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ABSTRACT

Modern mobile devices are capable of sensing a large variety of changes, ranging from

users’ motions to environmental conditions. Context-aware applications utilize the sens-

ing capability of these devices for various purposes, such as human activity recognition,

health coaching or advertising, etc. Identifying devices and authenticating unique users

is another application area where mobile device sensors can be utilized to ensure more

intelligent, robust and reliable systems. Traditional systems use cookies, hardware or

software fingerprinting to identify a user but due to privacy and security vulnerabili-

ties, none of these methods propose a permanent solution, thus sensor fingerprinting

not only identifies devices but also makes it possible to create non-erasable fingerprints.

In this thesis, we focus on distinguishing devices via mobile device sensors. To this end, a

large dataset, larger than 140 GB, which consists of accelerometer, gyroscope, pressure,

light and gravity sensor data from 25 distinct devices is utilized. We employ different

classification methods on extracted features based on various time windows from mobile

sensors. Namely, we use random forest, gradient boosting machine, generalized linear

model and artificial neural network. In conclusion, we obtain the highest accuracy as

96% from various experiments in identifying 25 devices using random forest on the data

from accelerometer and gyroscope sensors.

Keywords : sensor fingerprinting; mobile device identification; motion sensors; mobile

device sensors



ÖZET

Bu yüksek lisans tez çalışması akıllı cihazlarda yer alan sensörleri kullanarak, kullanıcı

alışkanlıklarına göre değişen sensör hareketlerindeki farklılıkları tespit edip cihazların

tanımlanmasını sağlayan bir çalışma sunmaktadır.

Akıllı cihaz sensörleri, kullanıcı hareket tanılama, sağlık koçluğu, ani hareketlerin tespit

edilmesi gibi birçok farklı alanda hali hazırda kullanılmaktadır. Bunların dışında, sensör

verilerine dayanarak cihaz tanılama ile daha akıllı ve kullanışlı bir sistem tasarlanabi-

lir. Klasik kullanıcı tanılama teknolojileri, web/mobil üzerinde kullanıcının tekilliğini

ifade eden, donanım ya da yazılım tarafından üretilmiş kimlik bilgisini kullanmakta-

dır. Örneğin, tarayıcılarda yer alan çerez bilgisi, akıllı cihazlarda bulunan seri numarası

mevcut sistemler tarafından kullanılmaktadır. Fakat, bu yöntemler gizlilik ve kalıcılık

barındırmaması nedeniyle cihaz tanılama problemine çözüm getirmemektedir.

Akıllı cihaz sensörleri ile kullanıcı tanılama çalışması kapsamında 25 farklı kullanıcı

için 140 GB dan fazla sensör verisi kullanıldı. Veri içerisinde yer alan farklı sensörler

arasından ivmeölçer, jiroskop, basınç, yer çekimi ve ışık sensörleri tercih edildi. Sen-

sör verilerinden çıkarılan öznitelikleri değerlendirmek için Rastgele Orman, Gradyan

Artırma, Genelleştirilmiş Lineer Model ve Yapay Sinir Ağı algoritmaları kullanıldı. So-

nuç olarak, ivmeölçer ve jiroskop sensörleri birlikte kullanıldığında, Rastgele Orman

algoritması ile %96 gibi bir başarı oranı elde edildi.

Anahtar Kelimeler : sensör verisine dayalı parmak izi oluşturma; mobil cihaz tanıma;

hareket sensörleri; akıllı cihaz sensörleri
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1 INTRODUCTION

Modern web or mobile applications aim to identify users uniquely to recommend more

intelligent contents, products or display them only relevant ads. In addition to intelligent

guidance, particular kind of applications need to remember the last state of a user to

continue recent activity, such as showing shopping cart with items added before on an

e-commerce system or starting a TV show from the last scene. Accordingly, traditional

user identification systems use well known methodologies such as cookies, hardware and

software fingerprinting. However, these solutions exhibit various disadvantages.

The first identifier, a cookie, can be removed from a browser by a user at any time

and 3rd party applications can also access the information stored by a cookie. In addi-

tion to these problems, many security vulnerabilities are detected in browsers related

to confidential data access such as credit card, email or passwords. Another identifier,

hardware fingerprinting, represents device specific identification number and enables

tracking users via device id such as IMEI (available only phones), WLAN MAC address,

bluetooth MAC address, etc. However, applications which intend to use hardware fin-

gerprint need to obtain user permission due to privacy regulations. Besides a user can

change the device at anytime, so that the system loses one of the identified users.

The last identifier, software fingerprinting, consists of two main categories; browser and

mobile advertisement fingerprinting. The browser fingerprinting methodology collects

detailed information from a browser and the operating system, such as language, time-

zone, monitor settings, etc., and produces unique identification key for each user but in

some cases this key can be similar to another individual due to the same configurations.

For instance, two colleagues work in the same department of a bank and IT depart-

ment configures all the notebooks exactly the same to reduce operation costs and then

restricts specifications, such as language, timezone or plugin installations. Hence, the

same browser fingerprint key will be generated for all users of the bank.

Lastly, mobile advertisement fingerprinting is both enabled for Android (AAID) and

IOS (IDFA) operating systems that allow access to user id for advertising for various

marketing purposes. However, a user can reset his/her device at anytime or remove

permission from an application so this key is only reliable as much as hardware finger-
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printing.

In consideration of traditional fingerprinting problems, researchers proposed a new me-

thodology, sensor fingerprinting, which detects behavioral patterns of a user via collected

sensor data from mobile devices. Sensor fingerprinting solves both user permission and

persistent identifier problems and makes easier to develop reliable and robust systems.

Modern browsers are capable of accessing device sensors such as accelerometer, gyro-

scope, etc. without any permission so it is possible to collect and analyze data on the

device in the background. Furthermore, sensor fingerprinting only needs sensor data ra-

ther than additional device identifiers such as IMEI, AAID, etc. so software or hardware

changes does not affect user identification. Eventually, users carry their smartphones

or smartwatches almost all the day and have routines in their interaction patterns on

the devices, such as reading news on an application after a morning walk. Hence, appli-

cations can track user behaviours via mobile sensors effortlessly and distinguish users

from each other with different routines.

In this thesis, we explore the performance of sensor fingerprinting in order to identify

mobile devices with a large dataset which is provided by CrowdSignals.io (CrowdSi-

gnals.io, n.d.) and collected from different individuals via various devices. The dataset

differs from others which are used in previous works (ul Haq et al., 2017) due to the

diversity from various aspects, such as participant characteristics, data size, sensors

types, etc. CrowdSignals.io aims to build the largest and richest mobile sensor dataset

so researchers, students or developers can access labeled sensor data easily and focus

on their researches. Moreover, the dataset represents not only sensor data but also ad-

ditional information per participant, such as age range, sex, occupation, etc., thereby

reliable machine learning models can be created to develop real-time applications.

In particular, we focus on the use of motion sensors, namely accelerometer and gyro-

scope, in identifying 25 devices/users, considering different classifiers and feature sets.

Our aim is to explore recognition with only motion sensors and simple features which

are not computationally expensive.

We also explore different window sizes in the process, since our ultimate aim is to

develop a real-time system working on the device. The highlights and contributions can

be summarized as follows:

— Using only accelerometer sensor is more effective than gyroscope to identify de-

vices correctly. However, combining sensors increases the performance of models
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considerably, around 6%. On the other hand, accelerometer can be used standa-

lone when resource usage is a concern with multiple sensors.

— Our experimental results show that Gradient Boosting Machine is the most effi-

cient algorithm among others since each trained tree helps the next one to mini-

mize the errors. Furthermore, Random Forest provides a significant performance

slightly less than Gradient Boosting Machine. However, Generalized Linear Mo-

del is not a proper classifier when compared to others providing lowest accurate

results.

Rest of the thesis is organized as follows: In Section 2, we present the related work and

how our method differs from the related studies. Section 3 presents our methodology

particularly the parameters and experiments considered in this work. In Section 4,

we present the results of the experiments and discuss our findings. Finally, Section 5

concludes the thesis and includes the future studies.
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2 RELATED WORK

Many studies have been presented in the area of sensor fingerprinting for different

purposes, such as tracking users across applications, strong authentication or secure

peer to peer data sharing. Existing studies show that accelerometer sensor has a great

impact on identifying devices, hence it is commonly used in almost all experiments.

In a previous study (Dey et al., 2014), authors explain the details of why accelerometer

sensor is chosen as a basis for sensor fingerprinting: accelerometer chips produce dif-

ferent signals for the same motion even if the same chip model is used due to hardware

faultiness during the manufacturing process. Therefore, devices can be easily differen-

tiated. During experiments, authors utilized 80 accelerometer chips, 25 Android phones

and 2 tablets and extracted 36 features from both time and frequency domain. As a re-

sult, precision and recall metrics are obtained as 96% by a bagged decision tree classifier

using only accelerometer sensor.

In another study (Das et al., 2016) it is shown that using accelerometer and gyroscope

sensors together is an effective methodology to gain better performance via machine

learning model and can be used in order to identify smartphones uniquely. In experi-

ments, almost same feature set is utilized like study (Dey et al., 2014) from the time and

frequency domain as shown at Fig. 2.1. Despite having 100 features from both sensors

in total, authors selected the most efficient 70 features consisting of 21 from accelero-

meter data and 49 from gyroscope data. Moreover, 44 of 70 features are obtained by

frequency domain due to motion changes can be detected easily via spectral features.

The results demonstrate that using both sensors increases average F-score from 85% -

90% range to 96%.

Sensor fingerprinting not only solves tracking user problems but also provides smarter

solutions for secure authentication systems as discussed in (Lee and Lee, 2017). Many

smartphone applications need to re-authenticate the device user after logged-in to pro-

vide secure access to sensitive data or applications. Therefore, authors aimed to create

a system called SmarterYou which uses smartwatch and smartphone sensors together

to prevent illegal device access. We realized that several sensors such as magnetometer,

light and orientation sensors eliminated in experiments by the reason of being affected
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Figure 2.1: Feature set from both time and frequency domain used in study (Das et al.,
2016)

by environment conditions. Authors indicate that these sensors cause noise on data and

not related to users’ behavior so only accelerometer and gyroscope sensors are preferred

in this work. Unlike previous works, device context is also added to feature set as well

as sensor features while using smartphones. Therefore, 4 different device contexts are

evaluated in experiments; (1) device is being used by participant without moving, (2)

with moving, (3) device standing on a surface and using by owner and (4) user utilizes

device in vehicle such as bus, train, etc. Hence, Random Forest algorithm is chosen

between various ML classifiers in order to detect the user’s context. The results show

that sensor fingerprinting provides accuracy up to 98.1% by using basic features and

user context besides consuming low battery.

In another study (Mayrhofer and Gellersen, 2007), only accelerometer sensor is prefer-

red to generate secret keys in order to propose a new method for pairing devices and

providing device-to-device authentication.

Traditional systems use PIN code to pair devices over wireless communication in order

to prevent man-in-the-middle attacks. This study aims to pair devices by simultaneous

movement of user and meantime simplify the communication process.

In (Bojinov et al., 2014), researchers aim to implement a new device identification

system which is based on sensor fingerprinting via accelerometer and speakerphone-

microphone sensors on a mobile device. The authors report that over 10000 devices are

utilized in experiments and uniquely identifying devices is achieved by sensors instead

of using software generated IDs. During experiments, many sensors are tested rather
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than accelerometer and microphone but are eliminated due to various reasons. Brie-

fly, magnetometer and light sensors are depend on the environment and GPS is not

observable due to battery consumption. As a result, authors report that only 15.1%

of devices were identified correctly since the running code which collects accelerometer

sensor data on mobile browser is unverified and not reliable.

Another sensor based device identification system is proposed in (Ehatisham-ul Haq

et al., 2017) which uses accelerometer, gyroscope and magnetometer sensors. However,

this work differs from others by considering device position on body such as waist,

wrist, etc. and user activity together. The user activity consist of walking, standing,

sitting, running, walking upstairs and walking downstairs. In experiments, Bayes Net,

K-Nearest Neighbor and Support Vector Machine are utilized and obtained highest

accuracy as 95.58 % with Bayes Net classifier by using the data collected when carrying

phone on waist.

Considering previous works, we aim to analyze the performance of complex models

when compared to simple ones in this work. Therefore, we utilized Gradient Boosting

Machine, Random Forest, Artificial Neural Network as complex models and compared

the performance results with a Generalized Linear Model.
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3 METHODOLOGY

In this section, we describe the steps of our methodology which are frequently used in

machine learning studies. These steps consist of data collection, preprocessing, feature

engineering, model training and evaluation.

3.1 Dataset Collection

One of the challenges faced in machine learning studies is the difficulty of collecting

labelled datasets. A great effort is spent to find participants and develop data collection

applications. Moreover, use of different datasets in different studies makes it difficult

to generalize and compare the results. In this respect, publicly available and labelled

datasets with high quality are important for reproducibility in the research community.

CrowdSignals.io(CrowdSignals.io, n.d.) provides a mobile sensor dataset (CrowdSignals

User’s Reference Document, n.d.)(Welbourne and Munguia Tapia, 2014) from various

devices and makes it easier to access labelled data.

In this work, we used the CrowdSignals.io dataset which includes data collected from

several sensors, such as accelerometer, gyroscope, magnetometer, etc., from 30 different

Android users. The data was collected for more than 15 days and contains 5 GB of

sensor records per user on average. In spite of having more than 25 users, we eliminated

others due to lack of data from motion sensors. Furthermore, although the dataset

includes other sensors, such as GPS, proximity, etc. we used 5 different sensors; (1)

accelerometer, (2) gyroscope, (3) pressure, (4) light and (5) gravity sensors and we will

expand on the structure of these sensors in Section 3.1.1.

Table3.1: CrowdSignals.io dataset fields of accelerometer, gyroscope and gravity sensors

Field Name Description
x A list of x axis values
y A list of y axis values
z A list of z axis values
user id Unique identifier of user
timestamps A list of timestamp values

Table 3.1 and Table 3.2 show the utilized fields of all utilized sensors during experi-
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ments.

Table3.2: CrowdSignals.io dataset fields of light and pressure sensors

Field Name Description
value A value of ambient light/pressure
user id Unique identifier of user
timestamps A list of timestamp values

While accelerometer, gyroscope and gravity sensors have values of x, y and z axes, light

and pressure sensors only include the value of ambient light or pressure. However, user

id and list of timestamps are common parameters; user id is unique and will be used

as a label for classifiers and timestamps contain a list of timestamps when sensor value

is captured. In Section 3.2, we will detail the use of timestamps as a window size to

extract features between various time intervals.

In Table 3.3, details about the participants are provided. All users are Android users,

8 of them are female, age span is between 18 to 60. In addition to the participant

characteristics, we also added employment status (fifth column) and the data size (sixth

column) per user. The statistics of data size can be summarized as follows;

— The data size is 142.7 GB in total

— Average data size is 5.7 GB for 25 users

— The participant with minimum size of data (301 MB) is user 12

— The participant with maximum size of data (18 GB) is user 23

Despite having 142.7 GB data in total, we reduced the data size due to limited hardware

resources such as memory, CPU and disk capacity. In Section 3.2, we also share the

details of methodology applied on raw data to sample.

3.1.1 Sensor Types

In this section, we describe sensors used in the experiments to identify devices. Despite

CrowdSignals.io provides many of sensors, we only utilize 5 different sensors as follows;
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— Accelerometer

— Gyroscope

— Gravity

— Pressure

— Light

Accelerometer and gyroscope sensors are both members of MEMS (Microelectrome-

chanical systems)(MEMS SENSORS, n.d.), which integrate mechanical and electrical

components to provide sensing mechanisms on mobile devices. MEMS sensors measure

linear acceleration or angular motion for one or more axis and provide an input to

applications in order to detect device movements.

Fig 3.1 shows that gyroscope sensor measures angular orientation for several axis whe-

reas accelerometer only senses changes on direction. For instance, accelerometer sensor

is being used to change screen orientation when phone switched from vertical to hori-

zontal or vice versa.

Table3.3: Details of Users and the Data

User Smartphone Age Range Gender Data Size
1 Samsung Galaxy S5 21-29 Male 1 GB
2 - - - 666 MB
6 Samsung Galaxy Note 21-29 Male 2 GB
8 LG K7 30-39 Male 1 GB
9 LG 30-39 Female 1 GB
10 OnePlus 3 21-29 Male 6 GB
11 Samsung Core Prime 21-29 Male 1 GB
12 LG Realm 30-39 Female 301 MB
16 - - - 7 GB
19 HTC 10 30-39 Female 10 GB
20 Asus Zenfone 2 30-39 Male 6 GB
21 Samsung Galaxy S7 30-39 Male 14 GB
23 Sony Xperia Z3 60-69 Male 18 GB
24 Samsung S6 Plus Edge 21-29 Female 10 GB
26 Samsung Galaxy S6 30-39 Female 16 GB
27 Samsung SM-A800F 21-29 Female 4 GB
28 Moto G 3rd gen 18-20 Male 845 MB
31 LG G4 40-49 Female 9 GB
32 - - - 884 MB
34 Xiaomi Mi 4W 30-39 Male 8 GB
36 - - - 5 GB
37 Samsung Galaxy S5 40-49 Male 9 GB
38 Samsung SM-A800F 30-39 Female 3 GB
39 Samsung On5 60-69 Male 1 GB
41 Note 5 30-39 Male 8 GB
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However, rotation sensitive applications/services need to use gyroscope to handle small

angular changes on same direction such as racing games.

Figure 3.1: Sensing orientations of accelerometer and gyroscope sensors (MEMS SEN-
SORS, n.d.)

In this section, we will focus on the details of sensors we used in the experiments varying

from accelerometer to pressure.

Accelerometer

An accelerometer senses axis orientation for x, y and z axis and detects displacement of

the device. Therefore, we utilize motion changes of devices to understand users’ activity

patterns and distinguish from each other.

An accelerometer sensor measures the distance between fixed capacitor pairs when seis-

mic mass moves through the direction. Under acceleration, the distance between fixed

electrodes changes in the direction of device displacement so mobile devices manage

to provide sensor recordings to the software layer. Therefore, applications/services are

able to use accelerometer sensor records in numerous fields such as activity recognition

and tracking, fall detection, screen orientation, etc.

Mobile operating systems are able to provide different sampling rates of accelerometer

sensor from 4 Hz to 400 Hz.(Dey et al., 2014) For instance Android operating sys-

tem (Android Accelerometer Sensor Overview, n.d.) ensure 4 different sampling delay

mode as follows:
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— SENSOR_DELAY_NORMAL (200.000 µs)

— SENSOR_DELAY_UI (60.000 µs)

— SENSOR_DELAY_GAME (20.000 µs)

— SENSOR_DELAY_FASTEST (0 µs)

Considering SENSOR_DELAY_NORMAL delay mode, 200.000 µs equals to 0.2 s and

it represents that number of 5 sensor records are being captured in every 1 second so

sampling rate can be calculated as 5 Hz. In SENSOR_DELAY_FASTEST mode, the

sampling rate can be up to 400 Hz depending on device specifications. Generally, 100

Hz is an optimal sampling rate in order to detect motion changes but sensitivity might

be crucial for applications which try to capture instant movements. However, in our

dataset, sampling rate is around 100 Hz per second for each sensor and we applied

windowing techniques to summarize data characteristics for several time intervals in

Section 3.2.

Figure 3.2: A structure of MEMS accelerometer sensor (MEMS Accelerometer Sensor,
n.d.)
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Gyroscope

A gyroscope sensor is able to sense angular orientation while accelerometer only detects

rotation changes of device. As an accelerometer, gyroscope sensor also measures angular

velocity for the three coordinate axes (x, y and z) so we can observe that dimensional

changes when device rotates to particular axis.(Liu, 2013)

Fig 3.3 shows that how gyroscope sensor detects angular orientation step by step.

Normally, a drive arm vibrates in a particular direction until any rotation changes. When

the gyroscope sensor is rotated, the Coriolis force acts on the drive arms, producing

vertical vibration.

The stationary part bends due to vertical drive arm vibration and producing a sensing

motion in the sensing arms. The motion of a pair of sensing arms produces a potential

difference from which angular velocity is sensed. The angular velocity is converted to,

and output as, an electrical signal.

The gyroscope sensor is frequently used in mobile sensing applications such as human

activity recognition, activity tracking, mobile games, etc. We also utilized the gyroscope

sensor separately and together with accelerometer sensor in experiments to analyze the

effects on sensor fingerprinting.

Figure 3.3: The working mechanism of MEMS gyroscope sensor (Gyroscope Sensor
Working Mechanism, n.d.)

Additionally, we also utilized other sensor types, which exist in CrowdSignals.io dataset

and we see that most of them detect ambient conditions and are affected by environ-

mental conditions. Moreover, conditions of living spaces such as humidity, pressure,

etc. are mostly the same for users who share similar environments so we utilized these

sensors with accelerometer to demonstrate that using only motion sensors is efficient to

detect devices.
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In addition to the environmental dependency of sensors, battery consumption and real-

time performance were considered as an important issues, so we excluded location sen-

sors from the early experiments. Moreover, observing users’ location and constantly

sending data to a remote system requires more Internet bandwidth which in turn im-

pacts battery consumption. However, we utilized pressure, light and gravity sensors

with accelerometer sensors in order to obtain similar conclusions with previous works.

Gravity

The gravity sensor measures the acceleration effect of Earth’s gravity on the device

sensor and helps to remove linear acceleration from the data which is measured by

motion sensors such as accelerometer, gyroscope and magnetometer. The gravity sen-

sor provides measurements the x, y and z axes like the other motion sensors such as

accelerometer, gyroscope.

In experiments, we combined gravity sensor with accelerometer rather than using as

separately in order to verify that using only accelerometer is sufficient to identify devices

uniquely or should be combined with other sensors. However, not only gravity sensor

but also pressure and light sensors utilized are with accelerometer sensor only for the

same reason in experiments.

Pressure

The pressure (barometer) sensor can measure atmospheric pressure by how high the

device is above sea level. The pressure sensor is affected by altitude changes which means

that such a sensor can provide highly accurate information about vertical elevation.

Therefore, pressure sensor can be used in various purposes such as indoor navigation,

weather conditions, etc.

In experiments, accelerometer sensor is selected as a base sensor due to hardware im-

perfection during the manufacturing process so devices can be distinguished easily with

this faultiness. Moreover, related works also focus on motion sensors rather than others

but we need to observe the experiment results of combining accelerometer sensors with

other such as pressure, light and gravity to testify using only motion sensors is more

efficient than others.
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Therefore, pressure sensor is used with accelerometer in various experiments and the

results are explained in details in Section 4.4

The CrowdSignal.io dataset provides a list containing the pressure readings in mercury

millibars with timestamps in nanoseconds at which each reading was observed.

Light

The light sensor measures the ambient light level and adjusts brightness of the de-

vice screen accordingly. Therefore, analyzing light sensor data from users’ smartphones

while they are conducting daily behaviors may contribute to fingerprinting system when

used with accelerometer sensor. For instance, in study (Ali et al., 2019), a new mobile

authentication system is proposed to detect user anomalies by only using light sensor.

The CrowdSignal.io dataset provides a list of ambient light readings with timestamps

in nanoseconds at which each reading was observed.

3.2 Data Preprocessing

The CrowdSignals.io dataset consists of multiple files, which are categorized by sensor

type and each row of these files includes a list of sensor recordings collected at the same

time interval, 1 second. Firstly, we had to merge these files in the preprocessing step

using the timestamp information. Secondly, since this is a streaming data, we work on

windows of data to extract features, such as average, maximum, minimum, etc., from

specific window sizes. In Table 3.4, we summarized the number of instances for each

window size and sensor/sensor combination after data processing.

Table3.4: The number of instances for each window size and sensor(s) after data pro-
cessing

Sensor
Window Size ACC GYRO ACCGYRO ACCPRS ACCGRVT ACCLGTH

1s 197726 94507 104800 71347 130982 144522
2s 107349 48737 54311 37133 67500 77356
5s 46995 20930 23442 16096 28848 35548
10s 26257 11458 12807 8816 15605 20374
15s 23405 10343 11429 8208 13746 18544

However, reading all files for each window size caused a long preprocessing time, espe-
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cially working with limited resources, such as memory size, number of CPU cores or

disk capacity. Therefore, we read the data from raw files, transformed and exported as

a H2O dataframe (Data In H2O.ai, n.d.), thus we reduced the file sizes 10 times from

the original dataset and increased the data processing speed.

3.3 Feature Extraction

Feature extraction is a critical step of machine learning process to detect informative

variables, those correlated with the result, so a model can produce better results while

keeping over-fitting risk as minimum. The original dataset contains streaming data

of motion sensors and only have raw values from three axes of the sensors with the

timestamp and label information. Accelerometer and gyroscope readings are provided in

a vector which includes readings from x, y and z axes. We also calculated the magnitude

value given in Equation 3.1 for both sensors which makes it possible to integrate sensor

information independent of the phone orientation.

|−→a (t)| =
√
a2x + a2y + a2z (3.1)

Moreover, we extracted various features, such as minimum, maximum, etc. from the

readings of three axes and magnitude values. We extracted the features which are given

in Table 3.5 for 5 (1,2,5,10 and 15 seconds) different window sizes.

Detecting the optimal window size for recognition is also important before deploying

ML models for preventing over-consumption of mobile device resources. For instance,

collecting accelerometer data once in a second may increase both internet usage and

battery usage of a mobile device due to transferring data between a mobile application

and remote server constantly and sampling the sensor at a high rate. Therefore, an

application should keep the balance between resource consumption of a mobile device

and model performance while identifying devices.

In this thesis, we used different types of features such as zero crossing rate, skewness,

kurtosis, etc., since our plan is to provide a real-time detection framework that works

accurate on both time and frequency domains.
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Table3.5: Extracted feature list for all sensors

Feature Description Formula

Mean The mean of the values x̄ =
1

N

N∑
i=1

(xi)

Min The minimum of the values Min = min
x1,...xN

(xi)

Max The maximum of the values Max = max
x1,...xN

(xi)

Standard Deviation Standard deviation of the values σ =

√√√√ 1

N − 1

N∑
i=1

(xi − x̄)2

Skewness Unbiased skew over values γ =
1

N

N∑
i=1

(
xi − x̄
σ

)3

Kurtosis Unbiased kurtosis over values β =
1

N

N∑
i=1

(
xi − x̄
σ

)4 − 3

RMS root mean square of values RMS =

√√√√ 1

N

N∑
i=1

((xi)2

ZCR The rate of axis changes sign
from positive to negative or back

Z =
1

2N

N∑
i=1

(sgn(x(i))− sgn(x(i− 1))}

where

sgn(x(i)) =

(
1, xi(n) >= 0
-1, xi(n) < 0

)

3.4 Classification And Performance Metrics

In this thesis, we utilize three supervised classifiers (Random Forest(H2O.ai Distribu-

ted Random Forest, n.d.), Generalized Linear Model(H2O.ai Generalized Linear Model

(GLM), n.d.) (GLM), Gradient Boosting Machine(H2O.ai Gradient Boosting Machine

(GBM), n.d.) (GBM)) and Artificial Neural Network (ANN)(H2O Artificial Neural Net-

work, n.d.) to identify devices based on accelerometer and gyroscope sensors. One of

the reason for selecting these classifiers was that both random forest and GBM are clas-

sifiers that utilize boosting for improving detection. Random forest was used in related

studies, however GBM, GLM and ANN were not evaluated in previous studies. Hence,

we wanted to investigate the performance with different classifiers.

Initially, we generated various datasets for 5 different window sizes (1, 2, 5, 10 and

15 seconds) and all of them consist of labeled records from 25 users. After that, each

dataset was split into 10 folds that must contain records from all users (classes), so we

applied stratified sampling which assigns roundly the same percentage of records from

each class similar to the entire dataset.



17

The entire process was the same for all classifiers but we also tested particular classifier

parameters to build efficient models on training. In random forest, the number of trees,

which specifies the decision tree size in the forest, can be changed. We repeated the

experiments for 6 different (5, 10, 15, 20, 25, 30) tree sizes per each time window. Our

aim is to detect optimal number of trees which keeps balance between model complexity

and performance. In GLM, the maximum number of iterations, which specifies the nth

iteration that terminates model training, can be parameterized. In ANN, we tested the

epochs, which specifies the nth iteration and the size of hidden layers. In the experiments,

we utilized 6 different (5, 10, 15, 20, 25, 30) iterations per each time window so we were

able to analyze the results with increasing number of iterations.

In the experiments, H2O.ai(H2O.ai Machine Learning Platform, n.d.) machine lear-

ning framework is used in all phases from dataset preparation to model performance

evaluation. We evaluated with the metrics those provided by H2O.ai to measure the

performance of multinominal/multiclass models. We utilized accuracy, precision and

recall metrics which are given in Equations 3.2, 3.3 and 3.4.

Accuracy =
Number of correct predictions

Number of total predictions
(3.2)

In addition to accuracy metric, average precision and recall are measured to evaluate

overall performance of the model via a confusion matrix. Therefore, we had to calculate

precision and recall per class since H2O.ai does not provide these metrics when dataset

consists of more than two labels. In equation 3.3 and 3.4, TPi represents the number of

true positives and FPi is defined as the number of false positives, likewise FNi refer to

the number of false negatives for class i.

precisioni =
(TPi)

(TPi + (FPi)
(3.3)

recalli =
(TPi)

(TPi + (FNi)
(3.4)

As the last step, we calculated average precision and recall in order to evaluate the

model performance as follows. Let m is the total number of classes:
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Avg Precision =

∑m
i=1 precisioni

m
(3.5)

Avg Recall =

∑m
i=1 recalli
m

(3.6)
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4 PERFORMANCE EVALUATION

In this section, we present the results of the experiments. As discussed in Section 3,

we have different parameters that are considered in the experiments and full list of

parameters is given in Table 4.1. Considering different sensors (5 sensors and combina-

tion), five different window sizes or number of iterations, 90 models were built for all

classifiers.

In the following subsections, we present the results per sensor and their combination,

considering the impact of different parameters. We start with the results obtained with

the accelerometer sensor, and next we provide the results of the gyroscope sensor,

followed by accelerometer sensor combination with gyroscope, pressure, light, gravity

sensors. Results of each experiment are presented in terms of accuracy, precision and

recall. Before discussing on the results, please note that comma (,) used as a decimal

separator rather than dot(.) due to localization issues in accuracy comparison figures

such as Fig. 4.1, Fig. 4.2.

Table4.1: Experiment setup parameters

Parameter Values Extras

Classifiers GBM, GLM, RF

RF, GBM:
5, 10, 15, 20, 25, 30 trees
GLM: 5, 10, 15, 20, 25, 30
iterations

Features
Mean, min, max, standard deviation,
skewness, kurtosis, root mean square
zero crossing rate

Calculated from X, Y, Z axes,
magnitude for each axes
and light, pressure values

Window Sizes 1, 2, 5, 10 and 15 seconds

Sensors ACC, GYRO, ACCGYRO,
ACCPRS, ACCGRVT, ACCLGTH

4.1 Accelerometer

In this section, we aim to analyze the effects of window size and classifier on the per-

formance of the model which was created by the data from only accelerometer sensor.

In Fig. 4.1, we compare the performance results of Random Forest, GBM and GLM
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classifiers for 5 different window sizes which are presented in Table 4.1.
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The x-axis shows the tree size whereas y-axis displays the accuracy values, varying

between 0 and 1. When we compare the accuracy results, GBM obtains the highest

accuracy as 0.93 on 1 and 2 second windows with a small difference. The results show

that Random Forest also works with accelerometer sensor efficiently as well as GBM

and classifies 91% of the devices correctly. When the results of GLM are compared to

others, we obtain the lowest accuracy as 0.41 on average considering every window size.

The reason is that GLM is more convenient to handle simple linear problems which

can be analytically solved rather than complex ones. Furthermore, we inferred that

increasing the window size causes a slight decrease after 2 seconds for Random Forest

and GBM classifiers. As a result, GBM is observed to be the best performing classifier

to identify devices when compared to others.

Figure 4.1: ACC accuracy comparison of 3 classifiers for 5 different window
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Table4.2: ACC accuracy comparison of RF, GBM and GLM classifiers based on 5
different window and 6 different tree/number of iteration size

Tree Size / Number of Iterations
Window Size Classifier 5 10 15 20 25 30

1s
RF 0.903 0.909 0.911 0.912 0.912 0.913
GBM 0.909 0.916 0.920 0.923 0.924 0.926
GLM 0.417 0.418 0.418 0.418 0.418 0.418

2s
RF 0.900 0.908 0.910 0.912 0.912 0.913
GBM 0.913 0.919 0.924 0.927 0.928 0.931
GLM 0.417 0.418 0.419 0.419 0.419 0.419

5s
RF 0.887 0.893 0.896 0.898 0.898 0.899
GBM 0.900 0.908 0.913 0.917 0.920 0.921
GLM 0.420 0.422 0.422 0.422 0.422 0.422

10s
RF 0.869 0.876 0.879 0.881 0.882 0.883
GBM 0.881 0.894 0.900 0.904 0.906 0.910
GLM 0.419 0.422 0.422 0.422 0.422 0.422

15s
RF 0.871 0.878 0.879 0.883 0.885 0.886
GBM 0.886 0.894 0.901 0.904 0.906 0.911
GLM 0.413 0.414 0.414 0.414 0.414 0.414

4.2 Gyroscope

In this section, we evaluate the impact of both the classifier and the window size on

model performance as in section 4.1 but here we use the gyroscope sensor.

Figure 4.2: GYRO accuracy comparison of 3 classifiers for 5 different window
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Table4.3: GYRO accuracy comparison of RF, GBM and GLM classifiers based on 5
different window and 6 different tree/number of iteration size

Tree Size / Number of Iterations
Window Size Classifier 5 10 15 20 25 30

1s
RF 0.809 0.821 0.822 0.824 0.824 0.824
GBM 0.817 0.827 0.832 0.837 0.841 0.843
GLM 0.481 0.481 0.483 0.483 0.483 0.483

2s
RF 0.815 0.827 0.829 0.830 0.831 0.831
GBM 0.826 0.837 0.844 0.848 0.852 0.856
GLM 0.479 0.484 0.484 0.484 0.484 0.484

5s
RF 0.816 0.826 0.828 0.830 0.832 0.832
GBM 0.832 0.842 0.853 0.858 0.860 0.866
GLM 0.461 0.470 0.471 0.472 0.472 0.472

10s
RF 0.808 0.820 0.826 0.829 0.828 0.829
GBM 0.841 0.850 0.856 0.862 0.868 0.870
GLM 0.482 0.492 0.494 0.494 0.494 0.495

15s
RF 0.792 0.814 0.820 0.821 0.819 0.819
GBM 0.827 0.842 0.848 0.859 0.856 0.863
GLM 0.464 0.476 0.477 0.478 0.478 0.477

In Fig. 4.2, y-axis shows the accuracy as a performance metric and x-axis displays

the window size. The highest accuracy is 91%, obtained by the GBM classifier on 1

second window and Random Forest achieved the second best accuracy 83% in almost

every window size. However, GLM exhbits the lowest accuracy in every window size,

maximum 31%, same as the results in Section 4.1. The performance of GBMmodels were

affected positively by increasing window size starting with 2 seconds whereas Random

Forest stays the same. However, 2 second windows led to significant increase on the

performance of GLM classifier and enhanced accuracy from 20% to 30%. In conclusion,

GBM provides the best accuracy, 91% same as the accelerometer on 1 second window

and GLM is inadequate to classify devices for any window size.

4.3 Accelerometer And Gyroscope

In this section, our aim is to explore the impact of combining accelerometer and gyro-

scope features that are mentioned in Table 3.5 on the model performance.

Fig. 4.3 shows that all the classifiers exhibit better results while using both sensors

together. Again, GBM is the most efficient classifier with the highest accuracy as 98%

with 15 second window size.

However, increasing window size causes a decrease in the number of instances for some
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Figure 4.3: ACCGYRO accuracy comparison of 3 classifiers for 5 different window

users since some users have less data. For this reason, 5 second window was utilized with

the aim of comparing the performance of sensors reliably in Fig. 4.7. When we consider

different window sizes from 1 to 10 in Fig. 4.3, GBM provides the highest accuracy,

97% on 1 second window. Besides, the performance of Random Forest is slightly smaller

than GBM: 96% is the maximum accuracy of all the Random Forest models. However,

Furthermore, the worst performance is obtained by GLM once again but better than

the previous GLM models created by using accelerometer or gyroscope.
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Table4.4: ACCGYRO accuracy comparison of RF, GBM and GLM classifiers based on
5 different window and 6 different tree/number of iteration size

Tree Size / Number of Iterations
Window Size Classifier 5 10 15 20 25 30

1s
RF 0.949 0.952 0.953 0.953 0.954 0.954
GBM 0.953 0.957 0.959 0.961 0.962 0.964
GLM 0.607 0.612 0.613 0.613 0.613 0.613

2s
RF 0.949 0.953 0.955 0.956 0.957 0.956
GBM 0.958 0.962 0.965 0.967 0.969 0.970
GLM 0.640 0.645 0.647 0.646 0.646 0.646

5s
RF 0.937 0.943 0.945 0.946 0.947 0.948
GBM 0.949 0.954 0.959 0.960 0.962 0.963
GLM 0.657 0.663 0.664 0.664 0.664 0.664

10s
RF 0.922 0.930 0.933 0.935 0.937 0.938
GBM 0.942 0.948 0.953 0.954 0.955 0.958
GLM 0.661 0.669 0.669 0.669 0.669 0.669

15s
RF 0.923 0.929 0.932 0.934 0.935 0.936
GBM 0.940 0.944 0.949 0.952 0.955 0.956
GLM 0.644 0.654 0.654 0.655 0.655 0.655

4.4 Accelerometer And Pressure

In this section, our aim is to explore the impact of combining accelerometer and pressure

features that are mentioned in Table 3.5 on the model performance.

Figure 4.4: ACCPRS accuracy comparison of 3 classifiers for 5 different window
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Table4.5: ACCPRS accuracy comparison of RF, GBM and GLM classifiers based on 5
different window and 6 different tree/number of iteration size

Tree Size / Number of Iterations
Window Size Classifier 5 10 15 20 25 30

1s
RF 0.974 0.977 0.978 0.978 0.979 0.980
GBM 0.980 0.983 0.985 0.987 0.988 0.989
GLM 0.622 0.630 0.631 0.631 0.631 0.631

2s
RF 0.971 0.976 0.977 0.978 0.979 0.979
GBM 0.981 0.986 0.987 0.988 0.989 0.990
GLM 0.626 0.642 0.643 0.644 0.644 0.644

5s
RF 0.959 0.963 0.966 0.966 0.966 0.966
GBM 0.967 0.972 0.976 0.979 0.981 0.982
GLM 0.634 0.648 0.649 0.650 0.650 0.650

10s
RF 0.941 0.947 0.951 0.953 0.954 0.954
GBM 0.958 0.965 0.967 0.971 0.973 0.974
GLM 0.634 0.651 0.652 0.653 0.653 0.653

15s
RF 0.941 0.944 0.948 0.950 0.951 0.951
GBM 0.960 0.964 0.969 0.970 0.973 0.975
GLM 0.627 0.633 0.634 0.634 0.634 0.634

4.5 Accelerometer And Light

In this section, our aim is to explore the impact of combining accelerometer and light

features that are mentioned in Table 3.5 on the model performance.

Figure 4.5: ACCLGTH accuracy comparison of 3 classifiers for 5 different window



27

Table4.6: ACCLGTH accuracy comparison of RF, GBM and GLM classifiers based on
5 different window and 6 different tree/number of iteration size

Tree Size / Number of Iterations
Window Size Classifier 5 10 15 20 25 30

1s
RF 0.934 0.940 0.943 0.943 0.944 0.944
GBM 0.942 0.947 0.950 0.953 0.955 0.956
GLM 0.482 0.486 0.486 0.486 0.486 0.486

2s
RF 0.933 0.939 0.942 0.943 0.943 0.943
GBM 0.943 0.949 0.952 0.955 0.956 0.958
GLM 0.499 0.502 0.502 0.502 0.502 0.502

5s
RF 0.918 0.925 0.929 0.930 0.931 0.931
GBM 0.929 0.937 0.942 0.944 0.947 0.948
GLM 0.492 0.498 0.498 0.498 0.498 0.498

10s
RF 0.906 0.913 0.916 0.918 0.919 0.920
GBM 0.921 0.926 0.932 0.935 0.937 0.940
GLM 0.500 0.511 0.512 0.512 0.512 0.512

15s
RF 0.902 0.911 0.916 0.916 0.916 0.917
GBM 0.912 0.922 0.928 0.933 0.934 0.938
GLM 0.495 0.510 0.512 0.512 0.513 0.513

4.6 Accelerometer And Gravity

In this section, our aim is to explore the impact of combining accelerometer and gravity

features that are mentioned in Table 3.5 on the model performance.

Figure 4.6: ACCGRVT accuracy comparison of 3 classifiers for 5 different window
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Table4.7: ACCGRVT accuracy comparison of RF, GBM and GLM classifiers based on
5 different window and 6 different tree/number of iteration size

Tree Size / Number of Iterations
Window Size Classifier 5 10 15 20 25 30

1s
RF 0.974 0.976 0.976 0.976 0.977 0.976
GBM 0.974 0.977 0.979 0.980 0.981 0.981
GLM 0.683 0.695 0.696 0.697 0.697 0.697

2s
RF 0.970 0.973 0.973 0.973 0.974 0.974
GBM 0.974 0.976 0.978 0.980 0.981 0.981
GLM 0.730 0.736 0.737 0.737 0.737 0.737

5s
RF 0.960 0.965 0.967 0.968 0.968 0.968
GBM 0.964 0.969 0.973 0.974 0.975 0.975
GLM 0.698 0.706 0.707 0.708 0.709 0.709

10s
RF 0.951 0.954 0.957 0.958 0.960 0.959
GBM 0.954 0.959 0.965 0.965 0.967 0.968
GLM 0.687 0.696 0.697 0.698 0.699 0.699

15s
RF 0.949 0.953 0.955 0.957 0.958 0.958
GBM 0.953 0.957 0.962 0.965 0.967 0.967
GLM 0.676 0.692 0.694 0.695 0.696 0.698

Figure 4.7: Accuracy comparison for 3 different classifiers according to sensor types and
combinations

Finally, we compare the performance of classifiers by using all sensors and their combi-

nation in Fig. 4.7. The y-axis represents accuracy as in the previous graphs and x-axis

shows which sensor(s) is used while training models by 3 different classifiers.

When comparing classifiers, best performance selected between 5 different window size.

We clearly see that using both accelerometer and gyroscope sensors increases the accu-

racy at least by 6% for GBM and Random Forest.
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Additionally, we also utilized several performance metrics in Table 4.8 such as preci-

sion, recall, etc. mentioned in Section 3.4. Table 4.8 shows the performance evaluation

of Random Forest model for 6 different tree size on 2 second window. The results de-

monstrate that increasing tree size enhances accuracy, precision and recall metrics and

improves all of them 1% in average.

Table4.8: Performance evaluation of Random Forest model for 6 different tree size on
2 second window

Tree Size Accuracy Precision Recall
5 0.949 0.957 0.901
10 0.953 0.962 0.905
15 0.955 0.965 0.914
20 0.956 0.965 0.907
25 0.957 0.966 0.908
30 0.956 0.966 0.908

In addition to performance metrics, we also analyzed the importance of features in

Fig. 4.8, Fig. 4.9, Fig. 4.10, Fig. 4.11, Fig. 4.12 and Fig. 4.12 for Random Forest

models while using different sensor combinations on 2 second window. Considering

feature importance rankings, we can infer that pressure and light sensor features are not

sufficient as accelerometer features. However, gravity sensor features are included in Top

10 when combined with accelerometer sensor since accelerometer sensor also contains

the acceleration effect of Earth’s gravity. Therefore, we can infer that accelerometer

sensor can be used separately to identify devices uniquely.

Lastly, we only utilized Top 20 features and repeated experiments on 2 second window

for Random Forest in order to analyze the performance impact of significant features.

In Fig. 4.14, y-axis represents accuracy as in the previous graphs and x-axis shows which

sensor(s) is used while training Random Forest models by Top 20 features. Considering

the results, eliminating other features decreases ACCGYRO and ACCPRS accuracy

between 1% - 2% while not effecting other sensor combinations.
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Figure 4.8: ACC feature importance for
Random Forest on 2 second window

Figure 4.9: GYRO feature importance for
Random Forest on 2 second window

Figure 4.10: ACCGYRO feature im-
portance for Random Forest on 2 se-
cond window

Figure 4.11: ACCPRS feature impor-
tance for Random Forest on 2 second
window
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Figure 4.12: ACCLGTH feature impor-
tance for Random Forest on 2 second win-
dow

Figure 4.13: ACCGRVT feature impor-
tance for Random Forest on 2 second win-
dow

Figure 4.14: Before/After accuracy comparison on 2 second window according to sensor
types and combinations
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4.7 Artificial Neural Network (ANN)

In Chapter 4 from Section 4.1 to Section 4.6, we studied on 3 different ML models; 1)

Random Forest, 2) GBM and 3) GLM. However, we also analyzed the effects of ANN

models on sensor fingerprinting problem. In early experiments, we see that accelerometer

and gyroscope sensors play a key role while identifying devices uniquely so we only

created ANN models for these two sensors.

H2O’s ANN provides a multi-layer feedforward artificial neural network that is trained

with stochastic gradient descent using back-propagation. The network can contain a

large number of hidden layers consisting of neurons with tanh, rectifier, and maxout

activation functions.(H2O Artificial Neural Network, n.d.)

In experiments, we present the results per sensor and their combination, considering

the impact of different parameters. We start with the results obtained with the ac-

celerometer sensor, and next we provide the results of the gyroscope sensor, followed

by accelerometer sensor combination with gyroscope. Results of each experiment are

presented in terms of accuracy, precision and recall. Table 4.9 shows that experiment

setup for 5 different window size while creating ANN models.

Table4.9: ANN Experiment setup parameters

Parameter Values Extras

Training Parameters
epochs=10000
hidden=[32, 32, 32]
activation=rectifier

epochs: dataset iteration size
hidden: Hidden layer sizes
activation: activation function

Features
Mean, min, max, standard deviation,
skewness, kurtosis, root mean square
zero crossing rate

Calculated from X, Y, Z axes,
magnitude for each axes

Window Sizes 1, 2, 5, 10 and 15 seconds
Sensors ACC, GYRO, ACCGYRO

Considering the results in Fig. 4.15, ANN method does not perform as Random Forest

and GBM models when compared to the results in Section 4.1, 4.2 and 4.3. Based on

the results, using both accelerometer and gyroscope sensors increased accuracy at least

8% in every window size. The highest accuracy is obtained from 10s and 15s window

sizes by using both accelerometer and gyroscope sensors.

In Fig. 4.15 training logloss(H2O Performance and Prediction - Logloss, n.d.), we infer

that logloss decreases from 8.80 to 4.20 at 515 number of iteration (epochs) and remains

stable so training is terminated by H2O at that point.
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Figure 4.15: Accuracy comparison for 5 different window according to sensor types and
combinations

In Fig. 4.17, we analyzed a variable importance diagram for one of the best accurate

models and infer that Top 10 features consist of both gyroscope and accelerometer

features. Moreover, Top 10 features are not only extracted from a particular axes but

also all of 3 axes (x, y and z).

Figure 4.16: ACCGYRO - ANN training
logloss diagram for 10 second window size

Figure 4.17: ACCGYRO - ANN feature
importance for 10 second window size
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5 CONCLUSION AND FUTURE WORK

In this thesis, we investigated user/device identification using sensor fingerprinting par-

ticularly on mobile devices. We particularly investigated the performance of identifi-

cation using 5 different sensors, accelerometer, gyroscope, pressure, gravity and light

which are commonly available on smart phones using a set of time and frequency do-

main features. We utilized a large dataset, named as CrowdSignals.io, which is larger

than 25 GB, and consists of sensor data from 25 distinct devices. We also investigated

the performance with four different classification methods, namely random forest, gra-

dient boosting machine, generalized linear model and artificial neural network using 64

features, also considering the effect of different time window sizes. Experiment results

show that random forest and GBM classifier exhibit similar performances, while GLM

performs much worse than the others. When only accelerometer is used, GBM achieves

91% accuracy on 1 and 2 second time windows, while random forest performs with

89% accuracy in these cases, and GLM with 31%. Similar results were achieved with

different window sizes. When gyroscope is used, slightly lower results were achieved,

ranging between 82 to 91% accuracy for random forest and GBM classifiers. However,

GBM with 1 second window size exhibited a similar performance as the gyroscope case:

91% accuracy. When both sensors are considered, accuracy increases to 97% for GBM

and 96% for random forest.
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