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ABSTRACT

Smartphones have become essential objects for our daily lives. Besides their original

purpose of use, people use these devices as their personal assistants. Additionally,

smartphones provide large internal storage which enables users to store their private

information, such as personal photos, contact details, call histories, etc. On the other

hand, because of their small sizes, these devices could easily get lost or stolen. There-

fore, providing the security and privacy of smartphone users against unauthorized access

is a significant and crucial area of research. One of the solutions is the use of behavioral

biometrics, which tracks and identify users’ interaction patterns with the device. In

this study, we investigate the impact of using both touchscreen-based and sensor-based

features in an authentication model using deep learning, multi-class and one-class ma-

chine learning models. Mainly, we train a three-layer deep network on the combined

feature-sets and applied classification for revealing the behavioral characters of users

for building an authentication model. Then we improved our feature set and used this

data with our machine learning models. We use HMOG dataset that includes data from

100 users over 24 sessions. We train different networks with different combinations of

input data, namely only touch-screen data, only sensor data, and their combination.

Our results show that we can achieve 88% accuracy in average with deep learning net-

work, and more than %99 f1 score and accuracy with svm models, and 15% EER values

considering binary classification when different types of data are used together.

Keywords : sensor fingerprinting; mobile device identification; motion sensors; mobile

device sensors



RÉSUMÉ

Les smartphones sont devenus des objets essentiels dans notre vie quotidienne. Outre

leur objectif initial, les utilisateurs utilisent ces appareils comme assistants personnels.

De plus, les smartphones offrent un grand stockage interne qui permet aux utilisateurs

de stocker leurs informations privées, telles que leurs photos personnelles, leurs coordon-

nées, l’historique des appels, etc. Par contre, en raison de leur petite taille, ces appareils

peuvent facilement être perdus ou volés. Par conséquent, la sécurité et la confidentialité

des utilisateurs de smartphones contre les accès non autorisés constituent un domaine

de recherche important et crucial. L’une des solutions consiste à utiliser la biométrie

comportementale, qui permet de suivre et d’identifier les schémas d’interaction des uti-

lisateurs avec le périphérique. Dans cet article, nous étudions l’impact de l’utilisation

de fonctionnalités à la fois d’écran tactile et de capteurs dans un modèle d’authentifica-

tion utilisant des méthodes d’apprentissage approfondi et des méthodes d’apprentissage

automatique. Nous formons principalement un réseau profond à trois couches sur les

ensembles de fonctionnalités combinés et sur la classification appliquée afin de révéler

les caractères comportementaux des utilisateurs afin de créer un modèle d’authenti-

fication. Nous utilisons un jeu de données HMOG qui comprend les données de 100

utilisateurs sur 24 sessions. Nous formons différents réseaux avec différentes combinai-

sons de données d’entrée, à savoir uniquement les données d’écran tactile, uniquement

les données de capteur et leur combinaison. Nos résultats montrent que nous pouvons

atteindre des valeurs de précision de 88% pour apprentissage approfondi, et de prcision

et de score f1 plus de %99 pour des modèles apprentissage automatique, et d’EER de

15% en tenant compte de la classification binaire lorsque différents types de données

sont utilisés ensemble.

Mots Clés : capteur d’empreintes digitales; identification de l’appareil mobile; capteurs

de mouvement; capteurs d’appareils mobiles



ÖZET

Akıllı telefonlar günlük hayatımız için vazgeçilmez eşyalar haline geldiler. Orijinal kul-

lanım amaçlarının yanı sıra, insanlar bu cihazları kişisel asistanları olarak da kullan-

maktadırlar. Ek olarak, akıllı telefonlar, kişisel fotoğraflar, iletişim bilgileri, çağrı geç-

mişleri vb. gibi özel bilgileri saklayabilen geniş dahili depolama da sağlar. Öte yandan,

küçük boyutlarından dolayı bu cihazlar kolayca kaybolabilir veya çalınabilir. Bu ne-

denle, akıllı telefon kullanıcılarının yetkisiz erişime karşı güvenliklerini ve gizliliklerini

sağlamak önemli bir araştırma alanı oluşturmaktadır. Çözümlerden biri, kullanıcıların

cihazla etkileşim kalıplarını takip eden ve tanımlayan davranışsal biyometri kullanı-

mıdır. Bu yazıda hem dokunmatik ekran hem de sensör tabanlı özelliklerinin, derin

öğrenme ve makine öğrenmesi yöntemleri kullanarak, davranışsal biyometri modeline

etkilerini araştırdık. Temel olarak, bir kimlik doğrulama modeli oluşturmak için kullanı-

cıların davranış karakterlerini ortaya çıkarmak için birleşik özellik setleri ve uygulamalı

sınıflandırma üzerine üç katmanlı bir derin ağ kurduk. Veriseti olarak, 24 oturumda

100 kullanıcının verisini içeren HMOG verisetini kullanıyoruz. Farklı dokunmatik ekran

verileri, sadece sensör verileri ve bunların kombinasyonları gibi farklı girdi verileri kom-

binasyonlarına sahip farklı ağları eğitiyoruz. Sonuçlarımız, farklı veri türleri bir arada

kullanıldığında ikili sınıflandırma dikkate alındığında derin öğrenme modeli için orta-

lama %88 doğruluk ve %15 EER değerlerine, makine öğrenmesi modelleri için ise %99’u

aşan f1 skoru ve doğruluk sonuçlarına ulaşabileceğimizi göstermektedir.

Anahtar Kelimeler : sensör verisine dayalı parmak izi oluşturma; mobil cihaz tanıma;

hareket sensörleri; akıllı cihaz sensörleri
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1 INTRODUCTION

Smartphones are essential tools in our daily lives. A survey report by Pew Research

Center(Center, accessed April 2019) shows that 81% of U.S. adults have smartphones.

The same research also shows that smartphone users use these devices not just for

calling and texting but also for looking for a job, finding a date, reading a book or

doing online shopping. Online banking, mailing, playing games can also be added to

this list. People report that smartphones are the third essential tool after their wallets

and keys when leaving home.

Providing security and privacy for these tools is essential since they carry personal and

other sensitive information, such as passwords or photos. Moreover, they may get stolen,

lost or can be accessed by non-users due to their small sizes. The same survey reports

that 28% of U.S. smartphone owners say they don’t use a screen lock or other features

to secure their phone. Although a majority of smartphone users say, they have updated

their phone’s apps or operating system, around four-in-ten say they only update when

it is convenient for them. However, some smartphone users forgot updating their phones

altogether: 14% say they never update their phone’s operating system, while 10% say

they do not update the apps on their phone.

Considering these statistics, securing mobile devices is a leading security challenge be-

cause it depends on human attitude or preferences. There are different approaches for se-

curing authentication on these devices. Widely-used methods include PIN and pattern-

based authentication. However, these methods are weak against shoulder-surfing, smudge,

and other attacks. Additionally, they provide one-time authentication. Regarding this

behavior, methods which focus on passive security are gaining importance to answer

questions about how to solve those security challenges.

Continuous authentication according to the interaction patterns of the user is an emer-

ging alternative solution (Patel et al., 2016; Alzubaidi and Kalita, 2016). This approach

is also called behavioral biometrics where interaction patterns of a user are tracked

instead of using physical bio-metrical information, such as a fingerprint. Continuous

authentication has several advantages, such as working in the background and not

disrupting the user experience and working over a session rather than a one-shot au-
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thentication.

There are two survey papers (Patel et al., 2016; Alzubaidi and Kalita, 2016) that in-

vestigate the use of biometrics for continuous authentication on smartphones. In (Patel

et al., 2016), it was emphasized that sensors such as camera, microphone, etc. can be

used to collect physical data, while components such as accelerometers, gyroscopes,

touch screens can be used to collect behavioral biometric data such as walking, screen

touch gestures, and hand gestures. In the other review paper (Alzubaidi and Kalita,

2016), the studies in the literature were examined in terms of the type and size of data

collected, classifiers used in identification, and results obtained.

In this study, we investigate continuous authentication on mobile phones by the iden-

tifying users using both sensor and touch screen data. Notably, we use the HMOG da-

taset(Sitová et al., 2016) which includes both data from motion sensors -accelerometer,

gyroscope and magnetometer- available on smartphones and also from the touch-screen.

It was collected from 100 users over 24 sessions. Although this dataset has been analyzed

using traditional machine learning algorithms (Sitová et al., 2016), to the best of our

knowledge, there is only one study (Amini et al., 2018) that applies LSTM and RNN

based deep learning algorithms on the same dataset. They reported 81.32% accuracy

using LSTM. We aim to increase accuracy which can be found in related works, by

using a combination of screen and sensor data. Additionally, we use a different type of

network constructed over feature sets. Instead of using the raw data, we extracted basic

and simple features, such as mean, standard deviation and median from the readings

of the sensors as well as the touch screen readings. We used those features both in our

deep learning model and in our svm models. The highlights and contributions can be

summarized as follows:

— We apply deep neural networks on a large dataset and model the problem as a

binary classification problem, rather than a one-class problem, which was studied

in (Sitová et al., 2016).

— We explore the effect of different types of modalities, such as touch-screen and

motion sensors in identifying users.

— Our results show that we can identify users with 88% accuracy on a challenging

dataset using a primitive deep learning model. Although results were similar, the

combination of touch (scroll) and gyroscope features revealed a slightly better

performance.
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— With combining the screen and sensor data, we identified users with an f1 score

more than 90% and 99% using one class svm and binary svm classification res-

pectively.

Since deep learning algorithms work as supervised machine learning algorithms, we

need to provide labeled and multi-class data. But if we are talking about biometric

data, each user’s data has a significant privacy importance. That’s why, in literature,

we can easily see one class algorithms.

Regarding this knowledge, we tested our dataset with a second methodology, OneClass

SVM Algorithm. We changed the parameters and tried to find the best parameters for

all users in HMOG data set. We also changed the creation of dataset which we will

explain in Chapter 4. With this algorithm, we identified users with an f1 score more

than 90%.

Additional to OneClass SVM, we wanted to have an intermediary model between One-

Class SVM and Deep Learning Network, so we decided to use binary SVM classification

which is a support vector and a multi-class classification. With biary SVM algorithm,

we identified users with an f1 score more than 99%.

Rest of the study is organized as follows: In Chapter 2, we present the related work

and how our method differs from the related studies. In Chapter 3, we describe the

technologies we used as deep network and sensors, and tell what these sensors are used

for. Chapter 4 presents our methodology particularly the parameters and experiments

considered in this study. In Chapter 5, we present the results of model evaluation and

discuss our findings. Finally, Chapter 6 concludes the study and includes future studies.
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2 RELATED WORK

Biometrics are mainly grouped into two categories: behavioral and physical biometrics.

Physical biometrics are based on physical attributes of a person, such as a retina or

an iris scan and fingerprint, etc. As mentioned, behavioral biometrics are based on a

person’s behavior and analysis of a person’s handwriting, timing keystroke and usage

style, etc.

There are four broad categories of studies focusing on continuous authentication: i)

keystroke-based authentication, ii) touchscreen-based authentication, iii) sensor-based

authentication, iv) multi-modal authentication. Keystroke based authentication mainly

focuses on the analysis of typing motions of users. However, in the utilized dataset

keystroke-data was not recorded.

HMOG (Hand Movement, Orientation and Grasp) dataset (Sitová et al., 2016) in-

cludes recordings both from touch-screen and sensors. Accelerometer, gyroscope and

magnetometer readings and tap-based features, such as x-y coordinates, finger covered

area, pressure, etc., are collected from 100 smartphone users with 24 sessions. Besides

the touchscreen related data, authors propose a new set of features, which are deri-

ved from micro-movements, obtained from accelerometer, gyroscope and magnetometer

sensors data generated while users interact with the touchscreen. Feature selection, fea-

ture transformation with principal component analysis (PCA) and outlier removal are

performed on these feature sets. They achieved EER of 15.1% using HMOG features

combined with tap features.

In (Buriro et al., 2016), authors propose a new multi-modal biometric authentication

model which is based on the features which are collected while the user slide-unlocks

the smartphone to answer a call. The features were populated by slide/swipe, arm mo-

vements of the user answering a call (accelerometer, gyroscope, orientation sensors) and

voice recognition. The complete system consists of four parts: slide movement recog-

nition, pickup movement recognition, voice recognition, and fusion. Twenty-six parti-

cipants (sixteen male and ten female) were recruited in various ages. Each participant

performs at least 20 swipe, 20 pick-ups, and 10 voice sample. They applied to the fea-

ture set one-class Bayes-Net, one-class random forest, and one-class sequential minimal
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optimization (SMO) classifiers. They achieved best results with the naive Bayes network

classifier with a FAR of 11.01% and an FRR of 4.12%.

In recent studies, deep learning methods for continuous authentication are also utilized.

In (Centeno et al., 2018), a Siamese convolutional neural network is used to learn the

signatures of the motion patterns from users. The network is used for deep feature ex-

traction, while 1-class SVM is used for classification. They report verification accuracy

up to 97.8% on a dataset (Yang et al., 2014) consisting of 100 users. Similarly in (Cen-

teno et al., 2017), the feature extraction process is based on a deep learning autoencoder,

using only accelerometer data. 2.2% EER was reported for a re-authentication time of

20 seconds.

In another study (Chang et al., 2018), Kernel Deep Regression Network is used for both

feature extraction and classification. They report 0.121% EER for inter-week authen-

tication on Touchalytics dataset (Frank et al., 2013). However, this dataset includes

only touchscreen data. In another recent study (Amini et al., 2018), HMOG dataset is

utilized, and a deep learning framework for user fingerprinting is proposed. However,

they achieved 81.32% accuracy using LSTM which is lower than our findings.

In this thesis, we tried to make a different approach by combining sensor data and

the touch data to recognize non genuine usage of the phone. Related works are used an

approach to use sensor data or touch screen data individually and used machine learning

algorithms in general. But in this paper we combined the dataset as we described in

Chapter 4 and we also tried to use a primitive deep learning model in contrary of only

using machine learning models.
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3 TECHNOLOGIES

In this chapter, we describe what is a deep network and other classification methods,

also we explain the details of the dataset.

3.1 Classification Methodologies

3.1.1 Deep Network

Researchers were eager to create systems and machines which work and decide like

humans. Therefore they came with the idea of mimicking the human brain, which is

the decision center of a human, so they created perceptrons and neural networks. Even

we can find research papers about multi-layer perceptron usage, which were written

in the 40s(Horton, 1941); the critical developments happened in mid-90s. Then, neural

networks have never stopped evolving since.

A neural network, in general, is a technology built to simulate the activity of the human

brain – precisely, pattern recognition and the passage of input through various layers

of simulated neural connections.

After researches in the neural network area, studies focused on more complex structures,

as stacking multiple networks. A deep neural network is a neural network with a certain

level of complexity, in other words a neural network with more than two layers. Deep

neural networks use sophisticated mathematical modeling to process data in complex

ways.

Deep network layers can be divided into three parts. First part is our input layer. In

this layer, each of our instance (each row of our dataset) is fed into this layer. The size

of this layer should be equal to our feature/column count. Second part is our hidden

layers. These layers create the complexity of our deep network. The size and the count

of these layers are changeable and finding the best numbers changes related to the type

of our deep network. These layers are responsible for calculating features and creating

information from input data. And our last part is the output layer. The size of this
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layer is related to expected outcome of the deep learning model (Figure 3.1).

Finding the features and the information from this data is calculated through epochs.

The epoch is the hyperparameter that specifies how many times our training dataset

will be fed to our model to train it.

Figure 3.1: Example of a Deep Network

3.1.2 Support Vector Machine (Binary Classification)

Support Vector Machine is described in MathWorks website as follows: "A support

vector machine (SVM) is a supervised learning algorithm that can be used for binary

classification or regression. A support vector machine constructs an optimal hyperplane

as a decision surface such that the margin of separation between the two classes in the

data is maximized. Support vectors refer to a small subset of the training observations

that are used as support for the optimal location of the decision surface." (MathWorks,

accessed June 2019)

3.1.3 OneClass Support Vector Machine

In Microsoft’s machine learning documentation page(Microsoft, accessed June 2019),

one class svm is defined as: "the support vector model is trained on data that has only

one class, which is the “normal” class. It infers the properties of normal cases and from

these properties can predict which examples are unlike the normal examples. This is

useful for anomaly detection because the scarcity of training examples is what defines
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anomalies: that is, typically there are very few examples of the network intrusion, fraud,

or other anomalous behavior."

The model has a learned frontier after the training which identifies the normal instance.

Outside of the learned frontier is the area where anomalies are identified.(Figure 3.2)

OneClass SVM is a model which can be trained with only using the genuine user’s data.

This allows us to protect the privacy of the user and helps us not to share the biometry

data.
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Figure 3.2: Example of a One Class SVM Model
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3.2 Data Collection Overview

Before analyzing HMOG dataset, understanding the details of HMOG dataset is crucial.

In HMOG dataset, there are two types of data: sensor data and gesture data. Sensor

data is the data collected from smartphone sensors like accelerometer, gyroscope, or

magnetometer. Gesture data is the raw data received from user’s screen interactions

like touch, scroll, or double tap.

3.2.1 Sensor Data Collection

Smartphones have been evolving with increasing speed, and they are capable of unders-

tanding human activities or phone location or even how you are holding your phone.

They contain many sensors, including an accelerometer for measuring acceleration, a

gyroscope for measuring phone orientation, or a magnetometer for measuring the ma-

gnetic field surrounding the phone. These sensors can be analyzed and can be used to

understand various information.

Motion sensors in smartphones produce nearly same amount of data in a second. This

allows researchers to implement time series solutions to analyze this type of data.

In HMOG dataset, we have accelerometer, gyroscope, and magnetometer data; there-

fore, within the following subsections, accelerometer, gyroscope, and magnetometer are

explained. The data from each sensor was collected at 16Hz.

3.2.1.1 Accelerometer

An accelerometer is a device that detects its own acceleration and is used in mobile

phones to determine the phone’s orientation. Once the orientation is determined, the

phone’s software can react accordingly, such as by changing its display from portrait to

landscape. (Figure 3.3)

There are many different ways to construct an accelerometer. Some accelerometers use

the piezoelectric effect - they contain microscopic crystal structures that get stressed

by accelerative forces, which causes a voltage to be generated. Another way to do it is

by sensing changes in capacitance. If you have two microstructures next to each other,
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they have a certain capacitance between them. If an accelerative force moves one of

the structures, then the capacitance will change. Add some circuitry to convert from

capacitance to voltage, and you will get an accelerometer. There are even more methods,

including use of the piezoresistive effect, hot air bubbles, and light.

In our research, we used accelerometer data to identify the vibrations and micromove-

ments which are the responds to the impacts of phone usage.

Figure 3.3: Accelerometer

3.2.1.2 Gyroscope

A gyroscope is a device with a spinning disc or wheel mechanism that harnesses the

principle of conservation of angular momentum: the tendency for the spin of a system to

remain constant unless subjected to external torque. It helps to determine orientation.

The gyroscope data is used to identify the orientation of our phone and also how the

user holds the phone.

3.2.1.3 Magnetometer

Magnetometers are devices that measure magnetic fields. A magnetometer is an ins-

trument with a sensor that measures magnetic flux density B (in units of Tesla or As/

m2). Magnetometers refer to sensors used for sensing magnetic fields OR to systems

which measure magnetic field using one or more sensors.



12

3.2.2 Gesture Data Collection

Thanks to the operating systems’ suitable libraries, developers can harness the data

from touch interactions. This data can be raw, as X and Y coordinate of the screen or

pressure or finger size, or this data can be more informative as if the interaction is a

scroll or a double-tab.

These libraries do not provide the same amount of data contrary to sensor-based data.

Therefore, we should apply preprocessing techniques to screen data if we want to analyze

it with time series techniques. Or, we should extract the features by analyzing the data

and train the machine learning / deep learning models with these extracted features.

Because of the combination of those sensor-based data and screen data, the whole

dataset becomes unavailable for time series methodology. There are ways to overcome

this problem as using a hierarchical modeling. We could predict the classes from sensor

based model and screen data based model separately and then we could make a weighted

combination of the received results. But we decided to combine the datasets and go with

a one multi-modal class.

From these libraries, we can log every screen interaction and then analyze this data

with appropriate feature extraction methodologies.
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4 METHODOLOGY

In this chapter, we describe how the HMOG dataset is formed, along with the details

of how we processed the dataset, which features are used and how we created our deep

network and our SVM models.

4.1 Dataset Overview

As mentioned, we utilized the HMOG dataset (Sitová et al., 2016) which is focused

on continuous authentication studying hand movements, orientation and grasp. They

collected a great amount of data from 100 participants during 8 free text typing sessions

on Samsung Galaxy S4 phones. In this research, we used scroll event and sensor data

from HMOG dataset to build a deep learning network.

The data is sparsely diverse since the HMOG experiment was performed with 100 par-

ticipants with different characteristics. When trying to track the original owner of the

phone, it is crucial to have non-real user data as well if we are planning to build a

multi-class model like deep network of SVM. Hence, we focus on a two-class classifica-

tion problem. In HMOG paper (Sitová et al., 2016), they used one-class classification

considering that it may not be possible to have non-user data. Regarding their research,

they trained and tested the model only with correspondent users. Hence, they tried to

resolve user authentication detecting the outliers. With this knowledge, we have studied

binary classification and outlier detection.

We created a model for each user separately. To do that, we used all the user data and

we randomly picked data from other participants. The reason we randomly pick data

from other users and not to use all of their data is to create a model with a balanced

user data. If we used all the data we had, we would have an imbalanced model. For

example, we would have used 2000 instances from our legit user and 200.000 of instances

from non-users. And the random pick helped our model to have a diverse user dataset.
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Figure 4.1: Accelerometer Data Example

Figure 4.2: Gyroscope Data Example

Figure 4.3: Magnetometer Data Example
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Figure 4.4: Touch Event Data Example
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4.2 Data Preprocessing

HMOG dataset contains 24 sessions for each user. Each of these sessions includes sensor-

based data and touch screen events, so they are time series data by nature. We need

to preprocess data to use machine learning models. LSTM network can work with

time series data, but in this study, we studied the dataset with features extracted as

structured data.

For each user session, sensor data and scroll (touch) data is merged to understand phone

micro-movements for each scroll event. This merging helped us to create a table with

scroll data and their sensor reflections. To be able to merge them into one dataframe,

we wrote a python code which looks for the scroll data. This code finds a scroll event,

takes the start and the end time of found event and locates the sensor data which has

happened between this gap by looking in their appropriate csv file. With this script, we

extracted all the sensor data which is related to scroll events. This process was applied

to all three sensor files: accelerometer, gyroscope and magnetometer.

4.2.1 Feature Extraction

When working in a machine learning process, feature extraction is a crucial step to

identify information of data. With feature extraction, we convert a time series data

to a structured dataset on which our model can find relations between those features.

We apply feature extraction to be able to use this dataset because the data which

is produced on each scroll action has different shape. Then these features become the

identifiers of our classes. The sensor data; accelerometer, gyroscope, and magnetometer,

are provided in time series vector so we should convert every time series to an action

which becomes our input data.

For calculation of our features from raw sensor data, we used median, mean, and stan-

dard deviation. One may argue that, extraction of features is unnecessary when wor-

king with deep learning algorithms. Since we are interested in developing a real-time

continuous authentication scheme, rather than transmitting raw data to a server where

machine learning algorithm runs, we export features as the summary of the data to

reduce the data size to be transferred and also again, this type of data is not suitable

for a time series model and we also need features for SVM models.
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Then scroll or touch-screen features are calculated using the features reported in Tou-

chalytics study(Frank et al., 2013).

Sensor Raw Data Feature

Scroll

First Value
Last Value

Max Deviation
X, Y axis %20 Deviation

%50 Deviation
%80 Deviation

Scroll

Pairwise 20
Pairwise 50

Velocity Pairwise 80
Median of the last three points

Average

Scroll

Pairwise 20
Pairwise 50

Acceleration Pairwise 80
Median of the first five points

Average

Scroll
Length

Trajectory Distance
Duration

Scroll Finger Size, Pressure Median

Sensor
X, Y, Z axis Mean

(for each sensor: accelerometer, gyroscope, Standard Deviation
magnetometer and their magnitude) Median

Table4.1: Summarized Feature Table

After the feature extraction, our dataset resulted in 83 features and one label which

implies if the user is genuine or not. We can summarize those features as follows in

Table 5.4, represent them as Figures 4.5 4.6 4.7 4.8

4.2.2 Data Cleaning

Since we have structured numeric data, edge numbers as infinite or not numbers (NaN)

can cause problems. Those cases were actually observed through the dataset. As tested

with those cases, the deep network failed to learn, and model training step failed. So,

data cleaning was a critical step. For any model, cleaning infinite numbers and N/A’s

are a really significant task that should not be overlooked.

After cleaning the data, the next step of data preparation is normalizing the data.

Normalization of data can be crucial sometimes as we are handling a numerical dataset.
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Figure 4.5: SVM Features 1

Figure 4.6: SVM Features 2

If the difference between data in feature sets is more than 3 or 4 decimal points, this can

affect the overall accuracy. As a result of our tests with normalized and un-normalized

datasets, we observed that overall accuracy can differ up to 3%. In our research, we

have used min-max normalization and the data is normalized between 0 and 1.

Since we have a significant number of experimenters and we used the leave-one-out

method to create our datasets for each user, the number of instances from non-genuine

users can be more than the number of instances of real-user. For that reason, we sampled
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Figure 4.7: Deep Learning Features 1

Figure 4.8: Deep Learning Features 2

non-genuine users to reduce the number in the dataset and sampled them randomly to

not to lose the generalization of non-users’ patterns. After the sampling, each dataset

has approximately ten thousands of row. The ratio of genuine users to non-genuine ones

is 1 to 3.

After cleaning the data, PCA could be applied. As we see in HMOG paper (Sitová

et al., 2016), PCA is used in biometrics. However, this model is intended to be used in

a mobile application and the less computation we do, the faster we have our result. So

we decided not to use PCA to reduce computation complexity.
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4.3 Classifier Evaluation

To train our deep learning network, validate and test our models, we created three

different sub-datasets for each dataset. Since we had approximately ten thousands of

rows, we did not want to lower the number of rows in the training subsets. That is why

as a first step, we sampled our dataset with 10% to create our validation subset which

will validate our trained model in every epoch. Then we sampled our remaining subset

with 10% again to create our test subset to evaluate the performance of the created

model after training phase.

To train and test OneClass SVM, we trained with all of the data. We also tested our

oneclass SVM model with the other users’ data to test if our model can predict them

as outliers.

Also we used %80 to %20 train-test split for our binary SVM classification.

4.4 Classification and Performance Metrics

In this study, we used a deep learning network to identify user actions. Deep learning and

neural networks are generally used with image, audio and text datasets but recently they

are also used in structured data. HMOG study used one classifier SVM to find outliners

so we also wanted to see how our features would work with one-class svm; additionally,

we used a binary classification to make our predictions with a deep learning network

and with an SVM model.

As the initial investigation, we aimed to explore how a primary deep learning network

would give a model, that is why our we have created our model with three dense layers.

After some shallow tests, we decided to train our every data with two different networks

which have 64 and 128 nodes in each layer. Then we batched our data as tensors with

shape (8192, feature_count) and ran the network with 200 epochs.

We collected accuracy, mean absolute error and mean square error for train and vali-

dation test results and f1, accuracy, recall, and precision measurements and also true

positive, false positive, true negative and false negative counts for test predictions.

Then we calculated false acceptance rate and false rejection rate, and equal error rate

by calculating their mean. These metrics are commonly used in the literature.



21

Then we investigated how a binary-classification with SVM will work. We applied a

parameter tuning to find the best parameters for train and test data for each user. We

also calculated F1, accuracy, recall and precision for train and test results.

Finally we created our one-class SVM model to build an outlier detector model. We

again implemented a parameter tuning for the model to find the best parameters for

train and test data. Then we calculated positive and negative predictions.

ACCURACY =
TP + FP

TP + FP + TN + FN
(4.1)

PRECISION =
TP

TP + FP
(4.2)

RECALL =
TP

TP + FN
(4.3)

F1 = 2 ∗ precision ∗ recall
precision+ recall

(4.4)

FAR =
FP

FP + TN
(4.5)

FRR =
FN

FN + TP
(4.6)

MAE =
1

n

n∑
i=1

|xi − x| (4.7)

MSE =
1

n

n∑
i=1

(xi − x)2 (4.8)
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5 PERFORMANCE EVALUATION

In this chapter, we explain how our prediction models were created and how we evalua-

ted them. We explain our deep learning model and its results with respect to different

neuron counts. Then we explain our binary svm model which is acting as an interme-

diary model between the deep network and the one class svm model. Finally we explain

our oneclass svm model and its results.

After the evaluation of those three models, we will compare those models in the next

Chapter 5.

5.1 Deep Network

In this section, we present and explain the results obtained from our testing process.

As mentioned in Chapter 4, we divided our dataset into four datasets which are created

by only scroll (touch-screen) features, accelerometer plus scroll features, gyroscope plus

scroll features, and all sensors plus scroll features. As mentioned, we build our deep

network with three layers and we created the layers with 64 and 128 nodes.

In the following, for each figure we display results for four different datasets, and we

have four figures displaying test accuracy, test precision, test EER and test F1 metric.

For each dataset, we also present the results for 64 nodes and 128 nodes. Although we

present the average results, because of the diversity of user characteristics, we also dis-

cuss the minimum and the maximum values of each metric in the following subsections

where we analyze the results for each feature-specific dataset and evaluate the model

performance.

5.1.1 Scroll Features

In this section, we only used the scroll features which are discussed in feature extraction

Section 4.2.1 to train our model. For each user, these features are calculated. Then those

features are fed to the deep network as inputs and trained for 200 epochs. As mentioned,

for each user we have data coming from the user as well as from other users, sampled



23

0,700

0,750

0,800

0,850

0,900

0,950

1,000

train_64 train_128 val_64 val_128 test_64 test_128

Accuracy

avg

(a) Accuracy

0

0,2

0,4

0,6

0,8

1

1,2

f1_
64

f1_
12
8

pre
cis
ion
_6
4

pre
cis
ion
_1
28

rec
all
_6
4

rec
all
_1
28

Metrics

avg

(b) Measures

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

0,900

1,000

far_64 far_128 frr_64 frr_128 eer_64 eer_128

Error Rates

avg

(c) EER

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

mae_64 mae_128 mae_val_64 mae_val_128

Mean Absolute Error

avg

(d) Mean Absolute Error

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

mse_64 mse_128 mse_val_64 mse_val_128

Mean Square Error

avg

(e) Mean Square Error

Figure 5.1: Only Scroll Data Features

randomly.

In Figure 5.1(c), we can see the results for EER metric on the test data. When we

first analyze the average results, we can see that considering the two deep networks

(regarding their node counts), the results are nearly the same, except the network with

128 nodes is slightly low. For performance requirements, it may be better to work with

networks with smaller size. Also when we compare these results with HMOG dataset,

the 128 nodes network has given similar results with their results where they used only

HMOG features; on the contrary when we look at our smallest EER result which is

0.5%, only using the scroll features revealed better than similar works.

In Figure 5.1(a), we can see the accuracy results of test data. The test accuracy of our
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Features 64 128
Accuracy
min_train 0.767 0.793

train 0.886 0.889
max_train 0.996 0.996
min_val 0.776 0.777

val 0.882 0.884
max_val 0.996 0.997
min_test 0.761 0.764

test 0.881 0.884
max_test 0.992 0.993
Errors

min_tr_mse 0.004 0.004
avg_tr_mse 0.081 0.079
max_tr_mse 0.153 0.145
min_tr_mae 0.011 0.009
avg_tr_mae 0.166 0.162
max_tr_mae 0.305 0.303
min_val_mse 0.003 0.002
avg_val_mse 0.083 0.082
max_val_mse 0.149 0.152
min_val_mae 0.009 0.007
avg_val_mae 0.169 0.165
max_val_mae 0.309 0.307

Metrics
min_f1 0.344 0.190
avg_f1 0.746 0.750
max_f1 0.985 0.987

min_precision 0.547 0.549
avg_precision 0.784 0.791
max_precision 0.978 0.978
min_recall 0.239 0.110
avg_recall 0.720 0.724
max_recall 1.000 0.996

Rates
min_far 0.008 0.008
avg_far 0.064 0.062
max_far 0.126 0.123
min_frr 0.000 0.004
avg_frr 0.280 0.276
max_frr 0.761 0.890
min_eer 0.005 0.006
avg_eer 0.172 0.169
max_eer 0.406 0.453

Table5.1: All Results of Only Scroll Feature Set

model which is created with only scroll features, is between 76% and 99%. Average of

test accuracy is 88%.
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Since we are studying continuous authentication, one of the most important metrics

is the precision. Precision is the ratio of true positives to all true predictions labeled

as true, including false positives. In an authentication solution, not authenticating the

user is not crucial but authenticating the malicious user is a serious problem. That is

the reason, in our results, the precision metric is as essential as the EER metric.

In Figure5.1(b), we can see precision results of our test data. When we analyze the

precision metric for scroll data training, we can see the values vary between 58% and

98% and with an average of 78-79%. With the best result, we authenticate only two

persons out of 100 incorrectly. This result shows us, with enough data, we can keep

precision as high as we would need in an authentication scenario.

5.1.2 Accelerometer & Scroll Features

First of all, we analyze the average results of EER again. With this dataset, we can see

that network with 128 nodes has lower EER values comparing to the networks with 64

nodes. With this dataset, change in node count affects the result significantly.

The precision for this model is between 57% and 99%, and the average precision value

is 79%. If we compare this model with the model created with only scroll features, the

results are very similar, but we see that the accelerometer data lowered precision by

2%.

The accuracy of this model is between 78% and 99% and the average of it is 89%.

The node count change affects the accuracy slightly. Regarding these first results, for a

network with three dense layers, accelerometer data makes a very slight change, 0.1%

for accuracy. For other metrics, the change is approximately 0.01% with the network

with 128 nodes.

5.1.3 Gyroscope & Scroll Features

We start by analyzing the average results of EER. We can see that network with 128

nodes has the lowest EER values comparing to the other networks. With this dataset,

the network with the 128 nodes achieved the best result.

The precision for this model is between 59% and 99%, and the average precision value
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Figure 5.2: Accelerometer + Scroll Data Features

is 80-81%. If we compare this model with the other two models that we discussed, this

model exhibited a result approximately 3 points higher comparing to the other models.

The accuracy of this model is between 78% and 99.7% and the average is 89-90%. The

node count change affects the accuracy slightly. But again, we have the best average

result compared to the other networks.

5.1.4 All Sensor Features & Scroll Features

When we look at the results of the model which we trained with all the features, we

can see that the results did not increase. We can see that network with 128 nodes still
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Features 64 128
min_train 0.773 0.785

train 0.885 0.889
max_train 0.995 0.996
min_val 0.764 0.771

val 0.882 0.885
max_val 0.994 0.994
min_test 0.778 0.798

test 0.882 0.886
max_test 0.993 0.994

min_train_mse 0.004 0.003
avg_train_mse 0.081 0.080
max_train_mse 0.154 0.147
min_train_mae 0.011 0.008
avg_train_mae 0.167 0.161
max_train_mae 0.314 0.301
min_val_mse 0.006 0.006
avg_val_mse 0.083 0.080
max_val_mse 0.158 0.151
min_val_mae 0.014 0.012
avg_val_mae 0.168 0.163
max_val_mae 0.318 0.307

min_f1 0.390 0.426
avg_f1 0.742 0.750
max_f1 0.986 0.988

min_precision 0.557 0.570
avg_precision 0.777 0.788
max_precision 0.986 0.986
min_recall 0.271 0.322
avg_recall 0.718 0.722
max_recall 0.990 0.991
min_far 0.004 0.004
avg_far 0.064 0.061
max_far 0.120 0.136
min_frr 0.118 0.009
avg_frr 0.558 0.278
max_frr 0.860 0.678
min_eer 0.071 0.007
avg_eer 0.311 0.169
max_eer 0.451 0.366

Table5.2: All Results of Accelerometer + Scroll Feature Set

has the lower EER value compared to the model with 64 nodes. We have the minimum

EER as 0.4% and the maximum EER as 36%, and the average is 17%. The precision

for this model is between 53-58% and 99%, and the average precision value is 78%. The

accuracy of this model is between 76% and 99.7% and the average of it is 88%.
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Figure 5.3: Gyroscope + Scroll Data Features

5.1.5 Comparison of All Datasets

By analyzing these first results with a basic deep network with three layers, genuine we

can say that using more features not mean better results. In other words we tried to feed

all the features and data without feature selection algorithms. With these comparisons

and the HMOG dataset, a deep network provided a better performance with gyroscope

and scroll features.

As a result of the evaluations and demonstration of the results, we observe that the

dataset which has the gyroscope features and the scroll features performed better than

the other datasets.
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Feature 64 128
min_train 0.785 0.793

train 0.897 0.793
max_train 0.994 0.996
min_val 0.776 0.779

val 0.893 0.896
max_val 0.992 0.993
min_test 0.784 0.792

test 0.894 0.899
max_test 0.899 0.899

min_train_mse 0.005 0.004
avg_train_mse 0.074 0.071
max_train_mse 0.144 0.137
min_train_mae 0.013 0.009
avg_train_mae 0.153 0.147
max_train_mae 0.291 0.293
min_val_mse 0.007 0.005
avg_val_mse 0.076 0.074
max_val_mse 0.151 0.145
min_val_mae 0.015 0.011
avg_val_mae 0.155 0.149
max_val_mae 0.305 0.274

min_f1 0.457 0.389
avg_f1 0.777 0.786
max_f1 0.995 0.995

min_precision 0.584 0.595
avg_precision 0.802 0.812
max_precision 0.991 0.991
min_recall 0.376 0.274
avg_recall 0.757 0.769
max_recall 1.000 1.000
min_far 0.003 0.003
avg_far 0.060 0.058
max_far 0.116 0.116
min_frr 0.000 0.000
avg_frr 0.243 0.231
max_frr 0.624 0.726
min_eer 0.002 0.002
avg_eer 0.152 0.145
max_eer 0.355 0.384

Table5.3: All Results of Gyrosope + Scroll Feature Set

However, when we analyze the results one by one, we can see that in all feature-split

datasets, there are users who performed with 99% accuracy and 98-99% precision, and

nearly 0% EER. Since we aim to create a passive continuous authentication system

using user behaviors, more data means better recognition. In HMOG study (Sitová

et al., 2016), they removed 20 persons because of their low quality data; on the contrary,
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Figure 5.4: All Data Features

we wanted to use these persons’ data to create a more realistic solution.
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Features 64 128
min_train 0.779 0.784

train 0.886 0.889
max_train 0.995 0.996
min_val 0.788 0.791

val 0.882 0.885
max_val 0.994 0.996
min_test 0.755 0.763

test 0.881 0.884
max_test 0.991 0.993

min_train_mse 0.004 0.003
avg_train_mse 0.081 0.079
max_train_mse 0.152 0.144
min_train_mae 0.010 0.007
avg_train_mae 0.166 0.161
max_train_mae 0.309 0.301
min_val_mse 0.004 0.004
avg_val_mse 0.083 0.082
max_val_mse 0.154 0.146
min_val_mae 0.010 0.008
avg_val_mae 0.169 0.164
max_val_mae 0.316 0.300

min_f1 0.312 0.373
avg_f1 0.746 0.751
max_f1 0.982 0.986

min_precision 0.532 0.578
avg_precision 0.779 0.787
max_precision 0.982 0.986
min_recall 0.221 0.274
avg_recall 0.723 0.725
max_recall 0.995 0.995
min_far 0.006 0.004
avg_far 0.066 0.063
max_far 0.117 0.135
min_frr 0.005 0.005
avg_frr 0.277 0.275
max_frr 0.779 0.726
min_eer 0.012 0.009
avg_eer 0.172 0.169
max_eer 0.421 0.395

Table5.4: All Results of All Feature Set

5.2 Binary SVM

In this section, we will explain how we created the dataset for this methodology, and

how we created our results.
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First of all, we have trained the model with the data which we have trained our deep

learning network. With this decision, we tested if the same dataset would work with a

machine learning model. The answer is no. The first results that we received from SVM

model was around %20, and this result did belong to train data.

After observing this, we were sure that a deep learning algorithm does not work like a

machine learning algorithm. Even our previous dataset did not have perfect features,

our deep network has given promising results. With this knowledge, we analyzed our

dataset and tried to find the features which do not increase the overall success. After

the analyzing process, we have changed our feature set as follows:

— Accelerometer, Gyroscope, Magnetometer and magnitude of these sensors:

— Standard Deviation (STD)

— Max. STD

— %20 STD

— %50 STD

— %80 STD

— Screen Features:

— Axis Values (X, Y) and Current_Size:

— Standard Deviation (STD)

— Max. STD

— %20 STD

— %50 STD

— %80 STD

— Vector and Acceleration:

— Pairwise 20

— Pairwise 50

— Pairwise 80

— And other calculated features.

Here, we can see that in this dataset, sensor features are changed. In our deep learning

dataset, we have used mean and median but in this dataset, we have only used standard

deviation for sensor features, and this has improved the overall results.
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We have also applied one versus all for all 100 users to train each of them individually.

Each user has average of 1600 rows of data, that means when we apply one for all

methodology, non-genuine-user data length will be much more bigger than our genuine-

user data. That’s why we sampled non-genuine-user data for each user to have equal

number of instances for each label.

When we are training our SVM model, we can tune parameters to obtain the best

result. For each user, we experimented with two parameters: C, and Gamma. Also we

only trained our data with ’RBF’ kernel. Kernel parameter is deciding the type of

the hyperplane to separate the data. Linear kernels provide faster training times, but

non-linear kernels like RBF can provide flexibility to the model.

The C parameter is the penalty parameter for the error term. It is the optimization

parameter for misclassifying the training data. Larger the C means that our model

tends to overfit. The Gamma parameter is the parameter for the hyperplane too. The

bigger the gamma is, plane fits more accurately to the training data.

We tested our models with different parameters, then we have chosen the best para-

meters for each user, by finding the best f1 scores for testing and training results. The

results are very promising as we have seen %99.77 as minimum of f1 score. You can see

the results for all sensors and screen features trained with binary SVM model in Figure

5.5. This figure represents the best F1 scores for each user. Blue line is representing

the our train results and the lowest F1 score received is 99.89%. But training results

can also mean overfitting, so test results are also have importance. In the figure, the

orange line is representing our test results. We can clearly see that the lowest result that

we receive from a user is 99.77% for F1 score. With some users, we received 100% F1

score for both train and test results and you can see the detailed results in the Figure

APPENDIX .1
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Figure 5.5: Best F1 Scores for Binary SVM Classification

5.3 OneClass SVM

OneClass SVM is a popular classification method for biometric researches in acade-

mia.(Jia et al., 2014)(Hejazi et al., 2016)(Bergamini et al., 2009)(Sitová et al., 2016)(Bu-

riro et al., 2016) Biometric data is a data type whom privacy is crucial. According to

privacy regulations, biometric data should be kept secretly and in a protected area.

According to this, sharing some other users biometric data with a user is against this

rule. That is why creating prediction models with one labeled dataset can provide a

more secure way.

OneClass SVM is an unsupervised learning methodology for outlier / novelty detection.

With this methodology, we can use only the phone owner’s data and can detect if an

event is an outlier or is belong to the phone owner. With this approach, we minimize

the risks that come with the biometric privacy regulations.

To train this dataset, we have used the features which was also used in binary SVM

training. But in this evaluation, we have used all of the users data to train the model,

then we have tested this model with a sample dataset of other users, to find the optimum

parameters for oneclass SVM model.

The test data we have used had approximately 20 thousands of instances sampled from

all the other except the user whose data is used as training data. So we trained our

model with the %80 of the users data, we tested itself with its own %20 of the data and
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then we tested the model with the test dataset. The results are very promising when

we compare to (Sitová et al., 2016) and (Frank et al., 2013) papers because of the same

dataset and features, we can achieve more than %90 of f1 measure for nearly each user.

And we can also see that nearly in all of the test processes, the models with the best

parameters predicted outliers perfectly.

In Figures 5.6, 5.7, 5.8 and 5.9, we can see the results for training and test results

for our One Class SVM model. Except the user with id 733162, all other users nearly

recognised all of the outlier data. For the genuine data recognition, we received more

than 94% accuracy. So the general usage of One Class SVM is novelty detection and

fraud recognition. With that results, we can recognise the anomaly usage and normal

usage with acceptable results. Also, the all results for One Class SVM can be found in

the Figure APPENDIX .2
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Figure 5.6: Best Results for One Class SVM Classification - Train Data 1
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Figure 5.7: Best Results for One Class SVM Classification - Train Data 2
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Figure 5.8: Best Results for One Class SVM Classification - Test Data 1
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Figure 5.9: Best Results for One Class SVM Classification - Test Data 2
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6 CONCLUSION AND FUTURE WORK

In this study, we investigated a primitive deep network with three layers, a binary svm

model and one-class svm model for continuous authentication on mobile phones with a

challenging dataset which consists of 100 users over 24 sessions. We analyzed the results

of a deep learning algorithm with two labels, a machine learning algorithm with two

labels and a machine learning algorithm that predicts outliers.

With these three different evaluation processes, we can also compare a deep learning

model with a machine learning model, and a multi-class machine learning algorithm

with a one-class algorithm. These two different comparisons can help us to explain

which algorithm is more usable in terms of security, performance and easiness.

A deep learning model usually needs a lot of data but we observed that even the features

were not optimized, our primitive deep network provided a usable solution. Even though

the accuracy and the f1 score are significantly high, the deep network cannot answer

to the question of security. How can we build and maintain a multi-class deep neural

network without compromising another users biometric data?

A binary class SVM algorithm provided very high performance with an f1 score more

than %99.8 on average. These results can show that with optimized parameters, a

machine learning algorithm can provide a good result compared to a deep learning

algorithm. But we should not forget that, to achieve these results, we had to optimize

the features too. But with this algorithm again, we have the same question that we

asked also in deep network process. How can we resolve privacy?

With the results of the outlier detector, the one class svm algorithm, we can see that

an unsupervised algorithm can also provide good results. But compared to others, this

algorithm can answer to the question related to security. With this algorithm, we do not

have some other users’ biometrics to build and train our machine learning algorithm.

With this model, we can only use the phone owner’s sensor and screen data and then

we can create a user specific model, and then we can predict outliers without needing

a non-genuine-user data.
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All of these three methods provided great results, so the use cases can affect the model

decision. If the system uses a cloud or a server, then the privacy question can be answe-

red and we can use a multi class classification model. If the system makes predictions

locally, than one class svm can help the process.

As a future work, time series algorithms can be applied to dataset to avoid feature

extraction and the real-world data can be used to verify results. Also a mobile banking

application data will be used to verify this work and the determined model can be used

in a real world example. Currently, we are collecting our own dataset with a logger

integrated in a mobile banking app.

As another future work, other than scroll data can be used to create a user model.

In this research we only used user scrolls and the micro-movements related to these

usages.But we are not only doing scrolls when we are using a mobile phone. So how

would the model change if we also include click events to the dataset? This question

can also be answered in a future study.
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user cs gamma train_f1 train_acc train_prec train_rec test_f1 test_acc test_prec test_rec
856401 1 0.1 1 1 1 1 1 1 1 1
893198 1 0.1 1 1 1 1 1 1 1 1
815316 10 0.1 1 1 1 1 0.99881657 0.99876999 1 0.99763593
257279 1 0.1 1 1 1 1 0.99893048 0.99882353 1 0.99786325
588087 10 0.1 1 1 1 1 1 1 1 1
827212 1 0.1 1 1 1 1 1 1 1 1
998757 10 0.1 1 1 1 1 1 1 1 1
913228 1 1 1 1 1 1 1 1 1 1
219303 0.1 0.1 1 1 1 1 0.99770115 0.99835255 0.99541284 1
579284 1 0.1 1 1 1 1 1 1 1 1
352716 1 0.1 1 1 1 1 1 1 1 1
186676 10 0.1 1 1 1 1 0.99834711 0.99855072 0.99669967 1
737973 1 0.1 1 1 1 1 1 1 1 1
808022 1 0.1 1 1 1 1 1 1 1 1
554303 10 0.1 1 1 1 1 1 1 1 1
892687 1 1 1 1 1 1 1 1 1 1
368258 0.1 1 1 1 1 1 1 1 1 1
539502 10 0.01 1 1 1 1 1 1 1 1
785899 1 0.1 1 1 1 1 1 1 1 1
220962 100 0.001 0.99887324 0.99877713 0.99831081 0.9994363 1 1 1 1
799296 10 0.01 1 1 1 1 1 1 1 1
785873 1 1 1 1 1 1 1 1 1 1
395129 100 0.1 1 1 1 1 0.99818512 0.9984544 0.99637681 1
342329 1 0.01 1 1 1 1 0.99790356 0.99837134 1 0.9958159
962159 100 0.1 1 1 1 1 0.99798793 0.99839744 1 0.99598394
710707 10 0.1 1 1 1 1 1 1 1 1
553321 100 0.1 1 1 1 1 1 1 1 1
879155 1 0.1 1 1 1 1 1 1 1 1
698266 1 1 1 1 1 1 0.99921691 0.99901381 1 0.99843505
207969 100 0.1 1 1 1 1 1 1 1 1
431312 10 0.1 1 1 1 1 0.99853587 0.9985444 0.99707602 1
986737 1 0.1 1 1 1 1 1 1 1 1
918136 10 0.1 1 1 1 1 1 1 1 1
218719 1 0.1 1 1 1 1 1 1 1 1
733568 1 1 1 1 1 1 1 1 1 1
389015 10 0.1 1 1 1 1 1 1 1 1
876011 1 0.1 1 1 1 1 1 1 1 1
856302 10 0.1 1 1 1 1 1 1 1 1
472761 0.01 0.1 1 1 1 1 0.99810964 0.99844479 1 0.99622642
171538 10 0.1 1 1 1 1 1 1 1 1
803262 10 0.1 1 1 1 1 1 1 1 1
526319 10 0.1 1 1 1 1 1 1 1 1
841866 10 0.1 1 1 1 1 1 1 1 1
862649 10 0.1 1 1 1 1 1 1 1 1
396697 1 0.1 1 1 1 1 1 1 1 1
990622 1 0.1 1 1 1 1 1 1 1 1
872895 1 0.1 1 1 1 1 1 1 1 1
622852 1 1 1 1 1 1 0.99803536 0.99837925 0.99607843 1
151985 1 0.1 1 1 1 1 1 1 1 1
326223 10 0.1 1 1 1 1 1 1 1 1
277905 1 0.1 1 1 1 1 1 1 1 1
240168 1 0.1 1 1 1 1 1 1 1 1
248252 10 0.1 1 1 1 1 1 1 1 1
745224 10 0.1 1 1 1 1 1 1 1 1
100669 10 0.1 1 1 1 1 1 1 1 1
556357 1 0.1 1 1 1 1 1 1 1 1
865881 1 0.1 1 1 1 1 1 1 1 1
201848 1 1 1 1 1 1 0.99808061 0.99845917 0.99616858 1
980953 1000 0.001 1 1 1 1 1 1 1 1
501973 10 0.1 1 1 1 1 1 1 1 1
578526 1 0.1 1 1 1 1 1 1 1 1
751131 100 0.01 1 1 1 1 1 1 1 1
180679 10 0.1 1 1 1 1 1 1 1 1
540641 1 0.1 0.99969259 0.99967679 0.99938537 1 1 1 1 1
893255 10 0.1 1 1 1 1 1 1 1 1
527796 0.1 0.01 1 1 1 1 0.99858557 0.99861687 0.99717514 1
336172 10 0.1 1 1 1 1 1 1 1 1
937904 1 0.1 1 1 1 1 1 1 1 1
777078 10 0.1 1 1 1 1 1 1 1 1
865501 0.1 0.1 1 1 1 1 1 1 1 1
525584 1 0.1 1 1 1 1 1 1 1 1
398248 1 1 1 1 1 1 1 1 1 1
733162 1 0.1 0.99927273 0.99953896 1 0.99854651 1 1 1 1
663153 1 1 1 1 1 1 1 1 1 1
771782 10 0.1 1 1 1 1 1 1 1 1
863985 10 0.01 1 1 1 1 0.99866131 0.99860335 0.9973262 1
256487 10 0.1 1 1 1 1 1 1 1 1
763813 10 0.1 1 1 1 1 1 1 1 1
720193 10 0.1 1 1 1 1 1 1 1 1
366286 1 0.1 1 1 1 1 1 1 1 1
261313 1 0.1 1 1 1 1 1 1 1 1
923862 0.1 0.01 1 1 1 1 0.9988726 0.99872611 0.99774775 1
966655 1 0.1 0.99972966 0.99969734 1 0.99945946 1 1 1 1
405035 10 0.1 1 1 1 1 1 1 1 1
538363 10 0.1 1 1 1 1 0.9982548 0.9985119 0.99651568 1
897652 10 0.1 1 1 1 1 1 1 1 1
973891 10 0.1 1 1 1 1 1 1 1 1
776328 10 0.1 1 1 1 1 1 1 1 1
489146 10 0.1 1 1 1 1 1 1 1 1
984799 100 0.1 1 1 1 1 1 1 1 1
278135 1 1 1 1 1 1 1 1 1 1
561993 1 0.1 1 1 1 1 1 1 1 1
675397 1 1 1 1 1 1 1 1 1 1
796581 1 0.1 1 1 1 1 1 1 1 1
264325 10 0.1 1 1 1 1 1 1 1 1
693572 10 0.1 1 1 1 1 1 1 1 1
717868 1 1 1 1 1 1 1 1 1 1
621276 1 0.1 1 1 1 1 1 1 1 1
657486 10 0.1 1 1 1 1 1 1 1 1
594887 1 0.1 1 1 1 1 1 1 1 1

Figure APPENDIX .1: Best Binary SVM Results
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user nu gamma train_pos train_neg test_pos test_neg min_res
257279 0.5 1.00E-07 2357 49 0 1843 49
962159 0.05 1.00E-05 1230 31 0 1855 31
745224 0.05 1.00E-05 1970 68 0 1847 68
923862 0.2 1.00E-07 2069 5 0 1847 5
472761 0.05 0.0001 1283 74 0 1854 74
937904 0.5 1.00E-07 2365 73 0 1843 73
815316 0.65 1.00E-07 2188 29 0 1845 29
657486 0.5 1.00E-07 2293 57 0 1844 57
693572 0.4 1.00E-07 1756 15 0 1850 15
621276 0.5 1.00E-07 1654 32 0 1850 32
389015 0.9 1.00E-07 1272 41 0 1854 41
776328 0.8 1.00E-07 1667 23 0 1850 23
368258 0.5 1.00E-07 1822 22 0 1849 22
261313 0.25 1.00E-07 3362 22 0 1834 22
396697 0.05 1.00E-05 1756 83 0 1849 83
220962 0.25 1.00E-07 2238 6 0 1845 6
973891 0.5 1.00E-07 3726 140 0 1829 140
431312 0.25 1.00E-07 1578 2 0 1852 2
526319 0.5 1.00E-07 1528 22 0 1852 22
326223 0.5 1.00E-07 1196 14 0 1855 14
527796 0.25 1.00E-07 1751 13 0 1850 13
865501 0.25 1.00E-07 1413 11 0 1853 11
808022 0.4 1.00E-07 1984 53 0 1847 53
219303 0.5 1.00E-07 1167 11 0 1856 11
538363 0.05 1.00E-05 1436 69 0 1852 69
342329 0.25 1.00E-07 1209 3 0 1855 3
501973 0.25 1.00E-07 1030 22 0 1857 22
201848 0.25 1.00E-07 1383 5 0 1853 5
918136 0.75 1.00E-07 1780 46 0 1849 46
594887 0.6 1.00E-07 1969 13 0 1848 13
876011 0.25 1.00E-07 1885 3 0 1848 3
579284 0.15 1.00E-07 1862 35 0 1848 35
863985 0.4 1.00E-07 1713 17 0 1850 17
998757 0.45 1.00E-07 1818 9 0 1849 9
489146 0.3 1.00E-07 2129 94 0 1845 94
785899 0.6 1.00E-07 1262 19 0 1855 19
256487 0.7 1.00E-07 3088 115 0 1835 115
556357 0.5 1.00E-07 1142 10 0 1856 10
785873 0.25 1.00E-07 1361 11 0 1854 11
186676 0.2 1.00E-07 1567 28 0 1851 28
893255 0.2 1.00E-06 1687 62 0 1850 62
799296 0.85 1.00E-07 1338 25 0 1854 25

Figure APPENDIX .2: Best One Class SVM Results
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