ON MANIFOLDS WITH BOUNDARY AND CORNERS
(SINIRLI VE KOSELI MANIFOLDLAR)

by

GULSAH BAKI

Thesis

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

MASTER OF SCIENCE
in
MATHEMATICS
in the
GRADUATE SCHOOL OF SCIENCE AND ENGINEERING
of

GALATASARAY UNIVERSITY

JUNE 2019



Approval of the thesis:

ON MANIFOLDS WITH BOUNDARY AND CORNERS

submitted by GULSAH BAKI in partial fulfillment of the requirements for the
degree of Master of Science in Mathematics at Galatasaray University
is approved by the

Examining Committee:

Prof. Dr. Susumu TANABE

Supervisor, Mathematics Department, GSU

Prof. Dr. A. MUHAMMED ULUDAG

Mathematics Department, GSU

Assoc. Prof. Dr. OGUL ESEN

Mathematics Department, GTU

Date:




ACKNOWLEDGMENTS

I would like to thank my supervisor Serap Giirer for giving me the opportunity to
work on this topic. I would also like to thank my managers Mustafa Saghk and

Barig Altin for their supports.

In particular, my thanks to my mother Nimet, my brother Yiicel and my best friend

Umut who have always supported me in this project.

11



TABLE OF CONTENTS

ACKNOWLEDGEMENTH]

TABLE OF CONTENTS

LIST OF FIGURES

(1.3 Manifold with boundary| . . . . . . . .. ... ... 8
(1.4 Manifold with corners| . . . . . . ... ..o 9
................................. 12
2.1 Diffeologyl . . . . . . . .o 12
2.1.1 smoothness of Plotsf . . . . . ... ... ... ... 13

(2.2 Diffeological Spaces| . . . . . ... 0oL 13
2.3 Comparison of Diffeologies| . . . . . . . ... ... ... ... 16
[2.3.1 Subset Difteologyl . . . . .. ... 16

[2.3.2 Pushtorwards of Diffeologies| . . . . . . . ... ... 16

[2.3.3 Pullbacks of Diffeologies|. . . . . . . ... ... ... 16

[2.3.4 Category of Difteologies . . . . . . . ... ... ... 17

[2.3.5 Product of Diffeological Spaces| . . . . . . ... .. 17

[2.4 Generating Families| . . . . ... ... ... 000 17




[2.5 Difteological manifolds| . . . . . .. ... ... ... ... ... 18

[2.6 Difteological manifolds with boundaryl . . . . . . . .. .. .. 20

[2.7 Diffeological manitolds with corners| . . . . . . ... ... .. 20

3 MULUTILINEAR ALGEBRA 22
(3.1 Linear Maps| . . . . . . . . ... 22

[3.1.1 Bilinear Maps| . . . . . . ... 000 24

[3.1.2 Multilinear Maps| . . . . . ... .. ... ... ... 24

(3.2 Tensors| . . . . . . .. 25

.21  Tensor Productl . . .. ... .. ... ... ..... 26

[3.2.2 Symmetrization and Antisymmetrization of Tensors 27

[3.3 Linear p-forms| . . . . . . . ... ... Lo 28

(5.5 Differential Forms on Manifold with Boundary and Corners| . 42

6 CONCLUSIONI . . .. oo o 49
REFERENCES . . .00 0000 0. 50



BIOGRAPHICAL SKETCH

vi



LIST OF FIGURES

Figure [I.1 The line d; which passes through the north pole N = (0,1) and |
[ the point (x,y) on the circle and intersects the axis x at the point (u,0) . 2
Figure 1.2 The line dy which passes through the south pole S = (0, —1) and |
| the point (x,y) on the circle and intersects the axis = at the point (v/,0)[. 3
Figure[l.3 Acrosson R . . . . . . . . . . .. . ... ... ... ... 5
Figure|l.4 A smooth map on the topological manitold M| . . . . . .. . . .. 6
Figure|l.5 A transition map of a smooth manitold| . . . . . ... . ... ... 7
Figure|1.6 A 2-manifold with corners| . . . . . . . .. ... ... ... ... 10
Figure |1.7 The exterior surtace of acube| . . . . . . . . .. ... . ... ... 11
Figure 2.1 Smooth compatibility of parametrizations of X{|. . . . . . . . . .. 12
Figure 2.2 Plots are smoothl. . . . . . . ... .. ... ... 0. 13
Figure [2.3 Diffeology for the circle S*|. . . . . . . . .. .. ... ... ..., 14
Figure 2.4 A smooth map between manifolds| . . . . . . . ... .. ... ... 19
Figure 4.1 The commutation between f*andd . . .. ... .. ... ... .. 34
Figure .1 A diffeological p form a of X in the plot Pot D . . . . ... ... 38
Figure [5.2 A differential £ form on a manifold M|. . . . . . .. ... ... .. 41
Figure|5.3 The Corners K*|. . . . . . . . . . .. ... ... ... ....... 43

Figure |5.4

Smooth parametrizations of the corner K4. . . . . . . . ... ... 43




LIST OF TABLES



ABSTRACT

In this thesis, smooth manifold, manifold with boundary and manifolds with corners
are examined from differential calculus point of view. As it is known, manifolds with
boundary and corners are not smooth manifold. We have examined these spaces
as an example of smooth spaces developed in recent years in terms of diffeology.
First, we have shown that these are diffeological spaces, then they are diffeological
manifolds. We examined the smooth functions and differential forms by utilizing
the tools provided by diffeology on these spaces. We characterized the differential

forms on manifolds with corners.

Keywords : Differantial Forms, Manifolds with Corners



OZET

Bu tezde, diizgiin manifold, sinirli manifold ve koseli manifoldlar diferansiyel ge-
ometri agisindan incelenmistir. Bilindigi tizere sinirli ve koseli manifoldlar diizgiin
manifoldlar degildir. Bu uzaylari son dénemde gelistirilen diizgiin uzaylarin bir or-
negi olarak difeolojik acidan inceledik. Ilk olarak bunlarm difeolojik uzay oldugunu,
daha sonra difeolojik manifold olduklarini gosterdik. Bu uzaylar {izerinde difeolo-
jinin bizlere sagladig1 araclardan faydalanarak diizgiin fonksiyonlar1 ve diferansiyel
formlar1 inceledik. Koseli manifoldlar iizerinde diferansiyel formlar1 karakterize et-
meye c¢alistik ve bu uzaylar tizerinde karakterize ettigimiz diferansiyel formlarla ilgili

hesaplamalar yaptik.

Anahtar Kelimeler : Diferansiyel Formlar, Késeli Manifoldlar



1 INTRODUCTION

In this chapter, we will introduce the topological manifold and the smooth manifold.
We will give a few examples of smooth manifolds. Finally, we will introduce the

manifolds with boundary and corners.

1.1 Topological Manifolds

First, we will define the topological spaces, since topological manifolds are defined
on topological spaces.
Definition 1.1. Let M be a set and let 7 be a set of subsets of M. The set M is

called a topological space, if 7 satisfy the following three axioms :
1. 0, M e .
2. IfUl,UQ €T, then UlﬂUQ €T.

3. f Uy et foricl,then|J,.,U; €.
Definition 1.2. The topological space M is said to be a topological manifold of

dimension n or n-manifold, for n € N if it satisfies the following three conditions :

1. M is a Hausdorff space, i.e. for z,y € M with x # y and there exists U,V
open subsets of M such that z € U,y € Vand UNV = (.

2. M is second countable.

If 7 has a countable topological basis, i.e. this topological space has a countable

open base, then M is called a second countable.

3. M is locally Euclidean of dimension n.

Every point in M has an open neighbourhood homeomorphic to an open subset
of Euclidean space R", i.e. there exists a homeomorphism f : U — V where U

is an open subset of M and V' is an open subset of R".

Remember that the definition of homeomorphism, f is a homeomorphism bet-
ween two topological spaces if and only if f is a bijection and both f and f~!
are continuous.
Example 1.1.1. The Euclidean space R" is topological manifold for which every
point x € R™ has a neighbourhood homeomorphic to Euclidean space by the identity
map Iz~ : R" — R".

Example 1.1.2. Let (X,7) be a topological space with a topology 7. If YV is a



subset of X, the collection v = {Y NU | U € 7} is a topology on Y. This topology
is called the subspace topology. Y is called a subspace of X with this topology.

1.1.1 Charts and Atlas

Definition 1.3. Let M be a topological manifold. Let U C M and V C R" be two
open subsets. A homeomorphism ¢ : U — V, p(u) = (z1(u), -+ ,x,(u)) is called a
coordinate map on U with the coordinate functions xi,--- ,z,. The pair (U, ¢) is

called a chart on M. The inverse map ¢! is called a parametrization of U.

The collection of charts (U,, ¢,) whose domains cover M on a topological manifold
M is called an atlas for the manifold M.

Definition 1.4. The homeomorphisms pgo .t : 0o (Us NUg) = 05(U,NUg) with
the coordinate maps g, ¢, are called the transition maps.

Example 1.1.3. All subspaces of R" are Hausdorff and second countable by the
subspace topology. Every open subset U of R” is also a topological manifold with
chart (U,Iy) where Iy is a identity map from U to R".

Example 1.1.4. We want to define an atlas on the circle S* = {(z,y) € R? z* +

y? =1}

By the subspace topology, S' C R™ for n > 2 is Hausdorff and second countable.
Let N = (0,1) and S = (0,—1) and we will define stereographic maps (Uy, 1),
(Us, p2) as follows. Consider the line d; passes through the point (z,y) € S*\ {N}
and N on the circle and this line intersects the axis x at the point (u,0) which is a

stereographic coordinate.

Figure 1.1: The line d; which passes through the north pole N = (0,1) and the point
(x,y) on the circle and intersects the axis x at the point (u,0)



We know that for all (z,y) € S* we have 2* + y* = 1.
The equation of the line d; is £ +y = 1.

We have y = 1 — £ and we substitute this value in the other equation as follows :

2
x2+y2:x2+ (1—£) =1
u
This equation has two solutions. One of them is the north pole N = (0,1) and the

2u
14u2’

2
hZQ and u = %

second solution is x = Ty

this implies that y =1 — ¥ =

Now, consider the line dy passes through the point (z,y) € S'\ {S} and S on
the circle and this line intersects the axis = at the point (u/,0) is a stereographic

coordinate.

Figure 1.2: The line dy which passes through the south pole S = (0,—1) and the
point (z,y) on the circle and intersects the axis x at the point (v, 0)

The equation of the line dy is 5 + %4 = 1.

So we have 77 — 1 and we substitute this value in the first equation. First solu-

tion is the south pole S = (0,—1) for these equaitons, second solution is (z,y) =

( 20’ “/2_1> and we obtain that v’ =

T
14+u/27 14u/2 1+y°

2 2

- = ;75 = %3 = 1, the relation between coordinates u and u’ is uu’ = 1.

Since Ty iy — 1-2

Therefore, we define the coordinates charts (Uy, 1), (Us, p2) on S' such that

Ul :Sl\{N},gpl : ('T7y) = U= ﬁ for (x,y) € Ul

U = S"\{S}, ¢ (a,y) = o' = 3, for (v,y) € Uy

Now we have to show that these functions are homeomorphisms. To show that they



are homeomorphisms, we have to show ¢y, ¢ are bijections and @1, 7", 02, 05 = are
continuous. Since critical points are removed from the domain U; C S'\ {N} and
Uy C S'\ {S}, these maps are continuous. We will prove that ¢; o ¢;*(u) and

@ 0y (u') are identity functions.

: _ =z -1/ z N
Since u = %, and ¢y (15) = v’ = 7,

gplogol_l(u) R— S5 Ru— (2,y) —

the composition ¢, o ;! is defined by
==

propr(u) = oi(er(u)

= 901('T7 y)

_ 2u 1 —u?
R I L R

2u
14+u?

1—u?
1+ 1+u2

We proved that this function is an identity function.

T

' I o -1
Since v’ = {7 and ¢, ( =

waopy (W) R — ST R

P00y (U) = oy (u))

2u
14u?

1—u?
1+ 14+u2

This shows that o1, g9 are homeomorphisms. So, A = {(Uy, ¢2), (U, p2)} is an atlas

on ST



Example 1.1.5. Let us consider the subset X = {(z,0) | =1 <z < 1} U{(0,vy) |
—1l<x <1} CR%.

In this example, we will show that the subset X is not a topological manifold, since

there is no homeomorphism from the cross on X to R".

Suppose that X is homeomorphic to R™ for some n > 0. Let f be a homeomorphism
between X and R"™. Now, consider the map f’': X'\ {(0,0)} — R™\ {f(0,0)}, where
f is the restriction of f to the domain X \ {(0,0)}. Then f’ is continuous, bijective

and has continuous inverse. So, f’ is a homeomorphism between X \ {(0,0)} and

R™\ {f(0,0)}.

Observe that X \ {(0,0)} has 4 connected components, whereas R™\ {f(0,0)} has 2
connected components when n = 1 and 1 connected component when n > 2. Since
homeomorphisms preserver connected components, X is not a homeomorphic to R"

for any n > 0. So, it is not a topological manifold.

1

=1 .p= ':ﬂ ’“} 1

-1
Figure 1.3: A cross on R?



1.2 Smooth Manifolds

A second countable, Hausdorff topological space M is a n-dimensional topological
manifold if it admits an atlas {U,, p,} with the coordinate map ¢, : U, — R" for
n € N. We will see that if all transition maps of M are diffeomorphisms, i.e. all

partial derivatives exist and continuous, then it is called a smooth manifold.

A map f between two spaces U,U’ such that U C R™ and U’ C R" is called a
smooth if f has continuous partial derivatives at the each component functions for

all orders.

D(f)(x)(u) = timy ) =)
D(f)(x) is the partial derivative of ' at x € U.
Definition 1.5. Let M be any topological n-manifold. Let U be an open subset on
M and U’ be an open subset in R". We define a map f on M such that f: M — R.
The map f is smooth map if and only if h = fog™' : U — R is smooth with
the coordinate map g : U — U’.

Figure 1.4: A smooth map on the topological manifold M

Definition 1.6. Let 1, ¢ be two charts of a topological manifold M. Two charts
Y, ¢ are compatible if and only if

1. v 1(¢(U")) and ¢~ (1p(U)) are open maps.

2. The transition maps ¢! o1 and ¢~! o ¢ are smooth.
¢ o Ho(U) = ¢ (W(U))
v og o7 (W(U)) = YT (H(U))



Definition 1.7. If the transition map 1) o ¢! is smooth, then (U 1) and (U’, ¢)
are called smoothly compatible.

Definition 1.8. The set A of smooth charts whose domains cover the manifold M,
is called an atlas for M. If any two charts are smoothly compatible, then A is a
smooth atlas. Two smooth atlases are equivalent if their union is a smooth atlas.
We can also say that if the transition map is smooth for any two coordinate maps

of a manifold, it implies that A is a smooth atlas.

If there is no another atlas A’ such that A C A’, then A is maximal atlas. A
smooth structure on the manifold M may be defined as a maximal smooth atlas.
Definition 1.9. Let M be a topological n-manifold and let A be a smooth atlas of
M, then a pair (M, A) is called a smooth manifold.

Let U,U’ be two open subsets in M such that U N U’ # () and let M be a topo-
logical n-manifold. Let us define two charts (U, ) and (U’, ¢) and the composition
map Yo ¢! p(UNU") — (U NUT') is called a transition map. Since 1, ¢ are

homeomorphisms, 1) o ¢~ is also homeomorphism.

M U Now

Yoo
U I V'

Figure 1.5: A transition map of a smooth manifold

Example 1.2.1. Let M be a topological 0-dimensional manifold. Then M is a
countable discrete space. A neighborhood of each point p € M that is homeomorphic
to an open subset of R® is {p} itself. There exists exactly one chart ¢ : {p} — RO.
Then the set of all charts on M satisfies the smooth compatibility condition. Thus,
0-dimensional manifold M is a smooth manifold.

Example 1.2.2. The n-sphere is defined as the subspace of unit vectors in R"*!

S"={(ro,- -+ xn) ER™D "af =1}



Let N = (1,0,---,0) be the north pole and let S = (—1,0,---,0) be the south pole
in S™. Then we may write S™ = Uy UUg, where Uy = 5™\ {S} and Ug = S™\ {N}
are equipped with coordinate charts ¢y, s into R", given by the stereographic

projections from S, N respectively

on (20, T) = (14 20) 1%

s ¢ (20, Z) — (1 — xo)’lf

The charts for the n-sphere given above form a smooth atlas, since

1— 1 —x)?
PN o g 1 T 1’02,:( _’|x20) Z=|7

|—2
14z |x

Z

which is smooth on R™ \ {0}. Then the n-sphere is a smooth manifold.

1.3 Manifold with boundary

In differential geometry, manifolds with boundary are important as well. For example,
they are used in the Stokes theorem.

Definition 1.10. A topological n-manifold M with boundary is defined to
be a Hausdorff space and second countable such that every point in M has an
open neighborhood which is homeomorphic to an open subset in the upper half

space H™. The upper half space H" is closed in R™ and this space is defined by
H" = { (2, -+ ,2") e R" | 2" > 0}

The subspace topology is defined on H". Let’s assume that > C H. Any > in H is
bounded by a circle. Since > which is an embedded with boundary a convex curve
is included in the Euclidean space R, then the half space H is embedded in R. A
chart of a topological n-manifold M with boundary is defined by a homeomorphism
¢ : U — V where U is an open subset of M and V is an open subset of H".
Definition 1.11. The preimages of points (xy,- - ,z,_1,0) € H" are the boundary
OM of M and M — OM is the interior of M.

Lemma 1.1. If a topological n-manifold M with boundary,then 0M is a topological
(n — 1)-manifold without boundary.

Proof. If z is in M and an open neighborhood U which is homeomorphic to an

open subset of H", then M N U is homeomorphic to an open subset of R"~1. [



Lemma 1.2. A manifold M with boundary is a manifold if and only if 0M is empty.

Proof.  Firstly, if M is empty, then M is the manifold without boundary.

By the previous lemma, we have that if M is a topological manifold with boundary,
then OM is a topological (n—1)-manifold without boundary. Since M is a topological
manifold, then we say that there is no boundary of M. So, OM = {0} . U

Definition 1.12. A function f : M — N is a map of topological manifolds if
f is continuous. It is a smooth map of smooth manifolds M, N if the function
pofopt:pUnfYV)) — ¢(V) is a diffeomorphism for any smooth charts
(U, ) of M and (V, ¢) of N on the open subset U N f~1(V).

If a topological n-manifold M with boundary is smooth, then M is called a smooth
n-manifold with boundary.

Example 1.3.1. Let M be a topological n-manifold. The manifold M is called a
n-manifold with boundary if int(M) = M and OM = {.

Example 1.3.2. Let M = [0, 1] be 1-manifold. We have that the set of all regular
points of M, int(M) = (0, 1) and the set of all boundary points of M, OM = {0, 1},
then M is a 1-manifold with boundary.

Example 1.3.3. The manifold D* = {x € R" | || < 1} as a manifold has no
boundary. The closed n-ball D" = {z € R" | |z| < 1} is a n-manifold with boundary
oD" = 51,

1.4 Manifold with corners

Definition 1.13. A topological n-manifold M with corners is identical to a
topological n-manifold with boundary. A topological n-manifold M with corners is
a second countable Hausdorff space in which each point has a neighborhood homeo-

morphic to an open subset of the corner K”.
The corner K™ is a subset of H" and it is defined by
K" = {(2;);_, € R" | x; > 0,i=1,--- ,n}

A chart of a topological n-manifold M with corners is defined by a homeomorphism
@ : U — V where U is an open subset of M and V is an open subset of the corners

K™.
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Definition 1.14. Let (U, ) and (U’, ¢) be two charts with corners on the manifold
M with corners. If the transition map o¢=! : ¢(UNU’) — »(UNU’) is smooth, then
(U,%) and (U’, ¢) are smoothly compatible. The maximal collection .4 of smoothly
compatible charts with corners whose domains cover the manifold M with corners,
is called an atlas on M with corners. A pair (M, A) is a smooth manifold with
corners.

Definition 1.15. A point p € M is called a corner point if ¢(p) is a corner point
in € K" with the smooth chart (U, ) with corners.

Lemma 1.3. Every smooth manifold is a smooth manifold with corners. A smooth
manifold with corners is a smooth manifold with boundary if and only if it has no
corners points.

Example 1.4.1. Let any closed rectangle be in R"”. This is a smooth n-manifold.
A closed retangle has more than one point which at least one coordinates vanishes.
These points are said to be corners of a closed rectangle. Then, it is a smooth
n-manifold with corners.

Example 1.4.2. The set M = {(z,y) € R? | > 0,y* < 2 — 2*} is a 2-manifold

with corners.

Figure 1.6: A 2-manifold with corners
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Example 1.4.3. Consider the exterior surface of a cube. Since the boundary of
cube has edges and corners, such a cube looks like a manifold with corners. The

exterior surface of a cube is defined by [0,1] x [0,1] x [0,1] C R?.

The homeomorphism condition tells us that, let f be a homeomorphism from R” to
R™ and if R™ is homeomorphic to R™, then n = m. So, a map from the corner point
p of the exterior surface of a cube must be homeomorphic to K3. But, any map from
an open neighborhood of p is in K2. There is no homeomorphic neighborhood of a
corner point p to an open subset of K3. Then, the exterior surface of a cube is not

a manifold with corners.

L

Figure 1.7: The exterior surface of a cube
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2 DIFFEOLOGY

First, we will give the basic vocabulary needed : domains and parametrization.

Definition 2.1. An open subset in R” is any union of open balls B, (r) which is
defined by B, (r) = {x € R" | ||z — a|| < r} for each a € R” and r > 0 with n € N.
Definition 2.2. An open subset U of Euclidean spaces R" is called a real domain.
Definition 2.3. Any map P : U — X is called a parametrization of X where U
is a real domain and X is a non-empty set. We denote Param(X) is the set of all

parametrizations P of X.

2.1 Diffeology

Given a subset © of Param(X) is called a diffeology if © satisfies the following

three axioms; covering, locality and smooth compatibility.

1. Covering. Every constant parametrization is in ®. There exists a constant

parametrization x : r — x defined on R" for all z € X.

2. Locality. Let P : U — X be a parametrization. For every point r of U, if the
restriction P [ V,. of P on a neighborhood V,. of r in U is in ®, then P belongs
to 2.

3. Smooth compatibility. For every element P : U — X of ©®, Po F belongs to ®
for every F' € C*°(U, V') and every real domain V.

Let’s define a smooth parametrization F' between two real domains U, U and

a parametrization P € ® such that the composite h = Po f € ®.

e (" X)
Rt

a®

—
f—

Figure 2.1: Smooth compatibility of parametrizations of X
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2.1.1 Smoothness of Plots

Definition 2.4. An element of the diffeology is called a plot. The set of the plots
of the diffeological space X defined on the domain U is denoted by D (U, X).

Let P be a plot of the diffeology © of X. If the composite P o f is in ® for every

smooth parametrization f : X — X', then P is called a smooth.

We can describe a smooth map f € ®(X, X’) with the figure below.

U P X f X'

Figure 2.2: Plots are smooth

2.2 Diffeological Spaces

A pair (X, D) is a diffeological space. (X,9) is a nonempty set X equipped with
a diffeology ©.

Definition 2.5. Let X, X’ be two diffeological spaces and let ©, 9’ be two diffeolo-
gies of X, X' respectively. ®(X, X") = {F € Maps(X,X') | Fo® C D'} is defined
by the set of smooth parametrizations F' between two diffeological spaces. So, if
F o P is an element of the diffeology ©" of X’ for each parametrization P of X, it
implies that F'is smooth parametrization between these two diffeologial spaces.
Lemma 2.1. Let’s consider three diffeological spaces X, X', X” with their diffeo
logies ©, D", D" respectively. Let f, g be two elements of smooth parametrizations

such that

f X=X 9g: X —X"

By the definition of diffeology and smooth, we have that fo® C ©’ and go®’ C D”.

Thus the compositon g o f is also smooth

(goflo®=gofo®d C go® cC D
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Example 2.2.1. Diffeology for the circle. The circle S' = {z € C| zz = 1} and
suppose that the parametrizations P : U — S* satisfy the condition : P [V, : r —
exp(2ime(r)) with an open neighborhood V, for all r € U where ¢ : V. — R is a

smooth parametrization. Let ® be a set of these parametrizations.

Now, we are talking about whether or not the set of these parametrization is
diffeology. Firstly, let’s check being covering. We define a constant parametriza-
tion z : r — z for all z € S'. We can find a real number # = (r) such that
exp(2iml) = z for every r, accordingly the exponential function is surjective from
R to S'. We can say that this result for every r, so if we choose V = R", every

constant parametrization satisfying this condition is in ©.

By the hypothesis, P [ V. isin © and P is also. For the third condition, we can show
with the following figure

Figure 2.3: Diffeology for the circle S*

We want to show that the parametrization h is in ©. Let r € U and V be an open
neighborhood of . We define a smooth parametrization F' from a real domain W
to U. By the hypothesis,we have the parametrization ¢ : V — R. Suppose that
P : U — S'is a plot, we will show that the composition h : Po F is in ®. Since
F' is a smooth and ¢ is a parametrization, we can say that oo F' : W — R is
a smooth parametrization and F' is continuous. So, we have that a real domain
V' = F~(V) and we define a smooth parametrization ¢ = ¢ o F' : V/ — R as

follows :
Vso € W, 3V’ Ay’ = ¢ o F such that
(PoF) | V':sy— exp(2imp (r))

Then, h € D. In this case, D is a diffeology of S?.
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Example 2.2.2. An example of diffeology on R.

Suppose that X = R and ® is a set of all smooth parametrizations from a real

domain U to X.

Let x : U — X be a constant map for any point z € U. Since X is a constant map we
have that x(r) = « for every r € U. This implies that there are two parametrizations

v, " such that ¢’ o x o ¢ is smooth. So, © is covering.

Let P: U — R € . If for any r € U there exists an open neighborhood V' of r and
the restriction of P on V is smooth, i.e. P [ V is locally smooth, then P is smooth

by the definition of smoothness. Thus © is locality.

Let F' be a parametrization from any real domain W to U. Since F' and P are
smooth, the composition P o F' is also smooth. So that © is smooth compatibility.
The set © specifies a difeology for X.

Example 2.2.3. An example of diffeology on topological space

Axiom 1 : Suppose that X is a topological space and ® is a set of all continuous

parametrizations from a real domain U to X.

Axiom 2 : Let f be a constant map defined by f(r) = = for all » € U and for any
point x € X. The inverse image f~! of any open subset in X is either () or U, which
are open. Then f is always continuous and f € ©. By definition, every constant

parametrization is locally constant.

Axiom 3 : Let F' be a continuous map between two real domains W and U in R,
the composition of a parametrization from U to X and F' is continuous since the

composition of two continuous functions is also continuous.
Then ® is smooth compatibility and ® is diffeology on the nonempty set X.

As we can understand in the examples, we can describe more than one diffeology

because diffeology may vary according to the characteristics of the parametrizations.
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2.3 Comparison of Diffeologies

Let X be a diffeological space equipped with two diffeologies ® and ®’. If the
elements of ® are in ®', ® C ®’, then ® is finer than ®’. The locally constant
parametrizations of X are the finest diffeology. Conversly, if the elements of ©’
are in ®, D D D', D is coarser then ®’. The set Param(X) of all parametrizations
of X is called a coarsest diffeology of X.

2.3.1 Subset Diffeology

Let A be any subset of a diffeological space X, the subset diffeology of A, induced
by X, is made of all the plots of X whose take their values in A.

2.3.2 Pushforwards of Diffeologies

Let f be a map from a diffeological space X to a set X’. Our aim is to carry the
properties of the diffeological space into the set X’ with the map f.
Definition 2.6. There exists a finest diffeology on X’ such that f is smooth. This
diffeology is called the pusforward diffeology by f of the diffeology ® of X, it is
denoted by f.(D).

@) ={P:U—-X|foP €9}

2.3.3 Pullbacks of Diffeologies

Let X be a set. Let X’ be a diffeological space and @’ its diffeology. Let f : X — X’
be some map. There exists a coarsest diffeology of X such that the map f is smooth.
This diffeology is called the pullback of the diffeology ®’ by f and it is denoted by
f5(®"). A parametrization P in X belongs to f*(®’) if and only if f o P belongs to
D'

(@) ={P € Param(X) | foP €'}
Lemma 2.2. Let f: X - Y and g : Y — Z where X,Y are two nonempty sets

and Z is a diffeological space. Suppose that ® is a diffeology on the diffeological
space Z. So that f*(¢*(D)) = (go f)" (D).



17

2.3.4 Category of Diffeologies

Let © be a diffeology of a nonepmty set X. We need the smooth theory when defining
the diffeology category ® of diffeological spaces. On the ® category, the diffeology
D consisting of smooth maps which inducing isomorphisms on smooth theory.
Definition 2.7. The largest element in the diffeology ® is said to be the indiscrete
diffeology on X, the smallest element in © is the discrete diffeology on X.
Definition 2.8. The diffeology which has the smallest element of all smooth parametrizations
on X is the final diffeology.

Definition 2.9. The final diffeology defined by the quotient map is the quotient
diffeology with an equivalence relation for a diffeological space X.

Definition 2.10. A largest diffeology of all smooth parametrization on a nonempty
set X is the initial diffeology on X.

Definition 2.11. The initial diffeology which is defined by the inclusion map is the
sub-diffeology.

2.3.5 Product of Diffeological Spaces

Given diffeological spaces M, M’ of dimensions m,m’ with atlases {(U,, ¢.)} and
{(Ug, ¥5) }, the cartesian product M x M’ is a diffeological space of dimension m+m’.
An atlas is given by the product charts U, x U with the product map ¢, x ¢f :

(z,2") = (alz), g5(2"))-

Let X4,---, X,, be n diffeological spaces. The product of these spaces is defined from

X1 X -+ x X,, = into individual all spaces X1, -, X,,.

2.4 Generating Families

Let F C Param(X). The finest diffeology including F is called the diffeology ge-
nerated by F. Inversely, let D be a diffeology of a diffeological space X. A family
of all plots of X that generates D is called a generating family of D. A set of all
the generating family for the space X is denoted as Gen(X). Let F be a generating
family, then

Gen(X)={F CD|(F)=D}
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The plots of the diffeology generated by F are characterized by the following pro-

perty :

— A parametrization P : U — X is a plot for the diffeology generated by F if
and only if there exists an open neighborhood V' for » € U such that P [ V is
a constant parametrization or there exists F' : W — X belonging to F and a

smooth parametrization 6 : V' — W such that P [ V = F o 6.

If X = Uperval(F), this property is reduced to the following :

— A parametrization P : U — X is a plot for the diffeology generated by a
parametrized cover F if and only if there exists an open neighborhood V
for r € U, a parametrization F' : W — X belonging to F and a smooth
parametrization 6 : V' — W such that P [V = F o 6.

A generating family F which is parametrized cover will be called a covering gene-

rating famaly.

Let f: X — X’ be a map between two sets X, X'. Let F be a family of parametri-

zations of X and let F’ be a family of parametrizations of X”.

The family f.(F) of parametrizations of X’ is a pushforward of the family F by
f.
F(F)={foF|FeF}

The family f*(F) of parametrization F' of X’ is a pullback of the family F’
by f such that F : U — X that provides there exists a smooth parametrization
Y : U — U’ with an element F’ of 7', F' : U" — X', such that F" oy = fo F.

2.5 Diffeological manifolds

We will introduce diffeological manifolds which are diffeological spaces modeled on
diffeological vector space.

Definition 2.12. Let F be a diffeological vector space and X be a diffeological
space. If X is locally diffeomorphic to E at every point, then X is called a diffeolo-

gical manifold modeled on E. For every x € X there exists a local diffeomorphism
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F:E DU — X such that x € F(U). Such a local diffeomorphism is called a chart
of X.

Now, we will talk about the condition of the manifold as a diffeological space.
Definition 2.13. Let M be a diffeological space. M is a n-manifold if and only if
M is locally diffeomorphic at each point to R", i.e. for each point m € M, there exist
a local diffeomorphism F' : U C R™ — M and a point r € U such that F(r) = m.
Such local diffeomorphism are called charts of M. The set of all the charts of M is
called the atlas of M.

Definition 2.14. Let M, M’ be two classical manifolds and let f be a smooth map
between these two classical maifolds. We know that the map f is smooth if and only
if "o foF:U — V for each chart of M and M’ with the open subsets U,V on

any manifold with the figure below as follows :

u | W
F P
M | P M

Figure 2.4: A smooth map between manifolds

We have that the following results for every pair of parametrizations F': U — M,
F' U — M,

1. (foF)™'(F'(U")) is open

2. F''lofoF:(foF) " (F(U)) — U is smoth
A family A is a set of parametrizations F' : U — M such that (Jpc, val(F) = M
and let P is plot of diffeology generated by A. This is to be covering of diffeology.
There exists an open neighborhood V' such that p [ V' is constant or there exists a
parametrization F' € A such that P [ V' = F. Thus the family A shows the condition
of being locality. We can consider another smooth parametrization p’ from an open
subset W to M such that P | V = F o P’. Diffeology on a manifold is built in

this manner. This family A is a generating family by this result and A refers to a

diffeology on the manifold.

Let M be a diffeological space.

1. A family A of local diffeomorphisms from R" to M such that |J. 4 val(F) =
M is a generating family of the diffeology of M.
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2. The diffeology space M is a n-manifold if and only if there exists a generating
family A of M, made of local diffeomorphisms from R"™ to M.

2.6 Diffeological manifolds with boundary

We show that smooth manifolds with boundary are diffeological spaces modeled on

half spaces H", equipped with the subset diffeology.

A smooth n-manifold with boundary is a topological space M, together with a family
of local homeomorphisms F; defined on some open sets U; of the half-space H" to M
such that the values of F; cover M for every two elements F; and Fj of the family,
the transition map F; ' o F; : F; '(Fi(U;) N F;(U;)) — F; (F;(U;) N F;(U;)), is the
restriction of some smooth map defined on an open set of F;"'(F;(U;) N F;(U;)).

The boundary dM is the union of F;(U;NOH™). Such a family § of homeomorphisms
is called an atlas of M and its elements are called charts. There exists a maximal

atlas A containing F.

2.7 Diffeological manifolds with corners

The manifolds with corners can also be viewed as diffeological spaces. The D-
topology on the corners K" coincides with the subset topology induced by R™. From
the fact that the plot (xy,---,x,) — (2%,---,22) restricts to a homeomorphism
from K" to itself with the subset topology. The subset diffeology and the subset
differential structure on K™ determine each other. It follows that a map between
relatively open subsets of K" is a diffeological diffeomorphism if and only if it is
a functional diffeomorphism, which is equivalent to being a diffeomorphism in the

classical sense. A manifold with corners can be equivalently defined as a diffeological

space that is locally diffeomorphic to open subsets of the corners K”.

Let M be a smooth n manifold with corners. Let us recall that a parametrization
P of M is smooth if there exists an open neighborhood V' of r € U such that
P [V = Foq for achart F': 2 — M and a smooth parametrization ¢ : V' — €. Let
D be a set of all smooth parametrizations of M. Then D is a diffeology of M. On the

other hand, a diffeological space defined on H,, is a manifold with corners. Likewise
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able to define a manifold on corners K" = {(z;)", € R" | x; > 0,i=1,--- ,n}.

A map f from K" to R is smooth for the subset diffeology of the corners if and only
if there exists an open neigborhood W O K" such that F' | K = f for a smooth
map F: W — R.

The smooth maps f on the manifold with corners represent a diffeological space

modeled on K".



22

3 MULTILINEAR ALGEBRA

This chapter provides the logic definitions used for differential forms in diffeological

spaces.

3.1 Linear Maps

Definition 3.1. Let U be arbitrary nonempty set of vectors defined by vector ad-
dition and scalar multiplication such that suppose u and v are vectors in U, so
u+v € U and further that k£ € R, then ku € U. If the following 10 axioms hold true
for vectors u,v,w € U and for all scalars k, m € R, then U is called a real vector

space.

Axiom 1 : (closure property for addition) If v and v are in U, then u +v € U.
Axiom 2 : (associative property for addition) u + (v + w) = (u + v) + w. Axiom 3 :
(commutative property for addition) u +v = v+ u. Axiom 4 : (the additive identity
property) There exists an element O, called a zero vector such that O+u = u+0 = u
for all u € U. Axiom 5 : (additive inverse property) For each u € U, there exists —u,
such that u + (—u) = (—u) + u = O. —u is called the additive inverse. Axiom 6 :
(closure property for scalar multiplication) If u € U and k € R, then ku € U. Axiom
7 : (distributive property for vectors) k(u + v) = ku + kv. Axiom 8 : (distributive
property for scalars) (k+m)u = ku-+mu. Axiom 9 : (associative property for scalars)
k(mu) = (km)u. Axiom 10 : (the multiplicative identity property) lu = w.

Definition 3.2. A map is called a linear map, if it is defined by an element of a

real vector space E x F',
ExF={A:FE — F|A(ax + by) = aA(z) + bA(y),Va,b € R,Vz,y € E}

with the following conditions for all a € R and A, B € E x F

1. (aA)(x) = aA(x)

2. (A+ B)(z) = A(z) + B(x)
Example 3.1.1. Let f : R — R such that f(x) = ax for each a € R. For all
x,y € R and any scalar ¢ € R,

flx+y)=alr+y) =ar+ay = f(z)+ f(y)

f(ex) = a(cx) = acx = cax = c(ax) = cf (x)
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Then f is a linear map.

Example 3.1.2. Let f: R — R such that f(z) = 2% For all z,y € R,

flaty) =(x+y)’ =2+ 2zy+y° = f(x) + 22y + f(y)

flx+y) # f(z)+ f(y), then f is not a linear map.

We define a linear map from any real vector space F to R, i.e. L(E,R), this space
is called the dual vector space of F, denoted by £* = E *xR. An element of E* is

a covector.

A vector is expressed by a basis and this basis must be independent and generate

this vector. Let 8 be a basis of independent vectors by, by ---b, of |
ZCIbZZO@CZ:O
i=1
for all s; € R with ¢ ={1,2,--- ,n} and
V= Z bﬂ)i
i=1
where v; is coordinate of v in the basis B for v € E with i = {1,2,--- ,n}.

Let w be an element of E* of finite n-dimensional. For every vector x € F,

Let us take Y " | w;e’ (z) = B*, we check B* is a basis of E*.

Thus we say if F is a finite n-dimensional vector space, dim(FE*) = n. Furthermore,

E* and FE are isomorphic.
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3.1.1 Bilinear Maps

Definition 3.3. A linear map A from a real vector space E to the space of linear maps
between two real vector space F, G, denoted by E * (F x G), i.e. A: [v — [y +— 2]
forz € X,y € F and Z € G, is called a bilinear map. We check the linearity of A
and A(z) such that

Az +2)(y) = A(z)(y) + A(2') ()
A(sz)(y) = sA(x)(y)

A(@)(y +y') = Al@)(y) + Al@)(y)

A(z)(sy) = sA(2)(y)
Let Ac Ex(E*F)and B € E x (E % F') be two linear maps defined by A(x)(y) =
B(x)(y). For the case B(y)(z) = A(x)(y), if B = A then A is the symmetric

Linearity of A

Linearity of A(z)

operator, if B = —A then A is the antisymmetric operator.

We can write a bilinear map A(z)(y) as the sum of the symmetric operator and the

antisymmetric operator as follows :

[A(x)(y) + Aly)(@)] + % [A(2)(y) = Ay) ()]

NO| —

A(z)(y) =

If A(x)(z) = 0, from the equation above we say this operator A is the antisymmetric.
Example 3.1.3. Let A(x)(y) = zy be a map from a real vector space F to the

vector space F.
Az +2')(y) = (v + 2")y = 2y + 2y = A(z)(y) + A(2")(y)
(s2)(y) = swy = sA(x)(y)
Al)y+y) =2y +y) =y +ay = Ax)(y) + A(z)(¥)
(

A(r)(sy) = xsy = sy = sA(x)(y)
)

A

for all z,2',y,y' € E. So, A(x)(y) is a bilinear map.

Since A(z)(y) = vy = yx = A(y)(x), we say A is a symmetric bilinear map.

3.1.2 Multilinear Maps

We define a multilinear map A with finite N vectors x1,z9, -+ ,xny € E1 X Fy X

'XEN7
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A€ FEy % (Ey* (E3*(--+% Eny1))). We check the linearity of this operator with the

conditions
[A+ Bl (z1)(22) - (vn5) = A(z1)(22) - - - (2n) + B(z1)(22) -+ (7)

[cA] (z1)(w2) -+ (xn) = c[A(z1)(72) - - (2)]

for se Rand A, B € Ey x (Eyx (E3* (- % Eny1))).

If the multilinear operator A doesn’t change when exchanges any two vector, A is
totally symmetric operator. If its sign changes for any two vectors, then A is a
totally antisymmetric operator.
A(zy)(xg) - -+ () Jif Ads symmetric
A@o))(To@) - (o)) = AN .
sgn(o)A(xy)(z2) - - (zn) ,if Ais antisymmetric
where o is an element of the group of permutations and sgn(o) is signature of the

permutation o.

A is an antisymmetric operator if and only if A---(z)---(z)---=0.

3.2 Tensors

Definition 3.4. A p-multilinear operator A defined p times on the real vector space
E with real values of R is said to be a covariant p-tensor of £. An operator A
is defined in the vector space E * (E * (--- % E) * R with p times E. The operator
A(xq)(z2) - - (xp) is in R for vectors xy, xg, - - - ,x, € E. The dual space E* of E.
Definition 3.5. If a multilinear operator B of E is defined p times on the dual space
E* with real values in R, E*x (E*x (- - -x E*) xR, is called a contravariant p-tensor
of E. B(wy)(wz) - - (wy,) € R for vectors wy, ws, - -+ ,w, € E*.

Definition 3.6. If a tensor of E has contravariant tensor and covariant tensor, it

implies that this tensor is a mized tensor of E.

For example, let C' be a mixed tensor of E which have p-covariant tensor and ¢-

contravariant tensor. We describe the mixed tensor

C(x1)(xa) - -+ () (wi)(w2) -+ - (wp) € R

for 1,29, - ,2, € E and wy,wy, -+ ,w, € E*.
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Let us take p = 1 for a covariant p-tensor A of E, so A is 1-tensor of F and is defined
in £/« R. It means that a covariant 1-tensor of F is an element of the dual space of

E.

0-tensor is a map defined from 0 to R, i.e. O-tensor form a number and the space of

O-tensor is R.

A linear map defined from the dual space E* to R is called a bidual of E, and
denoted by (E*)*. Let x € E. By the hypothesis, w is a linear map. Suppose that
T =0¢€ (E")* so that (w) = w(z) and Z(w) = 0 for all w € E*. If dim(E) < oo,
then x = 0. This is the condition of a one-to-one map. Since dim(E) = dim(E*) =
dim((E*)*), the map = +— 7 is surjective. Thus, z — Z is bijective and F and (E*)*
are isomorphic. An element of F can be defined by an element of the bidual space

(E7).

3.2.1 Tensor Product

The product of any two tensor is called tensor product, and denoted by ®. A tensor
product is defined by tensors and their orders. Let A be a covariant p-tensor of the

real vector space F and B be a covariant ¢-tensor of /. The product of A ® B :

p—times q—times p+q—times
o\ " N

Ex(Ex(-- *xE)*RxEx(Ex(---% E)xR — E* (E* (- x E)*R,

(A® B) (1)~ (xp)(y1) -+ (yg) = A1) -+ (1) X B(yz) -+~ (yg) € R x R
Thus, A ® B is p + g-tensor of E.

Let A be of order p, B be of order g and C be of order [. The product of (A® B)®C,
(A®B) @ C)(z1) - (2p)(y1) -~ (yg)(21) -+ (21)

= (Az1) -+ (mp) X B(y1) -+ (yg)) X C(z1) -+ (21)

= A@r) -+ (2) X By) -+ (gg) x Clar) -+ (20)

= A1) -+ (1) X (B(yr) -+~ (yg) X C(21) -+~ (21))

= (A@(BO)(1)- - (2p)(y1) - (yg) (21) -~ (21)
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The tensor product is associative. One of two tensors can be taken as 0-tensor. Let

A be O-tensor and B be any tensor, then we have s B=sXx B=B xXs=B®s.

3.2.2 Symmetrization and Antisymmetrization of Tensors

Let E be a real vector space. We define two operations Sym and Alt of a covariant
p-tensor T' of E as follows :

Sym(T)(z1) -~ () = ; S Tlagw) -+ (@)

o€op

Alt(T)(x1) -+ - (xp) = 1% Z sgn(o) X T(xo(1)) - - (Top))

oEop

where sgn is the signature of a permutation . The permutation can be written as a
product of r transpositions such that sgn(o) = (—1)". If the permutations are even,
then sgn(o) = 1. Otherwise, sgn(c) = (—1).

Corollary 3.1. Sym(T) = T if and only if T is symmetric p-tensor of E.
Alt(T) = T if and only if T is antisymmetric p-tensor of E.

Proof.  We need to check Sym(T) is a symmetric operator. By the definition,

Sym(T)(z1) - () = ; S Tlagw) - (o)

ocop

Let o = ¢’ 0¥ for ¥ € o,,.

1
= 0 Tlareay) - (wrony)

oEop

= Sym(T)(xzyq)) - (Top))

Sym(T') is a symmetric operator. We check that Alt(T") is an antisymmetric opera-
tor. By the definition, we have
1
Al(T) (1) -~ (zp) = o > sgn(0) x T(wo0) - (o)
) oEop
Let 0 =0’ 0 9.

1
] Z sgn(o’ 0 9) x T(Tgro9(1)) - - (Torov(p))

o'cayp

= Alt(T)(xoq)) - - (o))

Alt(T) is an antisymetric operator. O
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3.3 Linear p-forms

An antisymmetric covariant p-tensor of the real vector space E is called a linear

p-form of E. The vector space of all linear p-forms of F is denoted by AP(FE).

Let p be 0. Since these antisymmetric covariant O-tensor is any linear map from 0

to R, this tensor form a number. So,
AY(E) =R
Let us take p = 1, the vector of all linear p-forms is defined by E *R. Then we have
AM(E)=E*R=E*

AP(E) is defined on subspaces of E * (E % (--- % E) xR with p times E, containing
the antisymmetric covariant p-tensors.

Definition 3.7. A form « of k-form is defined by >, fidz;.

3.3.1 Inner Product

Let A be a covariant p-tensor of E. This tensor can be written as p — 1-tensor with

a fixed element z of E as follow :

[A(@)](21) - (2p-1) = A(z)(21) - - - (Tp-1)
A(z) is the inner product of A with z.
3.3.2 Exterior Product of Forms

Definition 3.8. The exterior product A of A € AP(E) and B € AY(E) is in APT(E)
and denoted by A A B. The product A A B is defined as

+q)!
Ang =T i )
| g!
pl.q!
Proof. Givenabasisey,--- e, for the space of the p-tensors E, we define a basis for
the space of the antisymmetric covariant p-tensors at the point x for each 1, - ,i,

with A € AP(FE) such that

dz™ Ndx A --- ANda' = plA(ds"” ® d2”? ® -+ ® da'™?)
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Then we define Alt(A ® B) by the previous equivalence as follows :

A B)w) -+ (1,
- ﬁ Z Sgn(U)A(xU(l)) T (xff(p)) A B('IU(IJ-H)) co (Ia(p—&-q))
= A - () X B(apin) - (1)
= L ANBw) (e

0

Example 3.3.1. Let A, B be two 1-forms, then we have p = 1 and ¢ = 1. So, the
exterior product A A B defined by

(1+1)!

ANB =

Alt(A® B) = 2Alt(A® B)
Let A, B, C be three forms of AP(E), AY(E) and A'(E) respectively.

anparc) = 2D e o)

pl.(ql.l")

!
MAH(A ® B®C)
pl.gl.l!

E%%%%QMWA®&®C)

= (ANB)ANC

The tensor product is associative.

Suppose that one of these forms is O-form. Since a O-form is a number ¢ of R, then

we have the exterior product given by
cNA=ANc=cx A

The commutation of A, B is defined as a graded commutativity. Every k-form o

and [-form S give us the result

anNB=(D)"BAa
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for k,l € Z*

Proof. Let I = (my,mg, -+ ,my) and J = (ny,ne,- -+ ,n;) be two coordinates for
a and [ respectively, i.e. ais a k-form and [ is a [-form. Since dx; = dx,,, Adz,, A
- ANdzy,, and dv; = dx,, Ndx,, \--- Adz,,, we product the coordinate of - 3 as

follows :
dry Ndxy = dzp, Ndzp, N\ - ANdxy,, Ndr,, Ndz,, N\--- Adoy,
We change the order of dz,, for k-times
dr; Ndxy = (—1)11c dxp, N dTmy N dTpy N -+ AN dTp, NdTp, A - A dxy,
We do the same for dx,,
dep Ndzy = (=1)" (=1)F dap, A dap, A dap, AdEm, A Adap, Adag, A--- A diy,
We continue to do the same for [ terms and we are getting the following result

de; Ndx; = (—1)“ Axp, NdTp, N\ Ndzp, N dEm, N dTpm, A - N depy,

= (=DM dz; Aday

The definiton of the form « is ), fidx; with the smooth function f;, similarly we

define the form § =) ; g;dz; with the smooth function g;. So,

a-f = Z J19sdzidr; = (—1)kl Zng1d$Jd$1
I1,J 1,J
= (-)"B-a
Exterior product of an element e of the dual space E* and A € AP(E) is given by

(e N A)(@) (1) -+ (2p) = e(z) X Alar) -~ ()

= e(an) X A(x)(ws) -~ ()

— e(xp) x A(z1)(22) -+ - (2p-1) ()
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Let dim(E) = n. We can calculate the dimension of the vector space of linear p-forms

of E, AP(FE) with the combination for every element of AP(E) such that

n!

dim(A(E)) = s =

Cn

Suppose that p = n + 1, then the linear p-form is written as ag A (a3 A -+ A ay).
In this case, two of these forms become elements of the same vector space. Since
a linear p-form is a antisymmetric covariant p-tensor, we have zero forms. Thus,

dim(AP(E)) = 0 with dim(F) = n. It is the same result for all p > n.

3.3.3 Pullbacks of Forms

Definition 3.9. A linear map M is defined from the real vector space E to the real
vector space F', M € Ex F = L(E, F) with a covariant p-tensor A of F'. We define

a linear operator such that

ME(A)(y) -~ (yp) = AM (y1) - - - M (yy))

for yi,--- ,y, € E. M*(A) is a pullback operator of A by M.

Let A, B be two covariant p-tensors of F'. M* satisfy the two conditions for A € R

as follows :
1. M*(A+ B) = M*(A) + M*(B)
2. M*(Ax A) =X x M*(A)

Furthermore, let N : I — G be a linear map with a contravariant p-tensor A on G.

The pullback operation (N o M)* satisfy
(NoM)"=M"oN*

Then, (N o M)*(A) = M*(N*(A)) is the pullback operation of a form A. If A is
p form, it implies that the pullback of this form by M is also p form. Since the
pullback is a morphism, we have M*(A A B) = M*(A) A M*(B).
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4 SMOOTH FORMS ON REAL DOMAINS

We construct the diffeology consisting of smooth parametrizations on a real domain
U and we can define the smoothness on R" with the smooth structure of finite
dimensional vector space defined on AP(R").

Definition 4.1. A smooth map w : U — AP(R") is called a smooth p-form of U.

C>(U, AP(R™)) is the set of all smooth p forms on U and let w and w’ be two elements
of C*(U, AP(R")) with any element s € R. The sum of these two elements and scalar

multiplication are as follows :
(w +w')(z) = w(z) + w'(z)

(s x w)(z) = s x w(x)

Definition 4.2. The pullback of any p form w € C>®(V,AP(R"™)) is defined by a
smooth parametrization f such that f*(w)(u)(z1) - - (x,) foru € U and xq,--- ,z, €
RTL

frw)(w) () - (2p) = wfu) (D(f)(w)(21)) - - (D(f)(u)(23))

where the tangent map D(f)(u) of f at the point u is the vector on V with the

direction vectors x;, i € 1,--- , n.

4.1 Exterior Product of Smooth Forms

Let U be areal domain and let o, 5 be two smooth forms such that a € C>(U, A?(R"))
and € C(U,N1(R™)). The exterior product A of o and 3,

A C®(U, AP(R™)) x C°(U, AY(R™)) — C=(U, APT4(R™))

denoted by a A 3, is a p+ ¢ form of U and it is defined as (a A B)(z) = a(x) A 5(z)
for all z € U.

4.2 Exterior Derivative of Smooth Forms

The exterior differentiation operation d is defined from C* (U, AP(R™)) to C>°(U, APT1(R™))

for all real domain U with any integers n.
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Let a be a form on U such that o :  — ae’ A---Ae¥ for any coordinates 4, - - - , k and
a smooth map a with the smooth parametrization x — a € C*°(U,R). The exterior

derivative of o with x,

(da)(z) = Z%el/\ei/\---/\ek

"/ da O 4
dla+d)(z) = <%+axl>el/\el/\---/\ek
=1
_y 0% hnin i nek ot > FL AN A A
ozl ox!

d(sa)(x) = Zn: O(s) e Net A NER

ox!
=1
n
Oa
= Zs—el/\e’/\ A eF
ox!
=1
n
Oa .
= 3 —e ne A A eF
ozt
=1
= sd(a)(z)

for any smooth p forms «a,a’. So, d is a linear map and da is called the exte-

rior derivative of any form « on a real domain U.

The pullback operation f* between C*(U, AP(R")),C>*(U’, AP(R")) commutes the
pullback operation f* between C*®(U, AP*1(R")),C=(U’, AP (R"™)) with the exte-
rior derivative d such that f*od =do f*.
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- d o+
CFU, APR™y —— U, AP R

fr f*

o= APm™y Se= AP iy

Figure 4.1: The commutation between f* and d

4.3 Differential Forms on Real Domains

Definition 4.3. A differential form of degree £ on R" is an expression which
produced by tensor product and smooth functions for k € Z* . Let a be a k-form,

then we define the expression of a as follows with the smooth functions f; on R”

a= Z frdxy
T

where [ is in the multi-index {iq, 49, -+ ,ix}.
Example 4.3.1. A form a = 3z1dx dxs — Trsdridry + 2drodrs is an example of a

2-form on R* and B = wydz dzsdrs is an example of a 3-form on R®.

Let w be a k-form on R"™. Then the maximum number of terms we can generate is

wom - (1)

calculated as follows ;

for n,k € Z*.

4.3.1 Closed and Exact Differantial Forms

Definition 4.4. A differantial form such that its exterior derivative is zero, is called
a closed form.
Example 4.3.2. Let o = 2dxAdy be a differential form, then the exterior derivative
of a as follows :

da = d[2dx A dy] = 2dx ANdx Ady =0

We have that dz A dx = 0, since a form is an antisymmetric covarint tensor.
Definition 4.5. A differential k-form w such that dw = o with a (k — 1)-form «,

then « is said to be a exact differential form.
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For example, let o = ydx + xdy,  can be written as d(zy). So, a is a exact form.
Proposition 4.1. The exterior derivative of a exterior derivative of a form is zero,
i.e. d(d(a)) = 0 for any form a.

Proof. Let a be a k-form. The exterior derivative of this form is given by

d(a) :Za—;dasl/\d:ﬁ/\---/\dmk
=1

For the exterior derivate of d(a), we have

d(d(a)) = d (Z %dzl Adz' A - A d;ck>

=1

= Y ud 00 1 mda A A da®
ox!

- (da' Ada' A - Ada®) A (dat Ada A - A da®)
T

Proposition 4.2. Every exact form is a closed form.

Proof. Let a be a exact form. Then we can say that there exist a form  such that

a =d(f). Since d(d(B)) = 0, « is a exact form. O

Proposition 4.3. Let «, be any closed form. Then the product of o and f is

always closed.

Proof. Let a, 8 be two closed form. We calculate the derivative exterior of a A 8

by definition of derivative exterior such that
d(a A B) = ad(B) — fd(a)

Since « and [ are closed forms, we obtain d(5) and d(«) are zero. So,
dlanp)=a-0—-5-0=0

Then, a A 3 is also closed form. O

Proposition 4.4. If « is a closed form and [ is exact form, then o A § is al-

ways exact form.
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Proof. Let a be a closed form and let 3 be a exact form in Q"~!(X). Since 3 is

exact form, we can also define the form § as § = d(g) with g is a n-form. Then,
alAf=and(g)

We know that the exterior derivative of « is zero when «a is a closed form, i.e.
d(ar) = 0. We can also say that g A d(a) = 0. So, we can add the term g A d(«) to
a Ad(g) by the definiton of Leibniz as follows

aNfB = aANd(g) —gANd(a)

= d(aAg)
By the definition of the exact form, a A § is exact form. O

Example 4.3.3. Let o, and v be three forms such that a = zdx — ydy, 5 =
ydr A dy + zdy N\ dz and v = zdz.

We calculate a A

aAB = zydr ANdrAdy+ 2> de Ady Adz —y>dy Ade A dy + yxdy A dy A dz

= 0+ 2%dz ANdyANdz+0+0

= 2%dx Ady A dz

We use the above result to calculate (o A ) Ay

aANBAy = (2%dx ANdy Adz)(zdz)

= 2%zdx Ady ANdz Ndz
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Example 4.3.4. Let o = dxy Adyy +daxa ANdys + -+ - + dxy, ANdy, = Yo d; Ady;
We compute w" =w - w---w.

Let’s start with w? to compute and then we will continue to multiply by w.

w? = (dxy A dyy + dxg A dys)(dzy A dyy + dzo A dys)
= dry Ndy; ANdxy A dy; + dxy A dyy A\ daeg A dys + daxg A dys N day N dyy
+dxy N dys A dxo N dys
= —dxy Ndro ANdyy N dys — dxy A\ dxg N dyy A dys

= —2dxz1 Adxo Adys A dys

= (—le‘l VAN d(L’Q VAN dy1 A dyg)(dl'l A dyl + d.’L’Q A dyg + diL’g A dyg
= O+0—2dl’1/\dl’2/\dl’3/\dy1/\dyg/\dyg
= —le'l A dl’g A dng A dyl A dyg VAN dyg

w" = =2drxy Ndro N Ndx, Ndyy Ndys A -+ N dy,
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5 DIFFERENTIAL FORMS ON DIFFEOLOGICAL SPACES

Let X be a diffeological space and let U,V be two real domains. Let P : U — X be
a plot of X and a smooth parametrization F': V — U. If a p form a on X satisfy

the following two conditions, then « is called a diffeological p form.

i) a: D — C®(U,AP(R"™))
ii) The pullback of F', F* : C*°(U, A*(R™)) — C>=(V, AP(R™)), satisfies

F*(a(P)) = a(P o F)

The form «(P) express a differential form « on the domain of a plot P of X.

a:D — C®(U,A?(R™))
| F*
C=(V, AP (R™))

Figure 5.1: A diffeological p form « of X in the plot P of D

The set of all differential p forms « of the diffeological space X is denoted by QF(X).

Let X be a diffeological space and let o, @’ be two diffeological p forms in QF(X).
For all plots P with s € R, we have

1. (a+a)(P)=a(P)+d(P)

2. (sxa)(P)=sxa(P)

5.1 Pullback of Differential Forms

Let f be a smooth map between two diffeological spaces X, X', f: X — X',

A diffeological p form on X shown as f*(a/) with o € QP(X’) such that (f*(a/))(P) =
o/(f o P) for all plots P of X, is called the pullback of o by f.

In addition, let g : X’ — X” be a smooth map with the diffeological space X”. Let
o € QP(X"), then we have

(gof)*(a//) — f*(g*(a//))

So, f*: QP(X') — QP(X’) is a smooth linear map.
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5.2 Exterior Product of Differential Forms

Let « € QP(X) and 5 € Q9(X) where X is a diffelogical space. A exterior product

operation A is smooth and bilinear map, it is defined as follow :

A QP(X) x QI(X) — QPH(X)

The exterior product of o and S defined on X, a A [ is

(N B)(P) = a(P) A B(P)

for all plots P of X and this exterior product is p 4+ ¢ form on X.

5.3 Exterior Derivative of Forms

The exterior derivative operator d is a smooth linear operator and
d: QP(X) — QFHY(X)
where X be a diffeological space and « is a p form of X such that
(da)(P) = d(a(P))

for all plots P of X. da is the exterior derivative of a. Let f: X — X’ be a smooth
map with the diffeological space X', we have that

(da)(Pof) = dla(Pof))
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5.4 Differential Forms on Manifolds

Let M be a smooth manifold in RV, n < N.

Let us define a smooth function f from M to R. Then we have to show that the
partial derivative of f, gTJ; = limy w
basis e;. But we don’t know te; is in M or not. Let (U;, ¢;), (U;, ;) be two charts on
M for each indices i, j such that ¢; : U; — RY and M = |, ¢;(U;). We can define

also a map f; : R" — R such that f;(t) = f(¢4(t)). Now, we have to show that

, is in R for any z € M and the

this result exists for a overlap of two charts (U;, ), (U;, ;). Suppose that © € M
is in the overlap of these two charts such that x = ¢;(t) = ¢,(u) for two vectors

t € U; and u € U;. Since the maps on the manifold are injective maps, we have that
t = ;7 (1;(u)). Then
f(x) = f(i(t)) = f(thj(u))

Since fi(t) = f;(u), f(¥i(t)) = fi(t) and f(t;(u)) = f;(u), we have that
fiwit owy(u) = fi(u)
(fio f)(Wit oty(u) = u
We use the pullback operation to determine f;(u) on ¢ (¢4(U;)) given by
filw) = (W7 o wb(w)* fi
for all u such that v;(u) € ;(U;).

For all z € ¢;(U;)
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R:'H'

Figure 5.2: A differential £ form on a manifold M

Definition 5.1. A given k form f on a manifold M such that f is a collection of
fi for indices 7, that provides the following transition law, is called a differential %

form on M

fi= (%‘71 o ;)" fi

The vector space QP(M) is the collection of all differential p forms on M.

Transitions maps are defined as
Ui oty (UL N Uy) — 47 (UL N Uy)

Uit o s (U N UR) — ¢ (U N o)

Example 5.4.1. Let o = xdy A dz + ydz A dx + zdx A dy on S?. Then « is an

example of a differential 2 form on the manifold S?, a € Q%(S?).

5.4.1 Exterior Derivative of Differantial Forms on Manifolds

Definition 5.2. Let a be a k-form and let 5 be [-form are defined by >, f;dx; and
>, 9sdx; respectively. Then the exterior derivative of « is defined by ), df;dx;
and d(f) = ), dgsdz ;. We define this derivation also in a chart as follows :

1 . 4
d(Oé) = E@'ail...ikdx“ A Adxtt

We have d(f A g) = f Adg+ g A df by the Leibniz rule. The exterior derivative of
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a A [ is defined by

d(a/\ﬁ) = Zd(f[/\QJ)dl‘[dﬂ?J
1,J

= > (d(f1)gs + frd(gs))dzrdz,

1,J

= Z(d(fl)difngdﬂﬁJ +(=1)" frdz d(gs)dz )

= d(a)AB+(~1)"ad(B)

Corollary 5.1. Let o = 3. By the previous definition, we obtain aAa = (—1)k ala.

So, o = 0.

5.5 Differential Forms on Manifold with Boundary and Corners

Definition 5.3. K™ which is the diffeological n-power of the half-line K = [0, oo]

with the subset diffeology, is called the corners. K" is defines as
K" = {(z;)"_, € R" | 2; > 0,i=1,--- ,n}

Let 6 be an open neighborhood on K" and # be an open neighborhood on R™
such that ¢/ N K™ = 0. A plot P in K" is a smooth parametrization to R™ taking
values in K". For every P € C*(U,K"), P~'(K") is open in R", then the subset
K™ of R™ is D-open. So, K" is embedded and closed in R™ by the induced topology.
Xo={0} C Xj C--- C X,, = K" is the natural filtration of K" and X is defined
by

X; ={(z;);_, € K" | there exists iy < --- < i,_; such that X; = 0}

For example, let us take n = 2. We have K? = {(z,y) € R* | z > 0,y > 0} C R%
Let us define Xy, X;, Xy in K2



Figure 5.3: The Corners K2
Xo = {(z)7, € K*|4, < iy such that X;, = 0}
= {(0,0)}
X, = {(xz)f:l € K? | iy such that X;, = 0}
= 0K*—{(0,0)}
Xy = {(z)?, € K*|i, < iy such that X;, = 0}
= K?

A plot in K™ can be defined in three different ways. It can be defined as an open

neighorhood in K", defined on a half plane or defined in a corner.

Consider again K2. Let P be a plot in K2. A smooth parametrization P : U — K2

> DO
B i

is shown in three ways as follows

Figure 5.4: Smooth parametrizations of the corner K2

We define the subset of points in R™ such that X; — X;_;, it is denoted by S; and
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S; is called a strata. S; = X; — X;_; have only j coordinates strictly positive and

the rest are 0. Then, S; is defined by

S; = { (x);_, € R"| there exists i; < --- < ¢; such that X; >0

and X, = 0 for all m ¢ {iy,--- ,i,;}}
Let us take again n = 2 and let us define Sy as folllows :

Sy = {(le)le € R? | there exists i; < i3 such that X;, >0
and X, =0 for all m ¢ {iy,is}}

= {(z1,71) € R* 21 > 0 and x5 > 0}
For j =1,

Sy = {(z:)7_, € R?| there exists i; such that X; >0
and X,,, = 0 for all m ¢ {i;}}

= {(0,a) U (b,0) | a,b € R —{0}}

For j > 1, X is the union of the strata and the strata S; is D-open in X;.
Definition 5.4. A parametrization f : K® — R* is a smooth by the subset diffeology
if and only if there exists F' : R® — R* is smooth such that F' | K* = f.
Theorem 5.1. (Differential forms on manifolds with corners, |2017) Let f : K* —
R* be a any map. If for all smooth parametrization P : U — R™ such that P(U) C
K" with f o P € C>®(U,R¥), then there exists an open neighborhood 6 of K" and
F € C>(0,R¥) such that f = F | K"
Proof. Let us consider the smooth parametrization P defined on R? taking values
on K" such that

Pty ty) = (t],--- ,12)

Let f : K® — R* be a any map. Suppose that the composition f o P is smooth
and we have f o P is an even function, since P is an even function in each t;. We
can define a function g(z?) for all even function f(x) = f(—=z) for each z. The

Whitney Theorem shows us if f is of class C*°, then g is also of class C*.
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Firstly, we want to show this result for f which is of class C**

The Taylor’s formula of the even function f

f(z) =ao+ ax? + agrt + -+ a7+ ¢($)$28

By the above Taylor’s formula, we have lim,, ;o ¢(z)x** = 0
For g(2?) = f(x), we pick 22 = u and the Taylor’s formula of g is given by
9(z) = ag + a1u + agu® + - - + ag_u + P (u)u’

We need to show that lim,, o ¥ (u)u® exists for showing g is of class C*. We have that

¥(2?) = ¢(x) and we can calculate ¥(x?) for some constants ay; and z > 0

gbk(x): Z akixk—%wk—i(x)+2kxk,¢k(l,2)

1<i<k

@)= Y awrt Y (r) = 2t (a?)
1<i<k
for some constants [3;
@)= S Bur e i(x) = 2kt (a?)
1<i<k—1
for some constants
> Bt e) = o)
1<i<k—1

Since limg,, o ¢(x)2%* = 0, lim,, o 2" '¢" () = 0 and by the equality we say that

limg, ;o 2% (2?) = 0 for & > 0. So, lim,,0 ¥ (u)u® = 0 exists and g is of class C°.

We showed this result for an even function f which is of class C?*, then we can find

a function g for any even function f which is of class C*.

Therefore, there exists a smooth parametrization F' defined from R™ to R such that

Example 5.5.1. Let f be the Cauchy’s function such that f(z) = exp (—w—g) for
x # 0. fis of class C*. Let us take u = 2% and g(u) = exp (—21) is of C* for u # 0.

Theorem 5.2. (Differential forms on manifolds with corners, 2017)

Let f be a local diffeomorphism of K", i.e. if z € S}, then f(x) € S;.
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Proof. Let P:U — R" be a parametrization. The dimension of the image of the
tangent linear map D(P)(z) is denoted by rk(P), at the point x € U.

Let P : U — K™ beaplot. If P(r'") € S;, we describe P(1’) as (Py(r'), Po(1"),- -+, Pu(17))
such that P; (') = 0. For all » € U, we know that P, (r) > 0 and rk(P),» can be
up to j. Then we have that D(P;, )(r’) =0, i.e. rk(P), <O0.

Let x € S; and f(z) = 2’ € S with k # j.

Suppose that k£ > j. Since f is a local diffeomorphism, there exists a smooth pa-
rametrization F on an open neighborhood § D K" such that F' [ K" = f and

there exists a smooth parametrization G on an open neighorhood #” > K" such that

K" = f.

G| Sk:2' —xeS;isaplot of K*" and 7k(G | S)» < j. But G [ Sy = Gojj, where
Jr is identified with a plot such that j; : Sp — K". j takes its values in the border
of K" and

(FoG[S)(t) = FoGojt)

= FoG(ji(t))

Since f € Dif fi,.(K"), f carries a border to the border for the D-topology. Then
G and f~! coincide and F and f coincide on dK". So,

FoGUr®) = fof ()
= k()

We have that rk(F o G | Sp)e = rk(ji)er = k. But rk(F o G | Sp)w < k(G |
Sk)e < j. It is contradiction, thus k = j. O

Theorem 5.3. (Differential forms on manifolds with corners,|2017) Any differential
k-form on the corner K" equipped with the subset diffeology of R”, is the restriction

of a smooth differential k-form defined on some neighborhood of the corner.

Proof. Let w be a differential k-form on a manifold with corner. Then the restric-
tion of a differential k-form w on some open neighborhood on the corner is defined
by

w | K" = Z Wiy (X1, -+ ) dgy N - ANday,

i1 <<
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with i; € {1,--- ,n} and a;,..;, € Cw(lg",]R)-

Now we will use the square function lemma. By the lemma, we have that a smooth
parametrization sq : R® — K" such that sq(zy, - ,2,) = ((z1)%, -+, (21)"). The
the pullback of sq is injective, i.e. s¢* : Q¥(K") — QF(R") and if sq*(a) = 0, then
a =0 for all « € QF(K"). So, we obtain that the pullback of sq¢* as follows :

sq*(w) = Z Ajyiy (1, xn) dag, N -+ - Ndxy,

i< <ip

where Auzk € COO(Rn, R)

Suppose a parametrization €; = (21, -+ ,xj, - ,Ty) > (X1, -+, =T, -+, Tp)
€;(sq"(w)) = Z Ajiy (1, =z, xy) dzgy A+ Adag,
11 <<t

- Z Aoy (X1, -+ =2y, ) da, N - dxy - Nday,

11 <o G

Since sq o €; = sq, we say that sq*(w) = €}(sq*(w)). Then,
Azlzk (xh Ty, _‘rj7 e axn) = A'lek (xla e 71']‘, e 71'71)

A“]Zk (l’l, ety —$j, s ,l‘n) = _Au]zk (ZEl, s ,Sl?j, e ,:vn)
Hence, A;,..j..i, (x1,--+ ,2; =0,--- ,x,) = 0. This implies that
Ail-v-j-uik (1’17 Xyt ,ﬂﬁn) = 2$j3i1~-~j~--z‘k (3017 Xyt 7'rn)

with Bn]zk S COO(RH,R) Then A“]
A\lek defined on R such that

i, 15 defined by the real smooth function

~

Aiynik (901, T ,fn) = 2k$i1, T ,lfikAz‘l..-j--.ik ($1> T ,lfn)

Then the pullback of sq of the restriction of a differential k-form w on some open

neighborhood on the corner is
sq"(w | K") = sq*(w) | {z; # 0}

§ k 2 2
2 ail...ikxil...ik (.Tl, e ,$n) dl’il VANEIRIRIVAN dl’zk

i< <ip

i1 <<y
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and

-~

2 2
All]lk (.7}1, cee ,.77”) = Ajy.egy, (1‘1, cee ,ZL’n)

for x; # 0, i € {1,---,n}. By the Whitney theorem, A\ZIJ% (X1, ) =
a (2,--- ,2%) with g; ., € C®(R",R).

Qi iy, s T Qi iy,
o
For all (z1,---,x,) € K", we have that a; ., (z1,---,2n) = @5y (T2, , Tp).
o
Since the k-form w = Zi1<~-<ik @, (21, wn)dwg A - Adxg, then w | K =
o
w [ K"

For all plot P : U — R", p*(w) = w(p).

sq*(w) = Z Ajyiy (1, -y p)dxg, A - Adag,

1< <ip

= Z 2klezk;{zlzk (Il, o o ,l‘n)dIil VANEIRIRIVAN dl’lk

1< <ig

— k 2 2
— g 25y iy Uy g, (X7, X )Xy, AN - N day,

1< <ip
= s¢"(w [ K")

So, we show that w | K™ = w. Thus, s¢*(w — w [ K™) = 0. Furthermore, w — w |

K™ = 0 and w is the restriction on corner of the smooth k-form w on R. O



6 CONCLUSION

In this thesis, the conditions of a topological manifold are given and we describe the
smooth structure on the topological manifold. We give the definition of a smooth
manifold. We show that the smooth manifold is a diffeological space. Manifold with

boundary and corners are examined and we see that they are not a smooth manifold.

We want to examine these spaces in terms of differential and we examine them in
terms of diffeology. In the light of the results obtained concerning the diffeology of
a manifold with boundary and corners, we show that these are diffeological spaces.

Furthermore, these are a diffeological manifold.

We give the definition of the differential form on this space and we characterize these

forms defined on the manifold with boundary and corners.
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