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ABSTRACT

In this thesis, smooth manifold, manifold with boundary and manifolds with corners

are examined from differential calculus point of view. As it is known, manifolds with

boundary and corners are not smooth manifold. We have examined these spaces

as an example of smooth spaces developed in recent years in terms of diffeology.

First, we have shown that these are diffeological spaces, then they are diffeological

manifolds. We examined the smooth functions and differential forms by utilizing

the tools provided by diffeology on these spaces. We characterized the differential

forms on manifolds with corners.

Keywords : Differantial Forms, Manifolds with Corners



ÖZET

Bu tezde, düzgün manifold, sınırlı manifold ve köşeli manifoldlar diferansiyel ge-

ometri açısından incelenmiştir. Bilindiği üzere sınırlı ve köşeli manifoldlar düzgün

manifoldlar değildir. Bu uzayları son dönemde geliştirilen düzgün uzayların bir ör-

neği olarak difeolojik açıdan inceledik. İlk olarak bunların difeolojik uzay olduğunu,

daha sonra difeolojik manifold olduklarını gösterdik. Bu uzaylar üzerinde difeolo-

jinin bizlere sağladığı araçlardan faydalanarak düzgün fonksiyonları ve diferansiyel

formları inceledik. Köşeli manifoldlar üzerinde diferansiyel formları karakterize et-

meye çalıştık ve bu uzaylar üzerinde karakterize ettiğimiz diferansiyel formlarla ilgili

hesaplamalar yaptık.

Anahtar Kelimeler : Diferansiyel Formlar, Köşeli Manifoldlar
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1 INTRODUCTION

In this chapter, we will introduce the topological manifold and the smooth manifold.

We will give a few examples of smooth manifolds. Finally, we will introduce the

manifolds with boundaryIand corners.

1.1 Topological Manifolds

First, we will define theItopological spaces, since topological manifolds are defined

on topologicalIspaces.

Definition 1.1. Let M be a set and let τ be a set of subsets of M . The set M is

called a topological space, if τ satisfy the following three axioms :

1. ∅,M ∈ τ .

2. If U1, U2 ∈ τ , then U1 ∩ U2 ∈ τ .

3. If Ui ∈ τ for i ∈ I, then
⋃
i∈I Ui ∈ τ .

Definition 1.2. The topologicalIspace M is said to be a topologicalImanifold of

dimension n or n-manifold, for n ∈ N if it satisfies the following three conditions :

1. M is a Hausdorff space, i.e. for x, y ∈ M with x 6= y and there exists U, V

open subsets of M such that x ∈ U , y ∈ V and U ∩ V = ∅.

2. M is secondIcountable.

If τ has a countableItopological basis, i.e. this topological space has a countable

open base, then M is called a secondIcountable.

3. M is locally Euclidean of dimension n.

Every point inM has an open neighbourhood homeomorphic to an open subset

of Euclidean space Rn, i.e. there exists a homeomorphism f : U → V where U

is an open subset of M and V is an open subset of Rn.

Remember that the definition ofIhomeomorphism, f is a homeomorphism bet-

ween two topological spaces if and only if f is a bijection and both f and f−1

are continuous.

Example 1.1.1. The Euclidean space Rn is topologicalImanifold for which every

point x ∈ Rn has a neighbourhood homeomorphic to Euclidean space by the identity

map IRn : Rn → Rn.

Example 1.1.2. Let (X, τ) be a topologicalIspace with a topology τ . If Y is a
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subset of X, the collection τY = {Y ∩U | U ∈ τ} is a topology on Y . This topology

is called the subspace topology. Y is called a subspace of X with this topology.

1.1.1 Charts and Atlas

Definition 1.3. Let M be a topologicalImanifold. Let U ⊆M and V ⊆ Rn be two

open subsets. A homeomorphism ϕ : U → V , ϕ(u) = (x1(u), · · · , xn(u)) is called a

coordinateImap on U with the coordinate functions x1, · · · , xn. The pair (U,ϕ) is

called a chart on M . The inverse map ϕ−1 is called a parametrization of U .

The collection of charts (Un, ϕn) whose domains cover M on a topologicalImanifold

M is called an atlas for the manifold M .

Definition 1.4. The homeomorphisms ϕβ ◦ϕ−1α : ϕα(Uα∩Uβ)→ ϕβ(Uα∩Uβ) with

the coordinate maps ϕβ, ϕα are called the transition maps.

Example 1.1.3. All subspaces of Rn are Hausdorff and second countable by the

subspace topology. Every open subset U of Rn is also a topological manifold with

chart (U, IU) where IU is a identity map from U to Rn.

Example 1.1.4. We want to define an atlas on the circle S1 = {(x, y) ∈ R2, x2 +

y2 = 1}.

By the subspace topology, S1 ⊂ Rn for n ≥ 2 is Hausdorff and second countable.

Let N = (0, 1) and S = (0,−1) and we will define stereographic maps (U1, ϕ1),

(U2, ϕ2) as follows. Consider the line d1 passes through the point (x, y) ∈ S1 \ {N}
and N on the circle and this line intersects the axis x at the point (u, 0) which is a

stereographic coordinate.

Figure 1.1: The line d1 which passes through the north pole N = (0, 1) and the point
(x, y) on the circle and intersects the axis x at the point (u, 0)
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We know that for all (x, y) ∈ S1 we have x2 + y2 = 1.

The equation of the line d1 is x
u

+ y = 1.

We have y = 1− x
u
and we substitute this value in the other equation as follows :

x2 + y2 = x2 +
(

1− x

u

)2
= 1

This equation has two solutions. One of them is the north pole N = (0, 1) and the

second solution is x = 2u
1+u2

, this implies that y = 1− x
u

= 1−u2
1+u2

and u = x
1−y .

Now, consider the line d2 passes through the point (x, y) ∈ S1 \ {S} and S on

the circle and this line intersects the axis x at the point (u′, 0) is a stereographic

coordinate.

Figure 1.2: The line d2 which passes through the south pole S = (0,−1) and the
point (x, y) on the circle and intersects the axis x at the point (u′, 0)

The equation of the line d2 is x
u′

+ y
−1 = 1.

So we have x
u′
− 1 and we substitute this value in the first equation. First solu-

tion is the southIpole S = (0,−1) for these equaitons, second solution is (x, y) =(
2u′

1+u′2
, u

′2−1
1+u′2

)
and we obtain that u′ = x

1+y
.

Since x
1−y

x
1+y

= x2

1−y2 = x2

x2
= 1, the relation between coordinates u and u′ is uu′ = 1.

Therefore, we define the coordinates charts (U1, ϕ1), (U2, ϕ2) on S1 suchIthat

U1 = S1 \ {N}, ϕ1 : (x, y) 7→ u = x
1−y for (x, y) ∈ U1

U2 = S1 \ {S}, ϕ2 : (x, y) 7→ u′ = x
1+y

for (x, y) ∈ U2

Now we have to show that these functions areIhomeomorphisms. To show that they
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are homeomorphisms, we have to show ϕ1, ϕ2 are bijections and ϕ1, ϕ
−1
1 , ϕ2, ϕ

−1
2 are

continuous. Since criticalIpoints are removed from the domain U1 ⊂ S1 \ {N} and
U2 ⊂ S1 \ {S}, these maps are continuous. We will prove that ϕ1 ◦ ϕ−11 (u) and

ϕ2 ◦ ϕ−12 (u′) are identity functions.

Since u = x
1−y and ϕ−11 ( x

1−y ) = u′ = x
1+y

, the composition ϕ1 ◦ ϕ−11 is defined by

ϕ1 ◦ ϕ−11 (u) : R→ S1 → R, u 7→ (x, y) 7→ x
1+y

ϕ1 ◦ ϕ−11 (u) = ϕ1(ϕ
−1
1 (u))

= ϕ1(x, y)

= ϕ1

(
2u

1 + u2
,
1− u2

1 + u2

)

=
2u

1+u2

1 + 1−u2
1+u2

= u

We proved that this function is an identity function.

Since u′ = x
1+y

and ϕ−12 ( x
1+y

) = u = x
1−y ,

ϕ2 ◦ ϕ−12 (u′) : R → S1 → R

u′ 7→ (x, y) 7→ x

1− y

ϕ2 ◦ ϕ−12 (u′) = ϕ2(ϕ
−1
2 (u′))

= ϕ2

(
x

1− y

)

=
2u

1+u2

1 + 1−u2
1+u2

= u

This shows that ϕ1, ϕ2 are homeomorphisms. So, A = {(U1, ϕ2), (U2, ϕ2)} is an atlas

on S1.



5

Example 1.1.5. Let us consider the subset X = {(x, 0) | −1 < x < 1} ∪ {(0, y) |
−1 < x < 1} ⊂ R2.

In this example, we will show that the subset X is not a topological manifold, since

there is no homeomorphism from the cross on X to Rn.

Suppose that X is homeomorphic to Rn for some n > 0. Let f be a homeomorphism

between X and Rn. Now, consider the map f ′ : X \ {(0, 0)} → Rn \ {f(0, 0)}, where
f ′ is the restriction of f to the domain X \ {(0, 0)}. Then f ′ is continuous, bijective
and has continuous inverse. So, f ′ is a homeomorphism between X \ {(0, 0)} and

Rn \ {f(0, 0)}.

Observe that X \ {(0, 0)} has 4 connected components, whereas Rn \ {f(0, 0)} has 2

connectedIcomponents when n = 1 and 1 connected component when n ≥ 2. Since

homeomorphisms preserver connected components, X is not a homeomorphic to Rn

for any n > 0. So, it is not a topologicalImanifold.

Figure 1.3: A cross on R2
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1.2 Smooth Manifolds

A secondIcountable, HausdorffItopological space M is a n-dimensional topological

manifold if it admits an atlas {Uα, ϕα} with the coordinate map ϕα : Uα → Rn for

n ∈ N. We will see that if all transition maps of M are diffeomorphisms, i.e. all

partial derivatives exist and continuous, then it is called a smooth manifold.

A map f between two spaces U,U ′ such that U ⊂ Rn and U ′ ⊂ Rn is called a

smooth if f has continuous partial derivatives at the each component functions for

all orders.

D(f)(x)(u) = lim
ε→0

f(x+ εu)− f(x)

ε

D(f)(x) is the partial derivative of F at x ∈ U .
Definition 1.5. Let M be any topological n-manifold. Let U be an open subset on

M and U ′ be an open subset in Rn. We define a map f on M suchIthat f : M → R.

The map f is smooth map if and only if h = f ◦ g−1 : U ′ → R is smooth with

theIcoordinate map g : U → U ′.

Figure 1.4: A smooth map on the topological manifold M

Definition 1.6. Let ψ, φ be two charts of a topological manifold M . Two charts

ψ, φ are compatible ifIand only if

1. ψ−1(φ(U ′)) and φ−1(ψ(U)) are open maps.

2. The transition maps φ−1 ◦ ψ and ψ−1 ◦ φ are smooth.

φ−1 ◦ ψ : ψ−1(φ(U ′))→ φ−1(ψ(U))

ψ−1 ◦ φ : φ−1(ψ(U))→ ψ−1(φ(U ′))
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Definition 1.7. If the transition map ψ ◦ φ−1 is smooth, then (U, ψ) and (U ′, φ)

are called smoothly compatible.

Definition 1.8. The set A of smooth charts whose domains cover the manifold M ,

is called an atlas for M . If any two charts are smoothly compatible, then A is a

smooth atlas. Two smooth atlases are equivalent if their union is a smooth atlas.

We can also say that if the transition map is smooth for any two coordinate maps

of a manifold, it implies that A is a smooth atlas.

If there is no another atlas A′ such that A ⊂ A′, then A is maximal atlas. A

smooth structure on the manifold M may be defined as a maximal smooth atlas.

Definition 1.9. Let M be a topological n-manifold and let A be aIsmooth atlas of

M , then a pair (M,A) is called a smooth manifold.

Let U,U ′ be two open subsets in M such that U ∩ U ′ 6= ∅ and let M be a topo-

logical n-manifold. Let us define two charts (U, ψ) and (U ′, φ) and the composition

map ψ ◦ φ−1 : φ(U ∩ U ′) → ψ(U ∩ U ′) is called a transition map. Since ψ, φ are

homeomorphisms, ψ ◦ φ−1 is also homeomorphism.

Figure 1.5: A transition map of a smooth manifold

Example 1.2.1. Let M be a topological 0-dimensional manifold. Then M is a

countable discrete space. A neighborhood of each point p ∈M that is homeomorphic

to an open subset of R0 is {p} itself. There exists exactly one chart ϕ : {p} → R0.

Then the set of all charts on M satisfies the smooth compatibility condition. Thus,

0-dimensional manifold M is a smooth manifold.

Example 1.2.2. The n-sphere is defined as the subspace of unit vectors in Rn+1

Sn = {(x0, · · · , xn) ∈ Rn+1 |
∑

x2i = 1}
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Let N = (1, 0, · · · , 0) be the north pole and let S = (−1, 0, · · · , 0) be the south pole

in Sn. Then we may write Sn = UN ∪US, where UN = Sn \ {S} and US = Sn \ {N}
are equipped with coordinate charts ϕN , ϕS into Rn, given by the stereographic

projections from S,N respectively

ϕN : (x0, ~x) 7→ (1 + x0)
−1~x

ϕS : (x0, ~x) 7→ (1− x0)−1~x

The charts for the n-sphere given above form a smooth atlas, since

ϕN ◦ ϕ−1S : ~z 7→ 1− x0
1 + x0

~z =
(1− x0)2

|~x|2
~z = |~z|−2 ~z

which is smooth on Rn \ {0}. Then the n-sphere is a smooth manifold.

1.3 Manifold with boundary

In differential geometry, manifolds with boundary are important as well. For example,

they are used in the Stokes theorem.

Definition 1.10. A topological n-manifold M with boundary is defined to

be a Hausdorff space and second countable such that every point in M has an

openIneighborhood which is homeomorphic to an open subset in the upper half

space Hn. The upper half space Hn is closed in Rn and this space is defined by

Hn =
{(
x1, · · · , xn

)
∈ Rn | xn ≥ 0

}
The subspaceItopology is defined on Hn. Let’s assume that

∑
⊂ H. Any

∑
in H is

bounded by a circle. Since
∑

which is an embedded with boundary a convex curve

is included in the Euclidean space R, then the half space H is embedded in R. A

chart of a topological n-manifold M with boundary is defined by a homeomorphism

ϕ : U → V where U is an open subset of M and V is an open subset of Hn.

Definition 1.11. The preimages of points (x1, · · · , xn−1, 0) ∈ Hn are the boundary

∂M of M and M − ∂M is the interior of M .

Lemma 1.1. If a topological n-manifoldM with boundary,then ∂M is a topological

(n− 1)-manifold without boundary.

Proof. If x is in ∂M and an open neighborhood U which is homeomorphic to an

open subset of Hn, then ∂M ∩ U is homeomorphic to an open subset of Rn−1. �
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Lemma 1.2. A manifoldM with boundary is a manifold if and only if ∂M is empty.

Proof. Firstly, if ∂M is empty, then M is the manifold without boundary.

By the previous lemma, we have that if M is a topologicalImanifold with boundary,

then ∂M is a topological (n−1)-manifold without boundary. SinceM is a topological

manifold, then we say that there is no boundary of M . So, ∂M = {∅} . �

Definition 1.12. A function f : M → N is a map of topologicalImanifolds if

f is continuous. It is a smooth map of smooth manifolds M,N if the function

φ ◦ f ◦ ϕ−1 : ϕ(U ∩ f−1(V )) → φ(V ) is a diffeomorphism for any smooth charts

(U,ϕ) of M and (V, φ) of N on the open subset U ∩ f−1(V ).

If a topological n-manifold M with boundaryIis smooth, then M is called a smooth

n-manifold with boundary.

Example 1.3.1. Let M be a topological n-manifold. The manifold M is called a

n-manifold withIboundary if int(M) = M and ∂M = ∅.
Example 1.3.2. Let M = [0, 1] be 1-manifold. We have that the set of all regular

points of M , int(M) = (0, 1) and the set of all boundary points of M , ∂M = {0, 1},
then M is a 1-manifoldIwith boundary.

Example 1.3.3. The manifold Dn = {x ∈ Rn | |x| < 1} as a manifold has no

boundary. The closed n-ball Dn
= {x ∈ Rn | |x| ≤ 1} is a n-manifold with boundary

∂D
n

= Sn−1.

1.4 Manifold with corners

Definition 1.13. A topological n-manifold M with corners is identical to a

topological n-manifold withIboundary. A topological n-manifold M with corners is

a second countable Hausdorff space in which each point has a neighborhood homeo-

morphic to an open subset of theIcorner Kn.

The corner Kn is a subset of Hn and it is defined by

Kn = {(xi)ni=1 ∈ R
n | xi ≥ 0, i = 1, · · · , n}

A chart of a topological n-manifold M with corners is defined by a homeomorphism

ϕ : U → V where U is an openIsubset of M and V is an open subset of the corners

Kn.
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Definition 1.14. Let (U, ψ) and (U ′, φ) be two charts withIcorners on the manifold

M with corners. If the transition map ψ◦φ−1 : φ(U∩U ′)→ ψ(U∩U ′) is smooth, then

(U, ψ) and (U ′, φ) are smoothlyIcompatible. The maximal collection A of smoothly

compatible charts with corners whose domains cover the manifold M with corners,

is called an atlas on M with corners. A pair (M,A) is a smooth manifold with

corners.

Definition 1.15. A point p ∈M is called a corner point if ϕ(p) is a corner point

in ∈ Kn with the smooth chart (U,ϕ) with corners.

Lemma 1.3. Every smooth manifold is a smooth manifold with corners. A smooth

manifold with corners is a smooth manifold with boundary if and only if it has no

corners points.

Example 1.4.1. Let any closed rectangle be in Rn. This is a smooth n-manifold.

A closed retangle has more than one point which at least one coordinatesIvanishes.

These points are said to be corners of a closed rectangle. Then, it is a smooth

n-manifold withIcorners.

Example 1.4.2. The set M = {(x, y) ∈ R2 | x ≥ 0, y2 ≤ x2 − x4} is a 2-manifold

with corners.

Figure 1.6: A 2-manifold with corners
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Example 1.4.3. Consider the exterior surface of a cube. Since the boundary of

cube has edges and corners, such a cube looks like a manifold with corners. The

exterior surface of a cube is defined by [0, 1]× [0, 1]× [0, 1] ⊂ R3.

The homeomorphismIcondition tells us that, let f be a homeomorphism from Rn to

Rm and if Rn is homeomorphic to Rm, then n = m. So, a map from the corner point

p of the exterior surface of a cube must be homeomorphic to K3. But, any map from

an open neighborhood of p is in K2. There is no homeomorphicIneighborhood of a

corner point p to an open subset of K3. Then, the exterior surface of a cube is not

a manifold withIcorners.

Figure 1.7: The exterior surface of a cube
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2 DIFFEOLOGY

First, we will give the basic vocabulary needed : domains and parametrization.

Definition 2.1. An open subset in Rn is any union of open balls Ba (r) which is

defined by Ba (r) = {x ∈ Rn | ‖x− a‖ ≤ r} for each a ∈ Rn and r > 0 with n ∈ N.

Definition 2.2. An open subset U of Euclidean spaces Rn is called a real domain.

Definition 2.3. Any map P : U → X is called a parametrization of X where U

is a real domain and X is a non-empty set. We denote Param(X) is the set of all

parametrizations P of X.

2.1 Diffeology

Given a subset D of Param(X) is called a diffeology if D satisfies the following

three axioms ; covering, locality and smooth compatibility.

1. Covering. Every constant parametrization is in D. There exists a constant

parametrization x : r 7→ x defined on Rn for all x ∈ X.

2. Locality. Let P : U → X be a parametrization. For every point r of U , if the

restriction P � Vr of P on a neighborhood Vr of r in U is in D, then P belongs

to D.

3. Smooth compatibility. For every element P : U → X of D, P ◦F belongs to D

for every F ∈ C∞(U, V ) and every real domain V .

Let’s define a smooth parametrization F between two real domains U,U ′ and

a parametrization P ∈ D such that the composite h = P ◦ f ∈ D.

Figure 2.1: Smooth compatibility of parametrizations of X
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2.1.1 Smoothness of Plots

Definition 2.4. An element of the diffeology is called a plot. The set of the plots

of the diffeologicalIspace X defined on the domain U is denoted by D(U,X).

Let P be a plot of the diffeology D of X. If the composite P ◦ f is in D for every

smooth parametrization f : X → X ′, then P is called a smooth.

We can describe a smooth map f ∈ D(X,X ′) with the figure below.

Figure 2.2: Plots are smooth

2.2 Diffeological Spaces

A pair (X,D) is a diffeological space. (X,D) is a nonempty set X equipped with

a diffeology D.

Definition 2.5. Let X,X ′ be two diffeologicalIspaces and let D,D′ be two diffeolo-

gies of X,X ′ respectively. D(X,X ′) = {F ∈Maps(X,X ′) | F ◦D ⊂ D′} is defined

by the set of smoothIparametrizations F between two diffeological spaces. So, if

F ◦ P is an element of the diffeology D′ of X ′ for each parametrization P of X, it

implies that F is smoothIparametrization between these twoIdiffeologial spaces.

Lemma 2.1. Let’s consider three diffeological spaces X,X ′, X ′′ with their diffeo

logies D,D′,D′′ respectively. Let f, g be two elements of smoothIparametrizations

such that

f : X → X ′, g : X ′ → X ′′

By the definition of diffeology and smooth, we have that f ◦D ⊂ D′ and g◦D′ ⊂ D′′.

Thus the compositon g ◦ f is also smooth

(g ◦ f) ◦D = g ◦ f ◦D ⊂ g ◦D′ ⊂ D′′
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Example 2.2.1. Diffeology for the circle. The circle S1 = {z ∈ C | z̄z = 1} and
suppose that the parametrizations P : U → S1 satisfy the condition : P � Vr : r →
exp(2iπϕ(r)) with an open neighborhood Vr for all r ∈ U where ϕ : V → R is a

smooth parametrization. Let D be a set of these parametrizations.

Now, we are talking about whether or not the set of these parametrization is

diffeology. Firstly, let’s check being covering. We define a constant parametriza-

tion z : r → z for all z ∈ S1. We can find a real number θ = ϕ(r) such that

exp(2iπθ) = z for every r, accordingly the exponential function is surjective from

R to S1. We can say that this result for every r, so if we choose V = Rn, every

constantIparametrization satisfying this condition is in D.

By the hypothesis, P � Vr is in D and P is also. For the third condition, we canIshow

with the following figure

Figure 2.3: Diffeology for the circle S1

We want toIshow that the parametrization h is in D. Let r ∈ U and V be an openI

neighborhood of r. We define a smooth parametrization F from a real domain W

to U . By the hypothesis,we have the parametrization ϕ : V → R. SupposeIthat

P : U → S1 is a plot, we will show that the composition h : P ◦ F is in D. Since

F is a smooth and ϕ is a parametrization, we can say that ϕ ◦ F : W → R is

a smoothIparametrization and F is continuous. So, we have that a real domain

V ′ = F−1(V ) and we define a smoothIparametrization ϕ
′

= ϕ ◦ F : V ′ → R as

follows :

∀s0 ∈ W,∃V ′,∃ϕ′ = ϕ ◦ F suchIthat

(P ◦ F ) � V ′ : s0 → exp(2iπϕ (r))

Then, h ∈ D. In this case, D is a diffeologyIof S1.
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Example 2.2.2. An example of diffeology on R.

SupposeIthat X = R and D is a set of all smooth parametrizations from a real

domain U to X.

Let x : U → X be a constant map for any point x ∈ U . Since x is a constantImap we

have that x(r) = x for every r ∈ U . This implies that there are two parametrizations

ϕ, ϕ′ suchIthat ϕ′ ◦ x ◦ ϕ is smooth. So, D is covering.

Let P : U → R ∈ D. If for any r ∈ U there exists an open neighborhood V of r and

the restriction of P on V is smooth, i.e. P � V is locallyIsmooth, then P is smooth

by the definition of smoothness. Thus D is locality.

Let F be a parametrization from any real domain W to U . Since F and P are

smooth, the composition P ◦ F is also smooth. So that D is smoothIcompatibility.

The set D specifies a difeology for X.

Example 2.2.3. An example of diffeology on topological space

Axiom 1 : Suppose that X is a topological space and D is a set of all continuous

parametrizations from a real domain U to X.

Axiom 2 : Let f be a constant map defined by f(r) = x for all r ∈ U and for any

point x ∈ X. The inverse image f−1 of any open subset in X is either ∅ or U , which
are open. Then f is always continuous and f ∈ D. By definition, every constant

parametrization is locally constant.

Axiom 3 : Let F be a continuous map between two real domains W and U in Rn,

the composition of a parametrization from U to X and F is continuous since the

composition of two continuous functions is also continuous.

Then D is smooth compatibility and D is diffeology on the nonempty set X.

As we can understand in the examples, we can describe more than one diffeology

because diffeology may vary according to the characteristics of the parametrizations.
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2.3 Comparison of Diffeologies

Let X be a diffeological space equipped with two diffeologies D and D′. If the

elements of D are in D′, D ⊂ D′, then D is finer than D′. The locally constant

parametrizations of X are the finest diffeology. Conversly, if the elements of D′

are in D, D ⊃ D′, D is coarser then D′. The set Param(X) of all parametrizations

of X is called a coarsest diffeology of X.

2.3.1 Subset Diffeology

Let A be any subset of a diffeological space X, the subset diffeology of A, induced

by X, is made of all the plots of X whose take their values in A.

2.3.2 Pushforwards of Diffeologies

Let f be a map from a diffeological space X to a set X ′. Our aim is to carry the

properties of the diffeologicalIspace into the set X ′ with the map f .

Definition 2.6. There exists a finestIdiffeology on X ′ such that f is smooth. This

diffeology is called the pusforward diffeology by f of the diffeology D of X, it is

denoted by f∗(D).

f∗(D) = {P : U → X | f ◦ P ∈ D}

2.3.3 Pullbacks of Diffeologies

Let X be a set. Let X ′ be a diffeological space and D′ its diffeology. Let f : X → X ′

be some map. There exists a coarsest diffeology of X such that the map f is smooth.

This diffeology is called the pullback of the diffeology D′ by f and it is denoted by

f ∗(D′). A parametrization P in X belongs to f ∗(D′) if and only if f ◦ P belongs to

D′.

f ∗(D′) = {P ∈ Param(X) | f ◦ P ∈ D′}

Lemma 2.2. Let f : X → Y and g : Y → Z where X, Y are two nonempty sets

and Z is a diffeological space. Suppose that D is a diffeology on the diffeological

space Z. So that f ∗(g∗(D)) = (g ◦ f)∗ (D).
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2.3.4 Category of Diffeologies

LetD be a diffeology of a nonepmty setX. We need the smooth theory when defining

the diffeology category D of diffeologicalIspaces. On the D category, the diffeology

D consisting of smooth maps which inducing isomorphisms on smooth theory.

Definition 2.7. The largest element in the diffeologyD is said to be the indiscrete

diffeology on X, the smallest element in D is the discrete diffeology on X.

Definition 2.8. The diffeology which has the smallestIelement of all smoothIparametrizations

on X is the final diffeology.

Definition 2.9. The final diffeology defined by the quotient map is the quotient

diffeology with an equivalence relation for a diffeological space X.

Definition 2.10. A largest diffeology of all smoothIparametrization on a nonempty

set X is the initial diffeology on X.

Definition 2.11. The initialIdiffeology which is defined by the inclusion map is the

sub-diffeology.

2.3.5 Product of Diffeological Spaces

Given diffeologicalIspaces M,M ′ of dimensions m,m′ with atlases {(Uα, ϕα)} and

{(U ′β, ϕ′β)}, the cartesian productM×M ′ is a diffeological space of dimensionm+m′.

An atlas is given by the product charts Uα × U ′β with the product map ϕα × ϕ′β :

(x, x′) 7→ (ϕα(x), ϕ′β(x′)).

Let X1, · · · , Xn be n diffeologicalIspaces. The product of these spaces is defined from

X1 × · · · ×Xn → into individual all spaces X1, · · · , Xn.

2.4 Generating Families

Let F ⊂ Param(X). The finest diffeology including F is called the diffeology ge-

nerated by F . Inversely, let D be a diffeology of a diffeological space X. A family

of all plots of X that generates D is called a generating family of D. A set of all

the generating family for the space X is denoted as Gen(X). Let F be a generating

family, then

Gen(X) = {F ⊂ D | 〈F〉 = D}
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The plots of the diffeology generated by F are characterized by the following pro-

perty :

— A parametrization P : U → X is a plot for the diffeology generated by F if

and only if there exists an open neighborhood V for r ∈ U such that P � V is

a constant parametrization or there exists F : W → X belonging to F and a

smoothIparametrization θ : V → W such that P � V = F ◦ θ.

If X =
⋃
F∈F val(F ), this property is reduced to the following :

— A parametrization P : U → X is a plot for the diffeology generatedIby a

parametrized cover F if and only if there exists an open neighborhood V

for r ∈ U , a parametrization F : W → X belonging to F and a smooth

parametrization θ : V → W such that P � V = F ◦ θ.

A generatingIfamily F which is parametrized cover will be called a covering gene-

rating family.

Let f : X → X ′ be a map between two sets X,X ′. Let F be a family of parametri-

zations of X and let F ′ be a family of parametrizations of X ′.

The family f∗(F) of parametrizations of X ′ is a pushforward of the family F by

f .

f∗(F) = {f ◦ F | F ∈ F}

The family f ∗(F) of parametrization F of X ′ is a pullback of the family F ′

by f such that F : U → X that provides there exists a smooth parametrization

ψ : U → U ′ with an element F ′ of F ′, F ′ : U ′ → X ′, such that F ′ ◦ ψ = f ◦ F .

2.5 Diffeological manifolds

We will introduce diffeological manifolds which are diffeological spaces modeled on

diffeological vector space.

Definition 2.12. Let E be a diffeologicalIvector space and X be a diffeological

space. If X is locally diffeomorphic to E at every point, then X is called a diffeolo-

gical manifold modeled on E. For every x ∈ X there exists a local diffeomorphism
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F : E ⊃ U → X such that x ∈ F (U). Such a local diffeomorphism is called a chart

of X.

Now, we will talk about the condition of the manifold as a diffeologicalIspace.

Definition 2.13. Let M be a diffeological space. M is a n-manifold if and only if

M is locally diffeomorphic at each point to Rn, i.e. for each point m ∈M , there exist

a local diffeomorphism F : U ⊂ Rn → M and a point r ∈ U such that F (r) = m.

Such local diffeomorphism are called charts of M . The set of all the charts of M is

called the atlas of M .

Definition 2.14. Let M,M ′ be two classical manifolds and let f be a smooth map

between these two classical maifolds. We know that the map f is smooth if and only

if F ′−1 ◦ f ◦ F : U → V for each chart of M and M ′ with the open subsets U, V on

any manifold with the figure below as follows :

Figure 2.4: A smooth map between manifolds

We have that the following results for every pair of parametrizations F : U → M ,

F ′ : U ′ →M ′,

1. (f ◦ F )−1 (F ′(U ′)) is open

2. F ′−1 ◦ f ◦ F : (f ◦ F )−1 (F ′(U ′))→ U ′ is smoth

A family A is a set of parametrizations F : U → M such that
⋃
F∈A val(F ) = M

and let P is plot of diffeology generated by A. This is to be covering of diffeology.

There exists an open neighborhood V such that ρ � V is constant or there exists a

parametrization F ∈ A such that P � V = F . Thus the familyA shows the condition

of being locality. We can consider another smoothIparametrization ρ′ from an open

subset W to M such that P � V = F ◦ P ′. Diffeology on a manifold is built in

this manner. This family A is a generating family by this result and A refers to a

diffeology on theImanifold.

Let M be a diffeological space.

1. A family A of local diffeomorphisms from Rn to M such that
⋃
F∈A val(F ) =

M is a generating family of the diffeology of M .
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2. The diffeology space M is a n-manifold if and only if there exists a generating

family A of M , made of localIdiffeomorphisms from Rn to M .

2.6 Diffeological manifolds with boundary

We show that smooth manifolds withIboundary are diffeologicalIspaces modeled on

half spaces Hn, equipped with the subset diffeology.

A smooth n-manifold with boundary is a topological spaceM , together with a family

of local homeomorphisms Fi defined on some open sets Ui of the half-space Hn toM

such that the values of Fi cover M for every two elements Fi and Fj of the family,

the transition map F−1i ◦ Fj : F−1i (Fi(Ui) ∩ Fj(Uj)) → F−1j (Fi(Ui) ∩ Fj(Uj)), is the
restriction of some smooth map defined on an open set of F−1i (Fi(Ui) ∩ Fj(Uj)).

The boundary ∂M is the union of Fi(Ui∩∂Hn). Such a family F of homeomorphisms

is called an atlas of M and its elements are called charts. There exists a maximal

atlas A containing F .

2.7 Diffeological manifolds with corners

The manifolds with corners can also be viewed as diffeological spaces. The D-

topology on the corners Kn coincides with the subset topology induced by Rn. From

the fact that the plot (x1, · · · , xn) → (x21, · · · , x2n) restricts to a homeomorphism

from Kn to itself with the subset topology. The subsetIdiffeology and the subset

differential structure on Kn determine each other. It follows that a map between

relatively open subsets of Kn is a diffeological diffeomorphism if and only if it is

a functional diffeomorphism, which is equivalent to being a diffeomorphism in the

classical sense. A manifold with corners can be equivalently defined as a diffeological

space that is locallyIdiffeomorphic to open subsets of the corners Kn.

Let M be a smooth n manifold with corners. Let us recall that a parametrization

P of M is smooth if there exists an openIneighborhood V of r ∈ U such that

P � V = F ◦ψ for a chart F : Ω→M and a smooth parametrization ψ : V → Ω. Let

D be a set of all smooth parametrizations ofM . Then D is a diffeology ofM . On the

other hand, a diffeological space defined on Hn is a manifold withIcorners. Likewise
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able to define a manifold on corners Kn = {(xi)ni=1 ∈ Rn | xi ≥ 0, i = 1, · · · , n}.

A map f from Kn to R is smooth for the subset diffeology of the corners if and only

if there exists an open neigborhood W ⊃ Kn such that F � Kn = f for a smooth

map F : W → R.

The smooth maps f on the manifold withIcorners represent a diffeological space

modeled on Kn.
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3 MULTILINEAR ALGEBRA

This chapter provides the logic definitions used for differentialIforms in diffeological

spaces.

3.1 Linear Maps

Definition 3.1. Let U be arbitrary nonempty set of vectors defined by vector ad-

dition and scalar multiplication such that suppose u and v are vectors in U , so

u+ v ∈ U and further that k ∈ R, then ku ∈ U . If the following 10 axioms hold true

for vectors u, v, w ∈ U and for all scalars k,m ∈ R, then U is called a real vector

space.

Axiom 1 : (closure property for addition) If u and v are in U , then u + v ∈ U .

Axiom 2 : (associative property for addition) u+ (v + w) = (u+ v) + w. Axiom 3 :

(commutative property for addition) u+ v = v+u. Axiom 4 : (the additive identity

property) There exists an element O, called a zero vector such that O+u = u+O = u

for all u ∈ U . Axiom 5 : (additive inverse property) For each u ∈ U , there exists −u,
such that u + (−u) = (−u) + u = O. −u is called the additive inverse. Axiom 6 :

(closure property for scalar multiplication) If u ∈ U and k ∈ R, then ku ∈ U . Axiom
7 : (distributive property for vectors) k(u + v) = ku + kv. Axiom 8 : (distributive

property for scalars) (k+m)u = ku+mu. Axiom 9 : (associative property for scalars)

k(mu) = (km)u. Axiom 10 : (the multiplicative identity property) 1u = u.

Definition 3.2. A map is called a linear map, if it is defined by an element of a

real vector space E ∗ F ,

E ∗ F = {A : E → F | A(ax+ by) = aA(x) + bA(y),∀a, b ∈ R,∀x, y ∈ E}

with the following conditions for all a ∈ R and A,B ∈ E ∗ F

1. (aA)(x) = aA(x)

2. (A+B)(x) = A(x) +B(x)

Example 3.1.1. Let f : R → R such that f(x) = ax for each a ∈ R. For all

x, y ∈ R and any scalar c ∈ R,

f(x+ y) = a(x+ y) = ax+ ay = f(x) + f(y)

f(cx) = a(cx) = acx = cax = c(ax) = cf(x)
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Then f is a linear map.

Example 3.1.2. Let f : R→ R such that f(x) = x2. For all x, y ∈ R,

f(x+ y) = (x+ y)2 = x2 + 2xy + y2 = f(x) + 2xy + f(y)

f(x+ y) 6= f(x) + f(y), then f is not a linear map.

We define a linear map from any real vector space E to R, i.e. L(E,R), this space

is called the dual vector space of E, denoted by E∗ = E ∗R. An element of E∗ is

a covector.

A vector is expressed by a basis and this basis must be independent and generate

this vector. Let B be a basis of independent vectors b1, b2 · · · bn of E,
n∑
i=1

cibi = 0⇔ ci = 0

for all si ∈ R with i = {1, 2, · · · , n} and

v =
n∑
i=1

bivi

where vi is coordinate of v in the basis B for v ∈ E with i = {1, 2, · · · , n}.

Let w be an element of E∗ of finite n-dimensional. For every vector x ∈ E,

w(x) = w

(
n∑
i=1

xiei

)

=
n∑
i=1

xiw(ei)

=
n∑
i=1

xiwi

=
n∑
i=1

wie
j(x)

Let usItake
∑n

i=1wie
j(x) = B∗, we check B∗ is a basis of E∗.

Thus we say if E is a finite n-dimensional vector space, dim(E∗) = n. Furthermore,

E∗ and E are isomorphic.
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3.1.1 Bilinear Maps

Definition 3.3. A linear mapA from a real vector spaceE to the space of linear maps

between two real vector space F,G, denoted by E ∗ (F ∗ G), i.e. A : [x 7→ [y 7→ z]]

for x ∈ X, y ∈ F and Z ∈ G, is called a bilinear map. We check the linearity of A

and A(x) such that

A(x+ x′)(y) = A(x)(y) + A(x′)(y)

A(sx)(y) = sA(x)(y)

Linearity of A

A(x)(y + y′) = A(x)(y) + A(x)(y′)

A(x)(sy) = sA(x)(y)

Linearity of A(x)

Let A ∈ E ∗ (E ∗ F ) and B ∈ E ∗ (E ∗ F ) be two linear maps defined by A(x)(y) =

B(x)(y). For the case B(y)(x) = A(x)(y), if B = A then A is the symmetric

operator, if B = −A then A is the antisymmetric operator.

We can write a bilinear map A(x)(y) as the sum of the symmetricIoperator and the

antisymmetric operator as follows :

A(x)(y) =
1

2
[A(x)(y) + A(y)(x)] +

1

2
[A(x)(y)− A(y)(x)]

If A(x)(x) = 0, from the equation above we say this operator A is the antisymmetric.

Example 3.1.3. Let A(x)(y) = xy be a map from a real vector space E to the

vector space F .

A(x+ x′)(y) = (x+ x′)y = xy + x′y = A(x)(y) + A(x′)(y)

A(sx)(y) = sxy = sA(x)(y)

A(x)(y + y′) = x(y + y′) = xy + xy′ = A(x)(y) + A(x)(y′)

A(x)(sy) = xsy = sxy = sA(x)(y)

for all x, x′, y, y′ ∈ E. So, A(x)(y) is a bilinear map.

Since A(x)(y) = xy = yx = A(y)(x), we say A is a symmetric bilinear map.

3.1.2 Multilinear Maps

We define a multilinear map A with finite N vectors x1, x2, · · · , xN ∈ E1 × E2 ×
· · · × EN ,
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A ∈ E1 ∗ (E2 ∗ (E3 ∗ (· · · ∗EN+1))). We check the linearity of this operator with the

conditions

[A+B] (x1)(x2) · · · (xN) = A(x1)(x2) · · · (xN) +B(x1)(x2) · · · (xN)

[cA] (x1)(x2) · · · (xN) = c [A(x1)(x2) · · · (xN)]

for s ∈ R and A,B ∈ E1 ∗ (E2 ∗ (E3 ∗ (· · · ∗ EN+1))).

If the multilinear operator A doesn’t change when exchanges any two vector, A is

totally symmetric operator. If its sign changes for any two vectors, then A is a

totally antisymmetric operator.

A(xσ(1))(xσ(2)) · · · (xσ(N)) =

 A(x1)(x2) · · · (xN) , if A is symmetric

sgn(σ)A(x1)(x2) · · · (xN) , if A is antisymmetric

where σ is an element of the group of permutations and sgn(σ) is signatureIof the

permutation σ.

A is anIantisymmetric operator ifIand only if A · · · (x) · · · (x) · · · = 0.

3.2 Tensors

Definition 3.4. A p-multilinear operator A defined p times on the real vector space

E with real values of R is said to be a covariant p-tensor of E. An operator A

is defined in the vector space E ∗ (E ∗ (· · · ∗ E) ∗ R with p times E. The operator

A(x1)(x2) · · · (xp) is in R for vectors x1, x2, · · · , xp ∈ E. The dual space E∗ of E.

Definition 3.5. If a multilinearIoperator B of E is defined p times on the dualIspace

E∗ with real values in R, E∗∗(E∗∗(· · ·∗E∗)∗R, is called a contravariant p-tensor

of E. B(w1)(w2) · · · (wp) ∈ R for vectors w1, w2, · · · , wp ∈ E∗.
Definition 3.6. If a tensor of E has contravariant tensor and covariant tensor, it

implies that this tensor is a mixed tensor of E.

For example, let C be a mixed tensor of E which have p-covariant tensor and q-

contravariant tensor. We describe the mixed tensor

C(x1)(x2) · · · (xp)(w1)(w2) · · · (wp) ∈ R

for x1, x2, · · · , xp ∈ E and w1, w2, · · · , wp ∈ E∗.
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Let usItake p = 1 for a covariant p-tensor A of E, so A is 1-tensor of E and is defined

in E ∗R. It means that a covariant 1-tensor of E is an element of the dualIspace of

E.

0-tensor is a map defined from 0 to R, i.e. 0-tensor formIa number and the space of

0-tensorIis R.

A linear map defined from the dual space E∗ to R is called a bidual of E, and

denoted by (E∗)∗. Let x ∈ E. By the hypothesis, w is a linear map. SupposeIthat

x̃ = 0 ∈ (E∗)∗, so that x̃(w) = w(x) and x̃(w) = 0 for all w ∈ E∗. If dim(E) < ∞,

then x = 0. This is the condition of a one-to-one map. Since dim(E) = dim(E∗) =

dim((E∗)∗), the map x 7→ x̃ is surjective. Thus, x 7→ x̃ is bijective and E and (E∗)∗

are isomorphic. An element of E can be defined by an element of theIbidual space

(E∗)∗.

3.2.1 Tensor Product

The productIof any two tensor is called tensorIproduct, and denoted by ⊗. A tensor

product is defined byItensors and their orders. Let A be a covariant p-tensor of the

realIvector space E and B be a covariant q-tensor of E. The product of A ⊗ B :
p−times︷ ︸︸ ︷

E ∗ (E ∗ (· · · ∗ E) ∗R×
q−times︷ ︸︸ ︷

E ∗ (E ∗ (· · · ∗ E) ∗R→
p+q−times︷ ︸︸ ︷

E ∗ (E ∗ (· · · ∗ E) ∗R,

(A⊗B)(x1) · · · (xp)(y1) · · · (yq) = A(x1) · · · (xp)×B(y2) · · · (yq) ∈ R× R

Thus, A⊗B is p+ q-tensor of E.

Let A be of order p, B be of order q and C be of order l. The product of (A⊗B)⊗C,

((A⊗B)⊗ C)(x1) · · · (xp)(y1) · · · (yq)(z1) · · · (zl)

= (A(x1) · · · (xp)×B(y1) · · · (yq))× C(z1) · · · (zl)

= A(x1) · · · (xp)×B(y1) · · · (yq)× C(z1) · · · (zl)

= A(x1) · · · (xp)× (B(y1) · · · (yq)× C(z1) · · · (zl))

= (A⊗ (B ⊗ C))(x1) · · · (xp)(y1) · · · (yq)(z1) · · · (zl)
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The tensor product is associative. One of two tensors can be taken as 0-tensor. Let

A be 0-tensor and B be any tensor, then we have s⊗B = s×B = B × s = B ⊗ s.

3.2.2 Symmetrization and Antisymmetrization of Tensors

Let E be a real vectorIspace. We define two operations Sym and Alt of a covariant

p-tensor T of E as follows :

Sym(T )(x1) · · · (xp) =
1

p!

∑
σ∈σp

T (xσ(1)) · · · (xσ(p))

Alt(T )(x1) · · · (xp) =
1

p!

∑
σ∈σp

sgn(σ)× T (xσ(1)) · · · (xσ(p))

where sgn is the signatureIof a permutation σ. The permutation can be written as a

product of r transpositions suchIthat sgn(σ) = (−1)r. If the permutations are even,

then sgn(σ) = 1. Otherwise, sgn(σ) = (−1).

Corollary 3.1. Sym(T ) = T if and only if T is symmetric p-tensor of E.

Alt(T ) = T if and only if T is antisymmetric p-tensor of E.

Proof. We need to check Sym(T ) is a symmetricIoperator. By the definition,

Sym(T )(x1) · · · (xp) =
1

p!

∑
σ∈σp

T (xσ(1)) · · · (xσ(p))

Let σ = σ′ ◦ ϑ for ϑ ∈ σp.

=
1

p!

∑
σ∈σp

T (xσ′◦ϑ(1)) · · · (xσ′◦ϑ(p))

= Sym(T )(xϑ(1)) · · · (xϑ(p))

Sym(T ) is a symmetric operator. We check that Alt(T ) is an antisymmetric opera-

tor. By the definition, we have

Alt(T )(x1) · · · (xp) =
1

p!

∑
σ∈σp

sgn(σ)× T (xσ(1)) · · · (xσ(p))

Let σ = σ′ ◦ ϑ.

=
1

p!

∑
σ′∈σp

sgn(σ′ ◦ ϑ)× T (xσ′◦ϑ(1)) · · · (xσ′◦ϑ(p))

= Alt(T )(xϑ(1)) · · · (xϑ(p))

Alt(T ) is an antisymetricIoperator. �
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3.3 Linear p-forms

AnIantisymmetric covariant p-tensor of theIreal vector space E is called a linear

p-form of E. The vector space of all linear p-forms of E is denoted by Λp(E).

Let p be 0. Since these antisymmetricIcovariant 0-tensor is any linearImap from 0

to R, this tensor formIa number. So,

Λ0(E) = R

Let us Itake p = 1, the vector of all linear p-forms is defined by E ∗R. Then we have

Λ1(E) = E ∗ R = E∗

Λp(E) is defined on subspaces of E ∗ (E ∗ (· · · ∗ E) ∗ R with p times E, containing

the antisymmetricIcovariant p-tensors.

Definition 3.7. A form α of k-form is defined by
∑

I fIdxI .

3.3.1 Inner Product

Let A be a covariant p-tensor of E. This tensor can be written as p− 1-tensor with

a fixed element x of E as follow :

[A(x)](x1) · · · (xp−1) = A(x)(x1) · · · (xp−1)

A(x) is the innerIproduct of A with x.

3.3.2 Exterior Product of Forms

Definition 3.8. The exterior product ∧ of A ∈ Λp(E) and B ∈ Λq(E) is in Λp+q(E)

and denoted by A ∧B. The product A ∧B is defined as

A ∧B =
(p+ q)!

p!.q!
Alt(A⊗B)

Proof. Given a basis e1, · · · , ep for the space of the p-tensors E, we define a basis for

the space of the antisymmetricIcovariant p-tensors at the point x for each i1, · · · , ip
with A ∈ Λp(E) suchIthat

dxi1 ∧ dxi2 ∧ · · · ∧ dxip = p!A(dxi1 ⊗ dxi2 ⊗ · · · ⊗ dxip)
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Then we define Alt(A⊗B) by the previous equivalence as follows :

Alt(A⊗B)(x1) · · · (xp+q)

=
1

(p+ q)!

∑
σ∈σp

sgn(σ)A(xσ(1)) · · · (xσ(p)) ∧B(xσ(p+1)) · · · (xσ(p+q))

=
1

(p+ q)!
(p!A(x1) · · · (xp)× q!B(xp+1) · · · (xp+q))

=
p! · q!

(p+ q)!
(A ∧B)(x1) · · · (xp+q)

�

Example 3.3.1. Let A,B be two 1-forms, then we have p = 1 and q = 1. So, the

exterior product A ∧B defined by

A ∧B =
(1 + 1)!

1!.1!
Alt(A⊗B) = 2Alt(A⊗B)

Let A,B,C be three forms of Λp(E),Λq(E) and Λl(E) respectively.

A ∧ (B ∧ C) =
(p+ (q + l))!

p!.(q!.l!)
Alt(A⊗ (B ⊗ C))

=
(p+ q + l)!

p!.q!.l!
Alt(A⊗B ⊗ C)

=
((p+ q) + l)!

(p!.q!).l!
Alt((A⊗B)⊗ C)

= (A ∧B) ∧ C

The tensor product isIassociative.

SupposeIthat one of these forms is 0-form. Since a 0-form is a number c of R, then

we have the exterior product given by

c ∧ A = A ∧ c = c× A

The commutation of A,B is defined as a graded commutativity. Every k-form α

and l-form β give us the result

α ∧ β = (−1)kl β ∧ α
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for k, l ∈ Z+

Proof. Let I = (m1,m2, · · · ,mk) and J = (n1, n2, · · · , nl) be two coordinates for

α and β respectively, i.e. α is a k-form and β is a l-form. Since dxI = dxm1 ∧ dxm2 ∧
· · · ∧ dxmk

and dxJ = dxn1 ∧ dxn2 ∧ · · · ∧ dxnl
, we product the coordinate of α · β as

follows :

dxI ∧ dxJ = dxm1 ∧ dxm2 ∧ · · · ∧ dxmk
∧ dxn1 ∧ dxn2 ∧ · · · ∧ dxnl

We change the order of dxn1 for k-times

dxI ∧ dxJ = (−1)k dxn1 ∧ dxm1 ∧ dxm2 ∧ · · · ∧ dxmk
∧ dxn2 ∧ · · · ∧ dxnl

We do the same for dxn2

dxI ∧ dxJ = (−1)k (−1)k dxn1 ∧ dxn2 ∧ dxm1 ∧ dxm2 ∧ · · · ∧ dxmk
∧ dxn3 ∧ · · · ∧ dxnl

We continue to do the same for l terms and we are getting the following result

dxI ∧ dxJ = (−1)kl dxn1 ∧ dxn2 ∧ · · · ∧ dxnl
∧ dxm1 ∧ dxm2 ∧ · · · ∧ dxmk

= (−1)kl dxJ ∧ dxI

The definiton of the form α is
∑

I fIdxI with the smooth function fI , similarly we

define the form β =
∑

J gJdxJ with the smooth function gJ . So,

α · β =
∑
I,J

fIgJdxIdxJ = (−1)kl
∑
I,J

gJfIdxJdxI

= (−1)kl β · α

�

ExteriorIproduct of an element e of the dual space E∗ and A ∈ Λp(E) is given by

(e ∧ A)(x)(x1) · · · (xp) = e(x)× A(x1) · · · (xp)

− e(x1)× A(x)(x2) · · · (xp)

− · · ·

− e(xp)× A(x1)(x2) · · · (xp−1)(x)
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Let dim(E) = n. We can calculate the dimension of the vector space of linear p-forms

of E, Λp(E) with the combination for everyIelement of Λp(E) suchIthat

dim(Λp(E)) =
n!

(n− p)!.p!
= Cp

n

SupposeIthat p = n + 1, then the linear p-form is written as a0 ∧ (a1 ∧ · · · ∧ an).

In this case, two of these forms become elements of the same vector space. Since

a linear p-form is a antisymmetric covariant p-tensor, we have zero forms. Thus,

dim(Λp(E)) = 0 with dim(E) = n. It is the same result for all p > n.

3.3.3 Pullbacks of Forms

Definition 3.9. A linear mapM is defined from the realIvector space E to the real

vector space F , M ∈ E ∗ F = L(E,F ) with a covariant p-tensor A of F . We define

a linear operator suchIthat

M∗(A)(y1) · · · (yp) = A(M(y1) · · ·M(yp))

for y1, · · · , yp ∈ E. M∗(A) is a pullback operator of A by M .

Let A,B be two covariant p-tensors of F . M∗ satisfy the two conditions for λ ∈ R

as follows :

1. M∗(A+B) = M∗(A) +M∗(B)

2. M∗(λ× A) = λ×M∗(A)

Furthermore, let N : F → G be a linear map with a contravariant p-tensor A on G.

The pullbackIoperation (N ◦M)∗ satisfy

(N ◦M)∗ = M∗ ◦N∗

Then, (N ◦M)∗(A) = M∗(N∗(A)) is the pullbackIoperation of a form A. If A is

p form, it implies that the pullback of this form by M is also p form. Since the

pullback is a morphism, we have M∗(A ∧B) = M∗(A) ∧M∗(B).
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4 SMOOTH FORMS ON REAL DOMAINS

We construct the diffeology consisting of smooth parametrizations on a real domain

U and we can define the smoothness on Rn with the smooth structure of finite

dimensional vector space defined on Λp(Rn).

Definition 4.1. A smooth map w : U → Λp(Rn) is called a smooth p-form of U .

C∞(U,Λp(Rn)) is the set of all smooth p forms on U and let w and w′ be two elements

of C∞(U,Λp(Rn)) with any element s ∈ R. The sum of these two elements and scalar

multiplication are as follows :

(w + w′)(x) = w(x) + w′(x)

(s× w)(x) = s× w(x)

Definition 4.2. The pullback of any p form w ∈ C∞(V,Λp(Rn)) is defined by a

smoothIparametrization f suchIthat f ∗(w)(u)(x1) · · · (xp) for u ∈ U and x1, · · · , xp ∈
Rn

f ∗(w)(u)(x1) · · · (xp) = wf(u) (D(f)(u)(x1)) · · · (D(f)(u)(xp))

where the tangent map D(f)(u) of f at the point u is the vector on V with the

direction vectors xi, i ∈ 1, · · · , n.

4.1 Exterior Product of Smooth Forms

Let U be a real domain and let α, β be two smooth forms such that α ∈ C∞(U,Λp(Rn))

and β ∈ C∞(U,Λq(Rn)). The exterior product ∧ of α and β,

∧ : C∞(U,Λp(Rn))× C∞(U,Λq(Rn))→ C∞(U,Λp+q(Rn))

denoted by α ∧ β, is a p+ q form of U and it is defined as (α ∧ β)(x) = α(x)∧ β(x)

for all x ∈ U .

4.2 Exterior Derivative of Smooth Forms

The exterior differentiation operation d is defined from C∞(U,Λp(Rn)) to C∞(U,Λp+1(Rn))

for all real domain U with any integers n.
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Let α be a form on U suchIthat α : x 7→ aei∧· · ·∧ek for any coordinates i, · · · , k and

a smooth map a with the smoothIparametrization x 7→ a ∈ C∞(U,R). The exterior

derivative of α with x,

(dα)(x) =
n∑
l=1

∂a

∂xl
el ∧ ei ∧ · · · ∧ ek

=
n∑
l=1

∂a

∂xl
dxl ∧ dxi ∧ · · · ∧ dxk

Utilizing the above definition, we have

d(α + α′)(x) =
n∑
l=1

(
∂α

∂xl
+
∂α′

∂xl

)
el ∧ ei ∧ · · · ∧ ek

=
n∑
l=1

∂α

∂xl
el ∧ ei ∧ · · · ∧ ek +

n∑
l=1

∂α′

∂xl
el ∧ ei ∧ · · · ∧ ek

= d(α)(x) + d(α′)(x)

d(sα)(x) =
n∑
l=1

∂(sα)

∂xl
el ∧ ei ∧ · · · ∧ ek

=
n∑
l=1

s
∂α

∂xl
el ∧ ei ∧ · · · ∧ ek

= s

n∑
l=1

∂α

∂xl
el ∧ ei ∧ · · · ∧ ek

= sd(α)(x)

for any smooth p forms α, α′. So, d is a linear map and dα is called the exte-

riorIderivative of any form α on a real domain U .

The pullback operation f ∗ between C∞(U,Λp(Rn)), C∞(U ′,Λp(Rn)) commutes the

pullbackIoperation f ∗ between C∞(U,Λp+1(Rn)), C∞(U ′,Λp+1(Rn)) with the exte-

riorI derivative d suchIthat f ∗ ◦ d = d ◦ f ∗.
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Figure 4.1: The commutation between f ∗ and d

4.3 Differential Forms on Real Domains

Definition 4.3. A differential form of degree k on Rn is an expression which

produced by tensorIproduct and smoothIfunctions for k ∈ Z+ . Let α be a k-form,

then we define the expression of α as follows with the smoothIfunctions fI on Rn

α =
∑
I

fIdxI

where I is in the multi-index {i1, i2, · · · , ik}.
Example 4.3.1. A form α = 3x1dx1dx3 − 7x3dx1dx4 + 2dx2dx3 is an example of a

2-form on R4 and β = x2dx1dx3dx5 is an example of a 3-form on R5.

Let w be a k-form on Rn. Then the maximum number of terms we can generate is

calculated as follows ;
n!

k! (n− k)!
=

(
n

k

)
for n, k ∈ Z+.

4.3.1 Closed and Exact Differantial Forms

Definition 4.4. A differantialIform suchIthat its exteriorIderivative is zero, is called

a closed form .

Example 4.3.2. Let α = 2dx∧dy be a differentialIform, then the exterior derivative

of α as follows :

dα = d[2dx ∧ dy] = 2dx ∧ dx ∧ dy = 0

We have that dx ∧ dx = 0, since a form is an antisymmetric covarint tensor.

Definition 4.5. A differentialIk-form w suchIthat dw = α with a (k − 1)-form α,

then α is said to be a exact differential form.
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For example, let α = ydx+ xdy, α can be written as d(xy). So, α is a exact form.

Proposition 4.1. The exteriorIderivative of a exterior derivative of a form is zero,

i.e. d(d(α)) = 0 for any form α.

Proof. Let α be a k-form. The exteriorIderivative of this form is given by

d(α) =
n∑
l=1

∂α

∂xl
dxl ∧ dxi ∧ · · · ∧ dxk

For the exterior derivate of d(α), we have

d(d(α)) = d

(
n∑
l=1

∂α

∂xl
dxl ∧ dxi ∧ · · · ∧ dxk

)

=
n∑
l=1

d

(
∂α

∂xl
dxl ∧ dxi ∧ · · · ∧ dxk

)

=
n∑
l=1

∂2α

∂(xl)2
(dxl ∧ dxi ∧ · · · ∧ dxk) ∧ (dxl ∧ dxi ∧ · · · ∧ dxk)

=
n∑
l=1

0 = 0

�

Proposition 4.2. Every exact form is a closed form.

Proof. Let α be a exactIform. Then we can say that there exist a form β suchIthat

α = d(β). Since d(d(β)) = 0, α is a exact form. �

Proposition 4.3. Let α, β be any closedIform. Then the product of α and β is

always closed.

Proof. Let α, β be two closedIform. We calculate the derivative exterior of α ∧ β
by definition of derivativeIexterior suchIthat

d(α ∧ β) = αd(β)− βd(α)

Since α and β are closedIforms, we obtain d(β) and d(α) are zero. So,

d(α ∧ β) = α · 0− β · 0 = 0

Then, α ∧ β is also closed form. �

Proposition 4.4. If α is a closedIform and β is exact form, then α ∧ β is al-

waysIexact form.
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Proof. Let α be a closedIform and let β be a exact form in Ωn−1(X). Since β is

exact form, we can alsoIdefine the form β as β = d(g) with g is a n-form. Then,

α ∧ β = α ∧ d(g)

We know that the exteriorIderivative of α is zero when α is a closedIform, i.e.

d(α) = 0. We can also say that g ∧ d(α) = 0. So, we can add the term g ∧ d(α) to

α ∧ d(g) by the definiton of Leibniz as follows

α ∧ β = α ∧ d(g)− g ∧ d(α)

= d(α ∧ g)

By the definition of the exact form, α ∧ β is exactIform. �

Example 4.3.3. Let α, β and γ be three forms suchIthat α = xdx − ydy, β =

ydx ∧ dy + xdy ∧ dz and γ = zdz.

We calculate α ∧ β

α ∧ β = xydx ∧ dx ∧ dy + x2dx ∧ dy ∧ dz − y2dy ∧ dx ∧ dy + yxdy ∧ dy ∧ dz

= 0 + x2dx ∧ dy ∧ dz + 0 + 0

= x2dx ∧ dy ∧ dz

We use the above result to calculate (α ∧ β) ∧ γ

α ∧ β ∧ γ = (x2dx ∧ dy ∧ dz)(zdz)

= x2zdx ∧ dy ∧ dz ∧ dz

= 0
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Example 4.3.4. Let α = dx1 ∧ dy1 + dx2 ∧ dy2 + · · ·+ dxn ∧ dyn =
∑n

i=1 dxi ∧ dyi

We compute wn = w · w · · ·w.

Let’s start with w2 to compute and then we will continue to multiply by w.

w2 = (dx1 ∧ dy1 + dx2 ∧ dy2)(dx1 ∧ dy1 + dx2 ∧ dy2)

= dx1 ∧ dy1 ∧ dx1 ∧ dy1 + dx1 ∧ dy1 ∧ dx2 ∧ dy2 + dx2 ∧ dy2 ∧ dx1 ∧ dy1

+dx2 ∧ dy2 ∧ dx2 ∧ dy2

= −dx1 ∧ dx2 ∧ dy1 ∧ dy2 − dx1 ∧ dx2 ∧ dy1 ∧ dy2

= −2dx1 ∧ dx2 ∧ dy1 ∧ dy2

w3 = w2 · w

= (−2dx1 ∧ dx2 ∧ dy1 ∧ dy2)(dx1 ∧ dy1 + dx2 ∧ dy2 + dx3 ∧ dy3

= 0 + 0− 2dx1 ∧ dx2 ∧ dx3 ∧ dy1 ∧ dy2 ∧ dy3

= −2dx1 ∧ dx2 ∧ dx3 ∧ dy1 ∧ dy2 ∧ dy3

wn = −2dx1 ∧ dx2 ∧ · · · ∧ dxn ∧ dy1 ∧ dy2 ∧ · · · ∧ dyn
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5 DIFFERENTIAL FORMS ON DIFFEOLOGICAL SPACES

Let X be a diffeologicalIspace and let U, V be two real domains. Let P : U → X be

a plot of X and a smoothIparametrization F : V → U . If a p form α on X satisfy

the following two conditions, then α is called a diffeological p form.

i) α : D→ C∞(U,Λp(Rn))

ii) The pullback of F , F ∗ : C∞(U,Λp(Rn))→ C∞(V,Λp(Rn)), satisfies

F ∗(α(P )) = α(P ◦ F )

The form α(P ) express a differentialIform α on theIdomain of aIplot P of X.

α : D → C∞(U,Λp(Rn))
↓ F ∗
C∞(V,Λp(Rn))

Figure 5.1: A diffeological p form α of X in the plot P of D

The set of all differential p forms α of the diffeologicalIspace X is denoted by Ωk(X).

Let X be a diffeologicalIspace and let α, α′ be two diffeological p forms in Ωk(X).

For all plots P with s ∈ R, we have

1. (α + α′)(P ) = α(P ) + α′(P )

2. (s× α)(P ) = s× α(P )

5.1 Pullback of Differential Forms

Let f be a smoothImap between two diffeologicalIspaces X,X ′, f : X → X ′.

A diffeological p form onX shown as f ∗(α′) with α′ ∈ Ωp(X ′) suchIthat (f ∗(α′))(P ) =

α′(f ◦ P ) for all plots P of X, is called the pullbackIof α′ by f .

In addition, let g : X ′ → X ′′ be a smooth map with the diffeological space X ′′. Let

α′′ ∈ Ωp(X ′′), then we have

(g ◦ f)∗(α′′) = f ∗(g∗(α′′))

So, f ∗ : Ωp(X ′)→ Ωp(X ′) is a smooth linear map.
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5.2 Exterior Product of Differential Forms

Let α ∈ Ωp(X) and β ∈ Ωq(X) where X is a diffelogicalIspace. A exteriorIproduct

operation ∧ is smooth and bilinear map, it is defined as follow :

∧ : Ωp(X)× Ωq(X)→ Ωp+q(X)

The exterior product of α and β defined on X, α ∧ β is

(α ∧ β)(P ) = α(P ) ∧ β(P )

for allIplots P of X and this exterior product is p+ q form on X.

5.3 Exterior Derivative of Forms

The exteriorIderivative operator d is a smooth linear operator and

d : Ωp(X)→ Ωp+1(X)

where X be a diffeologicalIspace and α is a p form of X suchIthat

(dα)(P ) = d(α(P ))

for all plots P of X. dα is the exteriorIderivative of α. Let f : X → X ′ be a smooth

map with the diffeologicalIspace X ′, we have that

(dα)(P ◦ f) = d(α(P ◦ f))

= d(f ∗(α(P )))

= f ∗(d(α(P )))

= f ∗((dα)(P ))

So, for all differentialIforms α of X ′

d(f ∗(α)) = f ∗(d(α))
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5.4 Differential Forms on Manifolds

Let M be a smoothImanifold in RN , n ≤ N .

Let us define a smooth function f from M to R. Then we have to show that the

partialIderivative of f , ∂f
∂xj

= limt7→0
f(x+tej)−f(x)

t
, is in R for any x ∈ M and the

basis ej. But we don’t know tej is inM or not. Let (Ui, ψi), (Uj, ψj) be two charts on

M for each indices i, j such that ψi : Ui → RN and M =
⋃
i ψi(Ui). We can define

also a map fi : Rn → R such that fi(t) = f(ψi(t)). Now, we have to show that

this result exists for aIoverlap of twoIcharts (Ui, ψi), (Uj, ψj). SupposeIthatIx ∈ M
is in the overlap of these two charts suchIthat x = ψi(t) = ψj(u) for two vectors

t ∈ Ui and u ∈ Uj. Since the maps on the manifold are injectiveImaps, we have that

t = ψ−1i (ψj(u)). Then

f(x) = f(ψi(t)) = f(ψj(u))

Since fi(t) = fj(u), f(ψi(t)) = fi(t) and f(ψj(u)) = fj(u), we have that

fi(ψ
−1
i ◦ ψj(u)) = fj(u)

(fj ◦ fi)(ψ−1i ◦ ψj(u)) = u

We use the pullback operation to determine fj(u) on ψ−1j (ψi(Ui)) given by

fj(u) = (ψ−1i ◦ ψj(u))∗fi

for all u suchIthat ψj(u) ∈ ψi(Ui).

For all x ∈ ψi(Ui)
f(x) = f(ψi(ψ

−1
j (x))) = fi(ψ

−1
i (x)
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Figure 5.2: A differential k form on a manifold M

Definition 5.1. A given k form f on aImanifold M suchIthat f is a collection of

fi for indices i, that provides the following transitionIlaw, is called a differential k

form on M

fj = (ψ−1i ◦ ψj)∗fi

The vector space Ωp(M) is the collectionIof all differential p forms on M .

Transitions maps are defined as

ψ−1i ◦ ψj : ψ−1j (U1 ∩ U2)→ ψ−1i (U1 ∩ U2)

ψ−1j ◦ ψi : ψ−1i (U1 ∩ U2)→ ψ−1j (U1 ∩ U2)

Example 5.4.1. Let α = xdy ∧ dz + ydz ∧ dx + zdx ∧ dy on S2. Then α is an

example of a differential 2 form on theImanifold S2, α ∈ Ω2(S2).

5.4.1 Exterior Derivative of Differantial Forms on Manifolds

Definition 5.2. Let α be a k-form and let β be l-form are defined by
∑

I fIdxI and∑
J gJdxJ respectively. Then the exteriorIderivative of α is defined by

∑
I dfIdxI

and d(β) =
∑

J dgJdxJ . We define this derivation also in a chart as follows :

d(α) =
1

k!
∂iαi1···ikdx

i1 ∧ · · · ∧ dxik

We have d(f ∧ g) = f ∧ dg + g ∧ df by the Leibniz rule. The exterior derivative of
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α ∧ β is defined by

d(α ∧ β) =
∑
I,J

d(fI ∧ gJ)dxIdxJ

=
∑
I,J

(d(fI)gJ + fId(gJ))dxIdxJ

=
∑
I,J

(d(fI)dxIgJdxJ + (−1)k fIdxId(gJ)dxJ)

= d(α) ∧ β + (−1)k αd(β)

Corollary 5.1. Let α = β. By the previous definition, we obtain α∧α = (−1)k α∧α.
So, α2 = 0.

5.5 Differential Forms on Manifold with Boundary and Corners

Definition 5.3. Kn which is the diffeological n-power of the half-line K = [0,∞[

with the subset diffeology, is called the corners. Kn is defines as

Kn = {(xi)ni=1 ∈ R
n | xi ≥ 0, i = 1, · · · , n}

Let θ be an open neighborhood on Kn and θ′ be an open neighborhood on Rn

such that θ′ ∩ Kn = θ. A plot P in Kn is a smooth parametrization to Rn taking

values in Kn. For every P ∈ C∞(U,Kn), P−1(Kn) is open in Rn, then the subset

Kn of Rn is D-open. So, Kn is embedded and closed in Rn by the induced topology.

X0 = {0} ⊂ X1 ⊂ · · · ⊂ Xn = Kn is the natural filtration of Kn and Xj is defined

by

Xj = {(xi)ni=1 ∈ Kn | there exists i1 < · · · < in−j such that Xil = 0}

For example, let us take n = 2. We have K2 = {(x, y) ∈ R2 | x ≥ 0, y ≥ 0} ⊂ R2.

Let us define X0, X1, X2 in K2



43

Figure 5.3: The Corners K2

X0 = {(xi)2i=1 ∈ K
2 | i1 < i2 such that Xil = 0}

= {(0, 0)}

X1 = {(xi)2i=1 ∈ K
2 | i1 such that Xil = 0}

= ∂K2 − {(0, 0)}

X2 = {(xi)2i=1 ∈ K
2 | i1 < i0 such that Xil = 0}

= K2

A plot in Kn can be defined in three different ways. It can be defined as an open

neigborhood in Kn, defined on a half plane or defined in a corner.

Consider again K2. Let P be a plot in K2. A smooth parametrization P : U → K2

is shown in three ways as follows

Figure 5.4: Smooth parametrizations of the corner K2

We define the subset of points in Rn such that Xi −Xi−1, it is denoted by Sj and
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Sj is called a strata. Sj = Xi −Xi−1 have only j coordinates strictlyIpositive and

the rest are 0. Then, Sj is defined by

Sj = { (xi)
n
i=1 ∈ Rn | there exists i1 < · · · < ij such that Xil > 0

and Xm = 0 for all m /∈ {i1, · · · , ij}}

Let us take again n = 2 and let us define S2 as folllows :

S2 = {(xi)2i=1 ∈ R2 | there exists i1 < i2 such that Xil > 0

and Xm = 0 for all m /∈ {i1, i2}}

= {(x1, x1) ∈ R2, x1 > 0 and x2 > 0}

For j = 1,

S1 = {(xi)2i=1 ∈ R2 | there exists i1 such that Xil > 0

and Xm = 0 for all m /∈ {i1}}

= {(0, a) ∪ (b, 0) | a, b ∈ R− {0}}

For j ≥ 1, Xj is the union of theIstrata and the strata Sj is D-open in Xj.

Definition 5.4. A parametrization f : Kn → Rk is a smooth by the subsetIdiffeology

ifIand only ifIthere exists F : Rn → Rk is smooth suchIthat F � Kn = f .

Theorem 5.1. (Differential forms on manifolds with corners, 2017) Let f : Kn →
Rk be a any map. If for all smoothIparametrization P : U → Rn suchIthat P (U) ⊂
Kn with f ◦ P ∈ C∞(U,Rk), then there exists an openIneighborhood θ of Kn and

F ∈ C∞(θ,Rk) suchIthat f = F � Kn

Proof. Let us consider the smooth parametrization P defined on R2 taking values

on Kn suchIthat

P : (t1, · · · , tn) 7→ (t21, · · · , t2n)

Let f : Kn → Rk be a any map. SupposeIthat the composition f ◦ P is smooth

and we have f ◦ P is an evenIfunction, since P is an even function in each ti. We

can define a function g(x2) for all evenIfunction f(x) = f(−x) for each x. The

WhitneyITheorem shows us if f is of class C∞, then g is also of class C∞.
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Firstly, we want to show this result for f which is of class C2s

The Taylor’s formula of the even function f

f(x) = a0 + a1x
2 + a2x

4 + · · ·+ as−1x
2s−2 + φ(x)x2s

By the above Taylor’s formula, we have limx7→0 φ(x)x2s = 0

For g(x2) = f(x), we pick x2 = u and the Taylor’s formula of g is given by

g(x) = a0 + a1u+ a2u
2 + · · ·+ as−1u

s−1 + ψ(u)us

We need to show that limu7→0 ψ(u)us exists for showing g is of class Cs. We have that

ψ(x2) = φ(x) and we can calculate ψ(x2) for some constants aki and x > 0

φk(x) =
∑

1≤i≤ k
2

akix
k−2iψk−i(x) + 2kxkψk(x2)

φk(x)−
∑

1≤i≤ k
2

akix
k−2iψk−i(x) = 2kxkψk(x2)

for some constants βki

φk(x)−
∑

1≤i≤k−1

βkix
−iφk−i(x) = 2kxkψk(x2)

for some constants β′ki ∑
1≤i≤k−1

β′kix
k−iφk−i(x) = x2kψk(x2)

Since limx 7→0 φ(x)x2s = 0, limx 7→0 x
k−iφk−i(x) = 0 and by the equality we say that

limx 7→0 x
2kψk(x2) = 0 for x > 0. So, limu7→0 ψ(u)us = 0 exists and g is of class Cs.

We showed this result for an evenIfunction f which is of class C2s, then we can find

a function g for any even function f which is of class C∞.

Therefore, there exists a smoothIparametrization F defined from Rn to R suchIthat

f(t21, · · · , t2n) = F (t21, · · · , t2n) and f = F � Kn. �

Example 5.5.1. Let f be the Cauchy’s function suchIthat f(x) = exp
(
− 1
x2

)
for

x 6= 0. f is of class C∞. Let usItake u = x2 and g(u) = exp
(
− 1
u

)
is of C∞ for u 6= 0.

Theorem 5.2. (Differential forms on manifolds with corners, 2017)

Let f be a localIdiffeomorphism of Kn, i.e. if x ∈ Sj, then f(x) ∈ Sj.
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Proof. Let P : U → Rn be aIparametrization. The dimension of the image of the

tangentIlinear map D(P )(x) is denoted by rk(P )x at the point x ∈ U .

Let P : U → Kn be a plot. If P (r′) ∈ Sj, we describe P (r′) as (P1(r
′), P2(r

′), · · · , Pn(r′))

suchIthat Pik(r′) = 0. For all r ∈ U , we know that Pik(r) ≥ 0 and rk(P )r′ can be

up to j. Then we have that D(Pik)(r′) = 0, i.e. rk(P )r ≤ 0.

Let x ∈ Sj and f(x) = x′ ∈ Sk with k 6= j.

SupposeIthat k > j. Since f is a localIdiffeomorphism, there exists a smooth pa-

rametrization F on an open neigborhood θ ⊃ Kn suchIthat F � Kn = f and

there exists a smoothIparametrization G on an openIneigborhood θ′ ⊃ Kn suchIthat

G � Kn = f−1.

G � Sk : x′ 7→ x ∈ Sj is a plot of Kn and rk(G � Sk)x′ ≤ j. But G � Sk = G◦jk where
jk is identified with aIplot such that jk : Sk → Kn. jk takes itsIvalues in theIborder

of Kn and

(F ◦G � Sk)(t) = F ◦G ◦ jk(t)

= F ◦G(jk(t))

Since f ∈ Diffloc(Kn), f carriesIa border to theIborder for the D-topology. Then

G and f−1 coincide and F and f coincideIon ∂Kn. So,

F ◦G(jk(t)) = f ◦ f−1(jk(t))

= jk(t)

We have that rk(F ◦ G � Sk)x′ = rk(jk)x′ = k. But rk(F ◦ G � Sk)x′ ≤ rk(G �

Sk)x′ ≤ j. It is contradiction, thus k = j. �

Theorem 5.3. (Differential forms on manifolds with corners, 2017) AnyIdifferential

k-form on theIcorner Kn equipped with the subsetIdiffeology of Rn, is theIrestriction

of a smoothIdifferential k-form defined on some neighborhoodIof theIcorner.

Proof. Let w be a differential k-form on a manifoldIwith corner. Then the restric-

tionIof a differential k-form w on some open neighborhood on the corner is defined

by

w � Kn =
∑

i1<···<ik

ai1···ik (x1, · · · , xn) dxi1 ∧ · · · ∧ dxik
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with ij ∈ {1, · · · , n} and ai1···ik ∈ C∞(
o

Kn,R).

Now we will use the squareIfunction lemma. By the lemma, we have that a smooth

parametrization sq : Rn → Kn such that sq(x1, · · · , xn) = ((x1)
2, · · · , (x1)n). The

the pullback of sq is injective, i.e. sq∗ : Ωk(Kn) → Ωk(Rn) and if sq∗(α) = 0, then

α = 0 for all α ∈ Ωk(Kn). So, we obtain that theIpullback of sq∗ as follows :

sq∗(w) =
∑

i1<···<ik

Ai1···ik (x1, · · · , xn) dxi1 ∧ · · · ∧ dxik

where Ai1···ik ∈ C∞(Rn,R).

Suppose aIparametrization εj = (x1, · · · , xj, · · · , xn) 7→ (x1, · · · ,−xj, · · · , xn)

ε∗j(sq
∗(w)) =

∑
i1<···<ik

Ai1···ik (x1, · · · ,−xj, · · · , xn) dxi1 ∧ · · · ∧ dxik

−
∑

i1<···≤j≤···<ik

Ai1···j···ik (x1, · · · ,−xj, · · · , xn) dxi1 ∧ · · · dxj · · · ∧ dxik

Since sq ◦ εj = sq, we say that sq∗(w) = ε∗j(sq
∗(w)). Then,

Ai1···ik (x1, · · · ,−xj, · · · , xn) = Ai1···ik (x1, · · · , xj, · · · , xn)

Ai1···j···ik (x1, · · · ,−xj, · · · , xn) = −Ai1···j···ik (x1, · · · , xj, · · · , xn)

Hence, Ai1···j···ik (x1, · · · , xj = 0, · · · , xn) = 0. This implies that

Ai1···j···ik (x1, · · · , xj, · · · , xn) = 2xjBi1···j···ik (x1, · · · , xj, · · · , xn)

with Bi1···j···ik ∈ C∞(Rn,R). Then Ai1···j···ik is defined by the real smooth function

Âi1···j···ik defined on R such that

Ai1···ik (x1, · · · , xn) = 2kxi1 , · · · , xikÂi1···j···ik (x1, · · · , xn)

Then the pullback of sq of the restrictionIof a differential k-form w on someIopen

neighborhood on theIcorner is

sq∗(w �
o

Kn) = sq∗(w) � {xi 6= 0}∑
i1<···<ik

2kai1···ikxi1···ik
(
x21, · · · , x2n

)
dxi1 ∧ · · · ∧ dxik

=
∑

i1<···<ik

2kxi1···ikÂi1···j···ik (x1, · · · , xn) dxi1 ∧ · · · ∧ dxik



48

and

Âi1···j···ik (x1, · · · , xn) = ai1···ik
(
x21, · · · , x2n

)
for xi 6= 0, i ∈ {1, · · · , n}. By the Whitney theorem, Âi1···j···ik (x1, · · · , xn) =

ai1···ik (x21, · · · , x2n) with ai1···ik ∈ C
∞(Rn,R).

For all (x1, · · · , xn) ∈
o

Kn, we have that ai1···ik(x1, · · · , xn) = ai1···ik(x1, · · · , xn).

Since the k-form w =
∑

i1<···<ik ai1···ik(x1, · · · , xn)dxi1 ∧ · · · ∧ dxik ,then w �
o

Kn =

w �
o

Kn.

For all plot P : U → Rn, p∗(w) = w(p).

sq∗(w) =
∑

i1<···<ik

Ai1···ik(x1, · · · , xn)dxi1 ∧ · · · ∧ dxik

=
∑

i1<···<ik

2kxi1···ikÂi1···ik(x1, · · · , xn)dxi1 ∧ · · · ∧ dxik

=
∑

i1<···<ik

2kxi1···ikai1···ik(x21, · · · , x2n)dxi1 ∧ · · · ∧ dxik

= sq∗(w � Kn)

So, we show that w � Kn = w. Thus, sq∗(w − w � Kn) = 0. Furthermore, w − w �

Kn = 0 and w is the restrictionIon corner of the smooth k-form w on R. �



6 CONCLUSION

In this thesis, the conditions of a topological manifold are given and we describe the

smooth structure on the topological manifold. We give the definition of a smooth

manifold. We show that the smooth manifold is a diffeological space. Manifold with

boundary and corners are examined and we see that they are not a smooth manifold.

We want to examine these spaces in terms of differential and we examine them in

terms of diffeology. In the light of the results obtained concerning the diffeology of

a manifold with boundary and corners, we show that these are diffeological spaces.

Furthermore, these are a diffeological manifold.

We give the definition of the differential form on this space and we characterize these

forms defined on the manifold with boundary and corners.
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