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ABSTRACT

Scientific progress is an ongoing process and humans always have new ideas for new

inventions. Although, scientific process is cumulative, you must invent the tire before

inventing the car. Currently, mankind have past that point and looking towards to

new challenges. One of the new ideas is cars that drive themselves, in a more formal

and general way, the ‘autonomous ground vehicles’. Autonomous vehicles in city traffic

have been a dream for a long time. However, this great idea comes with its own set of

problems. There are many parts of autonomous driving such as scene understanding,

path planning. Many methods have been studied and developed to solve its problems.

In this thesis, a novel path planning algorithm and results of extensive experimenta-

tion on it are presented. The algorithm runs real-time and is an alternative to well

known existing algorithms. The experiments are done in a scalable custom environ-

ment consisting of a custom-built vehicle, desktop computer, a camera and an open

source marker library.

Keywords : Autonomous ground vehicles, path planning, real-time computing, robotics



ÖZET

Bilimsel ilerleme sürekli devam eden bir süreçtir ve insanların her zaman yeni icatlar

için yeni fikirleri vardır. Ancak, bilimsel ilerleyiş kümülatiftir, arabayı icat etmeden önce

tekerleği icat etmeniz gerekmektedir. An itibarıyla insanlık o noktayı aşmış bulunmak-

tadır ve yeni meydan okumalara açıktır. Yeni fikirlerden biri kendileri giden arabalar,

daha resmi ve genel bir tabirle, ‘otonom yer araçları’dır. Şehir trafiğinde seyreden oto-

nom araçlar uzun yıllardan beri bir hayal olmuştur. Ama bu fikrin gerçekleşmesi için

bazı zorlukların üstesinden gelinmesi gerekmektedir. Otonom araçların senaryo algı-

lama ve yörünge planlama gibi pek çok ayrı bileşeni vardır. Sorunlarını çözmek için

birçok metod üzerine çalışılmış ve geliştirilmiştir.

Bu tezde, yeni bir yörünge planlama algoritması tanıtılmış ve üzerinde yapılan detaylı

deneylerin sonuçları paylaşılmıştır. Algoritm gerçek amanlı çalışmaktadır ve bilinen al-

goritmalara bir alternatiftir. Deneyler özel olarak ayarlanmış ölçeklenebilir bir ortamda,

el yapımı bir araç, bilgisayar, kamera ve açık kaynak kodlu bir karekod kütüphanesi

kullanılarak yapılmıştır.

Anahtar Kelimeler : Otonom araçlar, yörünge planlama, gerçek zamanlı program-

lama, robotik
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1 INTRODUCTION

One of the fundamental problems of creating an autonomous ground vehicle is the navi-

gation. It can be defined as the set of manoeuvres that enables the vehicle to move from

one location to another safely. In order to call this navigation process intelligent, the

autonomous ground vehicle should be respecting the environment and its surroundings

during it’s movement towards the goal. This can be achieved by intelligent algorithms

that take the obstacles and the capability of the autonomous ground vehicle into the

account. So, it has been a research topic for quiet some time and many different al-

gorithms and approaches have been studied over time [5]. More information on brief

history of autonomous ground vehicles and different fundamental algorithms can be

found in the following sections.

1.1 History of Autonomous Ground Vehicles

Ever since the first time the idea of autonomous ground vehicle has come to mind

of mankind, we had tried to solve the problems it created with using all the available

technology and power. One of the problems that have risen is the problem of navigating

autonomous ground vehicle, which has proved itself to be a challenging and interesting

problem over the years. Throughout the history, mankind approached this problem

many times, from many different angles and it has been studied extensively in the field

of robotics and intelligent vehicles for decades [6].

In 1925, Houdina Radio Control demonstrated the radio-controlled "American Won-

der" through traffic jam. The American Wonder was equipped with a transmitting

antenna and was operated by a second car that followed it [7]. Another early represen-

tation of an autonomous ground vehicle was Norman Bel Geddes’s Futurama exhibit at

the 1939 World’s Fair, which depicted radio-controlled electric cars that were propelled

via electromagnetic fields provided by circuits embedded in the roadway [8].

In 1957, a full size system was successfully demonstrated by RCA Labs on a 400-foot

strip of public highway in Nebraska, United States of America. A series of experimental

detector circuits buried in the pavement were a series of lights along the edge of the

road. The detector circuits were able to send impulses to guide the car and determine

the presence and velocity of any metallic vehicle on its surface [9].

In 1980s, the Defense Advanced Research Projects Agency (DARPA) funded Auto-

nomous Land driven Vehicle (ALV) project in the United States made use of new
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technologies developed by the University of Maryland, Carnegie Mellon University, the

Environmental Research Institute of Michigan, Martin Marietta and SRI Internatio-

nal. The ALV project achieved the first road-following demonstration that used lidar,

computer vision and autonomous robotic control to direct a robotic vehicle at speeds

of up to 19 miles per hour (31 km/h). In 1987, HRL Laboratories (formerly Hughes

Research Labs) demonstrated the first off-road map and sensor-based autonomous na-

vigation on the ALV. The vehicle traveled over 2,000 feet (610 m) at 1.9 miles per hour

(3.1 km/h) on complex terrain with steep slopes, ravines, large rocks, and vegetation.

By 1989, Carnegie Mellon University had pioneered the use of neural networks to steer

and otherwise control autonomous vehicles, forming the basis of contemporary control

strategies [10].

In 1991, the United States Congress passed the ISTEA Transportation Authorization

bill, which instructed USDOT to "demonstrate an automated vehicle and highway

system by 1997." The Federal Highway Administration took on this task, first with a

series of Precursor Systems Analyses and then by establishing the National Automated

Highway System Consortium (NAHSC). This cost-shared project was led by FHWA

and General Motors, with Caltrans, Delco, Parsons Brinkerhoff, Bechtel, UC-Berkeley,

Carnegie Mellon University, and Lockheed Martin as additional partners. Extensive

systems engineering work and research culminated in Demo ’97 on I-15 in San Diego,

California, in which about 20 automated vehicles, including cars, buses, and trucks. The

demonstrations involved close-headway platooning intended to operate in segregated

traffic, as well as "free agent" vehicles intended to operate in mixed traffic. While the

subsequent aim was to produce a system design to aid commercialization, the program

was cancelled in the late 1990s due to tightening research budgets at USDOT. Overall

funding for the program was in the range of $90 million [11].

In the first Grand Challenge held in March 2004, DARPA offered a $1 million prize

to any team of robotic engineers which could create an autonomous car capable of

finishing a 150-mile course in the Mojave Desert. No team was successful in completing

the course [12]. In October 2005, the second DARPA Grand Challenge was again held

in a desert environment. GPS points were placed and obstacle types were located in

advance. This year, five vehicles completed the course and Stanley University vehicle

ended up winning the competition. In November 2007, DARPA again sponsored Grand

Challenge III, but this time the Challenge was held in an urban environment. In this

race, a 2007 Chevy Tahoe autonomous car from Carnegie Mellon University earned the

1st place [13].
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Many major automotive manufacturers, including General Motors, Ford, Mercedes

Benz, Volkswagen, Audi, Nissan, Toyota, BMW, and Volvo, are testing driverless car

systems as of 2013. BMW has been testing driverless systems since around 2005 [14],

while in 2010, Audi sent a driverless Audi TTS to the top of Pike’s Peak at close to

race speeds [15]. In 2011, GM created the EN-V (short for Electric Networked Vehicle),

an autonomous electric urban vehicle [16]. In 2012, Volkswagen began testing a "Tem-

porary Auto Pilot" (TAP) system that will allow a car to drive itself at speeds of up

to 80 miles per hour (130 km/h) on the highway [17]. Ford has conducted extensive

research into driverless systems and vehicular communication systems [18]. In January

2013, Toyota demonstrated a partially self-driving car with numerous sensors and com-

munication systems [19].

The focus of this thesis is on the path planning of self-made mini autonomous ground

vehicle, more information on the vehicle specifications is on the following chapters. In

the next chapter, we will review the relevant literature in the field of path planning

along with simulation results obtained using these techniques. Then, the contribution

of this thesis is discussed. Finally, we will provide the outline and organization of this

thesis.
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2 RELATED WORK

Path planning algorithms can be defined in a very simple way, they find a collision-free

path from an initial point to a final point. Simplicity of this definition is the ultimate

sophistication that allows so many different approaches for path planning algorithms.

Over the decades of collaborative study, there are some fundamental algorithms which

are the basis for almost every other algorithm. These algorithms include, but not limited

to; probabilistic roadmap, rapidly-exploring random tree and potential field algorithms.

2.1 A*

A* is a heuristic, best-first search algorithm that is based on Dijkstra’s Algorithm [20]

and works on graphs. So in order to make this algorithm work on a 2-dimensional

space, the free space in the environment must be divided to grids as shown in Figure

2.1. The algorithm starts from a given starting node of a graph, or a grid, and aims to

find a path to the given goal node having the smallest cost. The cost can be defined as

the total distance travelled, total time spent, total cost of the path etc. A* algorithm

maintains a tree of paths originating at the start node and extending those paths one

edge at a time until its termination criterion is satisfied or it reaches the destination

node of the graph. This extension makes the algorithm potentially able to search a

huge area of the map. Based on the scenario, it may lead to optimal or near-optimal

solutions [1].
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Figure 2.1: A* Algorithm [1]

2.2 Probabilistic Roadmap

Probabilistic Roadmap algorithm is a geometry based planner that works on multi-

dimensional spaces, but more practical in fewer dimensional spaces. It takes random

sample points from the configuration space, tests them for whether they are in the free

space or not then and uses a local planner to attempt to connect these configurations

to other nearby configurations. The starting and goal configurations are added in and

a graph search algorithm is applied to the resulting graph to determine a path between

the starting and goal configurations [2].

In Figure 2.2, you see an example roadmap generated by the algorithm. The gray areas

represent obstacles, circles represent the nodes of the roadmap, lines between circles

represent the edges of the roadmap the thick lines represent the generated path from

the initial point to the goal point. In this particular example, the number of k closest

neighbours for the construction is set to three. Randomly selected points in space are

connected to three closest nodes, if their distance less than the threshold.
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Figure 2.2: Probabilistic Roadmap Algorithm [2]

2.3 Rapidly-Exploring Random Tree

Rapidly-Exploring Random Tree (RRT) is an efficient algorithm that works on multi-

dimensional spaces by randomly building a space-filling tree. The tree is constructed by

randomly selected from the free space [3]. RRTs grow a tree rooted at the initial point by

adding random points to the nearest point in the tree, given that the randomly selected

point does not break any constraints. In Figure 2.2, blue circles represent obstacles,

black lines represent the connection between the points and the red line represents the

resulting path from the initial point to the goal point.

Figure 2.3: Rapidly-Exploring Random Tree [3]
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2.4 Potential Field

Potential field algorithms were inspired from the concept of electrical charges. Imagine

the vehicle as a electrically-charged particle, then obstacles in the space should have

the same type of electrical charge in order to repulse the vehicle and avoid any collision.

For the same reason, the goal point should have the opposite type of electrical charge

that will attract the vehicle. In Figure 2.4, red circles represent obstacles, blue point

represents the initial point, arrows represent the direction and amount of force applied

to the vehicle and green line represents generated path. [4]

Figure 2.4: Potential Field [4]
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3 METHODOLOGY

The algorithm proposed in this paper works real-time and is a novel algorithm that

can be alternative to the algorithms mentioned in the previous chapter. Our proposed

algorithm is inspired from them, and improves them in certain ways. In this chapter,

our novel algorithm will be described.

The algorithm can be explained in 2 parts for the sake of simplicity. The first part of the

algorithm is based on a derived version of Hybrid A*[21] and the second step is curve-

fitting. Hybrid A* algorithm is an improved version of the well-known A* algorithm,

it also takes a basic vehicle model into account while creating path in addition to basic

functionality of A*. It does not generate any extremely sharp turns and the generated

path is smoother in general. The first part of our algorithm adds up on Hybrid A*

and makes improvements on it by smoothening it even further and directing it towards

some local goal points. The goal points are deduced from the obstacles and the final

destination point.

The second part of our algorithm treats each obstacle in the experimentation space that

blocks the way separately. It fits curves around them to avoid collision and connects

them with the path parts that the first part generates. Eventually, the path is produced

respecting the obstacles.

After the path is finalized, we direct the vehicle to follow it and make it possible with

a custom controller. The controller controls the steering and torque. It calculates the

steering using two parameters. It adjusts the steering value given by the path depending

on these parameters. One parameter is the difference between the current steering value

and the steering value that should the car have at that moment. The other parameter

is the offset, the distance that vehicle has drifted away from the given path. After

calculating the parameters, our controller calculates the new steering value and sends

it to vehicle. The controller controls the torque to command the vehicle to go forward

or backwards. Trajectory planner is also able to output paths requiring the vehicle to

drive backwards and the vehicle is capable of doing it.
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4 EXPERIMENTAL STUDY

In order to analyze the performance of our algorithm, we have done numerous experi-

ments with our custom setup.The main components of the setup are the vehicle, the

desktop PC and the camera. Details of hardware components of our experimentation

setup are given in this chapter. The focus of the experimentation was testing the abi-

lity of feasible path generation and following the generated path as well as re-routing if

needed. The main parameters of our experiment are vehicle’s starting position, starting

direction and obstacles on the field.

4.1 Experimental Setup

We have built the vehicle from scratch using the LEGO Mindstorms NXT 2.0 set [22].

The vehicle is a 4-tire car sized 24 cm long, 17 cm wide 14 cm high. It has 3 electric

motors on it, 2 of which powers rear-wheel driving and 1 control the steering. The

motors are connected to the ’intelligent brick’ that has a 32-bit ARM7 microprocessor

[23]. The intelligent brick is connected to the desktop PC via Bluetooth.

The steering on the car applies Ackermann steering geometry, to better simulate the

real life autonomous cars. Ackermann steering geometry allows the wheels on the inside

and outside of a turn to trace out circles of different radii by turning them for different

angles, inner tire turning more [24].

On top of the vehicle and on the ground, as obstacles, we have ArUco markers [25].

Markers are used to detect the vehicle’s and obstacles’ positions and orientations.
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Figure 4.1: Front View of the Vehicle
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Figure 4.2: Vehicle and ArUco Marker
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Figure 4.3: Dimetric View of the Vehicle
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We have used StereoLab’s ZED 2k Stereo Camera as the visual sensor. The camera

allows us to get high-resolution image, so that we can accurately calculate the position

and orientation of the components and plan out path accordingly. Also, the camera has

a high Frame Per Second (FPS) value that enables us to check the vehicle’s position

as often as possible and take actions as quickly as possible, if any needed.

The ZED camera has wide-angle all-glass dual lens with reduced distortion. It’s field of

view is 90◦ (H) x 60◦ (V) x 110◦ (D) max. It can capture 1080p, 3840 x 1080, videos at

30 FPS. It uses real-time depth-based visual odometry and SLAM for moving recording,

has 6-axis pose accuracy up to 100 Hz. The camera is connected to the desktop PC via

a USB 3.0 port [26].

Table 4.1: Camera Specs

Video Mode 1080p
Frames Per Second (FPS) 30

Output Resolution (side by side) 3840x1080
Depth Resolution 3840x1080
Depth Format 32-bit
Depth Range 0.5 - 20 m
Stereo Baseline 120 mm

The desktop PC is also custom built, components chosen to maximize computing power.

The processor is Intel Core i7-8700k which has 6 cores, 12 threads, 12MB SmartCache

and runs at 3.70GHz. The graphics card is NVIDIA GeForce GTX1080Ti with 11GB

RAM, 3584 CUDA cores and 352-bit memory interface width. The motherboard is MSI

Z30M Gaming Pro AC with 32GB of RAM on it.
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Table 4.2: CPU Specs

Lithography 14 nm
Number of Cores 6

Number of Threads 12
Processor Base Frequency 3.70 GHz

Cache 12 MB SmartCache
Bus Speed 8 GT/s DMI3

Table 4.3: GPU Specs

NVIDIA CUDA R© Cores 3584
Memory Speed 11 Gbps

Standard Memory Config 11 GB GDDR5X
Memory Interface Width 352-bit

Memory Bandwidth (GB/sec) 484
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Figure 4.4: Experiment Environment
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Figure 4.5: Camera and Screen Output
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4.2 Experimental Scenarios

In this section, you can see screen outputs of each experimentation scenario as well as

a close-up look on the generated direction and the path followed. There are two images

on each screen output. The right one is the camera image of our experimentation

environment. On the camera image, there is vehicle with a square marker on top of it

and numerous square markers by themselves, representing obstacles. The left image is

the output of our algorithm, which shows the obstacles, the vehicle and its orientation,

the generated path (shown as blue line), and the followed path (shown as red line) as

the vehicle moves forward. The last figure of each scenario shows the motion responses

that are drawn using the logged data.

There are two obstacles on the bottom of the images in each scenario. Independent

of the starting position and direction of the vehicle, the goal position and direction of

the vehicle is between the obstacles and facing downward. In the Figure (a) of each

scenario, the vehicle is at its initial position. In Figure (b), the vehicle is approximately

halfway through the planned path. In Figure (c), the vehicle has completed its journey

and arrived the goal. Figure (d) of each scenario shows a closer look at the experiment,

drawn from using the logged data of the scenario.

4.2.1 Scenario 01

The experiments start with a simple case. The vehicle is straight above the goal position

and does not required to change its direction.

Figure 4.6: Scenario01-a



18

Figure 4.7: Scenario01-b

Figure 4.8: Scenario01-c
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Figure 4.9: Scenario01-d
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4.2.2 Scenario 02

In this scenario, the vehicle is on the right side of the experimentation area.

Figure 4.10: Scenario02-a

Figure 4.11: Scenario02-b
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Figure 4.12: Scenario02-c

Figure 4.13: Scenario02-d

4.2.3 Scenario 03

This scenario is mirror image of Scenario02.
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Figure 4.14: Scenario03-a

Figure 4.15: Scenario03-b

Figure 4.16: Scenario03-c
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Figure 4.17: Scenario03-d
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4.2.4 Scenario 04

In this scenario the starting position and direction of the vehicle is the same with

Scenario01 however, there is an additional obstacle in front of the vehicle. The vehicle

re-routes towards the end of its journey.

Figure 4.18: Scenario04-a

Figure 4.19: Scenario04-b
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Figure 4.20: Scenario04-c

Figure 4.21: Scenario04-d

4.2.5 Scenario 05

This scenario is similar to Scenario04. Only difference is the starting position of the

vehicle, which is to right.
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Figure 4.22: Scenario05-a

Figure 4.23: Scenario05-b

Figure 4.24: Scenario05-c
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Figure 4.25: Scenario05-d
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4.2.6 Scenario 06

This scenario is mirror image of Scenario05. The vehicle re-routes a few times.

Figure 4.26: Scenario06-a

Figure 4.27: Scenario06-b
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Figure 4.28: Scenario06-c

Figure 4.29: Scenario06-d

4.2.7 Scenario 07

This scenario is a version of Scenario01 in which the vehicle’s direction is to the right.

The vehicle re-routes a few times in this scenario.
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Figure 4.30: Scenario07-a

Figure 4.31: Scenario07-b

Figure 4.32: Scenario07-c
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Figure 4.33: Scenario07-d
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4.2.8 Scenario 08

This scenario is mirror image of Scenario07, meaning the vehicle is facing left. The

vehicle re-routes towards the end of its journey.

Figure 4.34: Scenario08-a

Figure 4.35: Scenario08-b
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Figure 4.36: Scenario08-c

Figure 4.37: Scenario08-d

4.2.9 Scenario 09

This scenario is a version of Scenario07 with the vehicle’s starting direction is to the

left.
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Figure 4.38: Scenario09-a

Figure 4.39: Scenario09-b

Figure 4.40: Scenario09-c
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Figure 4.41: Scenario09-d
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4.2.10 Scenario 10

This scenario is a version of Scenario09 with the vehicle’s starting position is on the

right side.

Figure 4.42: Scenario10-a

Figure 4.43: Scenario10-b
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Figure 4.44: Scenario10-c

Figure 4.45: Scenario10-d

4.2.11 Scenario 11

In this scenario, the vehicle’s starting position is much closer to the destination compa-

red to the previous scenarios, it is on the left side of the experimentation area, facing

right side. Also there is an additional obstacle. The vehicle re-routes a few times in this

scenario.
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Figure 4.46: Scenario11-a

Figure 4.47: Scenario11-b

Figure 4.48: Scenario11-c
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Figure 4.49: Scenario11-d
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4.2.12 Scenario 12

This scenario is mirror image of Scenario11.

Figure 4.50: Scenario12-a

Figure 4.51: Scenario12-b
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Figure 4.52: Scenario12-c

Figure 4.53: Scenario12-d

4.2.13 Scenario 13

In this scenario, the vehicle has identical starting position with Scenario 11, but now

the vehicle faces downwards and there are no additional obstacles. The vehicle re-routes

a few times in this scenario.
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Figure 4.54: Scenario13-a

Figure 4.55: Scenario13-b

Figure 4.56: Scenario13-c
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Figure 4.57: Scenario13-d
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4.2.14 Scenario 14

This scenario is mirror image of Scenario13. The vehicle re-routes once in the beginning

of its journey.

Figure 4.58: Scenario14-a

Figure 4.59: Scenario14-b
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Figure 4.60: Scenario14-c

Figure 4.61: Scenario14-d

4.2.15 Scenario 15

In this scenario, the vehicle starts close to the destination and facing upwards. The

vehicle re-routes a few times in this scenario.
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Figure 4.62: Scenario15-a

Figure 4.63: Scenario15-b

Figure 4.64: Scenario15-c
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Figure 4.65: Scenario15-d
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4.2.16 Scenario 16

This scenario is similar to Scenario15. The only difference is the vehicle starts from the

right side on this scenario. The vehicle re-routes once in the beginning of its journey.

Figure 4.66: Scenario16-a

Figure 4.67: Scenario16-b
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Figure 4.68: Scenario16-c

Figure 4.69: Scenario16-d

4.2.17 Scenario 17

This scenario is mirror image of Scenario16. The vehicle re-routes once in the beginning

of its journey.
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Figure 4.70: Scenario17-a

Figure 4.71: Scenario17-b

Figure 4.72: Scenario17-c



51

Figure 4.73: Scenario17-d
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4.2.18 Scenario 18

In this scenario, the vehicle’s start point gets even closer vertically and is on the right

side. The vehicle’s direction is to the left. The vehicle re-routes a few times in this

scenario.

Figure 4.74: Scenario18-a

Figure 4.75: Scenario18-b
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Figure 4.76: Scenario18-c

Figure 4.77: Scenario18-d

4.2.19 Scenario 19

In this scenario the vehicle stars from close range, on the left side and facing right. The

vehicle re-routes once in the beginning of its journey.
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Figure 4.78: Scenario19-a

Figure 4.79: Scenario19-b

Figure 4.80: Scenario19-c
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Figure 4.81: Scenario19-d
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5 CONCLUSION

In this thesis, a novel real-time path planning algorithm has been presented. Our pro-

posed algorithm is a strong alternative to existing algorithms. Its main strengths are

working real-time and being realistic. The experimentation was made with a realis-

tic small-scale electric car and engines on our small car is similar to real life electric

engines. Hence, our algorithm is scalable and can work at the same efficiency when

applied to full-size electric cars.

The experimental study shows that the algorithm can provide a smooth, feasible path

between the starting end goal points. It can also re-route if the initial path cannot

reach the goal point for some reason or if the vehicle has drifted away from the path.
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