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In LTE/5G systems, the random access channel (RACH) process occurs during

the boot-up phase. As channel state information is not available at this stage,

detecting several devices with high performance presents a challenging problem.

In particular, servicing many devices simultaneously can get di�cult when a large

number of user equipment and machines exist in the network. The problem can

become more dramatic as the number of user equipment increases around the

world. In the literature, power delay profile (PDP) is proposed as a decision

metric for this problem. The use of this metric handles many cases with satis-

factory performance and low complexity; however, it does not lead to optimal

detection performance. In this thesis, we address this issue with a generalized

likelihood ratio test (GLRT) based approach and propose detectors with high

detection performance. We also derive an ideal detector that provides an upper

bound on the detection probability. Via extensive RACH simulations, it is shown

that improvements in detection performance can be achieved by the proposed

approach in various scenarios.

Keywords: 5G, detection, GLRT, RACH, Zado↵-Chu sequence.
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ÖZET

5G’DE FİZİKSEL RASTGELE ERİŞİM KANAL
SİNYALLERİ İÇİN BÖLGE BAZLI GLRT

Feridun Tütüncüoğlu

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Danışmanı: Orhan Arıkan

İkinci Tez Danışmanı: Sinan Gezici

Aralık 2019

LTE/5G sistemlerinde rastgele erişim kanalı (RACH) prosesi, kullanıcı ekip-

manının ilk açılma fazında gerçekleşir. Bu aşamada kanal durum bilgisi mev-

cut olmadığından, birden fazla cihazı yüksek performansla tespit etmek zor

bir problem haline gelmektedir. Özellikle şebekede fazla sayıda kullanıcı ekip-

manı ve makine bulunduğunda, çok sayıda cihaza aynı anda servis sağlamak

zorlaşabilmektedir. Bu problem, dünya çapındaki kullanıcı ekipmanı arttıkça

daha da çarpıcı hale gelmektedir. Literatürde bu problem için güç gecikme pro-

fili (PDP), bir karar metriği olarak önerilmektedir. Bu metriğin kullanılması

birçok durumda memnun edici performans ve düşük karmaşıklık sağlamakta

fakat optimal sezim performansına ulaştırmamaktadır. Tezde bu hususu,

genelleştirilmiş olasılık oranı testi (GLRT) tabanlı bir yaklaşım ile çözmekte ve

yüksek sezim performansına sahip seziciler önermekteyiz. Ayrıca sezim olasılığına

üst sınır sağlayan bir ideal sezici çıkarmaktayız. Detaylı RACH benzetimleri

yoluyla, önerilen yaklaşımla sezim performansında çeşitli senaryolarda elde edilen

gelişimler gösterilmektedir.

Anahtar sözcükler : 5G, sezim, GLRT, RACH, Zaddo↵-Chu dizisi.
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Chapter 1

Introduction

1.1 Evolution of Mobile Communication

Mobile communication has made a tremendous progress in last a few decades.

This type of communication presents many challenges such as undesirable channel

conditions, high data rate and low latency requirements and, most importantly re-

quirements for high user capacity per cell to optimize installation cost of internet

service providers and user capacity [2], [3]. As can be deduced from the naming

strategy, the mobile communication generations started from the first generation

(1G) and evolved to 4G or LTE (Long Term Evolution). When standardization

institutions standardized 4G, it was known that this would be a long developing

process. Therefore, the early stages of 4G are also known as LTE. Every progress

made for mobile communication has been included through releases published by

3GPP (Third Generation Partnership Project) [4]. In every release, new stan-

dards come or new procedures and methods might be proposed and standardized

for mobile communication. In the last several years, 5G has started to be the

focus point of research since most of the 4G requirements are met currently. 5G

is also called as new radio (NR). The reason behind is that 5G has many di↵erent

aspects compared to the previous mobile communication generations. The most

important and intriguing aspects of NR are given as follows:
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• Improved security in the wireless network

• Lower battery consumption and ability to support green mobile communi-

cation networks

• Up to 1 Gbps downlink data rate

• Beam-forming and massive MIMO applications

• Enhanced IoT support

• Very low latency requirements to support autonomous cars, and smart fac-

tories

• High spectral e�ciency

• Improved cell edge coverage

More information and aspects of 5G can be found in the following resources

[5], [6], [7], [8], [9].

1.2 Uplink Synchronization in 5G

1.2.1 Problem Definition

This thesis mainly addresses detector performance problems encountered in 5G

during the uplink synchronization process. Synchronization signals are important

part of a mobile communication process. In 5G, this type of signals are proposed

and improved extensively to be able to cope with high latency and user capacity

problems under channel fading, noise and interference stemming from other cells

(See Chapter 2). When a user equipment (UE) boots itself up, it first tries

to detect a surrounding base station and communicate with it for reporting its

existence to the cell. Firstly this process starts with cell id identification and

downlink synchronization signals. The main reason that the hand-shaking process
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starts with downlink synchronization is that a base station can provide high

transmit powers, hence it is fairly easier than the uplink synchronization process.

Due to the challenging procedure requirements of the uplink process, some signal

values should be known by UEs prior to uplink synchronization. These values are

obtained via downlink processes [1], [10]. Usually, higher signal-to-noise ratios

(SNRs) exist for the downlink case. However, in the uplink case, the antenna

draws current from the cell phone battery, therefore it cannot use high output

powers for synchronization signal transmission. Overall, SNRs for uplink cases

are quite low compared to downlink cases.

Aforementioned challenges make the uplink synchronization process quite

challenging. Without uplink synchronization, uplink data transfer cannot be

successfully performed and more importantly, UE cannot be detected in the cell.

Therefore, in 5G as well as in 4G, the uplink synchronization process aims to

detect user equipment in the cell, and then determine possible time misalignment

to completely match user equipment time schedule to base station’s schedule [1],

[10], [11]. Without this process, interference can occur and create destructive

e↵ects for data communication. Figure 1.1 shows possible interference scenarios

[1]. It is noted that when there is no time alignment, UL (uplink) transmission and

DL (downlink) reception occur at the same time in the user equipment. Therefore,

it creates interference. Similarly, when there is uplink synchronization, reception

of all UEs’ uplink signal and transmission at the base station occurs at the same

time. Additionally, in 5G as well as LTE, uplink orthogonality is maintained

by ensuring that the transmissions from di↵erent UEs in a cell are time-aligned

at the receiver of the base station. This avoids intra-cell interference occurring

both among UEs assigned to transmit in consecutive subframes and among UEs

transmitting on adjacent subcarriers [1].

Due to the preceding reasons, uplink synchronization and time alignment are

crucial and very challenging problems. Based on an extensive literature search,

it is noted that robust and easy to implement detectors are not available for the

uplink synchronization process in 5G. It is also observed that the conventional

detector does not use all the information available in the received signal, leading

to a sub-optimal detection scheme (See Chapter 3). Based on these observations,

3



(a) without uplink synchronization (b) with uplink synchronization

Figure 1.1: Time alignment of uplink transmission [1].

this thesis aims to propose an improved detection approach that can outperform

the conventional detector for the uplink process. By enhancing the robustness

and performance, more UEs can be detected in the cell with reduced latency

and interference. There is also another criterion for the proposed detector, since

uplink synchronization is performed in the UE; namely, the power consumption

of the detector is supposed to be as low as possible with the highest performance

in order to meet the green 5G communication requirements mentioned in [8]. In

addition, there are not any upper bounds on the detection performance related

to uplink synchronization in the literature. In this thesis, such an upper bound is

derived, which can be used to evaluate the performance of the conventional and

proposed detectors.

1.2.2 Literature Review and Introduction to RACH Pro-

cess

As the RACH process is an uplink process that occurs during initial access,

SNRs are usually low and there is no channel state information (CSI) available

at the receiver. Therefore, the RACH process is one of the most challenging and
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complicated hand-shaking processes in LTE/5G as mentioned earlier. The RACH

process starts when a UE boots up, or when a UE enters a new eNodeB radius.

This process basically indicates which and how many UEs are inside the network

and how far they operate from eNodeB [11]. As the uplink synchronization is

performed by the RACH process, this hand-shaking process must be performed

initially before sending any uplink information in the control channel.

In the physical layer, physical random access channel (PRACH) signals are cre-

ated using Zaddo↵-Chu (ZC) sequences which guarantee the ideal auto-correlation

(zero cyclic auto-correlation) property among the ZC signals with the same root.

Based on this property, we can detect the signals with the same root in the radius

while rejecting the signals with di↵erent roots (i.e., those coming from other eN-

odeB zones). In 5G/LTE, 64 di↵erent preambles are defined for each format type

[12]. Therefore, one eNodeB can serve only 64 di↵erent UEs at the same time.

As a property of ZC sequences, the auto-correlation function shifts the peak that

comes from the same root sequence by the amount of delay due to the distance of

the UE from the cell center and, in addition, by the shift amount that is specified

by the preamble index [13]. In order to detect and separate PRACH signals, all

64 preambles are cyclically shifted versions of each other. This is how a detector

can detect and serve more than one signal by dividing the auto-correlation signal

into 64 zones [1].

Normally, in the RACH process, it is expected to observe one peak in each zone

of the auto-correlation signal. In 5G, the RACH process is not designed to serve

multiple UEs with the same Cell Radio Network Temporary Identifier (C-RNTI).

The case in which only one signal is detected in the zone is called the contention

free resolution. However, there may be some cases in which multiple UEs ran-

domly choose the same preamble index. This case is called contention based

detection which is solved via a 4-step contention resolution method [11]. Due to

the fact that distinguishing these two cases are hard to model, the conventional

detector uses the same decision metric for contention free and contention based

detection. That decision metric is the power delay profile (PDP) or equivalently,

the energy of the signal. The main advantage of this metric is its low compu-

tational complexity. The conventional detector type uses a PDP based intuitive
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solution for detecting PRACH signals [1]. There are also other types of detectors

proposed in the literature. One of them is the forward consecutive mean excision

(FCME) algorithm proposed in [14]. Similar to the conventional detector, FCME

uses PDP; however, it performs an iterative technique to improve detection per-

formance. The detector in [15] performs an iterative preamble reconstruction

with interference cancellation. This method basically extracts signals with unde-

sired roots by trial and error and minimizes the mean squared error (MSE) for

the reference signal.

In this thesis, we investigate PRACH signal detection by modeling it as a bi-

nary hypothesis testing problem. Based on the hypothesis testing formulation,

we propose a detector that employs zone based generalized likelihood ratio test

(Z-GLRT) instead of point by point binary hypothesis testing, which is used in

the conventional approach. The proposed detector is initially derived under the

assumption that there can exist at most one PRACH signal in each zone. Also,

a low-complexity version of the proposed detector is derived for practical imple-

mentations. In addition, the case with multiple PRACH signals in each zone is

considered and the extension of the proposed detector is discussed. Moreover, we

derive an ideal detector that provides an upper bound on detection performance,

which can be used to evaluate performance of practical detection algorithms. Via

extensive simulations, it is observed that the proposed approach outperforms the

conventional detector in practical scenarios.

The remainder of the thesis is organized as follows: PRACH signal generation

is explained in Chapter 2, and the conventional detector is discussed in Chapter

3. The proposed detectors, as well as an upper bound, are derived in Chapter

4. In Chapter 5, simulation results are presented, followed by the concluding

remarks and future works in Chapter 6.
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Chapter 2

PRACH Signal Generation

In this chapter, the PRACH signal generation is discussed. PRACH signals are

determined as Zaddo↵-Chu (ZC) sequences in 5G/LTE [12], [1]. The ZC sequence

equation is as follows:

xu(n) = e
�j

⇡un(n+1)
NZC , 0  n  NZC � 1 (2.1)

where n is the index, u is the root parameter, and NZC is the signal length.

The reason for the selection of this sequence type is that the ZC sequences have a

constant amplitude and the zero correlation property [16]. Namely, for all possible

sequences, the signal power is one and the correlation of the same root has zero

amplitude except for the location of the peak. The auto-correlation function of

ZC sequences is given by

cuu =
NZC�1X

n=0

au(n)a
⇤

u
(n+ ⌧ + Cl) = �(⌧ + Cl) (2.2)

where Cl is the cyclic shift amount and ⌧ is the amount of delay that can be

nonzero depending on the channel delay or UE’s position. All values in (2.2) are

zero except for the place at which the peak occurs as shown in Figure 2.1. In gen-

eral, the position of the peak can be anywhere depending on channel/propagation

delays. Additionally, the position of the peak informs the UE about how much

delay occurs in the medium so that it can adjust itself accordingly. The peak
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Figure 2.1: Correlation signal with one peak in the zone under no noise and
channel delay.

at Cl occurs only when the ZC sequence is correlated with another ZC sequence

with the same root. (The peak in the signal occurs at index Cl provided that

there is no delay from the channel or due to UE’s position.) If two ZC sequences

have di↵erent roots, then their cross-correlation function has a constant value of

1/
p
NZC, which gets closer to zero as the ZC signal gets longer [17], [18], [19],

[20].

In order to assign an identity to each UE in 5G/LTE, the Cl parameter is used

along with a parameter called the zero correlation zone, NCS. The NCS parameter

separates each signal into 64 zones. Therefore, eNodeB can di↵erentiate a UE

from another UE as the preamble index (which contains a predetermined cyclic

shift amount) is di↵erent for each of them. The formulation of Cl is given as

follows:

Cl = lNCS , l = 0, 1, . . . ,

�
NZC

NCS

⌫
� 1 (2.3)

where NCS value is di↵erent for all cells depending on the cell size [21]. In larger

cells, as the user position can be far from the center, a larger delay can occur

in the received signal; hence, a larger NCS is required. However, a larger NCS
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decreases the zone number for one root sequence, thus, in that case, multiple

rooted ZC sequences are used to obtain the preamble number of 64 [12].

In 5G standards in [12], two di↵erent ZC sequence lengths are accepted, which

correspond to long and short preambles. The long preamble has a signal length

of 839 while the short preamble has a length of 139. Therefore, if we have 64

di↵erent zones and if we use long preambles by using one root sequence, then we

need to have a maximum value of 13 as the length of the zero correlation zone

since b
839
64 c = 13. The decision of choosing long or short preambles depends on

the cell radius. If the cell radius is large (small), then long (short) preambles are

chosen.

In order to detect PRACH signals, all detector types should have a threshold

value to compare the noise only hypothesis (H0) against the signal plus noise

hypothesis (H1). Normally, in 5G/LTE, only one signal is expected in each zone

for a rapid synchronization process. If a single PRACH signal is detected in

a zone, then gNodeB chooses H1 and responds to this with an ID and follow-

up data. On the contrary, suppose that there exist more than one UEs in a

zone. Then, three case can occur. First, none of the UEs receives or detects

the gNodeB message. Then, all UEs again search for gNodeB by increasing the

power of the transmitted PRACH signal. Second, only one of the UEs receives

the response message (random access response (RAR)), and the rest repeat the

PRACH signal with more power. Lastly, more than one UEs get the response and

the UE that detects its own identity in the response, transmits another response

(HARQ feedback) indicating that it has detected and understood the response

from the network. With the help of this signal, other UEs understand that there

was a collision. As a result, they do not respond and start the RACH process all

over again [11], [22], [23]. This type of resolution of PRACH signals is called the

contention based resolution, which is followed by a 4-step resolution procedure.

This case, as expected, increases the latency. (There are some proposals about a

2-step RACH approach that reduces all of the back and forth response signaling by

employing only two-step signaling for both contention resolution and contention

free RACH process [24], [25].)
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Chapter 3

Conventional Detector

It is complex to handle the contention based and contention free resolutions via

(near) optimal detectors. Therefore, the conventional detector uses signal energy

or PDP to decide whether there exists a peak or not. The correlation operation

and PDP can be expressed as follows:

ri =
NZC�1X

n=0

y(n)x⇤((n+ i)NZC ) (3.1)

PDP (i) = |ri|
2

H1

?
H0

Tcon (3.2)

where ri is the correlation signal, y is the received signal, x is the reference

preamble, and Tcon is the threshold for the conventional detector. Namely, the

energy of the correlation signal is compared against a threshold to determine

the absence (H0) or presence (H1) of a peak (user) at a given index i, where

i 2 {0, 1, . . . , NZC � 1}.

In [1], the threshold setting is performed by sending no signals (i.e., noise only)

to the detector and determining the noise floor and the threshold for a desired

value for the false alarm probability, Pfa. This process is commonly implemented

o✏ine. Another method for threshold setting is to use of the sample variance of

the received signal, which is also an o✏ine process. The formulation for setting

10



the threshold via this method is given by

Tcon =
✏

(NZC � 1)

NZC�1X

n=0

|y(n)|2 (3.3)

where ✏ is a constant number that is found by Monte Carlo trials. Parameter

✏ is used to adjust the threshold value corresponding to a desired Pfa under a

given SNR value so that Pfa can be kept at similar levels for di↵erent SNRs.

The main drawback of this method is that in the received signal, there may

be multiple PRACH signals in addition to noise. Therefore, in crowded cells,

the variance level, hence Tcon, can increase, which can result in dramatically

decreased values of Pfa. In addition, ✏ is valid only for a fixed SNR value, and

if the SNR changes drastically, then ✏ can get unsuitable for the specific value

of Pfa. If the SNR versus the threshold relation were linear, the ✏ parameter

could keep the false alarm probability the same for all SNRs. However, the

noise level cannot be known exactly in practice; therefore, estimating the noise

level is an important step. The threshold setting approach in (3.3) basically

employs the sample variance to estimate the noise level in the system. Therefore,

under low arrival rates, it can set the false alarm probability close to a desired

level. However, under high arrival rates, the sample variance can significantly be

a↵ected by presence of signals and can cause the false alarm probability to be set

to incorrect levels.

Remark 1: It should be noted that the conventional detector in (3.2) performs

hypothesis testing for each index of the correlation signal. We can call this

approach point by point hypothesis testing. As discussed in the next chapter,

using the whole correlation signal at once (instead of performing a point by point

test) can lead to improved performance.

Remark 2: It can be shown that the conventional detector in (3.2) can be

regarded as a point by point GLRT under certain conditions when the noise

variance is assumed to be known. To this end, the correlation signal at the ith

index, ri in (3.1), is modeled as a circularly symmetric complex Gaussian random

variable CN(0, �2) or CN(A, �2) under H0 and H1, respectively, where �2 is the

known noise variance and A represents the (complex) signal component [26]. In
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particular, the correlation signal at the ith index is distributed as follows:

H0 : p(ri|H0) =
1

⇡�2
e�

|ri|
2

�2 (3.4)

H1 : p(ri|H1) =
1

⇡�2
e�

|ri�A|2

�2 (3.5)

Based on this model, the GLRT is obtained as follows:

L(ri) =
max
A

1
⇡�2 e

�
|ri�A|2

�2

1
⇡�2 e

�
|ri|2
�2

H1

?
H0

⌧ (3.6)

=) |ri|
2

H1

?
H0

⌧ 0 (3.7)

Hence, performing a GLRT for each point (index) of the correlation signal cor-

responds to the conventional detector under the assumption of a known noise

variance (cf. (3.2) and (3.7)). Therefore, using the energy of the correlation sig-

nal as a decision metric is a reasonable way to detect PRACH signals. However,

as mentioned in Remark 1, point by point hypothesis testing is not optimal in

general.

Remark 3: In order to determine the presence of a PRACH signal in a given

zone, the conventional approach can compare the maximum energy in that zone

against a threshold. In other words, a PRACH signal is declared to exist in a

zone if at least one signal energy is above the threshold.
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Chapter 4

Proposed Detectors Based on

Zone Based GLRT

4.1 Zone based GLRT (Z-GLRT)

The main idea behind the proposed approach is to perform PRACH signal detec-

tion zone by zone instead of point by point as in Chapter 3. To this aim, a binary

hypothesis testing problem is formulated to determine whether there exists a sig-

nal in a given zone. As discussed in Chapter 2, each correlation signal is divided

into 64 zones, which are called zero correlation zones, and the length of the zones

are determined by parameter NCS. The detection approaches developed for a

given zone in this chapter are to be applied for each zone (i.e., 64 di↵erent zones

for LTE/5G) to detect possible PRACH signals in the whole received signal.

First, we consider the case in which there exists at most one PRACH signal

in each zone. In this case, if there exists a UE PRACH signal in a given zone,

we expect to see a peak inside that zone due to the PRACH signal. Since the

exact location of a peak is unknown and there is no prior information about

it in general, it is assumed that the location of a peak is uniformly distributed

in each zone. This assumption is reasonable since the location of a peak inside
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a zone changes due to the propagation delay which depends on UE’s position

with respect to eNodeB and any additional channel delays. (For example, in the

absence of any delays, the peak is observed at the first index of the correlation

signal.)

Let N denote the length of a zone and r1, . . . , rN represent the samples of the

correlation signal in a zone.1 Under the described setting, the likelihood function

in the absence of a PRACH signal can be expressed as follows:

p(r1, r2, . . . , rN |H0) =
1

(⇡�2)N
e�

1
�2

PN
i=1 |ri|

2

(4.1)

where H0 represents the noise only hypothesis. In deriving (4.1), it is assumed

that the noise components are modeled as independent and identically distributed

circularly symmetric complex Gaussian random variables with variance �2 [26].

Similarly, the likelihood function in the presence of a PRACH signal (H1) can be

formulated as

p(r1, r2, . . . , rN |H1) =
1

N

NX

k=1

1

(⇡�2)N
e�

|rk�A|2

�2

NY

i=1,i 6=k

e�
|ri|

2

�2 (4.2)

where A is related to the peak value and k is the index that represents the location

of the peak, which is modeled as a uniform random variable.

In practical scenarios, the values of �2 and A in (4.1) and (4.2) are unknown.

Therefore, we propose a GLRT approach as follows:

max
�2,A

p(r1, . . . , rN |H1)

max
�2

p(r1, . . . , rN |H0)

H1

?
H0

⌧Z (4.3)

where ⌧Z is the threshold for zone based GLRT (Z-GLRT). Namely, the maximum

likelihood estimates (MLEs) of the unknown parameters are calculated under each

hypothesis and then a likelihood ratio test (LRT) is performed [27, 28].

The value of �2 that maximizes (4.1) can be obtained as

b�2
0 = argmax

�2

1

(⇡�2)N
e�

1
�2

PN
i=1 |ri|

2

=
1

N

NX

i=1

|ri|
2 (4.4)

1For compactness of notation, r1, . . . , rN are used to represent the samples in any zone
without employing distinct indices for di↵erent zones.
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On the other hand, the values of �2 and A that maximize (4.2) cannot be obtained

in closed forms. Therefore, numerical evaluation is required to obtain the MLEs

for �2 and A under H1. Let b�2
1 and bA denote these MLEs; that is,

⇣
b�2
1, bA

⌘
= argmax

�2,A

NX

k=1

��2Ne�
|rk�A|2

�2

NY

i=1,i 6=k

e�
|ri|

2

�2 (4.5)

where the constant terms in (4.2) are omitted. In the numerical examples, we

assign certain intervals for �2 and A and perform exhaustive search over those

intervals. (Another approach with lower computational complexity is proposed

below.)

Based on (4.4) and (4.5), Z-GLRT in (4.3) can be expressed, after some ma-

nipulation, as ✓
b�0

b�1

◆2N NX

k=1

e
�

|rk� bA|2

b�2
1

NY

i=1,i 6=k

e
�

|ri|
2

b�2
1

H1

?
H0

⌧ 0
Z

(4.6)

where ⌧ 0
Z
= Ne�N⌧Z .

It should be noted that Z-GLRT in (4.6) is designed for one zone. Therefore,

this detector can be executed for each of the 64 zones in order to decide for the

absence or presence of PRACH signals in each zone.

4.2 Zone based GLRT with Low Complexity

Since it is required to perform a search over a three-dimensional parameter space

to specify b�2
1 and bA (i.e., Re{ bA} and Im{ bA}) in (4.6) (see (4.5)), the compu-

tational complexity of Z-GLRT is high in general. In order to propose a low

complexity alternative, consider a two-step approach in which the value of �2

under H1 is estimated in the first step as follows. Suppose that the location of

the peak is known under H1 and the likelihood function is given by (cf. (4.2))

p(r1, r2, . . . , rN |H1) =
1

(⇡�2)N
e�

|rm�A|2

�2

NY

i=1,i 6=m

e�
|ri|

2

�2 (4.7)
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where m is the known index for the peak. In this scenario, the MLE for �2 can

be obtained from (4.7) as (please see Appendix A)

�̃2
1 =

1

N

NX

i=1,i 6=m

|ri|
2 . (4.8)

Since the location of the peak is not known in practice, it is estimated as

m = argmax
i2{1,...,N}

|ri|
2 . (4.9)

That is, the sample with the maximum magnitude is considered as the peak. If

it is known that there can exist at most one peak in the whole subframe, i.e., in

the 64 zones, then the estimate in (4.8) can be updated as

�̃2
1 =

1

L

LX

i=1,i 6=m

|ri|
2 (4.10)

where L is the number of samples in the subframe (e.g., L = 64N) and m =

argmax
i2{1,...,L} |ri|

2.

In the second step, the following zone based GLRT, called simplified zone based

GLRT (SZ-GLRT), is proposed:

✓
b�0

�̃1

◆2N NX

k=1

e
�

|rk�Ã|2

�̃2
1

NY

i=1,i 6=k

e
�

|ri|
2

�̃2
1

H1

?
H0

⌧SZ (4.11)

where ⌧SZ is the threshold for SZ-GLRT, b�2
0 is given by (4.4), �̃2

1 is as in (4.8) or

(4.10), and Ã is obtained as (cf. (4.5))

Ã = argmax
A

NX

k=1

�̃�2N
1 e

�
|rk�A|2

�̃2
1

NY

i=1,i 6=k

e
�

|ri|
2

�̃2
1 (4.12)

The main idea behind SZ-GLRT is to employ the intuitive (ad-hoc) estimate

for �2 under H1 in (4.8) or (4.10) in the Z-GLRT in (4.6). It is noted that

SZ-GLRT in (4.11) has lower computational complexity than Z-GLRT in (4.6)

since a two-dimensional search is required in the former (see (4.12)) instead of a

three-dimensional search.
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4.3 Scenario with Multiple PRACH Signals in

a Zone

In sections 4.1 and 4.2, it is assumed that there exists at most one PRACH signal

in each zone. In this section, we consider the scenario in which there can exist

multiple PRACH signals in a zone. This scenario is classified as collision and can

only be resolved via the 4-step contention based resolution [1]. Even though this

case is undesirable, it can be necessary to detect the presence of PRACH signals

in this case, as well.

Before explaining the collision case, it should be emphasized that in 5G/LTE

standards, PRACH signals are not allowed to be sent anytime or in any random

subframe. Before the RACH process, by using control channels, eNodeB provides

the required subframe indices and the ZC sequence root to UE in the Radio

Resource Controller (RRC) [22]. For instance, in busy network cases, eNodeB

could say that UE can transmit PRACH signals in any subframe for a period

of time until the busy schedule is completed. After this process, eNodeB could

also say that UE can only be allowed to transmit a PRACH signal once in 16

frames, which corresponds to a period of 16ms. In other words, eNodeB adjusts

this process according to the arrival rate.

The probability of having more than one PRACH signals in a one zone (i.e.,

collision probability) can be calculated as 1 � 63!(64)n�1/(63� n)!, where n is

the number of users in the subframe. The probability of collision versus number

of UEis given in 4.1. For example, if 10 users exist in the system in a 1ms time

slot, then the collision probability is approximately equal to 0.5, which is quite

high. However, having 10 users in every 1ms time slot corresponds to 10000

users in 1 second. In other words, in order to reach a 10 user mean in the RACH

process, 10000 users should boot up their equipment or come to the cell in one

second, which seems unlikely in real life even if eNodeB operates in very busy

conditions. Still, there may be places such as concert halls, stadiums, and large

meeting areas, where the mean user arrival rate can be su�ciently high so that the

collision probability is non-negligible and there can exist more than one PRACH

17



0 10 20 30 40 50 60 70

Number of UE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
c

Figure 4.1: Probability of collision in a zone.

signals in some zones.

The following observations can be extracted from Figure 4.1. In order to cover

multiple peak cases, we can extend our proposed zone based GLRT detector.

Additionally, even if Pc is high, many of the zones in the signal can have no or

only one peak. With the increase of the UE number, many zones start to have

multiple peaks rather than no peak or only one peak. Therefore, the model in

equation (4.2) starts to perform worse as it assumes only one peak in the zone.

Yet, for practical reasons,, we can still use the proposed detector, even though it

does not have the correct model for many zones.

To cover the scenario in which there can exist multiple PRACH signals in a

given zone, the hypotheses are defined as no PRACH signals in the zone (H0)

and at least one PRACH signal in the zone (H1). Since the H0 hypothesis is the

same as the previous scenario, the likelihood function under H0 is again given by
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(4.1). On the other hand, the likelihood function under H1 is obtained as follows:

p(r1, r2, . . . , rN |H1) =
1

NM(⇡�2)N

NX

k1=1

· · ·

NX

kM=1

e�
1
�2 (

PM
v=1 |rkv�Av |

2+
PN

i=1,i 6=k1,...,kM
|ri|

2)

(4.13)

where M is the maximum number of PRACH signals that can be observed in the

zone, kv, v 2 {1, . . . ,M} is the index of each PRACH signal in the zone, and Av

is the complex amplitude due to the vth PRACH signal. If the maximum number

of PRACH signals, M , cannot be determined in advance, it can be taken as N

since it corresponds to the most generic scenario as Av’s can also be set to zero.

Under the described setting, zone based GLRT in the presence of multiple

PRACH signals can be formulated as

max
�2,A1,...,AM

p(r1, . . . , rN |H1)

(b�2
0)

�N

H1

?
H0

⌧ZM (4.14)

where ⌧ZM is the threshold, b�2
0 is given by (4.4) and p(r1, . . . , rN |H1) is as in

(4.13).

The GLRT in (4.14) has very high computational complexity; hence, may not

be employed in practice. Therefore, we propose a low-complexity approach, which

only requires the knowledge of the expected number of users in a subframe. Let

 denote the expected (average) number of users in a subframe. Then, it can be

shown that a reasonable estimator (please see Appendix B for justification) for

�2 under H1 is given by

�̄2
1 =

1

L

LX

i=1, i/2M

|ri|
2 (4.15)

where L is the number of samples in the subframe and M is the set of indices cor-

responding to the largest  correlation values, that is, M is a subset of {1, . . . , L}

such that |M| =  and |ri|2 � |rj|2 8 i 2 M & j /2 M. Then, to obtain a low-

complexity detector, only the most significant peak is considered and the rest

are modeled as noise components. That is, the single peak model in section 4.1

is adopted. Then, the following zone based GLRT, called simplified zone based
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GLRT for multiple peaks (SZ-GLRT-M), is proposed:
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where ⌧SZM is the threshold for SZ-GLRT-M, b�2
0 is given by (4.4), �̄2

1 is as in

(4.15), and Ā is obtained as (cf. (4.5))

Ā = argmax
A

NX

k=1

�̄�2N
1 e

�
|rk�A|2

�̄2
1

NY

i=1,i 6=k

e
�

|ri|
2

�̄2
1 (4.17)

The main motivation behind SZ-GLRT-M is to utilize a low-complexity detector

by assuming the single peak model in section 4.1 (see (4.6)) and employing the

ad-hoc estimate in (4.15) for �2 under H1. In this manner, instead of performing

a search over a (2M + 1) dimensional space (see (4.14)), SZ-GLRT-M performs

a search over a two-dimensional space (see (4.17)) for PRACH signal detection.

4.4 Upper Bound for PRACH Detection

To derive an ideal detector that provides an upper bound on detection perfor-

mance, suppose that the unknown parameters in (4.1) and (4.13), namely, the

variance and the amplitudes, are known. Then, based on (4.1) and (4.13), the

LRT can be formed and simplified as follows:

1
NM (⇡�2)N

P
N

k1=1 · · ·
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where ⌧up = ⌧ NMe
1
�2

PM
v=1 |Av |

2

is the threshold of the ideal detector employed

for deriving the upper bound. Since the detector in (4.21) is designed under
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the assumption of known variance and peak values, its detection performance

provides a performance upper bound for practical estimators, as investigated in

the next chapter.

If there exists only one peak in the zone, then the detector in (4.21) reduces

to following form:
NX

k=1

e
2
�2Re{A

⇤
rk}

H1

?
H0

⌧up (4.22)

where A is the peak related value.
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Chapter 5

Simulation Results

In this chapter, simulation results are presented to investigate the performance

of the proposed approach. In the simulations, format 0 preamble signal, which

has the shortest zone length, is used as other long preamble formats are very

similar to this particular format [1], [21]. Since improved performance results

are expected for longer zones, simulations are performed for the shortest possible

zone in order to observe the performance of the proposed approach in a worst-case

scenario. In presenting the simulation results, we will first consider the AWGN

channel model and then use the TDL-C channel model (with 30 ns delay spread

and 5Hz Doppler spread) for more realistic simulations [29], [30], [31].

In the first scenario, it is assumed that at most one peak can occur in a

subframe. Also, the correlation signal consists of 64 zones, each zone has 13

samples, and the peak in the signal (if it exists) is assigned randomly to one of

the zones. Figures 5.1–5.3 below are obtained based on the first scenario.

In Figure 5.1, the ROC curves are presented for the proposed detectors (Z-

GLRT and SZ-GLRT), the conventional detector (see Remark 3), and the upper

bound in the presence of an AWGN channel. In implementing SZ-GLRT, the

decision rule in (4.11) is used together with (4.10) due to the assumption that
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Figure 5.1: ROCs curve at SNR = �28 dB and SNR = �22 dB under AWGN
channel.
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at most one peak can occur in a subframe in the considered scenario. From Fig-

ure 5.1, it is observed that Z-GLRT always performs better than the conventional

detector and its performance is close to the upper bound. On the other hand,

SZ-GLRT achieves higher detection probabilities than the conventional detector

(and Z-GLRT) in the region of (very) low false alarm probabilities. For higher

values of the false alarm probability, SZ-GLRT performs worse than both the

conventional detector and Z-GLRT. Since SZ-GLRT uses an ad-hoc estimator for

the noise variance, it does not provide consistent improvements over the conven-

tional detector. However, it is observed to be a desirable alternative for low false

alarm probabilities, which are the main target in common real-life scenarios. The

performance gap between SZ-GLRT and the conventional detector depends on

both the SNR and the false alarm probability. In particular, SZ-GLRT has bet-

ter performance at low false alarm probabilities and low-to-medium SNR values.

This can be seen more clearly in Figure 5.2, which illustrates the detection prob-

ability versus SNR curves in the presence of an AWGN channel. In this figure,

SZ-GLRT is always better than the conventional detector and the performance

gap between the two detectors is more distinct at low-to-medium SNR values.

Moreover, it is noted that Z-GLRT always achieves higher detection probabilities

than than the conventional detector; however, it is outperformed by SZ-GLRT at

low-to-medium SNRs.

In Figure 5.3, the ROC curves are presented for the proposed detectors, the

conventional detector, and the upper bound in the presence of the TDL-C channel

for an SNR of �22 dB. As in the case of the AWGN channel, Z-GLRT achieves

higher detection probabilities than the conventional detector for all false alarm

probabilities. Compared to the results for the AWGN channel at SNR = �22 dB,

the performance of all the detectors reduces under the TDL-C channel, as ex-

pected. Also, SZ-GLRT is again better at low false alarm probabilities than both

Z-GLRT and the conventional detector; however, it performs worse than the oth-

ers as the false alarm probability increases. Overall, the performance trends are

very similar in the AWGN and TDL-C channel scenarios.

In the second scenario, the arrival of users to the cell is modeled by a Poisson

distribution with a mean value of  in the interval of a subframe. Also,  is

24



-28 -26 -24 -22 -20 -18 -16

SNR (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a

b
ili

ty
 o

f 
D

e
te

ct
io

n

Conventional

Z-GLRT

SZ-GLRT

Upper Bound

Figure 5.2: Detection probability versus SNR under AWGN channel for Pfa =
10�2.
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Figure 5.3: ROC curves at SNR = �22 dB under TDL-C channel.

set to 1 and the duration of each subframe is 1ms. These values are selected

due to their practicality, which are also specified as such in [32]. In Figure 5.4,

the ROC curves are provided for the SZ-GLRT-M detector, the conventional

detector, and the upper bound in the presence of the TDL-C channel. Similar

results to those in Figures 5.1 and 5.3 are observed. Namely, SZ-GLRT-M achieves

higher detection probabilities than the conventional detector for practical values

of the false alarm probability. However, the performance gap decreases as the

false alarm probability increases. In addition, when the performance of the SZ-

GLRT detector in Figure 5.3 is compared to that of the SZ-GLRT-M detector in

Figure 5.4, it is noted that SZ-GLRT-M performs slightly worse than SZ-GLRT

at high false alarm probabilities. This is due to the fact that there can exist

multiple PRACH signals in the second scenario. Although both SZ-GLRT and

SZ-GLRT-M are derived under the assumption of at most one PRACH signal

in each zone, it is possible that there exist multiple signals in a zone for the

scenario in Figure 5.4. Therefore, performance degradation is observed due to

the mismatch between the assumed and the actual models.
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Figure 5.4: ROC curves at SNR = �22 dB under TDL-C channel with  = 1.

Since SZ-GLRT-M is derived under the assumption that there can exist at most

one PRACH signal in each zone, its performance is expected to degrade with 

(as the probability of having more than one PRACH signal in a zone increases

with ). To determine the value of  after which the conventional detector starts

having higher detection probabilities than SZ-GLRT-M, the detection probability

is plotted versus  for two di↵erent false alarm probabilities and SNRs in Fig-

ures 5.5 and 5.6. It is observed that around  = 60 at Pfa = 10�1 and around

 = 80 at Pfa = 10�2, SZ-GLRT-M is outperformed by the conventional detector

for the case of SNR = �22 dB (Figure 5.5). Such high mean arrival rates (’s) are

not expected in practical applications since they correspond to 6⇥104 and 8⇥104

mean arrivals of UEs in one second. In Figure 5.5, the detection performance of

the conventional detector increases with . This is mainly due to the fact that

the probability that at least one of the peaks exceed the threshold increases as the

expected number of users in a zone increases. This e↵ect is significant and clearly

observed at low SNRs. For the case of SNR = �16 dB in Figure 5.6, the con-

ventional detector achieves higher detection probabilities than SZ-GLRT-M after
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Figure 5.5: Detection probability versus  at SNR = �22 dB under TDL-C
channel.
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Figure 5.6: Detection probability versus  at SNR = �16 dB under TDL-C
channel.

 = 6. Even this value is quite high for most practical applications as considered

in many contribution reports [32] (commonly,  = 1 is used). Furthermore, when

Figures 5.5 and 5.6 are compared, it is noted that SZ-GLRT-M is outperformed

by the conventional detector at lower  values as SNR increases. This is also in

accordance with Figure 5.2, where the SZ-GLRT performance approaches to that

of the conventional detector as SNR increases.

Finally, the detection probability is plotted versus the SNR for two di↵erent

arrival rates in Figure 5.7 and Figure 5.8 ( = 1) for SZ-GLRT-M and the conven-

tional detector, where Pfa = 10�2. SZ-GLRT-M outperforms the conventional

detector for the scenario in Figure 5.7, which corresponds to a low user arrival

rate, i.e.,  = 1. On the other hand, for  = 5, it is observed from Figure 5.8

that the conventional detector starts to outperform SZ-GLRT-M after an SNR of

�14 dB.
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Figure 5.7: Detection probability versus SNR at Pfa = 10�2 under TDL-C chan-
nel for  = 1.
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Chapter 6

Conclusion and Future Work

In this thesis, we have first briefly explained the evolution of mobile commu-

nication, discussed LTE and its characteristics, and mentioned the new features

of 5G. Then, PRACH signal types, separation of them into zones, and detection

of di↵erent cyclic shifted signals have been discussed. In addition, the impor-

tance of uplink synchronization detectors is explained as well as the challenges

compared to downlink synchronization detectors. We have then also reviewed

the conventional detector and emphasized its suboptimality. To provide improve-

ments over the conventional detector, which performs point by point hypothesis

testing, we have proposed a zone based GLRT approach for PRACH signal de-

tection. For scenarios with at most one PRACH signal in each zone, we have

first developed the Z-GLRT detector and then derived its low complexity version,

called SZ-GLRT. For scenarios with multiple PRACH signals in a zone, we have

proposed the SZ-GLRT-M detector. In addition, we have derived an ideal detec-

tor, the performance of which provides an upper bound for the performance of

practical detectors. Via extensive simulations, it has been shown that Z-GLRT

outperforms the conventional detector. On the other hand, the low-complexity

detectors, SZ-GLRT and SZ-GLRT-M, achieve higher detection probabilities than

the conventional detector for reasonably low false alarm probabilities and practi-

cal values of the UE arrival rate. Moreover, it has been shown that for high SNRs

and very high values of UE arrival rates (which are not common), the conventional
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detector can outperform SZ-GLRT-M. Overall, the SZ-GLRT-M detector can be

used instead of the conventional detector in practical 5G applications unless very

high UE arrival rates are expected.

As mentioned in Chapters 1 and Section 2, RACH process is performed in

low SNRs because of the green network requirement and the battery limitations

at the UE side. Additionally, there are many unknown parameters such as the

index of the peak, noise variance, and channel coe�cient. Due to these challenges,

some papers and technical reports consider detection in the absence of interference

inside the cell (the case that some UEs in the cell have di↵erent roots for Zadd-O↵

Chu sequences) in order to simplify the problem. This is a good approximation for

the current RACH process system, since one can eliminate interference in the cell

by choosing right values for the PRACH signal in the cell and in the neighboring

cells [10]. However, this reduces the user capacity in the cell as explained in

Chapter 2. Therefore, it is worth looking for a way to optimize the system by

considering intra-cell interference. By the increase in the UE and IoT devices,

this will be a crucial task for detecting devices in the cell. Currently there exist

some proposed detectors for this case. Yet, they use exhaustive search for every

possible interference scenario, and do not perform as well as expected for 5G [15].

Thus, this topic is an important candidate for future work.

As an alternative approach, machine learning tools (such as Q-learning) and

neural networks can be employed for advanced problems related to the RACH

process [33],[34]. The RACH process presents a complex problem with limited

known data and observations. Please see [33], [34], [35] and [36] for some machine

learning applications with promising performance results.

Currently, a new type of sequence is considered in the 5G literature. This

sequence is called cover codes or quasi-orthogonal codes [16]. This new sequence

type can increase user capacity if they are adopted as the new standard by 3GPP

for the RACH process sequence. Basically, quasi-orthogonal codes use ZaddO↵-

Chu and m sequences by combining both of them to increase PRACH signal

capacity [13]. Therefore, development of a new detector type for cover codes can

be an interesting and practical topic for future work.
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Appendix A

Derivation of (4.8)

Consider the likelihood function in (4.7), where m is the known index for the

peak. Then, to find the MLEs for the unknown parameters, A and �2, we first

obtain the log-likelihood function as

log(p(r1, r2, . . . , rN)|H1) = �N log(⇡)�N log(�2)�
|rm � A|2

�2
�

1

�2

NX

i=1,i 6=m

|ri|
2

(A.1)

To maximize (A.1), its partial derivatives can be taken as follows:

@ log(p(r1, r2, ..., rN |H1))

@A
= 2|rm � A| = 0 (A.2)

@ log(p(r1, r2, ..., rN |H1))

@�2
= �

N

�2
+

|rm � A|2

�4
+

1

�4

LX

i=1,i 6=m

|ri|
2 = 0 (A.3)

Then, solving (A.2) and (A.3) yields the MLEs as Ã = rm and

�̃2
1 =

P
N

i=1,i 6=m
|ri|2

N
(A.4)

which is the estimator in (4.8).
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Appendix B

Justification for (4.15)

Let the samples of the correlation signal in the subframe be denoted by

r1, r2, . . . , rL. Suppose that there exist NP PRACH signals and their indices are

in set MNP . Assuming that set MNP is known, the probability density function

of r1, r2, . . . , rL under H1 (i.e., the likelihood function for H1) can be expressed

as

p(r1, r2, . . . , rL|H1) =
1

(⇡�2)L
e
�

P
v2MNP

|rv�Av |2

�2

LY

i=1,i/2MNP

e�
|ri|

2

�2 . (B.1)

The log-likelihood function can be obtained from (B.1) as

log(p(r1, r2, . . . , rL|H1)) = �L log(⇡)�L log(�2)�
1

�2

X

v2MNP

|rv�Av|
2
�

1

�2

LX

i=1,i/2MNP

|ri|
2 .

(B.2)

Then, the likelihood equations are obtained as follows:

@ log(p(r1, r2, . . . , rL|H1))

@Av

= 2
X

v2MNP

|rv � Av| = 0 (B.3)

@ log(p(r1, r2, . . . , rL|H1))

@�2
= �

L

�2
+

1

�4

X

v2MNP

|rv � Av|
2 +

1

�4

LX

i=1,i/2MNP

|ri|
2 = 0

(B.4)
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By solving (B.3) and (B.4), the MLE for �2 is derived as

�̄2
1 =

1

L

LX

i=1,i/2MNP

|ri|
2 . (B.5)

Since set MNP , which consists of the indices of the PRACH signals, is not known

in practice, it can be estimated as the set of indices corresponding to the largest

 correlation values, i.e., set M in Section 4.3, where  is the average number of

users in the subframe. Hence, by replacing MNP with M, the estimator in (B.5)

reduces to that in (4.15). Hence, (4.15) is a reasonable estimator to employ in

practice, which would correspond to the MLE of �2 if M were actually the set

of indices for the PRACH signals.

40


