
	

AN RSU PLACEMENT FRAMEWORK FOR V2I SCENARIOS

(TAŞIT AĞLARI İÇİN YOL KENARI ÜNİTESİ YERLEŞTİRME UYGUALAMASI)

by

B a r ı ş K A R A , B . S .

Thesis

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

in the

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

of

GALATASARAY UNIVERSITY

October 2019

	

This is to certify that the thesis entitled

AN RSU PLACEMENT FRAMEWORK FOR V2I SCENARIOS

prepared by Barış KARA in partial fulfillment of the requirements for the degree of
Master of Science in Computer Engineering at the Galatasaray University is
approved by the

Examining Committee:

Assist. Prof. Atay ÖZGÖVDE (Supervisor)
Department of Computer Engineering
Galatasaray University -------------------------

Assoc. Prof. Özlem Durmaz İNCEL
Department of Computer Engineering
Galatasaray University -------------------------

Prof. Dr. Ufuk TÜRELİ
Department of Electronics and Communication Engineering
Yildiz Technical University -------------------------

Date: -------------------------

iii	

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Atay Özgövde, for his

guidance, patience, and motivation throughout the work on this thesis.

Special thanks are also due to open source community and previous researchers, this

study would not have been possible without their efforts and passion.

October 2019

Barış Kara

 iv	

TABLE OF CONTENTS

LIST OF SYMBOLS .. v

LIST OF FIGURES ... vi

LIST OF TABLES .. vii

ABSTRACT ... viii

ÖZET ... ix

1. INTRODUCTION .. 1

2. LITERATURE REVIEW ... 6

2.1 Related Work: RSU placement .. 6

2.2 Related Work: Edge Computing in Vehicular Networks 7

3. MATERIALS AND METHODS .. 9

3.1 Case Study .. 9

3.1.1 Scenario and Parameters ... 9

3.1.2 Target Area ... 10

3.1.3 Traffic Dataset .. 11

3.2 Simulation Framework ... 13

3.3 RSU Distribution Models ... 16

3.3.1 Uniform RSU Distribution ... 16

3.3.2 Weighted RSU Distribution ... 18

3.3.2.1 Algorithm .. 18

3.3.2.2 Implementation ... 19

3.3.3 Optimized RSU Distribution .. 21

3.3.3.1 Algorithm .. 21

3.3.3.2 Problem Formulation .. 23

3.3.3.3 Implementation ... 24

4. RESULTS ... 28

5. CONCLUSION ... 34

REFERENCES ... 36

BIOGRAPHICAL SKETCH .. 39

 v

LIST OF SYMBOLS

BEH : Balloon Expansion Heuristic
BIP : Binary Integer Programming
DP : Dissemination Points
DSRC : Dedicated Short-Range Communication
IoT : Internet of Things
ITS : Intelligent Transportation Systems
LP : Linear Programming
RSU : Road Side Unit
SUMO : Simulation of Urban Mobility
VANET : Vehicular Ad-hoc Network
V2I : Vehicle to Infrastructure
V2V : Vehicle to Vehicle

vi	

LIST OF FIGURES

Figure 1.1: System Components for the Reference Scenario .. 2

Figure 3.1: Target Area Map ... 11

Figure 3.2: SUMO Traffic Simulation ... 12

Figure 3.3: SUMO Traffic Simulation Output ... 13

Figure 3.4: V2ISim Class Diagram .. 16

Figure 3.5: RSU Locations on Uniform Distribution Model .. 17

Figure 3.6: RSU Locations on Weighted Distribution Model 21

Figure 3.7: The positioning of RSU within a cell .. 24

Figure 3.8: The neighbour cells ... 25

Figure 3.9: RSU Locations on Optimized Distribution Model 27

Figure 4.1: Task Failure Rates .. 29

Figure 4.2: Average Service Time ... 31

Figure 4.3: Average Utilization Histogram ... 32

Figure 4.4: Task Failure Breakdown ... 33

vii	

LIST OF TABLES

Table 3.1: RSU and Task Parameters and Values ... 10

Table 3.2: RSU Ids Selected for Relocation .. 20

Table 3.3: Territory Ids and Number of RSUs to Assign .. 20

Table 3.4: Summary of notation in the mathematical formulation 26

Table 3.5: Results of the decision variables ... 27

viii

ABSTRACT

Edge computing has become a prominent computing strategy when mobile devices and

Internet of Things (IoT) became popular in the last decade and cloud computing could

not meet the computational requirements of some of these devices/applications. What

edge computing can provide different than cloud computing is low latency in

communication, high quality of service, and support for high mobility. Connected and

autonomous vehicles scenarios can be considered as an important application field for

edge computing as these are the key requirements to implement a vehicular network. In

this thesis, we aim to present a solution to one of the high level problems in vehicular

networks: efficient RSU placement by addressing network coverage and computational

demand. We propose an RSU placement framework for generating RSU placement

models based on traffic characteristics of a target area. Our work is different from

previous studies as they mostly approached this problem from communication aspect

and focused on solving a coverage problem without considering computational

requirements. Other research addressing computational requirements in vehicular

networks propose solutions for low level challenges such as resource allocation. The

proposed framework in this study can be used by infrastructure providers for designing

an efficient RSU placement while building a smart city. Moreover, our work includes

extending capabilities of a simulation framework designed for edge computing

scenarios. Therefore, we can evaluate the performance of the generated models and

validate their functionalities by running simulations on this environment.

ix

ÖZET

Son yıllarda mobil cihazlar ve Nesnelerin İnterneti’nin yaygınlaşması ve Bulut

Hesaplamasının bazı cihaz ve uygulamaların hesaplama gereksinimlerine çözüm

sağlayamaması nedeniyle, Uçta Hesaplama öne çıkan hesaplama yöntemlerinden biri

haline gelmiştir. Bulut Hesaplamasından farklı olarak Uçta Hesaplama, hesaplama

işlemleri için yüksek servis kalitesi ve iletişimde minimal gecikme sunmakta ve

kullanıcıların hareketliliğini desteklemektedir. Otonom ve akıllı araç senaryoları, Uçta

Hesaplama alanında önemli bir uygulama alanı olarak düşünülebilir. Bu tez

kapsamında, Taşıt Ağları konusunda yeterince çalışılmamış bir konu olan, bir yol ağı

üzerine kapsama alanı ve kaynak talebini göz önüne alarak Yol Kenarı Ünitesi (YKÜ)

yerleştirme problemine çözüm sunuyoruz. Bu doğrultuda, yol ağı üzerinde

gözlemlenen trafik karakteristiğini baz alarak yerleşim modelleri üretmeyi sağlayan

YKÜ yerleştirme uygulamasını geliştirdik. Çalışmamız, Taşıt Ağları alanında yapılan

daha önceki araştırmalar, çoğunlukla iletişim ve ağ kapsama konularını ele aldıkları ve

hesaplama ve kaynak gereksinimini dikkate almadıkları için bu çalışmalardan

ayrılmakta. Taşıt Ağlarında hesaplama gereksinimleri üzerine yapılan diğer çalışmalar

ise, kaynak yönetimi gibi temel problemler üzerine odaklanmış olup, bu konulara

sundukları çözümler ile bizim çalışmamızı mümkün kılmışlardır. Geliştirdiğimiz YKÜ

yerleştirme uygulaması, altyapı sağlayıcıları tarafından akıllı şehir dizayn sürecinde,

YKÜ yerleştirme çözümü için kullanılabilir. Ayrıca bu çalışma kapsamında, Uçta

Hesaplama senaryoları için dizayn edilmiş bir simülasyon aracını geliştirerek Taşıt

Ağları senaryolarına elverişli hale getirdik. Böylelikle üretilen yerleştirme

modellerinin işleyişini simülasyon üzerinde test edip performanslarını karşılaştırabildik.

1

1. INTRODUCTION

With increasing popularity of mobile devices and Internet of Things (IoT) in the last

decade, cloud computing had been leveraged to solve the problem of making complex

computations with limited device resources by provisioning remote computing and

storage resources. Edge computing, on the other hand, was suggested as a new

computing paradigm when the limitations of the centralised data centres started to

emerge. Satyanarayanan et al. (2009) describes these limitations as long WAN latencies

and bandwidth-induced delays. Because of these limitations, cloud computing is not a

suitable computing strategy for scenarios which requires real-time data processing and

relies on fast feedback.

Edge computing is a good candidate to solve these problems by bringing computing

resources to the edge of the network, usually one hop away from the user. The features

of low latency in communication, high quality of service and support for high mobility

makes edge computing an optimal solution for the computational requirements of a

wide range of applications in different domains. Connected and autonomous vehicle

scenarios are considered as good application fields for edge computing (Corcoran &

Datta, 2016). Figure 1.1 shows the system components in a reference scenario.

2

Figure 1.1 System Components for the Reference Scenario

Using their advanced sensors, connected vehicles collect data from their environments.

In current state of automotive technology, vehicles process this data to interpret their

environment and enable assisted and autonomous driving for a safe navigation. For

example, using their ultrasound, infrared, radar and video sensors vehicles can detect

other vehicles on the road, stop for pedestrians, and handle any unexpected

circumstances (Uhlemann, 2015). On the other hand, the automotive industry is

working to develop Vehicular Ad-hoc Networks (VANETs), to enable vehicles to share

information with other vehicles and road side units (RSUs) through vehicle-to-vehicle

(V2V) and vehicle-to-infrastructure (V2I) communication channels (Santa et al., 2008).

VANET is an essential part of Intelligent Transportation Systems (ITS) (Kathiriya et al.,

2013) which are the future of transportation (Guo & Balon, 2006). VANETs can be

utilized for a broad range of safety and non-safety applications, allow for value added

services such as vehicle safety, automated toll payment, traffic management, enhanced

navigation, location-based services such as finding the closest fuel station, and

infotainment applications such as providing access to the internet (Zeadally et al.,

2010).

Dedicated short-range communication (DSRC), which is a candidate for use in a

VANET, offers the potential to effectively support V2V and V2I safety

communications (Guo & Balon, 2006) by providing high data transfer rates with

3

minimum latency (Chang, 2009). The primary motivation for deploying DSRC is to

enable collision prevention applications. These applications depend on frequent data

exchanges among vehicles, and between vehicles and roadside infrastructure (Kenney,

2011).

Road Side Units (RSU) are the communication units in VANET which are fixed along

the road side or in dedicated locations such as at the junctions or near parking spaces

(Barskar & Chawla, 2015). They are equipped with an antenna to enable wireless

communication based on IEEE 802.11p radio technology, a processor, and a read/write

memory (Saini et al, 2015). Barskar & Chawla (2015) describes main functions and

procedures associated with the RSUs as follows:

• To extend the communication range of the ad hoc network for redistributing the

information to other vehicles

• Running safety applications and acting as an information source

• Providing internet connectivity to the vehicles

The components of the V2I scenarios can be mapped to edge computing elements as

follows:

• RSUs are the edge computing units because of their proximity to the vehicles,

providing computational, storage resources and high bandwidth link, and

transfer data with minimum latency

• Vehicles are the resource poor clients as they have limited computation and

storage resources due to the requirements of small-size and low-cost hardware

systems (Yu et al., 2013)

• Vehicular applications are edge applications as they demand complex

computation and large storage

Applications collecting information from multiple vehicles have a great potential of

increasing road safety and improving quality of traffic. Satyanarayanan (2017)

proposes a scenario in which crowd sourcing and edge computing can be harnessed to

create a shared real-time information system for situational awareness. They claim that

4

collected information can be used to detect critical situations such as accidents, icy road

conditions, fallen rocks and advisory messages can be conveyed to the other drivers.

Another study proposes an application for intelligent traffic management at

intersections to minimize accidents, traffic congestion and environmental costs of road

traffic using V2V and V2I communications (Bento et al., 2012). Katsaros et al. (2011)

also designs an application that could improve fuel consumption and reduce traffic

congestion in junctions using vehicular data through same communication channels.

Another study proposes a merging algorithm that optimizes the performance of

connected fully automated vehicles through a freeway merging segment for a scenario

relying on V2V and V2I communications (Letter & Elefteriadou, 2017).

All these applications deployed into RSUs receive data from vehicular applications such

as trajectory, speed, destination coordinates, etc. in short intervals, aggregate and

process it in real time and send response back to senders or to the relevant vehicles

within the network range. Here again, low latency and high quality of service are the

key factors to build this ecosystem.

RSUs placed in an area should meet two requirements. First, network coverage of the

area should be maximised, so that vehicles can stay connected to the RSUs at any time

during their journeys and edge applications can work without excluding any territories.

Second, edge computing units have limited resource capacities compared to the cloud

datacentres (Hong & Varghese, 2018) and computational demand of the edge

applications should be met by the RSUs. It is expected to observe different levels of

traffic density in different parts of an area. Placing insufficient number of RSUs in a

territory with high traffic volume creates computational demand more than RSUs can

handle and this could result in system failure. On the other hand, placing more RSUs

than required in a territory with low traffic volume could result in waste of resources

and loss of money.

Deploying a specific number of RSUs into an area is a challenging work since

satisfying two requirements at the same time brings us to a trade-off problem. RSUs

should be placed in an area in a way that satisfies both network coverage for vehicles

5

and computational demand for the edge applications at maximum level considering the

traffic density on the road network.

As to be explained in detail, majority of the existing works address RSU placement

problem from communication aspect without considering resource consumption of the

edge applications. On their survey addressing Mobile Edge Computing, Mach &

Becvar (2017) describes the issue of finding an optimal way where to physically place

the computation depending on expected user demands as an open research challenge.

The objective of this study is to implement an RSU placement framework for generating

RSU placement models based on traffic characteristics of an area. We aim to provide a

flexible tool that can be configured for designing a placement model in favour of

network coverage or computational demand. Additionally, our work includes extending

capabilities of an open source simulation framework, EdgeCloudSim1, proposed by

Sonmez et al. (2017) to evaluate the performance of edge computing scenarios. By

adding new modules to support simulations for V2I scenarios and designing realistic

traffic scenarios for a target area in London city centre, we evaluate the performance of

the generated placement models and validate their functionalities.

Simulation results show that generated models satisfy network coverage and resource

demand in different levels, and can be used to find the optimal placement of the RSUs

in the target area. Therefore, our framework can serve as a reliable tool to be used as

part of RSU deployment process by infrastructure providers.

The rest of the thesis is organised as follows: section 2 explains previous studies

addressing RSU placement and Edge Computing in Vehicular Networks. In section 3,

we explain our case study, simulation framework, and proposed RSU distribution

models. Section 4 outlines the simulation results and validity of the proposed

framework. Finally, we conclude the thesis and outline the future work in section 5.

1 https://github.com/CagataySonmez/EdgeCloudSim

6

2. LITERATURE REVIEW

2.1 Related Work: RSU placement

Trullols et al. (2009) suggest a maximum coverage approach to the problem of

information dissemination in intelligent transportation systems in their study, which can

be considered as one of the earliest works addressing this topic as most of the research

efforts had focused on the development of protocols and applications suitable for

VANET until that period of time. In their study, they propose a heuristic algorithm to

solve the problem of maximizing the number of vehicles that get in contact with the

Dissemination Points (DPs). Their results also show that, their suggested heuristics can

be successfully employed to plan a deployment capable of informing more than 95% of

vehicles with a few DPs.

Aslam et al. (2012), present two different solutions to the RSUs placement problem

with objective of maximizing the information flow from vehicles to RSUs in an urban

environment: Binary Integer Programming (BIP) method and a novel Balloon

Expansion Heuristic (BEH) method. BIP method utilizes branch and bound method to

find optimal solution, whereas, BEH method uses balloon expansion analogy to find

optimal solution. Both optimization methods were used to solve the optimization

problem of minimizing the average reporting time. They have shown that the novel

BEH method is more versatile and can be used to solve the optimization problem.

Balouchzahi et al. (2015) also propose an optimization method addressing RSU

placement by formulating the problem using BIP. In their work, highway and urban

scenarios are separately formulated to improve the model scalability. Their simulation

results show that the proposed model reduces the receiving time of traffic information

7

and can reach to a satisfactory level of coverage using less RSUs.

Wu et al. (2012) tackle the same problem by presenting a placement strategy referred as

Capacity Maximization Placement (CMP) based on Integer Linear Programming (ILP).

Apart from direct communication of RSUs and vehicles, their study also covers multi-

hop relaying, which takes place when the vehicle is out of RSU’s transmission range.

To validate their findings, they compare the results of CMP with two other models:

uniformly distributed placement and hot spot placement. The simulation result shows

that the proposed model leads to the best performance among all mentioned models.

Our study differs from aforementioned works in a way that they only address the

problem from communication and network coverage aspects without taking resource

consumption and computational demand of the RSUs into account. Although a

placement model can be optimized enough for a cost efficient RSU deployment in an

area and provide a quality of communication at a certain level, it is not guaranteed that

it can handle computational demand of the edge applications.

2.2 Related Work: Edge Computing in Vehicular Networks

Yu et al. (2013), propose a hierarchical cloud architecture for vehicular networks. Their

architecture consists of central clouds, roadside cloud and vehicular cloud. Central

clouds have sufficient cloud resources but large end-to-end communications delay. On

the contrary, roadside and vehicular clouds have limited cloud resources but satisfy

communications quality. In their study, they focus on efficient resource management in

the proposed architecture and they formulate and solve resource competition among

virtual machines in a game-theoretical framework

In their study, Datta et al. (2016), seek an alternative of cloud platform to support real

time connected vehicular scenarios. They design an IoT framework that includes an

edge computing system for the connected vehicles to offer consumer centric services.

Their framework primarily utilizes an edge computing platform to support network

switching, resource discovery, provisioning, local processing for data fusion and storage

of the high level intelligence for vehicular scenarios.

8

Salahuddin et al. (2014) present RSU Clouds as a novel way to offer non-safety

application with QoS for VANETs. RSU Clouds consist of traditional RSUs and micro

datacentres. Their system can be reconfigured, at a cost, to meet the fluctuating service

demands like cloud datacentres. They also focus on concepts such as resource

management, minimizing VM migrations, control plane overhead, number of service

hosts and infrastructure delay for their proposed architecture.

Although the research described in this section address edge computing in vehicular

networks, the researchers mostly suggest new frameworks and architectures in which

cloud and edge processing units, and mobile devices/vehicles are integrated into a new

ecosystem. Then, they suggest solutions for computational challenges such as resource

allocation, scheduling, VM migration, etc. for the computational resources. Our work

can be considered as a complementary study in which we focus on provisioning a V2I

infrastructure built on top of an existing architecture. Therefore, we assume that low-

level computation and communication problems are resolved and we can propose

solutions for higher level challenges such as efficient RSU placement.

9

3. MATERIALS AND METHODS

3.1 Case Study

3.1.1 Scenario and Parameters

In our reference scenario, we consider a smart city equipped with RSUs and support

V2I communication. All the vehicles are smart or connected with the ability of running

vehicular applications that connect to edge applications deployed into RSUs. Vehicular

applications send one task to the nearest RSU per second in case the vehicle is in the

network coverage of any RSU. When the task is successfully processed, RSU sends a

response back to the vehicular application. There are 3 cases a task can fail:

• Coverage: Vehicle is not in range of any RSU’s network

• Capacity: RSU is out of capacity and cannot process incoming task

• Bandwidth: Task cannot be sent through network due to congestion

• Mobility: Vehicle leaves the RSU network coverage after sending the task

We assume all RSUs have same hardware resources and the tasks sent by the

applications are identical. In our scenario, each RSU has 1 Mbps bandwidth. Average

task payload size is 1024 bytes for both upload and download operations. We also

assume that each RSU has an equipped server with 600Mhz CPU and 500MB RAM,

and average task length is 300 MI. Table 3.1 shows the parameters and their values for

RSU and task configurations.

10

Table 3.1: RSU and Task Parameters and Values

Parameter Value

RSU Network Range 300m
RSU Bandwidth 1 Mbps
CPU 600 Mhz
Memory 500 MB
Average Task Payload
Size 1024 byte

Average Task Length 300 MI

Task arrival rate 1 Hz

The simulations we run are based on these assumptions and parameters.

3.1.2 Target Area

For our scenario, we chose London city centre as the target area for deploying RSUs

which covers an area of 3 by 3 kilometres. To be able to run traffic simulations and

calculate RSU locations, we needed to extract the road network of the target area. To

obtain the road network, we outlined the target area on OpenStreetMap2 which is a free

collaborative map application, then we exported it in xml format. Since the map data

includes a variety of information such as buildings, parks, restaurants, etc., we

processed the file to only include road network elements such as motorways,

intersections and traffic lights. Figure 3.1 shows the map of the target area.

2 https://www.openstreetmap.org/

11

Figure 3.1 Target Area Map

3.1.3 Traffic dataset

Due to the lack of publicly available vehicle trajectory dataset for the target area, we

used Simulation of Urban Mobility (SUMO) framework to generate realistic traffic

dataset. SUMO is an open source, microscopic and continuous road traffic simulation

framework designed to handle large road networks (Lopez et al., 2018).

Apart from its simulation capabilities, SUMO includes several scripts for traffic and

road network operations. We converted the map data into a network file, which is the

SUMO input format that defines the road network. Then, we used randomTrips tool,

which is a python script that takes place in SUMO library, to generate the vehicle routes

randomly on the road network. The output route file, along with the network file should

be provided to SUMO to run the traffic simulation.

We defined two important parameters during route generation: simulation time and

vehicle arrival rate. The simulation time we chose as 1 hour, aligns with the time of

V2I simulation we conducted in the following steps. Vehicle arrival rate, on the other

hand, defines the number of vehicles in the simulation and SUMO generates one

12

specific route for each vehicle. This parameter is set to 1 by default. In our study,

traffic density plays an important role on RSU placement process as the load on the

RSUs depends on number of vehicles in the system. Thus, to cover scenarios with

different traffic volumes, we run the script using different arrival rates. As a result, we

generated 8 route files which include 500, 1000, 1500, 2000, 2500, 3000, 3500, and

4000 vehicles routes.

After that, by running SUMO traffic simulation for each route file for a simulation time

of 1 hour, we produced 8 traffic output files which comprise our traffic dataset. Each

file contains traffic data logged for each simulation second such as vehicle id, type,

coordinates, speed, angle, lane, etc. As a result, 8 million logs were produced in total

for the traffic dataset. Figure 3.2 depicts a section of the traffic running on the

simulation and Figure 3.3 shows the logs of first 4 seconds from one of the traffic

output files.

Figure 3.2 SUMO Traffic Simulation

13

Figure 3.3 SUMO Traffic Simulation Output

3.2 Simulation Framework

We needed a simulation environment for our study in order to validate the functionality

of the proposed RSU placement framework and compare the performances of the

generated RSU placement models. Since we could not find a simulation tool designed

for V2I scenarios, we used EdgeCloudSim, which is an open source simulation

framework. EdgeCloudSim designed for simulating edge computing scenarios where it

is possible to conduct experiments that considers both computational and networking

resources (Sonmez et al., 2017). We extended capabilities of this framework to

simulate V2I scenarios thanks to its extensible and modular design.

EdgeCloudSim is also extended from another simulation environment, CloudSim3,

which allows modelling of cloud computing infrastructures and application services

(Calheiros et al., 2011). While EdgeCloudSim implemented edge processing units and

3 http://www.cloudbus.org/cloudsim/

14

modelled edge computing network, we introduced RSUs as computing units for V2I

scenarios and extended the network model for vehicular network. We also implemented

a mobility module to integrate traffic scenarios in the environment.

The key components we implemented in V2ISim are as follows:

• RSUManager: This component is responsible for creating RSU instances in the

system based on the configuration provided. The configuration should include

RSU resource definition as well as GPS coordinates in decimal degrees.

• TrafficLoadGenerator: A traffic input file, which includes vehicle trajectory

data should also be provided to the simulation environment.

TrafficLoadGenerator is responsible for creating tasks using task characteristics

received from task configuration file. When the simulation starts running, these

tasks are scheduled for processing in due course.

• TrafficTaskBroker: This component is responsible for managing the lifecycle

of a task. After the task is created, there are 3 stages it has to follow until it is

completed: vehicular application submits task to the RSU, task is processed in

the RSU and finally response sent back to the vehicle. When the task reaches to

one stage, it is rescheduled by TrafficTaskBroker for the next one.

• RSUOrchestrator: Its responsibility is to find the RSU that the task will be

submitted. To achieve this, first, nearest RSU to the vehicle is detected. Then,

if the vehicle is within the range of the RSU, task is submitted to it by

TrafficTaskBroker.

To find the nearest RSU for a given vehicle position efficiently, all RSU

coordinates are saved in a K-D tree (K-Dimensional Tree) when the application

starts. A K-D Tree is a data structure for efficient search and nearest-

15

neighbour(s) computation of points in K-dimensional space. We used an open

source K-D tree implementation in our application4.

• RSUMM1Queue: We use MM1 queue model to simulate the network delay.

This component is responsible for calculating task upload and download delays.

• SimLogger: Lastly, all the important task data, RSU data and as well as

calculated system metrics are logged by SimLogger in different logging levels.

Figure 3.4 shows the class diagram which depicts the modular architecture of the

simulation framework, core modules and their relations.

At the end of the simulation 3 output files are generated per traffic input file from the

traffic dataset:

• Generic logs: this file includes most important simulation results such as

number of successfully processed tasks, number of failed tasks, average service

time, average network delay and average RSU utilization rate. The values

logged in this file are used as metrics while comparing system performances for

different RSU placement models.

• RSU utilization logs: this file keeps the utilization rates for each RSU logged

for each simulation second. This values are used as metrics while comparing

system performances from utilization aspect for different RSU placement

models.

• Task assignment logs: it keeps the logs of number of assigned and failed tasks

for each RSU.

4 https://home.wlu.edu/~levys/software/kd/

16

Figure 3.4 V2ISim Class Diagram

3.3 RSU Distribution Models

In this study, we propose 3 RSU distribution models: Uniform, Weighted, and

Optimized. This section outlines the algorithms, implementations and results of the

models.

3.3.1 Uniform RSU Distribution

This placement model only aims for full RSU network coverage by placing RSUs

equidistant from each other without considering computational demand.

17

Network range of the RSUs can reach up to 1000 meters if there are no obstructions,

and 250-350 meters in cluttered urban areas (Ligo et al., 2015). For this model, we

assumed that each RSU works best with a coverage of 150 meters due to the shadowing

effect of the buildings, and we decided to place RSUs 300 meters far from each other.

Therefore, to cover an area of 9 km² with RSUs working in their best performances, we

needed to have 100 RSUs.

We developed a Java application as the implementation of the algorithm and referred it

to RSU Distributor. In this application, we generated a grid on the area map by dividing

it into cells each with the size of 300x300 meters. We referred to these cells as

territories. Then, we placed one RSU into the centre of each territory, therefore 100

RSUs were evenly distributed to the area. Figure 3.5 shows the RSU locations on the

target area map based on the uniform distribution. It should be noted that, as its name

suggests, an RSU should be placed on the road side to ensure the proximity to the

vehicles. However, in an urban scenario in which a complex road structure exists, a

territory includes multiple roads and we expect the placed RSU to serve to the vehicles

across multiple roads within the coverage area.

Figure 3.5 RSU Locations on Uniform Distribution Model

18

3.3.2 Weighted RSU Distribution

We used Uniform Distribution model as base model to generate Weighted RSU

distribution with a heuristic approach. This model addresses refining RSU locations set

up for uniform distribution model by taking computational demand into account. In the

uniform distribution model, despite of the full network coverage, we might have high

task failure rates since RSUs might not meet the high computational demand using their

limited resources. We may especially experience this problem in territories with higher

traffic volumes i.e. traffic congestions. An external parameter, θ, is the relocation factor

and determines number of the RSUs to be relocated. Relocation step addresses

selecting θ% least utilized RSUs and move them to the territories where more

computational resources are needed.

Thus, we aim to decrease resource originated task failures by bringing additional

computational resources to meet the higher demand. On the other hand, relocated RSUs

will cause coverage originated task failures as no RSUs will serve to vehicles at these

territories. Value of θ should be assigned considering the difference of traffic volumes

in different territories as this trade-off is only reasonable if total number of task failures

decreases after the relocation.

3.3.2.1 Algorithm

The algorithm for this placement model consists of 4 steps:

• RSU Selection: This step addresses finding the RSUs placed at the territories

with lower traffic volume, thus have low utilization rates. To detect these RSUs,

we calculate task assignment rates for each RSUs in the uniform distribution.

The RSUs with less task assignment rates are marked to be moved in the

territories with higher resource demand. We select θ% least utilized RSUs in

this step.

• Territory Selection: To detect the territories that need additional resources to

meet the high computational demand, we analyse the performance of the RSUs

19

in uniform distribution model under a heavy load. The territories containing the

RSUs with higher task failure rates due to insufficient capacity are the

candidates to support with additional RSUs.

• RSU Distribution: In this step, we first calculate a weight factor using task

failure rates for each candidate territory. Then using the weight factor, we

calculate number of RSUs to be assigned into each territory. Finally, we

distribute the selected RSUs into these territories.

• RSU Placement: This step addresses placing selected RSUs into the candidate

territories. The first RSU is placed in the middle of territory centre and

neighbour territory centre with the highest computational demand among all

neighbours. The second RSU is placed between the territory centre and

neighbour territory centre with the second highest computational demand, and so

on.

3.3.2.2 Implementation

To implement weighted distribution algorithm, we started by running a simulation for

uniform distribution model on the target area using the traffic dataset as we needed to

produce two metrics: task assignment rates and task failure rates of the RSUs. Then, we

extended RSU Distributor application to implement the steps of the weighted

distribution algorithm.

From 500 to 4000 vehicles, the simulation run once for each traffic input file and as a

result, 8 task assignment log files which include more than 8 million task logs were

produced in total. In the application, these logs were aggregated and processed to find

the values of task assignment rates and task failure rates of the RSUs.

The number of RSUs we want to select and distribute into new cells are based on the

value of θ, relocation factor. By providing 10, 20, and 30 for θ, we run the application

and generated 3 different set of RSU placement models for weighted algorithm. For

20

each value of θ, Table 3.2 shows the selected RSUs for relocation and Table 3.3 shows

number of RSUs to be assigned to each territory.

Table 3.2: RSU Ids Selected for Relocation

θ RSU ids

10 3, 11, 39, 4, 9, 49, 5, 90, 88, 2

20 3, 11, 39, 4, 9, 49, 5, 90, 88, 2, 74, 89, 79, 69, 1, 91, 6, 70,
93, 12

30
3, 11, 39, 4, 9, 49, 5, 90, 88, 2, 74, 89, 79, 69, 1, 91, 6, 70,
93, 12, 84, 98, 92, 87, 8, 99, 14, 59, 80, 19

Table 3.3: Territory Ids and Number of RSUs to Assign

θ Territory ids and number of RSUs to assign

10 55(2), 54(1), 45(1), 35(1), 48(1), 33(1), 34(1), 65(1), 53(1)

20
55(3), 54(2), 45(2), 35(2), 48(2), 33(1), 34(1), 65(1), 53(1),
58(1), 47(1), 46(1), 75(1), 36(1)

30
55(4), 54(3), 45(3), 35(3), 48(3), 33(2), 34(1), 65(1), 53(1),
58(1), 47(1), 46(1), 75(1), 36(1), 25(1), 71(1), 38(1), 63(1)

Figure 3.6 shows the weighted distribution RSU placements for θ=10, 20, and 30,

respectively.

21

Figure 3.6 RSU Locations on Weighted Distribution Model

for θ = 10, 20, 30 respectively

3.3.3 Optimized RSU Distribution

As previously discussed, we have two criteria to fulfill while solving the RSU

placement problem efficiently: network coverage and computational demand. Our

approach for the optimized placement model is to use Linear Programming (LP) to

address both of the requirements.

3.3.3.1 Algorithm

Similar to other models, optimized RSU distribution model also does its calculations on

a grid generated on the target area map. For this purpose, we used the same grid as we

22

generated for the uniform RSU distribution model to provide consistency. It should be

noted that, working with smaller cell size would provide fine-grained results, however

this results in an exponential growth on the number of formulations to define the

mathematical model on LP.

Linear Programming is an optimization technique in which complex relationships

between variables are defined as linear functions, then optimum values of the variables

are calculated. The steps of defining a Linear Programming problem generally

includes:

• Identify the decision variables

• Write the objective function

• Define the constraints

Decision variables are the unknowns of the programming model. Objective function is

the linear function representing cost, profit, or some other quantity to be maximized or

minimized. And the constraints are the restrictions or limitations on the decision

variables. Lastly, the decision variables should be greater than or equal to 0 for a linear

program.

Binary Integer Programming (BIP), on the other hand, is a subtype of Linear

Programming in which all decision variables are defined as binary. In our problem,

each cell is a candidate for placing an RSU, meaning that we want to solve the problem

that decides whether a cell has an RSU or not. Therefore, our decision variables refer to

the condition of each cell having the value of 1 or 0, where 1 states that RSU should be

placed, and 0 should not. As a result, we formulated the RSU placement problem using

BIP.

23

3.3.3.2 Problem Formulation

For the grid consisting of 100 cells, the we define the decision variables as follows:

𝑥", 𝑥$, 𝑥%, …	, 𝑥((

In the second step, we define the objective function using the decision variables. Our

objective is fulfilling the constraints using minimum number of RSUs. Thus, the

objective function is:

𝑚𝑖𝑛	 𝑥,

((

,-"

Finally, we define the constraints in which we model network coverage and resource

demand as well as the criteria we want to set as their minimum values.

a) Network Coverage

We start by formulating the total coverage (R) of the RSUs using the decision variables.

As previously stated, the network range of an RSU is between 250-350 meters in the

urban areas (Ligo et al., 2015). The cells have the size of 300x300 meters, whereas we

consider the network range of an RSU as also 300 meters. Figure 3.7 depicts the

positioning of an RSU within a cell along with its network range. As it can be seen in

the figure, the area of the RSU’s network coverage exceeds the area of the cell. In this

situation, when two RSUs are placed within the neighbour cells, there will be an overlap

on the area coverage, and an optimized placement solution should minimize these

overlaps.

24

Figure 3.7 The positioning of RSU within a cell

Total coverage is defined with this equation:

𝑅 = 𝑥,	𝑟,

((

,-"

− 𝑥,	𝑥2

((

2-"

𝑝,,2

((

,-"

+ 𝑥,	𝑥2

((

5-"

𝑥5	𝑝,,2,5

((

2-"

((

,-"

			

In the equation, first summation operation denotes addition of network coverage for all

the placed RSUs (i). Then, as explained above, the overlapped areas as a result of

neighbourhood should be subtracted from this sum, and the double summation

operation indicates that (ii). According to this Figure 3.8, which shows 4 example cells,

the neighbourhood, which causes network overlapping, exists when RSUs are placed

into these cells: A-B, A-C, A-D, B-C, B-D and C-D. Lastly, when there is a case of “L”

shape neighbourhood, we need to add the overlapped area of these 3 cells to the

equation as dual neighbourhoods takes out that amount of size from the sum as extra.

For example, when RSUs are placed into A, B and D cells, the subtract operations

defined at step ii will remove the overlapped areas for A-B, A-D and B-D

neighbourhoods, and this will result in subtracting an extra overlapped area for A-B-D

25

neighbourhood. The triple summation operation adds this area back to the equation

(iii).

Figure 3.8 The neighbour cells

b) Resource Demand

We followed a similar strategy to network coverage while formulating the resource

demand (D). The main difference is, we had to calculate the resource demand for each

cell using the traffic dataset. Then, the same rules we used for the neighbourhood also

apply here.

Therefore, total demand is defined with this equation:

𝐷 = 𝑥,	𝑑,

((

,-"

− 𝑥,	𝑥2

((

2-"

𝑠,,2

((

,-"

+ 𝑥,	𝑥2

((

5-"

𝑥5	𝑠,,2,5

((

2-"

((

,-"

			

c) Constraints

Lastly, we define the constraints. The constraints below suggest that minimum network

coverage and resource demand are user defined parameters and denoted by γ and λ.

And all the decision variables are binary.

𝑅 ≥ γ 	

𝐷 ≥	λ	

𝑥", 𝑥$, 𝑥%, …	, 𝑥((= 1	|	0	

A C

B D

26

Table 3.4 explains the notations used in the mathematical formulations.

Table 3.4: Summary of notations in the mathematical formulations

Symbol Description

𝑖	 Candidate grid cell for RSU placement
𝑥,	 Binary variable for RSU placed at cell 𝑖	
𝑅 Total network coverage

𝐷 Total resource demand

𝑟, Network coverage for RSU placed at cell 𝑖	

𝑑,
Satisfied resource demand for RSU placed at
cell 𝑖	

𝑝,,2
Overlapped network coverage for the RSUs at
neighbour cells 𝑖	and 𝑦

𝑠,,2
Overlapped supply for the RSUs at neighbour
cells 𝑖	and 𝑦

𝑝,,2,5 Overlapped network coverage for the RSUs at
neighbour cells 𝑖	, 𝑦	and 𝑘

𝑠,,2,5 Overlapped supply for the RSUs at neighbour
cells 𝑖	, 𝑦	and 𝑘

3.3.3.3 Implementation

We defined the formulations on OpenSolver5, which is an open source linear, integer

and non-linear optimizer for Microsoft Excel. We solved the problem by assigning

different values for γ and λ. When we targeted for for full network coverage (γ = 100)

and full resource supply (λ = 100), it resulted that 79 RSUs needed to be placed.

However, when we decreased both of the values to 99%, the outcome changed to 52

RSUs. For 90% coverage and supply, the problem was solved with 42 RSUs.

Since this tool is designed to serve as a framework to the infrastructure providers, the

company will be free to use any values as parameters based on their financial and

technical requirements. While they can set high values γ and λ, they can also aim for

maximum coverage whereas they ignore the demand, or vice versa. For our simulation

5 https://opensolver.org/

27

in which we compare the performances of the placement models, we use the values γ =

99 and λ = 99 since this combination result in a very efficient outcome. Table 3.5

shows the binary values for each decision variables that the program produced for these

values. And Figure 3.9 shows the final placement of the optimized distribution model.

Table 3.5: Results of the decision variables

Binary Value Decision Variables

1	

𝑥"	, 𝑥%	, 𝑥A	, 𝑥B	, 𝑥C	, 𝑥(, 𝑥$$, 𝑥$%	, 𝑥$A	, 𝑥$B	, 𝑥$D, 𝑥$(, 𝑥%"	, 𝑥%E	,	
𝑥%F	, 𝑥%C	, 𝑥E$, 𝑥E%	, 𝑥EE	, 𝑥EF	, 𝑥EC	, 𝑥ED	, 𝑥E(, 𝑥A"	, 𝑥AA	, 𝑥AB	, 𝑥F$,
𝑥F%	, 𝑥FE	, 𝑥FF	, 𝑥FC	, 𝑥FD	, 𝑥F(, 𝑥B"	, 𝑥BF	, 𝑥BC	, 𝑥C$, 𝑥C%	, 𝑥CE, 𝑥CA	,		
𝑥CB	, 𝑥CD	, 𝑥C(, 𝑥D"	, 𝑥DF	, 𝑥DC	, 𝑥($, 𝑥(%	, 𝑥(E	, 𝑥(F	, 𝑥(C	, 𝑥((

0

𝑥$, 𝑥E	, 𝑥F	, 𝑥D	, 𝑥$"	, 𝑥$E	, 𝑥$F	, 𝑥$C	, 𝑥%$, 𝑥%%	, 𝑥%A	, 𝑥%B	, 𝑥%D	, 𝑥%(,
	𝑥E"	, 𝑥EA	, 𝑥E"	, 𝑥EB	, 𝑥A$, 𝑥A%	, 𝑥AE	, 𝑥AF	, 𝑥AC	, 𝑥AD	, 𝑥A(, 𝑥F"	, 𝑥FA	,
𝑥FB	, 𝑥B$, 𝑥B%	, 𝑥BE	, 𝑥BA, 𝑥BB	, 𝑥BD, 𝑥B(, 𝑥C", 𝑥CF	, 𝑥CC	, 𝑥D$, 𝑥D%	,
𝑥DE	, 𝑥DA	, 𝑥DB, 𝑥DD	, 𝑥D(, 𝑥(", 𝑥(A	, 𝑥(B	, 𝑥(D	

Figure 3.9 RSU Locations on Optimized Distribution Model

28

4. RESULTS

To compare system performances and validate functionalities of the RSU placements

we generated using RSU placement framework, we run a set of simulations on V2ISim.

To achieve this, we processed the simulation output logs and plotted several graphs

using Python matplotlib library.

We generated 3 distribution models: uniform, weighted, and optimized. The weighted

model has 3 variations for the values of θ = 10, 20 and 30. Since we already had the

results for uniform distribution model, we run the simulation for weighted and

optimized placements. The simulation took 9 hours 6 minutes, 6 hours 36 minutes, and

6 hours 19 minutes for the weighted placement model respectively, and 7 hours 41

minutes for the optimized placement model. All the simulations were run on a laptop

with Intel Core i7-8850H CPU and 16GB RAM.

We used same traffic dataset for all of the simulations. The dataset includes vehicle

trajectory data files which represent different traffic densities. Therefore, we can

evaluate system behavior under different loads. We classified the traffic densities into 3

categories:

• Number of vehicles below 1500 as low traffic volume

• Number of vehicles between 1500 and 3000 as medium traffic volume

• Number of vehicles more than 3000 as high traffic volume

29

The graph in Figure 4.1 shows the comparison of task failure rates for uniform

distribution, weighted distribution for θ = 10, 20, and 30, and optimized distribution.

This can be considered as our most important metric while evaluating system

performance. A system with low task failure rates is more reliable and functions better.

We can observe that the system functions best for the optimized distribution model

under any traffic volumes, therefore we can suggest that optimized distribution model

provides the best results among all models. The graph also shows that when the number

of vehicles in the system increases, task failure rates also increase for all RSU

distribution models consistently except for the optimized model. Considering the sharp

increase between 3500 and 4000 vehicles for all models, we can claim that if the traffic

density is over a threshold, RSUs will have difficulty handling the load and the system

might even crash.

The graph shows us below 1000 vehicles, there is no significant gap between weighted

distribution model for θ = 10 and uniform distribution model, however after this point

we can observe an increase on this gap.

Figure 4.1 Task Failure Rates

30

On the other hand, while uniform distribution model performs better than the weighted

distribution models for θ = 20 and 30 under low traffic volume, weighted distribution

model for θ = 20 outperforms it for medium traffic volume and weighted distribution

model for θ = 30 outperforms it for high traffic volume. This is because while network

coverage is a more important factor for the low traffic volume, resource capacity

becomes more critical than the other factors when traffic density increases.

Lastly, the graph shows that relocating less utilized RSUs to the territories with higher

load improves the system to a certain point. Weighted distribution model for θ = 10

outperforms uniform model for low, medium and high traffic volumes and it is the most

optimal relocation factor among all the others. However, for θ = 20, weighted model

only performs better for medium and high traffic volumes, and for θ = 30, it only

functions better for high traffic volume. The reason for this is the trade-off between

network coverage and resource capacity. When a less demanded RSU is relocated into

a position to share the load in a busy area, capacity originated failure rates will decrease

for the RSUs in the target territory, however coverage originated failure rates will

increase for the original source territory.

As a result, by evaluating the results of Task Failure Rate graph, we can conclude that:

• optimized distribution model outperforms all others under any traffic load.

• uniform distribution model can be used for low traffic volume

• weighted model for θ = 20 can be used for medium and high traffic volumes

• weighted model for θ = 30 does not perform well under any traffic load

Figure 4.2 shows the comparison of average service time of the RSUs in the unit of

seconds. The service time is sum of download and upload delays and task processing

time. As can be seen on the graph, increasing load is positively related to RSU service

times for all distribution models except for the optimized model. Optimized distribution

model performed better than the other models for all traffic volumes, and all weighted

distribution models produced better results than the uniform model. The reason is, both

download and upload delays and processing time depend on the demand on the RSU in

that particular time. When an RSU needs to serve to higher number vehicles, they

experience more delays on network and processing time. And as a result of sharing the

31

high load with relocated RSUs, all weighted models provide better results in terms of

service time.

Figure 4.2 Average Service Time

While measuring system performance, another important metric is the average

utilizations of the RSUs. A system in which RSUs run with a low capacity is less

efficient than another system with higher RSU utilization. On the other hand, a system

with RSUs running in full capacity for a certain level of computational demand, is not

able to sustain higher loads. Since the simulations we run with low and medium traffic

volumes do not create significant load on majority of the RSUs, we compared

utilization of the RSUs using only the results of the simulations run with 3500 vehicles.

3500 is the number which creates the highest traffic volume without breaking the

system. Figure 4.3 shows the histogram of average RSU utilization for uniform,

weighted for θ=10, and optimized distribution models. The histogram shows that

optimized model performs best in terms of RSU utilization because of two reasons:

first, number of RSUs running in the lowest capacity (<10%) is lower than the other

models, therefore RSU resources were used more efficiently. Second, number of RSUs

32

running in high capacity (>%80) is also lower, therefore the load is distributed more

evenly among the RSUs.

Figure 4.3 Average Utilization Histogram

Figure 4.4(a), 4.4(b), and 4.4(c) shows task failure reasons and breakdowns for uniform,

weighted for θ=10, and optimized distribution models respectively. In uniform

distribution no task failure due to network coverage can be observed since it was

designed for the full network coverage. For uniform model when the traffic volume is

low, vehicle mobility is the reason for the majority of the task failures. However, when

traffic density increases, mobility failure rate decreases and RSU capacity failure

becomes the main reason of the task failures. For weighted model, especially for the

low traffic volume, network coverage failure is a significant failure reason as a result of

RSU relocation. However, when traffic density increases, coverage and mobility failure

rates decrease and RSU capacity failure becomes the main reason of the task failures.

Lastly, for optimized model, network coverage is the main reason of the task failures for

33

all traffic density levels, and we observe a spike on the bandwidth failures for 4000

vehicles.

Figure 4.4 Task Failure Breakdown (a) Uniform Distribution Model
(b) Weighted Distribution Model (θ = 10)

(c) Optimized Distribution Model

34

5. CONCLUSION

In this study, we propose an RSU placement framework to be used for generating

optimal RSU placement models based on traffic characteristics of a target area. Two

criteria should be satisfied for an RSU placement problem: network coverage and

computational demand. The proposed framework includes 3 distribution models:

uniform, weighted and optimized. Uniform distribution model addresses full network

coverage and do not consider computational demand. This can serve as a suitable

model for a road network in which sparse and evenly distributed traffic is observed on

the road network. Weighted distribution is a heuristic model which uses uniform model

as the base model. It addresses making improvements by considering the computational

demand. The relocation factor (θ), which is an external parameter, is provided to this

model to update RSU locations in favour of the computational demand. For a scenario

with high traffic volume, it is expected to experience congestions on the road network

and this might result in extra load on the RSUs serving in those territories. When the

computational demand exceeds the capacity of an RSUs, they may become

dysfunctional and this eventually would result a system crush. This scenario can be

prevented by providing a meaningful value for θ. Thus, for an effective utilization of

the framework, traffic characteristics of the target area should be carefully examined,

and a suitable value should be assigned for θ. Lastly, optimized distribution model uses

Linear Programming to generate an optimized RSU distribution. This solution

guarantees a certain level of network coverage and resource supply using minimum

number of RSUs. The constraints are defined with external parameters, γ and λ, and

denotes coverage constraint level and and resource supply constraint level respectively.

Thus, the company that uses this framework will be free to use any values as parameters

based on their financial and technical requirements. While they can set high values γ

and λ, they can also aim for maximum coverage whereas they ignore the demand, or

vice versa.

35

We needed a simulation environment to test performance of the RSU placement models

and validate their functionality. Since we could not find a simulation tool designed for

V2I scenarios, we extended the capabilities of EdgeCloudSim, which is a simulation

framework designed for edge scenarios. We introduced components and modules

specific to V2I scenarios and referred to this extended simulation environment as

V2ISim.

In our experiments, we used uniform, optimized, and weighted placement models. For

the weighted model, we generated 3 variations for θ=10, 20 and 30. Also we generated

a traffic dataset consisting of 8 vehicle trajectory files each representing a different

traffic volume. Then, we run a simulation for each placement model using this dataset

on V2ISim. The simulation results showed that optimized model outperforms all others

under any traffic load. Also, we concluded that uniform distribution model can be used

for low traffic volume, weighted model for θ=20 can be used for medium and high, and

θ=30 can be used for high traffic volumes. These results align with our expectations

and the experiments validate the functionality of the proposed RSU placement

framework.

As future work, we plan to improve our communication model. In this study, we had

our main focus on the communication between vehicle and RSU, however inter-RSU

communication is an accepted form of communication in Vehicular ad-hoc network

(VANET) in which RSUs can exchange data with each other (Barskar & Chawla,

2015). By implementing this in V2ISim, task transfers between RSUs will be possible

and task failures due to vehicle mobility will be prevented. Moreover, some technical

factors that can impact the communication between vehicles and RSUs should be

studied and findings should be reflected to the study. These can be determining the

noise level for the RSUs in close proximity and shadowing effect of the buildings.

REFERENCES

Aslam B., Amjad F., Zou C. C. (2012), Optimal Roadside Units Placement in Urban

Areas for Vehicular Networks, IEEE Symposium on Computers and

Communications (ISCC), Cappadocia, Turkey, pp. 423-429

Balouchzahi N. M, Fathy M., Akbari A. (2015). Optimal road side units placement

model based on binary integer programming for efficient traffic information

advertisement and discovery in vehicular environment, IET Intelligent Transport

Systems, 9(9): 851-861

Barskar R., Chawla M. (2015). Vehicular Ad hoc Networks and its Applications in

Diversified Fields, International Journal of Computer Applications, 123(10): 7-11

Bento L. C., Parafita R., Nunes U. (2012). Intelligent traffic management at

intersections supported by V2V and V2I communications, International IEEE

Conference on Intelligent Transportation Systems, Anchorage, Alaska, USA,

pp.1495-1502

Calheiros R. N., Ranjan R., Beloglazov A., De Rose C. A. F., Buyya R. (2011),

“Cloudsim: A toolkit for modeling and simulation of cloud computing environments

and evaluation of resource provisioning algorithms,” Software Practice and

Experience, 41(1): 23-50

Chang C. (2009). MAC Protocols in Vehicular Ad Hoc Networks. In C. Huang, Y.

Chen (Eds.), Telematics Communication Technologies and Vehicular Networks:

Wireless Architectures and Applications, IGI Global Hershey, pp. 183-206

Corcoran, P., Datta S. K. (2016). Mobile-Edge Computing and the Internet of Things

for Consumers: Extending cloud computing and services to the edge of the network,

IEEE Consumer Electronics Magazine, 5(4): 73-74

Datta S. K., Da Costa R. D. F., Härri J., Bonnet C. (2016), Integrating connected

vehicles in Internet of Things ecosystems: Challenges and solutions, IEEE 17th

International Symposium on A World of Wireless, Mobile and Multimedia Networks

(WoWMoM), Coimbra, Portugal, pp.

Guo J., Balon N. (2006). Vehicular Ad Hoc Networks and Dedicated Short-Range

Communication, University of Michigan – Dearborn, pp. 7-14

Hong C., Varghese B. (2018), Resource Management in Fog/Edge Computing: A

Survey, URL: https://arxiv.org/pdf/1810.00305.pdf

Kathiriya H., Kathiriya N., Bavarva A., (2013). Review on V2R Communication in

VANET, Proceedings of International Conference on Innovations in Automation and

Mechatronics Engineering 2013 (ICIAME-2013), G H Patel College of Engineering

& Technology, Vallabh Vidyanagar, Gujarat, INDIA, pp. 167-172

Katsaros K., Dianati M., Rieck, D. (2011). Performance study of a Green Light

Optimized Speed Advisory (GLOSA) application using an integrated cooperative

ITS simulation platform, 7th International Wireless Communications and Mobile

Computing Conference, Istanbul, Turkey, pp. 918-923

Letter C., Elefteriadou L. (2017), Efficient control of fully automated connected

vehicles at freeway merge segments, Transportation Research Part C: Emerging

Technologies, 80: 190–205

Ligo A. K., Peha J. M., Ferreira P., Barros J. (2015), Comparison between Benefits and

Costs of Offload of Mobile Internet Traffic Via Vehicular Networks, 43rd Research

Conference on Communications, Information and Internet Policy

Lopez P. A., Behrisch M., Bieker-Walz L., Erdmann J., Flötteröd Y., Hilbrich R.,

Lücken L., Rummel J, Wagner P., WieBner E. (2018), Microscopic Traffic

Simulation using SUMO, 21st International Conference on Intelligent

Transportation Systems (ITSC), Maui, HI, USA, pp. 2575-2582

Mach P., Becvar Z. (2017), Mobile Edge Computing: A Survey on Architecture and

Computation Offloading, IEEE Communications Surveys & Tutorials, 19(3): 1628-

1656

Salahuddin M. A., Al-Fuqaha A., Guizani M., Cherkaoui S. (2014). RSU cloud and its

resource management in support of enhanced vehicular applications, 2014 IEEE

Globecom Workshops (GC Wkshps), Austin, TX, USA, pp. 127-132

Saini M., Alelaiwi A., EL Saddik A. (2015). How close are we to realizing a pragmatic

VANET solution? A meta-survey, ACM Computing Surveys, 48(2): Article 29

Santa J., Moragon A., Gomez-Skarmeta A. F. (2008). Experimental evaluation of a

novel vehicular communication paradigm based on cellular networks, 2008 IEEE

Intelligent Vehicles Symposium, Eindhoven, Netherlands, pp. 198-203

Satyanarayanan M. (2017). Edge computing for situational awareness, IEEE

International Symposium on Local and Metropolitan Area Networks (LANMAN)

Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N. (2009). The case for vm-based

cloudlets in mobile computing, IEEE Pervasive Computing, 8(4): 14–23

Sonmez C., Ozgovde A., Ersoy C. (2017), EdgeCloudSim: An Environment for

Performance Evaluation of Edge Computing Systems, International Conference on

Fog and Mobile Edge Computing (FMEC), Valencia, Spain, pp. 39-44

Trullols O., Fiore M., Casettic C., Chiasserini C. F., Barcelo Ordinas J. M. (2010).

Planning roadside infrastructure for information dissemination in intelligent

transportation systems, Computer Communications, 33(4): 432-442

Uhlemann E. (2015). Introducing connected vehicles, IEEE Vehicular Technology

Magazine, 10(1): 23– 31

Wu T., Liao W., Chang C. (2012). A Cost-Effective Strategy for Road-Side Unit

Placement in Vehicular Networks, IEEE Transactions on Communications, 60(8):

2295 - 2303

Yu R., Zhang Y., Gjessing S., Xia W., Yang K. (2013), Toward cloud-based vehicular

networks with efficient resource management, IEEE Network, 27(5): 48-55

Zeadally S., Hunt R., Chen Y. (2012). Vehicular ad hoc networks (VANETS): status,

results, and challenges, Telecommun Systems, 50(4):1-25

BIOGRAPHICAL SKETCH

Barış Kara is a senior software developer with 10 years of experience. He has been

providing software development and IT consultancy services in the UK since 2016. He

played major roles in design and development of many enterprise projects. Contributed

to software projects of high-profile international and Turkish companies such as HSBC,

O2, SKY, ATOS and Borsa Istanbul.

Education

• M.S., Computer Engineering, Galatasaray University, 2019 (expected).

• B.S., Computer Engineering, 9 Eylul University, 2010.

Work Experience

March 2019 – present, Software Developer (Contractor), Sky

• Have been working on NOW TV project which is an on demand video platform

on European market

• Have been providing software development activities on payments services

• Had responsibility on applying microservices patterns and principles

Jun 2018 - Feb 2019, Software Developer (Contractor), Ministry of Justice

• Worked as backend developer on Common Platform Program which is a digital

transformation project of MoJ that aims to digitalize judicial system and create a

central case management system.

• Took ownership of the backend problems and implemented requirements on

different services. The environment consists of 35 event-driven microservices.

• Applied CQRS and Event Sourcing design and principles.

Apr 2017 - Jun 2018, Software Developer (Contractor), HSBC

• As part of HSBC Digital Transformation Project, worked in an agile team

responsible for delivery and management of the HSBC Loans web application.

• Having joined to the project at an early stage, played major role to make it to the

product release.

• Applied microservices design and principles to the environment in which 24

APIs collaborate.

• Developed RESTful services with Spring Boot and maintained system backend.

• Implemented frontend requirements with React/Redux.

Nov 2016 - Feb 2017, Software Developer (Contractor), O2

• Worked in agile team taking charge of development & maintenance of O2

ecommerce web application.

Jan 2015 - Sept 2016, Software Developer, Borsa Istanbul

• In Borsa Istanbul, the sole exchange entity of Turkey, worked in an agile team

that develops in house web solutions.

• Designed system architecture of the greenfield project Datastore based on

microservices which is a B2C platform implemented for data/document store,

sales and distribution.

• Re-architected monolithic “Physical Custody” application based on

microservices. The project is the gold trading platform serves as one of the core

markets under stock market.

Feb 2012 - Jan 2015, Software Developer, ATOS

• Participated in large scale research projects funded by European Commission

Programs such as eDash and iCargo. Apart from software design and

development, had additional responsibilities such as proposal writing, planning,

documentation, research, technical analysis.

