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ABSTRACT 

 

 

 

Edge computing has become a prominent computing strategy when mobile devices and 

Internet of Things (IoT) became popular in the last decade and cloud computing could 

not meet the computational requirements of some of these devices/applications.  What 

edge computing can provide different than cloud computing is low latency in 

communication, high quality of service, and support for high mobility.  Connected and 

autonomous vehicles scenarios can be considered as an important application field for 

edge computing as these are the key requirements to implement a vehicular network.  In 

this thesis, we aim to present a solution to one of the high level problems in vehicular 

networks: efficient RSU placement by addressing network coverage and computational 

demand.  We propose an RSU placement framework for generating RSU placement 

models based on traffic characteristics of a target area.  Our work is different from 

previous studies as they mostly approached this problem from communication aspect 

and focused on solving a coverage problem without considering computational 

requirements.  Other research addressing computational requirements in vehicular 

networks propose solutions for low level challenges such as resource allocation.  The 

proposed framework in this study can be used by infrastructure providers for designing 

an efficient RSU placement while building a smart city.  Moreover, our work includes 

extending capabilities of a simulation framework designed for edge computing 

scenarios.  Therefore, we can evaluate the performance of the generated models and 

validate their functionalities by running simulations on this environment. 
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ÖZET 

 

 

 

Son yıllarda mobil cihazlar ve Nesnelerin İnterneti’nin yaygınlaşması ve Bulut 

Hesaplamasının bazı cihaz ve uygulamaların hesaplama gereksinimlerine çözüm 

sağlayamaması nedeniyle, Uçta Hesaplama öne çıkan hesaplama yöntemlerinden biri 

haline gelmiştir.  Bulut Hesaplamasından farklı olarak Uçta Hesaplama, hesaplama 

işlemleri için yüksek servis kalitesi ve iletişimde minimal gecikme sunmakta ve 

kullanıcıların hareketliliğini desteklemektedir.  Otonom ve akıllı araç senaryoları, Uçta 

Hesaplama alanında önemli bir uygulama alanı olarak düşünülebilir.  Bu tez 

kapsamında, Taşıt Ağları konusunda yeterince çalışılmamış bir konu olan, bir yol ağı 

üzerine kapsama alanı ve kaynak talebini göz önüne alarak Yol Kenarı Ünitesi (YKÜ) 

yerleştirme problemine çözüm sunuyoruz.  Bu doğrultuda, yol ağı üzerinde 

gözlemlenen trafik karakteristiğini baz alarak yerleşim modelleri üretmeyi sağlayan 

YKÜ yerleştirme uygulamasını geliştirdik.  Çalışmamız, Taşıt Ağları alanında yapılan 

daha önceki araştırmalar, çoğunlukla iletişim ve ağ kapsama konularını ele aldıkları ve 

hesaplama ve kaynak gereksinimini dikkate almadıkları için bu çalışmalardan  

ayrılmakta.  Taşıt Ağlarında hesaplama gereksinimleri üzerine yapılan diğer çalışmalar 

ise, kaynak yönetimi gibi temel problemler üzerine odaklanmış olup, bu konulara 

sundukları çözümler ile bizim çalışmamızı mümkün kılmışlardır.  Geliştirdiğimiz YKÜ 

yerleştirme uygulaması, altyapı sağlayıcıları tarafından akıllı şehir dizayn sürecinde, 

YKÜ yerleştirme çözümü için kullanılabilir.  Ayrıca bu çalışma kapsamında, Uçta 

Hesaplama senaryoları için dizayn edilmiş bir simülasyon aracını geliştirerek Taşıt 

Ağları senaryolarına  elverişli hale getirdik.  Böylelikle üretilen yerleştirme 

modellerinin işleyişini simülasyon üzerinde test edip performanslarını karşılaştırabildik. 
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1. INTRODUCTION 

 

 

 

With increasing popularity of mobile devices and Internet of Things (IoT) in the last 

decade, cloud computing had been leveraged to solve the problem of making complex 

computations with limited device resources by provisioning remote computing and 

storage resources.  Edge computing, on the other hand, was suggested as a new 

computing paradigm when the limitations of the centralised data centres started to 

emerge.  Satyanarayanan et al. (2009) describes these limitations as long WAN latencies 

and bandwidth-induced delays.  Because of these limitations, cloud computing is not a 

suitable computing strategy for scenarios which requires real-time data processing and 

relies on fast feedback. 

 

Edge computing is a good candidate to solve these problems by bringing computing 

resources to the edge of the network, usually one hop away from the user.  The features 

of low latency in communication, high quality of service and support for high mobility 

makes edge computing an optimal solution for the computational requirements of a 

wide range of applications in different domains.  Connected and autonomous vehicle 

scenarios are considered as good application fields for edge computing (Corcoran & 

Datta, 2016).  Figure 1.1 shows the system components in a reference scenario. 
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Figure 1.1 System Components for the Reference Scenario  

 

 

Using their advanced sensors, connected vehicles collect data from their environments.  

In current state of automotive technology, vehicles process this data to interpret their 

environment and enable assisted and autonomous driving for a safe navigation.  For 

example, using their ultrasound, infrared, radar and video sensors vehicles can detect 

other vehicles on the road, stop for pedestrians, and handle any unexpected 

circumstances (Uhlemann, 2015).  On the other hand, the automotive industry is 

working to develop Vehicular Ad-hoc Networks (VANETs), to enable vehicles to share 

information with other vehicles and road side units (RSUs) through vehicle-to-vehicle 

(V2V) and vehicle-to-infrastructure (V2I) communication channels (Santa et al., 2008).   

VANET is an essential part of Intelligent Transportation Systems (ITS) (Kathiriya et al., 

2013) which are the future of transportation (Guo & Balon, 2006).  VANETs can be 

utilized for a broad range of safety and non-safety applications, allow for value added 

services such as vehicle safety, automated toll payment, traffic management, enhanced 

navigation, location-based services such as finding the closest fuel station, and 

infotainment applications such as providing access to the internet (Zeadally et al., 

2010). 

 

Dedicated short-range communication (DSRC), which is a candidate for use in a 

VANET, offers the potential to effectively support V2V and V2I safety 

communications (Guo & Balon, 2006) by providing high data transfer rates with 
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minimum latency (Chang, 2009).  The primary motivation for deploying DSRC is to 

enable collision prevention applications.  These applications depend on frequent data 

exchanges among vehicles, and between vehicles and roadside infrastructure (Kenney, 

2011). 

 

Road Side Units (RSU) are the communication units in VANET which are fixed along 

the road side or in dedicated locations such as at the junctions or near parking spaces 

(Barskar & Chawla, 2015).  They are equipped with an antenna to enable wireless 

communication based on IEEE 802.11p radio technology, a processor, and a read/write 

memory (Saini et al, 2015).  Barskar & Chawla (2015) describes main functions and 

procedures associated with the RSUs as follows: 

 

• To extend the communication range of the ad hoc network for redistributing the 

information to other vehicles 

• Running safety applications and acting as an information source 

• Providing internet connectivity to the vehicles 

 

The components of the V2I scenarios can be mapped to edge computing elements as 

follows: 

  

• RSUs are the edge computing units because of their proximity to the vehicles, 

providing computational, storage resources and high bandwidth link, and 

transfer data with minimum latency 

• Vehicles are the resource poor clients as they have limited computation and 

storage resources due to the requirements of small-size and low-cost hardware 

systems (Yu et al., 2013) 

• Vehicular applications are edge applications as they demand complex 

computation and large storage 

 

Applications collecting information from multiple vehicles have a great potential of 

increasing road safety and improving quality of traffic.  Satyanarayanan (2017) 

proposes a scenario in which crowd sourcing and edge computing can be harnessed to 

create a shared real-time information system for situational awareness.  They claim that 
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collected information can be used to detect critical situations such as accidents, icy road 

conditions, fallen rocks and advisory messages can be conveyed to the other drivers.  

Another study proposes an application for intelligent traffic management at 

intersections to minimize accidents, traffic congestion and environmental costs of road 

traffic using V2V and V2I communications (Bento et al., 2012).  Katsaros et al. (2011) 

also designs an application that could improve fuel consumption and reduce traffic 

congestion in junctions using vehicular data through same communication channels. 

Another study proposes a merging algorithm that optimizes the performance of 

connected fully automated vehicles through a freeway merging segment for a scenario 

relying on V2V and V2I communications (Letter & Elefteriadou, 2017).  

 

All these applications deployed into RSUs receive data from vehicular applications such 

as trajectory, speed, destination coordinates, etc. in short intervals, aggregate and 

process it in real time and send response back to senders or to the relevant vehicles 

within the network range.  Here again, low latency and high quality of service are the 

key factors to build this ecosystem.  

 

RSUs placed in an area should meet two requirements.  First, network coverage of the 

area should be maximised, so that vehicles can stay connected to the RSUs at any time 

during their journeys and edge applications can work without excluding any territories.  

Second, edge computing units have limited resource capacities compared to the cloud 

datacentres (Hong & Varghese, 2018) and computational demand of the edge 

applications should be met by the RSUs.  It is expected to observe different levels of 

traffic density in different parts of an area.  Placing insufficient number of RSUs in a 

territory with high traffic volume creates computational demand more than RSUs can 

handle and this could result in system failure.  On the other hand, placing more RSUs 

than required in a territory with low traffic volume could result in waste of resources 

and loss of money. 

 

Deploying a specific number of RSUs into an area is a challenging work since 

satisfying two requirements at the same time brings us to a trade-off problem.  RSUs 

should be placed in an area in a way that satisfies both network coverage for vehicles 
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and computational demand for the edge applications at maximum level considering the 

traffic density on the road network. 

As to be explained in detail, majority of the existing works address RSU placement 

problem from communication aspect without considering resource consumption of the 

edge applications.  On their survey addressing Mobile Edge Computing, Mach & 

Becvar (2017) describes the issue of finding an optimal way where to physically place 

the computation depending on expected user demands as an open research challenge.  

 

The objective of this study is to implement an RSU placement framework for generating 

RSU placement models based on traffic characteristics of an area.  We aim to provide a 

flexible tool that can be configured for designing a placement model in favour of 

network coverage or computational demand.  Additionally, our work includes extending 

capabilities of an open source simulation framework, EdgeCloudSim1, proposed by 

Sonmez et al. (2017) to evaluate the performance of edge computing scenarios.  By 

adding new modules to support simulations for V2I scenarios and designing realistic 

traffic scenarios for a target area in London city centre, we evaluate the performance of 

the generated placement models and validate their functionalities. 

 

Simulation results show that generated models satisfy network coverage and resource 

demand in different levels, and can be used to find the optimal placement of the RSUs 

in the target area.  Therefore, our framework can serve as a reliable tool to be used as 

part of RSU deployment process by infrastructure providers. 

 

The rest of the thesis is organised as follows: section 2 explains previous studies 

addressing RSU placement and Edge Computing in Vehicular Networks.  In section 3, 

we explain our case study, simulation framework, and proposed RSU distribution 

models.  Section 4 outlines the simulation results and validity of the proposed 

framework.  Finally, we conclude the thesis and outline the future work in section 5. 

                                                
1 https://github.com/CagataySonmez/EdgeCloudSim 
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2. LITERATURE REVIEW 

 

 

 

2.1 Related Work: RSU placement 

 

Trullols et al. (2009) suggest a maximum coverage approach to the problem of 

information dissemination in intelligent transportation systems in their study, which can 

be considered as one of the earliest works addressing this topic as most of the research 

efforts had focused on the development of protocols and applications suitable for 

VANET until that period of time.  In their study, they propose a heuristic algorithm to 

solve the problem of maximizing the number of vehicles that get in contact with the 

Dissemination Points (DPs).  Their results also show that, their suggested heuristics can 

be successfully employed to plan a deployment capable of informing more than 95% of 

vehicles with a few DPs. 

 

Aslam et al. (2012), present two different solutions to the RSUs placement problem 

with objective of maximizing the information flow from vehicles to RSUs in an urban 

environment: Binary Integer Programming (BIP) method and a novel Balloon 

Expansion Heuristic (BEH) method.  BIP method utilizes branch and bound method to 

find optimal solution, whereas, BEH method uses balloon expansion analogy to find 

optimal solution.  Both optimization methods were used to solve the optimization 

problem of minimizing the average reporting time.  They have shown that the novel 

BEH method is more versatile and can be used to solve the optimization problem. 

 

Balouchzahi et al. (2015) also propose an optimization method addressing RSU 

placement by formulating the problem using BIP.  In their work, highway and urban 

scenarios are separately formulated to improve the model scalability.  Their simulation 

results show that the proposed model reduces the receiving time of traffic information 
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and can reach to a satisfactory level of coverage using less RSUs. 

 

Wu et al. (2012) tackle the same problem by presenting a placement strategy referred as 

Capacity Maximization Placement (CMP) based on Integer Linear Programming (ILP).  

Apart from direct communication of RSUs and vehicles, their study also covers multi-

hop relaying, which takes place when the vehicle is out of RSU’s transmission range.  

To validate their findings, they compare the results of CMP with two other models: 

uniformly distributed placement and hot spot placement.  The simulation result shows 

that the proposed model leads to the best performance among all mentioned models.  

 

Our study differs from aforementioned works in a way that they only address the 

problem from communication and network coverage aspects without taking resource 

consumption and computational demand of the RSUs into account.  Although a 

placement model can be optimized enough for a cost efficient RSU deployment in an 

area and provide a quality of communication at a certain level, it is not guaranteed that 

it can handle computational demand of the edge applications. 

 

2.2 Related Work: Edge Computing in Vehicular Networks 

 

Yu et al. (2013), propose a hierarchical cloud architecture for vehicular networks.  Their 

architecture consists of central clouds, roadside cloud and vehicular cloud.  Central 

clouds have sufficient cloud resources but large end-to-end communications delay.  On 

the contrary, roadside and vehicular clouds have limited cloud resources but satisfy 

communications quality. In their study, they focus on efficient resource management in 

the proposed architecture and they formulate and solve resource competition among 

virtual machines in a game-theoretical framework 

 

In their study, Datta et al. (2016), seek an alternative of cloud platform to support real 

time connected vehicular scenarios.  They design an IoT framework that includes an 

edge computing system for the connected vehicles to offer consumer centric services.  

Their framework primarily utilizes an edge computing platform to support network 

switching, resource discovery, provisioning, local processing for data fusion and storage 

of the high level intelligence for vehicular scenarios. 



 

 
 

8 
 
 
Salahuddin et al. (2014) present RSU Clouds as a novel way to offer non-safety 

application with QoS for VANETs.  RSU Clouds consist of traditional RSUs and micro 

datacentres.  Their system can be reconfigured, at a cost, to meet the fluctuating service 

demands like cloud datacentres.  They also focus on concepts such as resource 

management, minimizing VM migrations, control plane overhead, number of service 

hosts and infrastructure delay for their proposed architecture.  

 

Although the research described in this section address edge computing in vehicular 

networks, the researchers mostly suggest new frameworks and architectures in which 

cloud and edge processing units, and mobile devices/vehicles are integrated into a new 

ecosystem.  Then, they suggest solutions for computational challenges such as resource 

allocation, scheduling, VM migration, etc. for the computational resources.  Our work 

can be considered as a complementary study in which we focus on provisioning a V2I 

infrastructure built on top of an existing architecture.  Therefore, we assume that low-

level computation and communication problems are resolved and we can propose 

solutions for higher level challenges such as efficient RSU placement.
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3. MATERIALS AND METHODS 

 

 

 

3.1 Case Study 

 

3.1.1 Scenario and Parameters 

 

In our reference scenario, we consider a smart city equipped with RSUs and support 

V2I communication.  All the vehicles are smart or connected with the ability of running 

vehicular applications that connect to edge applications deployed into RSUs.  Vehicular 

applications send one task to the nearest RSU per second in case the vehicle is in the 

network coverage of any RSU.  When the task is successfully processed, RSU sends a 

response back to the vehicular application.  There are 3 cases a task can fail: 

 

• Coverage: Vehicle is not in range of any RSU’s network  

• Capacity: RSU is out of capacity and cannot process incoming task 

• Bandwidth: Task cannot be sent through network due to congestion 

• Mobility: Vehicle leaves the RSU network coverage after sending the task 

 

We assume all RSUs have same hardware resources and the tasks sent by the 

applications are identical.  In our scenario, each RSU has 1 Mbps bandwidth.  Average 

task payload size is 1024 bytes for both upload and download operations.  We also 

assume that each RSU has an equipped server with 600Mhz CPU and 500MB RAM, 

and average task length is 300 MI.  Table 3.1 shows the parameters and their values for 

RSU and task configurations.  
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Table 3.1: RSU and Task Parameters and Values 
 

Parameter Value 

RSU Network Range 300m 
RSU Bandwidth 1 Mbps 
CPU 600 Mhz 
Memory 500 MB 
Average Task Payload 
Size  1024 byte 

Average Task Length 300 MI 

Task arrival rate 1 Hz 
 

 

The simulations we run are based on these assumptions and parameters. 

 

3.1.2 Target Area 

 

For our scenario, we chose London city centre as the target area for deploying RSUs 

which covers an area of 3 by 3 kilometres.  To be able to run traffic simulations and 

calculate RSU locations, we needed to extract the road network of the target area.  To 

obtain the road network, we outlined the target area on OpenStreetMap2 which is a free 

collaborative map application, then we exported it in xml format.  Since the map data 

includes a variety of information such as buildings, parks, restaurants, etc., we 

processed the file to only include road network elements such as motorways, 

intersections and traffic lights.  Figure 3.1 shows the map of the target area. 

 

                                                
2 https://www.openstreetmap.org/ 
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Figure 3.1 Target Area Map 

 

3.1.3 Traffic dataset 

 

Due to the lack of publicly available vehicle trajectory dataset for the target area, we 

used Simulation of Urban Mobility (SUMO) framework to generate realistic traffic 

dataset.  SUMO is an open source, microscopic and continuous road traffic simulation 

framework designed to handle large road networks (Lopez et al., 2018).  

 

Apart from its simulation capabilities, SUMO includes several scripts for traffic and 

road network operations.  We converted the map data into a network file, which is the 

SUMO input format that defines the road network.  Then, we used randomTrips tool,  

which is a python script that takes place in SUMO library, to generate the vehicle routes 

randomly on the road network.  The output route file, along with the network file should 

be provided to SUMO to run the traffic simulation. 

 

We defined two important parameters during route generation: simulation time and 

vehicle arrival rate.  The simulation time we chose as 1 hour, aligns with the time of 

V2I simulation we conducted in the following steps.  Vehicle arrival rate, on the other 

hand, defines the number of vehicles in the simulation and SUMO generates one 
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specific route for each vehicle.  This parameter is set to 1 by default.  In our study, 

traffic density plays an important role on RSU placement process as the load on the 

RSUs depends on number of vehicles in the system.  Thus, to cover scenarios with 

different traffic volumes, we run the script using different arrival rates.  As a result, we 

generated 8 route files which include 500, 1000, 1500, 2000, 2500, 3000, 3500, and 

4000 vehicles routes. 

 

After that, by running SUMO traffic simulation for each route file for a simulation time 

of 1 hour, we produced 8 traffic output files which comprise our traffic dataset.  Each 

file contains traffic data logged for each simulation second such as vehicle id, type, 

coordinates, speed, angle, lane, etc.  As a result, 8 million logs were produced in total 

for the traffic dataset.  Figure 3.2 depicts a section of the traffic running on the 

simulation and Figure 3.3 shows the logs of first 4 seconds from one of the traffic 

output files. 

 

 

 
Figure 3.2 SUMO Traffic Simulation 
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Figure 3.3 SUMO Traffic Simulation Output 

 
 

3.2 Simulation Framework 

 

We needed a simulation environment for our study in order to validate the functionality 

of the proposed RSU placement framework and compare the performances of the 

generated RSU placement models.  Since we could not find a simulation tool designed 

for V2I scenarios, we used EdgeCloudSim, which is an open source simulation 

framework.  EdgeCloudSim designed for simulating edge computing scenarios where it 

is possible to conduct experiments that considers both computational and networking 

resources (Sonmez et al., 2017).  We extended capabilities of this framework to 

simulate V2I scenarios thanks to its extensible and modular design.  

 

EdgeCloudSim is also extended from another simulation environment, CloudSim3, 

which allows modelling of cloud computing infrastructures and application services 

(Calheiros et al., 2011).  While EdgeCloudSim implemented edge processing units and 

                                                
3 http://www.cloudbus.org/cloudsim/ 
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modelled edge computing network, we introduced RSUs as computing units for V2I 

scenarios and extended the network model for vehicular network.  We also implemented 

a mobility module to integrate traffic scenarios in the environment. 

 

The key components we implemented in V2ISim are as follows: 

 

• RSUManager: This component is responsible for creating RSU instances in the 

system based on the configuration provided.  The configuration should include 

RSU resource definition as well as GPS coordinates in decimal degrees. 

 

• TrafficLoadGenerator: A traffic input file, which includes vehicle trajectory 

data should also be provided to the simulation environment.  

TrafficLoadGenerator is responsible for creating tasks using task characteristics 

received from task configuration file.  When the simulation starts running, these 

tasks are scheduled for processing in due course. 

 

• TrafficTaskBroker: This component is responsible for managing the lifecycle 

of a task.  After the task is created, there are 3 stages it has to follow until it is 

completed: vehicular application submits task to the RSU, task is processed in 

the RSU and finally response sent back to the vehicle.  When the task reaches to 

one stage, it is rescheduled by TrafficTaskBroker for the next one. 

 

• RSUOrchestrator: Its responsibility is to find the RSU that the task will be 

submitted.  To achieve this, first, nearest RSU to the vehicle is detected.  Then, 

if the vehicle is within the range of the RSU, task is submitted to it by 

TrafficTaskBroker. 

 

To find the nearest RSU for a given vehicle position efficiently, all RSU 

coordinates are saved in a K-D tree (K-Dimensional Tree) when the application 

starts.  A K-D Tree is a data structure for efficient search and nearest-
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neighbour(s) computation of points in K-dimensional space.  We used an open 

source K-D tree implementation in our application4. 

 

• RSUMM1Queue: We use MM1 queue model to simulate the network delay.  

This component is responsible for calculating task upload and download delays.  

 

• SimLogger: Lastly, all the important task data, RSU data and as well as 

calculated system metrics are logged by SimLogger in different logging levels.  

 

Figure 3.4 shows the class diagram which depicts the modular architecture of the 

simulation framework, core modules and their relations.  

 

At the end of the simulation 3 output files are generated per traffic input file from the 

traffic dataset: 

 

• Generic logs: this file includes most important simulation results such as 

number of successfully processed tasks, number of failed tasks, average service 

time, average network delay and average RSU utilization rate.  The values 

logged in this file are used as metrics while comparing system performances for 

different RSU placement models. 

• RSU utilization logs: this file keeps the utilization rates for each RSU logged 

for each simulation second.  This values are used as metrics while comparing 

system performances from utilization aspect for different RSU placement 

models. 

• Task assignment logs: it keeps the logs of number of assigned and failed tasks 

for each RSU. 

 

 

                                                
4 https://home.wlu.edu/~levys/software/kd/ 
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Figure 3.4 V2ISim Class Diagram 

 

 

 

3.3 RSU Distribution Models 

 

In this study, we propose 3 RSU distribution models: Uniform, Weighted, and 

Optimized.  This section outlines the algorithms, implementations and results of the 

models.  

 

3.3.1 Uniform RSU Distribution 

 

This placement model only aims for full RSU network coverage by placing RSUs 

equidistant from each other without considering computational demand.  
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Network range of the RSUs can reach up to 1000 meters if there are no obstructions, 

and 250-350 meters in cluttered urban areas (Ligo et al., 2015).  For this model, we 

assumed that each RSU works best with a coverage of 150 meters due to the shadowing 

effect of the buildings, and we decided to place RSUs 300 meters far from each other.  

Therefore, to cover an area of 9 km² with RSUs working in their best performances, we 

needed to have 100 RSUs.  

 

We developed a Java application as the implementation of the algorithm and referred it 

to RSU Distributor.  In this application, we generated a grid on the area map by dividing 

it into cells each with the size of 300x300 meters.  We referred to these cells as 

territories.  Then, we placed one RSU into the centre of each territory, therefore 100 

RSUs were evenly distributed to the area.  Figure 3.5 shows the RSU locations on the 

target area map based on the uniform distribution.  It should be noted that, as its name 

suggests, an RSU should be placed on the road side to ensure the proximity to the 

vehicles.  However, in an urban scenario in which a complex road structure exists, a 

territory includes multiple roads and we expect the placed RSU to serve to the vehicles 

across multiple roads within the coverage area. 

 

 

 
Figure 3.5 RSU Locations on Uniform Distribution Model 

 



 

 
 

18 
 
 
3.3.2 Weighted RSU Distribution 

 

We used Uniform Distribution model as base model to generate Weighted RSU 

distribution with a heuristic approach.  This model addresses refining RSU locations set 

up for uniform distribution model by taking computational demand into account.  In the 

uniform distribution model, despite of the full network coverage, we might have high 

task failure rates since RSUs might not meet the high computational demand using their 

limited resources.  We may especially experience this problem in territories with higher 

traffic volumes i.e. traffic congestions.  An external parameter, θ, is the relocation factor 

and determines number of the RSUs to be relocated.  Relocation step addresses 

selecting θ% least utilized RSUs and move them to the territories where more 

computational resources are needed.  

 

Thus, we aim to decrease resource originated task failures by bringing additional 

computational resources to meet the higher demand.  On the other hand, relocated RSUs 

will cause coverage originated task failures as no RSUs will serve to vehicles at these 

territories.  Value of θ should be assigned considering the difference of traffic volumes 

in different territories as this trade-off is only reasonable if total number of task failures 

decreases after the relocation.  

 

3.3.2.1 Algorithm   
 

The algorithm for this placement model consists of 4 steps:  

 

• RSU Selection: This step addresses finding the RSUs placed at the territories 

with lower traffic volume, thus have low utilization rates.  To detect these RSUs, 

we calculate task assignment rates for each RSUs in the uniform distribution.  

The RSUs with less task assignment rates are marked to be moved in the 

territories with higher resource demand.  We select θ% least utilized RSUs in 

this step. 

 

• Territory Selection: To detect the territories that need additional resources to 

meet the high computational demand, we analyse the performance of the RSUs 
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in uniform distribution model under a heavy load.  The territories containing the 

RSUs with higher task failure rates due to insufficient capacity are the 

candidates to support with additional RSUs.  

 

• RSU Distribution: In this step, we first calculate a weight factor using task 

failure rates for each candidate territory.  Then using the weight factor, we 

calculate number of RSUs to be assigned into each territory.  Finally, we 

distribute the selected RSUs into these territories. 

 

• RSU Placement: This step addresses placing selected RSUs into the candidate 

territories.  The first RSU is placed in the middle of territory centre and 

neighbour territory centre with the highest computational demand among all 

neighbours.  The second RSU is placed between the territory centre and 

neighbour territory centre with the second highest computational demand, and so 

on. 

 

3.3.2.2 Implementation 

 

To implement weighted distribution algorithm, we started by running a simulation for 

uniform distribution model on the target area using the traffic dataset as we needed to 

produce two metrics: task assignment rates and task failure rates of the RSUs.  Then, we 

extended RSU Distributor application to implement the steps of the weighted 

distribution algorithm.  

 

From 500 to 4000 vehicles, the simulation run once for each traffic input file and as a 

result, 8 task assignment log files which include more than 8 million task logs were 

produced in total.  In the application, these logs were aggregated and processed to find 

the values of task assignment rates and task failure rates of the RSUs.  

 

The number of RSUs we want to select and distribute into new cells are based on the 

value of θ, relocation factor.  By providing 10, 20, and 30 for θ, we run the application 

and generated 3 different set of RSU placement models for weighted algorithm.  For 
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each value of θ, Table 3.2 shows the selected RSUs for relocation and Table 3.3 shows 

number of RSUs to be assigned to each territory.  

 

 

Table 3.2: RSU Ids Selected for Relocation  
 

θ RSU ids  

10 3, 11, 39, 4, 9, 49, 5, 90, 88, 2 

20 3, 11, 39, 4, 9, 49, 5, 90, 88, 2, 74, 89, 79, 69, 1, 91, 6, 70, 
93, 12 

30 
3, 11, 39, 4, 9, 49, 5, 90, 88, 2, 74, 89, 79, 69, 1, 91, 6, 70, 
93, 12, 84, 98, 92, 87, 8, 99, 14, 59, 80, 19 

 
 

 

 

Table 3.3: Territory Ids and Number of RSUs to Assign  
 

θ Territory ids and number of RSUs to assign 

10 55(2), 54(1), 45(1), 35(1), 48(1), 33(1), 34(1), 65(1), 53(1) 

20 
55(3), 54(2), 45(2), 35(2), 48(2), 33(1), 34(1), 65(1), 53(1), 
58(1), 47(1), 46(1), 75(1), 36(1) 
 

30 
55(4), 54(3), 45(3), 35(3), 48(3), 33(2), 34(1), 65(1), 53(1), 
58(1), 47(1), 46(1), 75(1), 36(1), 25(1), 71(1), 38(1), 63(1) 

 
     

 

Figure 3.6 shows the weighted distribution RSU placements for θ=10, 20, and 30, 

respectively. 
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Figure 3.6 RSU Locations on Weighted Distribution Model  

for θ = 10, 20, 30 respectively 
 

 

3.3.3 Optimized RSU Distribution 

 

As previously discussed, we have two criteria to fulfill while solving the RSU 

placement problem efficiently: network coverage and computational demand.  Our 

approach for the optimized placement model is to use Linear Programming (LP) to 

address both of the requirements.  

 

3.3.3.1 Algorithm   
 

Similar to other models, optimized RSU distribution model also does its calculations on 

a grid generated on the target area map.  For this purpose, we used the same grid as we 
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generated for the uniform RSU distribution model to provide consistency.  It should be 

noted that, working with smaller cell size would provide fine-grained results, however 

this results in an exponential growth on the number of formulations to define the 

mathematical model on LP.  

 

Linear Programming is an optimization technique in which complex relationships 

between variables are defined as linear functions, then optimum values of the variables 

are calculated.  The steps of defining a Linear Programming problem generally 

includes: 

 

• Identify the decision variables 

• Write the objective function 

• Define the constraints  

 

Decision variables are the unknowns of the programming model.  Objective function is 

the linear function representing cost, profit, or some other quantity to be maximized or 

minimized.  And the constraints are the restrictions or limitations on the decision 

variables.  Lastly, the decision variables should be greater than or equal to 0 for a linear 

program.  

 

Binary Integer Programming (BIP), on the other hand, is a subtype of Linear 

Programming in which all decision variables are defined as binary.  In our problem, 

each cell is a candidate for placing an RSU, meaning that we want to solve the problem 

that decides whether a cell has an RSU or not.  Therefore, our decision variables refer to 

the condition of each cell having the value of 1 or 0, where 1 states that RSU should be 

placed, and 0 should not.  As a result, we formulated the RSU placement problem using 

BIP. 
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3.3.3.2 Problem Formulation  
 

For the grid consisting of 100 cells, the we define the decision variables as follows: 

 

 

𝑥", 𝑥$, 𝑥%, …	, 𝑥(( 

 

 

In the second step, we define the objective function using the decision variables.  Our 

objective is fulfilling the constraints using minimum number of RSUs.  Thus, the 

objective function is: 

 

 

𝑚𝑖𝑛	 𝑥,

((

,-"

 

 

 

Finally, we define the constraints in which we model network coverage and resource 

demand as well as the criteria we want to set as their minimum values.  

 

a) Network Coverage  
 

We start by formulating the total coverage (R) of the RSUs using the decision variables.  

As previously stated, the network range of an RSU is between 250-350 meters in the 

urban areas (Ligo et al., 2015).  The cells have the size of 300x300 meters, whereas we 

consider the network range of an RSU as also 300 meters.  Figure 3.7 depicts the 

positioning of an RSU within a cell along with its network range.  As it can be seen in 

the figure, the area of the RSU’s network coverage exceeds the area of the cell.  In this 

situation, when two RSUs are placed within the neighbour cells, there will be an overlap 

on the area coverage, and an optimized placement solution should minimize these 

overlaps. 
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Figure 3.7 The positioning of RSU within a cell  

 

 

Total coverage is defined with this equation:  

 

 

𝑅 = 𝑥,	𝑟,

((

,-"

− 𝑥,	𝑥2

((

2-"

𝑝,,2

((

,-"

+ 𝑥,	𝑥2
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5-"

𝑥5	𝑝,,2,5

((

2-"

((

,-"

			 

 

 

In the equation, first summation operation denotes addition of network coverage for all 

the placed RSUs (i).  Then, as explained above, the overlapped areas as a result of 

neighbourhood should be subtracted from this sum, and the double summation 

operation indicates that (ii).  According to this Figure 3.8, which shows 4 example cells, 

the neighbourhood, which causes network overlapping, exists when RSUs are placed 

into these cells: A-B, A-C, A-D, B-C, B-D and C-D.  Lastly, when there is a case of “L” 

shape neighbourhood, we need to add the overlapped area of these 3 cells to the 

equation as dual neighbourhoods takes out that amount of size from the sum as extra.  

For example, when RSUs are placed into A, B and D cells, the subtract operations 

defined at step ii will remove the overlapped areas for A-B, A-D and B-D 

neighbourhoods, and this will result in subtracting an extra overlapped area for A-B-D 
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neighbourhood.  The triple summation operation adds this area back to the equation 

(iii).  

 

 

 

 

 

 

Figure 3.8 The neighbour cells  

 

 

b) Resource Demand 
 

We followed a similar strategy to network coverage while formulating the resource 

demand (D).  The main difference is, we had to calculate the resource demand for each 

cell using the traffic dataset.  Then, the same rules we used for the neighbourhood also 

apply here.  

 

Therefore, total demand is defined with this equation:  

 

 

𝐷 = 𝑥,	𝑑,

((

,-"

− 𝑥,	𝑥2

((

2-"
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,-"

+ 𝑥,	𝑥2
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𝑥5	𝑠,,2,5

((
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,-"

			 

 

 

c) Constraints 
 

Lastly, we define the constraints.  The constraints below suggest that minimum network 

coverage and resource demand are user defined parameters and denoted by γ and λ.  

And all the decision variables are binary. 

𝑅 ≥ γ 	

𝐷 ≥	λ	

𝑥", 𝑥$, 𝑥%, …	, 𝑥(( = 1	|	0	 

A C 

B D 
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Table 3.4 explains the notations used in the mathematical formulations. 

 

Table 3.4: Summary of notations in the mathematical formulations 
 

Symbol Description 

𝑖	 Candidate grid cell for RSU placement 
𝑥,	 Binary variable for RSU placed at cell 𝑖	 
𝑅 Total network coverage 

𝐷 Total resource demand 

𝑟, Network coverage for RSU placed at cell 𝑖	 

𝑑, 
Satisfied resource demand for RSU placed at 
cell 𝑖	 

𝑝,,2 
Overlapped network coverage for the RSUs at 
neighbour cells 𝑖	and 𝑦 

𝑠,,2 
Overlapped supply for the RSUs at neighbour 
cells 𝑖	and 𝑦 

𝑝,,2,5 Overlapped network coverage for the RSUs at 
neighbour cells 𝑖	, 𝑦	and 𝑘 

𝑠,,2,5 Overlapped supply for the RSUs at neighbour 
cells 𝑖	, 𝑦	and 𝑘 

 

 

3.3.3.3 Implementation 
 

We defined the formulations on OpenSolver5, which is an open source linear, integer 

and non-linear optimizer for Microsoft Excel.  We solved the problem by assigning 

different values for γ and λ.  When we targeted for for full network coverage (γ = 100) 

and full resource supply (λ = 100), it resulted that 79 RSUs needed to be placed.  

However, when we decreased both of the values to 99%, the outcome changed to 52 

RSUs.  For 90% coverage and supply, the problem was solved with 42 RSUs. 

 

Since this tool is designed to serve as a framework to the infrastructure providers, the 

company will be free to use any values as parameters based on their financial and 

technical requirements.  While they can set high values γ and λ, they can also aim for 

maximum coverage whereas they ignore the demand, or vice versa.  For our simulation 

                                                
5 https://opensolver.org/ 
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in which we compare the performances of the placement models, we use the values γ = 

99 and λ = 99 since this combination result in a very efficient outcome.  Table 3.5 

shows the binary values for each decision variables that the program produced for these 

values. And Figure 3.9 shows the final placement of the optimized distribution model. 

 

 

Table 3.5: Results of the decision variables 
 

Binary Value              Decision Variables 

1	 

𝑥"	, 𝑥%	, 𝑥A	, 𝑥B	, 𝑥C	, 𝑥(	, 𝑥$$	, 𝑥$%	, 𝑥$A	, 𝑥$B	, 𝑥$D, 𝑥$(	, 𝑥%"	, 𝑥%E	,	 
𝑥%F	, 𝑥%C	, 𝑥E$	, 𝑥E%	, 𝑥EE	, 𝑥EF	, 𝑥EC	, 𝑥ED	, 𝑥E(	, 𝑥A"	, 𝑥AA	, 𝑥AB	, 𝑥F$	, 
𝑥F%	, 𝑥FE	, 𝑥FF	, 𝑥FC	, 𝑥FD	, 𝑥F(	, 𝑥B"	, 𝑥BF	, 𝑥BC	, 𝑥C$	, 𝑥C%	, 𝑥CE, 𝑥CA	,		 
𝑥CB	, 𝑥CD	, 𝑥C(	, 𝑥D"	, 𝑥DF	, 𝑥DC	, 𝑥($	, 𝑥(%	, 𝑥(E	, 𝑥(F	, 𝑥(C	, 𝑥((		 
 

0 

𝑥$	, 𝑥E	, 𝑥F	, 𝑥D	, 𝑥$"	, 𝑥$E	, 𝑥$F	, 𝑥$C	, 𝑥%$	, 𝑥%%	, 𝑥%A	, 𝑥%B	, 𝑥%D	, 𝑥%(	, 
	𝑥E"	, 𝑥EA	, 𝑥E"	, 𝑥EB	, 𝑥A$	, 𝑥A%	, 𝑥AE	, 𝑥AF	, 𝑥AC	, 𝑥AD	, 𝑥A(	, 𝑥F"	, 𝑥FA	, 
𝑥FB	, 𝑥B$	, 𝑥B%	, 𝑥BE	, 𝑥BA, 𝑥BB	, 𝑥BD, 𝑥B(	, 𝑥C", 𝑥CF	, 𝑥CC	, 𝑥D$	, 𝑥D%	, 
𝑥DE	, 𝑥DA	, 𝑥DB, 𝑥DD	, 𝑥D(, 𝑥(", 𝑥(A	, 𝑥(B	, 𝑥(D	 

 

 

 

Figure 3.9 RSU Locations on Optimized Distribution Model  
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4. RESULTS 

 

 

 

To compare system performances and validate functionalities of the RSU placements 

we generated using RSU placement framework, we run a set of simulations on V2ISim.  

To achieve this, we processed the simulation output logs and plotted several graphs 

using Python matplotlib library.  

 

We generated 3 distribution models: uniform, weighted, and optimized.  The weighted 

model has 3 variations for the values of θ = 10, 20 and 30.  Since we already had the 

results for uniform distribution model, we run the simulation for weighted and 

optimized placements.  The simulation took 9 hours 6 minutes, 6 hours 36 minutes, and 

6 hours 19 minutes for the weighted placement model respectively, and 7 hours 41 

minutes for the optimized placement model.  All the simulations were run on a laptop 

with Intel Core i7-8850H CPU and 16GB RAM.  

 

We used same traffic dataset for all of the simulations.  The dataset includes vehicle 

trajectory data files which represent different traffic densities.  Therefore, we can 

evaluate system behavior under different loads.  We classified the traffic densities into 3 

categories:  

  

• Number of vehicles below 1500 as low traffic volume 

• Number of vehicles between 1500 and 3000 as medium traffic volume 

• Number of vehicles more than 3000 as high traffic volume 
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The graph in Figure 4.1 shows the comparison of task failure rates for uniform 

distribution, weighted distribution for θ = 10, 20, and 30, and optimized distribution. 

This can be considered as our most important metric while evaluating system 

performance.  A system with low task failure rates is more reliable and functions better. 

We can observe that the system functions best for the optimized distribution model 

under any traffic volumes, therefore we can suggest that optimized distribution model 

provides the best results among all models.  The graph also shows that when the number 

of vehicles in the system increases, task failure rates also increase for all RSU 

distribution models consistently except for the optimized model.  Considering the sharp 

increase between 3500 and 4000 vehicles for all models, we can claim that if the traffic 

density is over a threshold, RSUs will have difficulty handling the load and the system 

might even crash.  

 

The graph shows us below 1000 vehicles, there is no significant gap between weighted 

distribution model for θ = 10 and uniform distribution model, however after this point 

we can observe an increase on this gap.  

 

 

 
Figure 4.1 Task Failure Rates 
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On the other hand, while uniform distribution model performs better than the weighted 

distribution models for θ = 20 and 30 under low traffic volume, weighted distribution 

model for θ = 20 outperforms it for medium traffic volume and weighted distribution 

model for θ = 30 outperforms it for high traffic volume.  This is because while network 

coverage is a more important factor for the low traffic volume, resource capacity 

becomes more critical than the other factors when traffic density increases.  

 

Lastly, the graph shows that relocating less utilized RSUs to the territories with higher 

load improves the system to a certain point.  Weighted distribution model for θ = 10 

outperforms uniform model for low, medium and high traffic volumes and it is the most 

optimal relocation factor among all the others.  However, for θ = 20, weighted model 

only performs better for medium and high traffic volumes, and for θ = 30, it only 

functions better for high traffic volume.  The reason for this is the trade-off between 

network coverage and resource capacity.  When a less demanded RSU is relocated into 

a position to share the load in a busy area, capacity originated failure rates will decrease 

for the RSUs in the target territory, however coverage originated failure rates will 

increase for the original source territory. 

 

As a result, by evaluating the results of Task Failure Rate graph, we can conclude that: 

• optimized distribution model outperforms all others under any traffic load.  

• uniform distribution model can be used for low traffic volume 

• weighted model for θ = 20 can be used for medium and high traffic volumes 

• weighted model for θ = 30 does not perform well under any traffic load 

 

Figure 4.2 shows the comparison of average service time of the RSUs in the unit of 

seconds.  The service time is sum of download and upload delays and task processing 

time.  As can be seen on the graph, increasing load is positively related to RSU service 

times for all distribution models except for the optimized model.  Optimized distribution 

model performed better than the other models for all traffic volumes, and all weighted 

distribution models produced better results than the uniform model.  The reason is, both 

download and upload delays and processing time depend on the demand on the RSU in 

that particular time.  When an RSU needs to serve to higher number vehicles, they 

experience more delays on network and processing time.  And as a result of sharing the 
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high load with relocated RSUs, all weighted models provide better results in terms of 

service time. 

 

 

 
 

Figure 4.2 Average Service Time 

 

 

While measuring system performance, another important metric is the average 

utilizations of the RSUs.  A system in which RSUs run with a low capacity is less 

efficient than another system with higher RSU utilization.  On the other hand, a system 

with RSUs running in full capacity for a certain level of computational demand, is not 

able to sustain higher loads.  Since the simulations we run with low and medium traffic 

volumes do not create significant load on majority of the RSUs, we compared 

utilization of the RSUs using only the results of the simulations run with 3500 vehicles. 

3500 is the number which creates the highest traffic volume without breaking the 

system.  Figure 4.3 shows the histogram of average RSU utilization for uniform, 

weighted for θ=10, and optimized distribution models.  The histogram shows that 

optimized model performs best in terms of RSU utilization because of two reasons: 

first, number of RSUs running in the lowest capacity (<10%) is lower than the other 

models, therefore RSU resources were used more efficiently.  Second, number of RSUs 
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running in high capacity (>%80) is also lower, therefore the load is distributed more 

evenly among the RSUs. 

 

 

 
 

Figure 4.3 Average Utilization Histogram 

 

 

Figure 4.4(a), 4.4(b), and 4.4(c) shows task failure reasons and breakdowns for uniform, 

weighted for θ=10, and optimized distribution models respectively.  In uniform 

distribution no task failure due to network coverage can be observed since it was 

designed for the full network coverage.  For uniform model when the traffic volume is 

low, vehicle mobility is the reason for the majority of the task failures.  However, when 

traffic density increases, mobility failure rate decreases and RSU capacity failure 

becomes the main reason of the task failures.  For weighted model, especially for the 

low traffic volume, network coverage failure is a significant failure reason as a result of 

RSU relocation.  However, when traffic density increases, coverage and mobility failure 

rates decrease and RSU capacity failure becomes the main reason of the task failures.  

Lastly, for optimized model, network coverage is the main reason of the task failures for 
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all traffic density levels, and we observe a spike on the bandwidth failures for 4000 

vehicles. 

 

 

 
 

Figure 4.4 Task Failure Breakdown (a) Uniform Distribution Model  
(b) Weighted Distribution Model (θ = 10) 

(c) Optimized Distribution Model 
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5. CONCLUSION 

 

 

 

In this study, we propose an RSU placement framework to be used for generating 

optimal RSU placement models based on traffic characteristics of a target area.  Two 

criteria should be satisfied for an RSU placement problem: network coverage and 

computational demand.  The proposed framework includes 3 distribution models: 

uniform, weighted and optimized.  Uniform distribution model addresses full network 

coverage and do not consider computational demand.  This can serve as a suitable 

model for a road network in which sparse and evenly distributed traffic is observed on 

the road network.  Weighted distribution is a heuristic model which uses uniform model 

as the base model.  It addresses making improvements by considering the computational 

demand.  The relocation factor (θ), which is an external parameter, is provided to this 

model to update RSU locations in favour of the computational demand.  For a scenario 

with high traffic volume, it is expected to experience congestions on the road network 

and this might result in extra load on the RSUs serving in those territories.  When the 

computational demand exceeds the capacity of an RSUs, they may become 

dysfunctional and this eventually would result a system crush.  This scenario can be 

prevented by providing a meaningful value for θ.  Thus, for an effective utilization of 

the framework, traffic characteristics of the target area should be carefully examined, 

and a suitable value should be assigned for θ.  Lastly, optimized distribution model uses 

Linear Programming to generate an optimized RSU distribution.  This solution 

guarantees a certain level of network coverage and resource supply using minimum 

number of RSUs.  The constraints are defined with external parameters, γ and λ, and 

denotes coverage constraint level and and resource supply constraint level respectively.  

Thus, the company that uses this framework will be free to use any values as parameters 

based on their financial and technical requirements.  While they can set high values γ 

and λ, they can also aim for maximum coverage whereas they ignore the demand, or 

vice versa. 
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We needed a simulation environment to test performance of the RSU placement models 

and validate their functionality.  Since we could not find a simulation tool designed for 

V2I scenarios, we extended the capabilities of EdgeCloudSim, which is a simulation 

framework designed for edge scenarios.  We introduced components and modules 

specific to V2I scenarios and referred to this extended simulation environment as 

V2ISim. 

 

In our experiments, we used uniform, optimized, and weighted placement models.  For 

the weighted model, we generated 3 variations for θ=10, 20 and 30.  Also we generated 

a traffic dataset consisting of 8 vehicle trajectory files each representing a different 

traffic volume.  Then, we run a simulation for each placement model using this dataset 

on V2ISim.  The simulation results showed that optimized model outperforms all others 

under any traffic load.  Also, we concluded that uniform distribution model can be used 

for low traffic volume, weighted model for θ=20 can be used for medium and high, and 

θ=30 can be used for high traffic volumes.  These results align with our expectations 

and the experiments validate the functionality of the proposed RSU placement 

framework.  

 

As future work, we plan to improve our communication model.  In this study, we had 

our main focus on the communication between vehicle and RSU, however inter-RSU 

communication is an accepted form of communication in Vehicular ad-hoc network 

(VANET) in which RSUs can exchange data with each other (Barskar & Chawla, 

2015).  By implementing this in V2ISim, task transfers between RSUs will be possible 

and task failures due to vehicle mobility will be prevented.  Moreover, some technical 

factors that can impact the communication between vehicles and RSUs should be 

studied and findings should be reflected to the study.  These can be determining the 

noise level for the RSUs in close proximity and shadowing effect of the buildings. 
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