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ABSTRACT

In Modern medicine, segmentation of anatomical regions and automatic classification of
diseases using various medical images plays a major role in diagnosis and treatment of
disease. Scintigraphic imaging is one of the accepted imaging modalities for diagnosis of
thyroid gland disorders. In our study, the speckle noise was reduced in the scintigraphic
images with the optimized Bayesian non-local averaging filter. The thyroid gland is
automatically segmented by local-based active contour method and the thyroid gland
pathologies were classified with convolutional artificial neural networks, one of the deep
learning methods. The proposed computer based diagnosis system is compared with
Pyramid of Histograms of Orientation Gradients, Gray Level Co-occurrence Matrix,
Local Configuration Pattern and Bag of Feature methods. In this study, the common
pathological patterns of scintigraphic images of the thyroid gland were successfully

classified by CNN with an average of 94%.

Keywords : Deep Learning, Image Classification, Active Contour, Noise Reduction,

Thyroid Nodules



RESUME

En médecine moderne, la segmentation des régions anatomiques et la classification
automatique des maladies a I’aide de diverses images médicales jouent un role majeur
dans le diagnostic et le traitement de la maladie. I.’imagerie scintigraphique est 1'une
des modalités d’imagerie acceptées pour le diagnostic des troubles de la glande thyroide.
Dans notre étude, le bruit de speckle a été réduit dans les images scintigraphiques avec le
filtre bayésien non local moyen. La glande thyroide est automatiquement segmentée par
la méthode du contour actif local et les pathologies de la glande thyroide ont été classées
avec des réseaux de neurones artificiels convolutifs, I'une des méthodes d’apprentissage
en profondeur. Le systéme de diagnostic informatisé proposé est comparé a la pyramide
d’histogrammes de gradients d’orientation, a la matrice de cooccurrence au niveau de
gris, au modele de configuration locale et au sac de caractéristiques. Dans cette étude,
les profils pathologiques communs des images scintigraphiques de la glande thyroide

ont été classés avec succes par CNN avec une moyenne de 94%.

Mots Clés : Apprentissage en Profondeur, Classification des Images, Contour Actif,

Nodules Thyroidiens & Réduction de Bruit



OZET

Modern tipta cesitli tibbi goriintiiler kullanilarak anatomik bdlgelerin boéliitlenmesi
ve hastaliklarin otomatik olarak simflandirilmasi hastalik teghis ve tedavisinde biiytik
rol oynamaktadir. Tiroid gland bozukluklarinda sintigrafi goriintiileri tanm igin kabul
goren goriintiileme yontemlerinden biridir. Calismamizda sintigrafi goriintiilerinde bu-
lunan benek giiriiltiisii optimize edilmis Bayesian yerel olmayan ortalama filtre ile gi-
derilmigtir. Tiroid bezi bolgesi lokal tabanl aktif kontur metodu ile otomatik olarak
boliitlendirilerek derin 6grenme metodlarindan biri olan evrigimsel yapay sinir aglari
ile tiroid bezi patolojileri otomatik olarak smiflandirilnugtir. Onerilen bilgisayar tabanl
tedavi sistemi YOnelim Derecelerinin Histogram Piramidi, Gri Diizeyli Eg-Olma Mat-
risi, Yerel Yapilandirma Deseni ve Ozellik Canta Yontemleri ile karsilastiriimistir. Bu
caligmada, tiroid bezinin sintigrafik goriintiilerinin yaygin patolojik paternleri 6nerilen

CNN tarafindan %94 ortalama bagariyla simflandirilmigtar.

Anahtar Kelimeler : Derin Ogrenme, Goriintii Siiflandirma, Aktif Kontur, Giiriiltii

Azaltma, Tiroid Nodiilleri



1 INTRODUCTION

Computer aided decision making systems are useful tools for clinicians in evaluation
and measurement of medical images to help diagnosis of many conditions. Automatic
segmentation of thyroid nodules from scintigraphic images and determination of type of
nodules may improve the evaluation performance. We conducted an extensive literature
search on computer aided systems to help diagnosis of thyroid nodules, nevertheless
we could not encounter any computer based diagnosis system which automatically
segment scintigraphic images and classify thyroid nodules based on CNN as diffuse
homogeneous uptake, diffuse non-homogeneous uptake, hyperactive nodule, hypoactive
nodule and multinodular uptake. There are scarce studies with limited value which

achieved segmentation of only some anatomic structures in the ultrasound images.

Scintigraphy is a procedure that produces pictures of anatomical structures based on
the behavior of the target tissue. After administration of intravenous fluids which
contain targeted radioisotopes (gamma emitter of a short half-life) the selective up-
take of the target tissue is determined by scanning the body with a special device to
represent the distribution of it. This visual display of the functional tissue is used to
diagnose, stage, and monitor diseases, especially tumoral conditions. Thyroid tissue
has a great affinity to Iodine. Therefore in thyroid scintigraphy radio-iodine is used to
provide information regarding both thyroid anatomy and physiology and can play an

integral role in the diagnosis and management of thyroid pathologies.

Computer based recognition and classification of medical images is a popular approach
to diagnosis of several disease conditions. Nevertheless, many computer aided dagnosis
(CAD) systems are still based on handcrafted methods. This approach mainly depends
on experience of the evaluator and the selection of efficient multiscale geometric ana-
lysis algorithm to obtain desired shape and texture features. Curvelet, contourlet and
shearlet transforms are well known algorithms which may provide satisfactory extrac-
tion of shape and texture features. Because translation of image by those methods
into another domain may gives very powerful texture and shape features. Even so all
of these approaches require prior knowledge of the designer for the feature extraction
and selection (heuristic and mathematical). The new era in the computer perception
is evolving by the introduction of deep learning methods which extract discriminative

features from the data by using machine learning approaches.



Many medical CAD systems in the literature are based on classification of extracted

texture and shape features from different imaging modalities.

There are studies which proved that the success rates of the proposed CAD systems
increase when the shape and texture features were extracted from coefficients of trans-
formations like shearlet, curvelet etc. However this handcrafted texture and shape
feature extraction approach is somewhat heuristic of which the success of the system
depends basically on the insight and experience of the researchers. Therefore the sen-
sitivity and specificity rates of many of these proposed systems are not in the desired

limits for them to be employed in the clinical fields.

Feature extraction from the coefficients of transformations is proven to increase the
success rates of the proposed CAD system. This heuristic approach is, not surprisingly,
dependent on the training level and insight of the researchers. Many of the proposed
CAD systems, therefore, provide results that are below the desired levels for clinical
application. This limitation was achieved with the successful design of the imitation
mechanism of the vertebrate visual cortex. This alternative approach to the processing
of images by artificial intelligence is an imitation of the methods of perception and ana-
lysis inherited from nature. The deep neural network is a popular self-learning approach
used to recognize the texture and shape characteristics of an image by processing them

across multiple layers of virtual neurons.

Deep CNNs may be regarded as the new era in the medical image segmentation. Their
enormous architectural versatility provides extraction of discriminative texture and
shape features in a great variety of medical problems. Adjusting the architecture of
CNN to create a shallow network increases its capacity to extract low level features
like edges. Deeper network architectures are more suitable for extraction of high level
features like shape information. Increasing the number of the layers in a CNN increases
its capacity to learn more complex image features. The great capacity of CNNs in
object recognition, image segmentation and classification with relatively small amount
of training data are essential characteristics required in the medical diagnosis field.
This thesis proposes a CAD system to overcome the speckle noise of the scintigraphic
images which deteriorates determination of anatomical structures. Speckle is a granular
interference that inherently exists in ultrasound, scintigraphic and synthetic aperture
radar (SAR) images. Reducing speckle noise provide to better visualization of image

and increase the performance of the image processing algorithm to recognize an object



or segmentation of region interest.

Selection of a successful noise reduction method to overcome the speckle noise problem
in the scintigraphic images and preservation of critical anatomical structures in the
image during the noise reduction process are vital in order to get prospering results.
Since both visual and automatic segmentation depends on clearly distinguishable re-
presentation of the vital anatomical structures in the image. We applied optimized
Bayesian non-local mean (OBNLM) filter which is stated to be one of the powerful
speckle noise reduction methods in ultrasound images (Coupé et al., 2009). Decrea-
sing the speckle noise by preserving edge information based on OBNLM method is the

important step of our proposed CAD system.

Another important step of our CNN based CAD system is the production of adequate
size image patches from the desired localization. An ideal image patch is the one which
contains all important anatomical structures but not irrelevant tissues which may ham-
per the classification result. In this study the Statistical level set method which is one
of the successful local region based active contours models for segmentation of in-
homogeneous and noisy images was employed to segment necessary anatomical area
(Zhang, Zhang, Lam and Zhang, 2016). By this way we obtained images patches for
diffuse homogeneous uptake, diffuse non-homogeneous uptake, hyperactive nodule, hy-
poactive nodule and multinodular uptake. Defined region of interest (ROI) were used
to feed our proposed CNN. Proposed CNN architecture provide to extract discrimi-
native features of the thyroid nodules in the defined ROI of scintigraphic images and

classified thyroid diseases.

CNNs consist of 4 types of layers as convolutional, activation, pooling and fully connec-
ted, each of which has a different role to complete the desired mission. Like the receptive
field of a human retinal neuron, gathered information from each neuron represents a
specific local area of the image which overlaps with others creating a better represen-
tation of an image in the convolutional layer. The convolutional layer creates feature
maps according to the weights of the neuronal inputs in which the shared weights
constitute a filter for each map. Through these feature maps the efficacy of the convo-
lutional layer increases and the over-fitting is prevented. The activation layer follows
the convolutional layer. The nonlinear property of the activation layer is required for
extraction of more complex features from the input signals generated by the convolu-

tional layer. The pooling layer is the next layer which statistically analyses the inputs



Flow Diagram of Proposed Computer Aided Diagnosis System
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Figure 1.1: Flow diagram of proposed CAD system

via shifting rectangles and by this way decreases the sensitivity of the image informa-
tion to the shifts. There are increasing number of image classification (Arevalo et al.,
2016; Wu et al., 2014) and segmentation (Yu et al., 2016; Chen et al., 2015) studies in
the literature using CNNs, as well as the number of studies in the medical field based
on CNNs. However the main obstacle in the medical field seems to be obtaining a high
quality and adequate number of training datasets. To overcome this problem many
data augmentation methods were employed in the literature like mirroring, rotation
and scaling, all of which are suitable to rotation invariant datasets (Margeta et al.,
2015; Tajbakhsh et al., 2015). In the lack of an adequate dataset another approach is
to use transfer learning based CNN which is not suitable to our study because of the
unavailability of present pre-trained CNN’s resembling our dataset (Shin et al., 2016;
Ma et al., 2017). Therefore we proposed to augment our dataset with rotation and

scaling.

After determination of the ROI and augmentation of the dataset, different CNN ar-
chitectures were constructed with different number of layers and size of convolutional
kernels in each layer. The effect of different size and quality of datasets were also
measured in each CNN configuration. By this way we determined the best configura-
tion of the CNN to be employed in classification of thyroid nodules. The flowchart of
proposed CAD system is presented in Figure 1.1. In summary we highlight the main

contributions of this work as follows :



— Classification of the thyroid nodules were achieved with the custom made CNN
architecture which extracts shape and texture features to recognize thyroid types
from automatically determined ROI. The results of proposed CAD system were
compared with the classification result of the expert. We proposed a promising

CAD system which produced very similar result with an experienced doctor.

— This study is unique in the literature in the way of automatically classification

of subclass of thyroid nodules.



2 LITERATURE REVIEW

Thyroid nodules are one of most commonly nodular lesion in the adult population.
Most thyroid nodules are benign and only 7% turn out to be malignant. However, 15%
- 30% of thyroid 10 nodules are diagnosed as indeterminate or suspicious for malignancy
(Vorldnder et al., 2010). The incidence of thyroid cancer has been reported to increase
2.4-fold over the last 30 years (Zhu et al., 2009). This increase is among the largest

increases that has happened in all types of cancers.

Diagnosis of thyroid nodules depends on careful clinical examination and a series of
imaging modalities. Thyroid ultrasonography (TUS) and thyroid scintigraphy are com-
monly used imaging modalities due to their noninvasive nature. Ultrasonography is
useful in terms of defining the volume and localization of nodules. It is used as a guide
to fine needle aspiration biopsy. Thyroid scintigraphy is a modality of nuclear medicine
by which the functionality of thyroid tissue and nodules can be detected. Thyroid scin-
tigraphy can sort the thyroid nodules according to their uptake as hypo or hyperactive.
Besides its local diagnostic utilization scintigraphy is also useful in detecting distant

metastasis of thyroid malignancy.

Common properties of ultrasound and scintigraphy images are speckle noise, intensity
inhomogeneity of tissue texture and low contrast which render segmentation of thyroid
nodules and computer aided detection (CAD) a challenging task. Ultrasound has been
employed extensively to discriminate throid nodules. In the ultrasound studies Active
Contour methods were employed to utilise intensity features to guide contour evolution.
The accuracy of contour directly affects estimation of shape, size, and position of
thyroid nodule and the classification success. Increasing accuracy decreases the number

of false positives and improves the diagnosis of thyroid nodules.

An accurate contour estimation plays a significant role in classification and estima-
tion of shape, size, and position of thyroid nodule. This helps to reduce the num-
ber of false positives, improves the accurate detection and efficient diagnosis of thy-
roid nodules. Koundal et. al. introduced an automated delineation method named as
Spatial Neutrosophic Distance Regularized Level Set (SNDRLS) based on Neutroso-
phic L-Means (NLM) clustering which incorporated spatial information for Level Set
evolution. Their method integrated spatial information with neutrosophic clustering

and level-sets for accurate and effective segmentation of thyroid nodules in ultrasound



images (Koundal et al., 2016).

Variable Background Active Contour (VBAC) was proposed for nodule detection in
ultrasound images (Savelonas et al., 2009; Maroulis et al., 2007). The VBAC model
does not require pre-processing. It accurately detects more than one nodule simulta-
neously and offers topological variations and edge independency compared to ACWE
method. ACWE is an initial contour dependent method. Tsantis et al. proposed the
integration of Hough transform and wavelet-based edge detection method, namely hy-
brid multi-scale model (HMM) for the segmentation of nodules in ultrasound images
(Tsantis et al., 2006). HMM requires a priori estimation of the shape of the nodule
boundaries, as a drawback. Therefore, it was not able to detect elliptical benign no-
dules and malignant nodules with irregular boundaries. To overcome the drawback of
VBAC, lakovidis et al. Proposed automatic tuning of parameters by integrating the
Genetic Algorithm (GA) with VBAC known as GA-VBAC model for nodule segmen-

tation in ultrasound images with (Iakovidis et al., 2007).

Thyroid boundary detector was presented for the detection of borders of thyroid gland
tissue. It utilized the knowledge of initial ROI pre-produced with feature extraction
and classification methods in ultrasound images (Keramidas et al., 2007). The joint
echogenicity-texture model (JET) evaluated the intensity of image and linear binary
pattern (LBP) distributions by Mumford-Shah function at the same time to deliniate
thyroid nodules (Savelonas et al., 2009). The JET model incorporated the advantages
of VBAC to dicriminate hypo-echoic ,hyper-echoic and iso-echoic nodules and disan-
gaged the topological adaptability drawback of HMM. The drawback of the JET mo-
del was its low power to distinguish structures such as bigger blood vessels from ac-
tual nodules. Thyroid nodule detector (TND) system was introduced for segmentation
of thyroid nodules in ultrasound images and videos with more than 95% accuracy
(Keramidas et al., 2012). Ma et al. proposed a method based on edge information of
active contour model for contrast enhancement, smoothing and segmentation . Never-
theless, this method was dependent on human intervention for the determination of

initial contour (Ma et al., 2010).

Ding et al. (Ding et al., 2011) utilized thyroid elastograms to extract statistical and
textural features to train SVM for malignancy detection in thyroid nodules with a
95.2% maximum classification accuracy. Singh et al. (Singh and Jindal, 2012) achieved

a maximum classification accuracy of 84.62% in classification of thyroid nodules by



extracting 13 gray level co-occurrence matrix (GLCM) features to train SVM. Acharya
et al.(Acharya et al., 2012)(Acharya et al., 2012) also used SVM to classify thyroid
nodules after extracting fractal dimension, local binary pattern, laws tex ture energy
features. Although those handcrafted methods presented encouraging results, they re-
quired a series of pre-processing in the form of extraction of effective features. In fact,

the difficulty in the pre-processing step is the selection of the most significant feature.

Jinlian et al. proposed a hybrid method for thyroid nodule diagnosis, which was a fusion
of two pre-trained convolutional neural networks (CNNs) with different convolutional
layers and fully-connected layers. After separately pre-training the two networks with
ImageNet database, they fused feature maps learned by trained convolutional filters,
pooling and normalization operations of the two CNNs. A softmax classifier was used
to diagnose thyroid nodules, with the fused feature maps. The proposed method was
validated on 15,000 ultrasound images and the fusion of the two CNN based models
lead to significant performance improvement, with an accuracy of 83.02% (Ma et al.,

2017).



3 THYROID ABNORMALITY AND DATA ACQUISITION

3.1 Thyroid Nodules

Thyroid gland which is located anteriorly in the neck region of the human body is
one of the major hormone secreting glands of the mammalian endocrine system. The
thyroid gland consist of follicular cells that produce and store thyroid hormones within
the thyroglobulin molecule. The thyroid gland depends on the presence of iodine and
tyrosine to achive its function. The thyroid hormones plays a key role in the regulation
of human metabolism and can affect almost every cell in the body. Insufficiency or
over production of thyroid hormanes lead to pathologies in the gland and results in
conditions which affect the whole body. Laboratory tests are important in diagnosing
conditions of the thyroid gland. For the diagnosis of thyroid diseases clinical manifesta-
tions, blood hormone levels are used in combination with imaging modalities (Kirsten,
2000). The pathological conditions of the thyroid gland has a high prevelance in the
population. The incidence of thyroid nodules increase by age. Nearly half of the popu-
lation is affected by thyroid nodules until the geriatric ages. Scintigraphy of the thyroid
is the sole modality for evaluation of the functional characteristics of thyroid gland and

its pathologies (Hegediis, 2004).

3.2 Scintigraphic Images

Scintigraphy is a modality used to determine the functional status of many organs. As
a modality of nuclear medicine scintigraphical examination requires nuclear isotopes
which are directed to the target tissue by human metabolism. The dependencty of
thyroid gland to the Iodine for functioning renders the thyroid gland the target tissue
of the consumed iodine molecule in the body. 9mTcO4- and 1231 molecules are the
two mostly used isotopes which are used for thyroid scintigraphy. These molecules are
concentrated in the thyroid gland after their introduction to the human body and the
level of radioactivity is measured by the scintigrahy machine which also produces me-
dical images expressing the characteristics of the underlying conditions in the thyroid
gland (Moreno-Reyes et al., 2016). The indications of thyroid scintigraphy in the clini-
cal settings were summerised in the revised consensus statement of American Collage

of Radiology, released in 2014. In this clinical guideline the thyroid scintigraphy was



stated to be useful in determining the size and location of thyroid tissue, in overt and
subclinical hyperthyroidism and detecting suspected focal masses or diffuse thyroid di-
sease. It was also advised to be used as a clinical laboratory test to detect the function
of thyroid nodules. The thyroid scintigraphy can be used in differentiating hyperthy-
roidism from other forms of thyrotoxicosis (Spratt et al., 2016). The knowledge of the
functional status of the thyroid gland can be used in the diagnosis of many benign
throid diseases. In the case of thyotoxicosis ; a thyroid uptake of low levels is suggestive
of subacute thyroiditis, on the other hand a normal or elevated uptake is consistent with
toxic nodular goiter and Graves’ disease. In the presence of increased uptake the shape
characteristics of the distribution of the nucleotide were used to differentiate between
nodular goiter(heterogenous) and Graves’ disease(diffuse and homogenous) (Sarkar,
2006). The whole body thyroid scintigraphy is useful in determination of presence and
location of ectopic thyoid gland or residual functioning thyroid tissue or cancer tissue
after surgery or meatastasis (Spratt et al., 2016). According to Salvatori et al. most of
the time( 93.1%), there is a remnant throid tissue after total thyroidectomy operation
and accurate estimation of remnant mass tissue is not possible by surgical report or
ultrasonography in a considerable number of postoperative patients. According to the
study of Ozdemir et al. on postoperative patients with differentiated thyroid carcinoma
scintigraphy is the most sensitive method for diagnosis of the remant tissue unless the
remnant tissue was successfully ablated by radionucleotide therapy (Ozdemir et al.,
2016; D’Andrea et al., 2009; Salvatori et al., 2007). Therefore thyroid scintigraphy can
be used to evaluate the status of functioning thyroid tissue both in the diagnosis stage

and as a means of after-treatment control (Spratt et al., 2016).

3.3 Abridged Classification of Thyroid Diseases

Thyroid nodules are scintigraphically classified according to their ability to uptake the
given isotope compared to that of the extranodular thyroid tissue. A cold nodule (hypo-
functional) has a reduced isotope uptake and a hot nodule (hyperfunctional) has increa-
sed isotope uptake compared to the other parts of the thyroid tissue (Corvilain et al.,
1998). Thyroid scan gives valuable information about the thyroid gland in the presence
of thyroid abnormality in the thyroid scan (Hegediis, 2004). Ultrasound guided fine-
needle aspiration biopsy (FNAB) of the thyroid nodules is used widely to rule out the
malignancy. The scintigraphic characteristics of the nodules may be used as a means of

assistance before FNAB because nodules with increased uptake(hot nodules) are gene-



rally benign and do not require FNAB, while less functioning nodules ( cold nodules)
may be malignant ) (Sarkar, 2006; Hegediis, 2004). Thyroid scintigraphy is now mostly
used in the work-up of a hyperfunctioning thyroid nodule. However the diagnosis of
thyroid nodules of a patient with normal TSH values can be delayed unless thyroid
scintigraphy is done. Hegediis et al. stated that the risk of malignant thyroid nodules
in the presence of normal TSH values to be higher than previously stated (Hegediis,
2004). Although other clinical or radiographic measures like history, physical examina-
tion, laboratory tests, ultrasonography besides the scintigraphy may be needed in order
to properly evaluate pathological conditions of thyroid gland, thyroid scintigraphy is
still an important element for the diagnosis and clinical decision making of thyroid
pathologies. There are scarce computer aided diagnosis studies which evaluate scinti-
graphic images of the human body. There are even fewer studies in the literature on

thyroid scintigraphy image.

In this study common pathological patterns of scinticraphic images of thyroid gland
were classified by the proposed CNN. These patterns include thyroid glands with dif-
fuse homogenous uptake, diffuse nonhomogenous uptake, solitary nodules with either
increased or decreased uptake levels and multinodullary thyroid glands. According
to these scintigraphic images there were 5 groups of scinticraphical appearance. The
images with normal thyroid uptake and postoperative patients having no uptake were

excluded from the study.

3.3.1 Diffuse homogenous uptake

This group includes scintigraphic images of thyroid glands with even distribution of
increased isotope uptake in the gland (Fig. 3.1). In a thyrotoxic patient this appearance
is reported as Grave’s disease. In this condition the gland is usually enlarged to some

degree.

3.3.2 Diffuse nonhomogenous uptake

This group also includes images of enlarged thyroid glands with increased homogenous
uptake in the glandular tissue but having distortions from the normal glandular shape,
probably due to congenital or developmental conditions leading to anatomical distor-

tions in the gland, periglandular pathologies or nonfunctioning regions of the glandular



Figure 3.1: Demonstration of scintigraphic diffuse homogenous uptake image

Figure 3.2: Demonstration of scintigraphic diffuse nonhomogenous uptake
image



Figure 3.3: Demonstration of scintigraphic hyperactive nodule image

tissue itself (Fig.3.2).

3.3.3 Hyperactive nodule

Group 3 (Hyperactive nodule) : This group constitutes thyroid images with local in-
creased uptake in the glandular tissue. The accumulation of isotope in the gland is
mostly round in shape and usually does not cause so much distortion in the global

structure of the gland (Fig. 3.3).

3.3.4 Hypoactive nodule

Thyroid gland images including a clearly visible solitary area of low accumulation of
isotope in the glandular tissue were labelled as group 4. The general characteristics of
images of lesions in these thyroid glands resemble group 3 although these lesions does

not accumulate the given isotope (Fig. 3.4).



Figure 3.4: Demonstration of scintigraphic hypoaactive nodule image

-
’

Figure 3.5: Demonstration of scintigraphic multinodular uptake image

3.3.5 Multinodular uptake

This group contains images of enlarged thyroid glands with heterogenous uptake due
to multiple nodules which has differing degrees of isotope accumulation capacity (Fig.
3.5). Generally the outer borders of the gland is also distorted. Patients with toxic

multinodular goiter were included in this group.

We have collected 954 scintigraphic images from Sisli Etfal Training and Research
hospital. Our data set consist of 372 diffuse homogeneous uptake, 152 diffuse non-
homogeneous uptake, 185 hyperactive nodule, 41 hypoactive nodule and 204 multino-

dular uptake images.



4 IMAGE PRE-PROCESSING OPERATIONS

Image pre-processing steps are very important in the recognition of pathologies. When
we use whole image in a CAD system, it will try to extract meaningful information on
the other anatomical regions. Instead of feeding deep neural network architecture with
whole image, we try to give only images which has a only region of interest. For this

reason we have segmented thyroid nodules from scintigraphic images.

Region based active contours methods are very succesfull methods in order to segment
region of interest. With the Chan-Vese method (Wang et al., 2010), we initialize a
initial contours on the image. By optimizing the force applied to this contours, we
can determine the different regions in the image. However, Chan-Vese method known
as a robust method for image noise, the segmentation success is under desired level.
Because this method is highly depend on the location of initial contours. It can not

handle successfully image intensity non homogeneity problem.

Statistical level set model(Zhang et al., 2010) handles the weak points of Chan-Vese
model by transforming image into other domain, by this way it can define different
inhomogeneous objects in the image with Gaussian distribution of different means and

variances.

After determination of region of interest, we need to further image pre-processing ope-
ration. Statistical level set method is robust to the speckle noise but when we decrease
noise, the intensity inhomogeneity problem is also decreased. Noise reduction provide

to improve image segmentation success.

CNN try to extract meaningful information from images. We assume to improve success
of CNN by elimination of unnecessary anatomical regions and decrease the irrelevant
information comes from the speckle noise. For this reason we removed speckle noise

present in images by OBNLM method (Coupé et al., 2009).

The accuracy rate of CNN is highly depended on the number of data used in the
training dataset. In the literature different types of data augmentation is present as
rotation, scaling, translation and mirroring. In this study we try to increase number

of dataset by noise reduced images. For this reason we have combined original dataset



with the noise reduced images based on the OBNLM method.

4.1 Active Contours Model

Image segmentation is the process of sectionalizing an image into homogeneous parts in
terms of color, texture, intensity or another common property. There are many methods
proposed to segment images of which the active contours models are the most practiced
and reliable methods in the literature. The main idea of the active contours models are
defining the borders of a region based on an energy minimizing policy. Active contours
models direct curves by optimizing the interior and exterior force applied to the initial
contour resulting with a series of shrinking and expanding operations to define the true

border of the region (Chan and Vese, 2001).

The active contours models are categorized into three groups as edge based, region
based and hybrid models. Edge based models use image gradient information to localize
a region (Paragios and Deriche, 2000). In the presence of noise and weak boundaries
the edge based methods exert low performance. Region based active contours models
are not dependent on the image gradient. These models use statistical information of
an image to evolve the curves which helps to sort through the region of interest despite
of weak and deficient edges. CV method is one of the most popular example of the

region based models (Chan and Vese, 2001).

4.2 Chan-Vese Model

The Chan-Vese model can be accepted as a simplified variant of Mumford —Shah (MS)
function into a level set framework to represent an image as a piecewise constant
function. MS model utilizes a set of contours C to distinguish different homogenous
regions of interest in an image. CV successfully works out the optimization problem by
defining unknown curve C with level set function. CV model is reformulated with level

set function ¢(z) to find out optimum contour C which distinguishes homogeneous



image into non overlapping regions as follows :

EV(c1, ¢, C) = pu - Length(C)
+ A / luo(z, ) — 1| H(o(z,y))dzdy (4.1)

Y / ot y) = eaf (1= Ho(e, )y

An evolving curve C' = 0f), with w C 2 an open subset, inside the contour was
demonstrated with the parameter w and outside the contour with the parameter Q\w
which represents the background pixels, H(x) represents the Heaviside function. ¢; and
¢y are the values of uy which are the average intensity values inside and outside of the
contours C. \; and )\, parameters are very important to control the force applied to
inside and outside the contour. It may be better to determine small values of p when
we try to segment small size of objects. In this study, we take \; value smaller than A,

value. The energy function was minimized with the level set formulation Eq. (4.2).

C'=0w=A{(z,y) €Q:9(x-y) =0}
w={(z,y) €Q:¢(x-y) >0} (4.2)

Nw = {(z,y) € 2: ¢(x-y) <0}

The main merit of the CV model being not depend on the image gradient is a powerful
property for segmentation of blurred and deficient objects in a noisy image. Although
CV constitutes the theoretical background of many segmentation methods the usage of
constant parameters as the global information of the image causes inadequate segmen-
tation results of CV model in inhomogeneous images. Moreover success of the energy

function is dependent on the initial contour position.

4.3 Statistical level set model

Statistical level set model emerged so as to overcome the segmentation difficulty of
inhomogeneous images for which the piecewise constant function of the CV model is not
convenient. The statistical level set model defines objects by means of multiple Gaussian
probability distributions of spatially varying means and variances which is useful in

conditions where the image contain inhomogeneous target objects (Zhang et al., 2010).



400 iterations

Figure 4.1: Demonstrate segmentation original scintigraphic images and its
segmentation result based on statistical level set method

Probability density function P(I(y)|6;, B, x) utilises the different mean parameter U;(x)

to define varying local region statistics in Eq. (4.3). This model assumes that there exist

th

n objects in the image domain €2, where €2; represents i"* object domain. The parameter

x stands for the center pixel of each local region O,.
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For a successful discrimination of all object regions in original image intensity domain
D(7) adjacent regions should have non-overlapping properties in the statistics. This
issue can be handled by mapping the image to another domain R(7) by averaging
image intensities within the predefined window size. The following energy function was

minimized with the regularized level set function ®.

Ely— Z/ y)M; (9(y)) dy (4.4)

The statistical level set model is a soft classification method which assigns each pixel
to more than one class. In this method each inhomogeneous objects are identified with
Gaussian distribution of different means and variances. The intensity in the transformed
domain is calculated by averaging the adjacent pixel intensities of the same class.
Classification result is less sensitive to noise because the intensities in the transformed

domain have less overlapping in the statistics than those in the original domain. This



method even can be used for bias correction because it acts as a means low pass filter
by averaging the adjacent pixel intensities of the same class in the transformed domain
(Zhang et al., 2010). This method however is dependent on the initial contour. In this
study all scintigraphic images were segmented with statistical level set method (Fig.

4.1).

4.4 Noise Reduction with Optimized Bayesian Non-Local Mean

Successful image denoising the anatomical landmarks in the ROI become more pro-
minent and clear which increases visual perception. This fact led us to hypothesize
that image denoising procedure to improve the success of the proposed CNN based
CAD system. Because the false signals coming from image noise are preserved by the
CNN and this information is processed by the system as if it is meaningful. The reduc-
tion of these non-significant information in the training dataset might have a positive

effect on the training phase.

The noise reduction in medical images is not an easy problem since the speckle artefacts
are hard to model and the speckle noise is tissue specific. It is crucial to preserve the
critical anatomical information during noise reduction in the ultrasound images. Non
local mean (NLM) filter is a widely used and successful image denoising method. NLM
method divides the image into several overlapping blocks. The NLM calculates the
similarity of the reference block (the search window) with the remaining blocks of the
image represented by its mean weight value. By this way NLM can accomplish noise
reduction not only in the close proximity of the selected block but also in the blocks
of a distance, that is the whole image. However NLM filter was originally developed
for additive Gaussian noise not for speckle noise of ultrasound images. Pierrick et al.
remodeled the non-local mean filter called as OBNLM by occupying Loupas noise model
which is one of the most successful speckle noise models in the literature (Coupé et al.,
2009) . The distance measurement metric in OBNLM was also changed with Pearson
distance measurement metric because L2 similarity metric may work inaccurately in
low signal to noise ratio images like scintigraphic images. OBNLM outperforms other
well known methods in the literature like local adaptive filter and anisotropic diffusion

filter (Zhang et al., 2015).

In this study we applied OBNLM method to scintigraphic images with the smoothing



Figure 4.2: Demonstration of a) scintigraphic image of thyroid nodule, b) de-
noised scintigraphic image by OBNLM method with smoothing parameter
(h=>5) and search area size (W=7) and, c) corresponding residual image

parameter (h=>5) and search area size (W=7) to provide a more clear and augmented
training dataset. Each center pixels x;; of blocks B;. were empirically estimated with
the parameter v(B;) based on equations Eq. (4.5) and denoised scintigraphic images
were obtained as demonstrated in Figure 4.2.

B u sz v Bi
() = BE T PR P (B s

A z‘f?f'm (Bi)|v(B;))

4.5 Principles of The Proposed Image Pre-processing Steps

The thyroid nodules has complex anatomical and histological structure resulting in
both global and local intensity inhomogeneities. Thus a proposed system must handle
both global and local inhomogeneity problem in such a complicated anatomical area.
The statistical level set method which was stated to be more precise than other methods
in segmentation of inhomogeneous objects even in the presence of high noise was selec-
ted for segmentation of thyroid scintigraphic images (Zhang, Zhang, Lam and Zhang,
2016).

The CV model and SLS methods were applied to the original image to segment neces-
sary anatomical area. The SLS method was more successful in segmenting anatomical
areas than the CV model. Speckle noise were reduced by OBNLM method in order
to obtain noise free training and test data set. By this way we assumed to increase

accuracy of our proposed CNN architectures.



5 CONVOLUTIONAL NEURAL NETWORK

5.1 Layers used to build Convolutional Neural Network

Deep CNNs, being one of the advanced visual analysis methods, are the hot topic of
the literature. CNNs are synergetic multilayered mechanisms which are mainly compo-
sed of convolution layer, activation function and pooling layer. These layers work in a
cascaded and hierarchic manner. The output of one layer is served as an input to the
following layer. The architecture of a CNN can be manipulated according to the spe-
cific pattern recognition problem. There may be various intermediate layers to extract
effective low level features which are used to build high level features. The learning ca-
pability of CNNs is a result of their analytic capacity of the hierarchy of these effective
features.Resembling mammalian visual neurons, every neuron of a layer is connected
to its own specific region of image which commonly overlap to other neuronal output.
The texture and geometrical structure of an image may be represented by CNNs by

analyzing the overlapping information of local areas defined by each neuron.

Representation of images with increasing comlexity may require manipulation of the
depth and breadth of a network. Estimation of optimum depth and breadth of a CNN
configuration designed for a specific goal has no strict rule proven mathematically. The
pathway of CNN architecture optimization is an expert dependent approach which
is principally a trial and error minimization approach. Likewise, training is through
minimizing a loss function which produces information to feedback the CNN. A typical
CNN has the ability to recognize texture and shape characteristics of an image by
utilizing perceived information of each neuron. These neuronal information is the raw
data which convalesce after processing it through cascaded learnable filters and sub-

sampling operations.

5.1.1 Convolutional Layer

The key element of the CNN is the convolutional layer. It has a particular importance in
extracting features from the raw image. It uses learnable filters each of which represents
a specific portion of the image called as a local receptive field. Every kernel is slidable
on the image, the magnitude of which is defined by the stride parameter. A feature map

is produced by the convolving operation according to the width and height of the input
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Figure 5.1: Demonstration of different activation function

volume. Convolution layer is very important to obtain feature maps. The size of kernel
and stride parameters used in this layer is very important to extract texture features.
We used cascaded convolution layers and try to avoid using max pooling operations to

not loose important features.

5.1.2 Activation function

Activation function uses the feature maps produced by the convolutional layer as input
information. Features produced by different filters in the convolutional layer are learned
by the activation function. Stacking of all of the activation maps results with the
production of the full output volume. A non-linear problem requires an activation
function which adds non-linearity to the system. Recently introduced the so called
rectified linear unit (RELU) is the mostly utilized one. RELU avoid easy saturation of
gradient descent algorithm. RELU replaces negative values of the feature maps with
zero which considerably increases the speed of the convergence of the CNN. In this
thesis we haven implemented RELU with using max function, it provide us to define
negative values with zeros. Non linear activation function of RELU allowed the nodes
to learn more complex shape and texture information in the images. The result is better

than the other activation function of sigmoid and Tanh activation function (Fig.5.1).

5.1.3 Pooling Layer

The pooling layer is a form of down-sampling which provides to reduce feature maps.

The max and average pooling are the mostly used non-linear functions by the pooling



layer. The main function of the pooling layer is to prevent over fitting by decreasing the
amount of parameters and computation. The output of the convolution and pooling
layers are high level features extracted from image. The fully connected layer of CNN
utilizes these discriminative features as input and provides classification of the test

data according to training dataset.

5.1.4 Fully Connected Layer

Every neuron at the previous layer is connected to every neuron at the next layer
by using the fully connected layer. The main purpose of fully connected layer is to
determine the class (or label) of the given test input image according to the train data
by using the its high-level features. Another advantage of using fully-connected layer
is getting better result by using the combination of two good features gathered from

the previous layers.

5.2 Our Proposed CNN

CNNs are multi-layered structures. There are 4 types of layers which process the ga-
thered information from the neurons namely; convolutional, activation, pooling and
fully connected. Every layer performs a different task in the network. Similar to the
working principle of a mammalian retinal neuron, each neuron receives a local area of
the image producing an overlapping representation of it in the convolutional layer. The
function of the convolutional layer is to create feature maps. These feature maps are
produced depending on the weights of the neuronal inputs in which the shared weights
constitute a filter for each map. The main function of them is to prevent over-fitting
in other words to increase efficacy. The following layer is the activation layer after the
convolutional layer. More complex features are extracted in the activation layer with
the aid of nonlinear property of the activation layer. In the following pooling layer,
inputs are statistically analyzed and the sensitivity of the image is decreased through

shifting rectangles.

After determination of the ROI different CNN architectures were constructed with
different number of layers and size of convolutional kernels in each layer. The effect of
different size and quality of datasets were also measured in each CNN configuration.

By this way we determined the best configuration of the CNN to be employed in



Table5.1: Details of proposed CNN components (Conv : Convolutional
Layer,MP : Max pooling layer, FC : Fully connected layer)

Layer Input size of the image CNN (filter size and feature maps) Stride

Convl 101x101 9x9x256 1
Conv2 101x101 Tx7x192 1
MP1 50x50 2x2 2
Conv3 50x50 Hxbx5H12 1
MP2 25x25 2x2 2
Conv4 25x25 9x9x256 1
MP3 12x12 2x2 2
FC1 128

classification of thyroid nodules.

The enormous capacity of CNNs to solve a specific problem can be tuned by modulating
their architecture in order to increase the success of the system. By changing the
hierarchical organization of the CNNs or the number of the layers the ability of the
system can be modified in order to reach the desired goal. For example, shallow CNNs
are used to recognize basic structures such as lines and edges. By increasing the depth of
the CNNs more complex structures like shape and texture can be learned by the system
(Ma et al., 2017; Zhang, Xiao, Dai, Suo, Wang, Shi and Zheng, 2016). In addition the
number and size of filters used in convolutional layer or the magnitude of reduction
in the pooling layer can be manipulated which provides a superb versatility to the
system. However there is no theory proof in order to construct the most suitable CNN
to achieve a desired goal (Ghesu et al., 2016). Basically it is a trial and error approach

which minimizes the error of the system.

In order to construct a successful CNN structure one should be familiar to the anato-
mical relationships and pathophysiological conditions to be recognized by the system.
In the scintigraphic images shape and texture characteristics of thyroid nodules are
the prerequisites for the explanation of the condition. The anatomical structures of
nodules may show variations in each person. Moreover each scintigraphic image exerts
a slightly different relationship between anatomical structures causing changes in the
shape information. In our CNN configuration in order to preserve low level texture and
shape features from the aggressive reduction operation of pooling layer, we employed
three convolutional layers successively without a pooling operation in between. The
neuronal information captured from the image called as the receptive field, should be

smaller than the structures to be recognized to avoid irrelevant and nonlocal informa-
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Figure 5.2: Architecture of our proposed CNN

tion (Anthimopoulos et al., 2016). In our problem the anatomical structures which are
in different size and shape should be recognized from the each image. Therefore different
size and number of filters were used in each convolutional layer with respect to size of
the target objects. We employed different filter sizes of 3-5-7-9 in each convolutional

layer demonstrated in Table 2.

The proposed CNN consists of four convolutional and three max pooling layers in the
feature learning step. Image patches sized 101x101 were given to the first convolutio-
nal layer and 256 feature maps of size 101x101 were generated. In each step, we have
determined number of feature maps in each step by trying different number of feature
maps. We utilized cascaded convolution layer. In the second convolution layer, we have
created 192 features maps with filter size of 7x7. Next to the second convolutional layer
we placed a rectified linear unit (Rel.u) which replaces negative value of feature map
with zero. The third convolutional layer which has the kernel size of 5x5 was placed and
512 feature maps of size 50x50 were generated. Pooling operation was employed after
the convolution and activation function (ReLu). Max-pooling was applied to feature
maps with the stride size of two pixels. The fourth convolutional layer generated 256
feature maps of size 25x25. Fully connected layer with 128 hidden units with max-out
activation function was stacked to label each image patches. Max-out activation func-

tion is known also as softmax function, softargmax or normalized exponential function.



For the optimization algorithm, we used Adam algorithm instead of classical stochastic
gradient descent to update network weights in the training data. Its name was derived
from the first two letters of the words adaptive and moment. Adam is an adaptive
learning rate method, in other means, it puts into account individual learning rates of
many parameters. Basically, it uses estimations of first order (mean) and second order
(uncentered variance) moments of gradient, separately, to calculate the learning rate
of individual weights of CNN. In addition, the gradient of the cost function of neural
network may be regarded as a random variable, because of the partial evaluation of
a piece of randomly selected batch of data. During estimation of the moments. Adam
algorithm evaluates exponentially moving averages which are calculated utilizing the
gradient values of a mini-batch. Adam algorithm combines advantages of the Adaptive
Gradient Algorithm (AdaGrad) and Root Mean Square Propagation (RMSProp). For
this reason Adam algorithm works fast and better than AdaGrad and RMSProp.

we have divided our dataset into training and test set. Our proposed model used to
training dataset to learn more robust feature and test set were utilized to classify
scintigraphic images with trained weights. We aimed to obtain the probability of each
groups from softmax function of the classification step of our proposed CNN as diffuse
homogeneous uptake, diffuse non-homogeneous uptake, hyperactive nodule, hypoactive

nodule and multinodular uptake images.



6 COMPARATIVE MODELS

The performance of the proposed CNN based CAD system was compared with state of
art methods like pyramid of histograms of orientation gradients (PHOG)(Bosch et al.,
2007), gray level co-occurrence matrix, local configuration pattern and bag of feature

(BoF)(Deselaers et al., 2008).

6.1 Pyramid of Histograms of Orientation Gradients

PHOG is the extended version of the HOG method which was designed to extract
shape feature from images. PHOG is capable of determining the local shape of the ob-
ject based on distribution over the edge orientations and spatial layout by decomposing
the image into subbands at multiple resolutions (Bosch et al., 2007). PHOG was used
for recognition of emotional status of human face (Dhall et al., 2011) and other human
face expressions in the literature such as smiling (Bai et al., 2009), fatigue (Zhao et al.,
2013) and recognition of vehicles for traffic surveillance (Ghasemi and Safabakhsh,

2012).

PHOG descriptor provides to represent the local shape of an object by using histogram
of edge orientation in a specific region divided into subbands expressed in the fractions
of K bins. The histogram of edge orientation is estimated based on image edge gradient
and magnitude. The decomposition of the image into subbands in x and y dimensions
creates cells. It is designed as a multilevel method with increasing number of subbands
at each pyramid level. PHOG provides to calculate HOG features in each subbands
thus generating finer shape features at increasing levels. In this study we extracted
edge information from image patches of thyroid nodules by using Canny Edge detector.
Afterwards the image was partitioned into cells at three pyramid levels. Each level L
contains 2L cells in the grid. The 3x3 Sobel mask was operated on the edge contours of
each cells to obtain orientation gradient without any smoothing operation (Fig. 6.1).
The magnitude of the edges determine their contribution and the assigned weights. The
frequency within a certain angular range and orientation is simulated as a bin in the
histogram (Fig. 6.2). The results of HOG method were concatenated to obtain the K
bins histogram of PHOG. The resulting histogram is the sum of information obtained
from each level of pyramid representation. In our experiment parameters of the HOG

descriptor were determined as 8 and 20 orientation bins in the ranges of [0-180] and
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Figure 6.2: Demonstrate frequency within a certain angular range and orien-
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[0-360]. The best results were obtained assuming the number of pyramids L=3 and bin
size K=8 and orientation range is [0-360]. The number of features extracted based on
PHOG method from scintigraphic images can be determined as follows K represent
bins of histogram and L is the number of level in image pyramid representation. We

have extracted 168 shape features for L=3, K=8 and range R =[0=360)].

6.2 Gray Level Co-occurrence Matrix

GLCM, is one of the well-known and widely used texture analysis methods and also
known as gray tone spatial dependency matrix. GLCM is a frequency matrix which
calculates sum of repetition of pair of intensity values in an image in a given displace-
ment (d :distance) and orientation (6 :angle) also named as offset. The GLCM matrix
calculates the second order joint conditional probability density function (PDFs) of
gray level pairs in an image. Varying offset values will give changing GLCM matrices
and different co-occurrence distributions which will result in different image features

for the same reference image (Fig. 6.1).
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GLCM of an image is computed using displacement vector d (distance : distance to the
adjacent neighbor) and rotational angles (preferably 6 :0° ,45° 90°,135 % ). An example
is given in Fig. 6.2 a. In Fig. 6.2 b., image intensity values are given in the form of a
matrix. Fig. 6.2 demonstrates calculated GLCM where (i, j) represents the number of

times a point having gray level j occurs relative to a point having gray level i for offset

d=1 and 6= 0 .

Widely used texture features that can be obtained from GLCM are contrast, energy,
homogeneity, correlation and entropy. We calculated also other metrics derived from
GLCM as angular second moment (ASM), variance, difference variance, difference en-

tropy, difference moment and two measurements of correlation features .

Calculated features : Autocorrelation, Contrast, Correlation, Cluster Prominence, Clus-
ter Shade, Dissimilarity, Energy, Entropy, Homogeneity, Maximum probability, Sum of
squares, Sum average, Sum variance, Sum entropy, Difference variance, Difference en-
tropy, Information measure of correlationl, Inverse difference normalized, Inverse diffe-
rence moment normalized In this study we have computed all of the above second order
features stated above for each of the symmetric and non-symmetric GLCM created at
different displacement and orientations ( 6 : 0° ,45% ,90°,135 ° Offset= 8,12,16). For each
of the calculated GLCM different features were extracted and used for classification of

images.
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Figure 6.4: a)Demonstrate displacement vector of GLCM matrices and b)
different co-occurrence distributions
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6.3 Local Configuration Pattern

Local configuration pattern can be obtained by combining microscopic images descrip-
tor (MiC) with local features represented by pattern occurrences as demonstrated in
Figure 6.3. The descriptor MiC that encodes image microscopic configuration by a

linear configuration model.

For Local Binary Pattern : The binary value of “0” or “17assigned to the neighboring
pixel according to center pixel value. Value “0” is considered if the pixel value is greater
than neighboring pixels, otherwise “1”. A local contrast information is thus extracted
from LBP. The segmented scintigraphic images in this work are divided into rows and
columns where each individual grid is represented by the pixel value. After applying
LBP, the image is represented by binary numbers (0s and 1s). Then, the frequency of
the recurring number in each grid is computed and mapped to a histogram as shown i

Figure 6.4.

For Mic Descriptor : Microscopic features capture image microscopic configuration
which embodies image configuration and pixel-wise interaction relationships by a linear
model. The optimal model parameters are estimated by an efficient least squares esti-
mator. To achieve rotation invariance, which is a desired property for texture features,
Fourier transform is applied to the estimated parameter vectors. Finally, the transfor-
med vectors are concatenated with local pattern occurrences to construct LCPs. The

Steps of algorithms

— Compute the LBP code image and apply mapping table
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— Calculate the interpolation weights and interpolated pixel values.

— Compute the variance matrix using LBP codes which are computed using N

sampling points on a circle of radius R and using mapping table
— Calculate LBP Histogram Fourier
LBPriu2(P,R) = u(g; — g.),ifU(LBP(P,R)) < 2P + 1, otherwise (6.1)
p—1
— Calculate Linear configuration coefficients

— Estimate optimal weights, associating with intensities of neigboring pixels to

linearly reconstruct the central pixel intensity by :

E(ag, ...ap—1) = |g° — Zaigi| (6.2)
p—1

— To minimize the reconstruction error (E(a0 ,....... ap-1) ) for each pattern opti-

mal parameters determined by least squares estimation.

6.4 Bag of Feature

Bag-of-features representations have recently become popular for content based image
classification owing to their simplicity and good performance. They evolved from tex-
ton methods in texture analysis. The basic idea is to treat images as loose collections
of independent patches, sampling a representative set of patches from the image, eva-
luating a visual descriptor vector for each patch independently, and using the resulting
distribution of samples in descriptor space as a characterization of the image. The bag-

of-words (BoW) model was first used in the context of text categorization (Joachims,



1998; Tong and Koller, 2001). Later it has been adopted to computer vision problems
such as image classification and image retrieval (Sivic and Zisserman, 2003). Csurka et
al. extracted affine invariant descriptors of image patches and then used vector quanti-
zation methods to form the visual words from these descriptors. In another work, Sivic
and Zisserman (Sivic and Zisserman, 2003) used a similar approach to form their visual
words and applied it to object and scene retrieval in videos. After its introduction to
computer vision community, the BoW model has rapidly become a preferred baseline
model in object and image classification tasks, and several variations, (Lazebnik et al.,

2006) have been proposed.

Our proposed method consists of two major steps : In the first step, a set of code-words
is generated by using an unsupervised learning method. In the second step,we represent
each pixel or anatomical region with the relative frequencies of their code-words and

then use these relative frequencies as an input to recognize the thyroid nodules .

6.5 Transfer Learning

Number of training data is very important to train deep neural network. Unfortunately
in medical area, collecting large number of dataset is very challenging task and require
to many times. When the number of dataset is not sufficient in each class, we encounter
the problem of over-fitting. In order to prevent over-fitting we can augment our dataset
by scaling, rotation, transformation of images. An other approach to prevent over-fitting
is to use drop out method. Drop out method provide to ignore some of the neurons
during training phase which are chosen randomly (Fig. 6.6). In this study we have
increase our dataset by noise reduction and we have supported our proposed deep
neural network model by drop out model. We used 0.04 drop out values in the fully

connected layer.

Alternative approaches for training a deep CNN in the presence of less than required
size of a dataset are transfer learning and fine tuning (Huynh et al., 2016). Transfer
learning provide to reduce over-fitting in models. Optimization of the hyper-parameters
and determining the optimal learning rate of the neural net for different layers are
very challenging tasks due to the limited knowledge about the relevance of the large
number of architectural and training hyper-parameters. Moreover, the success rate of

the transfer learning-based systems is highly dependent on the dataset used for training.



No Dropout With Dropout

Figure 6.7: Demonstration of drop out method

In the absence of the knowledge of pre-trained weights of a neural net resembling our
dataset (Shin et al., 2016; Ma et al., 2017) , we used AlexNet after fine-tuning certain
parameters to classify thyroid nodules. Although we did not assume to get satisfactory
results, we applied AlexNet to our dataset for the sake of comparison and to receive a

baseline. The success rate of AlexNet was 82.09%.



7 EXPERIMENTAL RESULT

Thyroid gland which is located anteriorly in the neck region of the human body is
one of the major hormone secreting glands of the mammalian endocrine system. The
thyroid gland consist of follicular cells that produce and store thyroid hormones within
the thyroglobulin molecule. The thyroid gland depends on the presence of iodine and
tyrosine to achieve its function. The thyroid hormones plays a key role in the regulation
of human metabolism and can affect almost every cell in the body. Insufficiency or
over production of thyroid hormones lead to pathologies in the gland and results in
conditions which affect the whole body. The focus of this study is to discriminate diffuse
homogeneous uptake, diffuse non-homogeneous uptake, hyperactive nodule, hypoactive

nodule and multi-nodular uptake classes from each other.

The success of a CAD system depends on the performance of the selected feature
extraction methods in segmenting thyroid nodules. Proposed CAD system for discri-
mination of thyroid pathologies from scintigraphic images is based on CNN. Learning
capability of CNNs is directly influenced by their architecture. The size and the number
of filters used in the convolution layer of CNN has critical role in capturing the discri-
minative features. The adjustability of a CNN structure offers an endless opportunity
to construct many different CNN architectures each of which has a different behavior

for a given case.

The focus of this study is to classify thyroid scintigraphy images of different thyroid
pathologies which can be defined mainly as diffuse homogeneous uptake, diffuse non-
homogeneous uptake, hyperactive nodule, hypoactive nodule and multinodular uptake
classes. All of the experiments were carried out on a server having a NVIDIA Geforce
GTX Titan X (6 GB on board memeory). The CNN algorithms were performed with

the TensorFlow in Keras environment.

We used 10-fold cross-validation method in order to evaluate the stability and reliability
of the proposed CNN. The dataset was split into two as 70% training and 30% test sets
and test dataset was freed from the training dataset. The selection bias was handled
by random sampling of ten cycles which produced different training and test datasets
in each cycle of the divided dataset. Different CNN architectures were implemented
with TensorFlow using stochastic optimization model of Adam algorithm for training

over 150 epochs with a batch size of 32 images (Kingma and Ba, 2014).



The image patches produced with SLS method were given and the success rates of
different CNN configurations were evaluated and the CNN configuration which per-
formed the best according to the train-test setup was selected to classify hip types.
Our proposed CNN was evaluated with three different approaches. In the beginning
the CNN was fed with the original dataset. Secondly the performance of the proposed
CNN with the denoised dataset was evaluated. Finally the augmented denoised dataset
was fed to the proposed CNN.

Given the original dataset to the proposed CNN configuration the overall accuracy rate

was 91.19%.

In the second step, the same CNN configuration was evaluated with the dataset de-
noised by OBNLM method and the overall accuracy rate increased to 92.82% from
91.19%. The effect of image denoising on the thyroid nodule classification was mo-
nitored especially in the hypoactive nodule groups. There was a remarkable increase
in differentiation of hyperactive nodule and diffuse non homogenous uptake which in-
creased from 70.08% to 88.73% and 73.17% to 92.97%, respectively. Therefore image
denoising increased the classification success of the proposed CNN most probably due

to elimination of the negative effect of the speckle noise on the learning capability of

the CNN.

It is stated in the literature that the success of a given CNN largely depends on the
magnitude of the training dataset. In order to feed the proposed CNN with a larger
and a higher quality dataset we proposed to augment our dataset with rotation and
scalling . The overall accuracy rate of the proposed CNN was 94.06%. The success rate
of the proposed system was 96.07% for homogeneous uptake, 94.08% for multinodular
uptake and 92.97% for diffuse non homogenous uptake (Table 7.1). This remarkable
increase in the diagnosis capability of the system demonstrates the influence of the

higher quality and increased number of dataset on the accuracy rates.

In the literature Singh et al.(Singh and Jindal, 2012) extracted gray level co-occurrence
matrix (GLCM) features, and classified thyroid nodules with a success rate of 84.62%
based on SVM. Acharya et al. (Acharya et al., 2012) extracted fractal dimension, local
binary pattern features to classify thyroid nodules as benign and malignant based on
SVM. Although these studies have gained encouraging results, they were mostly based
on handcrafted features extracted from images with a series of pre-processing. Ding

et al. (Ding et al., 2011) extracted statistical and textural features from thyroid elas-



tograms, and then trained with SVM to detect malignancy of thyroid nodules with a
maximum classification accuracy rate of 95.2%. Jinlian et al. proposed a hybrid method
for thyroid nodule diagnosis, which was a fusion of two pre-trained convolutional neural
networks with different convolutional layers and fully-connected layers. The proposed
method was validated on 15,000 ultrasound images and the fusion of the two CNN ba-
sed models lead to significant performance improvement, with an accuracy of 83.02%
(Ma et al., 2017). Classification of the thyroid nodules were achieved with the custom
made CNN architecture which produced very similar result with an experienced doctor.
In our knowledge, it is the first study to classify scintigraphic images based on deep
neural network, local configuration pattern and automatically classification of subclass
of thyroid nodules as diffuse homogeneous uptake, diffuse non-homogeneous uptake,
hyperactive nodule, hypoactive nodule and multinodular uptake classes. For sake of

Table7.1: Overall accuracy rates of different methods for the classification of
thyroid nodules

Overall accuracy rate

Methods of evaluation of classification (%)

PHOG evaluated on orginal data set 87.61
Bag of Feature evaluated on orginal data set 85.72
Gray level co-occurrence matrix 86.04
Local Configuration Pattern 88.91
AlexNet evaluated on orginal data set 82.09
Proposed CNN with orginal data set 91.19
Proposed CNN with denoised data set 92.82
Proposed CNN with augmented data set 94.06

comparison, we have classified scintigraphic images with the state of art methods like
pyramid of histograms of orientation gradients (PHOG), gray level co-occurrence ma-
trix [27], local configuration pattern and bag of feature. All of this methods are type
of hand crafted method. PHOG method provide to extract shape features. Local confi-
guration pattern used to extract texture features which is improved method of local
binary pattern. Local configuration pattern handle the problem of variance of texture
pattern. GLCM method is also kind of texture metod that can extract different kind of
texture feature according to determined offset values. There is no proof on the optimal
offset values. For this reason we take different offset values and tested the accuracy
rate of GLCM features on the training dataset. Then we determined the best GLCM
co-occurrence matrix and offset parameters. PHOG was applied to capture the local
image and its spatial layout with the parameters, 3 levels of pyramid, 8 orientation bins

and in the ranges of [0,360]. 680 shape features were obtained with PHOG method and



Table7.2: Confusion Matrix of Proposed Convolutional Neural Network

Confusion Matrix of Proposed CNN for Thyroid Nodules

Homogeneous }[l) iffuse non- Hyperactive Hypoactive Multinodular
omogeneous
uptake nodule nodule uptake
uptake

Homogeneous uptake 96.07 1.62 2.43 0.65 0.80
Diffuse non 5.39 92.97 2.43 0.65 0
homogeneous uptake
Hyperactive nodule 14 0 73.17 4.60 0.26
Hypoactive nodul 6.37 1.62 4.87 80.26 3.22
Multinodular uptake 3.43 0.54 4.87 7.89 94.08

84 features were selected with correlation based feature selection method. The BoF was
applied to extract 500 codebooks to represent similar hip image patches. The success
rate of PHOG and BoF were 85.72% and 87.61% respectively. The overall accuracy rate
of GLCM and local configuration pattern are 86.04% and 88.91% respectively (Table
7.2).

The reliability of the system is very important especially in the diagnosis and treat-
ment of medical system. In order to demonstrate reliability of our proposed system we
calculated different ratios. Sensitivity (true positive rate) and specificity (true negative
rate) demonstrates performance of the proposed system on the classification of thy-
roid nodules. The sensitivity and specificity rate of our system is 92.86% and 95.87%

respectively.

Size of dataset very important to train deep neural network in order to prevent over-
fitting. In order to handle this problem we tried to increase number of dataset by noise
reduction and supported our system by using drop out method. The performance of the
system on the augmented dataset and denoised dataset is better than original data set.
Because our proposed deep neural network may try to extract meaningful information
on the noise. When we eliminated noise by OBNLM method the performance of the
system increased to 92.82% from 91.19% (Table 7.2). After combining original dataset
with noised reduced thyroid image set, the accuracy rate of system increased to 94.06%.
It may be better to increase the dataset with different thyroid images taken by different
modality and different hospital for the reliability of the system but this type of study

and collecting dataset require a lot of time.

An other approaches in this situation is to use transfer learning. Transfer learning is



one of the most useful method to prevent over-fitting for small size of dataset. After
fine tunning of parameters, we tested the performance of AlexNet on the classification
of thyroid nodules. The performance of AlexNet was 82.0%. AlexNet was trained on
the natural images. Our data set was completely different than natural images. This
may be major reason of the low accuracy rate of AlexNet. In the literature we could

not found any trained neural network on the medical images.

Classification of the thyroid nodules were achieved with the custom made CNN archi-
tecture which produced very similar result with an experienced doctor. In our know-
ledge, it is the first study to classify scintigraphic images based on deep neural network,
local configuration pattern and automatically classification of subclass of thyroid no-
dules as diffuse homogeneous uptake, diffuse non-homogeneous uptake, hyperactive

nodule, hypoactive nodule and multi-nodular uptake classes.



8 CONCLUSION

Computer aided diagnosis systems are a very important tool in the decision making
before the treatment. This study describes a fully automatic computer aided diagnosis
system for thyroid nodules based on statistical level set and CNN methods, especially
helpful for nuclear medicine practitioners, endocrinologist and thyroid surgeons. In
this study all images were successfully segmented by SLS method to feed custom made
CNN in order to recognize thyroid nodules. SLS method transformed images to another
domain which provides to determine each object with multiple Gaussian distribution.
Segmented thyroid nodules based on SLS model were given to proposed deep CNN ar-
chitecture as an input. CNN provided to automatically extract features from scintigra-
phic image patches that contained anatomical structures of thyroid gland and nodules.
The success rate of CNN is highly dependent to the quality and the size of training
dataset. Original dataset was used to train different CNN architectures to decide the
most relevant CNN architecture. Selected CNN architectures were tested on the origi-
nal dataset and compared to noise reduced dataset based on OBNLM method. Noise
reduction based on OBNLM method increased the segmentation and classification re-
sults probably due to reduction of speckle noise which provided a better segmentation
of anatomical regions and prevented CNN to extract meaningful information from the
false signal. We increased number of dataset by combining original dataset and noise
reduced thyroid images to increase performance of proposed CAD system. After aug-
mentation of dataset classification success of the proposed system increased to desired
level. We compared our system with state of art methods like GLCM, LCP, bag of
feature. Transfer learning was applied to determine the baseline of CAD system. As a
result the proposed CNN was more successful than handcrafted local shape and texture
feature methods and transfer learning. Our proposed CNN based diagnosis system is
very promising to assist nuclear medicine practitioners, endocrinologist and surgeons
in decision making. Our study demonstrates the impact of reducing noise in the classi-
fication of scintigraphic images using the OBNLM method. The drawback of this study
is the size of the dataset. A larger quantity of data would further improve the training
process and could increase the success of our proposed CNN. The close similarity of
the results of our proposed system to those of an experienced expert is very promising
for its future use in the clinical environment. Our future work is to collect different
thyroid nodules from different machines and test the success of classification thyroid

nodules.
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