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ABSTRACT 

 

 

 

Smartphones have become very important and essential tools for our daily lives. They 

are not used just to communicate but each of them act as a smart personal assistant. We 

are playing, working and socialize wherever and whenever by using them. Even we 

make our banking transactions by using them instead of going to a bank branch. 

However, some possible security and privacy issues come in mind at this point. One of 

the greatest issues would be the theft or seizure of the smartphone by a third person. 

Banks take care of most of the cases by forcing the customer set a password which is 

not easily guessable. Also the banks send SMS messages or instant notifications to the 

customers as a second layer of security. These are good to have but may not be 

sufficient. Assume a customer unlocks the phone, crosses the second security layer into 

the banking application and then a thief steals the phone. The thief not only has the 

phone but also has the money that in the bank accounts at this point. This action is 

known as Account Takeover Attack in the literature. This thesis highlights the potential 

risks that occur when smartphones are stolen or seized at this kind of moments, and 

provides a solution to account takeovers by using continuous authentication concepts, 

like continuous user identification via touch and micro movements, and the mechanisms 

of behavioral biometrics. The solution is implemented inside a mobile banking 

application and the data is collected with this application. The collected data is modeled 

utilizing a machine learning algorithm. The details of the augmentation process and the 

test results in terms of authentication performance and resource consumption are also 

provided.  

 



 

x 
 
 

ÖZET 

 

 

 

Akıllı telefonlar hayatımızda çok önemli hale geldi. Sadece iletişim kurmak için 

değiller. Her biri akıllı bir kişisel asistandır. Oynuyoruz, çalışıyoruz ve nerede olursak 

olalım, onları kullanırken sosyalleşiyoruz. Hatta bir banka şubesine gitmek yerine onları 

kullanarak bankacılık işlemlerimizi yapıyoruz. Bununla birlikte, bu aşamada bazı olası 

güvenlik ve gizlilik sorunları akla geliyor. En büyük sorunlardan biri de akıllı telefonun 

üçüncü bir kişi tarafından çalınması veya ele geçirilmesidir. Bankalar müşterilerini 

kolaylıkla tahmin edilemeyecek bir şifre belirlemeye zorlayarak bu tür durumların 

çoğunu bertaraf eder. Ayrıca bankalar müşterilere ikinci bir güvenlik katmanı olarak 

SMS mesajları veya anlık bildirimler de gönderir. Bunların olması güzel ama yeterli 

değil. Bir müşterinin telefonun kilidini açtığını, ikinci güvenlik katmanını geçerek 

bankacılık uygulamasına girdiğini ve ardından bir hırsızın telefonu çaldığını varsayalım. 

Hırsız bu noktada sadece telefonu değil aynı zamanda banka hesaplarındaki parayı da 

elde etmektedir. Bu eylem literatürde Hesap Devralma Saldırısı olarak bilinmektedir. 

Bu tez, akıllı telefonların çalınması, izinsiz ele geçirilmesi ve yetkisiz kişiler tarafından 

işlem yapılması ile ortaya çıkabilecek olası risklere karşı, dokunma ve cihazın mikro 

hareketlerini izleyerek eğitilen bir davranış modeli ile hesap devralmayı engelleyen 

sürekli kimlik doğrulaması yapılan yeni bir güvenlik katmanı çözümü sunmaktadır. Bu 

çözüm bir mobil bankacılık uygulaması içerisinde uygulanmış ve tüm veriler bu 

uygulama ile toplanmıştır. Toplanan veriler bir makine öğrenme algoritması 

kullanılarak modellenmiştir. Doğrulama performansı ve kaynak tüketimi açısından 

değerlendirilen test sonuçları ve tüm uygulama süreçlerinin detayları da belirtilmiştir. 
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1. INTRODUCTION 

 

 

 

Smartphones have become important gadgets used in our daily lives. With a variety of 

apps, they are not only used for communication but also for different purposes, such as 

accessing social networks, browsing through the Internet, watching videos, navigation, 

step counting, bank transfers, etc. Often, users store personal/private information, such 

as photos, videos, or sensitive information such as passwords on these devices. Due to 

their small sizes compared to personal computers or tablets, they are also prone to get 

stolen or be lost and can be accessed by non-owners. If an non-owner or intruder has 

physical access to a device, he/she can cause monetary or non-monetary damage to the 

owner. Therefore, protecting the security and privacy of smartphone users against 

unauthorized access and providing secure authentication on these devices are important 

issues. 

 

Mobile banking applications are one of the most sensitive apps for secure authentication 

and they are widely used by customers due to ease of access and use. These applications 

are required to perform remote authentication using user credentials consisting of user-

name and password. Moreover, usually a confirmation password is required by the bank 

after the completion of a transaction as an additional security measure. Although, 

additional passwords bring a benefit, the use of a confirmation password extends the 

processing time, which may cause difficulty in the application usage for users. As an 

alternative method, continuous authentication using behavioral metrics can be utilized 

in mobile banking applications. Users exhibit different patterns while interacting with 

apps, or mobile devices and behavioral biometrics aim to identify users according to 

their unique patterns. Data related to keystrokes, touch-screen use and sensor data can 

be used to identify these patterns. Compared to physical biometrics, behavioral 

biometrics provide lower levels of security for authentication but they have the 

advantages of working in the background and not disrupting the user experience, and  
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working over a session rather than a one-shot authentication. Moreover, rather than 

replacing a username-password based authentication, they can be used as an additional 

measure for authentication or they can replace the additional passwords required after 

transactions. 

 

In this thesis, the augmentation of a mobile banking application with continuous 

authentication using behavioral biometrics is investigated. A mobile banking 

application from a local bank in Turkey as part of a research project is utilized. 

Particularly, the augmentation of the app with a data logging tool is discussed. The 

logger collects touch data while the user interacts with the screen, such as finger 

pressure, finger size and X&Y coordinates on the screen, as well as sensor data from 

accelerometer, gyroscope and magnetometer. 20 users collected the initial data for a 

pilot study. By preprocessing, the features are extracted from raw data. These extracted 

features were analyzed using machine learning algorithms to identify users. Especially 

one-class SVM classification is evaluated in detail. In addition to these, the resource 

consumption of the logger-augmented mobile banking application is explored in 

comparison to the app without the logger to investigate the overhead of data logging. As 

the metrics, power/battery consumption, CPU and memory usage were considered. 

Moreover, the resource usage with using accelerometer alone, as well as in combination 

with a gyroscope and magnetometer were analyzed. The resource consumption with 

varying sensor sampling rates was also tested. A scenario simulating a real-user was 

followed on the mobile banking app while collecting the data. The performance results 

show that touchscreen is the cheapest one in every aspect of resource consumption. 

Accelerometer is the least consumer among three sensors and as the sampling rate 

increases, the energy consumption and CPU usage can also dramatically increase after 

some point. Hence, sensor sampling rates should be kept at minimum in order not to 

disrupt user experience. 

 

The importance of the smartphones and the potential security and privacy issues that 

occur when smartphones are stolen or seized are highlighted. The current techniques 

that are used and the methodologies that are followed to prevent these issues are 

explained. Continuous authentication concepts, like continuous user identification via 

touch and micro movements, are mentioned in detail. This thesis puts behavioral 
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biometrics on the table and shows its importance in terms of security. The main topic of 

this thesis is how to increase the security level in a mobile banking application by using 

behavioral biometrics. 

 

In order to provide security, the user is asked for the username and password 

information to provide security for the bank. Although the access to the mobile banking 

application is password protected, additional security controls are also necessary taken 

into account to prevent a fraudulent account. For this purpose, after the initial 

authentication, as an additional security control, a confirmation password is issued to 

complete the transaction. Using a confirmation password extends the processing time 

and complicates the bank customer's application usage. 

 

In this thesis, it is suggested to use behavioral biometrics methods that are new for the 

Bank. These authentication methods will be considered as an additional control layer. In 

the related academic literature, the so-called 'behavioral biometry' method is based on 

the analysis of human-device interactions to protect users and their data and aims to 

distinguish the person behind a session. Among the types of behavior and interaction 

planned to be followed, there will be examples such as typing speed and style, pressure 

applied to the screen, transitions between screens. Thus, in mobile banking application, 

the Bank will be able to skip the confirmation password from the customer in the 

acceptable transactions for the bank, and the customer can be authenticated so that both 

fraud cases can be prevented and the use of the banking application will be facilitated. 

 

This thesis provides five main outputs: 

1. A software to be integrated into the mobile banking application that collects data 

on user behavior 

2. User data collected during testing process of this software (raw data) 

3. Feature set calculated by preprocessing the raw data 

4. Results of the classification performance analysis 

5. Results of the resource consumption analysis. 
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All the outputs mentioned above are explained in detail in this thesis. The rest of the 

thesis is organized as follows:  

 

In Section II, the related work is presented.  

 

In Section III, the components of the client application and its augmentation process 

with the Logger are described.  

 

In Section IV, the data collection and analysis methods are explained. The data 

preprocessing and methodology being followed are also described. Feature engineering 

details are provided. 

 

In Section V, the results of the performance evaluations are presented. SVM 

classification performance and the results of the application resource consumption 

analysis are provided. 

 

Finally, in Section VI, the conclusion and future work are presented. 
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2. RELATED WORK 

 

 

 

The use of continuous authentication based on behavioral biometrics is a promising area 

of study to enhance the security of the smartphones and there are numerous studies that 

have used behavioral biometrics. Although there are many types of behavioral 

biometrics, these studies mainly focused on hand waiving, key stroke and touchscreen 

behaviors. These studies extract various features such as pressure, finger size, touch 

location, and gesture type.  

 

Alzubaidi A. and Kalita J. (2016) mentioned about potential risks that occur when 

smartphones are stolen or seized in their survey. The current approaches and 

mechanisms of behavioral biometrics with respect to methodology, associated datasets 

and evaluation approaches were analyzed. 

 

Stylios I., et al. (2016) reviewed a summary of selected published material on this 

subject, with additional disclosure, critical analysis of contents and, in some cases, the 

main conclusions of each study. Their work can support new scientists and researchers 

by giving them hypothetical and viable viewpoints on Continuous Authentication 

utilizing behavioral biometrics. 

 

Bo C., et al. (2014) presented a new framework called SilentSense to authenticate users 

using the user touch behavior biometrics and the micro-movement of the device caused 

by the user's touch screen actions. They have created a touch-based biometric model of 

the owner and then confirmed whether the current user is the owner or the guest / 

attacker. While using the smartphone, some unique working dynamics of the user are 

learned by collecting sensor data and silently touching events. Micro movement of 

mobile devices identifies touching from large-scale movements of the user. Touch-based 
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based biometrics can be neutralized. To address this, they integrated a movement based 

biometrics for each user with previous touch-based biometrics. They also conducted 

extensive evaluations of their approaches on the Android smartphone and showed that 

the user identification accuracy is over 99%. 

 

Sitová Z., et al. (2016) introduced HMOG, a set of behavioral features to continuously 

authenticate smartphone users. HMOG was featured with micro-movements and 

orientation dynamics. According to this study, how a user grasps, holds, and taps on the 

smartphone can be used to identify the user. They also evaluated authentication and 

BKG performance of HMOG features. Sitting and walking data were collected from 

100 subjects while they were typing on a virtual keyboard. They compared EERs of the 

activities of subjects. 

 

Meng W., et al. (2015) investigated the use of both physical and behavioral biometric 

data. The data classes such as signature activity, walking pattern, applications used, the 

pattern of use of the phone keys, the pattern of the touch gestures of the screen were 

examined and the advantages and disadvantages of each method were discussed. In 

addition, different evaluation metrics (error rate, false acceptance rate, etc.) were used in 

studies and their performance against possible security attacks were investigated. 

 

Patel V. M., et al. (2016) emphasized that the sensors, such as camera, microphone, etc. 

can be used to collect physical data, while components such as accelerometers, 

gyroscopes, touch screens can be used to collect behavioral biometric data, such as 

walking, screen touch gestures, and hand movements. In the literature, it has been stated 

that user validation using behavioral biometry is expressed in different ways, such as 

continuous authentication, active authentication, indirect authentication, and transparent 

authentication. The advantages of authenticating with behavioral data, as well as 

physical data such as fingerprints, compared to active authentication, have been defined 

as ease of use and continuous operation. 

 

Rahman F., et al. (2014) suggested to use user's location, walking pattern, and the use of 

an image in the context authentication with different data modalities. However, an 

application and performance analysis has not been presented. 
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Fridman L., et al. (2017) constructed a dataset comprising of the text entered with the 

virtual keyboard, the applications used, the visited websites, and the physical location 

data of the device from 200 users. 

 

Fridman L., et al. (2015) performed the analysis of keyboard usage dynamics and 

mouse movements as well as stylometry. In this study, laptops were considered instead 

of mobile devices. 

 

Buriro A., et al. (2017) investigated a mobile banking application for continuous 

authentication. Touch-strokes’ timing-differences and the phone-movements during the 

process of entering PIN/password were collected. However, the study focused on the 

performance of identification and neglected resource consumption. Moreover, data was 

collected only when entering PIN and password, while we collect data throughout a 

complete session, from login to logout. 

 

To sum up, some of the related works were surveys and the others mainly focused on 

physical and virtual keyboard usage. Although Buriro A., et al. (2017) investigated 

mobile banking application for continuous authentication, this work was only related to 

login screen. In this thesis, a mobile banking application is investigated in much more 

detail. The continuous authentication mechanism is applied not only to login screen but 

to the all screens during a secure session. Moreover, the results of the resource 

consumption analysis are also provided. 
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3. EXTENDING THE MOBILE BANKING APPLICATION WITH A LOGGER 

 

 

 

In this section, the components of the client application and its augmentation process 

with the Logger are described. Figure 3.1 shows the component diagram of the system. 

 

This thesis is mainly focused on the client application which is the mobile banking 

application and the logger implementation. All the details related to the mobile banking 

application is provided in Section III. The Logger is explained and the implementation 

is provided in Section IV. The preprocessing of the raw data is also explained in Section 

IV. The authentication performance and the resource consumption analysis are provided 

in Section V. 

 

 

 
Figure 3.1: Component diagram of the system  
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3.1. The Mobile Banking Application 

 

The base application, which is a mobile banking application, has been natively 

implemented by the bank in Java programming language to operate in mobile phones 

having Android operating system. By default, there is neither continuous authentication 

mechanism nor usage of sensors installed on device. Also, the touch events are not 

being logged. 

 

In order to extend this application to have continuous authentication mechanism by 

using behavioral biometrics, the required data should be continuously collected. The 

details of the data being collected is provided in Section IV. 

 

The base application is utilizing the fragment and the activity lifecycles. Although the 

application is huge, in other words it has thousands of screens, there are only couple of 

activities for different purposes. The rest of the screen designs are utilizing fragment 

architecture. For example, the NonSecureActivity is activity used for the fragments 

before the login screen, and MainActivity is used for the fragments after the login. All 

the activities inherit from the BaseActivity. Because of this, we make use of 

BaseActivity in order to access and keep in touch with all the fragments implemented 

inside the base application. The BaseActivity is used for application wide operations 

like activity management, fragment management, flow management, user permissions, 

etc.  
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3.1.1. Session & Tagging Utility 

 

Before collecting any data, the user consent should be taken. Figure 3.2 shows the 

screenshot of a sample consent with some tagging parameters. The implementation is 

provided in Appendix A. 

 

 
Figure 3.2: The screenshot of the user consent pop-up 

 

After the consent is taken, data collection starts with folder and file creation process. 

The data coming from sensors and touch events are recorded to the filesystem. Before 

the data is generated, session utility creates the corresponding file structure (Figure 3.3). 

This is mentioned as Session & Tagging Utility in the component diagram. 

 

 
Figure 3.3: The file structure  
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3.1.2. Permission Utility 

 

In order to create the file structure and save the obtained the sensor and the touchscreen 

data to the filesystem, the external storage write permission is taken in the BaseActivity. 

Figure 3.4 shows how to ask for a runtime permission. This is mentioned as Permission 

Utility in the component diagram. 

 

 
 
@RuntimePermissions 
public abstract class BaseActivity extends AppCompatActivity { 
 ... 
@NeedsPermission({Manifest.permission.WRITE_EXTERNAL_STORAGE}) 
public void setupDAKOTA(BaseActivity activity, String name, String position, 
String scenario, String phoneModel) { 
    DakotaLogUtil.setupFiles(activity, name, position, scenario, phoneModel); 
    DakotaLogUtil.isDakotaFileSetUpCompleted = true; 
} 
 
@Override 
public void onRequestPermissionsResult(int requestCode, String[] permissions, 
int[] grantResults) { 
    super.onRequestPermissionsResult(requestCode, permissions, grantResults); 
    BaseActivityPermissionsDispatcher.onRequestPermissionsResult(this, 
requestCode, grantResults); 
} 
... 

} 
 

Figure 3.4: Usage of runtime permissions 
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3.2. The Logger 

 

The Logger is the component that listens gestures and sensors on the device and logs all 

the gathered information. It is designed to be part of the client application in order to 

collect the behavioral data of the users of the application. It consists of 2 utilities and 1 

listener. The utilities are Sensor Utility and Log Utility. These utilities are responsible 

for the sensor operations and the data logging respectively. The sensors listened on the 

device are the accelerometer, gyroscope and magnetometer. The Gesture Listener, on 

the other hand, is responsible for detecting gestures like scroll, fling, long press, show 

press, single tap down, single tap up and double tap. 

 

 

3.2.1. Gesture Listener 

 

Android SDK has built-in class called GestureDetector. It provides us GestureListener 

interfaces to implement and SimpleOnGestureListener class to extend in order to obtain 

the gestures listed above. The implementation is provided in Appendix E. 

 

Sometimes the interactions are not identified as gesture. Therefore, all the motion events 

are also dispatched in the BaseActivity to get every touchscreen interaction data by 

extending dispatchTouchEvent method coming from AppCompatActivity which is a 

built-in activity in Android SDK (Figure 3.5). The implementation is also provided in 

Appendix B. 

 

 
 

public boolean dispatchTouchEvent(MotionEvent ev); 
 

Figure 3.5: TouchEvent dispatcher method signature in Android SDK 
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3.2.2. Sensor Utility 

 

The sensor events are listened by registering the corresponding event listeners to the 

Sensor Manager, a built-in class in Android SDK, to access device sensors. Figure 3.6 

shows how the listener registration takes place in onResume, activity callback method 

which is also inherited from AppCompatActivity. This callback method is called when 

your activity is just started to interact with the user. 

 

There are 3 sensors that are listened; accelerometer, gyroscope and magnetometer. The 

sensor delay is the parameter that defines the sensor sampling rate. SENSOR_DELAY_ 

NORMAL (200ms delay) is nearly equivalent to 5Hz sampling rate. In Section V, the 

importance of the sampling rate is emphasized and the comparison of different sampling 

rates, specifically 5 Hz, 20 Hz and 100 Hz, is made in terms of resource consumption. 

 
 
@Override 
public void onResume() { 
    super.onResume(); 
    ... 
    if (DakotaSensorUtil.sensorManager != null && 
!DakotaSensorUtil.sensorListening) { 
 
        if (DakotaSensorUtil.gyroscopeSensor != null && 
DakotaSensorUtil.gyroscopeEventListener != null) { 
            
DakotaSensorUtil.sensorManager.registerListener(DakotaSensorUtil.gyroscopeEven
tListener, DakotaSensorUtil.gyroscopeSensor, 
SensorManager.SENSOR_DELAY_NORMAL); 
        } 
 
        if (DakotaSensorUtil.accEventListener != null) { 
            
DakotaSensorUtil.sensorManager.registerListener(DakotaSensorUtil.accEventListe
ner, DakotaSensorUtil.accSensor, SensorManager.SENSOR_DELAY_NORMAL); 
        } 
 
        if (DakotaSensorUtil.magEventListener != null) { 
            
DakotaSensorUtil.sensorManager.registerListener(DakotaSensorUtil.magEventListe
ner, DakotaSensorUtil.magSensor, SensorManager.SENSOR_DELAY_NORMAL); 
        } 
 
        DakotaSensorUtil.sensorListening = true; 
    } 
    ... 
} 

Figure 3.6: Registration of sensor event listeners in onResume 
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Since the sensors are serious energy consumers, as described in Section V, they should 

be active as short as possible. For this reason, the event listeners are unregistered from 

Sensor Manager in onPause activity callback method as shown in Figure 3.7 in order to 

suspend data collection while the application is not active. This callback method is 

called when your activity is not visible the user. 

 

 
  
@Override 
public void onPause() { 
    ... 
    if (DakotaSensorUtil.sensorManager != null) { 
 
        if (DakotaSensorUtil.gyroscopeSensor != null && 
DakotaSensorUtil.gyroscopeEventListener != null) { 
            
DakotaSensorUtil.sensorManager.unregisterListener(DakotaSensorUtil.gyroscopeEve
ntListener); 
        } 
 
        if (DakotaSensorUtil.accSensor != null && 
DakotaSensorUtil.accEventListener != null) { 
            
DakotaSensorUtil.sensorManager.unregisterListener(DakotaSensorUtil.accEventList
ener); 
        } 
 
        if (DakotaSensorUtil.magSensor != null && 
DakotaSensorUtil.magEventListener != null) { 
            
DakotaSensorUtil.sensorManager.unregisterListener(DakotaSensorUtil.magEventList
ener); 
        } 
 
        DakotaSensorUtil.sensorListening = false; 
    } 
 
    super.onPause(); 
} 

Figure 3.7: Unregistration of sensor event listeners in onResume 
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3.2.3.  Log Utility 

 

After the data collection consent and the write permission is taken, the session is started 

by the Session & Tagging Utility. At this point, data is started to be generated by the 

Gesture Listener and the Sensor Utility as long as the base application is running and 

visible on device screen. This data should be kept for a while on the device, until all the 

data is exported to the server.  

 

As mentioned, there exists two main data sources; the Gesture Listener and the Sensor 

Utility. The corresponding implementations are provided in Appendix E and Appendix 

D. 

 

The current data structure is the generated 12 CSV files on local file system as listed in 

Figure 3.3. The column names are also listed in Table 3.1. Each sensor data has X, Y 

and Z axis values. Each touchscreen data, on the other hand, has finger size, finger 

pressure, and X and Y coordinates of the screen. Fling and scroll gestures have also 

velocity information for each axis. Therefore these information have their own columns 

in the corresponding files. All the files have also the Time and Fragment Name columns 

to keep track of when and where the action takes place. The implementation of Log 

Utility is attached as Appendix C. 

 

Each session has a folder containing these files. When a new session is started, also a 

new folder is created for it. Each folder has some tagging information on it. The 

timestamp, the username, the position, the scenario number and the phone model. The 

timestamp is generated automatically. The other parameters are optional and currently 

obtained manually in the consent popup to get an idea about the data. When the 

application is deployed to production environment, the user information which already 

exist in the bank’s database will be used. The other parameters will not be necessary. 
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Accelerometer: 
- Time 
- X Axis 
- Y Axis 
- Z Axis 
- Fragment Name 

Gyroscope: 
- Time 
- X Axis 
- Y Axis 
- Z Axis 
- Fragment Name 

Magnetometer: 
- Time 
- X Axis 
- Y Axis 
- Z Axis 
- Fragment Name 

Touch: 
- Finger Pressure 
- X Axis 
- Y Axis 
- Finger Size 
- Time 
- Fragment Name 

TouchNoScrollNoFling: 
- Finger Pressure 
- X Axis 
- Y Axis 
- Finger Size 
- Time 
- Fragment Name 

Down: 
- Finger Pressure 
- X Axis 
- Y Axis 
- Finger Size 
- Time 
- Fragment Name 

Fling: 
- Finger Pressure 
- X Axis 
- Y Axis 
- Finger Size 
- X Axis Velocity 
- Y Axis Velocity 
- Time 
- Fragment Name 

Double Tap: 
- Finger Pressure 
- X Axis 
- Y Axis 
- Finger Size 
- Time 
- Fragment Name 

Long Press: 
- Finger Pressure 
- X Axis 
- Y Axis 
- Finger Size 
- Time 
- Fragment Name 

Scroll: 
- Finger Pressure 
- X Axis 
- Y Axis 
- Finger Size 
- X Axis Velocity 
- Y Axis Velocity 
- Time 
- Direction 
- Fragment Name 

Show Press: 
- Finger Pressure 
- X Axis 
- Y Axis 
- Finger Size 
- Time 
- Fragment Name 

 

Single Tap Up: 
- Finger Pressure 
- X Axis 
- Y Axis 
- Finger Size 
- Time 
- Fragment Name 

 

Table 3.1: The raw data saved by logger to CSV files 
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4. DATA COLLECTION AND ANALYSIS 

 

 

 

In this section, the data collection and analysis methods are explained. The data 

preprocessing and methodology being followed are described. Feature engineering 

details are provided. 

 

According to the analysis performed on the current customers of bank, the mostly used 

functions in the application are determined and combined together to generate scenarios. 

The measured average session duration is around 3 minutes. To achieve this duration, 

the customer behavior is simulated by following 5 scenarios listed below.  

1) Account and credit card balance control on dashboard, 

2) Searching accounts on account list and balance control, 

3) Money transfer from one account to another, 

4) Foreign exchange buy operation, 

5) Credit card debt payment. 

 

The data is collected by following these scenarios after login in each session. Although 

there are unlimited number of different stances, three of them are selected to be the most 

common ones to simulate the scenarios. Every user has completed scenarios in each of 

the following stances. 

1) Holding the phone in hand and standing 

2) Holding the phone in hand and sitting 

3) Holding the phone on the table and sitting 

 

3 device models are used in this thesis. The devices used to collect data are Samsung 

Galaxy S9 and Xiaomi Mi8. The resource consumption analysis, on the other hand, is 

performed on Samsung Galaxy S3 Neo since the other models do not support the power 

estimation utilities.  
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The data is collected from 20 users. Each user has followed the above-mentioned 5 

scenarios in corresponding sessions. Each user then alters the stance, and repeats the 

same scenarios, and then alters the stance again to repeat ones more.  

 

That makes 15 sessions per user. 1 user has 13 sessions. 18 users have 15 sessions. 2 

users have 30 sessions to see the importance of training dataset size in classification 

performance. Table 4.1 shows the list of users. In total, 47.31 MB of data is collected 

from 20 users.  

 

User 
ID Gender Phone 

Model 
Session 
Count 

Data Size 
(bytes) 

2 F Samsung S9 15 2,696,179 
3 F Samsung S9 15 3,258,477 
4 M Samsung S9 15 2,655,264 
5 M Samsung S9 15 2,885,752 
6 M Samsung S9 13 3,351,233 
8 M Samsung S9 15 2,901,635 

30 M Xiaomi Mi8 30 3,916,120 
31 F Xiaomi Mi8 15 2,257,572 
50 M Xiaomi Mi8 15 2,117,162 
51 M Xiaomi Mi8 15 2,529,388 
52 M Xiaomi Mi8 15 2,494,544 
53 M Xiaomi Mi8 15 1,976,520 
54 M Xiaomi Mi8 15 3,101,618 
55 F Xiaomi Mi8 15 1,783,096 
56 F Xiaomi Mi8 15 2,343,062 
57 M Xiaomi Mi8 15 2,496,702 
70 F Xiaomi Mi8 30 3,951,858 
71 F Xiaomi Mi8 15 2,433,167 
72 M Xiaomi Mi8 15 2,515,956 
73 M Xiaomi Mi8 15 1,932,334 

Table 4.1: The list of users  
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4.1. Feature Extraction 

 

The raw data is preprocessed and 66 features are extracted. These features are 

introduced by Sitová Z., et al. (2016) and the details of each feature can be found in 

their work. Since the dataset in this thesis is very similar to the one in HMOG paper, the 

same features are extracted and utilized. The extracted features are listed on Table 4.2 

and they are obtained from only scroll events and the corresponding sensor data. 

Although other gestures might contribute to another machine learning model by their 

own feature set, this is left as future work. For this reason, only the transactions that 

consist scrolling on screen can be authenticated by this machine learning model. The 

scrolling event comes from every kind of list. For example; the account list, account 

transactions list, credit card list, credit card transactions list, funds list, stocks list, etc. It 

does not matter whether the user has lots of accounts or credit cards. If the operation 

includes any kind of list scrolling, that session can be authenticated with this approach. 

The Python source codes used for feature extraction and feature merging are attached as 

Appendix F, Appendix G, Appendix H, and Appendix I. 
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X_acc_mean X_acc_std X_acc_median 

Y_acc_mean Y_acc_std Y_acc_median 

Z_acc_mean Z_acc_std Z_acc_median 

X_gyr_mean X_gyr_std X_gyr_median 

Y_gyr_mean Y_gyr_std Y_gyr_median 

Z_gyr_mean Z_gyr_std Z_gyr_median 

X_mag_mean X_mag_std X_mag_median 

Y_mag_mean Y_mag_std Y_mag_median 

Z_mag_mean Z_mag_std Z_mag_median 

Acc_Mag_mean Acc_Mag_std Acc_Mag_median 

Gyr_Mag_mean Gyr_Mag_std Gyr_Mag_median 

Mag_Mag_mean Mag_Mag_std Mag_Mag_median 

START_X_first CURRENT_X_last CURRENT_X_maxdev 

CURRENT_X_dev20 CURRENT_X_dev50 CURRENT_X_dev80 

START_Y_first CURRENT_Y_last CURRENT_Y_maxdev 

CURRENT_Y_dev20 CURRENT_Y_dev50 CURRENT_Y_dev80 

V_pairwise20 V_pairwise50 V_pairwise80 

A_pairwise20 A_pairwise50 A_pairwise80 

V_medianVelocity 

LastThree 
A_averageAccFirstFive 

pairwiseDisplacement_ 

lengthOfTrajectory 

CURRENT_PRESSURE_

median 
CURRENT_SIZE_median distance 

directionOfEndtoEnfLine ratio duration 

averageVelocity MeanResultantLength AverageDirectionEnsemble 

Table 4.2: The list of extracted features 
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4.2. Feature Transformation 

 

In order to improve authentication performance, feature transformation with Principal 

Component Analysis is performed. It is a statistical procedure that transforms a number 

of possibly correlated variables into a smaller number of linearly uncorrelated variables 

called principal components without losing any information. By applying PCA, 66 

features are transformed into 23 and better SVM classifier performance achieved on 

reduced number of features. 

 

 

4.3. Classification 

 

SVM is a supervised ML algorithm which can be used for classification, regression 

purposes and mostly for the pattern recognition. When it is used for classification, this 

algorithm tries to find the optimal hyperplane which strictly classifies the data points 

with a maximum margin in N-dimensional space where N is the number of features. 

Figure 4.1 shows the possible hyperplanes in 2-dimensional space. 

 

 

  
Figure 4.1: Possible hyperplanes in SVM in 2-dimensional space 

 

One-class SVM classification, on the other hand, is an unsupervised learning algorithm 

which is used to distinguish the target class from all other classes by using only target 

class training data. If the outliers are not represented well in the training set, this 

algorithm is much suitable. The aim is to separate the data from the origin in the N-
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dimensional predictor space and detect the outliers. Rana, D. (2015) compared two 

SVM classification algorithms and this comparison is given in Table 4.3. 

 

One-Class SVM SVM 

Contains data from 

only one class, target class. 

Contains data of two or more 

classes. 

Goal is to create a description of 

one class of objects and 

distinguish from outliers. 

Goal is to create hyperplane 

with maximum margin between 

two classes. 

Decision boundary is estimated 

in all directions in the feature 

space around the target class. 

Hyperplane is created in 

between datasets to indicate 

which class it belongs to. 

Table 4.3: One-class SVM vs SVM 

 

Since the model ought to be trained with the single user’s data and the purpose is to 

classify new data whether they belong to this class or not, one-class SVM classification 

algorithm was used. WEKA libSVM library contains one-class-SVM implementation. 

This implementation is used in experiments. 

 

When training an SVM classifier with the kernel type RBF, nu and gamma parameters 

must be considered. The influence amount of a single training instance on the 

classification is defined as gamma. 

 

The nu parameter, is upper bounded by the fraction of outliers and lower bounded by 

the fraction of support vectors. This parameter should be optimized to tune the trade-off 

between overfitting and generalization. 

 

All experiments showed that the lowest possible gamma value, 1.0E-7, has the best 

authentication performance. In order to be consistent in SVM, all the target attributes 

are normalized by setting the normalize parameter to true. All other parameters are left 

as default in WEKA 3.8. Future experiments are made based on these parameters. 

 

Classifier configuration: 
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weka.classifiers.functions.LibSVM -S 2 -K 2 -D 3 -G 1.0E-7 -R 0.0 -N 0.5 -M 40.0 -C 

1.0 -E 0.001 -P 0.1 -Z -model "C:\\Program Files\\Weka-3-8" -seed 1 -output-debug-

info 

 

 

4.4. Testing & Validation 

 

Cross-validation is widely used statistical method to estimate the machine learning 

model performance. It is a resampling procedure used when the data sample is limited. 

k-Fold cross-validation is a term where the k is the number of groups/folds that a given 

data sample is to be split into randomly. In each iteration, 1 fold is selected for testing 

and the k-1 folds are used for training. This is repeated k times for each fold. 

 

10-fold cross-validation (10-CV) is used on training data to set the parameters for PCA 

and SVM. 10-CV is also used in testing to optimize the TPR values for each user. 

 

In order to optimize the authentication performance in terms of TPR, all different nu 

values in the range of 0.01-0.99 with the step size 0.01 are examined for each PCA 

transformed training data. According to the result matrix of TPR and nu values, a best 

nu value is assigned to each user. These nu values are used in one-class SVM 

classification. 

 

 

4.5. Metrics 

 
There are 3 metrics that are evaluated in this thesis. True Positive Rate (TPR), False 

Positive Rate (FPR) and Equal Error Rate (EER). 

 

TPR is an outcome where the model correctly predicts the positive class. TPR value is 

high if the data being tested is correctly identified as belonging a target class. Higher 

TPR means, better classification and hence better authentication performance. 

 

True Positive Rate (TPR) is defined as follows: 
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𝑇𝑃𝑅 = %&
%&'()

     (1) 

 

 

FPR is an outcome where the model incorrectly predicts the positive class. FPR value is 

low if the data being tested is correctly identified to be an outlier. Lower FPR means, 

better classification and hence better authentication performance. 

 

False Positive Rate (FPR) is defined as follows: 

 

 

𝐹𝑃𝑅 = (&
(&'%)

     (2) 

 

 

EER, on the other hand, is a biometric security system algorithm to determine the 

thresholds for its False Acceptance Rate (FAR) and its False Rejection Rate (FRR). 

When FAR and FRR are equal, the common value is referred as EER. The relation 

between EER, FAR and FRR is shown in Figure 4.2. Lower EER means, better 

classification and hence better authentication performance. 

 

 

 
 

Figure 4.2: Definition of Equal Error Rate (EER) 
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5. PERFORMANCE EVALUATION 

 

 

 

In this section, the classification performance and the resource consumption analysis are 

provided. The effects of PCA and SVM parameters on the classification performance 

are investigated. TPR and/or FPR results are provided with each configuration. Results 

of the resource consumption analysis are also presented. 
 

 

5.1. Classification Performance Analysis 

 

The experiments are held on the collected data of 20 users. For each user, one class 

SVM is performed with the default parameters of WEKA libSVM. SVM models are 

trained with user’s own data and tested with the data of other users. 

 

48.85% TPR is observed on average as seen in Table 5.1 without PCA and without 

SVM parameter optimization. 

 

SVM parameter optimization is very effective on classification performance. Gamma 

value is determined to be best at 1.0E-7. A user-specific nu value that has the best 

authentication performance on user data is assigned for each user. These nu values are 

determined by automated tests in Weka Experimenter. 

 

Table 5.2 shows that the TPR values obtained vary between 70% to 96% when the 

features are transformed with PCA and the SVM parameters are optimized for each 

user. 83.13% TPR is observed on average. 
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User ID TPR 
2 50.85% 
3 51.60% 
4 48.80% 
5 48.49% 
6 49.19% 
8 49.35% 

30 47.49% 
31 48.69% 
50 49.07% 
51 48.91% 
52 47.47% 
53 49.38% 
54 48.47% 
55 47.40% 
56 49.17% 
57 48.61% 
70 47.56% 
71 49.34% 
72 48.23% 
73 48.84% 

Avg.--> 48.85% 
Table 5.1: TPR performance without PCA & with default SVM parameters 

 

 

SVM classifier parameters that are used in experiments: 

kernelType : Radial Basis Function (RBF) 

gamma  : 1.0E-7 

nu  : “an optimized value in range 0.01 - 0.99” 

normalize : true 

others  : WEKA libSVM defaults 

 

PCA is performed on all features. The following default WEKA configuration 

parameters are used. 

 

Attribute selection configuration for the PCA evaluator: 

weka.attributeSelection.PrincipalComponents -R 0.95 -A 5 
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Attribute selection configuration for the PCA search: 

weka.attributeSelection.Ranker -T -1.7976931348623157E308 -N -1 

 

 

User 
ID 

# of 
training 

instances 

# of 
testing 

instances 

# of 
total 

instances 
Best nu Best TPR 

% 

2 264 29 293 0.25 82.22 
3 225 25 250 0.40 94.80 
4 225 25 250 0.04 96.00 
5 329 37 365 0.50 83.66 
6 278 31 309 0.50 94.83 
8 275 31 306 0.04 87.82 

30 197 22 219 0.60 75.24 
31 240 27 267 0.20 91.70 
50 194 22 216 0.50 80.67 
51 166 18 184 0.20 72.43 
52 195 22 217 0.40 87.84 
53 219 24 243 0.72 81.23 
54 147 16 163 0.50 73.90 
55 156 17 173 0.25 81.27 
56 216 24 240 0.25 90.42 
57 226 25 251 0.50 89.09 
70 203 23 225 0.86 70.79 
71 204 23 227 0.50 86.17 
72 203 23 226 0.84 72.13 
73 194 22 215 0.50 70.39 

Avg.TPR --> 83.13 
Table 5.2: TPR performance with PCA & with optimized SVM parameters 

 

 

The importance of the training instance count is also examined. User #30 and User #70 

has collected data from 15 more sessions. Table 5.3 shows that User #70 has shown 

great improvement on TPR performance, although the TPR performance of User #30 

does not change much. 
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User 
ID 

# of 
training 

instances 

# of 
testing 

instances 

# of 
total 

instances 
Best nu Best TPR 

% 

30 197 22 219 0.60 75.24 
30 418 46 464 0.19 74.77 

      
70 203 23 225 0.86 70.79 
70 440 49 489 0.30 98.78 

      
Avg.TPR --> 84.51 

Table 5.3: TPR performance comparison for more training data  

 

 

PCA and SVM parameter optimization have increased SVM performance and so does 

the authentication performance. The training data size has also affected the 

performance. The comparison is given in Table 5.4. 

 

FPR is also crucial for authentication. However, it can only be obtained by testing one-

class SVM model with other users’ instances. Since the model is generated with PCA, 

to maximize the TPR, the testing instances should also be generated with the same PCA 

attribute optimization formula. This is achieved in WEKA by using attribute selected 

classifier. It takes training feature dataset and testing feature dataset separately and 

apply training PCA to the testing instances, too. 

 

Classifier configuration: 

weka.classifiers.meta.AttributeSelectedClassifier -E 

"weka.attributeSelection.PrincipalComponents -R 0.95 -A 5" -S 

"weka.attributeSelection.Ranker -T -1.7976931348623157E308 -N -1" -W 

weka.classifiers.functions.LibSVM -output-debug-info -- -S 2 -K 2 -D 3 -G 1.0E-7 -R 

0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -Z -model "C:\\Program Files\\Weka-3-8" -

seed 1 -output-debug-info 

 
Table 5.5 shows the corresponding FPR performance of TPR optimized one-class SVM 

model. Although the ratio of number of training instances to the number of testing 

instances is very low, the FPR values are less than 3% for the half of the users. 
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Without PCA,  
Without SVM 

parameter optimization 

With PCA,  
With SVM 
parameter 

optimization 

The effect of 
more 
training data 

User ID TPR TPR TPR 
2 50.85% 82.22% - 
3 51.60% 94.80% - 
4 48.80% 96.00% - 
5 48.49% 83.66% - 
6 49.19% 94.83% - 
8 49.35% 87.82% - 

30 47.49% 75.24% 74.77% 
31 48.69% 91.70% - 
50 49.07% 80.67% - 
51 48.91% 72.43% - 
52 47.47% 87.84% - 
53 49.38% 81.23% - 
54 48.47% 73.90% - 
55 47.40% 81.27% - 
56 49.17% 90.42% - 
57 48.61% 89.09% - 
70 47.56% 70.79% 98.78% 
71 49.34% 86.17% - 
72 48.23% 72.13% - 
73 48.84% 70.39% - 

Table 5.4: Effects of PCA, SVM parameter optimization and training data size 

 

 

User #50, User #52, User #30 and User #56 have very high FPR values and it is 

necessary to train better models for these users before making any model eligible to 

authenticate the corresponding user. This might happen if there is no user characteristic 

throughout the scenarios and the limited data may not reflect the user properly. 
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User 
ID 

# of 
training 

instances 

# of 
testing 

instances 

# of 
total 

instances 

# of 
classified 
instances 

nu 
(TPR 

optimized) 

Best 
TPR 

FPR 
(TPR 

optimized) 

2 293 5055 5348 109 0.25 82.22% 2.16% 
3 250 5098 5348 187 0.40 94.80% 3.67% 
4 250 5098 5348 781 0.04 96.00% 15.32% 
5 365 4983 5348 554 0.50 83.66% 11.12% 
6 309 5039 5348 198 0.50 94.83% 3.93% 
8 306 5042 5348 0 0.04 87.82% 0.00% 

30 464 4884 5348 1062 0.19 74.77% 21.74% 
31 267 5081 5348 8 0.20 91.70% 0.16% 
50 216 5132 5348 4381 0.50 80.67% 85.37% 
51 184 5164 5348 166 0.20 72.43% 3.21% 
52 217 5131 5348 2620 0.40 87.84% 51.06% 
53 243 5105 5348 330 0.72 81.23% 6.46% 
54 163 5185 5348 519 0.50 73.90% 10.01% 
55 173 5175 5348 165 0.25 81.27% 3.19% 
56 240 5108 5348 1117 0.25 90.42% 21.87% 
57 251 5097 5348 0 0.50 89.09% 0.00% 
70 489 4859 5348 40 0.30 98.78% 0.82% 
71 227 5121 5348 138 0.50 86.17% 2.69% 
72 226 5122 5348 4 0.84 72.13% 0.08% 
73 215 5133 5348 16 0.50 70.39% 0.31% 

        
Avg.FPR -->   12.16% 

Table 5.5: FPR performance of TPR optimized one-class SVM model 

 
 
In this work, FAR equals FPR and FRR equals 1 minus TPR. The values can be seen in 

Table 5.6. FAR values are listed in descending order and FRR values are listed in 

ascending order. 

 

Since FAR and FRR distributions overlap, the intersection point gives us the EER 

value, which is nearly 11% as seen in Figure 5.1. 
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FAR FRR 
85.37% 4.00% 
51.06% 5.17% 
21.87% 5.20% 
21.74% 8.30% 
15.32% 9.58% 
11.12% 10.91% 
10.01% 12.16% 

6.46% 12.18% 
3.93% 13.83% 
3.67% 16.34% 
3.21% 17.78% 
3.19% 18.73% 
2.69% 18.77% 
2.16% 19.33% 
0.82% 24.76% 
0.31% 26.10% 
0.16% 27.57% 
0.08% 27.87% 
0.00% 29.21% 
0.00% 29.61% 

Table 5.6: FAR and FRR values 

 

 

 
Figure 5.1: Equal Error Rate (EER)  
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5.2. Resource Consumption Analysis 

 

Since the platform is a mobile phone, the monitored resources are power consumption, 

CPU usage, I/O usage, memory usage and network usage. All the test scenarios 

mentioned in Section 3 are followed and the measurements are taken on Android OS 

version 4.4.2 installed on Samsung S3 Neo (GT-I9301Q) phone. In each test, the 

predefined and exactly the same scenario is followed. Each test session has a different 

duration, varying from 3 minutes to 4 minutes, depending on the user speed and the web 

service latency. 

The power consumption measurements are taken by the PowerTutor1 app. It is a power 

monitoring application for Android-based mobile platforms developed by University of 

Michigan Ph.D. students. Zhang L., et al. (2010) estimated power usage of the 

applications running on device with this app they developed. The estimation is based on 

a built-in model which estimates within 5% of actual values. Total energy usage is 

obtained from PowerTutor for each session. Since each test session has different 

duration, varying from 3 minutes to 4 minutes, the total energy consumption (in joules) 

is divided by session duration (in seconds) to get the power consumption (in watts). 

The CPU usage is obtained by using the dumpsys2. It is a tool that runs on Android 

devices and provides information about system services. “adb shell dumpsys cpuinfo” 

command is called from the command line to get diagnostic output using the Android 

Debug Bridge (ADB). The output shows CPU usage of every application running on the 

device, “grep” command is used to filter out the others.  

 

The command is called in every 10s by using the “watch” command which can be used 

to automate commands on a regular basis. All the outputs show the average CPU usage 

and then their average is used to compare different test sessions. 

  

                                                
[1] PowerTutor - A Power Monitor for Android-Based Mobile Platforms 
      http://ziyang.eecs.umich.edu/projects/powertutor/ 
 
[2] dumpsys – A tool that runs on Android devices and provides information about system services 
      https://developer.android.com/studio/command-line/dumpsys 
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5.2.1. Power Consumption and CPU Usage 

 

In terms of power consumption, 39% increase is observed in the complete logger 

activated application compared to the base application (Figure 5.1). Measurements in 

Figure 5.2 show that complete logger activated application has used 5% more CPU on 

average compared to the base application. Since the logging is not a CPU intensive task, 

most of the power consumption is due to the I/O workload. At the rate of 5 Hz, the 

average I/O rate is 250 bytes/s. It also increases directly proportional to the sampling 

rate for each sensor. The I/O rate for the touchscreen usage is very small compared to 

the even 5 Hz sensor data generated. Hence, it is neglected. Table 1 also shows the 

schema of the data written by each sensor and the touchscreen gesture in every data 

change. 

 

 

 
Figure 5.2: Overall power consumption 
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Figure 5.3: Overall CPU usage 

 

 

5.2.2. Impact of Touchscreen (Normal usage vs Under stress) 

 

Figure 5.3 and Figure 5.4 show that touchscreen increases power consumption only 3% 

with normal usage according to the scenarios. To maximize the generated data size, the 

application is also tested under stress. This is achieved by touching and scrolling 

aggressively and randomly on touchscreen without following the predefined scenario. 

The power consumption in stress test is 70% more than the normal touchscreen usage. 

The results show that touchscreen has very little effect on both power consumption and 

CPU usage. Corresponding differences are 4 mW and 0.5% respectively. 

 

 

  

28,60%

33,86%

0% 25% 50% 75% 100%

Base Application

Base Application
+ Touchscreen

+ ACC (5 Hz)
+ GYR (5 Hz)
+ MAG (5 Hz)

CPU Usage



  35 
 
 

 
 

 
Figure 5.4: Impact of touchscreen on power consumption 

 

 

 
Figure 5.5: Impact of touchscreen on CPU usage 
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5.2.3. Impact of Accelerometer (Sampling rate: 5 Hz vs 20 Hz vs 100 Hz) 

 

Although accelerometer can consume large amount of energy in 100Hz, which is the 

maximum sampling rate in our device, it is the least energy consumer among the other 

sensors that are observed. At the rate of 5Hz, the power consumption of the 

accelerometer is only 9mW. As the sampling rate increases, the power consumption and 

the CPU usage are also increased accordingly, as seen in Figure 5.5 and Figure 5.6. The 

dramatic increase in CPU usage at the rate 100Hz is due to the number of the created 

async tasks and the I/O wait time. 

 

 
Figure 5.6: Impact of accelerometer on power consumption 
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Figure 5.7: Impact of accelerometer on CPU usage 

 

 

5.2.4. Impact of Gyroscope (Sampling rate: 5 Hz vs 20 Hz vs 100 Hz) 

 

Even with a 5 Hz sampling rate, very large amount of energy is consumed by the 9-axis 

gyroscope. Figure 5.7 and Figure 5.8 show that 30mW increase in power consumption 

and 21% more battery demand occur compared to the base application. Although these 

numbers are device specific, it is crucial to reduce the active time of the gyroscope 

sensor. All the sensors are active all the time the application is being used when these 

measurements are taken. 
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Figure 5.8: Impact of gyroscope on power consumption 

 

 

 
Figure 5.9: Impact of gyroscope on CPU usage 
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5.2.5. Impact of Magnetometer (Sampling rate: 5 Hz vs 20 Hz vs 100 Hz) 

 

Similar to the gyroscope, the magnetometer is also an energy-hungry sensor. Even with 

a 5 Hz sampling rate, 27mW power and 2.6% CPU demand arise compared to the base 

application, as seen in Figure 5.9 and Figure 5.10. With a 100 Hz sampling rate, on the 

other hand, dramatic increase in the power consumption and CPU usage can be 

unacceptable for a user. 

 

 

 
Figure 5.10: Impact of magnetometer on power consumption 
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Figure 5.11: Impact of magnetometer on CPU usage 
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6. CONCLUSION & FUTURE WORK 

 

 

 

In conclusion, the augmentation of a mobile banking application with continuous 

authentication using behavioral biometrics is investigated in this thesis. Data is 

collected from three phone sensors and touchscreen. 20 users participated in data 

collection by following 5 scenarios in 3 stances. It is very crucial for a bank to have all 

the necessary data without affecting the user experience. The performance evaluations 

are made under these circumstances. In order to be sure about the maximum effect, we 

measured each sensor at maximum sampling rate. For the touchscreen, on the other 

hand, stress test was conducted to push the limits. According to measurement results, it 

is acceptable to collect all the data at 5 Hz and logger augmented app does not bring 

significant overhead in terms of resource consumption. Sampling the sensors at 100Hz 

on the other hand, brings a serious overhead on CPU and power consumption. Although 

these metrics are affected seriously, the modern phones are capable enough to run on 

device without affecting the user experience. The only effect visible to the user is the 

battery consumption. The authentication performance, on the other hand, is %83 on 

average with SVM parameter optimization and PCA. It is also observed that the training 

data size can has positive effects on SVM performance. However, there are still some 

points that are required to be optimized, like magnetometer and gyroscope deactivation. 

I/O rate can be optimized by utilizing a database instead of CSV files in the filesystem. 

Collected data can be transferred as small pieces to the backend server. Feature 

extraction can be automatized on server and the features can be stored in a more secure 

database. When the count of the training instances reaches a predefined threshold, then 

the SVM model is auto trained with PCA. The tests can be done automatically by using 

random testing instances from all users feature instances. The model is then marked to 

be eligible to authenticate the user if the TPR and FPR values falls in an acceptable 

range. These automations on the server side are left as future work. 
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APPENDICES 

 

 

 

Appendix A. Showing a consent pop-up to start data collection 

 

 
@Override 
protected void onCreate(Bundle savedInstanceState) { 
    super.onCreate(savedInstanceState); 
 
    ... 
 
    if (!DakotaLogUtil.isDakotaFileSetUpCompleted) { 
 
        AlertDialog.Builder alert = new AlertDialog.Builder(this); 
 
        alert.setTitle("Veri Toplama İzni"); 
        alert.setMessage("Uygulamayı kullanırken verilerimin toplanmasına izin 
veriyorum."); 
 
 
        final DakotaDataCollectionInputView input = new 
DakotaDataCollectionInputView(this); 
 
        alert.setView(input); 
 
        alert.setPositiveButton("Başlat", new 
DialogInterface.OnClickListener() { 
            public void onClick(DialogInterface dialog, int whichButton) { 
                String name = input.getName(); 
                String position = input.getPosition(); 
                String scenario = input.getScenario(); 
                String phoneModel = input.getPhoneModel(); 
 
                
BaseActivityPermissionsDispatcher.setupDAKOTAWithPermissionCheck(BaseActivity.
this, BaseActivity.this, name, position, scenario, phoneModel); 
            } 
        }); 
 
        alert.show(); 
    } 
 
    DakotaSensorUtil.setupSensors(BaseActivity.this); 
 
    DakotaSensorUtil.mGestureDetector = new GestureDetector(BaseActivity.this, 
new DakotaGestureListener()); 
} 
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Appendix B. Dispatching the touch events 

 

 
@Override 
public boolean dispatchTouchEvent(MotionEvent ev) { 
 
    boolean eventConsumed = 
DakotaSensorUtil.mGestureDetector.onTouchEvent(ev); 
    if (eventConsumed) 
    { 
        String text = DakotaGestureListener.currentGestureDetected; 
        text = text.concat(";" + (getCurrentPageFragment() != null ? 
getCurrentPageFragment().getSimpleClassName() : "-")); 
 
        for (String fileName : DakotaGestureListener.fileNames) { 
            DakotaLogUtil.writeToFile(text, fileName); 
        } 
    } 
 
 
    switch (ev.getAction()) { 
        case MotionEvent.ACTION_DOWN: 
        case MotionEvent.ACTION_UP: 
        case MotionEvent.ACTION_MOVE: 
            String text = ev.getAction() + ";" + ev.getPressure() + ";" + 
ev.getX() + ";" + ev.getY() + ";" + ev.getSize() + ";" + ev.getDownTime() + 
";" + System.currentTimeMillis(); 
            text = text.concat(";" + (getCurrentPageFragment() != null ? 
getCurrentPageFragment().getSimpleClassName() : "-")); 
            DakotaLogUtil.writeToFile(text, "touch.csv"); 
            Log.e("Touch", text); 
            break; 
        default: 
            break; 
 
    } 
 
    getCurrentPageFragment().dispatchTouchEvent(ev); 
    return disableUserInteraction || super.dispatchTouchEvent(ev); 
} 
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Appendix C. Log Utility 

 

 
public class DakotaLogUtil { 
    private static final String CSV_FILE_HEADER = 
"Title1;Title2;Title3;Title4"; 
    public static boolean isDakotaFileSetUpCompleted = false; 
    private static File parentDirectory; 
 
    /* Checks if external storage is available for read and write */ 
    public static boolean isExternalStorageWritable() { 
        String state = Environment.getExternalStorageState(); 
        return Environment.MEDIA_MOUNTED.equals(state); 
    } 
 
    public static void setupFiles(BaseActivity activity, String name, String 
position, String scenario, String phoneModel) { 
        boolean writable = isExternalStorageWritable(); 
 
        if (writable) Log.e("DAKOTA EXTERNAL STORAGE", "Writable"); 
        else Log.e("DAKOTA EXTERNAL STORAGE", "NOT Writable"); 
 
        SimpleDateFormat s = new SimpleDateFormat("yyyyMMddHHmmss"); 
        String formattedDate = s.format(new Date()); 
 
        ActivityCompat.requestPermissions(activity, new 
String[]{Manifest.permission.WRITE_EXTERNAL_STORAGE}, 1); 
        parentDirectory = new 
File(Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOCUM
ENTS), "DAKOTA-" + formattedDate + "-" + name + "-" + position + "-s" + 
scenario + "-s" + phoneModel); 
 
        if (parentDirectory.exists()) { 
            Log.e("DAKOTA EXTERNAL STORAGE", "Directory exists"); 
        } else { 
            if (!parentDirectory.mkdirs()) { 
                Log.e("DAKOTA EXTERNAL STORAGE", "Directory not created"); 
            } else { 
                Log.e("DAKOTA EXTERNAL STORAGE", "Directory created"); 
            } 
        } 
 
        initializeHeaders(); 
 
        Log.e("DAKOTA EXTERNAL STORAGE", parentDirectory.getAbsolutePath()); 
    } 
 
    private static void initializeHeaders() { 
        ArrayList<String> files = new ArrayList<>(); 
        files.add(0, "down.csv"); 
        files.add(1, "fling.csv"); 
        files.add(2, "scroll.csv"); 
        files.add(3, "singleTapUp.csv"); 
        files.add(4, "showPress.csv"); 
        files.add(5, "longPress.csv"); 
        files.add(6, "doubleTap.csv"); 
        files.add(7, "acc.csv"); 
        files.add(8, "gyr.csv"); 
        files.add(9, "mag.csv"); 
        files.add(10, "touch.csv"); 
        files.add(11, "touchNoScrollNoFling.csv"); 
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        for (int i = 0; i < files.size(); i++) { 
            String fileName = files.get(i); 
            File file = new File(parentDirectory, fileName); 
            if (!file.exists()) { 
                Log.e("DAKOTA HEADER CREATION", "FILE DOES NOT EXIST " + 
file.getAbsolutePath()); 
                String header = ""; 
                switch (fileName) { 
                    case "down.csv":// 
                        header = 
"ACTION_NAME;PRESSURE;X;Y;SIZE;EVENT_TIME;SYSTEM_TIME;FRAGMENT_NAME"; 
                        break; 
                    case "fling.csv": 
                        header = 
"ACTION_NAME;PRESSURE;X;Y;SIZE;VELOCITY_X;VELOCITY_Y;EVENT_TIME;SYSTEM_TIME;FR
AGMENT_NAME"; 
                        break; 
                    case "scroll.csv": 
                        header = 
"EVENT_ID;BEGIN_TIME;START_X;START_Y;START_PRESSURE;START_SIZE;EVENT_TIME;CURR
ENT_X;CURRENT_Y;CURRENT_PRESSURE;CURRENT_SIZE;SYSTEM_TIME;DISTANCE_X;DISTANCE_
Y;DIRECTION;FRAGMENT_NAME"; 
                        break; 
                    case "singleTapUp.csv":// 
                        header = 
"ACTION_NAME;PRESSURE;X;Y;SIZE;EVENT_TIME;SYSTEM_TIME;FRAGMENT_NAME"; 
                        break; 
                    case "showPress.csv":// 
                        header = 
"ACTION_NAME;PRESSURE;X;Y;SIZE;EVENT_TIME;SYSTEM_TIME;FRAGMENT_NAME"; 
                        break; 
                    case "longPress.csv":// 
                        header = 
"ACTION_NAME;PRESSURE;X;Y;SIZE;EVENT_TIME;SYSTEM_TIME;FRAGMENT_NAME"; 
                        break; 
                    case "doubleTap.csv":// 
                        header = 
"ACTION_NAME;PRESSURE;X;Y;SIZE;EVENT_TIME;SYSTEM_TIME;FRAGMENT_NAME"; 
                        break; 
                    case "acc.csv": 
                        header = "SYSTEM_TIME;X;Y;Z;FRAGMENT_NAME"; 
                        break; 
                    case "gyr.csv": 
                        header = "SYSTEM_TIME;X;Y;Z;FRAGMENT_NAME"; 
                        break; 
                    case "mag.csv": 
                        header = "SYSTEM_TIME;X;Y;Z;FRAGMENT_NAME"; 
                        break; 
                    case "touch.csv": 
                        header = 
"ACTION_ID;PRESSURE;X;Y;SIZE;EVENT_TIME;SYSTEM_TIME;FRAGMENT_NAME"; 
                        break; 
                    case "touchNoScrollNoFling.csv": 
                        header = 
"ACTION_ID;PRESSURE;X;Y;SIZE;EVENT_TIME;SYSTEM_TIME;FRAGMENT_NAME"; 
                        break; 
                    default: 
                        break; 
                } 
                try { 
                    FileOutputStream outputStreamWriter = new 
FileOutputStream(file, true); 
                    PrintWriter bufferedWriter = new 
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PrintWriter(outputStreamWriter); 
 
                    bufferedWriter.println(header); 
                    bufferedWriter.flush(); 
                    bufferedWriter.close(); 
                    outputStreamWriter.close(); 
                } catch (Exception e) { 
                    Log.e("DAKOTA HEADER CREATION", e.getMessage()); 
                    e.printStackTrace(); 
                } 
            } 
        } 
    } 
 
    public static void writeToFile(String data, String fileName) { 
        AsyncTask asyncTask = new DakotaLogWriter(); 
        Log.w("DAKOTA WRITE TO FILE", "" + data + " ; " + fileName); 
        asyncTask.execute(data, fileName); 
    } 
 
    /* Checks if external storage is available to at least read */ 
    public boolean isExternalStorageReadable() { 
        String state = Environment.getExternalStorageState(); 
        return Environment.MEDIA_MOUNTED.equals(state) || 
                Environment.MEDIA_MOUNTED_READ_ONLY.equals(state); 
    } 
 
    public static class DakotaLogWriter extends AsyncTask<Object, Void, 
String> { 
 
        @Override 
        protected String doInBackground(Object... objects) { 
            try { 
                String data = (String) objects[0]; 
                String fileName = (String) objects[1]; 
 
                File file = new File(parentDirectory, fileName); 
                FileOutputStream outputStreamWriter = new 
FileOutputStream(file, true); 
                PrintWriter bufferedWriter = new 
PrintWriter(outputStreamWriter); 
 
                bufferedWriter.println(data); 
                bufferedWriter.flush(); 
                bufferedWriter.close(); 
                outputStreamWriter.close(); 
                return null; 
            } catch (FileNotFoundException e) { 
                Log.e("DAKOTA Exception", "File not found: " + e.toString()); 
                return null; 
            } catch (IOException e) { 
                Log.e("DAKOTA Exception", "File write failed: " + 
e.toString()); 
                return null; 
            } 
        } 
    } 
 
} 
  



  49 
 
 
 

  
 

Appendix D. Sensor Utility 

 

 
public class DakotaSensorUtil { 
    public static SensorManager sensorManager; 
    public static Sensor accSensor = null; 
    public static Sensor gyroscopeSensor = null; 
    public static Sensor magSensor = null; 
    public static SensorEventListener gyroscopeEventListener; 
    public static SensorEventListener accEventListener; 
    public static SensorEventListener magEventListener; 
    public static GestureDetector mGestureDetector; 
    public static boolean sensorListening = true; 
 
    public static void setupSensors(final Context context) { 
        sensorManager = (SensorManager) 
context.getSystemService(Context.SENSOR_SERVICE); 
        if (sensorManager != null) { 
            accSensor = 
sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER); 
            gyroscopeSensor = 
sensorManager.getDefaultSensor(Sensor.TYPE_GYROSCOPE); 
            magSensor = 
sensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD); 
        } else { 
            Toast.makeText(context, "Sensor manager is not available.", 
Toast.LENGTH_LONG).show(); 
        } 
 
        if (gyroscopeSensor == null) { 
            Toast.makeText(context, "This Device has no Gyroscope !", 
Toast.LENGTH_LONG).show(); 
        } else { 
            gyroscopeEventListener = new SensorEventListener() { 
                @Override 
                public void onSensorChanged(SensorEvent event) { 
                    String log = System.currentTimeMillis() + ";" + 
event.values[0] + ";" + event.values[1] + ";" + event.values[2] + ";" + 
(((BaseActivity) context).getCurrentPageFragment() != null ? ((BaseActivity) 
context).getCurrentPageFragment().getSimpleClassName() : "-"); 
 
                    DakotaLogUtil.writeToFile(log, "gyr.csv"); 
                } 
 
                @Override 
                public void onAccuracyChanged(Sensor sensor, int accuracy) { 
 
                } 
            }; 
        } 
 
        if (accSensor == null) { 
            Toast.makeText(context, "This Device has no Accelerometer !", 
Toast.LENGTH_LONG).show(); 
        } else { 
            accEventListener = new SensorEventListener() { 
                @Override 
                public void onSensorChanged(SensorEvent event) { 
                    String log = System.currentTimeMillis() + ";" + 
event.values[0] + ";" + event.values[1] + ";" + event.values[2] + ";" + 
(((BaseActivity) context).getCurrentPageFragment() != null ? ((BaseActivity) 
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context).getCurrentPageFragment().getSimpleClassName() : "-"); 
                    DakotaLogUtil.writeToFile(log, "acc.csv"); 
                } 
 
                @Override 
                public void onAccuracyChanged(Sensor sensor, int accuracy) { 
                } 
            }; 
        } 
 
        if (magSensor == null) { 
            Toast.makeText(context, "This Device has no Magnetometer !", 
Toast.LENGTH_LONG).show(); 
        } else { 
            magEventListener = new SensorEventListener() { 
                @Override 
                public void onSensorChanged(SensorEvent event) { 
                    String log = System.currentTimeMillis() + ";" + 
event.values[0] + ";" + event.values[1] + ";" + event.values[2] + ";" + 
(((BaseActivity) context).getCurrentPageFragment() != null ? ((BaseActivity) 
context).getCurrentPageFragment().getSimpleClassName() : "-"); 
                    DakotaLogUtil.writeToFile(log, "mag.csv"); 
                } 
 
                @Override 
                public void onAccuracyChanged(Sensor sensor, int accuracy) { 
                } 
            }; 
        } 
    } 
} 
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Appendix E. Gesture Listener 

 

 
public class DakotaGestureListener extends 
GestureDetector.SimpleOnGestureListener { 
    private static final int SLIDE_THRESHOLD = 100; 
 
 
    public static String currentGestureDetected; 
    public static List<String> fileNames = new ArrayList<>(); 
    public float x, y; 
 
    // Override s all the callback methods of 
GestureDetector.SimpleOnGestureListener 
    @Override 
    public boolean onSingleTapUp(MotionEvent ev) { 
        String s = "SINGLE_TAP_UP;" + ev.getPressure() + ";" + ev.getX() + ";" 
+ ev.getY() + ";" + ev.getSize() + ";" + ev.getDownTime() + ";" + 
System.currentTimeMillis(); 
        currentGestureDetected = s; 
        fileNames.clear(); 
        fileNames.add("singleTapUp.csv"); 
        fileNames.add("touchNoScrollNoFling.csv"); 
        Log.e("Logger - onSingleTapUp", s); 
        return true; 
    } 
 
    @Override 
    public void onShowPress(MotionEvent ev) { 
        String s = "SHOW_PRESS;" + ev.getPressure() + ";" + ev.getX() + ";" + 
ev.getY() + ";" + ev.getSize() + " ;" + ev.getDownTime() + ";" + 
System.currentTimeMillis(); 
        currentGestureDetected = s; 
        fileNames.clear(); 
        fileNames.add("showPress.csv"); 
        fileNames.add("touchNoScrollNoFling.csv"); 
        Log.e("Logger - onShowPress", s); 
 
 
    } 
 
    @Override 
    public void onLongPress(MotionEvent ev) { 
        String s = "LONG_PRESS;" + ev.getPressure() + ";" + ev.getX() + ";" + 
ev.getY() + ";" + ev.getSize() + ";" + ev.getDownTime() + ";" + 
System.currentTimeMillis(); 
        currentGestureDetected = s; 
        fileNames.clear(); 
        fileNames.add("longPress.csv"); 
        fileNames.add("touchNoScrollNoFling.csv"); 
        Log.e("Logger - onLongPress", s); 
 
    } 
 
    @Override 
    public boolean onScroll(MotionEvent e1, MotionEvent e2, float distanceX, 
float distanceY) { 
 
        double distance = Math.sqrt(Math.abs(distanceX * distanceX - distanceY 
* distanceY)); 
        Log.e("Logger - DISTANCE -----", "" + distance); 



  52 
 
 
 

  
 

 
        String eventID = String.valueOf(e1.getDownTime()); // Event ID 
 
        String beginTime = String.valueOf(e1.getDownTime()); // first down 
time 
        String startX = String.valueOf(e1.getX()); 
        String startY = String.valueOf(e1.getY()); 
        String startPressure = String.valueOf(e1.getPressure()); 
        String startSize = String.valueOf(e1.getSize()); 
 
        String eventTime = String.valueOf(e2.getEventTime()); // time btw 
events 
        String currentX = String.valueOf(e2.getX()); 
        String currentY = String.valueOf(e2.getY()); 
        String currentPressure = String.valueOf(e2.getPressure()); 
        String currentSize = String.valueOf(e2.getSize()); 
        String systemTime = String.valueOf(System.currentTimeMillis()); // 
system time 
        String distX = String.valueOf(distanceX); 
        String distY = String.valueOf(distanceY); 
 
        String s = eventID + ";" + 
                beginTime + ";" + 
                startX + ";" + 
                startY + ";" + 
                startPressure + ";" + 
                startSize  + ";" + 
                eventTime  + ";" + 
                currentX  + ";" + 
                currentY  + ";" + 
                currentPressure  + ";" + 
                currentSize + ";" + 
                systemTime + ";" + 
                distX + ";" + 
                distY; 
 
        try { 
            float deltaY = e2.getY() - e1.getY(); 
            float deltaX = e2.getX() - e1.getX(); 
            String temp = ""; 
 
            if (Math.abs(deltaX) > Math.abs(deltaY)) { 
                if (Math.abs(deltaX) > SLIDE_THRESHOLD) { 
                    if (deltaX > 0) { 
                        // the user made a sliding right gesture 
                        temp += ";RIGHT"; 
                    } else { 
                        // the user made a sliding left gesture 
                        temp += ";LEFT"; 
                    } 
                } 
            } else { 
                if (Math.abs(deltaY) > SLIDE_THRESHOLD) { 
                    if (deltaY > 0) { 
                        // the user made a sliding down gesture 
                        temp += ";DOWN"; 
                    } else { 
                        // the user made a sliding up gesture 
                        temp += ";UP"; 
                    } 
                } 
            } 
            if ("".equals(temp.trim())) { 
                temp = ";-"; 
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            } 
            s += temp; 
        } catch (Exception exception) { 
            Log.e("ERR", exception.getMessage()); 
        } 
 
        currentGestureDetected = s; 
        fileNames.clear(); 
        fileNames.add("scroll.csv"); 
        Log.e("Logger - onScroll", s); 
        return true; 
    } 
 
    @Override 
    public boolean onDown(MotionEvent ev) { 
        String s = "DOWN;" + ev.getPressure() + ";" + ev.getX() + ";" + 
ev.getY() + ";" + ev.getSize() + ";" + ev.getDownTime() + ";" + 
System.currentTimeMillis(); 
        currentGestureDetected = s; 
        fileNames.clear(); 
        fileNames.add("down.csv"); 
        fileNames.add("touchNoScrollNoFling.csv"); 
        Log.e("Logger - onDown", s); 
        return true; 
    } 
 
    @Override 
    public boolean onDoubleTap(MotionEvent ev) { 
        String s = "DOUBLE_TAP;" + ev.getPressure() + ";" + ev.getX() + ";" + 
ev.getY() + ";" + ev.getSize() + ";" + ev.getDownTime() + ";" + 
System.currentTimeMillis(); 
        currentGestureDetected = s; 
        fileNames.clear(); 
        fileNames.add("doubleTap.csv"); 
        fileNames.add("touchNoScrollNoFling.csv"); 
        Log.e("Logger - onDoubleTap", "DOUBLE TAP"); 
 
        return true; 
    } 
 
    @Override 
    public boolean onFling(MotionEvent e1, MotionEvent e2, float velocityX, 
float velocityY) { 
 
        String s = "FLING;" + e2.getPressure() + ";" + e2.getX() + ";" + 
e2.getY() + ";" + e2.getSize() + ";" + velocityX + ";" + velocityY + ";" + 
e1.getAction() + ";" + e1.getDownTime() + ";" + System.currentTimeMillis() + 
";" + e2.getAction() + ";" + e2.getDownTime() + ";" + 
System.currentTimeMillis(); 
        currentGestureDetected = s; 
        fileNames.clear(); 
        fileNames.add("fling.csv"); 
        Log.e("Logger - onFling", s); 
 
        return true; 
    } 
} 
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Appendix F. Feature Extraction in Python 

 

 
#!/usr/bin/env python 
# coding: utf-8 
 
#from pathlib import Path 
from scipy import signal 
import pandas as pd 
import glob 
import re 
import os 
import numpy as np 
 
 
def circ_r(vals, axis=0): 
    alpha = np.array(vals, dtype='f8') 
    # sum of cos & sin angles 
    t = np.exp(1j * alpha) 
    r = np.sum(t, axis=axis) 
    # obtain length 
    r = np.abs(r) / alpha.shape[axis] 
    return r 
 
 
def circ_mean(vals): 
    x = np.sum(np.cos(vals)) 
    y = np.sum(np.sin(vals)) 
    return np.arctan2(y, x) 
 
 
current_dir = os.getcwd() 
data_dir = current_dir + '\\Data\\' 
print("Current Data Dir: ", data_dir) 
 
sessions = glob.glob(data_dir + "\\*\\") 
print("Sessions", sessions) 
 
for tl in sessions: 
    print("Session --> ", tl) 
    userid = int(re.search(r"\\(\d*)\\$", tl).group(1)) 
    print("User: ", userid) 
    for sf in glob.glob(data_dir + "{}\\*\\".format(userid)): 
        print("Calculating: {}".format(sf)) 
        try: 
            exists = os.path.isfile("{}features ".format(sf)) 
 
            if exists: 
                print('Feature file is already calculated.\n') 
                continue 
 
            scroll_exists = os.path.isfile("{}scroll.csv".format(sf)) 
 
            if not scroll_exists: 
                print('No scroll file.\n') 
                continue 
 
            accelerometer_df = pd.read_csv( 
                '{}acc.csv'.format(sf), 
                delimiter=';', 
                header=0, 
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                names=['SYSTEM_TIME', 'X_acc', 'Y_acc', 'Z_acc', 
'FRAGMENT_NAME_acc'] 
            ) 
            accelerometer_df = accelerometer_df.sort_values('SYSTEM_TIME') 
             
            gyroscope_df = pd.read_csv( 
                '{}gyr.csv'.format(sf), 
                delimiter=';', 
                header=0, 
                names=['SYSTEM_TIME', 'X_gyr', 'Y_gyr', 'Z_gyr', 
'FRAGMENT_NAME_gyr'] 
            ) 
            gyroscope_df = gyroscope_df.sort_values('SYSTEM_TIME') 
             
            magnetometer_df = pd.read_csv( 
                '{}mag.csv'.format(sf), 
                delimiter=';', 
                header=0, 
                names=['SYSTEM_TIME', 'X_mag', 'Y_mag', 'Z_mag', 
'FRAGMENT_NAME_mag'] 
            ) 
            magnetometer_df = magnetometer_df.sort_values('SYSTEM_TIME') 
             
            scroll_df = pd.read_csv( 
                '{}scroll.csv'.format(sf), 
                delimiter=';', 
                header=0, 
                names=[ 
                        'EVENT_ID', 
                        'BEGIN_TIME', 
                        'START_X', 
                        'START_Y', 
                        'START_PRESSURE', 
                        'START_SIZE', 
                        'EVENT_TIME', 
                        'CURRENT_X', 
                        'CURRENT_Y', 
                        'CURRENT_PRESSURE', 
                        'CURRENT_SIZE', 
                        'SYSTEM_TIME', 
                        'DISTANCE_X', 
                        'DISTANCE_Y', 
                        'DIRECTION', 
                        'FRAGMENT_NAME' 
                ] 
            ) 
             
            scroll_df = scroll_df.sort_values('SYSTEM_TIME') 
 
            if scroll_df.shape[0] == 0: 
                print('Scroll file has no data.\n') 
                continue 
            if scroll_df['EVENT_ID'][0] == -1: 
                print('Scroll file has -1 data.\n') 
                continue 
             
            sensor_merged = pd.merge_asof(accelerometer_df, magnetometer_df, 
on='SYSTEM_TIME', direction='forward') 
            sensor_merged = pd.merge_asof(sensor_merged, gyroscope_df, 
on='SYSTEM_TIME', direction='forward') 
 
            del sensor_merged['FRAGMENT_NAME_acc'] 
            del sensor_merged['FRAGMENT_NAME_gyr'] 
            del sensor_merged['FRAGMENT_NAME_mag'] 
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            sensor_merged = sensor_merged.sort_values('SYSTEM_TIME') 
 
            merged = pd.merge_asof(scroll_df, sensor_merged, on='SYSTEM_TIME', 
direction='forward') 
 
            merged['SYSTEM_TIME'] = merged['SYSTEM_TIME'].astype(float) 
 
            # Scroll features 
 
            merged['xDisplacement'] = signal.lfilter([1, -1], 1, 
merged['CURRENT_X']) 
            merged['xDisplacement'] = np.where(merged['xDisplacement'] >= 100, 
0, merged['xDisplacement']) 
            merged['yDisplacement'] = signal.lfilter([1, -1], 1, 
merged['CURRENT_Y']) 
            merged['yDisplacement'] = np.where(merged['yDisplacement'] >= 100, 
0, merged['yDisplacement']) 
            merged['pairwiseTimeDiff'] = signal.lfilter([1, -1], 1, 
merged['SYSTEM_TIME']) 
            merged['pairwiseTimeDiff'] = np.where(merged['pairwiseTimeDiff'] 
>= 100, 1, merged['pairwiseTimeDiff']) 
            merged['pairwiseAngle'] = np.arctan2(merged['yDisplacement'], 
merged['xDisplacement']) 
            merged['pairwiseDisplacement'] = 
np.sqrt(pow(merged['xDisplacement'], 2) + pow(merged['yDisplacement'], 2)) 
            merged['V'] = merged['pairwiseDisplacement'] / 
merged['pairwiseTimeDiff'] 
            merged['A'] = signal.lfilter([1, -1], 1, merged['V']) / 
merged['pairwiseTimeDiff'] 
 
            # Scroll Features end 
 
            # Sensor Features 
 
            merged['Acc_Mag'] = np.sqrt(merged['X_acc'] ** 2 + merged['Y_acc'] 
** 2 + merged['Z_acc'] ** 2) 
            merged['Gyr_Mag'] = np.sqrt(merged['X_gyr'] ** 2 + merged['Y_gyr'] 
** 2 + merged['Z_gyr'] ** 2) 
            merged['Mag_Mag'] = np.sqrt(merged['X_mag'] ** 2 + merged['Y_mag'] 
** 2 + merged['Z_mag'] ** 2) 
 
            aggs = merged.groupby('EVENT_ID').agg({ 
                'X_acc': ['mean', 'std', 'median'], 
                'Y_acc': ['mean', 'std', 'median'], 
                'Z_acc': ['mean', 'std', 'median'], 
                'X_mag': ['mean', 'std', 'median'], 
                'Y_mag': ['mean', 'std', 'median'], 
                'Z_mag': ['mean', 'std', 'median'], 
                'X_gyr': ['mean', 'std', 'median'], 
                'Y_gyr': ['mean', 'std', 'median'], 
                'Z_gyr': ['mean', 'std', 'median'], 
                'Acc_Mag': ['mean', 'std', 'median'], 
                'Gyr_Mag': ['mean', 'std', 'median'], 
                'Mag_Mag': ['mean', 'std', 'median'], 
                'START_X': 'first', 
                'CURRENT_X': ['last', 
                            ('maxdev', lambda x: (x - x.mean()).max()), 
                            ('dev20', lambda x: (x - 
x.mean()).quantile(0.20)), 
                            ('dev50', lambda x: (x - 
x.mean()).quantile(0.50)), 
                            ('dev80', lambda x: (x - 
x.mean()).quantile(0.80))], 
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                'START_Y': 'first', 
                'CURRENT_Y': ['last', 
                            ('maxdev', lambda x: (x - x.mean()).max()), 
                            ('dev20', lambda x: (x - 
x.mean()).quantile(0.20)), 
                            ('dev50', lambda x: (x - 
x.mean()).quantile(0.50)), 
                            ('dev80', lambda x: (x - 
x.mean()).quantile(0.80))], 
                'V': [('pairwise20', lambda x: x.quantile(0.20)), 
                    ('pairwise50', lambda x: x.quantile(0.50)), 
                    ('pairwise80', lambda x: x.quantile(0.80)), 
                    ('medianVelocityLastThree', lambda x: 
np.median(x.tail(3)))], 
                'A': [('pairwise20', lambda x: x.quantile(0.20)), 
                    ('pairwise50', lambda x: x.quantile(0.50)), 
                    ('pairwise80', lambda x: x.quantile(0.80)), 
                    ('averageAccFirstFive', 
                    lambda x: np.median(x.head(5)) if x.size >= 5 else 
np.median(x))], 
                'pairwiseDisplacement': [('lengthOfTrajectory', 'sum')], 
                'SYSTEM_TIME': ['first', 'last'], 
                'CURRENT_PRESSURE': 'median', 
                'CURRENT_SIZE': 'median', 
            }) 
 
            aggs = aggs.fillna(0) 
 
            aggs['distance'] = np.sqrt( 
                pow(aggs['CURRENT_X']['last'] - aggs['START_X']['first'], 2) + 
                pow(aggs['CURRENT_Y']['last'] - aggs['START_Y']['first'], 2) 
            ) 
            aggs['directionOfEndtoEnfLine'] = 
np.arctan2((aggs['CURRENT_X']['last'] - aggs['START_X']['first']), 
                                                        
(aggs['CURRENT_Y']['last'] - aggs['START_Y']['first'])) 
             
            #division by 0 (= inf) case eliminated 
            #aggs['ratio'] = aggs['distance'] / 
aggs['pairwiseDisplacement']['lengthOfTrajectory'] 
            aggs = 
aggs.assign(ratio=np.where(aggs['pairwiseDisplacement']['lengthOfTrajectory'] 
!= 0, aggs['distance'] / aggs['pairwiseDisplacement']['lengthOfTrajectory'], 
0)) 
             
            aggs['duration'] = aggs['SYSTEM_TIME']['last'] - 
aggs['SYSTEM_TIME']['first'] 
             
            #division by 0 (= inf) case eliminated 
            #aggs['averageVelocity'] = 
aggs['pairwiseDisplacement']['lengthOfTrajectory'] / aggs['duration'] 
            aggs = aggs.assign(averageVelocity=np.where(aggs['duration'] != 0, 
aggs['pairwiseDisplacement']['lengthOfTrajectory'] / aggs['duration'], 0)) 
             
            aggs['MeanResultantLength'] = circ_r(merged['pairwiseAngle']) 
            aggs['AverageDirectionEnsemble'] = 
circ_mean(merged['pairwiseAngle']) 
 
            del aggs['SYSTEM_TIME'] 
 
            flatten_df = pd.DataFrame() 
 
            for i, index0 in enumerate(aggs.keys().get_level_values(0)): 
                if aggs.keys().get_level_values(1)[i] != '': 
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                    flatten_df[index0 + '_' + 
aggs.keys().get_level_values(1)[i]] = aggs[index0][ 
                        aggs.keys().get_level_values(1)[i]] 
                else: 
                    flatten_df[index0] = aggs[index0] 
             
            flatten_df['LABEL'] = "user"# + str(userid) 
 
            flatten_df.to_csv("{}features.csv".format(sf), index=False) 
            print('Done: ' + "{}features.csv".format(sf)) 
        except IndexError as e: 
            print(e) 
        except Exception as e: 
            print(e) 
#""" 
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Appendix G. Feature Merger in Python 

 

 
#!/usr/bin/env python 
# coding: utf-8 
 
import pandas as pd 
import glob 
import re 
import os 
 
current_dir = os.getcwd() 
data_dir = current_dir + '\\Data\\' 
print("Current Data Dir: ", data_dir) 
 
sessions = glob.glob(data_dir + "\\*\\") 
print("Sessions", sessions) 
 
for tl in sessions: 
  try:     
    print("Session --> ", tl) 
    userid = int(re.search(r"\\(\d*)\\$", tl).group(1)) 
    print("User: ", userid) 
     
    sf in glob.glob(data_dir + "{}\\*\\".format(userid)) 
 
    files = glob.glob("{}\\*\\features.csv".format(tl)) 
    df = pd.concat((pd.read_csv(f) for f in files)) 
    output = "{}\\merged_features_{}.csv".format(data_dir, userid) 
    print("writing to: {}merged_features_{}.csv".format(data_dir, userid)) 
    df.to_csv(output, index=False) 
    print('done') 
    print() 
  except Exception as e: 
    print(e) 
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Appendix H. Feature of Other Users Merger in Python 

 

 
#!/usr/bin/env python 
# coding: utf-8 
 
import pandas as pd 
import glob 
import re 
import os 
 
current_dir = os.getcwd() 
data_dir = current_dir + '\\Data\\' 
print("Current Data Dir: ", data_dir) 
 
sessions = glob.glob(data_dir + "\\*\\") 
print("Sessions", sessions) 
 
for tl in sessions: 
  try:     
    print("Session --> ", tl) 
    userid = int(re.search(r"\\(\d*)\\$", tl).group(1)) 
    print("User: ", userid) 
     
    sf in glob.glob(data_dir + "{}\\*\\".format(userid)) 
 
    files = glob.glob("{}\\*\\features.csv".format(tl)) 
    df = pd.concat((pd.read_csv(f) for f in files)) 
     
    for user_folder in sessions: 
        user_folder_id = int(re.search(r"\\(\d*)\\$", user_folder).group(1)) 
        if userid != user_folder_id: 
            output = "{}\\merged_features_others_{}.csv".format(data_dir, 
user_folder_id) 
            print("writing to: 
{}merged_features_others_{}.csv".format(data_dir, user_folder_id)) 
             
            #df['LABEL'] = "others" 
             
            exists = os.path.isfile(output) 
 
            if exists: 
                df.to_csv(output, mode='a', index=False, header=False) 
            else: 
                df.to_csv(output, index=False) 
                 
            print('done') 
            print() 
             
             
  except Exception as e: 
    print(e) 
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Appendix I. Feature of All Users Merger in Python 

 

 
#!/usr/bin/env python 
# coding: utf-8 
 
import pandas as pd 
import glob 
import re 
import os 
 
current_dir = os.getcwd() 
data_dir = current_dir + '\\Data\\' 
print("Current Data Dir: ", data_dir) 
 
sessions = glob.glob(data_dir + "\\*\\") 
print("Sessions", sessions) 
 
for tl in sessions: 
  try:     
    print("Session --> ", tl) 
    userid = int(re.search(r"\\(\d*)\\$", tl).group(1)) 
    print("User: ", userid) 
     
    sf in glob.glob(data_dir + "{}\\*\\".format(userid)) 
 
    files = glob.glob("{}\\*\\features.csv".format(tl)) 
    df = pd.concat((pd.read_csv(f) for f in files)) 
     
    output = "{}\\merged_features_all.csv".format(data_dir) 
    print("writing to: {}merged_features_all.csv".format(data_dir)) 
     
    exists = os.path.isfile(output) 
 
    if exists: 
        df.to_csv(output, mode='a', index=False, header=False) 
    else: 
        df.to_csv(output, index=False) 
         
    print('done') 
    print()        
             
  except Exception as e: 
    print(e) 
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