

AUGMENTING AUTHENTICATION WITH BEHAVIORAL BIOMETRICS

IN A MOBILE BANKING APPLICATION

(MOBİL BANKACILIK UYGULAMASINDA DAVRANIŞSAL BİYOMETRİ İLE

ARTIRILMIŞ KİMLİK DOĞRULAMA)

by

O k a n E n g i n B AŞA R , B . S .

Thesis

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

in the

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

of

GALATASARAY UNIVERSITY

Nov 2019

iii

ACKNOWLEDGEMENTS

This thesis becomes reality with the kind support and help of many individuals. I would

like to extend my sincere thanks to all of them.

I would like express my gratitude towards my family for the encouragement which

helped me in completion of this thesis. My beloved and supportive wife, Fulya who is

always by my side when times I needed her most and helped me a lot in making this

study.

I would like to thank to my supervisor, Assoc. Prof. Dr. Özlem Durmaz İncel for

imparting her knowledge and expertise in this study.

My thanks and appreciations also go to my colleague and people who have willingly

helped me out with their abilities.

This work has been supported by The Scientific and Technological Research Council of

Turkey (TÜBİTAK) under grant number 5170078 and by the Galatasaray University

Research Fund under grant number 17.401.004 and by Yapı Kredi Teknoloji, Istanbul.

Nov 2019

Okan Engin BAŞAR

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...iii

TABLE OF CONTENTS ... iv

LIST OF SYMBOLS .. vi

LIST OF FIGURES .. vii

LIST OF TABLES ... viii

ABSTRACT.. ix

ÖZET ... x

1. INTRODUCTION ... 1

2. RELATED WORK.. 5

3. EXTENDING THE MOBILE BANKING APPLICATION WITH A LOGGER 8

 3.1. The Mobile Banking Application ... 9

 3.1.1. Session & Tagging Utility .. 10

 3.1.2. Permission Utility .. 11

 3.2. The Logger .. 12

 3.2.1. Gesture Listener .. 12

 3.2.2. Sensor Utility ... 13

 3.2.3.Log Utility ... 15

4. DATA COLLECTION AND ANALYSIS .. 17

 4.1. Feature Extraction.. 19

 4.2. Feature Transformation ... 21

v

 4.3. Classification ... 21

 4.4. Testing & Validation .. 23

 4.5. Metrics .. 23

5. PERFORMANCE EVALUATION .. 25

 5.1. Classification Performance Analysis ... 25

 5.2. Resource Consumption Analysis .. 32

 5.2.1. Power Consumption and CPU Usage ... 33

 5.2.2. Impact of Touchscreen (Normal usage vs Under stress) 34

 5.2.3. Impact of Accelerometer (Sampling rate: 5 Hz vs 20 Hz vs 100 Hz) 36

 5.2.4. Impact of Gyroscope (Sampling rate: 5 Hz vs 20 Hz vs 100 Hz) 37

 5.2.5. Impact of Magnetometer (Sampling rate: 5 Hz vs 20 Hz vs 100 Hz) 39

6. CONCLUSION & FUTURE WORK ... 41

REFERENCES .. 42

APPENDICES ... 44

Appendix A. Showing a consent pop-up to start data collection 44

Appendix B. Dispatching the touch events ... 45

Appendix C. Log Utility .. 46

Appendix D. Sensor Utility ... 49

Appendix E. Gesture Listener .. 51

Appendix F. Feature Extraction in Python .. 54

Appendix G. Feature Merger in Python... 59

Appendix H. Feature of Other Users Merger in Python ... 60

Appendix I. Feature of All Users Merger in Python .. 61

BIOGRAPHICAL SKETCH .. 62

vi

LIST OF SYMBOLS

10-CV : 10-Fold Cross-Validation

ADB : Android Debug Bridge

BKG : Biometric Key Generation

CPU : Central Processing Unit

CSV : Comma Separated Values

EER : Equal Error Rate

FAR : False Acceptance Rate

FPR : False Positive Rate

FRR : False Rejection Rate

ML : Machine Learning

PCA : Principal Component Analysis

PIN : Personal Identification Number

RBF : Radial Basis Function

SDK : Software Development Kit

SMS : Short Messaging System

SVM : Support Vector Machines

TPR : True Positive Rate

WEKA : Waikato Environment for Knowledge Analysis

vii

LIST OF FIGURES

Figure 3.1: Component diagram of the system ... 18

Figure 3.2: The screenshot of the user consent pop-up ... 20

Figure 3.3: The file structure ... 20

Figure 3.4: Usage of runtime permissions ... 21

Figure 3.5: TouchEvent dispatcher method signature in Android SDK 22

Figure 3.6: Registration of sensor event listeners in onResume 23

Figure 3.7: Unregistration of sensor event listeners in onPause 24

Figure 4.1: Possible hyperplanes in SVM in 2-dimensional space 31

Figure 4.2: Definition of Equal Error Rate (EER) .. 35

Figure 5.1: Equal Error Rate (EER) ... 41

Figure 5.2: Overall power consumption .. 41

Figure 5.3: Overall CPU usage .. 42

Figure 5.4: Impact of touchscreen on power consumption 43

Figure 5.5: Impact of touchscreen on CPU usage ... 43

Figure 5.6: Impact of accelerometer on power consumption 44

Figure 5.7: Impact of accelerometer on CPU usage .. 45

Figure 5.8: Impact of gyroscope on power consumption .. 46

Figure 5.9: Impact of gyroscope on CPU usage .. 46

Figure 5.10: Impact of magnetometer on power consumption 47

Figure 5.11: Impact of magnetometer on CPU usage ... 48

viii

LIST OF TABLES

Table 3.1: The raw data saved by logger to CSV files .. 26

Table 4.1: The list of users ... 28

Table 4.2: The list of extracted features .. 30

Table 4.3: One-class SVM vs SVM .. 32

Table 5.1: TPR performance without PCA & with default SVM parameters 36

Table 5.2: TPR performance with PCA & with optimized SVM parameters 37

Table 5.3: TPR performance comparison for more training data 38

Table 5.4: Effects of PCA, SVM parameter optimization and training data size .. 39

Table 5.5: FPR performance of TPR optimized one-class SVM model 40

Table 5.6: FAR and FRR values .. 41

ix

ABSTRACT

Smartphones have become very important and essential tools for our daily lives. They

are not used just to communicate but each of them act as a smart personal assistant. We

are playing, working and socialize wherever and whenever by using them. Even we

make our banking transactions by using them instead of going to a bank branch.

However, some possible security and privacy issues come in mind at this point. One of

the greatest issues would be the theft or seizure of the smartphone by a third person.

Banks take care of most of the cases by forcing the customer set a password which is

not easily guessable. Also the banks send SMS messages or instant notifications to the

customers as a second layer of security. These are good to have but may not be

sufficient. Assume a customer unlocks the phone, crosses the second security layer into

the banking application and then a thief steals the phone. The thief not only has the

phone but also has the money that in the bank accounts at this point. This action is

known as Account Takeover Attack in the literature. This thesis highlights the potential

risks that occur when smartphones are stolen or seized at this kind of moments, and

provides a solution to account takeovers by using continuous authentication concepts,

like continuous user identification via touch and micro movements, and the mechanisms

of behavioral biometrics. The solution is implemented inside a mobile banking

application and the data is collected with this application. The collected data is modeled

utilizing a machine learning algorithm. The details of the augmentation process and the

test results in terms of authentication performance and resource consumption are also

provided.

x

ÖZET

Akıllı telefonlar hayatımızda çok önemli hale geldi. Sadece iletişim kurmak için

değiller. Her biri akıllı bir kişisel asistandır. Oynuyoruz, çalışıyoruz ve nerede olursak

olalım, onları kullanırken sosyalleşiyoruz. Hatta bir banka şubesine gitmek yerine onları

kullanarak bankacılık işlemlerimizi yapıyoruz. Bununla birlikte, bu aşamada bazı olası

güvenlik ve gizlilik sorunları akla geliyor. En büyük sorunlardan biri de akıllı telefonun

üçüncü bir kişi tarafından çalınması veya ele geçirilmesidir. Bankalar müşterilerini

kolaylıkla tahmin edilemeyecek bir şifre belirlemeye zorlayarak bu tür durumların

çoğunu bertaraf eder. Ayrıca bankalar müşterilere ikinci bir güvenlik katmanı olarak

SMS mesajları veya anlık bildirimler de gönderir. Bunların olması güzel ama yeterli

değil. Bir müşterinin telefonun kilidini açtığını, ikinci güvenlik katmanını geçerek

bankacılık uygulamasına girdiğini ve ardından bir hırsızın telefonu çaldığını varsayalım.

Hırsız bu noktada sadece telefonu değil aynı zamanda banka hesaplarındaki parayı da

elde etmektedir. Bu eylem literatürde Hesap Devralma Saldırısı olarak bilinmektedir.

Bu tez, akıllı telefonların çalınması, izinsiz ele geçirilmesi ve yetkisiz kişiler tarafından

işlem yapılması ile ortaya çıkabilecek olası risklere karşı, dokunma ve cihazın mikro

hareketlerini izleyerek eğitilen bir davranış modeli ile hesap devralmayı engelleyen

sürekli kimlik doğrulaması yapılan yeni bir güvenlik katmanı çözümü sunmaktadır. Bu

çözüm bir mobil bankacılık uygulaması içerisinde uygulanmış ve tüm veriler bu

uygulama ile toplanmıştır. Toplanan veriler bir makine öğrenme algoritması

kullanılarak modellenmiştir. Doğrulama performansı ve kaynak tüketimi açısından

değerlendirilen test sonuçları ve tüm uygulama süreçlerinin detayları da belirtilmiştir.

 1

1. INTRODUCTION

Smartphones have become important gadgets used in our daily lives. With a variety of

apps, they are not only used for communication but also for different purposes, such as

accessing social networks, browsing through the Internet, watching videos, navigation,

step counting, bank transfers, etc. Often, users store personal/private information, such

as photos, videos, or sensitive information such as passwords on these devices. Due to

their small sizes compared to personal computers or tablets, they are also prone to get

stolen or be lost and can be accessed by non-owners. If an non-owner or intruder has

physical access to a device, he/she can cause monetary or non-monetary damage to the

owner. Therefore, protecting the security and privacy of smartphone users against

unauthorized access and providing secure authentication on these devices are important

issues.

Mobile banking applications are one of the most sensitive apps for secure authentication

and they are widely used by customers due to ease of access and use. These applications

are required to perform remote authentication using user credentials consisting of user-

name and password. Moreover, usually a confirmation password is required by the bank

after the completion of a transaction as an additional security measure. Although,

additional passwords bring a benefit, the use of a confirmation password extends the

processing time, which may cause difficulty in the application usage for users. As an

alternative method, continuous authentication using behavioral metrics can be utilized

in mobile banking applications. Users exhibit different patterns while interacting with

apps, or mobile devices and behavioral biometrics aim to identify users according to

their unique patterns. Data related to keystrokes, touch-screen use and sensor data can

be used to identify these patterns. Compared to physical biometrics, behavioral

biometrics provide lower levels of security for authentication but they have the

advantages of working in the background and not disrupting the user experience, and

 2

working over a session rather than a one-shot authentication. Moreover, rather than

replacing a username-password based authentication, they can be used as an additional

measure for authentication or they can replace the additional passwords required after

transactions.

In this thesis, the augmentation of a mobile banking application with continuous

authentication using behavioral biometrics is investigated. A mobile banking

application from a local bank in Turkey as part of a research project is utilized.

Particularly, the augmentation of the app with a data logging tool is discussed. The

logger collects touch data while the user interacts with the screen, such as finger

pressure, finger size and X&Y coordinates on the screen, as well as sensor data from

accelerometer, gyroscope and magnetometer. 20 users collected the initial data for a

pilot study. By preprocessing, the features are extracted from raw data. These extracted

features were analyzed using machine learning algorithms to identify users. Especially

one-class SVM classification is evaluated in detail. In addition to these, the resource

consumption of the logger-augmented mobile banking application is explored in

comparison to the app without the logger to investigate the overhead of data logging. As

the metrics, power/battery consumption, CPU and memory usage were considered.

Moreover, the resource usage with using accelerometer alone, as well as in combination

with a gyroscope and magnetometer were analyzed. The resource consumption with

varying sensor sampling rates was also tested. A scenario simulating a real-user was

followed on the mobile banking app while collecting the data. The performance results

show that touchscreen is the cheapest one in every aspect of resource consumption.

Accelerometer is the least consumer among three sensors and as the sampling rate

increases, the energy consumption and CPU usage can also dramatically increase after

some point. Hence, sensor sampling rates should be kept at minimum in order not to

disrupt user experience.

The importance of the smartphones and the potential security and privacy issues that

occur when smartphones are stolen or seized are highlighted. The current techniques

that are used and the methodologies that are followed to prevent these issues are

explained. Continuous authentication concepts, like continuous user identification via

touch and micro movements, are mentioned in detail. This thesis puts behavioral

 3

biometrics on the table and shows its importance in terms of security. The main topic of

this thesis is how to increase the security level in a mobile banking application by using

behavioral biometrics.

In order to provide security, the user is asked for the username and password

information to provide security for the bank. Although the access to the mobile banking

application is password protected, additional security controls are also necessary taken

into account to prevent a fraudulent account. For this purpose, after the initial

authentication, as an additional security control, a confirmation password is issued to

complete the transaction. Using a confirmation password extends the processing time

and complicates the bank customer's application usage.

In this thesis, it is suggested to use behavioral biometrics methods that are new for the

Bank. These authentication methods will be considered as an additional control layer. In

the related academic literature, the so-called 'behavioral biometry' method is based on

the analysis of human-device interactions to protect users and their data and aims to

distinguish the person behind a session. Among the types of behavior and interaction

planned to be followed, there will be examples such as typing speed and style, pressure

applied to the screen, transitions between screens. Thus, in mobile banking application,

the Bank will be able to skip the confirmation password from the customer in the

acceptable transactions for the bank, and the customer can be authenticated so that both

fraud cases can be prevented and the use of the banking application will be facilitated.

This thesis provides five main outputs:

1. A software to be integrated into the mobile banking application that collects data

on user behavior

2. User data collected during testing process of this software (raw data)

3. Feature set calculated by preprocessing the raw data

4. Results of the classification performance analysis

5. Results of the resource consumption analysis.

 4

All the outputs mentioned above are explained in detail in this thesis. The rest of the

thesis is organized as follows:

In Section II, the related work is presented.

In Section III, the components of the client application and its augmentation process

with the Logger are described.

In Section IV, the data collection and analysis methods are explained. The data

preprocessing and methodology being followed are also described. Feature engineering

details are provided.

In Section V, the results of the performance evaluations are presented. SVM

classification performance and the results of the application resource consumption

analysis are provided.

Finally, in Section VI, the conclusion and future work are presented.

 5

2. RELATED WORK

The use of continuous authentication based on behavioral biometrics is a promising area

of study to enhance the security of the smartphones and there are numerous studies that

have used behavioral biometrics. Although there are many types of behavioral

biometrics, these studies mainly focused on hand waiving, key stroke and touchscreen

behaviors. These studies extract various features such as pressure, finger size, touch

location, and gesture type.

Alzubaidi A. and Kalita J. (2016) mentioned about potential risks that occur when

smartphones are stolen or seized in their survey. The current approaches and

mechanisms of behavioral biometrics with respect to methodology, associated datasets

and evaluation approaches were analyzed.

Stylios I., et al. (2016) reviewed a summary of selected published material on this

subject, with additional disclosure, critical analysis of contents and, in some cases, the

main conclusions of each study. Their work can support new scientists and researchers

by giving them hypothetical and viable viewpoints on Continuous Authentication

utilizing behavioral biometrics.

Bo C., et al. (2014) presented a new framework called SilentSense to authenticate users

using the user touch behavior biometrics and the micro-movement of the device caused

by the user's touch screen actions. They have created a touch-based biometric model of

the owner and then confirmed whether the current user is the owner or the guest /

attacker. While using the smartphone, some unique working dynamics of the user are

learned by collecting sensor data and silently touching events. Micro movement of

mobile devices identifies touching from large-scale movements of the user. Touch-based

 6

based biometrics can be neutralized. To address this, they integrated a movement based

biometrics for each user with previous touch-based biometrics. They also conducted

extensive evaluations of their approaches on the Android smartphone and showed that

the user identification accuracy is over 99%.

Sitová Z., et al. (2016) introduced HMOG, a set of behavioral features to continuously

authenticate smartphone users. HMOG was featured with micro-movements and

orientation dynamics. According to this study, how a user grasps, holds, and taps on the

smartphone can be used to identify the user. They also evaluated authentication and

BKG performance of HMOG features. Sitting and walking data were collected from

100 subjects while they were typing on a virtual keyboard. They compared EERs of the

activities of subjects.

Meng W., et al. (2015) investigated the use of both physical and behavioral biometric

data. The data classes such as signature activity, walking pattern, applications used, the

pattern of use of the phone keys, the pattern of the touch gestures of the screen were

examined and the advantages and disadvantages of each method were discussed. In

addition, different evaluation metrics (error rate, false acceptance rate, etc.) were used in

studies and their performance against possible security attacks were investigated.

Patel V. M., et al. (2016) emphasized that the sensors, such as camera, microphone, etc.

can be used to collect physical data, while components such as accelerometers,

gyroscopes, touch screens can be used to collect behavioral biometric data, such as

walking, screen touch gestures, and hand movements. In the literature, it has been stated

that user validation using behavioral biometry is expressed in different ways, such as

continuous authentication, active authentication, indirect authentication, and transparent

authentication. The advantages of authenticating with behavioral data, as well as

physical data such as fingerprints, compared to active authentication, have been defined

as ease of use and continuous operation.

Rahman F., et al. (2014) suggested to use user's location, walking pattern, and the use of

an image in the context authentication with different data modalities. However, an

application and performance analysis has not been presented.

 7

Fridman L., et al. (2017) constructed a dataset comprising of the text entered with the

virtual keyboard, the applications used, the visited websites, and the physical location

data of the device from 200 users.

Fridman L., et al. (2015) performed the analysis of keyboard usage dynamics and

mouse movements as well as stylometry. In this study, laptops were considered instead

of mobile devices.

Buriro A., et al. (2017) investigated a mobile banking application for continuous

authentication. Touch-strokes’ timing-differences and the phone-movements during the

process of entering PIN/password were collected. However, the study focused on the

performance of identification and neglected resource consumption. Moreover, data was

collected only when entering PIN and password, while we collect data throughout a

complete session, from login to logout.

To sum up, some of the related works were surveys and the others mainly focused on

physical and virtual keyboard usage. Although Buriro A., et al. (2017) investigated

mobile banking application for continuous authentication, this work was only related to

login screen. In this thesis, a mobile banking application is investigated in much more

detail. The continuous authentication mechanism is applied not only to login screen but

to the all screens during a secure session. Moreover, the results of the resource

consumption analysis are also provided.

 8

3. EXTENDING THE MOBILE BANKING APPLICATION WITH A LOGGER

In this section, the components of the client application and its augmentation process

with the Logger are described. Figure 3.1 shows the component diagram of the system.

This thesis is mainly focused on the client application which is the mobile banking

application and the logger implementation. All the details related to the mobile banking

application is provided in Section III. The Logger is explained and the implementation

is provided in Section IV. The preprocessing of the raw data is also explained in Section

IV. The authentication performance and the resource consumption analysis are provided

in Section V.

Figure 3.1: Component diagram of the system

 9

3.1. The Mobile Banking Application

The base application, which is a mobile banking application, has been natively

implemented by the bank in Java programming language to operate in mobile phones

having Android operating system. By default, there is neither continuous authentication

mechanism nor usage of sensors installed on device. Also, the touch events are not

being logged.

In order to extend this application to have continuous authentication mechanism by

using behavioral biometrics, the required data should be continuously collected. The

details of the data being collected is provided in Section IV.

The base application is utilizing the fragment and the activity lifecycles. Although the

application is huge, in other words it has thousands of screens, there are only couple of

activities for different purposes. The rest of the screen designs are utilizing fragment

architecture. For example, the NonSecureActivity is activity used for the fragments

before the login screen, and MainActivity is used for the fragments after the login. All

the activities inherit from the BaseActivity. Because of this, we make use of

BaseActivity in order to access and keep in touch with all the fragments implemented

inside the base application. The BaseActivity is used for application wide operations

like activity management, fragment management, flow management, user permissions,

etc.

 10

3.1.1. Session & Tagging Utility

Before collecting any data, the user consent should be taken. Figure 3.2 shows the

screenshot of a sample consent with some tagging parameters. The implementation is

provided in Appendix A.

Figure 3.2: The screenshot of the user consent pop-up

After the consent is taken, data collection starts with folder and file creation process.

The data coming from sensors and touch events are recorded to the filesystem. Before

the data is generated, session utility creates the corresponding file structure (Figure 3.3).

This is mentioned as Session & Tagging Utility in the component diagram.

Figure 3.3: The file structure

 11

3.1.2. Permission Utility

In order to create the file structure and save the obtained the sensor and the touchscreen

data to the filesystem, the external storage write permission is taken in the BaseActivity.

Figure 3.4 shows how to ask for a runtime permission. This is mentioned as Permission

Utility in the component diagram.

@RuntimePermissions
public abstract class BaseActivity extends AppCompatActivity {
 ...
@NeedsPermission({Manifest.permission.WRITE_EXTERNAL_STORAGE})
public void setupDAKOTA(BaseActivity activity, String name, String position,
String scenario, String phoneModel) {
 DakotaLogUtil.setupFiles(activity, name, position, scenario, phoneModel);
 DakotaLogUtil.isDakotaFileSetUpCompleted = true;
}

@Override
public void onRequestPermissionsResult(int requestCode, String[] permissions,
int[] grantResults) {
 super.onRequestPermissionsResult(requestCode, permissions, grantResults);
 BaseActivityPermissionsDispatcher.onRequestPermissionsResult(this,
requestCode, grantResults);
}
...

}

Figure 3.4: Usage of runtime permissions

 12

3.2. The Logger

The Logger is the component that listens gestures and sensors on the device and logs all

the gathered information. It is designed to be part of the client application in order to

collect the behavioral data of the users of the application. It consists of 2 utilities and 1

listener. The utilities are Sensor Utility and Log Utility. These utilities are responsible

for the sensor operations and the data logging respectively. The sensors listened on the

device are the accelerometer, gyroscope and magnetometer. The Gesture Listener, on

the other hand, is responsible for detecting gestures like scroll, fling, long press, show

press, single tap down, single tap up and double tap.

3.2.1. Gesture Listener

Android SDK has built-in class called GestureDetector. It provides us GestureListener

interfaces to implement and SimpleOnGestureListener class to extend in order to obtain

the gestures listed above. The implementation is provided in Appendix E.

Sometimes the interactions are not identified as gesture. Therefore, all the motion events

are also dispatched in the BaseActivity to get every touchscreen interaction data by

extending dispatchTouchEvent method coming from AppCompatActivity which is a

built-in activity in Android SDK (Figure 3.5). The implementation is also provided in

Appendix B.

public boolean dispatchTouchEvent(MotionEvent ev);

Figure 3.5: TouchEvent dispatcher method signature in Android SDK

 13

3.2.2. Sensor Utility

The sensor events are listened by registering the corresponding event listeners to the

Sensor Manager, a built-in class in Android SDK, to access device sensors. Figure 3.6

shows how the listener registration takes place in onResume, activity callback method

which is also inherited from AppCompatActivity. This callback method is called when

your activity is just started to interact with the user.

There are 3 sensors that are listened; accelerometer, gyroscope and magnetometer. The

sensor delay is the parameter that defines the sensor sampling rate. SENSOR_DELAY_

NORMAL (200ms delay) is nearly equivalent to 5Hz sampling rate. In Section V, the

importance of the sampling rate is emphasized and the comparison of different sampling

rates, specifically 5 Hz, 20 Hz and 100 Hz, is made in terms of resource consumption.

@Override
public void onResume() {
 super.onResume();
 ...
 if (DakotaSensorUtil.sensorManager != null &&
!DakotaSensorUtil.sensorListening) {

 if (DakotaSensorUtil.gyroscopeSensor != null &&
DakotaSensorUtil.gyroscopeEventListener != null) {

DakotaSensorUtil.sensorManager.registerListener(DakotaSensorUtil.gyroscopeEven
tListener, DakotaSensorUtil.gyroscopeSensor,
SensorManager.SENSOR_DELAY_NORMAL);
 }

 if (DakotaSensorUtil.accEventListener != null) {

DakotaSensorUtil.sensorManager.registerListener(DakotaSensorUtil.accEventListe
ner, DakotaSensorUtil.accSensor, SensorManager.SENSOR_DELAY_NORMAL);
 }

 if (DakotaSensorUtil.magEventListener != null) {

DakotaSensorUtil.sensorManager.registerListener(DakotaSensorUtil.magEventListe
ner, DakotaSensorUtil.magSensor, SensorManager.SENSOR_DELAY_NORMAL);
 }

 DakotaSensorUtil.sensorListening = true;
 }
 ...
}

Figure 3.6: Registration of sensor event listeners in onResume

 14

Since the sensors are serious energy consumers, as described in Section V, they should

be active as short as possible. For this reason, the event listeners are unregistered from

Sensor Manager in onPause activity callback method as shown in Figure 3.7 in order to

suspend data collection while the application is not active. This callback method is

called when your activity is not visible the user.

@Override
public void onPause() {
 ...
 if (DakotaSensorUtil.sensorManager != null) {

 if (DakotaSensorUtil.gyroscopeSensor != null &&
DakotaSensorUtil.gyroscopeEventListener != null) {

DakotaSensorUtil.sensorManager.unregisterListener(DakotaSensorUtil.gyroscopeEve
ntListener);
 }

 if (DakotaSensorUtil.accSensor != null &&
DakotaSensorUtil.accEventListener != null) {

DakotaSensorUtil.sensorManager.unregisterListener(DakotaSensorUtil.accEventList
ener);
 }

 if (DakotaSensorUtil.magSensor != null &&
DakotaSensorUtil.magEventListener != null) {

DakotaSensorUtil.sensorManager.unregisterListener(DakotaSensorUtil.magEventList
ener);
 }

 DakotaSensorUtil.sensorListening = false;
 }

 super.onPause();
}

Figure 3.7: Unregistration of sensor event listeners in onResume

 15

3.2.3. Log Utility

After the data collection consent and the write permission is taken, the session is started

by the Session & Tagging Utility. At this point, data is started to be generated by the

Gesture Listener and the Sensor Utility as long as the base application is running and

visible on device screen. This data should be kept for a while on the device, until all the

data is exported to the server.

As mentioned, there exists two main data sources; the Gesture Listener and the Sensor

Utility. The corresponding implementations are provided in Appendix E and Appendix

D.

The current data structure is the generated 12 CSV files on local file system as listed in

Figure 3.3. The column names are also listed in Table 3.1. Each sensor data has X, Y

and Z axis values. Each touchscreen data, on the other hand, has finger size, finger

pressure, and X and Y coordinates of the screen. Fling and scroll gestures have also

velocity information for each axis. Therefore these information have their own columns

in the corresponding files. All the files have also the Time and Fragment Name columns

to keep track of when and where the action takes place. The implementation of Log

Utility is attached as Appendix C.

Each session has a folder containing these files. When a new session is started, also a

new folder is created for it. Each folder has some tagging information on it. The

timestamp, the username, the position, the scenario number and the phone model. The

timestamp is generated automatically. The other parameters are optional and currently

obtained manually in the consent popup to get an idea about the data. When the

application is deployed to production environment, the user information which already

exist in the bank’s database will be used. The other parameters will not be necessary.

 16

Accelerometer:
- Time
- X Axis
- Y Axis
- Z Axis
- Fragment Name

Gyroscope:
- Time
- X Axis
- Y Axis
- Z Axis
- Fragment Name

Magnetometer:
- Time
- X Axis
- Y Axis
- Z Axis
- Fragment Name

Touch:
- Finger Pressure
- X Axis
- Y Axis
- Finger Size
- Time
- Fragment Name

TouchNoScrollNoFling:
- Finger Pressure
- X Axis
- Y Axis
- Finger Size
- Time
- Fragment Name

Down:
- Finger Pressure
- X Axis
- Y Axis
- Finger Size
- Time
- Fragment Name

Fling:
- Finger Pressure
- X Axis
- Y Axis
- Finger Size
- X Axis Velocity
- Y Axis Velocity
- Time
- Fragment Name

Double Tap:
- Finger Pressure
- X Axis
- Y Axis
- Finger Size
- Time
- Fragment Name

Long Press:
- Finger Pressure
- X Axis
- Y Axis
- Finger Size
- Time
- Fragment Name

Scroll:
- Finger Pressure
- X Axis
- Y Axis
- Finger Size
- X Axis Velocity
- Y Axis Velocity
- Time
- Direction
- Fragment Name

Show Press:
- Finger Pressure
- X Axis
- Y Axis
- Finger Size
- Time
- Fragment Name

Single Tap Up:
- Finger Pressure
- X Axis
- Y Axis
- Finger Size
- Time
- Fragment Name

Table 3.1: The raw data saved by logger to CSV files

 17

4. DATA COLLECTION AND ANALYSIS

In this section, the data collection and analysis methods are explained. The data

preprocessing and methodology being followed are described. Feature engineering

details are provided.

According to the analysis performed on the current customers of bank, the mostly used

functions in the application are determined and combined together to generate scenarios.

The measured average session duration is around 3 minutes. To achieve this duration,

the customer behavior is simulated by following 5 scenarios listed below.

1) Account and credit card balance control on dashboard,

2) Searching accounts on account list and balance control,

3) Money transfer from one account to another,

4) Foreign exchange buy operation,

5) Credit card debt payment.

The data is collected by following these scenarios after login in each session. Although

there are unlimited number of different stances, three of them are selected to be the most

common ones to simulate the scenarios. Every user has completed scenarios in each of

the following stances.

1) Holding the phone in hand and standing

2) Holding the phone in hand and sitting

3) Holding the phone on the table and sitting

3 device models are used in this thesis. The devices used to collect data are Samsung

Galaxy S9 and Xiaomi Mi8. The resource consumption analysis, on the other hand, is

performed on Samsung Galaxy S3 Neo since the other models do not support the power

estimation utilities.

 18

The data is collected from 20 users. Each user has followed the above-mentioned 5

scenarios in corresponding sessions. Each user then alters the stance, and repeats the

same scenarios, and then alters the stance again to repeat ones more.

That makes 15 sessions per user. 1 user has 13 sessions. 18 users have 15 sessions. 2

users have 30 sessions to see the importance of training dataset size in classification

performance. Table 4.1 shows the list of users. In total, 47.31 MB of data is collected

from 20 users.

User
ID Gender Phone

Model
Session
Count

Data Size
(bytes)

2 F Samsung S9 15 2,696,179
3 F Samsung S9 15 3,258,477
4 M Samsung S9 15 2,655,264
5 M Samsung S9 15 2,885,752
6 M Samsung S9 13 3,351,233
8 M Samsung S9 15 2,901,635

30 M Xiaomi Mi8 30 3,916,120
31 F Xiaomi Mi8 15 2,257,572
50 M Xiaomi Mi8 15 2,117,162
51 M Xiaomi Mi8 15 2,529,388
52 M Xiaomi Mi8 15 2,494,544
53 M Xiaomi Mi8 15 1,976,520
54 M Xiaomi Mi8 15 3,101,618
55 F Xiaomi Mi8 15 1,783,096
56 F Xiaomi Mi8 15 2,343,062
57 M Xiaomi Mi8 15 2,496,702
70 F Xiaomi Mi8 30 3,951,858
71 F Xiaomi Mi8 15 2,433,167
72 M Xiaomi Mi8 15 2,515,956
73 M Xiaomi Mi8 15 1,932,334

Table 4.1: The list of users

 19

4.1. Feature Extraction

The raw data is preprocessed and 66 features are extracted. These features are

introduced by Sitová Z., et al. (2016) and the details of each feature can be found in

their work. Since the dataset in this thesis is very similar to the one in HMOG paper, the

same features are extracted and utilized. The extracted features are listed on Table 4.2

and they are obtained from only scroll events and the corresponding sensor data.

Although other gestures might contribute to another machine learning model by their

own feature set, this is left as future work. For this reason, only the transactions that

consist scrolling on screen can be authenticated by this machine learning model. The

scrolling event comes from every kind of list. For example; the account list, account

transactions list, credit card list, credit card transactions list, funds list, stocks list, etc. It

does not matter whether the user has lots of accounts or credit cards. If the operation

includes any kind of list scrolling, that session can be authenticated with this approach.

The Python source codes used for feature extraction and feature merging are attached as

Appendix F, Appendix G, Appendix H, and Appendix I.

 20

X_acc_mean X_acc_std X_acc_median

Y_acc_mean Y_acc_std Y_acc_median

Z_acc_mean Z_acc_std Z_acc_median

X_gyr_mean X_gyr_std X_gyr_median

Y_gyr_mean Y_gyr_std Y_gyr_median

Z_gyr_mean Z_gyr_std Z_gyr_median

X_mag_mean X_mag_std X_mag_median

Y_mag_mean Y_mag_std Y_mag_median

Z_mag_mean Z_mag_std Z_mag_median

Acc_Mag_mean Acc_Mag_std Acc_Mag_median

Gyr_Mag_mean Gyr_Mag_std Gyr_Mag_median

Mag_Mag_mean Mag_Mag_std Mag_Mag_median

START_X_first CURRENT_X_last CURRENT_X_maxdev

CURRENT_X_dev20 CURRENT_X_dev50 CURRENT_X_dev80

START_Y_first CURRENT_Y_last CURRENT_Y_maxdev

CURRENT_Y_dev20 CURRENT_Y_dev50 CURRENT_Y_dev80

V_pairwise20 V_pairwise50 V_pairwise80

A_pairwise20 A_pairwise50 A_pairwise80

V_medianVelocity

LastThree
A_averageAccFirstFive

pairwiseDisplacement_

lengthOfTrajectory

CURRENT_PRESSURE_

median
CURRENT_SIZE_median distance

directionOfEndtoEnfLine ratio duration

averageVelocity MeanResultantLength AverageDirectionEnsemble

Table 4.2: The list of extracted features

 21

4.2. Feature Transformation

In order to improve authentication performance, feature transformation with Principal

Component Analysis is performed. It is a statistical procedure that transforms a number

of possibly correlated variables into a smaller number of linearly uncorrelated variables

called principal components without losing any information. By applying PCA, 66

features are transformed into 23 and better SVM classifier performance achieved on

reduced number of features.

4.3. Classification

SVM is a supervised ML algorithm which can be used for classification, regression

purposes and mostly for the pattern recognition. When it is used for classification, this

algorithm tries to find the optimal hyperplane which strictly classifies the data points

with a maximum margin in N-dimensional space where N is the number of features.

Figure 4.1 shows the possible hyperplanes in 2-dimensional space.

Figure 4.1: Possible hyperplanes in SVM in 2-dimensional space

One-class SVM classification, on the other hand, is an unsupervised learning algorithm

which is used to distinguish the target class from all other classes by using only target

class training data. If the outliers are not represented well in the training set, this

algorithm is much suitable. The aim is to separate the data from the origin in the N-

 22

dimensional predictor space and detect the outliers. Rana, D. (2015) compared two

SVM classification algorithms and this comparison is given in Table 4.3.

One-Class SVM SVM

Contains data from

only one class, target class.

Contains data of two or more

classes.

Goal is to create a description of

one class of objects and

distinguish from outliers.

Goal is to create hyperplane

with maximum margin between

two classes.

Decision boundary is estimated

in all directions in the feature

space around the target class.

Hyperplane is created in

between datasets to indicate

which class it belongs to.

Table 4.3: One-class SVM vs SVM

Since the model ought to be trained with the single user’s data and the purpose is to

classify new data whether they belong to this class or not, one-class SVM classification

algorithm was used. WEKA libSVM library contains one-class-SVM implementation.

This implementation is used in experiments.

When training an SVM classifier with the kernel type RBF, nu and gamma parameters

must be considered. The influence amount of a single training instance on the

classification is defined as gamma.

The nu parameter, is upper bounded by the fraction of outliers and lower bounded by

the fraction of support vectors. This parameter should be optimized to tune the trade-off

between overfitting and generalization.

All experiments showed that the lowest possible gamma value, 1.0E-7, has the best

authentication performance. In order to be consistent in SVM, all the target attributes

are normalized by setting the normalize parameter to true. All other parameters are left

as default in WEKA 3.8. Future experiments are made based on these parameters.

Classifier configuration:

 23

weka.classifiers.functions.LibSVM -S 2 -K 2 -D 3 -G 1.0E-7 -R 0.0 -N 0.5 -M 40.0 -C

1.0 -E 0.001 -P 0.1 -Z -model "C:\\Program Files\\Weka-3-8" -seed 1 -output-debug-

info

4.4. Testing & Validation

Cross-validation is widely used statistical method to estimate the machine learning

model performance. It is a resampling procedure used when the data sample is limited.

k-Fold cross-validation is a term where the k is the number of groups/folds that a given

data sample is to be split into randomly. In each iteration, 1 fold is selected for testing

and the k-1 folds are used for training. This is repeated k times for each fold.

10-fold cross-validation (10-CV) is used on training data to set the parameters for PCA

and SVM. 10-CV is also used in testing to optimize the TPR values for each user.

In order to optimize the authentication performance in terms of TPR, all different nu

values in the range of 0.01-0.99 with the step size 0.01 are examined for each PCA

transformed training data. According to the result matrix of TPR and nu values, a best

nu value is assigned to each user. These nu values are used in one-class SVM

classification.

4.5. Metrics

There are 3 metrics that are evaluated in this thesis. True Positive Rate (TPR), False

Positive Rate (FPR) and Equal Error Rate (EER).

TPR is an outcome where the model correctly predicts the positive class. TPR value is

high if the data being tested is correctly identified as belonging a target class. Higher

TPR means, better classification and hence better authentication performance.

True Positive Rate (TPR) is defined as follows:

 24

𝑇𝑃𝑅 = %&
%&'()

 (1)

FPR is an outcome where the model incorrectly predicts the positive class. FPR value is

low if the data being tested is correctly identified to be an outlier. Lower FPR means,

better classification and hence better authentication performance.

False Positive Rate (FPR) is defined as follows:

𝐹𝑃𝑅 = (&
(&'%)

 (2)

EER, on the other hand, is a biometric security system algorithm to determine the

thresholds for its False Acceptance Rate (FAR) and its False Rejection Rate (FRR).

When FAR and FRR are equal, the common value is referred as EER. The relation

between EER, FAR and FRR is shown in Figure 4.2. Lower EER means, better

classification and hence better authentication performance.

Figure 4.2: Definition of Equal Error Rate (EER)

 25

5. PERFORMANCE EVALUATION

In this section, the classification performance and the resource consumption analysis are

provided. The effects of PCA and SVM parameters on the classification performance

are investigated. TPR and/or FPR results are provided with each configuration. Results

of the resource consumption analysis are also presented.

5.1. Classification Performance Analysis

The experiments are held on the collected data of 20 users. For each user, one class

SVM is performed with the default parameters of WEKA libSVM. SVM models are

trained with user’s own data and tested with the data of other users.

48.85% TPR is observed on average as seen in Table 5.1 without PCA and without

SVM parameter optimization.

SVM parameter optimization is very effective on classification performance. Gamma

value is determined to be best at 1.0E-7. A user-specific nu value that has the best

authentication performance on user data is assigned for each user. These nu values are

determined by automated tests in Weka Experimenter.

Table 5.2 shows that the TPR values obtained vary between 70% to 96% when the

features are transformed with PCA and the SVM parameters are optimized for each

user. 83.13% TPR is observed on average.

 26

User ID TPR
2 50.85%
3 51.60%
4 48.80%
5 48.49%
6 49.19%
8 49.35%

30 47.49%
31 48.69%
50 49.07%
51 48.91%
52 47.47%
53 49.38%
54 48.47%
55 47.40%
56 49.17%
57 48.61%
70 47.56%
71 49.34%
72 48.23%
73 48.84%

Avg.--> 48.85%
Table 5.1: TPR performance without PCA & with default SVM parameters

SVM classifier parameters that are used in experiments:

kernelType : Radial Basis Function (RBF)

gamma : 1.0E-7

nu : “an optimized value in range 0.01 - 0.99”

normalize : true

others : WEKA libSVM defaults

PCA is performed on all features. The following default WEKA configuration

parameters are used.

Attribute selection configuration for the PCA evaluator:

weka.attributeSelection.PrincipalComponents -R 0.95 -A 5

 27

Attribute selection configuration for the PCA search:

weka.attributeSelection.Ranker -T -1.7976931348623157E308 -N -1

User
ID

of
training

instances

of
testing

instances

of
total

instances
Best nu Best TPR

%

2 264 29 293 0.25 82.22
3 225 25 250 0.40 94.80
4 225 25 250 0.04 96.00
5 329 37 365 0.50 83.66
6 278 31 309 0.50 94.83
8 275 31 306 0.04 87.82

30 197 22 219 0.60 75.24
31 240 27 267 0.20 91.70
50 194 22 216 0.50 80.67
51 166 18 184 0.20 72.43
52 195 22 217 0.40 87.84
53 219 24 243 0.72 81.23
54 147 16 163 0.50 73.90
55 156 17 173 0.25 81.27
56 216 24 240 0.25 90.42
57 226 25 251 0.50 89.09
70 203 23 225 0.86 70.79
71 204 23 227 0.50 86.17
72 203 23 226 0.84 72.13
73 194 22 215 0.50 70.39

Avg.TPR --> 83.13
Table 5.2: TPR performance with PCA & with optimized SVM parameters

The importance of the training instance count is also examined. User #30 and User #70

has collected data from 15 more sessions. Table 5.3 shows that User #70 has shown

great improvement on TPR performance, although the TPR performance of User #30

does not change much.

 28

User
ID

of
training

instances

of
testing

instances

of
total

instances
Best nu Best TPR

%

30 197 22 219 0.60 75.24
30 418 46 464 0.19 74.77

70 203 23 225 0.86 70.79
70 440 49 489 0.30 98.78

Avg.TPR --> 84.51

Table 5.3: TPR performance comparison for more training data

PCA and SVM parameter optimization have increased SVM performance and so does

the authentication performance. The training data size has also affected the

performance. The comparison is given in Table 5.4.

FPR is also crucial for authentication. However, it can only be obtained by testing one-

class SVM model with other users’ instances. Since the model is generated with PCA,

to maximize the TPR, the testing instances should also be generated with the same PCA

attribute optimization formula. This is achieved in WEKA by using attribute selected

classifier. It takes training feature dataset and testing feature dataset separately and

apply training PCA to the testing instances, too.

Classifier configuration:

weka.classifiers.meta.AttributeSelectedClassifier -E

"weka.attributeSelection.PrincipalComponents -R 0.95 -A 5" -S

"weka.attributeSelection.Ranker -T -1.7976931348623157E308 -N -1" -W

weka.classifiers.functions.LibSVM -output-debug-info -- -S 2 -K 2 -D 3 -G 1.0E-7 -R

0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -Z -model "C:\\Program Files\\Weka-3-8" -

seed 1 -output-debug-info

Table 5.5 shows the corresponding FPR performance of TPR optimized one-class SVM

model. Although the ratio of number of training instances to the number of testing

instances is very low, the FPR values are less than 3% for the half of the users.

 29

Without PCA,
Without SVM

parameter optimization

With PCA,
With SVM
parameter

optimization

The effect of
more
training data

User ID TPR TPR TPR
2 50.85% 82.22% -
3 51.60% 94.80% -
4 48.80% 96.00% -
5 48.49% 83.66% -
6 49.19% 94.83% -
8 49.35% 87.82% -

30 47.49% 75.24% 74.77%
31 48.69% 91.70% -
50 49.07% 80.67% -
51 48.91% 72.43% -
52 47.47% 87.84% -
53 49.38% 81.23% -
54 48.47% 73.90% -
55 47.40% 81.27% -
56 49.17% 90.42% -
57 48.61% 89.09% -
70 47.56% 70.79% 98.78%
71 49.34% 86.17% -
72 48.23% 72.13% -
73 48.84% 70.39% -

Table 5.4: Effects of PCA, SVM parameter optimization and training data size

User #50, User #52, User #30 and User #56 have very high FPR values and it is

necessary to train better models for these users before making any model eligible to

authenticate the corresponding user. This might happen if there is no user characteristic

throughout the scenarios and the limited data may not reflect the user properly.

 30

User
ID

of
training

instances

of
testing

instances

of
total

instances

of
classified
instances

nu
(TPR

optimized)

Best
TPR

FPR
(TPR

optimized)

2 293 5055 5348 109 0.25 82.22% 2.16%
3 250 5098 5348 187 0.40 94.80% 3.67%
4 250 5098 5348 781 0.04 96.00% 15.32%
5 365 4983 5348 554 0.50 83.66% 11.12%
6 309 5039 5348 198 0.50 94.83% 3.93%
8 306 5042 5348 0 0.04 87.82% 0.00%

30 464 4884 5348 1062 0.19 74.77% 21.74%
31 267 5081 5348 8 0.20 91.70% 0.16%
50 216 5132 5348 4381 0.50 80.67% 85.37%
51 184 5164 5348 166 0.20 72.43% 3.21%
52 217 5131 5348 2620 0.40 87.84% 51.06%
53 243 5105 5348 330 0.72 81.23% 6.46%
54 163 5185 5348 519 0.50 73.90% 10.01%
55 173 5175 5348 165 0.25 81.27% 3.19%
56 240 5108 5348 1117 0.25 90.42% 21.87%
57 251 5097 5348 0 0.50 89.09% 0.00%
70 489 4859 5348 40 0.30 98.78% 0.82%
71 227 5121 5348 138 0.50 86.17% 2.69%
72 226 5122 5348 4 0.84 72.13% 0.08%
73 215 5133 5348 16 0.50 70.39% 0.31%

Avg.FPR --> 12.16%

Table 5.5: FPR performance of TPR optimized one-class SVM model

In this work, FAR equals FPR and FRR equals 1 minus TPR. The values can be seen in

Table 5.6. FAR values are listed in descending order and FRR values are listed in

ascending order.

Since FAR and FRR distributions overlap, the intersection point gives us the EER

value, which is nearly 11% as seen in Figure 5.1.

 31

FAR FRR
85.37% 4.00%
51.06% 5.17%
21.87% 5.20%
21.74% 8.30%
15.32% 9.58%
11.12% 10.91%
10.01% 12.16%

6.46% 12.18%
3.93% 13.83%
3.67% 16.34%
3.21% 17.78%
3.19% 18.73%
2.69% 18.77%
2.16% 19.33%
0.82% 24.76%
0.31% 26.10%
0.16% 27.57%
0.08% 27.87%
0.00% 29.21%
0.00% 29.61%

Table 5.6: FAR and FRR values

Figure 5.1: Equal Error Rate (EER)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

FAR vs FRR

FAR FRR

 32

5.2. Resource Consumption Analysis

Since the platform is a mobile phone, the monitored resources are power consumption,

CPU usage, I/O usage, memory usage and network usage. All the test scenarios

mentioned in Section 3 are followed and the measurements are taken on Android OS

version 4.4.2 installed on Samsung S3 Neo (GT-I9301Q) phone. In each test, the

predefined and exactly the same scenario is followed. Each test session has a different

duration, varying from 3 minutes to 4 minutes, depending on the user speed and the web

service latency.

The power consumption measurements are taken by the PowerTutor1 app. It is a power

monitoring application for Android-based mobile platforms developed by University of

Michigan Ph.D. students. Zhang L., et al. (2010) estimated power usage of the

applications running on device with this app they developed. The estimation is based on

a built-in model which estimates within 5% of actual values. Total energy usage is

obtained from PowerTutor for each session. Since each test session has different

duration, varying from 3 minutes to 4 minutes, the total energy consumption (in joules)

is divided by session duration (in seconds) to get the power consumption (in watts).

The CPU usage is obtained by using the dumpsys2. It is a tool that runs on Android

devices and provides information about system services. “adb shell dumpsys cpuinfo”

command is called from the command line to get diagnostic output using the Android

Debug Bridge (ADB). The output shows CPU usage of every application running on the

device, “grep” command is used to filter out the others.

The command is called in every 10s by using the “watch” command which can be used

to automate commands on a regular basis. All the outputs show the average CPU usage

and then their average is used to compare different test sessions.

[1] PowerTutor - A Power Monitor for Android-Based Mobile Platforms
 http://ziyang.eecs.umich.edu/projects/powertutor/

[2] dumpsys – A tool that runs on Android devices and provides information about system services
 https://developer.android.com/studio/command-line/dumpsys

 33

5.2.1. Power Consumption and CPU Usage

In terms of power consumption, 39% increase is observed in the complete logger

activated application compared to the base application (Figure 5.1). Measurements in

Figure 5.2 show that complete logger activated application has used 5% more CPU on

average compared to the base application. Since the logging is not a CPU intensive task,

most of the power consumption is due to the I/O workload. At the rate of 5 Hz, the

average I/O rate is 250 bytes/s. It also increases directly proportional to the sampling

rate for each sensor. The I/O rate for the touchscreen usage is very small compared to

the even 5 Hz sensor data generated. Hence, it is neglected. Table 1 also shows the

schema of the data written by each sensor and the touchscreen gesture in every data

change.

Figure 5.2: Overall power consumption

136

189

0 50 100 150 200 250

Base Application

Base Application
+ Touchscreen

+ ACC (5 Hz)
+ GYR (5 Hz)
+ MAG (5 Hz)

Power Consumption (mW)

 34

Figure 5.3: Overall CPU usage

5.2.2. Impact of Touchscreen (Normal usage vs Under stress)

Figure 5.3 and Figure 5.4 show that touchscreen increases power consumption only 3%

with normal usage according to the scenarios. To maximize the generated data size, the

application is also tested under stress. This is achieved by touching and scrolling

aggressively and randomly on touchscreen without following the predefined scenario.

The power consumption in stress test is 70% more than the normal touchscreen usage.

The results show that touchscreen has very little effect on both power consumption and

CPU usage. Corresponding differences are 4 mW and 0.5% respectively.

28,60%

33,86%

0% 25% 50% 75% 100%

Base Application

Base Application
+ Touchscreen

+ ACC (5 Hz)
+ GYR (5 Hz)
+ MAG (5 Hz)

CPU Usage

 35

Figure 5.4: Impact of touchscreen on power consumption

Figure 5.5: Impact of touchscreen on CPU usage

136

140

236

0 50 100 150 200 250

Base Application

Base Application
+ Touchscreen
(normal usage)

Base Application
+ Touchscreen

(stress test)

Power Consumption (mW)

28,60%

29,14%

37,33%

0% 25% 50% 75% 100%

Base Application

Base Application
+ Touchscreen
(normal usage)

Base Application
+ Touchscreen

(stress test)

CPU Usage

 36

5.2.3. Impact of Accelerometer (Sampling rate: 5 Hz vs 20 Hz vs 100 Hz)

Although accelerometer can consume large amount of energy in 100Hz, which is the

maximum sampling rate in our device, it is the least energy consumer among the other

sensors that are observed. At the rate of 5Hz, the power consumption of the

accelerometer is only 9mW. As the sampling rate increases, the power consumption and

the CPU usage are also increased accordingly, as seen in Figure 5.5 and Figure 5.6. The

dramatic increase in CPU usage at the rate 100Hz is due to the number of the created

async tasks and the I/O wait time.

Figure 5.6: Impact of accelerometer on power consumption

140

149

188

209

0 50 100 150 200 250

Base Application
+ Touchscreen

Base Application
+ Touchscreen

+ ACC (5 Hz)

Base Application
+ Touchscreen
+ ACC (20 Hz)

Base Application
+ Touchscreen
+ ACC (100 Hz)

Power Consumption (mW)

 37

Figure 5.7: Impact of accelerometer on CPU usage

5.2.4. Impact of Gyroscope (Sampling rate: 5 Hz vs 20 Hz vs 100 Hz)

Even with a 5 Hz sampling rate, very large amount of energy is consumed by the 9-axis

gyroscope. Figure 5.7 and Figure 5.8 show that 30mW increase in power consumption

and 21% more battery demand occur compared to the base application. Although these

numbers are device specific, it is crucial to reduce the active time of the gyroscope

sensor. All the sensors are active all the time the application is being used when these

measurements are taken.

29,14%

30,22%

32,16%

40,12%

0% 25% 50% 75% 100%

Base Application
+ Touchscreen

Base Application
+ Touchscreen

+ ACC (5 Hz)

Base Application
+ Touchscreen
+ ACC (20 Hz)

Base Application
+ Touchscreen
+ ACC (100 Hz)

CPU Usage

 38

Figure 5.8: Impact of gyroscope on power consumption

Figure 5.9: Impact of gyroscope on CPU usage

140

170

214

231

0 50 100 150 200 250

Base Application
+ Touchscreen

Base Application
+ Touchscreen

+ GYR (5 Hz)

Base Application
+ Touchscreen
+ GYR (20 Hz)

Base Application
+ Touchscreen
+ GYR (100 Hz)

Power Consumption (mW)

29,14%

31,33%

35,94%

42,56%

0% 25% 50% 75% 100%

Base Application
+ Touchscreen

Base Application
+ Touchscreen

+ GYR (5 Hz)

Base Application
+ Touchscreen
+ GYR (20 Hz)

Base Application
+ Touchscreen
+ GYR (100 Hz)

CPU Usage

 39

5.2.5. Impact of Magnetometer (Sampling rate: 5 Hz vs 20 Hz vs 100 Hz)

Similar to the gyroscope, the magnetometer is also an energy-hungry sensor. Even with

a 5 Hz sampling rate, 27mW power and 2.6% CPU demand arise compared to the base

application, as seen in Figure 5.9 and Figure 5.10. With a 100 Hz sampling rate, on the

other hand, dramatic increase in the power consumption and CPU usage can be

unacceptable for a user.

Figure 5.10: Impact of magnetometer on power consumption

140

167

184

253

0 50 100 150 200 250 300

Base Application
+ Touchscreen

Base Application
+ Touchscreen
+ MAG (5 Hz)

Base Application
+ Touchscreen
+ MAG (20 Hz)

Base Application
+ Touchscreen

+ MAG (100 Hz)

Power Consumption (mW)

 40

Figure 5.11: Impact of magnetometer on CPU usage

29,14%

31,72%

33,85%

45,41%

0% 25% 50% 75% 100%

Base Application
+ Touchscreen

Base Application
+ Touchscreen
+ MAG (5 Hz)

Base Application
+ Touchscreen
+ MAG (20 Hz)

Base Application
+ Touchscreen

+ MAG (100 Hz)

CPU Usage

 41

6. CONCLUSION & FUTURE WORK

In conclusion, the augmentation of a mobile banking application with continuous

authentication using behavioral biometrics is investigated in this thesis. Data is

collected from three phone sensors and touchscreen. 20 users participated in data

collection by following 5 scenarios in 3 stances. It is very crucial for a bank to have all

the necessary data without affecting the user experience. The performance evaluations

are made under these circumstances. In order to be sure about the maximum effect, we

measured each sensor at maximum sampling rate. For the touchscreen, on the other

hand, stress test was conducted to push the limits. According to measurement results, it

is acceptable to collect all the data at 5 Hz and logger augmented app does not bring

significant overhead in terms of resource consumption. Sampling the sensors at 100Hz

on the other hand, brings a serious overhead on CPU and power consumption. Although

these metrics are affected seriously, the modern phones are capable enough to run on

device without affecting the user experience. The only effect visible to the user is the

battery consumption. The authentication performance, on the other hand, is %83 on

average with SVM parameter optimization and PCA. It is also observed that the training

data size can has positive effects on SVM performance. However, there are still some

points that are required to be optimized, like magnetometer and gyroscope deactivation.

I/O rate can be optimized by utilizing a database instead of CSV files in the filesystem.

Collected data can be transferred as small pieces to the backend server. Feature

extraction can be automatized on server and the features can be stored in a more secure

database. When the count of the training instances reaches a predefined threshold, then

the SVM model is auto trained with PCA. The tests can be done automatically by using

random testing instances from all users feature instances. The model is then marked to

be eligible to authenticate the user if the TPR and FPR values falls in an acceptable

range. These automations on the server side are left as future work.

REFERENCES

A. Buriro, S. Gupta and B. Crispo, "Evaluation of Motion-Based Touch-Typing

Biometrics for Online Banking," 2017 International Conference of the Biometrics

Special Interest Group (BIOSIG), Darmstadt, 2017, pp. 1-5.

Alzubaidi A., Kalita J. (2016). Authentication of smartphone users using behavioral

biometrics. IEEE Communications Surveys Tutorials, vol. 18, no. 3, pp. 1998-2026,

third quarter 2016.

Bailey, N. T. J. (1952). Study of queues and appointment systems in outpatient

departments, with special reference to waiting-times., Journal of the Royal Statistical

Society : Series B 14(2) : 185–199.

Bo C., Zhang L., Jung T., Han J., Li X.-Y., Wang Y., in Proc. of IEEE IPCCC.

Continuous user identification via touch and movement behavioral biometrics

(IEEEPiscataway, New Jersey, USA, 2014).

Dumpsys Android Developers, Android Developers. (2019).

https://developer.android.com/studio/command-line/dumpsys (accessed 30 April

2019).

F. Rahman, M. O. Gani, G. M. T. Ahsan and S. I. Ahamed, "Seeing Beyond Visibility:

A Four Way Fusion of User Authentication for Efficient Usable Security on Mobile

Devices," 2014 IEEE Eighth International Conference on Software Security and

Reliability-Companion, San Francisco, CA, 2014, pp. 121-129. doi: 10.1109/SERE-

C.2014.30

Fridman, Lex, et al. "Multi-modal decision fusion for continuous authentication."

Computers & Electrical Engineering 41 (2015): 142-156.

L. Fridman, S. Weber, R. Greenstadt and M. Kam, "Active Authentication on Mobile

Devices via Stylometry, Application Usage, Web Browsing, and GPS Location," in

IEEE Systems Journal, vol. 11, no. 2, pp. 513-521, June 2017. doi:

10.1109/JSYST.2015.2472579

 43

Rana, D. “One Class SVM Vs SVM Classification”, in International Journal of Science

and Research (IJSR), vol. 4, issue 6, pp. 1350-1352, June 2015.

Sitová Z., Šeděnka J., Yang Q., Peng G., Zhou G., Gasti P., Balagani K.S., "HMOG:

New behavioral biometric features for continuous authentication of smart-phone

users", IEEE Trans. Inform. Forensics Security, vol. 11, no. 5, pp. 877-892, May

2016.

Stylios I., Thanou O., Androulidakis I., Zaitseva E., A Review of Continuous

Authentication Using Behavioral Biometrics, ACM SEEDA-CECNSM 2016,

September 2016, ACM.

 URL:https://www.researchgate.net/publication/303974524_A_Review_of_Continuo

us_Authentication_Using_Behavioral_Biometrics

V. M. Patel, R. Chellappa, D. Chandra and B. Barbello, "Continuous User

Authentication on Mobile Devices: Recent progress and remaining challenges," in

IEEE Signal Processing Magazine, vol. 33, no. 4, pp. 49-61, July 2016. doi:

10.1109/MSP.2016.2555335

W. Meng, D. S. Wong, S. Furnell and J. Zhou, "Surveying the Development of

Biometric User Authentication on Mobile Phones," in IEEE Communications

Surveys & Tutorials, vol. 17, no. 3, pp. 1268-1293, third quarter 2015.

Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R.P., Mao, Z.M., et al. Accurate

online power estimation and automatic battery behavior based power model

generation for smartphones. In: Proceedings of the Eighth IEEE/ACM/IFIP

International Conference on Hardware/Software Codesign and System Synthesis;

CODES/ISSS ’10. ACM. ISBN 978-1-60558-905-3; 2010, p. 105–114.

APPENDICES

Appendix A. Showing a consent pop-up to start data collection

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 ...

 if (!DakotaLogUtil.isDakotaFileSetUpCompleted) {

 AlertDialog.Builder alert = new AlertDialog.Builder(this);

 alert.setTitle("Veri Toplama İzni");
 alert.setMessage("Uygulamayı kullanırken verilerimin toplanmasına izin
veriyorum.");

 final DakotaDataCollectionInputView input = new
DakotaDataCollectionInputView(this);

 alert.setView(input);

 alert.setPositiveButton("Başlat", new
DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int whichButton) {
 String name = input.getName();
 String position = input.getPosition();
 String scenario = input.getScenario();
 String phoneModel = input.getPhoneModel();

BaseActivityPermissionsDispatcher.setupDAKOTAWithPermissionCheck(BaseActivity.
this, BaseActivity.this, name, position, scenario, phoneModel);
 }
 });

 alert.show();
 }

 DakotaSensorUtil.setupSensors(BaseActivity.this);

 DakotaSensorUtil.mGestureDetector = new GestureDetector(BaseActivity.this,
new DakotaGestureListener());
}

 45

Appendix B. Dispatching the touch events

@Override
public boolean dispatchTouchEvent(MotionEvent ev) {

 boolean eventConsumed =
DakotaSensorUtil.mGestureDetector.onTouchEvent(ev);
 if (eventConsumed)
 {
 String text = DakotaGestureListener.currentGestureDetected;
 text = text.concat(";" + (getCurrentPageFragment() != null ?
getCurrentPageFragment().getSimpleClassName() : "-"));

 for (String fileName : DakotaGestureListener.fileNames) {
 DakotaLogUtil.writeToFile(text, fileName);
 }
 }

 switch (ev.getAction()) {
 case MotionEvent.ACTION_DOWN:
 case MotionEvent.ACTION_UP:
 case MotionEvent.ACTION_MOVE:
 String text = ev.getAction() + ";" + ev.getPressure() + ";" +
ev.getX() + ";" + ev.getY() + ";" + ev.getSize() + ";" + ev.getDownTime() +
";" + System.currentTimeMillis();
 text = text.concat(";" + (getCurrentPageFragment() != null ?
getCurrentPageFragment().getSimpleClassName() : "-"));
 DakotaLogUtil.writeToFile(text, "touch.csv");
 Log.e("Touch", text);
 break;
 default:
 break;

 }

 getCurrentPageFragment().dispatchTouchEvent(ev);
 return disableUserInteraction || super.dispatchTouchEvent(ev);
}

 46

Appendix C. Log Utility

public class DakotaLogUtil {
 private static final String CSV_FILE_HEADER =
"Title1;Title2;Title3;Title4";
 public static boolean isDakotaFileSetUpCompleted = false;
 private static File parentDirectory;

 /* Checks if external storage is available for read and write */
 public static boolean isExternalStorageWritable() {
 String state = Environment.getExternalStorageState();
 return Environment.MEDIA_MOUNTED.equals(state);
 }

 public static void setupFiles(BaseActivity activity, String name, String
position, String scenario, String phoneModel) {
 boolean writable = isExternalStorageWritable();

 if (writable) Log.e("DAKOTA EXTERNAL STORAGE", "Writable");
 else Log.e("DAKOTA EXTERNAL STORAGE", "NOT Writable");

 SimpleDateFormat s = new SimpleDateFormat("yyyyMMddHHmmss");
 String formattedDate = s.format(new Date());

 ActivityCompat.requestPermissions(activity, new
String[]{Manifest.permission.WRITE_EXTERNAL_STORAGE}, 1);
 parentDirectory = new
File(Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOCUM
ENTS), "DAKOTA-" + formattedDate + "-" + name + "-" + position + "-s" +
scenario + "-s" + phoneModel);

 if (parentDirectory.exists()) {
 Log.e("DAKOTA EXTERNAL STORAGE", "Directory exists");
 } else {
 if (!parentDirectory.mkdirs()) {
 Log.e("DAKOTA EXTERNAL STORAGE", "Directory not created");
 } else {
 Log.e("DAKOTA EXTERNAL STORAGE", "Directory created");
 }
 }

 initializeHeaders();

 Log.e("DAKOTA EXTERNAL STORAGE", parentDirectory.getAbsolutePath());
 }

 private static void initializeHeaders() {
 ArrayList<String> files = new ArrayList<>();
 files.add(0, "down.csv");
 files.add(1, "fling.csv");
 files.add(2, "scroll.csv");
 files.add(3, "singleTapUp.csv");
 files.add(4, "showPress.csv");
 files.add(5, "longPress.csv");
 files.add(6, "doubleTap.csv");
 files.add(7, "acc.csv");
 files.add(8, "gyr.csv");
 files.add(9, "mag.csv");
 files.add(10, "touch.csv");
 files.add(11, "touchNoScrollNoFling.csv");

 47

 for (int i = 0; i < files.size(); i++) {
 String fileName = files.get(i);
 File file = new File(parentDirectory, fileName);
 if (!file.exists()) {
 Log.e("DAKOTA HEADER CREATION", "FILE DOES NOT EXIST " +
file.getAbsolutePath());
 String header = "";
 switch (fileName) {
 case "down.csv"://
 header =
"ACTION_NAME;PRESSURE;X;Y;SIZE;EVENT_TIME;SYSTEM_TIME;FRAGMENT_NAME";
 break;
 case "fling.csv":
 header =
"ACTION_NAME;PRESSURE;X;Y;SIZE;VELOCITY_X;VELOCITY_Y;EVENT_TIME;SYSTEM_TIME;FR
AGMENT_NAME";
 break;
 case "scroll.csv":
 header =
"EVENT_ID;BEGIN_TIME;START_X;START_Y;START_PRESSURE;START_SIZE;EVENT_TIME;CURR
ENT_X;CURRENT_Y;CURRENT_PRESSURE;CURRENT_SIZE;SYSTEM_TIME;DISTANCE_X;DISTANCE_
Y;DIRECTION;FRAGMENT_NAME";
 break;
 case "singleTapUp.csv"://
 header =
"ACTION_NAME;PRESSURE;X;Y;SIZE;EVENT_TIME;SYSTEM_TIME;FRAGMENT_NAME";
 break;
 case "showPress.csv"://
 header =
"ACTION_NAME;PRESSURE;X;Y;SIZE;EVENT_TIME;SYSTEM_TIME;FRAGMENT_NAME";
 break;
 case "longPress.csv"://
 header =
"ACTION_NAME;PRESSURE;X;Y;SIZE;EVENT_TIME;SYSTEM_TIME;FRAGMENT_NAME";
 break;
 case "doubleTap.csv"://
 header =
"ACTION_NAME;PRESSURE;X;Y;SIZE;EVENT_TIME;SYSTEM_TIME;FRAGMENT_NAME";
 break;
 case "acc.csv":
 header = "SYSTEM_TIME;X;Y;Z;FRAGMENT_NAME";
 break;
 case "gyr.csv":
 header = "SYSTEM_TIME;X;Y;Z;FRAGMENT_NAME";
 break;
 case "mag.csv":
 header = "SYSTEM_TIME;X;Y;Z;FRAGMENT_NAME";
 break;
 case "touch.csv":
 header =
"ACTION_ID;PRESSURE;X;Y;SIZE;EVENT_TIME;SYSTEM_TIME;FRAGMENT_NAME";
 break;
 case "touchNoScrollNoFling.csv":
 header =
"ACTION_ID;PRESSURE;X;Y;SIZE;EVENT_TIME;SYSTEM_TIME;FRAGMENT_NAME";
 break;
 default:
 break;
 }
 try {
 FileOutputStream outputStreamWriter = new
FileOutputStream(file, true);
 PrintWriter bufferedWriter = new

 48

PrintWriter(outputStreamWriter);

 bufferedWriter.println(header);
 bufferedWriter.flush();
 bufferedWriter.close();
 outputStreamWriter.close();
 } catch (Exception e) {
 Log.e("DAKOTA HEADER CREATION", e.getMessage());
 e.printStackTrace();
 }
 }
 }
 }

 public static void writeToFile(String data, String fileName) {
 AsyncTask asyncTask = new DakotaLogWriter();
 Log.w("DAKOTA WRITE TO FILE", "" + data + " ; " + fileName);
 asyncTask.execute(data, fileName);
 }

 /* Checks if external storage is available to at least read */
 public boolean isExternalStorageReadable() {
 String state = Environment.getExternalStorageState();
 return Environment.MEDIA_MOUNTED.equals(state) ||
 Environment.MEDIA_MOUNTED_READ_ONLY.equals(state);
 }

 public static class DakotaLogWriter extends AsyncTask<Object, Void,
String> {

 @Override
 protected String doInBackground(Object... objects) {
 try {
 String data = (String) objects[0];
 String fileName = (String) objects[1];

 File file = new File(parentDirectory, fileName);
 FileOutputStream outputStreamWriter = new
FileOutputStream(file, true);
 PrintWriter bufferedWriter = new
PrintWriter(outputStreamWriter);

 bufferedWriter.println(data);
 bufferedWriter.flush();
 bufferedWriter.close();
 outputStreamWriter.close();
 return null;
 } catch (FileNotFoundException e) {
 Log.e("DAKOTA Exception", "File not found: " + e.toString());
 return null;
 } catch (IOException e) {
 Log.e("DAKOTA Exception", "File write failed: " +
e.toString());
 return null;
 }
 }
 }

}

 49

Appendix D. Sensor Utility

public class DakotaSensorUtil {
 public static SensorManager sensorManager;
 public static Sensor accSensor = null;
 public static Sensor gyroscopeSensor = null;
 public static Sensor magSensor = null;
 public static SensorEventListener gyroscopeEventListener;
 public static SensorEventListener accEventListener;
 public static SensorEventListener magEventListener;
 public static GestureDetector mGestureDetector;
 public static boolean sensorListening = true;

 public static void setupSensors(final Context context) {
 sensorManager = (SensorManager)
context.getSystemService(Context.SENSOR_SERVICE);
 if (sensorManager != null) {
 accSensor =
sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
 gyroscopeSensor =
sensorManager.getDefaultSensor(Sensor.TYPE_GYROSCOPE);
 magSensor =
sensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD);
 } else {
 Toast.makeText(context, "Sensor manager is not available.",
Toast.LENGTH_LONG).show();
 }

 if (gyroscopeSensor == null) {
 Toast.makeText(context, "This Device has no Gyroscope !",
Toast.LENGTH_LONG).show();
 } else {
 gyroscopeEventListener = new SensorEventListener() {
 @Override
 public void onSensorChanged(SensorEvent event) {
 String log = System.currentTimeMillis() + ";" +
event.values[0] + ";" + event.values[1] + ";" + event.values[2] + ";" +
(((BaseActivity) context).getCurrentPageFragment() != null ? ((BaseActivity)
context).getCurrentPageFragment().getSimpleClassName() : "-");

 DakotaLogUtil.writeToFile(log, "gyr.csv");
 }

 @Override
 public void onAccuracyChanged(Sensor sensor, int accuracy) {

 }
 };
 }

 if (accSensor == null) {
 Toast.makeText(context, "This Device has no Accelerometer !",
Toast.LENGTH_LONG).show();
 } else {
 accEventListener = new SensorEventListener() {
 @Override
 public void onSensorChanged(SensorEvent event) {
 String log = System.currentTimeMillis() + ";" +
event.values[0] + ";" + event.values[1] + ";" + event.values[2] + ";" +
(((BaseActivity) context).getCurrentPageFragment() != null ? ((BaseActivity)

 50

context).getCurrentPageFragment().getSimpleClassName() : "-");
 DakotaLogUtil.writeToFile(log, "acc.csv");
 }

 @Override
 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 }
 };
 }

 if (magSensor == null) {
 Toast.makeText(context, "This Device has no Magnetometer !",
Toast.LENGTH_LONG).show();
 } else {
 magEventListener = new SensorEventListener() {
 @Override
 public void onSensorChanged(SensorEvent event) {
 String log = System.currentTimeMillis() + ";" +
event.values[0] + ";" + event.values[1] + ";" + event.values[2] + ";" +
(((BaseActivity) context).getCurrentPageFragment() != null ? ((BaseActivity)
context).getCurrentPageFragment().getSimpleClassName() : "-");
 DakotaLogUtil.writeToFile(log, "mag.csv");
 }

 @Override
 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 }
 };
 }
 }
}

 51

Appendix E. Gesture Listener

public class DakotaGestureListener extends
GestureDetector.SimpleOnGestureListener {
 private static final int SLIDE_THRESHOLD = 100;

 public static String currentGestureDetected;
 public static List<String> fileNames = new ArrayList<>();
 public float x, y;

 // Override s all the callback methods of
GestureDetector.SimpleOnGestureListener
 @Override
 public boolean onSingleTapUp(MotionEvent ev) {
 String s = "SINGLE_TAP_UP;" + ev.getPressure() + ";" + ev.getX() + ";"
+ ev.getY() + ";" + ev.getSize() + ";" + ev.getDownTime() + ";" +
System.currentTimeMillis();
 currentGestureDetected = s;
 fileNames.clear();
 fileNames.add("singleTapUp.csv");
 fileNames.add("touchNoScrollNoFling.csv");
 Log.e("Logger - onSingleTapUp", s);
 return true;
 }

 @Override
 public void onShowPress(MotionEvent ev) {
 String s = "SHOW_PRESS;" + ev.getPressure() + ";" + ev.getX() + ";" +
ev.getY() + ";" + ev.getSize() + " ;" + ev.getDownTime() + ";" +
System.currentTimeMillis();
 currentGestureDetected = s;
 fileNames.clear();
 fileNames.add("showPress.csv");
 fileNames.add("touchNoScrollNoFling.csv");
 Log.e("Logger - onShowPress", s);

 }

 @Override
 public void onLongPress(MotionEvent ev) {
 String s = "LONG_PRESS;" + ev.getPressure() + ";" + ev.getX() + ";" +
ev.getY() + ";" + ev.getSize() + ";" + ev.getDownTime() + ";" +
System.currentTimeMillis();
 currentGestureDetected = s;
 fileNames.clear();
 fileNames.add("longPress.csv");
 fileNames.add("touchNoScrollNoFling.csv");
 Log.e("Logger - onLongPress", s);

 }

 @Override
 public boolean onScroll(MotionEvent e1, MotionEvent e2, float distanceX,
float distanceY) {

 double distance = Math.sqrt(Math.abs(distanceX * distanceX - distanceY
* distanceY));
 Log.e("Logger - DISTANCE -----", "" + distance);

 52

 String eventID = String.valueOf(e1.getDownTime()); // Event ID

 String beginTime = String.valueOf(e1.getDownTime()); // first down
time
 String startX = String.valueOf(e1.getX());
 String startY = String.valueOf(e1.getY());
 String startPressure = String.valueOf(e1.getPressure());
 String startSize = String.valueOf(e1.getSize());

 String eventTime = String.valueOf(e2.getEventTime()); // time btw
events
 String currentX = String.valueOf(e2.getX());
 String currentY = String.valueOf(e2.getY());
 String currentPressure = String.valueOf(e2.getPressure());
 String currentSize = String.valueOf(e2.getSize());
 String systemTime = String.valueOf(System.currentTimeMillis()); //
system time
 String distX = String.valueOf(distanceX);
 String distY = String.valueOf(distanceY);

 String s = eventID + ";" +
 beginTime + ";" +
 startX + ";" +
 startY + ";" +
 startPressure + ";" +
 startSize + ";" +
 eventTime + ";" +
 currentX + ";" +
 currentY + ";" +
 currentPressure + ";" +
 currentSize + ";" +
 systemTime + ";" +
 distX + ";" +
 distY;

 try {
 float deltaY = e2.getY() - e1.getY();
 float deltaX = e2.getX() - e1.getX();
 String temp = "";

 if (Math.abs(deltaX) > Math.abs(deltaY)) {
 if (Math.abs(deltaX) > SLIDE_THRESHOLD) {
 if (deltaX > 0) {
 // the user made a sliding right gesture
 temp += ";RIGHT";
 } else {
 // the user made a sliding left gesture
 temp += ";LEFT";
 }
 }
 } else {
 if (Math.abs(deltaY) > SLIDE_THRESHOLD) {
 if (deltaY > 0) {
 // the user made a sliding down gesture
 temp += ";DOWN";
 } else {
 // the user made a sliding up gesture
 temp += ";UP";
 }
 }
 }
 if ("".equals(temp.trim())) {
 temp = ";-";

 53

 }
 s += temp;
 } catch (Exception exception) {
 Log.e("ERR", exception.getMessage());
 }

 currentGestureDetected = s;
 fileNames.clear();
 fileNames.add("scroll.csv");
 Log.e("Logger - onScroll", s);
 return true;
 }

 @Override
 public boolean onDown(MotionEvent ev) {
 String s = "DOWN;" + ev.getPressure() + ";" + ev.getX() + ";" +
ev.getY() + ";" + ev.getSize() + ";" + ev.getDownTime() + ";" +
System.currentTimeMillis();
 currentGestureDetected = s;
 fileNames.clear();
 fileNames.add("down.csv");
 fileNames.add("touchNoScrollNoFling.csv");
 Log.e("Logger - onDown", s);
 return true;
 }

 @Override
 public boolean onDoubleTap(MotionEvent ev) {
 String s = "DOUBLE_TAP;" + ev.getPressure() + ";" + ev.getX() + ";" +
ev.getY() + ";" + ev.getSize() + ";" + ev.getDownTime() + ";" +
System.currentTimeMillis();
 currentGestureDetected = s;
 fileNames.clear();
 fileNames.add("doubleTap.csv");
 fileNames.add("touchNoScrollNoFling.csv");
 Log.e("Logger - onDoubleTap", "DOUBLE TAP");

 return true;
 }

 @Override
 public boolean onFling(MotionEvent e1, MotionEvent e2, float velocityX,
float velocityY) {

 String s = "FLING;" + e2.getPressure() + ";" + e2.getX() + ";" +
e2.getY() + ";" + e2.getSize() + ";" + velocityX + ";" + velocityY + ";" +
e1.getAction() + ";" + e1.getDownTime() + ";" + System.currentTimeMillis() +
";" + e2.getAction() + ";" + e2.getDownTime() + ";" +
System.currentTimeMillis();
 currentGestureDetected = s;
 fileNames.clear();
 fileNames.add("fling.csv");
 Log.e("Logger - onFling", s);

 return true;
 }
}

 54

Appendix F. Feature Extraction in Python

#!/usr/bin/env python
coding: utf-8

#from pathlib import Path
from scipy import signal
import pandas as pd
import glob
import re
import os
import numpy as np

def circ_r(vals, axis=0):
 alpha = np.array(vals, dtype='f8')
 # sum of cos & sin angles
 t = np.exp(1j * alpha)
 r = np.sum(t, axis=axis)
 # obtain length
 r = np.abs(r) / alpha.shape[axis]
 return r

def circ_mean(vals):
 x = np.sum(np.cos(vals))
 y = np.sum(np.sin(vals))
 return np.arctan2(y, x)

current_dir = os.getcwd()
data_dir = current_dir + '\\Data\\'
print("Current Data Dir: ", data_dir)

sessions = glob.glob(data_dir + "*\\")
print("Sessions", sessions)

for tl in sessions:
 print("Session --> ", tl)
 userid = int(re.search(r"\\(\d*)\\$", tl).group(1))
 print("User: ", userid)
 for sf in glob.glob(data_dir + "{}*\\".format(userid)):
 print("Calculating: {}".format(sf))
 try:
 exists = os.path.isfile("{}features ".format(sf))

 if exists:
 print('Feature file is already calculated.\n')
 continue

 scroll_exists = os.path.isfile("{}scroll.csv".format(sf))

 if not scroll_exists:
 print('No scroll file.\n')
 continue

 accelerometer_df = pd.read_csv(
 '{}acc.csv'.format(sf),
 delimiter=';',
 header=0,

 55

 names=['SYSTEM_TIME', 'X_acc', 'Y_acc', 'Z_acc',
'FRAGMENT_NAME_acc']
)
 accelerometer_df = accelerometer_df.sort_values('SYSTEM_TIME')

 gyroscope_df = pd.read_csv(
 '{}gyr.csv'.format(sf),
 delimiter=';',
 header=0,
 names=['SYSTEM_TIME', 'X_gyr', 'Y_gyr', 'Z_gyr',
'FRAGMENT_NAME_gyr']
)
 gyroscope_df = gyroscope_df.sort_values('SYSTEM_TIME')

 magnetometer_df = pd.read_csv(
 '{}mag.csv'.format(sf),
 delimiter=';',
 header=0,
 names=['SYSTEM_TIME', 'X_mag', 'Y_mag', 'Z_mag',
'FRAGMENT_NAME_mag']
)
 magnetometer_df = magnetometer_df.sort_values('SYSTEM_TIME')

 scroll_df = pd.read_csv(
 '{}scroll.csv'.format(sf),
 delimiter=';',
 header=0,
 names=[
 'EVENT_ID',
 'BEGIN_TIME',
 'START_X',
 'START_Y',
 'START_PRESSURE',
 'START_SIZE',
 'EVENT_TIME',
 'CURRENT_X',
 'CURRENT_Y',
 'CURRENT_PRESSURE',
 'CURRENT_SIZE',
 'SYSTEM_TIME',
 'DISTANCE_X',
 'DISTANCE_Y',
 'DIRECTION',
 'FRAGMENT_NAME'
]
)

 scroll_df = scroll_df.sort_values('SYSTEM_TIME')

 if scroll_df.shape[0] == 0:
 print('Scroll file has no data.\n')
 continue
 if scroll_df['EVENT_ID'][0] == -1:
 print('Scroll file has -1 data.\n')
 continue

 sensor_merged = pd.merge_asof(accelerometer_df, magnetometer_df,
on='SYSTEM_TIME', direction='forward')
 sensor_merged = pd.merge_asof(sensor_merged, gyroscope_df,
on='SYSTEM_TIME', direction='forward')

 del sensor_merged['FRAGMENT_NAME_acc']
 del sensor_merged['FRAGMENT_NAME_gyr']
 del sensor_merged['FRAGMENT_NAME_mag']

 56

 sensor_merged = sensor_merged.sort_values('SYSTEM_TIME')

 merged = pd.merge_asof(scroll_df, sensor_merged, on='SYSTEM_TIME',
direction='forward')

 merged['SYSTEM_TIME'] = merged['SYSTEM_TIME'].astype(float)

 # Scroll features

 merged['xDisplacement'] = signal.lfilter([1, -1], 1,
merged['CURRENT_X'])
 merged['xDisplacement'] = np.where(merged['xDisplacement'] >= 100,
0, merged['xDisplacement'])
 merged['yDisplacement'] = signal.lfilter([1, -1], 1,
merged['CURRENT_Y'])
 merged['yDisplacement'] = np.where(merged['yDisplacement'] >= 100,
0, merged['yDisplacement'])
 merged['pairwiseTimeDiff'] = signal.lfilter([1, -1], 1,
merged['SYSTEM_TIME'])
 merged['pairwiseTimeDiff'] = np.where(merged['pairwiseTimeDiff']
>= 100, 1, merged['pairwiseTimeDiff'])
 merged['pairwiseAngle'] = np.arctan2(merged['yDisplacement'],
merged['xDisplacement'])
 merged['pairwiseDisplacement'] =
np.sqrt(pow(merged['xDisplacement'], 2) + pow(merged['yDisplacement'], 2))
 merged['V'] = merged['pairwiseDisplacement'] /
merged['pairwiseTimeDiff']
 merged['A'] = signal.lfilter([1, -1], 1, merged['V']) /
merged['pairwiseTimeDiff']

 # Scroll Features end

 # Sensor Features

 merged['Acc_Mag'] = np.sqrt(merged['X_acc'] ** 2 + merged['Y_acc']
** 2 + merged['Z_acc'] ** 2)
 merged['Gyr_Mag'] = np.sqrt(merged['X_gyr'] ** 2 + merged['Y_gyr']
** 2 + merged['Z_gyr'] ** 2)
 merged['Mag_Mag'] = np.sqrt(merged['X_mag'] ** 2 + merged['Y_mag']
** 2 + merged['Z_mag'] ** 2)

 aggs = merged.groupby('EVENT_ID').agg({
 'X_acc': ['mean', 'std', 'median'],
 'Y_acc': ['mean', 'std', 'median'],
 'Z_acc': ['mean', 'std', 'median'],
 'X_mag': ['mean', 'std', 'median'],
 'Y_mag': ['mean', 'std', 'median'],
 'Z_mag': ['mean', 'std', 'median'],
 'X_gyr': ['mean', 'std', 'median'],
 'Y_gyr': ['mean', 'std', 'median'],
 'Z_gyr': ['mean', 'std', 'median'],
 'Acc_Mag': ['mean', 'std', 'median'],
 'Gyr_Mag': ['mean', 'std', 'median'],
 'Mag_Mag': ['mean', 'std', 'median'],
 'START_X': 'first',
 'CURRENT_X': ['last',
 ('maxdev', lambda x: (x - x.mean()).max()),
 ('dev20', lambda x: (x -
x.mean()).quantile(0.20)),
 ('dev50', lambda x: (x -
x.mean()).quantile(0.50)),
 ('dev80', lambda x: (x -
x.mean()).quantile(0.80))],

 57

 'START_Y': 'first',
 'CURRENT_Y': ['last',
 ('maxdev', lambda x: (x - x.mean()).max()),
 ('dev20', lambda x: (x -
x.mean()).quantile(0.20)),
 ('dev50', lambda x: (x -
x.mean()).quantile(0.50)),
 ('dev80', lambda x: (x -
x.mean()).quantile(0.80))],
 'V': [('pairwise20', lambda x: x.quantile(0.20)),
 ('pairwise50', lambda x: x.quantile(0.50)),
 ('pairwise80', lambda x: x.quantile(0.80)),
 ('medianVelocityLastThree', lambda x:
np.median(x.tail(3)))],
 'A': [('pairwise20', lambda x: x.quantile(0.20)),
 ('pairwise50', lambda x: x.quantile(0.50)),
 ('pairwise80', lambda x: x.quantile(0.80)),
 ('averageAccFirstFive',
 lambda x: np.median(x.head(5)) if x.size >= 5 else
np.median(x))],
 'pairwiseDisplacement': [('lengthOfTrajectory', 'sum')],
 'SYSTEM_TIME': ['first', 'last'],
 'CURRENT_PRESSURE': 'median',
 'CURRENT_SIZE': 'median',
 })

 aggs = aggs.fillna(0)

 aggs['distance'] = np.sqrt(
 pow(aggs['CURRENT_X']['last'] - aggs['START_X']['first'], 2) +
 pow(aggs['CURRENT_Y']['last'] - aggs['START_Y']['first'], 2)
)
 aggs['directionOfEndtoEnfLine'] =
np.arctan2((aggs['CURRENT_X']['last'] - aggs['START_X']['first']),

(aggs['CURRENT_Y']['last'] - aggs['START_Y']['first']))

 #division by 0 (= inf) case eliminated
 #aggs['ratio'] = aggs['distance'] /
aggs['pairwiseDisplacement']['lengthOfTrajectory']
 aggs =
aggs.assign(ratio=np.where(aggs['pairwiseDisplacement']['lengthOfTrajectory']
!= 0, aggs['distance'] / aggs['pairwiseDisplacement']['lengthOfTrajectory'],
0))

 aggs['duration'] = aggs['SYSTEM_TIME']['last'] -
aggs['SYSTEM_TIME']['first']

 #division by 0 (= inf) case eliminated
 #aggs['averageVelocity'] =
aggs['pairwiseDisplacement']['lengthOfTrajectory'] / aggs['duration']
 aggs = aggs.assign(averageVelocity=np.where(aggs['duration'] != 0,
aggs['pairwiseDisplacement']['lengthOfTrajectory'] / aggs['duration'], 0))

 aggs['MeanResultantLength'] = circ_r(merged['pairwiseAngle'])
 aggs['AverageDirectionEnsemble'] =
circ_mean(merged['pairwiseAngle'])

 del aggs['SYSTEM_TIME']

 flatten_df = pd.DataFrame()

 for i, index0 in enumerate(aggs.keys().get_level_values(0)):
 if aggs.keys().get_level_values(1)[i] != '':

 58

 flatten_df[index0 + '_' +
aggs.keys().get_level_values(1)[i]] = aggs[index0][
 aggs.keys().get_level_values(1)[i]]
 else:
 flatten_df[index0] = aggs[index0]

 flatten_df['LABEL'] = "user"# + str(userid)

 flatten_df.to_csv("{}features.csv".format(sf), index=False)
 print('Done: ' + "{}features.csv".format(sf))
 except IndexError as e:
 print(e)
 except Exception as e:
 print(e)
#"""

 59

Appendix G. Feature Merger in Python

#!/usr/bin/env python
coding: utf-8

import pandas as pd
import glob
import re
import os

current_dir = os.getcwd()
data_dir = current_dir + '\\Data\\'
print("Current Data Dir: ", data_dir)

sessions = glob.glob(data_dir + "*\\")
print("Sessions", sessions)

for tl in sessions:
 try:
 print("Session --> ", tl)
 userid = int(re.search(r"\\(\d*)\\$", tl).group(1))
 print("User: ", userid)

 sf in glob.glob(data_dir + "{}*\\".format(userid))

 files = glob.glob("{}*\\features.csv".format(tl))
 df = pd.concat((pd.read_csv(f) for f in files))
 output = "{}\\merged_features_{}.csv".format(data_dir, userid)
 print("writing to: {}merged_features_{}.csv".format(data_dir, userid))
 df.to_csv(output, index=False)
 print('done')
 print()
 except Exception as e:
 print(e)

 60

Appendix H. Feature of Other Users Merger in Python

#!/usr/bin/env python
coding: utf-8

import pandas as pd
import glob
import re
import os

current_dir = os.getcwd()
data_dir = current_dir + '\\Data\\'
print("Current Data Dir: ", data_dir)

sessions = glob.glob(data_dir + "*\\")
print("Sessions", sessions)

for tl in sessions:
 try:
 print("Session --> ", tl)
 userid = int(re.search(r"\\(\d*)\\$", tl).group(1))
 print("User: ", userid)

 sf in glob.glob(data_dir + "{}*\\".format(userid))

 files = glob.glob("{}*\\features.csv".format(tl))
 df = pd.concat((pd.read_csv(f) for f in files))

 for user_folder in sessions:
 user_folder_id = int(re.search(r"\\(\d*)\\$", user_folder).group(1))
 if userid != user_folder_id:
 output = "{}\\merged_features_others_{}.csv".format(data_dir,
user_folder_id)
 print("writing to:
{}merged_features_others_{}.csv".format(data_dir, user_folder_id))

 #df['LABEL'] = "others"

 exists = os.path.isfile(output)

 if exists:
 df.to_csv(output, mode='a', index=False, header=False)
 else:
 df.to_csv(output, index=False)

 print('done')
 print()

 except Exception as e:
 print(e)

 61

Appendix I. Feature of All Users Merger in Python

#!/usr/bin/env python
coding: utf-8

import pandas as pd
import glob
import re
import os

current_dir = os.getcwd()
data_dir = current_dir + '\\Data\\'
print("Current Data Dir: ", data_dir)

sessions = glob.glob(data_dir + "*\\")
print("Sessions", sessions)

for tl in sessions:
 try:
 print("Session --> ", tl)
 userid = int(re.search(r"\\(\d*)\\$", tl).group(1))
 print("User: ", userid)

 sf in glob.glob(data_dir + "{}*\\".format(userid))

 files = glob.glob("{}*\\features.csv".format(tl))
 df = pd.concat((pd.read_csv(f) for f in files))

 output = "{}\\merged_features_all.csv".format(data_dir)
 print("writing to: {}merged_features_all.csv".format(data_dir))

 exists = os.path.isfile(output)

 if exists:
 df.to_csv(output, mode='a', index=False, header=False)
 else:
 df.to_csv(output, index=False)

 print('done')
 print()

 except Exception as e:
 print(e)

BIOGRAPHICAL SKETCH

Okan Engin Başar was born on September 26, 1987 in Ankara, Turkey. After

graduating from Yunus Emre High School in 2005, he began to study in Department of

Computer Engineering in Middle East Technical University in Ankara, Turkey. He

graduated from Computer Engineering Department on Jan, 2012. After 2 years of work

experience in Garanti Technology as a Computer Engineer, he enrolled in M.Sc.

program in Computer Engineering Department in Galatasaray University. At the same

time, he continued to work as a Software Developer in Garanti Technology and later as

a Senior Software Project Engineer in Yapi Kredi Technology. His professional

expertise as a Software Engineer is the development of mobile applications.

