACC_MEAN_AFTER 2 Y_MAG_MEAN_BEFORE 2 

M_ACC_MEAN_AFTER 1 M_ACC_MIN_BEFORE 1 Z_ACC_MEAN_BEFORE 2 M_ACC_MAX_AFTER 1 Z_ACC_MEAN_BEFORE 2 

M_ACC_MIN_AFTER 1 M_GYR_MAX_AFTER 1 M_ACC_MAX_BEFORE 1 M_GYR_MEAN_AFTER 1 M_ACC_MIN_AFTER 1 

M_MAG_MAX_BEFORE 1 M_MAG_MEAN_BEFORE 1 M_ACC_MIN_AFTER 1 M_MAG_MAX_AFTER 1 M_MAG_MAX_AFTER 1 

PHONE_ORIENTATION0 1 PHONE_ORIENTATION0 1 M_MAG_MIN_BEFORE 1 X_ACC_MEAN_BEFORE 1 M_MAG_MEAN_AFTER 1 

PHONE_ORIENTATION1 1 X_MAG_MEAN_BEFORE 1 X_ACC_MAX_BEFORE 1 X_GYR_STDV_BEFORE 1 X_ACC_MEAN_AFTER 1 

X_ACC_MIN_BEFORE 1 X_MAG_MIN_BEFORE 1 X_MAG_MEAN_AFTER 1 Y_ACC_MEAN_BEFORE 1 X_MAG_MEAN_AFTER 1 

X_GYR_STDV_AFTER 1 Y_ACC_MAX_BEFORE 1 X_MAG_MIN_BEFORE 1 Y_ACC_MIN_AFTER 1 X_MAG_MEAN_BEFORE 1 

X_MAG_MAX_BEFORE 1 Y_ACC_MIN_AFTER 1 Y_ACC_MAX_AFTER 1 Y_MAG_MAX_AFTER 1 Y_MAG_MEAN_AFTER 1 

X_MAG_MIN_AFTER 1 Y_ACC_MIN_BEFORE 1 Y_ACC_MIN_BEFORE 1 Y_MAG_MEAN_BEFORE 1 Z_ACC_MAX_BEFORE 1 

Y_ACC_MAX_BEFORE 1 Y_MAG_MAX_BEFORE 1 Y_MAG_MIN_BEFORE 1 Y_MAG_MIN_BEFORE 1 Z_ACC_STDV_BEFORE 1 

Y_ACC_MEAN_BEFORE 1 Z_ACC_MAX_AFTER 1 Z_MAG_MAX_BEFORE 1 Z_ACC_MAX_AFTER 1 Z_MAG_MEAN_AFTER 1 

Z_ACC_MIN_BEFORE 1 Z_ACC_MIN_AFTER 1     Z_MAG_MIN_AFTER 1     

Z_MAG_MIN_BEFORE 1 Z_ACC_STDV_AFTER 1             

    Z_MAG_MEAN_BEFORE 1             

 

It shows us that the parameters completely changes from user to user. In some users 

sensor data gives best results for some users touch event data gives best results. 
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When we compare sensor results with respect to models we see that Magnetometer 

performs better in DF and BD but Accelerometer performs better in LR and SVM. But 

the values of Magnetometer and Accelerometer are so close. So we can not say that 

Magnetometer gives better perfomace.  

 

In Table 7.6, we show DF results for sensor, in Table 7.7 we show BD results for sensors, 

in Table 7.8 we show LR results for sensor and in Table 7.9 we show SVM results for 

sensors. In all tables there are 18 results because we use both normalized and de 

normalized data for BD,LR and DF. But for SVM we have 9 results because for SVM we 

just used normalized data. Note : the results are avarage of all 20 model users. 

 

Table 7.6: DF Results. Normalized and De Normalized data 
 

Flow Data Accuracy Precision Recall 
 

Flow Data Accuracy Precision Recall 

ALL Normalized 0.992055 0.981225 0.967784 
 

ALL 
De-

Normalized 
0.994229 0.987369 0.976155 

MAG Normalized 0.984081 0.953795 0.946984 
 

MAG 
De-

Normalized 
0.993593 0.978965 0.981824 

30COLS Normalized 0.968247 0.923459 0.86851 
 

ALL with 

PCA 

De-

Normalized 
0.989785 0.982921 0.951127 

ACC Normalized 0.964171 0.917219 0.859335 
 

MAG with 

PCA 

De-

Normalized 
0.988962 0.973025 0.959094 

ALL with 

PCA 
Normalized 0.961614 0.942086 0.80115 

 
30COLS 

De-

Normalized 
0.97816 0.95089 0.916837 

MAG with 

PCA 
Normalized 0.960821 0.909617 0.839957 

 
ACC 

De-

Normalized 
0.967054 0.92807 0.874002 

ACC with 

PCA 
Normalized 0.950292 0.888859 0.797156 

 

ACC with 

PCA 

De-

Normalized 
0.963162 0.922011 0.856201 

GRY Normalized 0.916732 0.875118 0.614414 
 

GRY 
De-

Normalized 
0.918862 0.884842 0.630053 

GRY with 

PCA 
Normalized 0.902699 0.853346 0.541459 

 

GRY with 

PCA 

De-

Normalized 
0.912008 0.85397 0.614659 

 

 
Table 7.7: BD Results. Normalized and De Normalized data 

 

Flow Data Accuracy Precision Recall 
 

Flow Data Accuracy Precision Recall 

ALL Normalized 0.996111 0.982467 0.991248 
 

ALL 
De-

Normalized 
0.997317 0.987706 0.994475 

ALL with 

PCA 
Normalized 0.983862 0.953004 0.947445 

 

ALL with 

PCA 

De-

Normalized 
0.994193 0.978985 0.983608 

MAG Normalized 0.983041 0.943442 0.954194 
 

MAG 
De-

Normalized 
0.992348 0.970046 0.984742 

30COLS Normalized 0.972161 0.910419 0.920293 
 

MAG with 

PCA 

De-

Normalized 
0.986981 0.955986 0.96781 

ACC Normalized 0.963021 0.886518 0.895616 
 

30COLS 
De-

Normalized 
0.983635 0.946876 0.957458 

MAG with 

PCA 
Normalized 0.960447 0.87903 0.881583 

 
ACC 

De-

Normalized 
0.969493 0.907356 0.918888 

ACC with 

PCA 
Normalized 0.948162 0.844382 0.846266 

 

ACC with 

PCA 

De-

Normalized 
0.963485 0.890274 0.897898 

GRY Normalized 0.905658 0.745916 0.697098 
 

GRY 
De-

Normalized 
0.914418 0.774275 0.740073 

GRY with 

PCA 
Normalized 0.8837 0.682679 0.612755 

 

GRY with 

PCA 

De-

Normalized 
0.895709 0.722844 0.675208 
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Table 7.8: LR Results. Normalized and De Normalized data 
 

Flow Data Accuracy Precision Recall 
 

Flow Data Accuracy Precision Recall 

ALL Normalized 0.924224 0.789046 0.686001 
 

ALL 
De-

Normalized 
0.918873 0.790926 0.652578 

ALL with 

PCA 
Normalized 0.905942 0.73715 0.588172 

 

ALL with 

PCA 

De-

Normalized 
0.905617 0.767943 0.569884 

30COLS Normalized 0.892781 0.709761 0.520253 
 

30COLS 
De-

Normalized 
0.889927 0.723636 0.479914 

ACC Normalized 0.87534 0.654405 0.431529 
 

MAG 
De-

Normalized 
0.870602 0.653397 0.348817 

MAG Normalized 0.862697 0.606739 0.272891 
 

ACC 
De-

Normalized 
0.86594 0.653944 0.374243 

ACC with 

PCA 
Normalized 0.862243 0.600669 0.345911 

 

MAG with 

PCA 

De-

Normalized 
0.861988 0.580987 0.279547 

MAG with 

PCA 
Normalized 0.856722 0.548401 0.233163 

 

ACC with 

PCA 

De-

Normalized 
0.858432 0.612202 0.326387 

GRY Normalized 0.835687 0.499719 0.154874 
 

GRY 
De-

Normalized 
0.829698 0.45738 0.129285 

GRY with 

PCA 
Normalized 0.828695 0.387521 0.078386 

 

GRY with 

PCA 

De-

Normalized 
0.825401 0.457932 0.102514 

 

 

 
Table 7.9: SVM Results 

 

Flow Data Accuracy Precision Recall 

ALL Normalized 0.913508 0.786037 0.618775 

ALL with PCA Normalized 0.897431 0.766317 0.531923 

30COLS Normalized 0.890139 0.743792 0.502651 

ACC Normalized 0.869704 0.678231 0.409189 

ACC with PCA Normalized 0.860143 0.622211 0.347434 

MAG Normalized 0.859586 0.637857 0.25921 

MAG with PCA Normalized 0.855579 0.625727 0.234166 

GRY Normalized 0.830493 0.420945 0.131047 

GRY with PCA Normalized 0.825175 0.322237 0.084511 

  

Since the most correlated attributes changes from user to user, the 30COLS models 

usually use different attributes. PCA used model performances are lower compared to 

models without PCA. But again the results are so close, so we cannot say taking PCA 

lowers the Accuracy.  

 

During the experiments, we explored that in all cases, BD usually gives higher accuracy. 

Following BD, DF has the second rank among accuracy comparisons. In some cases DF 

gives better results. Note: we do not take parameter tuning in DF. Maybe it will give 

better results if we tune it. From Table 7.10 to Table 7.18, we show machine learning 

algorithm results for different data flow. These are avarage of 20 model users’ results. 
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Table 7.10: 30COLS Results. Normalized and De Normalized data 
 

Model Data Accuracy Precision Recall 
 

Model Data Accuracy Precision Recall 

BD Normalized 0.972161 0.910419 0.920293 
 

BD De-Normalized 0.983635 0.946876 0.957458 

DF Normalized 0.968247 0.923459 0.86851 
 

DF De-Normalized 0.97816 0.95089 0.916837 

LR Normalized 0.892781 0.709761 0.520253 
 

LR De-Normalized 0.889927 0.723636 0.479914 

SVM Normalized 0.890139 0.743792 0.502651 
      

 

 

Table 7.11: ACC Results. Normalized and De Normalized data 

 

Model Data Accuracy Precision Recall 
 

Model Data Accuracy Precision Recall 

DF Normalized 0.964171 0.917219 0.859335 
 

BD De-Normalized 0.969493 0.907356 0.918888 

BD Normalized 0.963021 0.886518 0.895616 
 

DF De-Normalized 0.967054 0.92807 0.874002 

LR Normalized 0.87534 0.654405 0.431529 
 

LR De-Normalized 0.86594 0.653944 0.374243 

SVM Normalized 0.869704 0.678231 0.409189 
      

 
 

Table 7.12: ACC with PCA Results. Normalized and De Normalized data 
 

Model Data Accuracy Precision Recall 
 

Model Data Accuracy Precision Recall 

DF Normalized 0.950292 0.888859 0.797156 
 

BD De-Normalized 0.963485 0.890274 0.897898 

BD Normalized 0.948162 0.844382 0.846266 
 

DF De-Normalized 0.963162 0.922011 0.856201 

LR Normalized 0.862243 0.600669 0.345911 
 

LR De-Normalized 0.858432 0.612202 0.326387 

SVM Normalized 0.860143 0.622211 0.347434 
      

 

 

Table 7.13: ALL Results. Normalized and De Normalized data 
 

Model Data Accuracy Precision Recall 
 

Model Data Accuracy Precision Recall 

BD Normalized 0.996111 0.982467 0.991248 
 

BD De-Normalized 0.997317 0.987706 0.994475 

DF Normalized 0.992055 0.981225 0.967784 
 

DF De-Normalized 0.994229 0.987369 0.976155 

LR Normalized 0.924224 0.789046 0.686001 
 

LR De-Normalized 0.918873 0.790926 0.652578 

SVM Normalized 0.913508 0.786037 0.618775 
      

 
 
 

Table 7.14: ALL with PCA Results. Normalized and De Normalized data 
 

Model Data Accuracy Precision Recall 
 

Model Data Accuracy Precision Recall 

BD Normalized 0.983862 0.953004 0.947445 
 

BD De-Normalized 0.994193 0.978985 0.983608 

DF Normalized 0.961614 0.942086 0.80115 
 

DF De-Normalized 0.989785 0.982921 0.951127 

LR Normalized 0.905942 0.73715 0.588172 
 

LR De-Normalized 0.905617 0.767943 0.569884 

SVM Normalized 0.897431 0.766317 0.531923 
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Table 7.15: GRY Results. Normalized and De Normalized data 
 

Model Data Accuracy Precision Recall 
 

Model Data Accuracy Precision Recall 

DF Normalized 0.916732 0.875118 0.614414 
 

DF De-Normalized 0.918862 0.884842 0.630053 

BD Normalized 0.905658 0.745916 0.697098 
 

BD De-Normalized 0.914418 0.774275 0.740073 

LR Normalized 0.835687 0.499719 0.154874 
 

LR De-Normalized 0.829698 0.45738 0.129285 

SVM Normalized 0.830493 0.420945 0.131047 
      

 

Table 7.16: GRY with PCA Results. Normalized and De Normalized data 
 

Model Data Accuracy Precision Recall 
 

Model Data Accuracy Precision Recall 

DF Normalized 0.902699 0.853346 0.541459 
 

DF De-Normalized 0.912008 0.85397 0.614659 

BD Normalized 0.8837 0.682679 0.612755 
 

BD De-Normalized 0.895709 0.722844 0.675208 

LR Normalized 0.828695 0.387521 0.078386 
 

LR De-Normalized 0.825401 0.457932 0.102514 

SVM Normalized 0.825175 0.322237 0.084511 
      

 

 

Table 7.17: MAG Results. Normalized and De Normalized data 
 

Model Data Accuracy Precision Recall 
 

Model Data Accuracy Precision Recall 

DF Normalized 0.984081 0.953795 0.946984 
 

DF De-Normalized 0.993593 0.978965 0.981824 

BD Normalized 0.983041 0.943442 0.954194 
 

BD De-Normalized 0.992348 0.970046 0.984742 

LR Normalized 0.862697 0.606739 0.272891 
 

LR De-Normalized 0.870602 0.653397 0.348817 

SVM Normalized 0.859586 0.637857 0.25921 
      

 

 

Table 7.18: MAG with PCA Results. Normalized and De Normalized data 
 

Model Data Accuracy Precision Recall 
 

Model Data Accuracy Precision Recall 

DF Normalized 0.960821 0.909617 0.839957 
 

DF De-Normalized 0.988962 0.973025 0.959094 

BD Normalized 0.960447 0.87903 0.881583 
 

BD De-Normalized 0.986981 0.955986 0.96781 

LR Normalized 0.856722 0.548401 0.233163 
 

LR De-Normalized 0.861988 0.580987 0.279547 

SVM Normalized 0.855579 0.625727 0.234166 
      

 

The accuracy values of each algorithm for each data flow are presented in Figure 7.1-

Figure 7.5. We were expecting normalizing data will give better results but after our 

results come, we see that in nearly all cases de normalized data gave better results. But 

again, the value are so close so we cannot easily say that data normalization or de 

normalization helps for predictions.  
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Figure 7.1: (a) Accuracy values for ‘ALL’ data flow; (b) Accuracy values for ‘ALL with PCA’ data flow. 

 

Figure 7.2: (a) Accuracy values for ‘MAG’ data flow; (b) Accuracy values for ‘MAG with PCA’ data flow. 

 

 

Figure 7.3:  (a) Accuracy values for ‘ACC’ data flow; (b) Accuracy values for ‘ACC with PCA’ data flow. 

 

 

Figure 7.4: (a) Accuracy values for ‘GYR’ data flow; (b) Accuracy values for ‘GYR with PCA’ data flow. 
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 Figure 7.5: Accuracy values for ‘30COLS’ data flow. 

 

At table 7.19, we show for all model users the most predictive model and its Accuracy, 

Precision and Recall values. 

Table 7.19 Most predictive model for all user 

ID Model Flow Data Accuracy Precision Recall 

151985 BD ALL De-Normalized 0.99946 0.99883 1 

186676 BD ALL De-Normalized 0.998534 0.993622 0.998129 

219303 BD ALL with PCA De-Normalized 0.995971 0.976074 0.99034 

240168 BD ALL De-Normalized 0.999348 0.997093 0.998694 

264325 BD ALL De-Normalized 0.996835 0.989106 0.998692 

352716 BD ALL De-Normalized 0.998839 0.995469 0.998243 

472761 BD ALL De-Normalized 0.997507 0.988085 0.994633 

501973 BD ALL De-Normalized 0.997879 0.987144 0.992931 

527796 BD ALL De-Normalized 0.996583 0.989336 0.997303 

556357 BD ALL De-Normalized 0.998304 0.992823 0.989831 

663153 BD ALL De-Normalized 0.998783 0.99532 0.99579 

733162 BD ALL De-Normalized 0.999023 0.996741 0.997265 

745224 BD ALL De-Normalized 0.997706 0.993516 0.997285 

815316 BD ALL Normalized 0.999643 0.998656 0.999388 

841866 BD ALL Normalized 0.996727 0.987251 0.990794 

862649 BD ALL De-Normalized 0.99816 0.990044 0.99809 

872895 BD ALL De-Normalized 0.999048 0.994367 0.996566 

897652 BD ALL De-Normalized 0.99947 0.997567 0.999684 

923862 BD ALL De-Normalized 0.997682 0.991213 0.99695 

998757 BD ALL De-Normalized 0.99737 0.988199 0.997415 

 

 

0,983635 0,97816 0,972161 0,968247

0,892781 0,890139 0,889927

BD,
DENORM

DF,
DENORM

BD,
NORM

DF,
NORM

LR,
NORM

SVM,
NORM

LR,
DENORM



52 
 

 
 

At table 7.20, we show for all model users the most predictive sensor model and its 

Accuracy, Precision and Recall values. 

 

Table 7.20 Most predictive Sensor model for all users 

ID Model Flow Data Accuracy Precision Recall 

151985 DF MAG De-Normalized 0.998633 0.997197 0.999844 

186676 DF MAG De-Normalized 0.996185 0.986931 0.991595 

219303 BD MAG De-Normalized 0.994998 0.97564 0.9824 

240168 BD MAG De-Normalized 0.997416 0.985944 0.997499 

264325 BD MAG De-Normalized 0.988493 0.966474 0.989575 

352716 BD MAG De-Normalized 0.996658 0.986258 0.995729 

472761 BD MAG De-Normalized 0.992713 0.9694 0.980199 

501973 BD MAG De-Normalized 0.993339 0.961979 0.975746 

527796 DF MAG De-Normalized 0.990525 0.972644 0.990579 

556357 DF MAG De-Normalized 0.997462 0.989403 0.984621 

663153 DF MAG De-Normalized 0.995501 0.981069 0.986168 

733162 BD MAG De-Normalized 0.992866 0.96927 0.987519 

745224 DF MAG De-Normalized 0.991516 0.979207 0.986838 

815316 DF ACC De-Normalized 0.997381 0.989046 0.996697 

841866 BD MAG Normalized 0.9901 0.96358 0.97012 

862649 DF MAG De-Normalized 0.994157 0.973599 0.988877 

872895 DF MAG De-Normalized 0.996448 0.980545 0.985682 

897652 BD MAG De-Normalized 0.997085 0.986842 0.998164 

923862 BD MAG De-Normalized 0.992026 0.973724 0.985712 

998757 DF MAG De-Normalized 0.995247 0.983171 0.990767 

 

At Table 7,21 we show the sensors with highest scored model, and the same model with 

diffrent sensors. For example, for user 745224 DF with De-normalized data with MAG 

fields gets hishest accurcy value. So we show DF with De-normalized data for other two 

sensors. 

Table 7.21 Accuracy values for All sensors 

ID Model Data Flow Accuracy Flow (2) 
Accuracy 

(2) 

Flow 

(3) 
Accuracy (3) 

745224 DF De-Normalized MAG 0.991516 ACC 0.969815 GRY 0.906342 

352716 BD De-Normalized MAG 0.996658 ACC 0.978078 GRY 0.917494 

219303 BD De-Normalized MAG 0.994998 ACC 0.976587 GRY 0.937014 

501973 BD De-Normalized MAG 0.993339 ACC 0.969966 GRY 0.945009 

264325 BD De-Normalized MAG 0.988493 ACC 0.946867 GRY 0.86838 
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527796 DF De-Normalized MAG 0.990525 ACC 0.956157 GRY 0.892178 

862649 DF De-Normalized MAG 0.994157 ACC 0.958806 GRY 0.927815 

663153 DF De-Normalized MAG 0.995501 ACC 0.984793 GRY 0.94117 

556357 DF De-Normalized MAG 0.997462 ACC 0.972422 GRY 0.958968 

841866 BD Normalized MAG 0.9901 ACC 0.967816 GRY 0.914201 

815316 DF De-Normalized ACC 0.997381 MAG 0.996074 GRY 0.949063 

472761 BD De-Normalized MAG 0.992713 ACC 0.963858 GRY 0.914449 

897652 BD De-Normalized MAG 0.997085 ACC 0.977373 GRY 0.911441 

186676 DF De-Normalized MAG 0.996185 ACC 0.965079 GRY 0.915062 

998757 DF De-Normalized MAG 0.995247 ACC 0.968441 GRY 0.916677 

872895 DF De-Normalized MAG 0.996448 ACC 0.975998 GRY 0.951928 

240168 BD De-Normalized MAG 0.997416 ACC 0.985992 GRY 0.941615 

151985 DF De-Normalized MAG 0.998633 ACC 0.942081 GRY 0.826891 

923862 BD De-Normalized MAG 0.992026 ACC 0.947643 GRY 0.903371 

733162 BD De-Normalized MAG 0.992866 ACC 0.981226 GRY 0.906829 

 
 

At table 7.22, we show average values of Accuracy, Precision and Recall of all users for 

all models.  

 
 

Table 7.22: All Results together. 
 

Model Flow Data Accuracy Precision Recall 

BD ALL De-Normalized 0.997317 0.987706 0.994475 

BD ALL Normalized 0.996111 0.982467 0.991248 

DF ALL De-Normalized 0.994229 0.987369 0.976155 

BD ALL with PCA De-Normalized 0.994193 0.978985 0.983608 

DF MAG De-Normalized 0.993593 0.978965 0.981824 

BD MAG De-Normalized 0.992348 0.970046 0.984742 

DF ALL Normalized 0.992055 0.981225 0.967784 

DF ALL with PCA De-Normalized 0.989785 0.982921 0.951127 

DF MAG with PCA De-Normalized 0.988962 0.973025 0.959094 

BD MAG with PCA De-Normalized 0.986981 0.955986 0.96781 

DF MAG Normalized 0.984081 0.953795 0.946984 

BD ALL with PCA Normalized 0.983862 0.953004 0.947445 

BD 30COLS De-Normalized 0.983635 0.946876 0.957458 

BD MAG Normalized 0.983041 0.943442 0.954194 

DF 30COLS De-Normalized 0.97816 0.95089 0.916837 

BD 30COLS Normalized 0.972161 0.910419 0.920293 

BD ACC De-Normalized 0.969493 0.907356 0.918888 

DF 30COLS Normalized 0.968247 0.923459 0.86851 

DF ACC De-Normalized 0.967054 0.92807 0.874002 

DF ACC Normalized 0.964171 0.917219 0.859335 

BD ACC with PCA De-Normalized 0.963485 0.890274 0.897898 

DF ACC with PCA De-Normalized 0.963162 0.922011 0.856201 
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BD ACC Normalized 0.963021 0.886518 0.895616 

DF ALL with PCA Normalized 0.961614 0.942086 0.80115 

DF MAG with PCA Normalized 0.960821 0.909617 0.839957 

BD MAG with PCA Normalized 0.960447 0.87903 0.881583 

DF ACC with PCA Normalized 0.950292 0.888859 0.797156 

BD ACC with PCA Normalized 0.948162 0.844382 0.846266 

LR ALL Normalized 0.924224 0.789046 0.686001 

LR ALL De-Normalized 0.918873 0.790926 0.652578 

DF GRY De-Normalized 0.918862 0.884842 0.630053 

DF GRY Normalized 0.916732 0.875118 0.614414 

BD GRY De-Normalized 0.914418 0.774275 0.740073 

SVM ALL Normalized 0.913508 0.786037 0.618775 

DF GRY with PCA De-Normalized 0.912008 0.85397 0.614659 

LR ALL with PCA Normalized 0.905942 0.73715 0.588172 

BD GRY Normalized 0.905658 0.745916 0.697098 

LR ALL with PCA De-Normalized 0.905617 0.767943 0.569884 

DF GRY with PCA Normalized 0.902699 0.853346 0.541459 

SVM ALL with PCA Normalized 0.897431 0.766317 0.531923 

BD GRY with PCA De-Normalized 0.895709 0.722844 0.675208 

LR 30COLS Normalized 0.892781 0.709761 0.520253 

SVM 30COLS Normalized 0.890139 0.743792 0.502651 

LR 30COLS De-Normalized 0.889927 0.723636 0.479914 

BD GRY with PCA Normalized 0.8837 0.682679 0.612755 

LR ACC Normalized 0.87534 0.654405 0.431529 

LR MAG De-Normalized 0.870602 0.653397 0.348817 

SVM ACC Normalized 0.869704 0.678231 0.409189 

LR ACC De-Normalized 0.86594 0.653944 0.374243 

LR MAG Normalized 0.862697 0.606739 0.272891 

LR ACC with PCA Normalized 0.862243 0.600669 0.345911 

LR MAG with PCA De-Normalized 0.861988 0.580987 0.279547 

SVM ACC with PCA Normalized 0.860143 0.622211 0.347434 

SVM MAG Normalized 0.859586 0.637857 0.25921 

LR ACC with PCA De-Normalized 0.858432 0.612202 0.326387 

LR MAG with PCA Normalized 0.856722 0.548401 0.233163 

SVM MAG with PCA Normalized 0.855579 0.625727 0.234166 

LR GRY Normalized 0.835687 0.499719 0.154874 

SVM GRY Normalized 0.830493 0.420945 0.131047 

LR GRY De-Normalized 0.829698 0.45738 0.129285 

LR GRY with PCA Normalized 0.828695 0.387521 0.078386 

LR GRY with PCA De-Normalized 0.825401 0.457932 0.102514 

SVM GRY with PCA Normalized 0.825175 0.322237 0.084511 
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8. CONCLUSION 

 

 

 

In this paper; the data set of HMOG, which is a set of behavioural biometric features for 

continuous authentication of smartphone users, is used. The changes in the sensors in 

terms of acceleration, orientation and magnetic field are detected using different machine 

learning algorithms. Each data model aims to differentiate the real user of the mobile 

phone from non-users. The accuracy values of different algorithms with different data 

flows are presented. The results demonstrate the efficiency of the usage of sensors for 

continuous user authentication.  

 

From three sensor Magnetometer in terms of accuracy gives best results but values for 

Accelerometer in terms of Accuracy are so close to Magnetometer Accuracy values. So 

we cannot easily say that which sensor performs better. But Gyroscope Accuracy values 

are lower than the Accuracy values of these two sensors.   

 

Taking normalization a bit made Accuracy values lower. But here again the values of 

Accuracy for normalized and de normalized data are so close for same type of data flow. 

So we cannot easily say that normalization or de normalization of data affects Accuracy. 

 

Algorithms strongly affects accuracy. BD and DF gives good result compared to SVM 

and LR. Here boosting and bagging algorisms archives better accuracy. We used linear 

kernel for SVM and lasso and ridge for logistic regression but two of them gave worse 

results compared to DF and BD. So we can easily say ensemble algorithms gives better 

performance. 
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Taking PCA a bit made Accuracy values lower. But here again the values of Accuracy 

for data with PCA and data without PCA are so close for same type of data flow. So we 

cannot easily say that taking PCA of data affects Accuracy.
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9. FURTHER RESEARCH 

 

In this experiment we examined different kind of machine learning algorithms for mobile 

phone user authentication. We used PCA and normalization for data manipulation 

moreover we used different data flows to see different behaviours. In our experiment, we 

did not measure how quickly our models detect a mobile phone users. We have very high 

accuracies for ensemble algorithms but we don’t know how quickly these algorithms will 

detect a mobile phone users. So an android application can be done to detect how quickly 

these algorism performs. If the time for authentication is too slow these type of 

authentication will be useless. 

 

Moreover, in real time we did not measure how much energy is required for training a 

model. We used 7 different kind of models and all of them has 9 data flows. But we don’t 

know in real live how much energy will consume those 7 *9 = 63 models. And we don’t 

know if the energy consumption will be enough for model training in real life. 

Additionally after model training, how much energy will be consumed for 

implementation phrase. If the energy consumption is too high for model training, these 

type of authentication will be useless. And also, after model training if the energy 

consumption is still too high for authentication again these type of attentions will be 

useless.   

 

Additionally, to train a model we need about 1.2 GB of data. And when we run all models 

a model user about 7 GB of space is used. This is a bit high for authentication in mobile 

phones. So how much of data will be required for authentication in mobile phones. If the 

data is so abundant then there won’t be enough disk space in mobile phones. Here both 

the space for data collection and space for training data should be considered. After 

collection of data there should be available space for training and for implementation 

phrase.  
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The final question is about required CPU and memory usage. To train such kind of models 

in mobile phone, there should be enough memory and CPU for training. When we try to 

implement such kind of models, current mobile phones may need extra memory or CPU 

space. 
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APPENDICES 

 

 

Appendix A 

TABLE_ACCELEROMETER: 
SYSTIME numeric(20,0) NULL , 

 EVENTTIME numeric(20,0) NULL , 

 ACTIVITY_ID numeric(20,0) NULL , 

 X numeric(15,10) NULL , 

 Y numeric(15,10) NULL , 

 Z numeric(15,10) NULL , 

 M numeric(15,10) NULL , 

 PHONE_ORIENTATION numeric(2,0) NULL  

 

TABLE_ACCELEROMETER_STR: 

STR_VAL varchar(2000) 

 

TABLE_ACTIVITY: 

 ID numeric(20,0) NULL , 

 SUBJECT_ID numeric(6,0) NULL , 

 SESSION_NUMBER numeric(2,0) NULL , 

 START_TIME numeric(20,0) NULL , 

 END_TIME numeric(20,0) NULL , 

 RELATIVE_START_TIME numeric(20,0) NULL , 

 RELATIVE_END_TIME numeric(20,0) NULL , 

 GESTURE_SCENARIO numeric(2,0) NULL , 

 TASK_ID numeric(2,0) NULL , 

 CONTENT_ID numeric(2,0) NULL , 

 USER_ID numeric(6,0) NULL , 

 SESSION_ID numeric(2,0) NULL  

 

TABLE_ACTIVITY_STR: 

 STR_VAL varchar(2000) 

 

TABLE_GYROSCROPE: 

 SYSTIME numeric(20,0) NULL , 

 EVENTTIME numeric(20,0) NULL , 

 ACTIVITY_ID numeric(20,0) NULL , 

 X numeric(15,10) NULL , 

 Y numeric(15,10) NULL , 

 Z numeric(15,10) NULL , 

 M numeric(15,10) NULL , 

 PHONE_ORIENTATION numeric(2,0) NULL  

 

TABLE_GYROSCROPE_STR: 

STR_VAL varchar(2000) 

 

TABLE_KEYPRESS: 

SYSTIME numeric(20,0) NULL , 

 PRESSTIME numeric(20,0) NULL , 

 PRESSTYPE numeric(2,0) NULL , 

 ACTIVITY_ID numeric(20,0) NULL , 

 KEY_ID numeric(4,0) NULL , 

 PHONE_ORIENTATION numeric(2,0) NULL  

 

TABLE_KEYPRESS_STR: 

STR_VAL varchar(2000 
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TABLE_MAGNETOMETER: 

SYSTIME numeric(20,0) NULL , 

 EVENTTIME numeric(20,0) NULL , 

 ACTIVITY_ID numeric(20,0) NULL , 

 X numeric(15,10) NULL , 

 Y numeric(15,10) NULL , 

 Z numeric(15,10) NULL , 

 M numeric(15,10) NULL , 

 PHONE_ORIENTATION numeric(2,0) NULL  

 

TABLE_MAGNETOMETER_STR 

STR_VAL varchar(2000) 

 

TABLE_ONEFINGERTOUCH 

SYSTIME numeric(20,0) NULL , 

 PRESSTIME numeric(20,0) NULL , 

 ACTIVITY_ID numeric(20,0) NULL , 

 TAP_ID numeric(10,0) NULL , 

 TAP_TYPE numeric(2,0) NULL , 

 ACTION_TYPE numeric(2,0) NULL , 

 X numeric(15,10) NULL , 

 Y numeric(15,10) NULL , 

 PRESSURE numeric(15,10) NULL , 

 CONTACT_SIZE numeric(15,10) NULL , 

 PHONE_ORIENTATION numeric(2,0) NULL  

 

TABLE_ONEFINGERTOUCH_STR 

STR_VAL varchar(2000) 

 

TABLE_PINCH 

SYSTIME numeric(20,0) NULL , 

 PRESSTIME numeric(20,0) NULL , 

 ACTIVITY_ID numeric(20,0) NULL , 

 EVENT_TYPE numeric(2,0) NULL , 

 PINCH_ID numeric(20,0) NULL , 

 TIME_DELTA numeric(20,0) NULL , 

 FOCUS_X numeric(15,10) NULL , 

 FOCUS_Y numeric(15,10) NULL , 

 SPAN numeric(15,10) NULL , 

 SPAN_X numeric(15,10) NULL , 

 SPAN_Y numeric(15,10) NULL , 

 SCALE_FACTOR numeric(15,10) NULL , 

 PHONE_ORIENTATION numeric(2,0) NULL  

 

TABLE_PINCH_STR 

STR_VAL varchar(2000) 

 

TABLE_SCROLL 

SYSTIME numeric(20,0) NULL , 

 BEGINTIME numeric(20,0) NULL , 

 CURRENTTIME numeric(20,0) NULL , 

 ACTIVITY_ID numeric(20,0) NULL , 

 SCROLL_ID numeric(20,0) NULL , 

 START_ACTION_TYPE numeric(2,0) NULL , 

 START_X numeric(15,10) NULL , 

 START_Y numeric(15,10) NULL , 

 START_PRESSURE numeric(15,10) NULL , 

 START_SIZE numeric(15,10) NULL , 

 CURRENT_ACTION_TYPE numeric(2,0) NULL , 

 CURRENT_X numeric(15,10) NULL , 
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 CURRENT_Y numeric(15,10) NULL , 

 CURRENT_PRESSURE numeric(15,10) NULL , 

 CURRENT_SIZE numeric(15,10) NULL , 

 DISTANCE_X numeric(15,10) NULL , 

 DICTANCE_Y numeric(15,10) NULL , 

 PHONE_ORIENTATION numeric(2,0) NULL  

TABLE_SCROLL_STR 

(STR_VAL varchar(2000) 

 

TABLE_STROKE 

SYSTIME numeric(20,0) NULL , 

 BEGINTIME numeric(20,0) NULL , 

 ENDTIME numeric(20,0) NULL , 

 ACTIVITY_ID numeric(20,0) NULL , 

 SCROLL_ID numeric(20,0) NULL , 

 START_ACTION_TYPE numeric(2,0) NULL , 

 START_X numeric(15,10) NULL , 

 START_Y numeric(15,10) NULL , 

 START_PRESSURE numeric(15,10) NULL , 

 START_SIZE numeric(15,10) NULL , 

 END_ACTION_TYPE numeric(2,0) NULL , 

 END_X numeric(15,10) NULL , 

 END_Y numeric(15,10) NULL , 

 END_PRESSURE numeric(15,10) NULL , 

 END_SIZE numeric(15,10) NULL , 

 SPEED_X numeric(15,10) NULL , 

 SPEED_Y numeric(15,10) NULL , 

 PHONE_ORIENTATION numeric(2,0) NULL  

 

TABLE_STROKE_STR 

STR_VAL varchar(2000) 

 

TABLE_TOUCH 

SYSTIME numeric(20,0) NULL , 

 EVENTTIME numeric(20,0) NULL , 

 ACTIVITY_ID numeric(20,0) NULL , 

 POINTER_COUNT numeric(2,0) NULL , 

 POINTER_ID numeric(2,0) NULL , 

 ACTION_ID numeric(2,0) NULL , 

 X numeric(15,10) NULL , 

 Y numeric(15,10) NULL , 

 PRESSURE numeric(15,10) NULL , 

 CONTACT_SIZE numeric(15,10) NULL , 

 PHONE_ORIENTATION numeric(2,0) NULL  

 

TABLE_TOUCH_STR 

STR_VAL varchar(2000) 
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Appendix B 

begin 

 declare v_root varchar(200); 

 declare v_text varchar(200); 

 declare v_file varchar(200); 

 declare v_user_count numeric(10); 

 declare user_counter numeric(10); 

 declare session_counter numeric(2); 

 declare v_usr_id numeric(6); 

  

 declare SQL_STR varchar(2000); 

 

 set v_root = '/data/hmog_dataset/public_dataset/'; 

 

 

 CREATE TABLE #user_ids 

 (usr_id NUMERIC(6)); 

  

  

 insert into #user_ids (usr_id) values(100669); 

 insert into #user_ids (usr_id) values(151985); 

 -- ... 

 -- insert all user ids 

 --- ... 

 commit; 

 

     select count() into v_user_count from #user_ids; 

  

  

     select ROWID(usr1) as IDX,usr_id into #user_ids2 from #user_ids as usr1; 

 

 commit; 

 set user_counter = 1; 

 user_loop: loop 

      

   if user_counter > v_user_count then leave user_loop 

       end if; 

   

   select usr_id into v_usr_id from #user_ids2 where IDX = user_counter; 

   set session_counter = 1; 

  session_loop: loop 

   

  if session_counter > 24 then leave session_loop 

  end if; 

  

  set v_text = 

 v_root || convert(varchar(10),v_usr_id) + '/' || convert(varchar(10),v_usr_id) || '/' ||  

convert(varchar(10),v_usr_id) ||'_session_' || convert(varchar(2),session_counter) || '/'; 

   

  if session_counter = 1 then 

   message v_text type info to client; 

  end if; 

   

   

  begin 

   set v_file = v_text || 'Activity.csv'; 

   SET SQL_STR = 'LOAD table TABLE_ACTIVITY '  

   ||'( ' 

   ||' ID   '','',' 

   ||' SUBJECT_ID   '','',' 

   ||' SESSION_NUMBER   '','',' 

   ||' START_TIME   '','',' 

   ||' END_TIME   '','',' 

   ||' RELATIVE_START_TIME   '','',' 

   ||' RELATIVE_END_TIME   '','',' 

   ||' GESTURE_SCENARIO  '','',' 

   ||' TASK_ID  '','',' 

   ||' CONTENT_ID ''\\x0a'') '  

   ||' FROM '''  || v_file ||'''' 

   ||' QUOTES OFF '  

   ||' ESCAPES OFF; '; 

    

   execute immediate SQL_STR; 

   COMMIT; 

    

   COMMIT; 

   exception 

     when others then 

     set v_file = v_text || 'Activity.csv'; 

     SET SQL_STR = 'LOAD table TABLE_ACTIVITY '  

     ||'( ' 

     ||' ID   '','',' 

     ||' SUBJECT_ID   '','',' 

     ||' SESSION_NUMBER   '','',' 

     ||' START_TIME   '','',' 

     ||' END_TIME   '','',' 

     ||' RELATIVE_START_TIME   '','',' 

     ||' RELATIVE_END_TIME   '','',' 

     ||' GESTURE_SCENARIO  '','',' 

     ||' TASK_ID  '','',' 

     ||' CONTENT_ID ''\\x0d'') '  

     ||' FROM '''  || v_file ||'''' 

     ||' QUOTES OFF '  

     ||' ESCAPES OFF; '; 

      

     execute immediate SQL_STR; 

     COMMIT; 
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  end; 

   

 

  begin 

   set v_file = v_text || 'Accelerometer.csv'; 

   SET SQL_STR = 'load table TABLE_ACCELEROMETER ' 

   ||'( ' 

   ||' SYSTIME   '','',' 

   ||' EVENTTIME   '','',' 

   ||' ACTIVITY_ID   '','',' 

   ||' X   '','',' 

   ||' Y   '','',' 

   ||' Z   '','',' 

   ||' PHONE_ORIENTATION  ''\\x0a'') '  

   ||' FROM '''  || v_file ||'''' 

   ||' QUOTES OFF '  

   ||' ESCAPES OFF; '; 

    

   execute immediate SQL_STR; 

   COMMIT; 

   exception 

     when others then 

     set v_file = v_text || 'Accelerometer.csv'; 

     SET SQL_STR = 'load table TABLE_ACCELEROMETER ' 

     ||'( ' 

     ||' SYSTIME   '','',' 

     ||' EVENTTIME   '','',' 

     ||' ACTIVITY_ID   '','',' 

     ||' X   '','',' 

     ||' Y   '','',' 

     ||' Z   '','',' 

     ||' PHONE_ORIENTATION  ''\\x0d'') '  

     ||' FROM '''  || v_file ||'''' 

     ||' QUOTES OFF '  

     ||' ESCAPES OFF; '; 

      

     execute immediate SQL_STR; 

     COMMIT; 

  end; 

  begin 

 

   set v_file = v_text || 'Gyroscope.csv'; 

   SET SQL_STR = 'load table TABLE_GYROSCROPE ' 

   ||'( ' 

   ||' SYSTIME   '','',' 

   ||' EVENTTIME   '','',' 

   ||' ACTIVITY_ID   '','',' 

   ||' X   '','',' 

   ||' Y   '','',' 

   ||' Z   '','',' 

   ||' PHONE_ORIENTATION  ''\\x0a'') '  

   ||' FROM '''  || v_file ||'''' 

   ||' QUOTES OFF '  

   ||' ESCAPES OFF; '; 

    

   execute immediate SQL_STR; 

   COMMIT; 

   exception 

     when others then 

 

     set v_file = v_text || 'Gyroscope.csv'; 

     SET SQL_STR = 'load table TABLE_GYROSCROPE ' 

     ||'( ' 

     ||' SYSTIME   '','',' 

     ||' EVENTTIME   '','',' 

     ||' ACTIVITY_ID   '','',' 

     ||' X   '','',' 

     ||' Y   '','',' 

     ||' Z   '','',' 

     ||' PHONE_ORIENTATION  ''\\x0d'') '  

     ||' FROM '''  || v_file ||'''' 

     ||' QUOTES OFF '  

     ||' ESCAPES OFF; '; 

      

     execute immediate SQL_STR; 

     COMMIT; 

  end;   

  begin 

   set v_file = v_text || 'Magnetometer.csv'; 

   SET SQL_STR = 'load table TABLE_MAGNETOMETER ' 

   ||'( ' 

   ||' SYSTIME   '','',' 

   ||' EVENTTIME   '','',' 

   ||' ACTIVITY_ID   '','',' 

   ||' X   '','',' 

   ||' Y   '','',' 

   ||' Z   '','',' 

   ||' PHONE_ORIENTATION  ''\\x0a'') '  

   ||' FROM '''  || v_file ||'''' 

   ||' QUOTES OFF '  

   ||' ESCAPES OFF; '; 

    

   execute immediate SQL_STR; 

   COMMIT; 

   exception 

     when others then 

     set v_file = v_text || 'Magnetometer.csv'; 

     SET SQL_STR = 'load table TABLE_MAGNETOMETER ' 
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     ||'( ' 

     ||' SYSTIME   '','',' 

     ||' EVENTTIME   '','',' 

     ||' ACTIVITY_ID   '','',' 

     ||' X   '','',' 

     ||' Y   '','',' 

     ||' Z   '','',' 

     ||' PHONE_ORIENTATION  ''\\x0d'') '  

     ||' FROM '''  || v_file ||'''' 

     ||' QUOTES OFF '  

     ||' ESCAPES OFF; '; 

      

     execute immediate SQL_STR; 

     COMMIT; 

  end; 

 

   

  begin 

 

   set v_file = v_text || 'TouchEvent.csv'; 

   SET SQL_STR = 'load table TABLE_TOUCH ' 

   ||'( ' 

   ||' SYSTIME   '','',' 

   ||' EVENTTIME   '','',' 

   ||' ACTIVITY_ID   '','',' 

   ||' POINTER_COUNT   '','',' 

   ||' POINTER_ID   '','',' 

   ||' ACTION_ID   '','',' 

   ||' X  '','',' 

   ||' Y  '','',' 

   ||' PRESSURE  '','',' 

   ||' CONTACT_SIZE  '','',' 

   ||' PHONE_ORIENTATION   ''\\x0a'') '  

   ||' FROM '''  || v_file ||'''' 

   ||' QUOTES OFF '  

   ||' ESCAPES OFF; '; 

    

   execute immediate SQL_STR; 

   COMMIT; 

   exception 

     when others then 

     set v_file = v_text || 'TouchEvent.csv'; 

     SET SQL_STR = 'load table TABLE_TOUCH ' 

     ||'( ' 

     ||' SYSTIME   '','',' 

     ||' EVENTTIME   '','',' 

     ||' ACTIVITY_ID   '','',' 

     ||' POINTER_COUNT   '','',' 

     ||' POINTER_ID   '','',' 

     ||' ACTION_ID   '','',' 

     ||' X  '','',' 

     ||' Y  '','',' 

     ||' PRESSURE  '','',' 

     ||' CONTACT_SIZE  '','',' 

     ||' PHONE_ORIENTATION   ''\\x0d'') '  

     ||' FROM '''  || v_file ||'''' 

     ||' QUOTES OFF '  

     ||' ESCAPES OFF; '; 

      

     execute immediate SQL_STR; 

     COMMIT; 

  end; 

   

  begin 

 

   set v_file = v_text || 'KeyPressEvent.csv'; 

   SET SQL_STR = 'load table TABLE_KEYPRESS ' 

   ||'( ' 

   ||' SYSTIME   '','',' 

   ||' PRESSTIME   '','',' 

   ||' ACTIVITY_ID   '','',' 

   ||' PRESSTYPE   '','',' 

   ||' KEY_ID '','',' 

   ||' PHONE_ORIENTATION   ''\\x0a'') '  

   ||' FROM '''  || v_file ||'''' 

   ||' QUOTES OFF '  

   ||' ESCAPES OFF; '; 

    

   execute immediate SQL_STR; 

   COMMIT; 

   exception 

     when others then 

 

     set v_file = v_text || 'KeyPressEvent.csv'; 

     SET SQL_STR = 'load table TABLE_KEYPRESS ' 

     ||'( ' 

     ||' SYSTIME   '','',' 

     ||' PRESSTIME   '','',' 

     ||' ACTIVITY_ID   '','',' 

     ||' PRESSTYPE   '','',' 

     ||' KEY_ID '','',' 

     ||' PHONE_ORIENTATION   ''\\x0d'') '  

     ||' FROM '''  || v_file ||'''' 

     ||' QUOTES OFF '  

     ||' ESCAPES OFF; '; 

      

     execute immediate SQL_STR; 

     COMMIT; 

  end; 
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  begin 

   set v_file = v_text || 'OneFingerTouchEvent.csv'; 

   SET SQL_STR = 'load table TABLE_ONEFINGERTOUCH ' 

   ||'( ' 

   ||' SYSTIME   '','',' 

   ||' PRESSTIME   '','',' 

   ||' ACTIVITY_ID   '','',' 

   ||' TAP_ID   '','',' 

   ||' TAP_TYPE   '','',' 

   ||' ACTION_TYPE   '','',' 

   ||' X  '','',' 

   ||' Y  '','',' 

   ||' PRESSURE  '','',' 

   ||' CONTACT_SIZE  '','',' 

   ||' PHONE_ORIENTATION   ''\\x0a'') '  

   ||' FROM '''  || v_file ||'''' 

   ||' QUOTES OFF '  

   ||' ESCAPES OFF; '; 

    

   execute immediate SQL_STR; 

   COMMIT; 

   exception 

     when others then 

     set v_file = v_text || 'OneFingerTouchEvent.csv'; 

     SET SQL_STR = 'load table TABLE_ONEFINGERTOUCH ' 

     ||'( ' 

     ||' SYSTIME   '','',' 

     ||' PRESSTIME   '','',' 

     ||' ACTIVITY_ID   '','',' 

     ||' TAP_ID   '','',' 

     ||' TAP_TYPE   '','',' 

     ||' ACTION_TYPE   '','',' 

     ||' X  '','',' 

     ||' Y  '','',' 

     ||' PRESSURE  '','',' 

     ||' CONTACT_SIZE  '','',' 

     ||' PHONE_ORIENTATION   ''\\x0d'') '  

     ||' FROM '''  || v_file ||'''' 

     ||' QUOTES OFF '  

     ||' ESCAPES OFF; '; 

      

     execute immediate SQL_STR; 

     COMMIT; 

  end; 

   

  begin 

   set v_file = v_text || 'PinchEvent.csv'; 

   SET SQL_STR = 'load table TABLE_PINCH ' 

   ||'( ' 

   ||' SYSTIME   '','',' 

   ||' PRESSTIME   '','',' 

   ||' ACTIVITY_ID   '','',' 

   ||' EVENT_TYPE   '','',' 

   ||' PINCH_ID   '','',' 

   ||' TIME_DELTA   '','',' 

   ||' FOCUS_X  '','',' 

   ||' FOCUS_Y  '','',' 

   ||' SPAN  '','',' 

   ||' SPAN_X  '','',' 

   ||' SPAN_Y  '','',' 

   ||' SCALE_FACTOR  '','',' 

   ||' PHONE_ORIENTATION   ''\\x0a'') '  

   ||' FROM '''  || v_file ||'''' 

   ||' QUOTES OFF '  

   ||' ESCAPES OFF; '; 

    

   execute immediate SQL_STR; 

   COMMIT; 

   exception 

     when others then 

     set v_file = v_text || 'PinchEvent.csv'; 

     SET SQL_STR = 'load table TABLE_PINCH ' 

     ||'( ' 

     ||' SYSTIME   '','',' 

     ||' PRESSTIME   '','',' 

     ||' ACTIVITY_ID   '','',' 

     ||' EVENT_TYPE   '','',' 

     ||' PINCH_ID   '','',' 

     ||' TIME_DELTA   '','',' 

     ||' FOCUS_X  '','',' 

     ||' FOCUS_Y  '','',' 

     ||' SPAN  '','',' 

     ||' SPAN_X  '','',' 

     ||' SPAN_Y  '','',' 

     ||' SCALE_FACTOR  '','',' 

     ||' PHONE_ORIENTATION   ''\\x0d'') '  

     ||' FROM '''  || v_file ||'''' 

     ||' QUOTES OFF '  

     ||' ESCAPES OFF; '; 

      

     execute immediate SQL_STR; 

     COMMIT; 

  end; 

 

   

  begin 

 



69 

  
 

   set v_file = v_text || 'ScrollEvent.csv'; 

   SET SQL_STR = 'load table TABLE_SCROLL ' 

   ||'( ' 

   ||' SYSTIME   '','',' 

   ||' BEGINTIME   '','',' 

   ||' CURRENTTIME   '','',' 

   ||' ACTIVITY_ID   '','',' 

   ||' SCROLL_ID   '','',' 

   ||' START_ACTION_TYPE   '','',' 

   ||' START_X  '','',' 

   ||' START_Y  '','',' 

   ||' START_PRESSURE  '','',' 

   ||' START_SIZE  '','',' 

   ||' CURRENT_ACTION_TYPE   '','',' 

   ||' CURRENT_X  '','',' 

   ||' CURRENT_Y  '','',' 

   ||' CURRENT_PRESSURE  '','',' 

   ||' CURRENT_SIZE  '','',' 

   ||' DISTANCE_X  '','',' 

   ||' DICTANCE_Y  '','',' 

   ||' PHONE_ORIENTATION   ''\\x0a'') '  

   ||' FROM '''  || v_file ||'''' 

   ||' QUOTES OFF '  

   ||' ESCAPES OFF; '; 

    

   execute immediate SQL_STR; 

   COMMIT; 

   exception 

     when others then 

 

     set v_file = v_text || 'ScrollEvent.csv'; 

     SET SQL_STR = 'load table TABLE_SCROLL ' 

     ||'( ' 

     ||' SYSTIME   '','',' 

     ||' BEGINTIME   '','',' 

     ||' CURRENTTIME   '','',' 

     ||' ACTIVITY_ID   '','',' 

     ||' SCROLL_ID   '','',' 

     ||' START_ACTION_TYPE   '','',' 

     ||' START_X  '','',' 

     ||' START_Y  '','',' 

     ||' START_PRESSURE  '','',' 

     ||' START_SIZE  '','',' 

     ||' CURRENT_ACTION_TYPE   '','',' 

     ||' CURRENT_X  '','',' 

     ||' CURRENT_Y  '','',' 

     ||' CURRENT_PRESSURE  '','',' 

     ||' CURRENT_SIZE  '','',' 

     ||' DISTANCE_X  '','',' 

     ||' DICTANCE_Y  '','',' 

     ||' PHONE_ORIENTATION   ''\\x0d'') '  

     ||' FROM '''  || v_file ||'''' 

     ||' QUOTES OFF '  

     ||' ESCAPES OFF; '; 

      

     execute immediate SQL_STR; 

     COMMIT; 

  end; 

 

     

  begin 

   set v_file = v_text || 'StrokeEvent.csv'; 

   SET SQL_STR = 'load table TABLE_STROKE  ' 

   ||'( ' 

   ||' SYSTIME   '','',' 

   ||' BEGINTIME   '','',' 

   ||' ENDTIME   '','',' 

   ||' ACTIVITY_ID   '','',' 

   ||' START_ACTION_TYPE   '','',' 

   ||' START_X  '','',' 

   ||' START_Y  '','',' 

   ||' START_PRESSURE  '','',' 

   ||' START_SIZE  '','',' 

   ||' END_ACTION_TYPE   '','',' 

   ||' END_X  '','',' 

   ||' END_Y  '','',' 

   ||' END_PRESSURE  '','',' 

   ||' END_SIZE  '','',' 

   ||' SPEED_X  '','',' 

   ||' SPEED_Y  '','',' 

   ||' PHONE_ORIENTATION   ''\\x0a'') '  

   ||' FROM '''  || v_file ||'''' 

   ||' QUOTES OFF '  

   ||' ESCAPES OFF; '; 

    

   execute immediate SQL_STR; 

   COMMIT; 

   exception 

     when others then 

     set v_file = v_text || 'StrokeEvent.csv'; 

     SET SQL_STR = 'load table TABLE_STROKE  ' 

     ||'( ' 

     ||' SYSTIME   '','',' 

     ||' BEGINTIME   '','',' 

     ||' ENDTIME   '','',' 

     ||' ACTIVITY_ID   '','',' 

     ||' START_ACTION_TYPE   '','',' 

     ||' START_X  '','',' 

     ||' START_Y  '','',' 
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     ||' START_PRESSURE  '','',' 

     ||' START_SIZE  '','',' 

     ||' END_ACTION_TYPE   '','',' 

     ||' END_X  '','',' 

     ||' END_Y  '','',' 

     ||' END_PRESSURE  '','',' 

     ||' END_SIZE  '','',' 

     ||' SPEED_X  '','',' 

     ||' SPEED_Y  '','',' 

     ||' PHONE_ORIENTATION   ''\\x0d'') '  

     ||' FROM '''  || v_file ||'''' 

     ||' QUOTES OFF '  

     ||' ESCAPES OFF; '; 

      

     execute immediate SQL_STR; 

     COMMIT; 

  end; 

 

 

   

 

        set session_counter = session_counter+1 

      end loop session_loop; 

      set user_counter = user_counter+1; 

    end loop user_loop; 

  

  

exception 

  when others then 

   message SQL_STR type info to client; 

    set sp_sqlstate = sqlstate; 

    set sp_sqlcode = sqlcode; 

    rollback work; 

    signal sp_exception; 

    return 1 

end; 
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