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Abstract

A Lie algebra is a vector space over a field k (C or R) with a given bilinear operation
satisfying the Jacobi identity and its operation is called the Lie bracket. In chapter 1, we
observe the structure of the Lie algebras sln(C), gln(C) and son(C), we work on their
subalgebras, ideals. After, we explain the nilpotent and solvable Lie algebras using the
lower and derived series with examples, non-examples. The end of the chapter 1 we give
the definition of the simple and semisimple Lie algebras. In chapter two, we are talking
about Sophus Lie, a Norwegian mathematician who lived in the the later of the 19th

century.

In chapter three, we give the threorems of Lie and Engel using the notions of the
nilpotent and solvable Lie algebras which is given in chapter 1. In the next chapter, we
observe the properties of the adjoint representation for a given Lie algebra and we look
at its relation with the Lie bracket, i.e. adX(Y ) = [X ,Y ] = XY −Y X . Further we give the
definition of the Killing form, which is K(X ,Y ) = Tr(ad(X)◦ad(Y )). In the end of this
chapter, we see a theorem which contains the notions such as semisimple, abelian ideals,
nondegenerate and simple ideals.

Later, we give the definitions of a Cartan subalgebra and the root for a given semisimple
Lie algebra, we consider the special linear Lie algabras sl(n+1,C), a compact real form
for it, is su(n+1) that is a skew-hermitian matrix. i.e. (A)T = A. In this way, we
construct the root systems for semisimple Lie algebras.

In summary, in this dissertation, we examine the root system decomposition of classical
semi-simple Lie algebras with the aim of establishing a relation between the
above-mentioned chapters. Furthermore, I calculated explicitly the roots and root vectors
of the semisimple Lie algebras so(2n, C), sl(n+1, C), so(2n+1, C), sp(n, C); added
to the study.

Key words : Lie algebra, Lie bracket, nilpotent and solvable Lie algebras, Cartan
subalgebra, Killing form, root system.



Özet

Lie cebiri; Lie parantezi olarak adlandırdığımız ikili işlemle birlikte Jacobi eşitliğini
sağlayan bir vektör uzayıdır. İlk bölümde sln(C), gln(C) ve son(C) Lie cebirlerini,
onların alt cebirlerini ve ideallerini ele alıyoruz. Sonra tanım ve örneklerle Lie
cebirlerinin yapısını anlamaya çalışıyoruz. Devamında nilpotent ve çözülebilir Lie
cebirlerinin yapısını örneklerle açıklıyoruz. İlk bölümün sonunda, basit ve yarı-basit Lie
cebirlerinin tanımlarını görüyoruz. İkinci bölümde, Lie cebiri kavramının Sophus Lie
tarafından ortaya atıldığını ve geliştirildiğini söyleyerek, Sophus Lie hakkında kısa
bilgilere yer veriyoruz

Üçüncü bölümde, daha önce ğördüğümüz nilpotent ve çözülebilir Lie cebirlerinin
özelliklerini kullanarak Lie ve Engel teoremlerini veriyoruz. Bir sonraki bölümde,
verilen bir Lie cebiri için adjoint temsili yazıp, onun Lie parantezi ile ilişkisini
inceliyoruz. Örnek verirsek; X ,Y ∈ g olacak şekilde, bu adjoint temsili
adX(Y ) = [X ,Y ] = XY −Y X olarak ifade edebiliriz. Bu temsil yardımıyla aşağıda
verilen Killing form kavramından bahsediyoruz.

K(X ,Y ) = Tr(ad(X)◦ad(Y )).

İlerleyen bölümlerde, verilen bir Lie cebiri için Cartan alt cebiri ve kökler bulup,
Lie cebirleri için kök sistemleri oluşturuyoruz. Ayrıca verilen bir yarı-basit Lie cebiri
için kompakt reel form bulmamız gerekiyor. Örneğin; Lie cebiri olarak sl(n+1,C)
alırsak, kullanacağımız kompakt reel form su(n+1) olur.

Özetle, bu çalışmada, yukarıda bahsedilen bölümler arasında ilişki kurmayı
amaçlayarak, klasik yarı-basit Lie cebirlerinin kök sistem ayrışmasını inceliyoruz.
Ayrıca so(2n, C), sl(n+1, C), so(2n+1, C), sp(n, C) nin kök ve kök vektörlerini
açık bir şekilde hesaplayıp, çalışmaya ekledim.

Anahtar Sözcükler : Lie cebiri, Lie’nin parantezi, nilpotent ve çözülebilir Lie cebirleri,
Cartan alt cebiri, Killing form, kök sistemi.



1 INTRODUCTION

1.1 Basic Definitions and Examples

Our aim is to study on the Lie algebras and to observe the decompositions of the
semisimple Lie algebras. So we will give basic definitions and examples.

Definition 1.1.1. Let k be a field. An algebra X is a vector space over k together with

the following map

∗ : X×X → X

(x,y) 7→ x∗ y

which satisfies the following conditions:

i) x∗ (y+ z) = x∗ y+ x∗ z and (x+ y)∗ z = x∗ z+ y∗ z for all (x,y,z) ∈ X3.

ii) (ax)∗ (by) = (ab)(x∗ y) for all (a,b) ∈ k2 and (x,y) ∈ X2.

Example 1.1.1. Let V be a finite dimensional vector space over k and Endk(V ) denote

the set of linear transformations V →V over k. Then Endk(V ) is a finite dimensional

algebra over k with the operation of composition.

Definition 1.1.2. A subvector space Y of X which is stable for the multiplication has a

natural structure of algebra inherited from the algebra structure of X. Such a subvector

space Y is called a subalgebra of X.

Remark. Let V be a finite dimensional vector space, let Hom(V,V ) denote the ring of all
endomorphisms of V . Let {e1,e2, ...,en} be a basis of V . To each T ∈ Hom(V,V ) we
associate a matrix

MT = (ai j) =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
an1 an2 · · · ann
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where the coefficients are determined by

T (e j) =
n

∑
i=1

ai jei (1≤ j ≤ n).

We call the matrix MT the matrix representation of T in terms of the basis {e1,e2, ...,en}.

Lemma 1.1.1. The mapping T →MT is an isomorphism of Hom(V,V ) onto the ring

Mn(k) of all matrices in k.

Definition 1.1.3. An upper triangular matrix is a square matrix in which all entries

below the main diagonal are zero. A lower triangular matrix is a square matrix in

which all entries above the main diagonal are zero. A matrix which is both upper

triangular and lower triangular is a diagonal matrix.

Definition 1.1.4. A scalar λ ∈ k is called an eigenvalue of the n×n matrix M if there is

a non trivial solution x ∈V of Mx = λx. Such an x is called an eigenvector
corresponding to the eigenvalue λ. The set of the elements x ∈V denoted by Vλ and its

union with the zero set is called eigenspace of M for the eigenvalue λ. For the identity

matrix I, the equation det(λI−M) = 0 is called the characteristic equation of M.

Example 1.1.2. We have the matrix M =

(
5 2
2 2

)
.

• Its characteristic equation is λ2−7λ+6 = 0.

• Its eigenvalues are λ = 6 and λ = 1.

• Its eigenspaces are

Vλ=6 = {(2t, t) : t ∈ R}

Vλ=1 = {(t,−2t) : t ∈ R}.

Definition 1.1.5. An endomorphism T ∈ Hom(V,V ) is called nilpotent if T k = 0 for

some integer k > 0. Similarly, a matrix N is called nilpotent if Nm = 0 for some integer

m > 0.

Example 1.1.3. Consider N =

3 4 −7
1 2 −3
2 3 −5

 ∈M3(R). Then we find

N2 =

−1 −1 2
−1 −1 2
−1 −1 2

 and N3 = 0, so N is nilpotent.
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Proposition 1.1.1. If T ∈ Hom(V,V ) is nilpotent, then T has exactly one eigenvalue,

namely 0.

Proof. We know that any given T we can associate a matrix N and there is an
isomorphism between them therefore if T is nilpotent then N is nilpotent. Suppose N is
nilpotent by definition, there exists some k ∈ N such that Nk = 0. Let λ be an eigenvalue
of N and let x be the eigenvector corresponding to λ. So, we can say that they satisfy the
equality Nx = λx. Multiplying this equality by N on the left, we have N2x = λNx = λ2x

Now, the claim is that Nkx = λkx.
Proof of the claim: We know Nx = λx and N2x = λ2x for some k ∈N. We want to prove
that Nkx = λkx. Assume that Nk−1x = λk−1x

Nkx = NNk−1x = Nλ
k−1x (by hypothesis).

Since λk−1 is scalar, then we can write

Nλk−1x = λk−1Nx

= λk−1λx

= λkx.

We proved that Nkx = λkx.
Now, since Nk = 0, we get Nkx = 0. By the equality Nkx = λkx, then λkx = 0.
Since x is an eigenvector and hence nonzero by definition. We obtain that λkx = 0 and
thus λ = 0.

Definition 1.1.6. Let σ be a subset of Hom(V,V ). A subspace W of V is called invariant
(under σ), if T (W )⊂W for each T ∈ σ.

Example 1.1.4. Suppose T ∈ σ⊂ Hom(V,V ).

• If v ∈ {0}, then v = 0 and hence T v = 0 ∈ {0}, since T is homomorphism. Thus,

{0} is invariant under T .

• If v ∈V , T v ∈V . Thus, V is invariant under T .

• KerT = {v ∈V ;T v = 0}. If v ∈ KerT , then T v = 0 and T (T v) = T (0) = 0. Hence

T v ∈ KerT . Thus, KerT is invariant under T .
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1.2 Lie Algebra

In this section, first of all, we will see a relation between a Lie group and a Lie algebra
giving the definition of a Lie group and its examples.

Definition 1.2.1. A Lie group is a smooth manifold G endowed with a group structure

such that the following maps are smooth:

1. The group multiplication is for x,y ∈ G

G×G→ G

(x,y) 7→ xy.

2. The inverse map is for x ∈ G

G→ G

x 7→ x−1.

Example 1.2.1. We denote the set of n×n matrices with complex entries by M(n;C) and

the general linear group GL(n;C) is the subset of M(n;C), that is

GL(n;C) = {X ∈M(n;C) : det(X) 6= 0}

is a Lie group. For a proof, see (Charters, 2008). The other examples for Lie groups

• The special linear group SL(n;C) defined as follows:

SL(n;C) = {X ∈ GL(n;C) : det(X) = 1}.

• The orthogonal group O(n) is:

O(n) = {X ∈ GL(n;R) : XT = X−1}.

Let G be a Lie group, the tangent space of G at identity is the Lie algebra of G i.e
TeG∼= g.

Example 1.2.2. The fact that GL(n;R) is an open subset of M(n;R)∼= Rn2
also implies

that the Lie algbera of GL(n;R), as the tangent space at identity is the set M(n;R) itself,

that is,

gl(n;R) = {X : X is an n×n real matrix}.
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Another example, consider the special linear group SL(n;C), its Lie algebra is denoted

by sl(n;C) which is the set of matrices of trace zero.

Notation. We can denote by gln(R), sln(R) instead of gl(n;R), sl(n;R), respectively.

Now, we will see another definition of a Lie algebra which is more algebraically

Definition 1.2.2. Let k be a field. A Lie algebra is a vector space over k with an

operation

[., .] : g×g→ g

(X ,Y ) 7→ [X ,Y ]

which satisfies the following axioms:

• [., .] is bilinear.

• ∀X ,Y ∈ g , [X ,Y ] =−[Y,X ] ( skew-symmetric).

• It satisfies the Jacobi identity.

∀X ,Y,Z ∈ g, [X , [Y,Z]]+ [Y, [Z,X ]]+ [Z, [X ,Y ]] = 0.

We note that the product [X ,Y ] is called a Lie bracket of X and Y in g.

Example 1.2.3. Consider k = R, we write x = (x1,x2,x3) and y = (y1,y2,y3) in R3.

The cross product is defined as

∧ : R3×R3→ R3

(x,y) 7→ x∧ y = (x2y3− x3y2,x3y1− x1y3,x1y2− x2y1).

(R3,∧) is a Lie algebra over R.

Example 1.2.4. Let k be a field, the general linear algebra gln(k) which is the space

Mn(k) of all n×n matrices with the entries in k, is a Lie algebra. Since

• [., .] is bilinear.

gln(k)×gln(k)→ gln(k)

(A,B) 7→ [A,B] = AB−BA
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for every A,B,C ∈ gln(k), λ ∈ k.

[λA+B,C] = (λA+B)C−C(λA+B)

= λAC+BC−CλA−CB

= λ(AC−CA)+BC−CB

= λ[A,C]+ [B,C].

Similarly, [A,µB+C] = µ[A,B]+ [A,C].

Then, it is bilinear.

• [A,B] =−[B,A] for every A,B ∈ gln(k). It is skew-symmetric.

• We check that it verifies the Jacobi identity. Since, for all a,b,c ∈ gln(k),

[A, [B,C]]+ [B, [C,A]]+ [C, [A,B]] = [A,BC−CB]+ [B,CA−AC]+ [c,AB−BA]

= ABC−ACB−BCA+CBA+BCA−BAC−CAB+ACB+CAB

−CBA−ABC+BAC = 0.

Hence, gln(k) is a Lie algebra.

Example 1.2.5. The set of upper triangular matrices in gln(k) is

bn(k) = {A ∈ gln(k)| xi j = 0, i f i > j where xi j ∈ k,∀i, j ∈ N}

is a Lie algebra under Lie bracket.

Example 1.2.6. The special linear algebra

sln(k) = {A ∈ gln(k) : trace(A) = 0}

is a Lie algebra under Lie bracket.

Definition 1.2.3. Let g be a Lie algebra. A subset h⊆ g is a Lie subalgebra if:

1. h is a vector subspace of g.

2. It preserves the Lie brackets which means that [A,B] ∈ h, A,B ∈ h.

Example 1.2.7. sln(k) and bn(k) are Lie subalgebras of gln(k).

For k = C, we prove that sln(C) is a Lie subalgebra of gln(C).
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Proof. 1. Let A,B ∈ sln(C) then Tr(A) = Tr(B) = 0. From the linearity of the trace,
we have

Tr(A+B) = Tr(A)+Tr(B) = 0.

Then, A+B ∈ sln(C). Furthermore, A ∈ sln(C) for all λ ∈ C, Tr(λ.A) = λ.Tr(A)

thus λ.A ∈ sln(C). Hence, sln(C) is a vector subspace gln(C).

2. Let A,B ∈ sln(C) and we know that Tr(A.B) = Tr(B.A). Then,

Tr([A,B]) = Tr(A.B)−Tr(B.A) = 0.

This gives that [A,B] ∈ sln(C). Thus, sln(C) is a subalgebra of gln(C).

Example 1.2.8. Consider the Orthogonal group

On(R) = {A ∈ GLn(R) : AT .A = I}.

Let on(R) be the Lie algebra of On(R) consisting of skew-symmetric matrices which is,

AT =−A, for all A,B ∈ on(R)

(AB−BA)T = BT .AT −AT .BT = (−B).(−A)− (−A)(−B)

=−(AB−BA).

Then, on(R) is closed under the Lie bracket. Hence, on(R) is a Lie subalgebra of gln(R).

Definition 1.2.4. Let g be Lie algebra, a subspace h of g is called an ideal of g, if,

[A,B] ∈ h for all, A ∈ h, B ∈ g.

Example 1.2.9. We give some examples of ideal.

• {0} is an ideal of g.

• The Lie algebra is itself an ideal.

• sln(k) is an ideal of gln(k).

Proof. We prove that sln(k) is an ideal of gln(k). We saw that sln(k) is a subalgebra of
gln(k) in 1.2.7. It is enough to show that [A,B] ∈ sln(k) for all A ∈ sln(k), B ∈ gln(k), we
have Tr(A) = 0 and we get

Tr([A,B]) = Tr(AB)−Tr(BA) = 0, then [A,B] ∈ sln(k).
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Then, sln(k) is an ideal of gln(k).

Definition 1.2.5. Let g be a Lie algebra, it is abelian if [A,B] = 0 for every A,B in g.

Example 1.2.10. Let g be a Lie algebra over a field, every one-dimensional vector

subspace of g is an abelian Lie subalgebra.

1.2.1 Derived algebra of a Lie algebra

Definition 1.2.6. Let g be a Lie algebra over a field k and consider in g the set

g
′
= [g,g]. This is the set of elements of the form [x,y]; x,y ∈ g and possible linear

combinations of such elements. It is called the derived algebra of g.

Proposition 1.2.1. Let g
′
:= [g,g] then this is an ideal in g.

Proof. The derived algebra is by definition a subspace of g since g
′
= [g,g]⊂ g and we

have [g
′
,g
′
]⊂ [g,g] = g

′
. We have then using g

′ ⊂ g

[g
′
,g]⊂ [g,g] = g

′

Thus g
′
is an ideal in g.

Definition 1.2.7. The lower series of a Lie algebra g is given by:

g1 = g⊇ g2 = [g,g1]⊇ ....⊇ g j = [g,g j−1].... (1.1)

and the derived series of a Lie algebra is given by:

g(0) = g⊇ g(1) = [g,g]⊇ g(2) = [g(1),g(1)]⊇ ....⊇ g( j) = [g( j−1),g( j−1)]⊇ .... (1.2)

Proposition 1.2.2. Let g be a Lie algebra, consider 1.1 and 1.2.

i) All g j and g( j) are ideals of in g.

ii) g( j) ⊆ g j for n≥ 1.

Definition 1.2.8. A Lie algebra is called nilpotent if g j = 0 for some j.

Example 1.2.11. Any abelian Lie algebra g is nilpotent. Let a,b ∈ g, we have [a,b] = 0
by the definition of the abelian Lie algebra and g2 = [g,g] = 0 since [a,b]=0. Then, g is

nilpotent.
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Example 1.2.12. Let k be a field and assume that g= ka+ kb with [a,b] = b, g is not

nilpotent. Since, g2 = [g,g] = [ka+ kb,ka+ kb], we have then

g2 = k[a,a]+ k[a,b]+ k[b,b]+ k[b,a]

= k[a,b]+ k[b,a] ([a,b] = b and [a,a] = [b,b] = 0)

= kb− kb (k is a f ield)

= kb.

Similarly, we see that g3 = [g,g2] = [ka+ kb,kb] = k[a,b]+ k[b,b] = kb. We can prove

that g j = kb 6= 0 by induction. Suppose that g j = kb for j > 0, we prove that g j+1 = kb

g j+1 = [g,g j] = [ka+ kb,kb] = kb 6= 0.

Hence, g= ka+ kb is not nilpotent.

Definition 1.2.9. Suppose that g( j) is derived series as 1.2. A Lie algebra is solvable if

g( j) = 0 for some j.

Example 1.2.13. Any abelian Lie algebra is solvable. Since a,b ∈ g, [a,b] = 0 and

g(1) = [g,g], we have then g(1) = 0. Hence, it is solvable Lie algebra.

Example 1.2.14. We see that g(1) = g2 from the definitions of the nilpotent and solvable

Lie algebras, and we return the example 1.2.12. We have g(1) = g2 = kb and

g(2) = [g(1),g(1)] = [kb,kb] = 0. Then, it is solvable.

Definition 1.2.10. Let g be a Lie algebra over C. A radical of g is a maximal solvable

ideal of g. It is denoted by R(g).

1.2.2 Simple and Semisimple Lie algebras

Definition 1.2.11. A Lie algebra g is called simple if g is non-abelian and has no proper

ideals and dim g≥ 2.

Corollary 1.2.1. If g is simple then g
′
= [g,g] is equal to g.

Proof. We have seen that g
′
is an ideal in g. g has to be a trivial ideal since g is simple.

In this case there are two cases either g
′
= 0 or g

′
= g. But g

′ 6= 0 since g is non-abelian.
Thus g

′
= g.

Example 1.2.15. The special linear Lie algebra

sl2(k) = {A ∈ gl2(k) : Trace(A) = 0}
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is simple. (See e.g. Humphreys, 1972).

Definition 1.2.12. Let g be a finite-dimensional Lie algebra.

1. g is semisimple if it has no a nonzero solvable ideals.

2. g is semisimple if R(g) = 0 where R is a radical of g which is a solvable ideal of g

of maximal possible dimension.

Example 1.2.16. Semisimple Lie algebras over C :

• sln(C) = {A ∈ gln(C)| Tr(A) = 0} f or n≥ 2.

• son(C) = {A ∈ gln(C)| A+At = 0} f or n≥ 3.

Semisimple Lie algebras over R :

• sln( R) = {A ∈ gln(R)| Tr(A) = 0} for n≥ 2

• so(p,q) = {A ∈ glp+q(R)| A∗Ip,q + Ip,q A = 0} for p+q≥ 3

where Ip,q =

[
Ip 0
0 −Iq

]
.

• su(p,q) = {A ∈ slp+q(R)| A∗Ip,q + Ip,q A = 0} f or p+q≥ 2

1.2.3 Lie Algebras Homomorphism

Let g1 and g2 be any two Lie algebras over C. A homomorphism of Lie algebras
between g1 and g2 is a function ψ : g1→ g2 such that

1. ψ is a linear map, ψ(λ.X +µ.Y ) = λ.ψ(X)+µ.ψ(Y ) where X ,Y ∈ g1 and λ,µ ∈ C

2. ψ[X ,Y ]g1 = [ψ(X),ψ(Y )]g2 where [., .]g1 is the Lie bracket of g1 and [., .]g2 is the
Lie bracket of g2

Example 1.2.17. Let g1,g2 be any two Lie algebras, the function ψ : g1→ g2 such that

ψ(X) = 0 for all X ∈ g1 is a Lie algebra homomorphism.

Definition 1.2.13. Let g1,g2 be any two Lie algebras, the function ψ : g1→ g2 is a Lie

algebra isomorphism if ψ is homomorphism and bijective.

Proposition 1.2.3. Let V be a vector space of dimension n, gl(V ) is isomorphic to

gln(C) which means that any linear map can be written as a matrix.
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Proof. Take a basis in {e1,e2, ....,en} in V . For all T ∈ gl(V ). Consider its matrix
A = AT = [ai j]

n
i, j=1. We can describe

Te j =
n

∑
i=1

ai je j, ∀ j = 1,2, ...,n. (1.3)

Define

ψ : gl(V )→ gln(C)

T 7→ ψ(T ) = AT .

We show that ψ is isomorphism.

• We show that ψ is a homomorphism. First ψ is linear, for all T,S ∈ gl(V ) and
λ,µ ∈ C, ψ(λT +µS) = λ ψ(T )+µ ψ(S) since T and S are linear maps. Now, we
look at ψ([T,S]gl(V ))

ψ([T,S]gl(V )) = ψ(T S−ST )

= ψ(T S)−ψ(ST )

= ψ(T )ψ(S)−ψ(S)ψ(T )

= [ψ(T ),ψ(S)]gln(C)

Then, ψ is a homorphism.

• We want to prove that ψ is bijective. First, we prove that ψ is injective. For
T,S ∈ gl(V ) and consider a basis {e1,e2, ...,en} in V and we have

ψ(Te j) = ψ(Se j)

a11e1 +a12e2 + ...+annen = b11e1 +b12e2 + ...+bnnen

(a11−b11)e1 +(a12−b12)e2 + ...+(ann−bnn)en = 0e1 +0.e2 + ...+0en.

Since {e1,e2, ...,en} is a basis and it is linearly independent.

We see that a11 = b11,a12 = b12, ...,ann = bnn. ψ is injective. Now, we show that
ψ is surjective. For A ∈ gln(C) which means that A = (ai j) and by 1.3 ψ is
surjective. Then, ψ is bijective. Hence, gl(V ) is isomorphic to gln(C).



2 LITERATURE REVIEW

Lie algebras are named after Marius Sophus Lie, a Norwegian mathematician who lived
between 1842 and 1899. His first mathematical work which is Repräsentation der
Imaginären der Plangeometrie, published in 1869. He won the medal of Lobaçevski with
his mathematical studies in 1897.
He was interested in continuous symmetries of geometric objects called manifolds and
the element of Lie algebras using their derivatives. It was not only important on
mathematics, contributed twentieth century mathematical physics.
We have a vast algebraic theory studying objects as Lie algebras, Root systems, Weyl
groups etc.
Sophus Lie described simple and semisimple Lie algebras but Elie Cartan and Wilhelm
Killing completed it with the new notions (i.e. Killing form, root vector, Cartan
subalgebra). They gave the structure of some semisimple Lie algebras with its properties
and rules using these structures they classified classical semisimple Lie algebras(
sl(n;C),so(2n;C);so(2n+1;C)

)
.

Nowadays mathematicians use in their researchs the results of the given theorems and
propositions.



3 THE THEOREMS OF LIE AND ENGEL

3.1 The Theorem of Lie

Theorem 3.1.1. Let k be a field and assume that g is a solvable Lie algebra over k. Let

V 6= {0} be a finite dimensional vector space over k̃, the algebraic closure of k. Consider

a homomorphism π of g into gl(V ). Then there exists a vector v 6= 0 in V which is an

eigenvector of all the π(g).
(
See e.g. (Helgason, 1978)

)
Proof. We will prove the theorem by induction on dim g. If dim g= 1 the theorem is
consequence of proposition 1 in the appendix; we suppose that the theorem holds for
all Lie algebra over k of dimension < dim g. Let h be an ideal in g of codimension 1.
Since g is solvable then g(i) = 0 for some i and if h⊂ g, then h(i) ⊂ g(i) = 0, we have
h(i) = 0 thus h is solvable. Also the eigenvalue condition holds for h if it holds for g. By
inductive hypothesis we can choose e ∈V with π(H)e = λ(H)e for all H ∈ h, where
λ(H) is scalar-valued function defined for H ∈ h.

Fix X ∈ g with g= kX +h and X /∈ h, we define recursively

e−1 = 0, e0 = e, ep = π(X)ep−1

and let E = span{e0,e1, ...,ep, ...} then π(X)E ⊆ E. Let v be an eigenvector for π(X) in
E, we show that v is an eigenvector for each π(H), H ∈ h.

First we show that

π(H)ep ≡ λ(H)ep mod span{e0, ...,ep−1} (3.1)

We do so by induction on p. Formula 3.1 is valid for p = 0 using e0 = e. Suppose that
formula 3.1 is valid for p and we need to prove that it is valid for p+1. We have then
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π(H)ep+1 ≡ λ(H)ep+1 (ep+1 = π(X)ep)

= λ(H) π(X)ep (λ(H)≡ π(H))

= π(H) π(X)ep

= π(H) π(X)ep−π(X) π(H)ep +π(X) π(H)ep

= π([H,X ])ep +π(X) π(H)ep

≡ λ([H,X ])ep +π(X) π(H)ep mod span{e0, ...,ep−1}

≡ λ([H,X ])ep +λ(H) π(X)ep mod span{e0, ...,ep−1,π(X)e0, ...,π(X)ep−1}

≡ λ(H)π(X)ep mod span{e0, ...,ep}

≡ λ(H)ep+1 mod span{e0, ...,ep}.

This proves 3.1 for p+1 and completes the induction. Now, we show that

λ([H,X ]) = 0 for all H ∈ h (3.2)

In fact, (3.1) says that π(H)E ⊆ E and that, relative to the basis e0,e1, .... the linear
transformation π(H) has matrix

π(H) =


λ(H) ∗

λ(H)
. . .

0 λ(H)

 .

Thus Tr(π(H)) = λ(H) dim E, we obtain

λ([H,X ]) dimE = Tr π([H,X ]) = Tr[π(H),π(X))] = 0

Since the field have characteristic 0, we obtain that λ([H,X ]) = 0, (3.2) follows.
Now we can sharpen (3.1) to

π(H)ep = λ(H)ep f or all H ∈ h (3.3)

To prove (3.3), by induction on p. If p = 0, the formula is the definition of e0.
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Assume that 3.3 is valid for p. Then

π(H)ep+1 = π(H)π(X)ep

= π([H,X ])ep +π(X)π(H)ep

= λ([H,X ])ep +π(X)λ(H)ep by induction

= 0+λ(H)ep+1 by 3.2.

This completes the induction and proves 3.3. Because of 3.3, π(H)x = λ(H)x for all
x ∈ E and in particular for x = v. Hence the eigenvector v of π(X) is also an eigenvector
of π(h). The theorem follows.

Corollary 3.1.2. Let g be a solvable Lie algebra over a field k and π a representation of

g on a finite dimensional vector space V 6= {0} over k̃, the algebraic closure of k. Then

there exists a basis {e1, ...,en} of V , in terms of which all the endomorphisms π(X),

X ∈ g are expressed by upper triangular matrices.

3.2 The Theorem of Engel

Theorem 3.2.1. Let V be a nonzero finite dimensional vector space k and let g be a

subalgebra of gl(V ) consisting of nilpotent elements. Then,

i) g is nilpotent.

ii) There exists a vector v 6= 0 in V such that Zv = 0 for all Z ∈ g.

iii) There exists a basis {e1, ...,en} of V in terms of which all the endomorphisms X ∈ g

are expressed by matrices with zeros on and below the diagonal.
(
See (Helgason,1978)

)
Proof. i) We show that g is nilpotent. For Z ∈ gl(V ) consider the endomorphisms LZ and
RZ given by

LZX = ZX and RZX = XZ X ∈ gl(V ).

Furthermore let Z1,Z2,X ∈ gl(V ), we have

LZ1RZ2X = LZ1XZ2 = Z1XZ2

RZ2LZ1X = RZ2Z1X = Z1XZ2.

Since LZ1RZ2X = RZ2LZ1X then LZ and RZ commute. If ad denotes the adjoint
representation of gl(V ), we have ad Z = LZ−RZ. It follows that for X ∈ g and any
integer p≥ 0
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(ad Z)p(X) =
p

∑
i=0

(−1)i
(

p
i

)
Zp−i XZi. (3.4)

Suppose Z ∈ g then Z is nilpotent we have then Zk = 0 and there are (p+1) terms in the
relation 3.4. Also the power of Z decrease up to (p+1)/2) and after that it continues to
increase. In this case we can find a number p such that k = (p+1)/2. Therefore ad Z is
nilpotent by relation 3.4 and being Z is nilpotent. Since adg Z is the restriction of ad Z
to g, it follows that adg Z is nilpotent. Thus g is nilpotent.
ii) Let r = dim g, we shall induct on r. If r = 1, Zv = 0 since Z ∈ g and Z is nilpotent.
Assume that (ii) holds for algebras of dim < r. Let h be a proper subalgebra of g of
maximum dimension. If H ∈ h, then by (i), adgH is a nilpotent endomorphism of g and
maps h into itself, hence adgH induces a nilpotent endomorphism H∗ on the vector space
g/h. The set {H∗ : H ∈ h} is a subalgebra of gl(g/h) having dimension < r and
consisting of nilpotent elements. Using the induction hypothesis we conclude that there
exists an element X ∈ g, X /∈ h, such that adgH(X) ∈ h for all H ∈ h. The subspace
h+ kX of g coincide with g. Thus h is an ideal in g.

Now let W be the subspace of V given by

W = {e ∈V : He = 0 f or all H ∈ h}.

Owing to the induction hypothesis, W 6= {0}. Moreover, if e ∈W we have

HXe = [H,X ]e + XHe = 0 (3.5)

so X .W ⊂W . By the definion of W and by 3.5, Xe ∈W . The restriction of X to W is
nilpotent, we have then Xke = 0 and X Xk−1e = 0. If we choose v = Xk−1e 6= 0, we
obtain that Xv = 0. This vector v has property required in (ii).
(iii) Let e1 be any vector in V such that e1 6= 0 and Ze1 = 0 for all Z ∈ g. Let E1 be the
subspace of V spanned by e1. Then each Z ∈ g induces a nilpotent endomorphism Z∗ of
the vector space V/E1. If V/E1 6= {0} we can select e2 ∈V, e2 /∈ E1 such that
e2 +E1 ∈V/E1 is annihilated by all Z∗,(Z ∈ g). Continuing in this manner we find a
basis e1, ...,en of V such that for each Z ∈ g

Ze1 = 0, Zei = 0 mod(e1, ...,ei−1), 2≤ i≤ n. (3.6)

The matrix expressing Z in terms of the basis e1, ...,en has zeros on and below the
diagonal.
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Corollary 3.2.2. In the notation of Theorem 3.2.1 we have

X1X2...Xs = 0

if s≥ dimV and Xi ∈ g(1≤ i≤ s).

In fact, this is an immediate consequence of (3.6).



4 ADJOINT REPRESENTATION AND THE KILLING
FORM

Definition 4.0.1. Let g be a Lie algebra over a field k then a derivation D : g→ g is a

linear map which satisfies the Leibniz rule

D(XY ) = D(X)Y +XD(Y ) for all X ,Y ∈ g.

Furthermore, Der(g) the vector space of all derivations of g is a Lie algebra whose Lie

bracket is given by the commutator bracket [D1,D2] = D1 ◦D2−D2 ◦D1 for all

D1,D2 ∈ Der(g). We define a very important derivation known as the adjoint operator.

Definition 4.0.2. Let g be a Lie algebra over k and X ∈ g. The following application ad
is called adjoint homomorphism which is defined as

adX : g → g

Y 7→ adX(Y ) := [X ,Y ].

Proposition 4.0.1. For any Lie algebra g we have adX ∈ Der(g) for all X ∈ g.

Proof. Let X ∈ g, we show that adX is linear. For any α,β ∈ k and Y,Z ∈ g we have

adX(αY +βZ) = [X ,αY +βZ] = α.[X ,Y ]+β.[X ,Z] = α.adX(Y )+β.adX(Z)

Hence, the map is linear. We now show that this map satisfies the Leibniz rule using the
Jacobi identity. We recall the Jacobi identity as follows

[X , [Y,Z]]+ [Y, [Z,X ]]+ [Z, [X ,Y ]] = 0.

For all X ,Y,Z ∈ g we have
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adX([Y,Z]) = [X , [Y,Z]] =−[Y, [Z,X ]]− [Z, [X ,Y ]]

= [Y, [X ,Z]]+ [[X ,Y ],Z]

= [adX(Y ),Z]+ [Y,adX(Z)].

Then adX ∈ Der(g).

Definition 4.0.3. Let g be a Lie algebra over a field k and let V be a vector space

Let ad : g→ gl(V ) be the adjoint representation and the Killing form is defined by

K : g×g → k

(A,B) 7→ K(A,B) = Tr(ad(A)◦ad(B))

Remark. It is associative which means that K([A,B],C) = K(A, [B,C]).

Proof. To prove remark above, we use the definition of K, for all A,B,C ∈ g,

K
(
[A,B],C

)
−K

(
A, [B,C]

)
= Tr

(
ad[A,B]◦ad(C)−ad(A)◦ad[B,C]

)
.

Using
ad([A,B]) = [ad(A),ad(B)] = ad(A)◦ad(B)−ad(B)◦ad(A).

We get

K
(
[A,B],C

)
−K

(
A, [B,C]

)
= Tr

(
ad(A)◦ad(B)◦ad(C)−ad(B)◦ad(A)◦ad(C)

−ad(A)◦ad(B)◦ad(C)+ad(A)◦ad(C)◦ad(B)

= Tr(ad(A)◦ad(C)◦ad(B)−ad(B)◦ad(A)◦ad(C))

Let X = ad(A)◦ad(C) and Y = ad(B), we know also that Tr(XY ) = Tr(Y X). Then,
K
(
[A,B],C

)
−K

(
A, [B,C]

)
= Tr(XY −Y X) = 0

Hence, K
(
[A,B],C

)
= K

(
A, [B,C]

)
.

Example 4.0.1. We consider sl2(C) the special linear algebra. It has three basis vectors

A,B,C where [A,B] = 2C

A =

[
0 1
1 0

]
, B =

[
0 −1
1 0

]
, C =

[
1 0
0 −1

]
.
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The relations between the brackets are as follows:

[A,C] = 2B ; [B,C] = 2A.

We want to find the matrix representation for these basis vectors

• For adA,

adA(A) = [A,A] = 0 = 0.A+0.B+0.C

adA(B) = [A,B] = 2C = 0.A+0.B+2.C

adA(C) = [A,C] = 2B = 0.A+2.B+0.C .

Then, the matrix of adA with respect to the basis {A,B,C} is ;

MA =

0 0 0
0 0 2
0 2 0

 .
• For adB,

adB(A) = [B,A] =−2H = 0.A+0.B−2.C

adB(B) = [B,B] = 2C = 0.A+0.B+0.C

adB(C) = [B,C] = 2X = 2.A+0.B+0.C.

Then, the matrix of adB with respect to the basis {A,B,C} is

MB =

0 0 −2
0 0 0
2 0 0

 .
• For adC,

adC(A) = [C,A] =−2B = 0.A+−2.B+0.C

adC(B) = [C,B] =−2A =−2.A+0.B+0.C

adC(C) = [C,C] = 2C = 2.A+0.B+0.C
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Then, the matrix of adC is

MC =

 0 −2 0
−2 0 0
0 0 0

 .
Now, we calculte the Killing forms for MA,MB,MC.

MA.MA =

 0 0 2
0 0 0
−2 0 0

 .
 0 0 2

0 0 0
−2 0 0

=

0 0 0
0 4 0
0 0 4


K(A,A) = Tr(ad(A)◦ad(A)) = 8.

MB.MB =

 0 0 2
0 0 0
−2 0 0

 .
 0 0 2

0 0 0
−2 0 0

=

−4 0 0
0 0 0
0 0 −4


K(B,B) = Tr(ad(B)◦ad(B)) =−8.
By the same method, K(C,C) = 8, K(A,B) = 0, K(A,C) = 0, K(B,C) = 0.

Definition 4.0.4. Let g be a Lie algebra over k and let K : g×g→ k be the Killing form.

The kernel of K is defined by

Ker(K) = {X ∈ g : ∀ Y ∈ g, K(X ,Y ) = 0}.

The form is non-degenerate if its kernel is zero.

Example 4.0.2. Consider g= sl2(C), X ∈ g and Y ∈ g we have Tr(X) = Tr(Y ) = 0
K(X ,Y ) = Tr(ad(X)◦ad(Y )) = Tr(MX .MY ) where MX and MY are two matrices

corresponding to ad(X) and ad(Y ), respectively.

MX =

x1 x2 0
x3 −x1 0
0 0 0

 , MY =

a b 0
c −a 0
0 0 0

 .

By definition of Ker(K), X in g and for every Y in g we have K(X ,Y ) = 0 i.e.

K(X ,Y ) = Tr(ad(X)◦ad(Y )) = Tr(MX .MY ) = 0. (4.1)



22

From (4.1), we have the following equation

2ax1 + cx2 +bx3 = 0.

If we choose a = 0 and c = 0, we have then bx3 = 0 for every b ∈ C. So we see that

x3 = 0. Similarly, we have x1 = x2 = 0. Then, Ker(K) is zero. Thus the Killing form is

non-degenerate.

Proposition 4.0.2. Let {X1,X2, ...,Xn} be a basis of g. The Killing form K is

non-degenerate if and only if the n×n matrix whose (i, j)th entry K(Xi,X j) has nonzero

determinant.

Example 4.0.3. We compute the Killing form of sl2(C), (its characteristic 6= 2) using the

standart basis in the example 4.0.1, which we write in the order (A,B,C). The matrices

for adA, adB, adC are MA, MB, MC, respectively and as follows:

MA =

0 0 0
0 0 2
0 2 0

 , MB =

0 0 −2
0 0 0
2 0 0

 , MC =

 0 −2 0
−2 0 0
0 0 0

 .
Therefore K has the following matrix, with determinant −512 6= 08 0 0

0 −8 0
0 0 8

 .
So by the proposition 4.0.2, K is non-degenerate.

Lemma 4.0.1. Let K be a Killing form of g and let ψ be any automorphism of g.

Then, K is invariant under ψ.

Proof. We know that any automorphism is a linear transformation ψ : g→ g that respect
the bracket. From this, we obtain ad(A)(X) = [A,X ] for all A,X ∈ g.
We get

ad(ψA)(X) = [ψA,X ] = [A,ψ−1X ]

= ψ
(
ad(A) ◦ψ

−1(X)
)

= ψ ◦ ad(A) ◦ ψ
−1(X).

Similarly, ad(ψB)(X) = ψ◦ ad(B)◦ψ−1(X).
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ad(ψA)◦ad(ψB) = ψ◦ad(A)◦ψ
−1 ◦ψ◦ad(B)◦ψ

−1

= ψ◦ad(A)◦ad(B)◦ψ
−1.

Also, we know that if two matrices are equivalents, then their traces are equals. So,

Tr
(
ad(ψA)◦ad(ψB)

)
= Tr

(
ψ◦ad(A)◦ad(B)◦ψ

−1)
= Tr

(
ad(A)◦ad(B)

)
.

Therefore, K(ψA◦ψB) = K(A,B).
Hence, the Killing form K is invariant under a given automorpism ψ.

Proposition 4.0.3. The kernel of the Killing form K of g is an ideal.

Proof. Assume that A ∈ g and B ∈ Ker(K). We want to show that [A,B] ∈ Ker(K). We
have then K

(
[A,B],C

)
= K

(
A, [B,C]

)
= 0 for all C ∈ g.

Then, [A,B] ∈ Ker(K). Thus, Ker(K) is an ideal.

Lemma 4.0.2. Every abelian ideal in g is contained in the Ker(K) where K is the Killing

form of g.

Proof. Assume that I ⊂ g is an abelian ideal. We take X ∈ I, Y ∈ g then the
endomorphism ad(X)◦ad(Y ) sends g into I and ad(X)

(
ad(Y )(I)

)
⊆ ad(X)(I) = 0, then(

ad(X)◦ad(Y )
)2

= 0 and this endomorphism is nilpotent. Since nilpotent
endomorphism have trace zero, K(X ,Y ) = Tr(ad(X)◦ad(Y )) = 0, this shows that
I ⊆ Ker(K).

Lemma 4.0.3. Let g be a semisimple Lie algebra. If I is an ideal of g then there is an

ideal I⊥ of g such that g= I⊕ I⊥.

Proof. We define a subspace of g as follows

I⊥ = {X ∈ g : K(X ,Y ) = 0 for all Y ∈ I}

which is also an ideal, since X ∈ I⊥, Y ∈ g and Z ∈ I, we have

K([X ,Y ],Z) = K(X , [Y,Z]) = 0.

Theorem 1 in the appendix (Cartan criterion) shows that the ideal I∩ I⊥ of g is solvable
hence it is 0. Therefore, since dim I +dim I⊥ = dimg. We must have g= I⊕ I⊥.
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Theorem 4.0.4. Let g be a Lie algebra over a field k. The followings are equivalent for

g.

1. g is semisimple.

2. g has no nonzero abelian ideals.

3. The Killing form of g is nondegenerate.

4. g is a direct sum of simple ideals.

Proof. (1⇒ 2) Assume that g is semisimple, by definition then g has no nonzero
solvable ideal and also every abelian ideals are solvable. Thus g has no nonzero abelian
ideals.
(2⇒ 3) Suppose that g has no nonzero abelian ideals, i.e. its only abelian ideal is zero.
Also by the lemma 4.0.2, every abelian ideal in g is the kernel of the Killing form i.e.
Ker(K) = {0}. Thus the Killing form of g is nondegenerate.
(3⇒ 4) It is the consequence of the lemma (4.0.3).
(4⇒ 1) Assume that g is a direct sum of simple ideals, we will prove that g is
semisimple. Suppose I is a nonzero ideal of g= g1⊕g2⊕ .....⊕gk where gk’s are simple
ideals. Let 0 6= x = x1 + x2 + ....+ xk ∈ I where xk ∈ gk. We have then

[x,gk] = [x1 + x2 + ....+ xk,gk]

= [x1,gk]+ .....+[xk,gk] 6= 0

which implies that 0 6= [I,gk]. Since gk is simple ideal, we get gk = [I,gk]⊆ I 6= 0. We
see that I is not an abelian ideal of g. It means that g has no abelian ideals, then g is
semisimple.



5 ROOT SYSTEMS

5.1 Cartan Subalgebra

Definition 5.1.1. If g is a complex semisimple Lie algebra then a Cartan subalgebra of g

is a complex subspace h of g with the following conditions

• For all H1 and H2 in h , [H1,H2] = 0
It means that h is commutative subalgebra of g.

• If, for some X ∈ g we have [H,X ] = 0 for all H ∈ h then X is in h

This says that h is a maximal commutative subalgebra.

• adH is diagonalizable for all H in h by proposition 1 in the appendix.

Proposition 5.1.1. Let g= kC be a complex semisimple Lie algebra and let t be any

maximal commutative subalgebra of k. Define h⊂ g by

h= tC = t+ it.

Then h is a Cartan subalgebra of g. See e.g (Hall,2015)

Proof. First, we show that h is commutative subalgebra of g.
Say X1,X2,Y1,Y2 ∈ k. We see that H1 = X1 + iX2 and H2 = Y1 + iY2 in h.
We have

[H1,H2] = [X1 + iX2,Y1 + iY2]

= [X1,Y1]+ i[X1,Y2]+ i[X2,Y1]− [X2,Y2].

Since t is commutative subalgebra of g, we have then

[X1,Y1] = [X1,Y2] = [X2,Y1] = [X2,Y2] = 0.

We obtain [H1,H2] = 0. So, h is commutative subalgebra of g.
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Now, we must show that h is maximal commutative. Assume that Y ∈ g commutes with
each element of h. This says that it commutes with each element of t. If we write
Y = Y1 + iY2 with Y1 and Y2 in k, for H in t. We have

[H,Y1 + iY2] = [H,Y1]+ i[H,Y2] = 0

where [H,Y1] and [H,Y2] are in k.

However, every element of g has a unique decomposition as an element of k plus an
element of ik since g is semisimple. From this, we say that [H,Y1] and [H,Y2] must
separately be zero. Since this holds for all H and by being t maximal commutative in
hypothesis, we must have Y1 and Y2 in t that is Y = Y1 + iY2 is in h. So, h is maximal
commutative.
Finally, we will show that for all H ∈ h, adH is diagonalizable.
We consider 〈·, ·〉 an inner product as in proposition 3 in the appendix then for all Y in k,
the operator adY : g→ g is skew self-adjoint meaning that

〈adY (X),Z〉=−〈X ,adY (Z)〉

for all X ,Y,Z ∈ g

For every adH , H ∈ t, we can say that it is diagonalizable by the theorem 2 in the
appendix.
If H ∈ h, so H = H1 + iH2 with H1, with H1 and H2 in t, we know that H1 and H2

commute since t is commutative. In this case, adH1 and adH2 also commute.
By proposition 2 in the appendix, they are simultaneously diagonalizable. Then, adH is
diagonalizable
Thus, h= t+ it is a Cartan subalgebra of g.

Definition 5.1.2. If g is a complex semisimple Lie algebra, the rank (dimension) of g is

the dimension of any Cartan subalgebra.

5.2 Roots and Root Spaces

Definition 5.2.1. Let g be a Lie algebra. A real form of g is a Lie algebra gR over R
such that there exists an isomorphism from g to gR⊗C. if the Killing form is negative

definite then g is compact.

Example 5.2.1. The compact real form of sl2(C) is su(2) that is a skew-hermitian

matrix with trace zero. (A)T = A
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Now, we suppose a compact real form k of g and a maximal commutative subalgebra t of
k, and the Cartan subalgebra h= t+ it. Also, we suppose an inner product on g which is
real on k and invariant under the adjoint action of k by proposition 3 in the appendix.
We know that for H ∈ h, adH commute with the elements of g since H = A+ iB where
A,B ∈ t and t is commutative subalgebra. Furthermore, each such adH is diagonalizable.
So, by proposition 2 in the appendix, says that each adH , for H ∈ h are simultaneously
diagonalizable. Suppose that Y ∈ g is a simultaneous eigenvector of every adH , H ∈ h,
then the eigenvalue for the eigenvector Y is linearly dependent on H ∈ h. Assume that
this linear functional is nonzero, it is a root. We explain the notion of root in details
giving its definition and proporties.

Definition 5.2.2. Let h∗ = {β : h→ C,such that β is linear form}. An element β 6= 0 of

h∗ is a root if there exists a vector Y6= 0 in g such that

[
H,Y

]
= β(H) Y

for all H in h.

Note that the set of all roots is denoted by R.

Remark. We can find an identification between h and h∗ using an inner product. So β’s
can be seen as element of h. In this case, we can rewrite the definition of the root as
follows:

[H,Y ] = 〈β,H〉Y

for all H in h.

Definition 5.2.3. Assume β is a root, then the root space gβ is the space of each Y in g

whose
[
H,Y

]
= 〈β,H〉 Y for all H ∈ h.

Remark. We consider an element β of h= t+ it. We write gβ being the space of each Y
in g for which

[
H,Y

]
= 〈β,H〉 Y for every H in h. If β is not root, we do not say that gβ

is a root space.
We take that β is zero, we obtain that [H,Y ] = 0 which means that every elements of g
commute each element of h. We said to be g0 the set of such all elements of g.
Furthermore, we know that h is a maximal commutative subalgebra, we obtain that
g0 = h. But, β 6= 0 is not a root, so we have gβ = {0}.

As we have seen, the operators adH , H ∈ h are diagonalizable. In conclusion, g may be
separeted as the sum of h and the root spaces gβ. The sum is direct by Prop A.17 [see
e.g. (Hall, 2015)] and we have also constructed the result below.
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Corollary 5.2.1. Let g be a semisimple Lie algebra, let R be the set of roots β and let gβ

be the root space, g may be decomposed as a direct sum of vectors spaces as seen below:

g= h⊕
⊕
β∈R

gβ.

That is to give in the above corollary, all element of g may be expressed uniquely as a
sum of an element of h and one element of gβ.

Lemma 5.2.2. Consider β and γ the roots in h. Let gβ ,gγ be the root spaces for β and γ,

respectively. We have

[gβ,gγ]⊂ gβ+γ.

Proof. First, let X be in gβ and let Y be in g−β, then [X ,Y ] is in h. Since, by the
definition of the root, we have

X ∈ gβ⇒ [H,X ] = 〈β,H〉 X for all H ∈ h

Y ∈ g−β⇒ [H,Y ] = 〈−β,H〉 Y for all H ∈ h.
(5.1)

We use the Jacobi identity, we have

[
H, [X ,Y ]

]
+
[
X , [Y,H]

]
+
[
Y, [H,X ]

]
= 0 and

[
H, [X ,Y ]

]
=−

[
X , [Y,H]

]
−
[
Y, [H,X ]

]
=−

(
−
[
X , [H,Y ]

])
− (−

[
[H,X ],Y

])
=
[
X , [H,Y ]

]
+
[
[H,X ],Y

]
.

(5.2)

Now, we write the equation 5.1 using 5.2

[
H, [X ,Y ]

]
=
[
X , [H,Y ]

]
+
[
[H,X ],Y

]
=
[
X , 〈−β,H〉Y

]
+
[
〈β,H〉X , Y

]
=−〈β,H〉[X ,Y ]+ 〈β,H〉[X ,Y ]

= 0.

Then, [X ,Y ] = 0 and we obtain [X ,Y ] in h.

Now, we want to prove that [gβ,gγ]⊂ gβ+γ. We use 5.2 and assume that X in gβ and Y in



29

gγ, we have

[
H, [X ,Y ]

]
=
[
X , [H,Y ]

]
+
[
[H,X ],Y

]
= [X ,〈γ,H〉Y ]+ [〈β,H〉X ,Y ]

= 〈γ,H〉[X ,Y ]+ 〈β,H〉[X ,Y ]

= 〈β+ γ,H〉[X ,Y ]

for all H ∈ h, proving that [X ,Y ] is in gβ+γ.

Hence, [gβ,gγ]⊂ gβ+γ.

Proposition 5.2.1. 1. Let h= t+ it be Cartan subalgebra of g and assume that β ∈ h

is a root, similarly −β. Particularly, suppose that A is in gβ, then A∗ is in g−β

where A∗ is defined as follows: let A1,A2 be in t and A1 + iA2 in h

(A1 + iA2)
∗ =−A1 + iA2. (5.3)

2. The roots span h.

Proof. 1. Suppose that A = A1 + iA2 where A1,A2 ∈ t, A = A1− iA2. We know that k
is closed under bracket, assume H ∈ t ⊂ k and A ∈ g, we look
[H,A] = [H,A1 + iA2] = [H,A1]− i[H,A2] = [H,A].

Furthermore, suppose A is a root vector for β ∈ it, therefore for all H ∈ h, we get

[H,A] = [H,A] = 〈β,H〉A =−〈β,H〉A (5.4)

because of 〈β,H〉 is pure imaginary for H ∈ t. We find that [H,A] =−〈β,H〉A for
all H ∈ h. So, A is a root vector for the root −β. Hence, A∗ =−A be interested in
g.

2. To show this, we will use the contradiction, assume that the roots did not span h,
therefore we have an element H 6= 0 ∈ h which werifies 〈β,H〉= 0 for every
β ∈ R. That is to say, [H,K] = 0, for every K ∈ h, furthermore

[H,Y ] = 〈β,H〉Y = 0

for each in gβ. So, using Corollary 5.2.1 and the definition of the center of g, we
see that the element H contradit the definition of the semisimple Lie algbera.
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Theorem 5.2.3. Let β be a root of h, we may define Aβ in gβ , Bβ in g−β and Hβ in h ,

that is linearly independent which verifies Hβ is a multiple of β and also;

[Hβ,Aβ] = 2Aβ

[Hβ,Bβ] =−2Bβ

[Aβ,Bβ] = Hβ

(5.5)

Moreover, Bβ may be considered as the adjoint operator A∗
β
. See e.g. (Hall, 2015)

Assume that Aβ,Bβ,Hβ are seen as in (5.5), we have [Hβ,Aβ] = 2Aβ. Furthermore, Aβ is a
root vector and β is a root in h, we have then [Hβ,Aβ] = 〈β,Hβ〉Aβ. Using these two
equalties, we have then

〈β,Hβ〉= 2. (5.6)

At the same time, we know that Hβ is a multiple of β and there is the unique multiple
appropriate with (5.6), that is

Hβ = 2
β

〈β,β〉 (5.7)

Corollary 5.2.4. Let β be a root, consider Aβ,Bβ,Hβ like in (5.5), with Bβ = A∗
β

(i.e. the

adjoint of Aβ.) We have then the elements

Fβ

1 :=
i
2

Hβ; Fβ

2 :=
i
2
(Aβ +Bβ); Fβ

3 :=
1
2
(Bβ−Aβ)

are lineraly independents elements of k and satisfy the following equations

[Fβ

1 ,F
β

2 ] = Fβ

3 ; [Fβ

2 ,F
β

3 ] = Fβ

1 ; [Fβ

3 ,F
β

1 ] = Fβ

2 .

Proof. First, we show the equivalent of the equations by the calculations.

• [Fβ

1 ,F
β

2 ] = [ i
2Hβ,

i
2(Aβ+Bβ)] =

i24[Hβ,Aβ+Bβ

] = −1
4 (2Aβ−2Bβ) =

1
2(Bβ−Aβ) = Fβ

3 .

• [Fβ

2 ,F
β

3 ] = [ i
2(Aβ +Bβ),

1
2(Bβ−Aβ)] =

i
4 [(Aβ +Bβ),(Bβ−Aβ)] =

i
4([Aβ,Bβ]−

[Aβ,Aβ]+ [Bβ,Bβ]− [Aβ,Bβ]) =
i
4(Hβ− (−Hβ)) = i

42H−β = i
2Hβ = Fβ

1 .

• [Fβ

3 ,F
β

1 ] = [1
2(Bβ−Aβ),

i
2Hβ] =

i
4([Bβ,Hβ− [Aβ,Hβ]) = i

4(2B−β+2Aβ) =
i
2(Aβ +Bβ) = Fβ

2 .
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Now, we prove second part i.e. Fβ

i
′s are linearly independent.

We have seen the root β belongs to it and Hβ is also, by 5.7. A real multiple of β , the
element (i/2)Hβ will be in t ⊂ k. Moreover, using the property of the adjoint operator
which means that (A+ iB)∗ =−A+ iB. We can see as follows:

(Fβ

2 )
∗ =

( i
2
(Aβ +Bβ)

)∗
=

i
2
(Aβ +Bβ) = Fβ

2 .

(Fβ

3 )
∗ =

(1
2
(Bβ−Aβ)

)∗
=

1
2
(Aβ−Bβ) =−Fβ

3 .

Then, Fβ

2 and Fβ

3 are in k. We obtain Fβ

1 ,F
β

2 ,F
β

3 from the combinations of Aβ,Bβ,Hβ and
we know that Aβ,Bβ and Hβ are linearly independent by assumption so, Fβ

1 ,F
β

2 and Fβ

3

are also.

Lemma 5.2.5. Assume that A is in gβ that B is in g−β and that H is in h. So, [A,B] is in h

and

〈[A,B],H〉= 〈β,H〉〈B,A∗〉 (5.8)

where A∗ is adjoınt operator in (5.3) . See e.g. (Hall, 2015).

Proof. First, we recall that [A,B] = adA(B) and for all A,B,C ∈ g, we have then

〈adA(B),C〉= 〈B,adA∗(C)〉.

We have seeen [A,B] is in h in the Lemma 5.2.2. Using the above recalls, we have then

〈[A,B],H〉= 〈adA(B),H〉= 〈B,adA∗(H)〉= 〈B, [H,A∗]〉. (5.9)

By hypothesis, the element A is in gβ, we see that A∗ is in g−β from Proposition 5.2.1. In
this case, we have [H,A∗] = 〈−β,H〉A∗ =−〈β,H〉A∗. If we write it in 5.9, we find what
we want to prove, that is;

〈[A,B],H〉= 〈β,H〉〈B,A∗〉.

Now, we pass the proof of Theorem 5.2.3, firstly we take A 6= 0 in gβ, which is A∗ =−A

is in g−β. We write A∗ instead of B in the Lemma 5.2.5, we get

〈[A,A∗],H〉= 〈β,H〉〈A∗,A∗〉. (5.10)
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We say that [A,A∗] ∈ h is orthogonal to each H ∈ h which is orthogonal to β Also, we
consider the element H in h and suppose 〈[A,A∗],H〉 6= 0. We see that [A,A∗] 6= 0.
Assume that we construct 5.10 using H = [A,A∗]. In this case we find

〈[A,A∗], [A,A∗]〉= 〈β, [A,A∗]〉〈A∗,A∗〉.

We have [A,A∗] 6= 0, we see that 〈β, [A,A∗]〉 is real and stricly positive.
Let H = [A,A∗] and we determine elements of g in the following:

Hβ =
2

〈β,H〉
H

Aβ =

√
2

〈β,H〉
A

Bβ =

√
2

〈β,H〉
B

We want to find [Hβ,Aβ] = 2A and [Hβ,Bβ] =−2B using 〈β,Hβ〉= 2

[Hβ,Aβ] = HβAβ−Aβ,Hβ

=
2

〈β,H〉
H.

√
2

〈β,H〉
A−

√
2

〈β,H〉
A.

2
〈β,H〉

H

=
2
√

2
〈β,H〉.

√
〈β,H〉

[H,A]

= [H,A]

= 〈β,H〉A,(〈β,H〉= 2)

= 2A.

(5.11)

We see that [Hβ,Bβ] =−2B with the method in (5.11). Also,

[Aβ,Bβ] =
2[A,B]
〈β,H〉

= Hβ.

Notation. Let Aβ,Bβ and Hβ be the elements in the theorem 5.2.3.
We have

sβ := 〈Aβ,Bβ,Hβ〉 (5.12)
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acts on g by the adjoint representation.

Lemma 5.2.6. We assume that β and k.β are two roots such that | k |> 1, so we have

k±2.

Proof. Say sβ in the previous Notation. Suppose that γ = k.β is a root and that A 6= 0 is
an element of gγ, using 5.6, we have

[Hβ,A] = 〈γ,Hβ〉A = k〈β,Hβ〉A = 2kA.

When [Hβ,A] = 2kA, we see that 2k is an eigenvalue of the adjoint action of sβ over g.
Using point 1 of Theorem 4.34 (see e.g Hall,2015), we see that the eigenvalue which we
obtained, must be an integer. In that case, k = (1/2).µ where µ is an integer. However, we
look at the roots in the hypothesis, we have that 1/k must be an integer multiple of 1/2.
We observe the case k = µ/2 for a some integer µ. 1/k = 2/µ is also integer multiple of
1/2, which means that 2/k = 4/µ is an integer. As a result, we find µ =±1,±2,or±4.
So, we have k =±1/2,±1,or±2. However, we supposed | k |> 1. Thus, k =±2.

5.3 The Weyl Group

Let β be a root and let R be the set of roots. This group is a symmetry of the set R. In this
section, we examine the Lie algebra approach to the Weyl group.

Definition 5.3.1. For every β ∈ R, we define a linear map sβ = h→ h as follows

sβ.H = H−2
〈β,H〉
〈β,β〉

β. (5.13)

The Weyl group of R, we denote W, it is the subgroup of Gl(h) spanned by sβ’s where

β ∈ R.

We supposed that every β is in it and the inner product is real on t also assume that
H ∈ it, when we look at the definition of sβ.H, then we see that sβ.H is also in it. When
we consider a map of it to itself, sβ is the reflection about the hyperplane orthogonal to β

which means that sβ.H = H when H ⊥ β, and we have sβ.β =−β. We know that every
reflection is an orthogonal linear transformation, we see that W is a subgroup of the
orthogonal group O(it).

Proposition 5.3.1. Let β be a root in R, let sβ : h→ h and H ∈ h,W ⊂ O(it). We have
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1. sβ(H) ∈ O(it).

2. sβ = s−β.

3. M ∈ O(it), then MsβM−1 = sM(β).

Proof. 1. We want to prove that sβ(H) ∈ O(it) i.e. 〈sβ(H),sβ(H0)〉= 〈H,H0〉 for all
H,H0 ∈ h, using 5.13, we get

〈sβ(H),sβ(H0)〉= 〈H−2
〈β,H〉
〈β,β〉

β,H0−2
〈β,H0〉
〈β,β〉

β〉

= 〈H,H0〉−2
〈β,H〉〈β,H0〉
〈β,β〉

−2
〈β,H〉〈β,H0〉
〈β,β〉

+4
〈β,H〉〈β,H0〉〈β,β〉

〈β,β〉

2

= 〈H,H0〉.

2. We know that sβ(β) = β, we have s−β(−β) = β. Furthermore, assume that H is
perpendicular to β, it is also perpendicular to −β, hence s−β(H) = H. Then, sβ

acts in the same method as s−β on the all space, so sβ = s−β. Afterwards , we see
that s2

β
(β) = sβ(−β) = β. Furthermore, for H perpendicular to β,

s2
β
(β) = sβ(β) = β. Then, s2

β
acts the similar method as 1 does, hence s2

β
= 1.

3. We see that MsβM−1(M(β)) = Msβ(β) = M(−β) =−M(β). For any H

perpendicular to M(H),〈M−1(H),β〉= 〈H,M(β)〉= 0 with M ∈ O(it). So,
MsβM−1(H) = Msβ(β) = M(M−1(H)) = H. Hence, MsβM−1 acts the similar
method as sM(β), so they are equal.

Theorem 5.3.1. Let β be a root, for every w ∈W, so w.β is also.
(
See e.g. (Hall, 2015)

)
.

Proof. Let β in R, say the invertible linear operator Sβ on g as follows

Sβ = e
adA

β e
−adA

β e
adA

β .

Suppose that H is in h, it satisfies 〈β,H〉= 0, when we write 〈β,H〉 in the equation
[H,Aβ] = 〈β,H〉Aβ, we obtain [H,Aβ] = 0. Thus, H and Aβ commute, meaning adH and
adAβ

also commute, and in the same way, for adH and adBβ
. Assume that 〈β,H〉= 0, the

operator Sβ going to with adH , we have then

SβadHS−1
β

= adH , 〈β,H〉= 0. (5.14)
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We consider the point 3 of Theorem 4.34 (see e.g. Hall,2015) to the adjoınt action of
sβ ∼= Sl(2;C) on g, we have

SβadHβ
S−1

β
=−adHβ

. (5.15)

Using 5.14 and 5.15, for each H, we have

SβadHβ
S−1

β
=−adsβ.H.

We consider an another root γ and the root vector A, we rewrite
sβ : h→ h and look at the vector S−1

β
(A) ∈ g.

adH(S−1
β

(A)) = S−1
β

(SβadHS−1
β

)(A)

= S−1
β

adsβ.H(A)

= 〈β,sβ.H〉S−1
β

(A)

= 〈s−1
β
.β,H〉S−1

β
(A).

(5.16)

So, S−1
β

is a root vector with s−1
β
.γ = sβ.γ. tI gives that the set of roots is invariant under

every sβ and, hence, under W.

5.4 Root Systems

In this section , we give a few properties of the roots, using also the result which we saw
until now. For every root β, we have an element Hβ of h included in [gβ,g−β] as in
Theorem 5.2.3. Furthermore, we have seen 〈β,Hβ〉= 2 and Hβ = 2β/〈β,β〉. In
particular, Hβ do not depend the choice of Aβ and Bβ.

Definition 5.4.1. Let β be a root, Hβ = 2β/〈β,β〉 is called the corroot appropriate to β.

Proposition 5.4.1. Consider the roots β and γ, we obtain that

〈γ,Hβ〉= 2
〈β,γ〉
〈β,β〉 (5.17)

is an integer.

Proof. let sβ = 〈Aβ,Bβ,Hβ〉 be seen like in Theorem 5.2.3, let γ be a root and let Y be a
root vector appropriate to γ, so we have [Hβ,Y ] = 〈γ,Hβ〉Y. In that case, we see that
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〈γ,Hβ〉 is an eigenvalue for the adjoint action on sβ ∼= sl(2,C). As we used before, using
point 1 of Theorem 4.34 (see e.g. Hall,2015) we say that 〈γ,Hβ〉 must be an integer.

Remark. As we have seen in the elementary linear algebra, that is, we have an inner
product space, and consider β and γ two elements of our inner product space, hence we
can talk about the orthogonal projection of γ onto β is as seen like:

〈β,γ〉
〈β,β〉

β. (5.18)

When we observe (5.17), we see that it is double of the expression in (5.18), which
means that, we can talk about twice projection of γ onto β.

Consider R the set of roots and R⊂ E := it where E is a real inner product space, we can
give the proporties of R in the following theorem.

Theorem 5.4.1. Let R be the set of roots, assume that it is finite set of nonzero elements

of a real inner product space E, and R has the following additional properties.

1. The roots span E.

2. Suppose that β is in R, so −β is, and the only multiples of β in R are β and −β.

3. Assume that β,γ ∈ R, so sβ.γ, where sβ is the reflection defined by (1.14).

4. For every β and γ in R, the quantity

2
〈β,γ〉
〈β,β〉

is an integer.

Any such collection of vectors is called a root system.
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Up to now we saw the definitions, theorems and examples on the semisimple Lie
algebras. In this subsection we work over C and we consider the classical Lie algebras
sl(n;C),so(2n;C),so(2n+1;C) and sp(n;C). We want to find the structure of its root
systems.

6.0.1 The Special Linear Lie Algebras sl(n+1;C) [An]

We recall that sl(n+1;C) is the set of all (n+1)× (n+1) matrices with complex entries
having trace zero. The Lie bracket of element of sl(n+1;C) is comutator of its matrices,
also the dimension of sl(n+1;C) is n2 +n. We work with the compact real form
k= su(n+1) and the commutative subalgebra t which is the intersection of the set of
diagonal matrices with su(n+1); which is,

t=




ia1 0

ia2
. . .

0 ian+1


∣∣∣∣∣ a j ∈ R, a1 + ...+an+1 = 0

 . (6.1)

We also consider h := tC, which is described as follows:

h=




λ1 0

λ2
. . .

0 λn+1


∣∣∣∣∣ λ j ∈ C, λ1 + ...+λn+1 = 0

 . (6.2)

If a matrix X commutes with each element of t ( i.e. [X ,H] = 0, ∀H ∈ t), it will also
commute with each element of h. Also X is an element of the center of sl(n+1;C). For
any 1≤ j,k ≤ n+1, let E jk be the matrix with a 1 in the ( j,k) spot and zeros elsewhere.
Consider the matrix H jk ∈ sl(n+1;C) given by

H jk = E j j−Ekk j < k.

37



38

Then we may calculate, since X is in the center

0 = [H jk,X ] = 2X jkE jk−2Xk jEk j.

Since E jk and Ek j are linearly independant for j < k, we conclude that X jk = Xk j = 0.
Since this holds for all j < k, we see that X must be diagonal. If X ∈ su(n+1), then X

would be in t. Thus, t is actually a maximal commutative subalgebra of su(n+1). Now
E jk denote the matrix that has a 1 in the j th row and k th column and that has zeros
elsewhere. If H ∈ h is as in (6.2), then HE jk = λ jE jk and E jkH = λkE jk. Thus,

[H,E jk] = (λ j−λk)E jk. (6.3)

We consider j 6= k, then E jk is in sl(n+1;C) and (6.3) shows that E jk is a simultaneous
eigenvector for each adH with H in h, with eigenvalue λk−λk. Furthermore
X = Y ⊕Z ∈ sl(n+1;C) where Y is an element of the Cartan subalgebra and Z is a
linear combination of E jk’s with j 6= k by being sl(n+1;C) is semisimple.
Let h∗ = {φ : h→ C}, if we look at the roots as elements of h∗ then according to (6.3)
the roots are the linear functionals α jk with H in h, as in (6.2), the quantity λ j−λk. We
identify h with the subspace of Cn+1 consisting vectors whose components sum to zero.
The inner product 〈X ,Y 〉 =trace (X∗Y 〉 on h is just the restriction to this subspace of the
usual inner product on Cn+1 If we use this inner product to transfer the roots from h∗ to
h, we have the vectors

α jk = e j− ek ( j 6= k).

The rank of sl(n+1;C) is n by the dimension of h. We say that the length of a root

|α jk|=
√
〈e j− ek,e j− ek〉=

√
2

and 〈e jk,e j′k′ 〉 has the value −2,−1,0,1,2 depending on whether { j,k} and { j
′
,k
′} have

zero, one or two elements in common. We have then

2
〈α jk,α j′k′ 〉
〈α jk,α jk〉

∈ {−2,−1,0,1,2}.

If α and β are roots and α 6= β and α 6=−β, then the angle betweeen α and β is either
π/3,π/2, or 2π/3, depending on whether 〈α,β〉=−1,0,1. The root system of this Lie
algebra is called An.

(
See e.g. (Hall, 2015)

)
.
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6.0.2 The Orthogonal Algebras so(2n;C) [Dn]

To talk about root system of so(2n;C), we give the elements that we will use:

• so(2n;C) = {X ∈ gl(2n;C)| X +XT = 0}.

• Its compact real form is so(2n)

• t is the commutative subalgebra so(2n) which consist of 2×2 block-diagonal
matrices in which the jth diagonal block is as follows(

0 a j

−a j 0

)
(6.4)

for some a j ∈ R. Now we construct a subalgebra in so(2n;C) using t, which means that
h= t+ it and its matrices are of the form (6.4) with the entries are in C. The roots
vectors are 2×2 block matrices which has a 2×2 matrix C in the (j,k) block ( j < k), the
matrix −Ctr in the (k,j), and zero in all other blocks. They can be as follows:

C1 =

(
1 i

i −1

)
, C2 =

(
1 −i

−i −1

)
, C3 =

(
1 −i

i 1

)
, C4 =

(
1 i

−i 1

)
.

The calculation in the appendix in page 47 shows that the vectors aboves are roots
vectors and that the corresponding roots are the linear funcionals on h given by
i(a j +ak),−i(a j +ak), i(a j−ak), and −i(a j−ak), respectively.
Consider the inner product on h given by 〈X ,Y 〉= trace (X∗Y )/2. If we identify h with
Cn i.e.

H 7→ i(a1,a2, ...,an),

and used inner product on h will correspond to the usual inner poduct on Cn. In this case
we consider the roots as the elements of Cn and the vectors are then

±e j± ek, j < k, (6.5)

where {e j} is the standart basis for Rn and j = 1,2, ..,n Now we prove that t is a
maximal commutative subalgebra of k. Since so(2n;C) is semisimple then we see that
X = H +Y ∈ so(2n;C) where H ∈ h and Y is a linear combination of the root vectors
±e j± ek. Furthermore if X commutes with every element of t, then X also commutes
with every elment of h. Because of the linear functionals i(α j±αk), j < k, is nonzero on
h, in this case the coeffients of the root vectors in the expansion of X must be zero;
i.e X must be in h. If X is in k, then X must be in the intersection of h and k but this
intersection equal to t so X ∈ t. t is maximal commutative subalgebra in k. By definition
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of semisimplicity, so(2n;C) has no non-zero abelian ideals (i.e it has no non-zero
commutative subalgebras), in this case the center of so(2n;C) is trivial. If X is in the
center of so(2n;C) by previous paragraph, X must be in h. For each root vector Xα

corresponding to root α and X in h, we have

0 = [X ,Xα] = 〈α,X〉 Xα,

we see that 〈α,X〉= 0. We have identified h with Cn, if n≤ 2, the roots in (6.5) span
h∼= Cn and we conclude that X must be zero. Furthermore if we choose n = 1 then there
are no roots and so(2;C) = h is commutative. The root system of this Lie algebra is
denoted by Dn.

(
See e.g.(Hall, 2015)

)
.

6.0.3 The Orthogonal Algebras so(2n+1;C) [Bn]

To determine the root systems of so(2n+1;C), we give its structure and the compact
real form we will use to find the elements of root systems

so(2n+1;C) = {X ∈ gl(2n+1;C)| X +XT = 0}

and its compact real form is so(2n+1). t is commutative subalgebra which consist of
block matrices with n block of size 2×2 followed by one block of size 1×1. We use the
2×2 blocks being of the same form as in so(2n). Also by definition so(2n+1;C) we
see that the 1×1 block matrice is zero. Then h := tC = t+ it, and we must prove that h
is a Cartan subalgebra, it consists of the matrices in so(2n+1;C) and similarly in t, also
the off-diagonal elements of the 2×2 blocks are complex. The same method in
so(2n;C) and the similar calculations in the [appendix 10] in the page 47, shows that t is
maximal commutative, then h is a Cartan subalgebra.
Since 1×1 block in the last is zero, we can consider the Cartan subalgebra in
so(2n+1;C) as in the so(2n;C). Furthermore they have the same rank that of n. Every
root for so(2n;C) is also a root for so(2n+1;C) with this identification of the Cartan
subalgebra. But, there are 2n additional roots in so(2n+1;C). They have 2×1 block in
entries (2k,2n+1) and (2k+1,2n+1) as follows:

B1 =

(
1
i

)

and to have −Btr
1 in entries (2n+1,2k) and (2n+1,2k+1), together with the following
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matrices to have (
1
−i

)
.

in entries (2k,2n+1) and (2k+1,2n+1) and −Btr
2 in entries (2n+1,2k) and

(2n+1,2k+1). We define the inner product 〈. , .〉 : h∗ 7→ h such that the inner product
〈X ,Y 〉 =trace (X∗Y 〉/2 and the roots correspond to the above root vectors, seen as
elements of h∗, are given by iak and −iak.

If we use this inner product to identify the roots with elements of h and then we can
consider h∼= Cn as in so(2n;C), the roots are ±e j± ek, j < k, as we saw in so(2n;C),
with additional roots are

±e j, j = 1,2, ...,n.

We have seen that the length of the roots ±e j± ek is 2, these additional roots are shorter
by a factor

√
2 than the roots ±e j± ek for so(2n;C). The root system of so(2n+1;C) is

denoted Bn.
(
See e.g. (Hall, 2015)

)
.

6.0.4 The Symplectic Algebras sp(n;C) [Cn]

In this section, we will work to understand the structure of the root system of the Lie
algebra sp(n;C) studying in details on the followings:

• sp(n;C) = {X ∈ gl(2n;C)| X tΩ + ΩX = 0} for n≥ 1 where Ω is the 2n×2n

matrix, that is,

Ω =

(
0 I
−I 0

)
and I is identity matrix o f dimension n×n

We have Ω2 =−I where I is identity matrix of dimension 2n×2n and we see that
X tΩ =−ΩX using the equation in sp(n;C) also we multiply by Ω the both side,
we obtain that ΩX trΩ = X When we consider the all of the above, we have
X ∈ sp(n;C) as follows :

X =

(
A B

C −Atr

)
,

where A is an arbitrary n×n matrix; B and C are arbitrary symmetric matrices of
dimension n×n.

• We know that u(2n) = { A ∈ gl(2n;C)| Atr =−A } and the compact real form of
X ∈ sp(n;C) is sp(n) = sp(n;C)∩u(2n)
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• The commutative subalgebra is to consist the matrix as follows :

a1

. . .

an

−a1
. . .

−an


(6.6)

where each a j is pure imaginary. We construct the subalgebra h= t+ it of
sp(n;C), that consists of the similar to the matrix (6.6) but the elements of matrix
a j is arbitrary complex number. As we did in previous subsection, the calculations
below that we will do to find roots and roots vectors of sp(n;C), show that t is
maximal commutative, then h= t+ it is a Cartan subalgebra.

Let E jk denote the matrix that has a one in the jth row and kth column and has zeros
elsewhere. Using the given matrices in the above, when we do the similar calculation in
the [Appendix 10], we have the 2n×2n matrices of the block form(

0 E jk +Ek j

0 0

)
,

(
0 0

E jk +Ek j 0

)
.

( j 6= k) are root vector for which the corresponding roots are (a j +ak) and −(a j +ak),
respectively. Other matrices of the block form(

E jk 0
0 −Ek j

)
( j 6= k) are root vector for which the corresponding roots are (ak−a j). Finally, matrices
of the block form (

0 E j j

0 0

)
,

(
0 0

E j j 0

)
.

are root vectors of being roots 2a j and −2a j. As before the subsection, the inner product
on h is

〈X ,Y 〉= trace(X∗Y )/2.
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If we identify h with Cn by the map, H ∈ h

H 7→ (a1, ...,an),

then the inner product on h will correspond to the standart inner product on Cn. The
roots are the vector of the form

±e j± ek, j < k

and of the form
±2e j, j = 1, ...,n.

As we saw in the above, this rooot system as that for so(2n;C), except that instead of
±e j, we have ±2e j. The root system is Cn. See e.g. (Hall, 2015).
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APPENDIX

Some propositions and definitions which we used as folllows:

Proposition 1. Let V be a finite-dimensional vector space over an algebraically
closed field k. Let A ∈ Hom(V,V ), and λ1, ...,λr ∈ k be the different eigenvalues of
A. Put

Vi = {v ∈V : (A−λiI)kv = 0 f or k su f f iciently large}.

Then

1. V = ∑
r
i=1Vi (direct sum).

2. Each Vi is invariant under A.

3. The semisimple part of A is given by

S
( r

∑
i=1

vi

)
=

r

∑
i=1

λivi (vi ∈Vi).

4. The characteristic polynomial of A is

det(λI−A) = (λ−λ1)
d1...(λ−λr)

dr ,

where di = dim Vi (1≤ i≤ r).

Proposition 2. Let V be a vector space. If A is commuting collection of linear
operators on V and each a ∈ A is diagonalizable, then the elements of A are
simultaneously diagonalizable.

Definition 1. A Lie algebra g is called reductive if the following equivalence
conditions hold:
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1. It is the direct sum g∼= h
⊕

a of a semisimple Lie algebra h and an abelian Lie
algebra a

2. Its adjoint representation is completely reducible: every invariant subspace has an
invariant complement.

Proposition 3. Let g := kC be a reductive Lie algebra. Then there exists an inner
product on g that is real valued k and such that the adjoint of k on g is unitary
meaning that

〈adX(Y ),Z〉=−〈Y,adX(Z)〉 (6.7)

for all X ∈ k and all Y,Z ∈ g. If we define an operation X 7→ X∗ on g by the formula

(X1 + iX2)
∗ =−X1 + iX2 (6.8)

for X1,X2 ∈ k, then any inner product satisfying 6.7 also satisfies

〈adX(Y ),Z〉=−〈Y,adX∗(Z)

for all X,Y and Z in g.

Theorem 1. (Cartan’s criterion) Let g be a Lie algebra. g is solvable is and only if
K([g,g],g)≡ 0 where K is Killing form.

Theorem 2. Suppose that A ∈Mn(C) has the property that A∗A = AA∗ (e.g. if
A∗ = A, A∗ = A−1, or A∗−A). Then A is diagonalizable.

Definiton 2.

1. Let h be a real Lie algebra. The complexification of h noted hC is a vector space
equipped with the Lie bracket

[a+ ib,c+ id] = [a,c]− [b,d]+ i
(
[b,c]+ [a,d]

)
for a,b,c,d ∈ h.
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2. Let g a complex Lie algebra and h a real Lie subalgebra, h is a real form of g if
there exists a C-linear isomorphism ψ : hC→ g such that ψ|h = Id. Every complex
Lie algebra has a compact real form.



48

Calculation for the roots and root vectors of the Orthogonal
Algebras so(2n;C)

Consider H ∈ h= t+ it and the matrix represantiton of H is as follows :

H =



0 a1 0 0 0 0 · · · 0 0
−a1 0 0 0 0 0 · · · 0 0

0 0 0 a2 0 0 · · · 0 0
0 0 −a2 0 0 0 · · · 0 0
0 0 0 0 0 a3 · · · 0 0
0 0 0 0 −a3 0 · · · 0 0
...
0 0 0 0 0 0 · · · 0 an

0 0 0 0 0 0 · · · −an 0



, ai ∈ C

Consider X ∈ so(2n;C) and let m = 2n , the matrix representation is as follows :

X =



0 x21 x31 x41 x51 x61 · · · xm1

−x21 0 x32 x42 x52 x62 · · · xm1

−x31 −x32 0 x43 x53 x63 · · · xm3

−x41 −x42 −x43 0 x54 x64 · · · xm4

−x51 −x52 −x53 −x54 0 x65 · · · xm5

−x61 −x62 −x63 −x64 −x65 0 · · · xm6
...
−xm1 −xm2 −xm3 −xm4 −xm5 −xm6 · · · 0


, xi j ∈ C



49

Now we calculate [H,X ] = HX−XH using above matrices, that is,

[H,X ] =



0 0 −a31 −a41 −a51 −a61 · · · −ak1

0 0 −a32 −a42 −a52 −a62 · · · −ak2

a31 a32 0 0 −a53 −a63 · · · −ak3

a41 a42 0 0 −a54 −a64 · · · −ak4

a51 a52 a53 a54 0 0 · · · −ak5

a61 a62 a63 a64 0 0 · · · −ak6
...

· · · 0 0
ak1 ak2 ak3 ak4 ak5 ak6 · · · 0 0


where ai j is en function de ak and xi j. The four elements a31,a32,a41 and a42 in
[H,X ] are explicitly as follows:

• a31 =−a2x41−a1x32 a32 =−a2x41 +a1x31

• a41 = a2x31−a1x42 a42 = a2x32 +a1x41

We can determine the other entries of [H,X ] as in the above. We have also the
equation

[H,X ] = 〈α,H〉X where 〈α,H〉 is scalar and H ∈ h, X ∈ so(2n,C). (6.9)

If we write the above matrices H and X in the equation (6.9), we obtain the
following equaions:

x2
31 + x2

41 = x2
32 + x2

42 = 0 and x32x41 = x31x42. (6.10)

When we find the possible solutions of the equations in (6.10), we obtain the root
vectors X which has 2×2 block C in the ( j < k) block , the matrix −Ctr in the (k,j)
block, and zero in the other block and C is one of the four matrices as follows :

C1 =

(
1 i

i −1

)
, C2 =

(
1 −i

−i −1

)
, C3 =

(
1 −i

i 1

)
, C4 =

(
1 i

−i 1

)
.
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Also the roots α are linear funcitionals on h given by :

i(a j +ak), −i(a j +ak), i(a j−ak),and − i(a j−ak), respectively.
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