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Abstract

A Lie algebra is a vector space over a field k (C or R) with a given bilinear operation
satisfying the Jacobi identity and its operation is called the Lie bracket. In chapter 1, we
observe the structure of the Lie algebras sl,(C), gl,(C) and so,(C), we work on their
subalgebras, ideals. After, we explain the nilpotent and solvable Lie algebras using the
lower and derived series with examples, non-examples. The end of the chapter 1 we give
the definition of the simple and semisimple Lie algebras. In chapter two, we are talking
about Sophus Lie, a Norwegian mathematician who lived in the the later of the 19"

century.

In chapter three, we give the threorems of Lie and Engel using the notions of the
nilpotent and solvable Lie algebras which is given in chapter 1. In the next chapter, we
observe the properties of the adjoint representation for a given Lie algebra and we look
at its relation with the Lie bracket, i.e. adx(Y) = [X,Y] = XY — Y X. Further we give the
definition of the Killing form, which is K(X,Y) = Tr(ad(X)oad(Y)). In the end of this
chapter, we see a theorem which contains the notions such as semisimple, abelian ideals,

nondegenerate and simple ideals.

Later, we give the definitions of a Cartan subalgebra and the root for a given semisimple
Lie algebra, we consider the special linear Lie algabras sl(n+ 1,C), a compact real form
for it, is su(n + 1) that is a skew-hermitian matrix. i.e. (A)7 = A. In this way, we

construct the root systems for semisimple Lie algebras.

In summary, in this dissertation, we examine the root system decomposition of classical
semi-simple Lie algebras with the aim of establishing a relation between the
above-mentioned chapters. Furthermore, I calculated explicitly the roots and root vectors
of the semisimple Lie algebras so(2n, C), sl(n+1, C), so(2n+1, C), sp(n, C); added
to the study.

Key words : Lie algebra, Lie bracket, nilpotent and solvable Lie algebras, Cartan

subalgebra, Killing form, root system.



Ozet

Lie cebiri; Lie parantezi olarak adlandirdigimiz ikili islemle birlikte Jacobi esitligini
saglayan bir vektdr uzayidir. i1k boliimde sl,,(C), gl,(C) ve s0,(C) Lie cebirlerini,
onlarin alt cebirlerini ve ideallerini ele aliyoruz. Sonra tanim ve orneklerle Lie
cebirlerinin yapisini1 anlamaya ¢alistyoruz. Devaminda nilpotent ve ¢oziilebilir Lie
cebirlerinin yapisini 6rneklerle acikliyoruz. Ilk boliimiin sonunda, basit ve yari-basit Lie
cebirlerinin tanimlarini goriiyoruz. Ikinci boliimde, Lie cebiri kavraminin Sophus Lie
tarafindan ortaya atildigin1 ve gelistirildigini s6yleyerek, Sophus Lie hakkinda kisa

bilgilere yer veriyoruz

Uciincii béliimde, daha 6nce gordiigiimiiz nilpotent ve ¢oziilebilir Lie cebirlerinin
ozelliklerini kullanarak Lie ve Engel teoremlerini veriyoruz. Bir sonraki boliimde,
verilen bir Lie cebiri icin adjoint temsili yazip, onun Lie parantezi ile iligkisini
inceliyoruz. Ornek verirsek; X,Y € g olacak sekilde, bu adjoint temsili

adx(Y) = [X,Y] = XY — Y X olarak ifade edebiliriz. Bu temsil yardimiyla asagida

verilen Killing form kavramindan bahsediyoruz.
K(X,Y)=Tr(ad(X)oad(Y)).

Ilerleyen béliimlerde, verilen bir Lie cebiri i¢in Cartan alt cebiri ve kokler bulup,
Lie cebirleri i¢in kok sistemleri olusturuyoruz. Ayrica verilen bir yari-basit Lie cebiri
i¢in kompakt reel form bulmamiz gerekiyor. Ornegin; Lie cebiri olarak s[(n+ 1,C)

alirsak, kullanacagimiz kompakt reel form su(n + 1) olur.

Ozetle, bu calismada, yukarida bahsedilen boliimler arasinda iliski kurmay:
amaglayarak, klasik yari-basit Lie cebirlerinin kok sistem ayrigmasini inceliyoruz.
Ayrica so(2n, C), sl(n+1, C), so(2n+1, C), sp(n, C) nin kok ve kok vektorlerini
acik bir sekilde hesaplayip, calismaya ekledim.

Anahtar Sozciikler : Lie cebiri, Lie’nin parantezi, nilpotent ve ¢oziilebilir Lie cebirleri,

Cartan alt cebiri, Killing form, kok sistemi.



1 INTRODUCTION

1.1 Basic Definitions and Examples

Our aim is to study on the Lie algebras and to observe the decompositions of the

semisimple Lie algebras. So we will give basic definitions and examples.

Definition 1.1.1. Let k be a field. An algebra X is a vector space over k together with
the following map

X xX — X

(x,y) — xx*y

which satisfies the following conditions:
i) xx(y+z) =xxy+xxzand (x+y)xz=x*xz+yxzforall (x,y,z) € X°.
ii) (ax) * (by) = (ab)(x*y) for all (a,b) € k* and (x,y) € X.

Example 1.1.1. Let V be a finite dimensional vector space over k and Endy (V') denote
the set of linear transformations V.— V over k. Then Endy (V) is a finite dimensional

algebra over k with the operation of composition.

Definition 1.1.2. A subvector space Y of X which is stable for the multiplication has a
natural structure of algebra inherited from the algebra structure of X. Such a subvector

space Y is called a subalgebra of X.

Remark. Let V be a finite dimensional vector space, let Hom(V,V') denote the ring of all
endomorphisms of V. Let {e},e2,...,e,} be a basis of V. Toeach T € Hom(V,V) we

associate a matrix
ail a2 -+ aip

a) azp - ap
MT:(aij): "

apl ap2 -+ dpp



where the coefficients are determined by

n
T(ej) = Za,-jei (1 <j< n)
i=1

We call the matrix M7 the matrix representation of T in terms of the basis {e, ez, ...,e, }.

Lemma 1.1.1. The mapping T — My is an isomorphism of Hom(V,V) onto the ring
M, (k) of all matrices in k.

Definition 1.1.3. An upper triangular matrix is a square matrix in which all entries
below the main diagonal are zero. A lower triangular matrix is a square matrix in
which all entries above the main diagonal are zero. A matrix which is both upper

triangular and lower triangular is a diagonal matrix.

Definition 1.1.4. A scalar A € k is called an eigenvalue of the n x n matrix M if there is
a non trivial solution x € V of Mx = Ax. Such an x is called an eigenvector
corresponding to the eigenvalue N. The set of the elements x € V denoted by V) and its
union with the zero set is called eigenspace of M for the eigenvalue \. For the identity

matrix I, the equation det(AM — M) = 0 is called the characteristic equation of M.

52
Example 1.1.2. We have the matrix M = (2 2> .
e [Its characteristic equation is \*> —Th+6 = 0.

o Its eigenvalues are . =6 and A = 1.

e [ts eigenspaces are
Viee = {(2t,1) : t € R}
Vi1 ={(t,-21) :t e R}.
Definition 1.1.5. An endomorphism T € Hom(V,V) is called nilpotent if T* = 0 for

some integer k > 0. Similarly, a matrix N is called nilpotent if N = O for some integer
m > 0.

3 4 -7
Example 1.1.3. Consider N= |1 2 -3 | € M3(R). Then we find
2 3 =5
-1 -1 2
N>=| -1 —1 2| and N> =0, so N is nilpotent.

-1 -1 2



Proposition 1.1.1. If T € Hom(V,V) is nilpotent, then T has exactly one eigenvalue,

namely 0.

Proof. We know that any given 7" we can associate a matrix N and there is an
1somorphism between them therefore if 7" is nilpotent then N is nilpotent. Suppose N is
nilpotent by definition, there exists some k € N such that N* = 0. Let A be an eigenvalue
of N and let x be the eigenvector corresponding to A. So, we can say that they satisfy the
equality Nx = Ax. Multiplying this equality by N on the left, we have N?x = ANx = A%x
Now, the claim is that N¥x = Akx.

Proof of the claim: We know Nx = Ax and N%x = A%x for some k € N. We want to prove
that N*x = Afx. Assume that N¥~1x = Af~1x

N¥x = NN¥1x = N\ Lx (by hypothesis).
Since A¥~1 is scalar, then we can write

NA1y = M-Iy
— }kal}\‘x
= Ay,

We proved that N¥x = Afx.

Now, since N*¥ = 0, we get N*x = 0. By the equality N¥x = Akx, then A¥x = 0.

Since x is an eigenvector and hence nonzero by definition. We obtain that A*x = 0 and
thus A = 0.

Definition 1.1.6. Let G be a subset of Hom(V,V). A subspace W of 'V is called invariant
(under c), if T(W) C W for each T € o.

Example 1.1.4. Suppose T € 6 C Hom(V,V).

o Ifv e {0}, then v =0 and hence Tv =0 € {0}, since T is homomorphism. Thus,

{0} is invariant under T.
o I[fveV, TveV. Thus, V is invariant under T.

o KerT ={veV;Tv=0}. IfveKerT, then Tv=0and T(Tv) =T(0) = 0. Hence
Tv € KerT. Thus, KerT is invariant under T.



1.2 Lie Algebra

In this section, first of all, we will see a relation between a Lie group and a Lie algebra

giving the definition of a Lie group and its examples.

Definition 1.2.1. A Lie group is a smooth manifold G endowed with a group structure

such that the following maps are smooth:
1. The group multiplication is for x,y € G

GxG—>G

(x,¥) = xy.

2. The inverse map is forx € G

G—G

xr—>x_1.

Example 1.2.1. We denote the set of n x n matrices with complex entries by M (n;C) and
the general linear group GL(n;C) is the subset of M(n;C), that is

GL(n;C) ={X e M(n;C) : det(X) # 0}
is a Lie group. For a proof, see (Charters, 2008). The other examples for Lie groups

e The special linear group SL(n;C) defined as follows:

SL(n;C) ={X € GL(n;C) : det(X) = 1}.

e The orthogonal group O(n) is:

O(n) ={X e GL(m;R) : XT =x"1}.

Let G be a Lie group, the tangent space of G at identity is the Lie algebra of G i.e
I.G=g.

Example 1.2.2. The fact that GL(n;R) is an open subset of M(n;R) = R" also implies
that the Lie algbera of GL(n;R), as the tangent space at identity is the set M (n;R) itself,
that is,

gl(m;R) ={X : X is ann xn real matrix}.



Another example, consider the special linear group SL(n;C), its Lie algebra is denoted

by sl(n;C) which is the set of matrices of trace zero.

Notation. We can denote by gl,(R), sl,(R) instead of gl(n;R), sl(n;R), respectively.

Now, we will see another definition of a Lie algebra which is more algebraically

Definition 1.2.2. Let k be a field. A Lie algebra is a vector space over k with an

operation

[, ]:gxg—g
(X,Y) — [X,Y]

which satisfies the following axioms:
e [.,.] is bilinear:
e VXY €g, [X,Y]|=—[V,X] ( skew-symmetric).

e [t satisfies the Jacobi identity.

VX,Y,Z € g, [X,[V,Z]] + [V, [Z,X]] + [Z,[X,Y]] =O.

We note that the product [X,Y| is called a Lie bracket of X and Y in g.

Example 1.2.3. Consider k =R, we write x = (x1,x2,x3) and y = (y1,y2,y3) in R>.

The cross product is defined as
ARIXRY - R
(x,) = XAy = (X2y3 — X3Y2,X3Y1 — X1Y3,X1Y2 — X2)'1)-
(R3,A) is a Lie algebra over R.

Example 1.2.4. Let k be a field, the general linear algebra gl, (k) which is the space

M, (k) of all n X n matrices with the entries in k, is a Lie algebra. Since

e [.,.] is bilinear.

gln(k) x gln(k) — gl (k)
(A,B) — [A,B] = AB— BA



forevery A,B,C € gl,(k), A € k.

M +B,C] = (M +B)C—C(AM +B)
=MC+BC—-CM —CB
= MAC —CA)+BC —CB
=MA,C|+[B,C].

Similarly, [A,uB+ C| = u|A,B] + [A,C].

Then, it is bilinear.
e [A,B] = —[B,A] forevery A,B € gl,, (k). It is skew-symmetric.
o We check that it verifies the Jacobi identity. Since, for all a,b,c € gl (k),
(A, [B,C]] + [B,[C,A]] + [C. A, B]] = [A,BC — CB| + [B,CA — AC] + [c,AB — BA]

=ABC — ACB — BCA +CBA + BCA — BAC — CAB+ACB +CA
—CBA — ABC + BAC = 0.

Hence, gl, (k) is a Lie algebra.

Example 1.2.5. The set of upper triangular matrices in gl, (k) is
b, (k) ={A € gl,(k)| x;j =0, if i > j where x;; € k,Vi, j € N}

is a Lie algebra under Lie bracket.

Example 1.2.6. The special linear algebra
sl,(k) ={A € gl (k) : trace(A) = 0}
is a Lie algebra under Lie bracket.
Definition 1.2.3. Let g be a Lie algebra. A subset ) C g is a Lie subalgebra if:
1. Y is a vector subspace of g.

2. It preserves the Lie brackets which means that [A,B] € b, A,B € b.

Example 1.2.7. sl,,(k) and b, (k) are Lie subalgebras of gl (k).
For k= C, we prove that sl,(C) is a Lie subalgebra of gl,,(C).



Proof. 1. LetA,B € sl,(C) then Tr(A) = Tr(B) = 0. From the linearity of the trace,
we have
Tr(A+B)=Tr(A)+Tr(B) =0.

Then, A+ B € sl,(C). Furthermore, A € s(,(C) forallA € C, Tr(A.A) =A.Tr(A)
thus 1.A € s[,,(C). Hence, s(,,(C) is a vector subspace gl,,(C).

2. Let A, B € s1,(C) and we know that Tr(A.B) = Tr(B.A). Then,
Tr([A,B]) =Tr(A.B)—Tr(B.A) = 0.
This gives that [A, B] € sl,(C). Thus, sl,,(C) is a subalgebra of gl,(C).
Example 1.2.8. Consider the Orthogonal group
On(R) = {A € GL,(R) : AT A =T}.

Let 0,,(R) be the Lie algebra of O,(R) consisting of skew-symmetric matrices which is,
AT = —A, forall A,B € 0,(R)

(AB—BA)T =BT AT — AT BT = (—B).(—A) — (—A)(—B)
= —(AB—BA).
Then, 0,(R) is closed under the Lie bracket. Hence, 0,(R) is a Lie subalgebra of gl,(R).

Definition 1.2.4. Let g be Lie algebra, a subspace by of g is called an ideal of g, if,
[A,B] € hforall, Ach, Beg.

Example 1.2.9. We give some examples of ideal.
e {0} is an ideal of g.
e The Lie algebra is itself an ideal.
o sl,(k) is an ideal of gl,,(k).

Proof. We prove that s, (k) is an ideal of gl,, (k). We saw that s[,,(k) is a subalgebra of
gl, (k) in It is enough to show that [A, B] € sl,,(k) for all A € sl,,(k), B € gl, (k), we
have Tr(A) = 0 and we get

Tr([A,B]) =Tr(AB) —Tr(BA) =0, then [A,B] € sl, (k).



Then, sl,,(k) is an ideal of gl, (k).
Definition 1.2.5. Let g be a Lie algebra, it is abelian if [A,B] =0 for every A,B in g.

Example 1.2.10. Let g be a Lie algebra over a field, every one-dimensional vector

subspace of g is an abelian Lie subalgebra.

1.2.1 Derived algebra of a Lie algebra

Definition 1.2.6. Let g be a Lie algebra over a field k and consider in g the set
g = [g,g]. This is the set of elements of the form [x,y]; x,y € g and possible linear

combinations of such elements. It is called the derived algebra of g.
Proposition 1.2.1. Let g := [g, g then this is an ideal in g.

Proof. The derived algebra is by definition a subspace of g since g/ = [g,8] C g and we
have [g',g'] C [g,9] = g . We have then using g C g

0.9 Clg.gl =9
Thus g, is an ideal in g.

Definition 1.2.7. The lower series of a Lie algebra g is given by:

g'=020°=[g.0'12..20' =[9.0/ '] (1.1)
and the derived series of a Lie algebra is given by:

09 =929 =[g,0129% =[g",g"]2...2gV =[gV VgV D ... (12)

Proposition 1.2.2. Let g be a Lie algebra, consider|l.1|and
i) All g/ and g(j) are ideals of in g.
i) gv) C g/ forn > 1.

Definition 1.2.8. A Lie algebra is called nilpotent if g/ = 0 for some j.

Example 1.2.11. Any abelian Lie algebra g is nilpotent. Let a,b € g, we have |a,b] =0
by the definition of the abelian Lie algebra and g* = [g,g] = 0 since [a,b]=0. Then, g is

nilpotent.



Example 1.2.12. Let k be a field and assume that § = ka+ kb with [a,b] = b, g is not
nilpotent. Since, g*> = [g, 9] = [ka+ kb, ka + kb), we have then

a* = k[a,a] + k[a,b] + k[b,b] + k[b, d]
= kla,b| +k[b,a] ([a,b] =b and |a,a] = [b,b] =0)
—kb—kb (kisa field)
= kb.

Similarly, we see that g3 = [g,9°| = [ka + kb, kb] = k|a,b] + k[b,b] = kb. We can prove
that g/ = kb # 0 by induction. Suppose that g/ = kb for j > 0, we prove that g/*! = kb

o/t =[9,0] = [ka+kb,kb] = kb # 0.

Hence, g = ka+ kb is not nilpotent.

Definition 1.2.9. Suppose that g(j ) is derived series as A Lie algebra is solvable if
g(j) =0 for some j.

Example 1.2.13. Any abelian Lie algebra is solvable. Since a,b € g, [a,b] =0 and
gV = [g,q], we have then g'") = 0. Hence, it is solvable Lie algebra.

Example 1.2.14. We see that g(l) = g° from the definitions of the nilpotent and solvable
Lie algebras, and we return the example|l.2.12} We have g(l) = g% =kband
g@ =gV, g(] = [kb,kb] = 0. Then, it is solvable.

Definition 1.2.10. Let g be a Lie algebra over C. A radical of g is a maximal solvable
ideal of g. It is denoted by R(g).

1.2.2 Simple and Semisimple Lie algebras

Definition 1.2.11. A Lie algebra g is called simple if g is non-abelian and has no proper
ideals and dim g > 2.

Corollary 1.2.1. If g is simple then g = 9, 9] is equal to g.

Proof. We have seen that gl is an ideal in g. g has to be a trivial ideal since g is simple.
In this case there are two cases either g/ =0or g/ =g. But g/ = 0 since g is non-abelian.

Thus g, =g.

Example 1.2.15. The special linear Lie algebra

sly(k) ={A € gl,(k) : Trace(A) = 0}
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is simple. (See e.g. Humphreys, 1972).
Definition 1.2.12. Let g be a finite-dimensional Lie algebra.
1. g is semisimple if it has no a nonzero solvable ideals.

2. g is semisimple if R(g) = 0 where R is a radical of g which is a solvable ideal of g

of maximal possible dimension.
Example 1.2.16. Semisimple Lie algebras over C :
e 5,(C)={Aegl,(C)| Tr(A) =0} forn>2.
e 50,(C)={A€egl,(C)|A+A" =0} forn>3.
Semisimple Lie algebras over R :
o sl,(R)={Acgl,(R)|Tr(A) =0}  forn>2

e s0(p,q) ={A€gl, ,(R) AL, ,+1,,A=0} forp+qg>3

I 0
where 1,,= [(;7 I ] .
—lq

o su(p,q) ={Ae€sl, (R)| A", ,+1,,A =0} forp+q>2

1.2.3 Lie Algebras Homomorphism

Let g; and g; be any two Lie algebras over C. A homomorphism of Lie algebras
between g and g, is a function y : g; — g5 such that

1. yis alinear map, W(A.X +u.Y) = A y(X) +py(Y) where X, Y € g; and A, u € C

2. X, Y]y, = W(X),y(Y)]g, where [.,.]q, is the Lie bracket of g; and [., ], is the
Lie bracket of g,

Example 1.2.17. Let g1, 92 be any two Lie algebras, the function ¥ : g1 — g» such that
Y(X)=0forall X € g, is a Lie algebra homomorphism.

Definition 1.2.13. Let g1, 9> be any two Lie algebras, the function ¥ : g1 — g is a Lie

algebra isomorphism if Y is homomorphism and bijective.

Proposition 1.2.3. Let V be a vector space of dimension n, gl(V) is isomorphic to

gl,,(C) which means that any linear map can be written as a matrix.
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Proof. Take a basis in {e],e2,....,e,} in V. Forall T € gl(V'). Consider its matrix

A =Ar = [a;;]};_,. We can describe

n
Te]:Zal]e]7 VJ:],Q,,II (1'3)
i=1
Define

y:gl(V) — gl,(C)
T —y(T) = Ar.

We show that y is isomorphism.

e We show that y is a homomorphism. First y is linear, for all 7, S € gl(V') and
Au€ Coy(AT +uS) =Ay(T)+u y(S) since T and S are linear maps. Now, we
look at W([T', S]gi(v))

Then, Y is a homorphism.

e We want to prove that  is bijective. First, we prove that y is injective. For

T,S € gl(V) and consider a basis {e},e3,...,e,} in V and we have

W(Te;) = y(Se))
ajel +aper+ ... +apme, = biiey +brpex+ ...+ bprep
(a1 —b1)er + (a2 —bi2)ea+ ...+ (aun — bun)en = 0ey +0.€2 + ... + Oey,.

Since {ey,ea,...,ey} is a basis and it is linearly independent.

We see that ay; = by1,a12 = b12,...,ann = by, Y 1s injective. Now, we show that
V is surjective. For A € gl,,(C) which means that A = (a;;) and by [1.3]y is
surjective. Then, v is bijective. Hence, gl(V) is isomorphic to gl,,(C).



2 LITERATURE REVIEW

Lie algebras are named after Marius Sophus Lie, a Norwegian mathematician who lived
between 1842 and 1899. His first mathematical work which is Représentation der
Imaginéren der Plangeometrie, published in 1869. He won the medal of Lobagevski with
his mathematical studies in 1897.

He was interested in continuous symmetries of geometric objects called manifolds and
the element of Lie algebras using their derivatives. It was not only important on
mathematics, contributed twentieth century mathematical physics.

We have a vast algebraic theory studying objects as Lie algebras, Root systems, Weyl
groups etc.

Sophus Lie described simple and semisimple Lie algebras but Elie Cartan and Wilhelm
Killing completed it with the new notions (i.e. Killing form, root vector, Cartan
subalgebra). They gave the structure of some semisimple Lie algebras with its properties
and rules using these structures they classified classical semisimple Lie algebras
(sI(n;C),s0(2n;C);80(2n+1;C)).

Nowadays mathematicians use in their researchs the results of the given theorems and

propositions.



3 THE THEOREMS OF LIE AND ENGEL

3.1 The Theorem of Lie

Theorem 3.1.1. Let k be a field and assume that g is a solvable Lie algebra over k. Let
V # {0} be a finite dimensional vector space over k, the algebraic closure of k. Consider
a homomorphism T of g into gl(V'). Then there exists a vector v # 0 in'V which is an

eigenvector of all the ©(g). (See e.g. (Helgason, 1978) )

Proof. We will prove the theorem by induction on dim g. If dim g = 1 the theorem is
consequence of proposition 1 in the appendix; we suppose that the theorem holds for
all Lie algebra over k of dimension < dim g. Let f be an ideal in g of codimension 1.
Since g is solvable then g{) = 0 for some i and if h C g, then h())  g()) = 0, we have
f)(i) = 0 thus b is solvable. Also the eigenvalue condition holds for § if it holds for g. By
inductive hypothesis we can choose e € V with n(H)e = A(H)e for all H € b, where
A(H) is scalar-valued function defined for H € b.

Fix X € g with g = kX + 0 and X ¢ b, we define recursively

e.1=0, e=e, e,=mn(X)e,_1

and let E = span{eg,e1,...,ep,...} then t(X)E C E. Let v be an eigenvector for ©(X) in
E, we show that v is an eigenvector for each w(H), H € b.

First we show that
n(H)e, = MH)e, mod span{ey,...,ep,—1} 3.1

We do so by induction on p. Formula|3.1|is valid for p = 0 using ep = e. Suppose that

formula [3.T]is valid for p and we need to prove that it is valid for p+1. We have then
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T(H)ep+1 = MH)ep+ (ep+1=T(X)ep)
_MH)R(X)e,  (MH) =n(H))
=n(H) n(X)e,
=n(H) n(X)e, —n(X) nt(H)ep, +n(X) n(H)e,
— w(([H, X))ep + 7(X) 7(H)e,
=A[H,X])e,+n(X) n(H)e, mod span{ey, ...,ep_1}
=M[H,X])e, +MH) n(X)e, mod span{ey, ...,e,_1,7(X)eo,...,n(X)e,—1}
=AMH)n(X)e, mod span{e, ...,ep}
=MH)ept1 mod span{e, ...,ep,}.

This proves [3.1]for p+1 and completes the induction. Now, we show that
AM[H,X])=0 forall Hebh (3.2)

In fact, (3.1)) says that T(H)E C E and that, relative to the basis eq, ey, .... the linear
transformation 7w(H ) has matrix

Thus Tr(n(H)) = A(H) dim E, we obtain
M[H,X]) dimE =Tr n([H,X]) = Tr[n(H),n(X))] =0

Since the field have characteristic 0, we obtain that A([H,X]) = 0, (3.2) follows.
Now we can sharpen (3.1) to

n(H)e,=AH)e, forallHech (3.3)

To prove (3.3), by induction on p. If p = 0, the formula is the definition of e.
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Assume that [3.3]is valid for p. Then

n(H)ept1 = n(H)m(X)e,

=n([H,X])e, +n(X)n(H)e,
= M[H,X])e, +T(X)M(H)e, by induction
— 0+ MH)eps w3

This completes the induction and proves 3.3 Because of 3.3 n(H)x = A(H )x for all

x € E and in particular for x = v. Hence the eigenvector v of T(X) is also an eigenvector
of ©(h). The theorem follows.

Corollary 3.1.2. Let g be a solvable Lie algebra over a field k and T a representation of
g on a finite dimensional vector space V # {0} over k, the algebraic closure of k. Then
there exists a basis {ei,...,e,} of 'V, in terms of which all the endomorphisms w(X),

X € g are expressed by upper triangular matrices.

3.2 The Theorem of Engel

Theorem 3.2.1. Let V be a nonzero finite dimensional vector space k and let g be a
subalgebra of gl(V') consisting of nilpotent elements. Then,

i) g is nilpotent.

ii) There exists a vector v # 0 in'V such that Zv =0 for all Z € g.

iii) There exists a basis {ey,...,en} of V in terms of which all the endomorphisms X € g

are expressed by matrices with zeros on and below the diagonal. (See (Helgason,1978) )

Proof. i) We show that g is nilpotent. For Z € gl(V') consider the endomorphisms Lz and
Rz given by
Lz X =7ZX and Rz X =XZ X €gl(V).

Furthermore let Z1,Z,,X € gl(V), we have

Lz Rz, X = Lz XZy = Z1XZ,
Rz,Lz, X = Rz, Z1X = 7,XZ,.

Since Lz, Rz, X = Rz,Lz X then L7 and Ry commute. If ad denotes the adjoint
representation of gl(V'), we have ad Z = Lz — Rz. It follows that for X € g and any
integer p > 0
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(ad Z)P(X) = f(—n" (’l’) zr=i X7, (3.4)
i=0

Suppose Z € g then Z is nilpotent we have then Z¥ = 0 and there are (p + 1) terms in the

relation Also the power of Z decrease up to (p+ 1)/2) and after that it continues to

increase. In this case we can find a number p such that k = (p+ 1) /2. Therefore ad Z is

nilpotent by relation [3.4]and being Z is nilpotent. Since ady Z is the restriction of ad Z

to g, it follows that ady Z is nilpotent. Thus g is nilpotent.

ii) Let r = dim g, we shall inductonr. If r =1, Zv = 0 since Z € g and Z is nilpotent.

Assume that (ii) holds for algebras of dim < r. Let f) be a proper subalgebra of g of

maximum dimension. If H € b, then by (i), adyH is a nilpotent endomorphism of g and

maps b into itself, hence adyH induces a nilpotent endomorphism H* on the vector space

g/b. The set {H* : H € h} is a subalgebra of gl(g/h) having dimension < r and

consisting of nilpotent elements. Using the induction hypothesis we conclude that there

exists an element X € g, X ¢ b, such that adgH(X) € b for all H € b. The subspace

b+ kX of g coincide with g. Thus § is an ideal in g.

Now let W be the subspace of V given by

W = {ecV:He=0 forall H € b}.
Owing to the induction hypothesis, W # {0}. Moreover, if e € W we have
HXe=[H,X|e + XHe =0 (3.5)

so X.W C W. By the definion of W and by Xe € W. The restriction of X to W is
nilpotent, we have then X*e=0and X X*~1e = 0. If we choose v = X* ¢ £ 0, we
obtain that Xv = 0. This vector v has property required in (ii).

(iii) Let ¢; be any vector in V such that e; # 0 and Ze; = 0 for all Z € g. Let E| be the
subspace of V spanned by e;. Then each Z € g induces a nilpotent endomorphism Z* of
the vector space V /E;. If V/E| # {0} we can select e; € V, e; ¢ E; such that

e>+E; € V/E, is annihilated by all Z*, (Z € g). Continuing in this manner we find a
basis ey, ...,e, of V such that foreach Z € g

Zey =0, Zei=0 mod(ey,...,ei—1), 2<i<n. (3.6)

The matrix expressing Z in terms of the basis ey, ..., e, has zeros on and below the

diagonal.
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Corollary 3.2.2. In the notation of Theorem we have
X1X..X,=0

if s >dimV and X; € g(1 <i<ys).

In fact, this is an immediate consequence of (3.6)).



4 ADJOINT REPRESENTATION AND THE KILLING
FORM

Definition 4.0.1. Let g be a Lie algebra over a field k then a derivation D : g — g is a

linear map which satisfies the Leibniz rule
D(XY)=DX)Y+XD(Y) forallX,Y € g.

Furthermore, Der(g) the vector space of all derivations of g is a Lie algebra whose Lie
bracket is given by the commutator bracket [D,D;] = Dy o Dy — D, o D) for all

D1,D; € Der(g). We define a very important derivation known as the adjoint operator.

Definition 4.0.2. Let g be a Lie algebra over k and X € g. The following application ad

is called adjoint homomorphism which is defined as

adx g — ¢
Y — adx(Y):=[X,Y].

Proposition 4.0.1. For any Lie algebra g we have adx € Der(g) for all X € g.

Proof. Let X € g, we show that ady is linear. For any o, 3 € k and Y,Z € g we have
adx (oY +BZ) = [X,0Y +PBZ] = o.[X, Y]+ B.[X,Z] = o.adx (Y) + B.adx (Z)

Hence, the map is linear. We now show that this map satisfies the Leibniz rule using the

Jacobi identity. We recall the Jacobi identity as follows
X, [V, Z]]+[v,[Z,X]] +[Z,[X,Y]] = 0.

For all X,Y,Z € g we have
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adx ([Y,Z]) = [X,[Y,Z]] = = [V, [Z,X]] - [Z,[X, Y]]
= [Yv [XvZH + [[X7Y]7Z]
= [adx(Y),Z] + [Y,adx (Z)].

Then adx € Der(g).

Definition 4.0.3. Let g be a Lie algebra over a field k and let V be a vector space
Let ad : g — gl(V) be the adjoint representation and the Killing form is defined by

K:gxg — k
(A,B) — K(A,B)=Tr(ad(A)oad(B))
Remark. Tt is associative which means that K([A,B],C) = K(A, [B,C)).

Proof. To prove remark above, we use the definition of K, for all A,B,C € g,

K([A,B],C) —K(A,[B,C]) = Tr(ad[A,B] oad(C) — ad(A) o ad[B,C]).

Using
ad([A,B]) = [ad(A),ad(B)] = ad(A)ocad(B) —ad(B)ocad(A).

We get

K([A,B],C) —K(A,[B,C]) = Tr(ad(A) oad(B)cad(C) — ad(B) o ad(A) o ad(C)
—ad(A)oad(B)ocad(C)+ad(A)oad(C)oad(B)
=Tr(ad(A)oad(C)oad(B) —ad(B)ocad(A)oad(C))

Let X = ad(A)oad(C) and Y = ad(B), we know also that Tr(XY) = Tr(YX). Then,
K([A,B],C) —K(A,[B,C]) =Tr(XY —YX) =0
Hence, K ([A,B],C) = K(A,[B,C]).

Example 4.0.1. We consider s, (C) the special linear algebra. It has three basis vectors
A,B,C where [A,B] =2C

0 1 0 -1
A= , B=
[1 o] [1 0
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The relations between the brackets are as follows:
[A,C] =2B; [B,C] =2A.

We want to find the matrix representation for these basis vectors

o For ady,
ady(A)=[A,A]=0=0.A+0.B+0.C
ads(B) =[A,B]=2C=0.A+0.B+2.C
ads(C)=1]A,C] =2B=0.A+2.B+0.C.

Then, the matrix of ady with respect to the basis {A,B,C} is ;

000
My= 10 0 2
020
e For adp,
adg(A) = [B,A] = —2H =0.A4+0.B—2.C
adg(B) = [B,B]| =2C =0.A+0.B+0.C
adp(C) =[B,C] =2X =2.A+0.B+0.C.

Then, the matrix of adg with respect to the basis {A,B,C} is

-2

Mp = 0
0

pn OO
o O O

e Foradc,

adc(A) = [C,A] = —2B=0.A+ —2.B+0.C
adc(B) =[C,B] = —2A = —2.A+0.B+0.C
adc(C) = [C,C] =2C =2.A+0.B+0.C
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Then, the matrix of adc is

0 -2 0
Mc=1|1-2 0 O
0 0 O

0 0 2 0O 0 2 0 00
MsMs= 10 0 O 0O 0 0l=1]0 40
-2 0 0 -2 00 0 0 4
K(A,A) =Tr(ad(A)oad(A)) =8
0 0 2 0 0 2 -4 0 O
MpgMp= |0 0 O 0O 0 0l=(0 0 O
-2 00 -2 00 0O 0 —4

K(B,B) =Tr(ad(B)oad(B)) = —8.
By the same method, K(C,C) =8, K(A,B) =0, K(A,C) =0, K(B,C) =0.

Definition 4.0.4. Let g be a Lie algebra over k and let K : g X g — k be the Killing form.
The kernel of K is defined by

Ker(K)={X€g:VY eg, K(X,Y)=0}.
The form is non-degenerate if its kernel is zero.

Example 4.0.2. Consider g =sl,(C), X e gandY € gwe have Tr(X) =Tr(Y) =0
K(X,Y)=Tr(ad(X)oad(Y)) = Tr(Mx.My) where Mx and My are two matrices
corresponding to ad(X) and ad(Y), respectively.

xp x2 0 a b 0
Mx = X3 —X1 ol, My=1c¢c —a O
0O 0 O 0O 0 O

By definition of Ker(K), X in g and for every Y in g we have K(X,Y) =0 i.e.

K(X,Y)=Tr(ad(X)oad(Y)) = Tr(Mx.My) = 0. (4.1)
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From ({.1), we have the following equation
2ax1 +cxy +bx; = 0.

If we choose a =0 and ¢ = 0, we have then bxz = 0 for every b € C. So we see that
x3 = 0. Similarly, we have x| = x = 0. Then, Ker(K) is zero. Thus the Killing form is

non-degenerate.

Proposition 4.0.2. Let {X|,X5,...,X,} be a basis of g. The Killing form K is
non-degenerate if and only if the n x n matrix whose (i, j)"* entry K(X;,X;) has nonzero

determinant.

Example 4.0.3. We compute the Killing form of sl (C), (its characteristic # 2) using the
standart basis in the example which we write in the order (A,B,C). The matrices
for ady, adg, adc are My, Mp, Mc, respectively and as follows:

0 0O 00 -2 0 -2 0
Mp= 10 0 2, Mp=1|0 O O |, Mc=|-2 0 O
020 20 0 0O 0 O

Therefore K has the following matrix, with determinant —512 # 0

8 0 0
-8 0
0O 0 8

So by the proposition K is non-degenerate.

Lemma 4.0.1. Let K be a Killing form of g and let ¥ be any automorphism of g.

Then, K is invariant under .

Proof. We know that any automorphism is a linear transformation y : g — g that respect
the bracket. From this, we obtain ad(A)(X) = [A,X] for all A, X € g.
We get

ad(yA)(X) = [WA,X] = [A,y'X]

— y(ad(4) oy~ (X))
— y o ad(4) oy~ (X).

Similarly, ad (yB)(X) = yo ad(B) oy~ (X).
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ad(yA) o ad(yB) = yoad(A) oy ' oyoad(B)oy™!
=yoad(A)oad(B)oy .

Also, we know that if two matrices are equivalents, then their traces are equals. So,

Tr(ad(yA) o ad(yB)) = Tr(yoad(A)oad(B) oy ")
=Tr(ad(A) cad(B)).

Therefore, K(yAoyB)=K(A,B).

Hence, the Killing form K is invariant under a given automorpism V.
Proposition 4.0.3. The kernel of the Killing form K of g is an ideal.

Proof. Assume that A € g and B € Ker(K). We want to show that [A,B] € Ker(K). We
have then K ([A,B],C) =K (A, [B,C]) =0forall C € g.
Then, [A, B] € Ker(K). Thus, Ker(K) is an ideal.

Lemma 4.0.2. Every abelian ideal in g is contained in the Ker(K) where K is the Killing
form of g.

Proof. Assume that I C g is an abelian ideal. We take X € I, Y € g then the
endomorphism ad(X) cad(Y) sends g into I and ad(X)(ad(Y)(I)) C ad(X)(I) = 0, then
(ad(X)oad (Y))2 = 0 and this endomorphism is nilpotent. Since nilpotent
endomorphism have trace zero, K(X,Y) = Tr(ad(X)ocad(Y)) = 0, this shows that

I C Ker(K).

Lemma 4.0.3. Let g be a semisimple Lie algebra. If I is an ideal of g then there is an
ideal I'- of g such that g = 1 &I+

Proof. We define a subspace of g as follows
I'={Xcg: K(X,Y)=0forallY €I}
which is also an ideal, since X € L, Y €gand Z € I, we have
K([X,Y],Z)=K(X,[Y,Z]) =0.

Theorem 1 in the appendix (Cartan criterion) shows that the ideal NI+ of g is solvable
hence it is 0. Therefore, since dim I + dim I = dimg. We must have g =1 ®I+.
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Theorem 4.0.4. Let g be a Lie algebra over a field k. The followings are equivalent for
g.

1. g is semisimple.

2. g has no nonzero abelian ideals.

3. The Killing form of g is nondegenerate.
4. gis a direct sum of simple ideals.

Proof. (1 =-2) Assume that g is semisimple, by definition then g has no nonzero
solvable ideal and also every abelian ideals are solvable. Thus g has no nonzero abelian
ideals.

(2 = 3) Suppose that g has no nonzero abelian ideals, i.e. its only abelian ideal is zero.
Also by the lemma[d.0.2] every abelian ideal in g is the kernel of the Killing form i.e.
Ker(K) = {0}. Thus the Killing form of g is nondegenerate.

(3 = 4) It is the consequence of the lemma (4.0.3).

(4 = 1) Assume that g is a direct sum of simple ideals, we will prove that g is
semisimple. Suppose I is a nonzero ideal of g =g S go D ..... B gr Where g;’s are simple
ideals. Let 0# x =x1 +x2 +.... + xx € I where x; € g;. We have then

(X, k] = [x1 +x2+ ... +x%, 9k

which implies that 0 # [I, gi]. Since gy is simple ideal, we get g; = [I,gx] C 1 # 0. We
see that I is not an abelian ideal of g. It means that g has no abelian ideals, then g is

semisimple.



5 ROOT SYSTEMS

5.1 Cartan Subalgebra

Definition 5.1.1. If g is a complex semisimple Lie algebra then a Cartan subalgebra of g

is a complex subspace b of g with the following conditions

e Forall Hy and Hy in b, [H|,H] =0

It means that § is commutative subalgebra of g.

o If, for some X € g we have [H,X] =0 forall H € hj then X is in b

This says that h is a maximal commutative subalgebra.

e ady is diagonalizable for all H in f) by proposition 1 in the appendix.

Proposition 5.1.1. Let g = €c be a complex semisimple Lie algebra and let t be any

maximal commutative subalgebra of €. Define ty C g by
h=tc=t+it.

Then b is a Cartan subalgebra of g. See e.g (Hall,2015)

Proof. First, we show that ) is commutative subalgebra of g.
Say X1,X>,Y1,Y2 € . We see that Hy = X1 +iX, and Hy =Y +iY> in b.
We have

[Hy, H>) = [X1 + X, Y +iY5]
= [X1, 1] +i[X1, V2] +i[Xo, V1] — [X2, Y]

Since t is commutative subalgebra of g, we have then
X1,Y1] = X1, 2] = [X2.71] = [Xz, 2] = 0.

We obtain [H;,H;| = 0. So, b is commutative subalgebra of g.
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Now, we must show that fj is maximal commutative. Assume that ¥ € g commutes with
each element of h. This says that it commutes with each element of t. If we write
Y=Y, +iY> withY; and Y> in ¢, for H in t. We have

[H,Y) +iY,] = [H,Y1|+i[H,Y2] =0

where [H,Y;] and [H,Y,] are in &.

However, every element of g has a unique decomposition as an element of £ plus an
element of it since g is semisimple. From this, we say that [H,Y] and [H,Y>| must
separately be zero. Since this holds for all H and by being t maximal commutative in
hypothesis, we must have Y| and ¥> in tthatis Y = Y| +iY; is in h. So,  is maximal
commutative.

Finally, we will show that for all H € b, adpy 1s diagonalizable.

We consider (-,-) an inner product as in proposition 3 in the appendix then for all Y in €,

the operator ady : g — g is skew self-adjoint meaning that

(ady (X),Z) = — (X, ady(Z))

forall X,Y,Z € g

For every ady , H € t, we can say that it is diagonalizable by the theorem 2 in the
appendix.

If H € b, so H= H| +iH, with Hy, with H; and H, in ¢, we know that H; and H»
commute since t is commutative. In this case, ady, and ady, also commute.

By proposition 2 in the appendix, they are simultaneously diagonalizable. Then, ady is
diagonalizable

Thus, h = t+ it is a Cartan subalgebra of g.

Definition 5.1.2. If g is a complex semisimple Lie algebra, the rank (dimension) of g is

the dimension of any Cartan subalgebra.

5.2 Roots and Root Spaces

Definition 5.2.1. Let g be a Lie algebra. A real form of g is a Lie algebra gr over R
such that there exists an isomorphism from g to gr ® C. if the Killing form is negative

definite then g is compact.

Example 5.2.1. The compact real form of sl,(C) is su(2) that is a skew-hermitian

matrix with trace zero. (A)T = A
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Now, we suppose a compact real form £ of g and a maximal commutative subalgebra ¢ of
€, and the Cartan subalgebra h = t+it. Also, we suppose an inner product on g which is
real on £ and invariant under the adjoint action of £ by proposition 3 in the appendix.

We know that for H € b, ady commute with the elements of g since H = A + iB where
A,B €t and t is commutative subalgebra. Furthermore, each such ady is diagonalizable.
So, by proposition 2 in the appendix, says that each ady, for H € § are simultaneously
diagonalizable. Suppose that Y € g is a simultaneous eigenvector of every ady, H € b,
then the eigenvalue for the eigenvector Y is linearly dependent on H € ). Assume that
this linear functional is nonzero, it is a root. We explain the notion of root in details

giving its definition and proporties.

Definition 5.2.2. Let h* = {P : h — C, such that B is linear form}. An element  # 0 of

b* is a root if there exists a vector Y+ 0 in g such that
[H,Y] =B(H)Y

forall H in .
Note that the set of all roots is denoted by R.

Remark. We can find an identification between h and h* using an inner product. So B’s
can be seen as element of f. In this case, we can rewrite the definition of the root as
follows:

[H.Y] = (B,H)Y

for all H in b.

Definition 5.2.3. Assume P is a root, then the root space gg is the space of each Y in g
whose [H,Y} =(B,H) Y forall H €.

Remark. We consider an element 3 of h = t+it. We write gg being the space of each Y
in g for which [H,Y] = (B,H) Y for every H in b. If B is not root, we do not say that gg
is a root space.

We take that [ is zero, we obtain that [H,Y] = 0 which means that every elements of g
commute each element of h. We said to be gg the set of such all elements of g.
Furthermore, we know that b is a maximal commutative subalgebra, we obtain that

go = b. But, B # 0 is not a root, so we have gg = {0}.

As we have seen, the operators ady, H € b are diagonalizable. In conclusion, g may be
separeted as the sum of h and the root spaces gg. The sum is direct by Prop A.17 [see

e.g. (Hall, 2015)] and we have also constructed the result below.
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Corollary 5.2.1. Let g be a semisimple Lie algebra, let R be the set of roots B and let gg

be the root space, g may be decomposed as a direct sum of vectors spaces as seen below:

g=boP .

BeR

That is to give in the above corollary, all element of g may be expressed uniquely as a

sum of an element of ) and one element of gg.

Lemma 5.2.2. Consider 3 and 'y the roots in ). Let gg ,gy be the root spaces for  and v,

respectively. We have

[9p,9y] C 9p4y-

Proof. First, let X be in gg and let ¥ be in g_g, then [X, Y] is in b. Since, by the

definition of the root, we have

X €gp=[H,X]=(B,H) X forall H € b

5.1
Yecg pg=[HY|=(-B,H)Y forall Hch.

We use the Jacobi identity, we have

[H,[X,Y]] + [X,[Y,H]] + [Y,[H,X]] =0 and

[H,[X,Y]] =—[X,[Y,H]] - [¥,[H,X]]
=—(—[X,[H,Y]]) - (—[[H.X],Y]) (5.2)
= [X,[H,Y]] + [[H,X],Y].

Now, we write the equation [5.1] using

[H,[x,Y]] = [X,[H,Y]] + [[H,X],Y]
=[x, (=B.H)Y]+ [{B.H)X. Y]
=—(B.H)[X,Y]+ (B,H)[X.Y]
=0.

Then, [X,Y] = 0 and we obtain [X,Y]in b.
Now, we want to prove that [gg, gy] C g4y We use|5.2and assume that X in gg and Y in
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gy, we have
[H7 [XaYH = [X [ H [[ 7X] ]
=X, (v.H)Y]+ [(B,H)X,Y]
= (v,H)[X,Y]+ (B, H)[X,Y]
= (B+v.H)[X,Y]

for all H € b, proving that [X,Y] is in gg_.
Hence, [gg, 0y] C gp+y-

Proposition 5.2.1. 1. Let h = t+ it be Cartan subalgebra of g and assume that § € b
is a root, similarly —PB. Particularly, suppose that A is in gp; then A" ising_g
where A* is defined as follows: let Aj,Ay be intand A1 +iAj in b

(A +iAy)" = —A| +iA;. (5.3)

2. The roots span b.

Proof. 1. Suppose that A = A +iA, where Aj,A> € t, A=A —iA,. We know that ¢
is closed under bracket, assume H €t C £ and A € g, we look
[H,A] = [H,A +iAy) = [H,A1] —i[H,A;] = [H,A].

Furthermore, suppose A is a root vector for € iz, therefore for all H € b, we get

[HvZ] = [HvA] = <B7H>A = _<B=H>Z (5.4)

because of (B, H) is pure imaginary for H € t. We find that [H,A] = — (B, H)A for
all H € . So, A is a root vector for the root —B. Hence, A* = —A be interested in

g.

2. To show this, we will use the contradiction, assume that the roots did not span b,
therefore we have an element H # 0 € h which werifies (B, H) = 0 for every
B € R. That is to say, [H,K| = 0, for every K € b, furthermore

H,Y]=(B,H)Y =0

for each in gg. So, using Corollary and the definition of the center of g, we

see that the element H contradit the definition of the semisimple Lie algbera.
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Theorem 5.2.3. Let § be a root of b, we may define Ag in gg , Bg in g_g and Hg in
that is linearly independent which verifies Hg is a multiple of B and also;

[Hp,Ag] = 245
[Hg, Bg] = —2Bg (5.5)
[Ap, Bg] = Hp

Moreover, Bg may be considered as the adjoint operator AE. See e.g. (Hall, 2015)
Assume that Ag, Bg, Hp are seen as in , we have [HB7AB] = 2Ag. Furthermore, Ag is a
root vector and B is a root in b, we have then [Hp,Ag] = (B, Hg)Ap. Using these two
equalties, we have then

(B, Hg) = 2. (5.6)

At the same time, we know that Hg is a multiple of 3 and there is the unique multiple
appropriate with (5.6), that is

Hp = P (5.7)

(B, B)

Corollary 5.2.4. Let B be a root, consider AB,Bﬁ,HB like in . with Bg = A’é (i.e. the
adjoint of Ag.) We have then the elements

i i 1
Ff = 3Hg: Fy := 5 (Ag+Bp): Fy := 5 (By—Ap)

are lineraly independents elements of ¢ and satisfy the following equations
[FIB7FZB] = F3B; [FB7F3B] :FP? [F3BaFlﬁ] :Fzﬁ-

Proof. First, we show the equivalent of the equations by the calculations.

i?4[Hp Ag+Bg

o [F.F}) = [3Hp. 5(Ap+By)) = = 3 (245~ 2Bp) = 3(By —Ag) = F§.

o [F,F] = [5(Ag +Bp), 3By — Ap)] = §[(Ap +Bp). (By — Ap)] = §([Ap,Bg] -
[Ap.Ap] + [Bp, Bg] — [Ap, By]) = § (HB— (—HP)) = §2H —B = 1Hy = F}.

o [F.FY) = [5(Bg — Ap), 3Hp] = §(Bp. Hy — [Ap, HP]) = §(2B—B+24p) =
3(Ap+Bp) = Fzﬁ-
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Now, we prove second part i.e. FiB’ s are linearly independent.

We have seen the root § belongs to it and Hy is also, by A real multiple of B, the
element (i/2)Hg will be in ¢ C €. Moreover, using the property of the adjoint operator
which means that (A +iB)* = —A + iB. We can see as follows:

(F)" = (2 (Ap+By))" = £ (Ap+By) = Ff.

() = (%(BB —4p))" = %(AB ~Bp) = —F}.

Then, F2B and F3B are in £. We obtain F IB ) FZB7 F3B from the combinations of Ag, Bg, Hp and
we know that Ag, Bg and Hg are linearly independent by assumption so, F IB, F2B and F3B

are also.

Lemma 5.2.5. Assume that A is in gg that B is in g_g and that H is in Y. So, [A,B] is in b

and
<[A7B]7H> o <BvH><BvA*> (5.8)

where A* is adjoint operator in . See e.g. (Hall, 2015).

Proof. First, we recall that [A, B] = ads(B) and for all A, B,C € g, we have then
(ads(B),C) = (B,ads+(C)).
We have seeen [A, B] is in §y in the Lemma [5.2.2] Using the above recalls, we have then
([A,B],H) = (ada(B),H) = (B,ads+(H)) = (B,[H,A"]). (5.9)

By hypothesis, the element A is in gg, we see that A* is in g_p from Proposition In
this case, we have [H,A*] = (—B,H)A* = —(B,H)A*. If we write it in[5.9] we find what
we want to prove, that is;

([A,B],H) = (B,H)(B,A").

Now, we pass the proof of Theorem , firstly we take A 7 0 in gg, which is A* = —A
isin g_g. We write A" instead of B in the Lemma|5.2.5| we get

([A,A*],H) = (B,H) (A", A™). (5.10)
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We say that [A,A*] € b is orthogonal to each H € h) which is orthogonal to B Also, we
consider the element H in b and suppose ([A,A*],H) # 0. We see that [A,A*] # 0.
Assume that we construct using H = [A,A*]. In this case we find

<[A7A*]v [A7A*]> = <B7 [AvA*]><A*7A*>'

We have [A,A*] # 0, we see that (B, [A,A*]) is real and stricly positive.
Let H = [A,A*] and we determine elements of g in the following:

Ho=— 2> H
P~ (B.H)

2
=\
B —2 B

P\ (B.H)

We want to find [Hg,Ag| = 2A and [Hp, Bg] = —2B using (B, Hp) = 2

[Hp,Ap] = HpAp — A, Hp

—LH 2 A— 2 A 2 H
CBE T B\ BE) TR

_ 2V2

R IN (5.11)
= [H,A]

— (B, H)AL (B H) = 2)

=2A.
We see that [Hg, Bg] = —2B with the method in (5.11). Also,

[Ap,Bp] = % = Hp.

Notation. Let Ag,Bg and Hg be the elements in the theorem @
We have

sP = (Ag, Bp, Hp) (5.12)
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acts on g by the adjoint representation.

Lemma 5.2.6. We assume that  and k. are two roots such that | k |> 1, so we have
k+2.

Proof. Say sP in the previous Notation. Suppose that Y= k.B is a root and that A # 0 is
an element of gy, using we have

[Hp,A] = (v,Hp)A = k(B, Hp)A = 2kA.

When [Hp,A] = 2kA, we see that 2k is an eigenvalue of the adjoint action of sP over g.
Using point 1 of Theorem 4.34 (see e.g Hall,2015), we see that the eigenvalue which we
obtained, must be an integer. In that case, k = (1/2).u where u is an integer. However, we
look at the roots in the hypothesis, we have that 1/k must be an integer multiple of 1/2.
We observe the case k = u/2 for a some integer u. 1/k = 2/u is also integer multiple of
1/2, which means that 2/k = 4 /u is an integer. As a result, we find y = +1,+2, or £ 4.
So, we have k = +1/2,+1,0r £ 2. However, we supposed | k |> 1. Thus, k = £2.

5.3 The Weyl Group

Let B be a root and let R be the set of roots. This group is a symmetry of the set R. In this

section, we examine the Lie algebra approach to the Weyl group.

Definition 5.3.1. For every B € R, we define a linear map sg = b — b as follows

sB.H:H—ZMB. (5.13)

(B,B)
The Weyl group of R, we denote W, it is the subgroup of Gl(h) spanned by sp’s where
BeR.

We supposed that every B is in it and the inner product is real on t also assume that

H < it, when we look at the definition of sp-H, then we see that sg-H is also in it. When
we consider a map of it to itself, s is the reflection about the hyperplane orthogonal to [3
which means that sg.HH = H when H | [3, and we have sg.p = —[. We know that every
reflection is an orthogonal linear transformation, we see that W is a subgroup of the

orthogonal group O(it).

Proposition 5.3.1. Let  be a root in R, let sg: b — b and H € h,W C O(it). We have
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3. M € O(it), then MsgM "' = syp).

Proof. 1. We want to prove that sg(H) € O(it) i.e. (sg(H),sp(Ho)) = (H,Hp) for all
H, Hj € b, using[5.13] we get

(B,H) . (B,Ho)
(sg(H),sp(Ho)) = (H — 2([3 B B,Hy—2 B, >l3>

iy o BHYBH)  (BH)(BHy) _ (BH)(B.HO) (BB’
= Ho) 2y e T e T (BB

= <H7H0>'

2. We know that sg(B) = B, we have 5_g(—[) = B. Furthermore, assume that H is
perpendicular to f3, it is also perpendicular to —[3, hence s_g(H) = H. Then, sg
acts in the same method as §_pgon the all space, so Sg=5_¢. Afterwards , we see
that 5[25([3) = 5(—P) = B. Furthermore, for H perpendicular to §,

5%([5) = 53(B) = B. Then, 5123 acts the similar method as 1 does, hence 5% =1.

perpendicular to M(H), (M~ (H),B) = (H,M(B)) = 0 with M € O(it). So,
MsgM~'(H) = Msg(B) =M (M~'(H)) = H. Hence, MsgM " acts the similar
method as (), so they are equal.

3. We see that MsBM_l(M(B)) Msg(B) = M(—B) = —M(P). For any H
1(>

Theorem 5.3.1. Let B be a root, for every w € W, so w.p is also. (See e.g. (Hall, 2015)).
Proof. Let B in R, say the invertible linear operator Sg on g as follows

SB _ eadABe—adAB eadAB .

Suppose that H is in b, it satisfies (B, H) = 0, when we write (8, H) in the equation
[H,Ag] = (B, H)Ag, we obtain [H,Ag] = 0. Thus, H and Ag commute, meaning ady and
adAB also commute, and in the same way, for ady and adBB. Assume that (B, H) = 0, the

operator Sg going to with ady, we have then

SpadnSg' = ady, (B,H)=0. (5.14)
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We consider the point 3 of Theorem 4.34 (see e.g. Hall,2015) to the adjoint action of
P~ S1(2;C) on g, we have

Spadp,Sy ' = —adp,. (5.15)
Using[5.14]and [5.15] for each H, we have
SpadpySy ' = —adsg n.

We consider an another root y and the root vector A, we rewrite
sg : b — b and look at the vector S[;] (A) €g.

(5.16)

So, Sgl is a root vector with slgl .y = sp.Y. tl gives that the set of roots is invariant under

every sg and, hence, under W.

5.4 Root Systems

In this section , we give a few properties of the roots, using also the result which we saw
until now. For every root 3, we have an element Hg of b included in [gB, g,ﬁ] as in
Theorem Furthermore, we have seen (B, Hg) = 2 and Hg = 2/(B, ). In
particular, Hg do not depend the choice of Ag and Bg.

Definition 5.4.1. Let 3 be a root, Hg = 2B/(B,B) is called the corroot appropriate to .

Proposition 5.4.1. Consider the roots B and vy, we obtain that

(Y. Hp) =222k (5.17)

is an integer.

Proof. let 5P = (Ap, B, Hg) be seen like in Theorem let ybe a root and let Y be a
root vector appropriate to , so we have [Hg,Y] = (v, Hp)Y. In that case, we see that
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(Y, Hp) is an eigenvalue for the adjoint action on 5P~ s[(2,C). As we used before, using

point 1 of Theorem 4.34 (see e.g. Hall,2015) we say that (Y, Hg) must be an integer.

Remark. As we have seen in the elementary linear algebra, that is, we have an inner
product space, and consider 3 and y two elements of our inner product space, hence we

can talk about the orthogonal projection of y onto [ is as seen like:

M (5.18)

BB
When we observe (5.17), we see that it is double of the expression in (5.18)), which

means that, we can talk about twice projection of y onto 3.

Consider R the set of roots and R C E := it where E is a real inner product space, we can

give the proporties of R in the following theorem.

Theorem 5.4.1. Let R be the set of roots, assume that it is finite set of nonzero elements

of a real inner product space E, and R has the following additional properties.
1. The roots span E.
2. Suppose that B is in R, so —B is, and the only multiples of B in R are B and —p.
3. Assume that B,y € R, so sp.Y, where sg is the reflection defined by (1.14).

4. For every B and 7y in R, the quantity

is an integer.

Any such collection of vectors is called a root system.
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Up to now we saw the definitions, theorems and examples on the semisimple Lie
algebras. In this subsection we work over C and we consider the classical Lie algebras
sl(n;C),s0(2n;C),s0(2n+ 1;C) and sp(n;C). We want to find the structure of its root

systems.

6.0.1 The Special Linear Lie Algebras sl(n+ 1;C) [A,]

We recall that sl(n+ 1;C) is the set of all (n+ 1) x (n+ 1) matrices with complex entries
having trace zero. The Lie bracket of element of s[(n+ 1;C) is comutator of its matrices,
also the dimension of sl(n+ 1;C) is n> + n. We work with the compact real form

t = su(n+ 1) and the commutative subalgebra t which is the intersection of the set of

diagonal matrices with su(n+ 1); which is,

ia; 0

ia2
ajE]K al+..+a,1=0p. (6.1)

0 lan+1

We also consider h := {¢, which is described as follows:

A 0

A
? AEC, MA.thp1=0Y. 6.2)

0 7\'n+1

If a matrix X commutes with each element of t (i.e. [X,H| =0, VH € 1), it will also
commute with each element of . Also X is an element of the center of sl(n+ 1;C). For
any 1 < j,k <n+1,let Ej; be the matrix with a 1 in the (j, k) spot and zeros elsewhere.
Consider the matrix Hj; € sl(n+ 1;C) given by

Hjy=Ejj—Eqy j<k.

37
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Then we may calculate, since X is in the center
0= [ij,X] = 2XiE ji — 2Xi jEx-

Since Ej; and Ey; are linearly independant for j < k, we conclude that X j; = X;; = 0.
Since this holds for all j < k, we see that X must be diagonal. If X € su(n+1), then X
would be in t. Thus, t is actually a maximal commutative subalgebra of su(n+ 1). Now
E ;. denote the matrix that has a 1 in the j th row and k th column and that has zeros
elsewhere. If H € b is as in (6.2), then HE jy = AE i and Ej3H = ME ji.. Thus,

[H,Eji] = (Aj — M)E ji. (6.3)

We consider j # k, then Ej is in sl(n+ 1;C) and shows that E j is a simultaneous
eigenvector for each ady with H in b, with eigenvalue A; — A;. Furthermore

X =Y®Zesl(n+1;C) where Y is an element of the Cartan subalgebra and Z is a
linear combination of Ej;’s with j # k by being s[(n + 1;C) is semisimple.

Let h* = {¢ : h — C}, if we look at the roots as elements of h* then according to (6.3)
the roots are the linear functionals o j; with H in b, as in , the quantity A ji— M. We
identify h with the subspace of C"*! consisting vectors whose components sum to zero.
The inner product (X,Y) =trace (X*Y) on b is just the restriction to this subspace of the
usual inner product on C"*! If we use this inner product to transfer the roots from h* to

b, we have the vectors
o =ej—ex (j#k).

The rank of sl(n+ 1;C) is n by the dimension of . We say that the length of a root

|0k | = \/<ej_eka€j_ek> =2

and (ejk,ej/k/> has the value —2,—1,0, 1,2 depending on whether {j,k} and {j/,k,} have

zero, one or two elements in common. We have then

(0. 0L7)

o) €{-2,-1,0,1,2}.
JKs

If o and [ are roots and o # 3 and o0 # —[3, then the angle betweeen o and [ is either
n/3,m/2, or 2n/3, depending on whether (o, 3) = —1,0, 1. The root system of this Lie
algebra is called A,,. (See e.g. (Hall, 2015)).
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6.0.2 The Orthogonal Algebras so(2n;C) [D,]

To talk about root system of so(2n;C), we give the elements that we will use:
e 50(2n;C) = {X € gl(2n;C)| X +XT =0}.
e Its compact real form is so(2n)

e tis the commutative subalgebra so(2n) which consist of 2 x 2 block-diagonal

matrices in which the j* diagonal block is as follows

0 aj
: 6.4
(o) 64

for some a; € R. Now we construct a subalgebra in so(2n;C) using t, which means that
h = t+ it and its matrices are of the form (6.4)) with the entries are in C. The roots
vectors are 2 X 2 block matrices which has a 2 x 2 matrix C in the (j,k) block (j < k), the
matrix —C"" in the (k,j), and zero in all other blocks. They can be as follows:

B O S B e A N B A N A B
U ) L ) P ) L )

The calculation in the appendix in page 47 shows that the vectors aboves are roots
vectors and that the corresponding roots are the linear funcionals on § given by
i(aj+ar),—i(aj+ax),i(a;j— ai), and —i(a; — ay), respectively.
Consider the inner product on h given by (X,Y) = trace (X*Y)/2. If we identify h with
C"ie.

Hw—i(ay,ay,...,a,),

and used inner product on h will correspond to the usual inner poduct on C". In this case

we consider the roots as the elements of C” and the vectors are then
Fejter, Jj<k, (6.5

where {e;} is the standart basis for R” and j = 1,2,..,n Now we prove that t is a
maximal commutative subalgebra of ¢. Since so(2n;C) is semisimple then we see that
X =H+Y €50(2n;C) where H € h and Y is a linear combination of the root vectors
+e; & e;. Furthermore if X commutes with every element of t, then X also commutes
with every elment of . Because of the linear functionals i(o; + 0y ), j < k, is nonzero on
b, in this case the coeffients of the root vectors in the expansion of X must be zero;

i.e X must be in h. If X is in €, then X must be in the intersection of h and ¢ but this

intersection equal to t so X € 7. t is maximal commutative subalgebra in €. By definition
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of semisimplicity, so(2n;C) has no non-zero abelian ideals (i.e it has no non-zero
commutative subalgebras), in this case the center of so(2n;C) is trivial. If X is in the
center of so(2n;C) by previous paragraph, X must be in . For each root vector X,

corresponding to root ot and X in b, we have
O == [X,X(X] = <(X7X> Xa,

we see that (o, X) = 0. We have identified h with C", if n < 2, the roots in span

h = C" and we conclude that X must be zero. Furthermore if we choose n = 1 then there
are no roots and s0(2; C) = b is commutative. The root system of this Lie algebra is
denoted by D,,. ( See e.g.(Hall, 2015)).

6.0.3 The Orthogonal Algebras so(2n+ 1;C) [B,]

To determine the root systems of so(2n + 1;C), we give its structure and the compact

real form we will use to find the elements of root systems
s0(2n+1;C) = {X € gl2n+1;C)| X + X7 =0}

and its compact real form is so(2n+ 1). t is commutative subalgebra which consist of
block matrices with n block of size 2 x 2 followed by one block of size 1 x 1. We use the
2 x 2 blocks being of the same form as in so(2n). Also by definition so(2n+ 1;C) we
see that the 1 x 1 block matrice is zero. Then h := t¢ = t+ it, and we must prove that b
is a Cartan subalgebra, it consists of the matrices in so(2n + 1;C) and similarly in t, also
the off-diagonal elements of the 2 x 2 blocks are complex. The same method in
$0(2n;C) and the similar calculations in the [appendix |10] in the page 47, shows that t is
maximal commutative, then f is a Cartan subalgebra.

Since 1 x 1 block in the last is zero, we can consider the Cartan subalgebra in

s50(2n+ 1;C) as in the s0(2n;C). Furthermore they have the same rank that of n. Every
root for so(2n;C) is also a root for so(2n + 1;C) with this identification of the Cartan
subalgebra. But, there are 2n additional roots in s0(2n+ 1;C). They have 2 x 1 block in
entries (2k,2n+ 1) and (2k+ 1,2n+ 1) as follows:

()

and to have —B{" in entries (2n+ 1,2k) and (2n+ 1,2k + 1), together with the following
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(4

in entries (2k,2n+ 1) and (2k+1,2n+ 1) and —BY in entries (2n+ 1,2k) and
(2n+ 1,2k + 1). We define the inner product (. , .) : h* — b such that the inner product

(X,Y) =trace (X*Y)/2 and the roots correspond to the above root vectors, seen as

matrices to have

elements of h*, are given by ia; and —iay.

If we use this inner product to identify the roots with elements of h and then we can
consider h = C" as in so(2n; C), the roots are e +ei, j < k, as we saw in so(2n;C),
with additional roots are

*ej, j=1,2,...,n.

We have seen that the length of the roots e & ¢ is 2, these additional roots are shorter
by a factor v/2 than the roots +e; + ¢, for s0(2n;C). The root system of so(2n+ 1;C) is
denoted B,,. (See e.g. (Hall, 2015) )

6.0.4 The Symplectic Algebras sp(n;C) [C,]

In this section, we will work to understand the structure of the root system of the Lie

algebra sp(n;C) studying in details on the followings:

e sp(n;C) ={X €gl(2n;C)| X'Q + QX = 0} forn > 1 where Q is the 2n X 2n

matrix, that is,

0 I
Q= ( O) and 1 is identity matrix of dimension n X n

We have Q% = —I where I is identity matrix of dimension 21 x 2n and we see that
X'Q = —QX using the equation in sp(n;C) also we multiply by Q the both side,

we obtain that QX’"Q = X When we consider the all of the above, we have

X € sp(n;C) as follows :
A B
X = 7

where A is an arbitrary n X n matrix; B and C are arbitrary symmetric matrices of

dimension n X n.

e We know that u(2n) = { A € gl(2n;C)| A” = —A } and the compact real form of
X €sp(n;C) is sp(n) = sp(n; C) Nu(2n)



42

e The commutative subalgebra is to consist the matrix as follows :
a
an

(6.6)
—ay

_an

where each a; is pure imaginary. We construct the subalgebra b = t + it of

sp(n; C), that consists of the similar to the matrix but the elements of matrix
aj is arbitrary complex number. As we did in previous subsection, the calculations
below that we will do to find roots and roots vectors of sp(n;C), show that t is

maximal commutative, then h = t+ it is a Cartan subalgebra.

Let E j; denote the matrix that has a one in the j row and k" column and has zeros
elsewhere. Using the given matrices in the above, when we do the similar calculation in

the [Appendix [I0]], we have the 2n x 2n matrices of the block form

0 Ej+Ey 0 0
0 0 7 Ejk"‘Ekj 0/)

(j # k) are root vector for which the corresponding roots are (a; + ax) and —(a; + ax),

respectively. Other matrices of the block form

Exp 0
0 —E;

(J # k) are root vector for which the corresponding roots are (a; — a;). Finally, matrices

of the block form
0 Ej 0O 0
o o) \Ej; 0/

are root vectors of being roots 2a; and —2a;. As before the subsection, the inner product
on b is
(X,Y) =trace(X*Y)/2.
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If we identify f with C" by the map, H € b
Hw— (ay,....,an),

then the inner product on f) will correspond to the standart inner product on C". The
roots are the vector of the form

iejiek, j<k

and of the form
:|:2€j, j: 1,...,n.

As we saw in the above, this rooot system as that for so(2n; C), except that instead of
+ej, we have £2¢;. The root system is C,,. See e.g. (Hall, 2015).
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APPENDIX

Some propositions and definitions which we used as folllows:

Proposition 1. Let V be a finite-dimensional vector space over an algebraically
closed field k. Let A € Hom(V,V), and Ay, ..., A, € k be the different eigenvalues of
A. Put

Vi={veV:(A-=NDY =0 fork suf ficiently large}.

Then

1. V=Y,V (direct sum).
2. Each V; is invariant under A.

3. The semisimple part of A is given by
S(ivi) :ikivi (vi eV)).
i=1 i=1
4. The characteristic polynomial of A is
det M\ —A) = (A= A% ..(A=A) 7,
where d; =dim V; (1 <i<r).
Proposition 2. Let V be a vector space. If A is commuting collection of linear

operators on V and each a € A is diagonalizable, then the elements of A are

simultaneously diagonalizable.

Definition 1. A Lie algebra g is called reductive if the following equivalence

conditions hold:
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1. Itis the direct sum g = h @ a of a semisimple Lie algebra h and an abelian Lie

algebra a

2. Its adjoint representation is completely reducible: every invariant subspace has an

invariant complement.

Proposition 3. Let g := £ be a reductive Lie algebra. Then there exists an inner
product on g that is real valued ¢ and such that the adjoint of £ on g is unitary

meaning that
(adx(Y),Z) = —(Y,adx(Z)) (6.7)

forall X € tand all Y, Z € g. If we define an operation X — X* on g by the formula
(X1 +iX2)" = X, +iX» (6.8)
for X1,X> € &, then any inner product satisfying also satisfies
(adx (Y),Z) = —(Y,adx+(Z)

for all X,Y and Z in g.

Theorem 1. (Cartan’s criterion) Let g be a Lie algebra. g is solvable is and only if

K([g,9],8) = 0 where K is Killing form.

Theorem 2. Suppose that A € M,,(C) has the property that A*A = AA* (e.g. if
A*=A, A* =A"! or A* —A). Then A is diagonalizable.

Definiton 2.

1. Let b be a real Lie algebra. The complexification of h noted h€ is a vector space

equipped with the Lie bracket
la-+ib,c+id) = [a,c] — [b,d] +i([b,c] +[a.d])

for a,b,c,d €.
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2. Let g a complex Lie algebra and h a real Lie subalgebra, § is a real form of g if
there exists a C-linear isomorphism y : h© — g such that Y|, = Id. Every complex

Lie algebra has a compact real form.
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Calculation for the roots and root vectors of the Orthogonal
Algebras so(2n;C)

Consider H € hh = t+ it and the matrix represantiton of H is as follows :

0 al
—a; O
0 0
0 0
0 O
0 0
0 O
0 0

0
0

0O O

0O O

a 0

0O O

0O 0 as-
0 —az O
0O O

0O O

S O o <@

0O O
0 O
0O O
0O O
0 O
0O O
0 a,
—a, 0

, a; €C

Consider X € so(2n;C) and let m = 2n , the matrix representation is as follows :

0
—X21
—X31
—X41
—X51
—X61

—Xml

X21
0
—X32
—X42
—X52
—X62

—Xm2

X31
X32
0
—X43
—X53
—X63

—Xm3

X41
X42
X43
0
—X54
—X64

—Xm4

Xs51
X52
X53
X54
0

—X65

—Xm5

X61
X62
X63
X64

X65
0

—Xm6

Xm1
Xml
Xm3
Xm4
Xm5

Xm6

, x,'jG(C
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Now we calculate [H,X| = HX — X H using above matrices, that is,

0 0 —as1 —as1 —asy —ag - —ar1
0 0 -—an —ap —asx —ag - —ag
a1 axp 0 0 —as3 —aegz - — a3
ayg agp 0 0 —as4 —aes -+ —ai4
[H,X]=|as1 asx as3 ass O 0o - —ays
as1 Ay A3 ded 0 o - — k6

0O O

agl a2 @3 as a4 aGe - 00

where a;; 1s en function de gy and x;;. The four elements a31,a3;,a4; and asp in

[H,X] are explicitly as follows:

® 3] = —axX4] —aA1X32 432 = —daX4] +a1X3]

® a4] = axX3| —a1x42 a4p = arx3) +a1x4]

We can determine the other entries of [H,X| as in the above. We have also the

equation
[H,X] = (o, H)X where (o, H) is scalar and H € h, X € so(2n,C).  (6.9)

If we write the above matrices H and X in the equation (6.9)), we obtain the

following equaions:
2 2 2 2
X31 +X41 = X3 +X42 =0 and X32X41 = X31X42. (610)

When we find the possible solutions of the equations in (6.10]), we obtain the root
vectors X which has 2 x 2 block C in the (j < k) block , the matrix —C"" in the (k,j)

block, and zero in the other block and C is one of the four matrices as follows :
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Also the roots o are linear funcitionals on h given by :

i(aj+ax), —i(aj+ay), i(aj—ay),and —i(a;—ay), respectively.
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