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ABSTRACT 

 

 

 

Diabetes is a chronic disease that is rapidly spreading worldwide. This prevalence 

increases the health expenditures for this disease in a serious way. In the treatment of 

patients with type 2 diabetes, the most common type of the disease, doctors have many 

intervention methods. Taking the right action at the most appropriate time among these 

many types of interventions will make a great contribution to the patient's health as well 

as the cost of treatment. Therefore, in this study, it is aimed to draw a road map by using 

a mathematical approach for the uncertainty in deciding the optimal time to start insulin 

therapy for type 2 diabetic patients. To this end, a finite-horizon Markov Decision 

Process model is developed by including disease stages within patients’ health states 

and drug use history. The model is operated by using existing data in the literature and 

the results are discussed. In addition, different sensitivity analysis on different input 

demonstrate the effect of value changes on the model.  



 

 

 

 

ÖZET 

 

 

 

Diyabet hastalığı, tüm dünyada hızla yayılmakta olan kronik bir hastalıktır. Hastalığın 

bu kadar yaygınlaşması, bu hastalık için yapılan harcamaları da ciddi bir şekilde 

arttırmaktadır. En sık görülen diyabet türü olan tip 2 diyabetli hastaların tedavisinde 

doktorlar, birçok ilaçlı müdahale yöntemine sahiptir. Bu tür müdahalelerde doğru 

aksiyonu en uygun zamanda almak, hastanın sağlığına ve tedavi maliyetlerine büyük 

katkı sağlayacaktır. Bu nedenle, bu çalışmada insülin tedavisine başlamanın en uygun 

zamanı için matematiksel bir yaklaşım sergilenerek belirsizliklere dair bir yol haritası 

çizmek hedeflenmektedir. Bu hedef doğrultusunda, hastalık aşamaları, hastanın sağlık 

durumunu ve ilaç kullanım geçmişini kapsayacak şekilde bir sonlu-ufuk Markov Karar 

Süreci modeli geliştirilmektedir. Model, literatürdeki veriler kullanılarak çalıştırılıp, 

sonuçlar tartışılmaktadır. Ek olarak, farklı veriler üzerindeki farklı duyarlılık analizleri, 

değer değişikliklerinin model üzerindeki etkisini göstermektedir. 

 



 

 

 

 

1. INTRODUCTION 

 

 

 

In most countries, health services cover a significant percentage of the Gross National 

Product. By the aging of people, healthcare costs have been increasing over the last 

couple of decades in all around the world. Therefore, governments apply many 

strategies to find a way to minimize the cost of health spending. They are investing an 

ever-increasing amount of money in researches to be able to cover this healthcare 

expenditure. For this purpose, many researchers investigate the efficiency of operations, 

treatments or disease diagnoses in the health sector. 

 

Among the health problems in hospitals, most patients have chronic diseases, including 

not only a chronic condition, but also combinations of these conditions. According to 

Buttorff et al. (2017), as of 2014, 60 percent of American adults had at least one chronic 

condition, and 42 percent had more than one chronic condition. The study of Buttorff et 

al. (2017) also notes that 90% of all health care spending is made for patients with 

chronic illnesses and in 2014, diabetes mellitus ranked fourth among these diseases with 

a prevalence of 10.4% of the total population in the United States. 

 

Diabetes Mellitus (DM) is one of the most critical chronic diseases of the century 

because it triggers other health problems due to the uncontrolled blood glucose level. 

E.R.F. Collaboration et al. (2010) elaborated on this by providing that patients with 

diabetes have a two to three times more the risk of cardiovascular heart diseases (CVDs) 

or strokes and pertaining to reduced blood flow, neuropathy increases the risk of foot 

ulcer, infection and inevitable necessity of limb amputation.  

 

Blindness is another result of diabetes mellitus so-called diabetic retinopathy. V.L.E. 

Group et al. (2013) reported that diabetic retinopathy occurs slowly over time by 

damaging the small vessels in the retina and measured that 2.6% of global blindness is 



2 

 

 

 

because of diabetes. In addition to all these adverse effects of diabetes, it also has a 

significant impact on kidney impairment or failure (National Institutes of Health et al., 

2014). 

 

Globally, diabetes becomes increasingly important due to its impacts, its prevalence and 

its role both economically and socially in patients' lives. World Health Organization 

(WHO) estimated that 422 million adults (over 18 years of age) have diabetes in 2014, 

escalating from 108 million in 1980. According to the organization, global widespread 

of the disease has also risen from 4.7% to 8.5% by 2014. The report underlines that 

diabetes is no longer a disease of rich nations, the prevalence of diabetes is remarkably 

increasing also in middle- and low-income countries (WHO, 2016).  

 

There is another factor for the worldwide importance of diabetes, which is the cost of 

the disease. Cost of diabetes has a huge toll on third-party payers, such as government 

and private insurances. ADA (2018) notes that diabetes imposes a substantial burden on 

society in the form of higher medical costs, lost productivity, premature mortality, and 

intangible costs in the form of reduced quality of life. The article estimated that overall 

cost burden of diagnosed diabetes in the US in 2017 as $327 billion, containing $237 

billion in direct medical costs and $90 billion in reduced productivity. The report also 

analyzed the cost of diabetes for the categories and measured that people with 

diagnosed diabetes incur average medical expenditures of ∼$16,750 per year, of which 

∼$9,600 is attributed to diabetes.  

 

Diabetes has also social impacts on patients. These impacts apply not only to diabetes 

but also to chronic conditions in general. Basu et al. (2016) explains this as chronic 

conditions like diabetes last for a long time and cause functional limitations when 

therapy begins. It is because these kinds of illnesses require ongoing monitoring or 

treatment. Therefore, management of diabetes plays an essential role in patients’ social 

lives.   

 

To better understand and manage the disease, diabetes is divided into clusters as Type 1, 

Type 2 and Gestational Diabetes Mellitus. Of overall diagnosed diabetes patients, 
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approximately 90% have type 2 diabetes mellitus (T2DM) which makes it the most 

prevalent form of diabetes. For this reason, T2DM management is important as a 

priority. 

 

According to the latest guideline Davies et al. (2018); physicians have a consensus on 

some of the key issues to be followed in the management of the T2DM. Treatment 

begins when a patient's HbA1c level is detected to be higher than the target value. The 

guideline notes by referencing Riddle et al. (2018) that a reasonable HbA1c target for 

most non-pregnant adults with enough life expectancy to see microvascular benefits 

(generally ~10 years) is around 53mmol/mol (7%) or less.  

 

The latest guideline Davies et al. (2018) orders the steps of T2DM management as 

follows. 

 

First, the aim of the management is to avoid diabetes complications such as organ 

amputation and to optimize the quality of life. In the first step of the treatment, the key 

characteristics of the patients should be determined. These key features include clinical 

characteristics, i.e., HbA1c, age, weight; existing lifestyle, whether patients have 

comorbidities, i.e., atherosclerotic cardiovascular disease (ASCVD), chronic kidney 

disease (CKD), and heart failure (HF); whether patients are motivated or have a 

psychological depression and cultural and socioeconomic context of the patients.  

 

In addition to the evaluation of basic characteristics, there are some factors that affect 

the choice of treatment. The assessment of these factors should take place in the second 

step. In this step, the goal of HbA1c should be personalized; the impact of weight, 

hypoglycemia, patient drug availability and drug cost should be considered; the side 

effect profile of medication should be identified; complexity of regimen, i.e., frequency, 

mode of administration should be taken into consideration; and finally the best regimen 

to optimize adherence and persistence to treatment should be chosen. 

 

The third step consists of a shared decision-making management plan which prioritizes 

the delivery of patient-centered care. The plan aims to have trained and well-informed 
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patients (family/caregivers), taking care of patient preferences, providing good patient 

guidance including motivational interviewing, goal setting and shared decision making, 

strengthening patients, and offering ongoing diabetes self-management education and 

support (DSMES) programs.  

 

In the fourth step, doctors should agree with patients on a management plan to 

determine a target with features called SMART (Specific, Measurable, Achievable, 

Realistic, Time limited).  

 

Once the management plan has been determined and approved by shared decision 

making, the fifth step is to implement the plan. One important point of this 

implementation is that patients who do not achieve their goals should come to control at 

least every 3 months if the progress is being succeeded.  

 

The sixth step provides continuous monitoring and support with emotional well-being, 

checking tolerability of medication, monitoring glycemic status, biofeedback including 

self-monitored blood glucose (SMBG), weight, step count, HbA1c, blood pressure, 

lipids.  

 

After completing all these six steps, the management plan should be reviewed in the 

seventh step by mutual agreement if changes are necessary. Time is an important issue 

to refrain from clinical inertia in this last step. Decision cycle should be undertaken 

regularly at least once/twice a year. 

 

1.1 Motivation 

 

The World Health Organization (WHO) describes Diabetes Mellitus (DM) as a chronic 

disease that occurs when the pancreas responsible to produce insulin in the body is not 

functional or the insulin produced in the body cannot be used efficiently (WHO, 2018). 

In accordance with the facts in ADA (2015) and Davies et al. (2018), the key points 

related to T2DM can be demonstrated as first; insulin is not used adequately in patients 

with T2DM. This improper use in patients’ body is called insulin resistance. Insulin 
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resistance is thought to be associated with obesity, hypertension, and excess fat level in 

the blood.  The organ of pancreas secretes extra insulin to compensate for this. 

However, over time, the pancreas cannot work with adequate functionality and cannot 

secrete enough insulin to maintain blood glucose at normal level. As a result, the body 

becomes needing blood glucose lowering supports from the outside and treatment starts 

at this point. Treatment provides better glycemic control which means having improved 

HbA1c level to patients. Wagner et al. (2001) gives an idea about the impact of having 

better HbA1c on health care costs and utilization. The article established that better 

glycemic control provides an average of $685-950 per patient for health care 

expenditure to organizations or insurance companies. 

 

T2DM is gradually treated with lifestyle changes, oral medications (pills), and insulin. 

The newest guide Davies et al. (2018) offers a wide range of treatment steps and states 

that insulin is very efficient for T2DM patients and should be preferred during the last 

stage of treatment.  

 

To be more specific, in addition to lifestyle changes in the first step of treatment, 

patients are followed with metformin for start of medication. If metformin does not 

work to reduce the HbA1c level to or below the target value, treatment will continue 

with additional drugs (GLP-1 RA, SGLT2i, DDP-4i, SU, TZD, and basal insulin) called 

dual therapy after 3 months. ADA (2017) states that each new type of noninsulin oral 

glucose agents (OGA) added to initial therapy generally diminishes HbA1c level by ~ 

0.9% to 1.1%. If dual treatment does not respond well enough for improved HbA1c, 

treatment is switched to triple-drug combination after another 3 months follow-up. 

Insulin is often prescribed as the final stage of reaching the targeted level of blood 

glucose after the unsuccessful triple therapy in T2DM. 

 

Several important clinical trials have shown that insulin therapy reduces microvascular 

complications ((U.K.P.D.S Group, 1998) and (Ohkubo et al., 1995)). Another clinical 

study also suggests that early insulin therapy decreases the risk of macrovascular 

adverse events in type 2 diabetes (Holman et al., 2008). One more important result of 

U.K.P.D.S Group (1998) is also that the decrement in the risk of long-term 
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complications in type 2 diabetes is more related to better glycemic control instead of a 

specific glucose-lowering agent. This has caused the difficult task of choosing the right 

prescription from many possible glucose-lowering interventions. On the other hand, 

Nathan (2002) suggests that insulin therapy should be the best cost-effective alternative 

among all available interventions.  

 

Although there is a certain acceptation for the advantages and need of insulin therapy, 

controversy still exists on when to initiate insulin first. Swinnen et al. (2009) says that it 

is evident there is a need for the clarification of insulin initiation time for type 2 diabetic 

patients. Halperin et al. (2008) specifies that treatment for uncontrolled HbA1c 

particularly after dual therapy is not unequivocal. Some patients are more suitable to 

treat in accordance with the guideline, while others are suitable for early insulin therapy.  

 

To add a little note here to give an idea about what patients use before having started to 

use insulin, Mast et al. (2016) establishes that before initiating insulin therapy, patients 

with constantly HbA1c ≥ 7.0% use only metformin, only  SU (sulfonylurea), metformin 

and SU together, another combination of oral glucose-lowering agents with 11.1%, 

18.5%, 54.8%, 3.8%, respectively and patients with fluctuating around 7.0% use these 

drugs with 22.9%, 10.0%, 40.9%, and 5.7%, respectively. 

 

Hanefeld et al. (2016) supplies a broad range of study of researches indicating the 

benefits of early insulin initiation and defends that conventional treatment results in an 

unfortunate delay in achieving good glycemic control. The article approaches the 

discussion with early initiation of insulin glargine, which is one of the most prevalent 

types of basal insulin prescribed by physicians. It reports that the decrease in HbA1c for 

the patients who started early insulin glargine was significantly greater for those with 

diabetes duration of <5 years, lower HbA1c at baseline, lower body-mass index (BMI) 

at baseline and notes that hypoglycemia risk was very tolerable. The studies described 

in the article and more help to support the idea that optimal timing at the onset of insulin 

is controversial.  
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Traditional approaches to lower HbA1c level might be stepwise to introduce insulin as 

mentioned. If insulin treatment is effective, it should be asked why it is expected to not 

to be used until the final stage, because each failure in treatment delays successful 

intervention and increases the risk of adverse events and complications, as well as 

uncontrolled hyperglycemia problems. AADE (2017) reports all cause of reluctance in 

the use of insulin and groups the reasons in three types of barriers as follow. Patient 

barriers are 1) the perception that insulin is a treatment of last resort; 2) perception that 

the use of insulin is evidence of a personal failure to appropriately self-manage diabetes; 

3) concerns about long-term complications and side effects, especially hypoglycemia; 4) 

cost; 5) inconvenience and interference with social and work activities and 

relationships; 6) fear of needles, self-injecting, and the pain of insulin injections; 7) 

weight gain; 8) loss of independence; 9) depression; 10) the perception of insulin as a 

threat or punishment; 11) the failure to see health benefits of insulin therapy; 12) lack of 

social support; and concerns about social stigma and discrimination. Clinician barriers 

are 1) lack of experience and knowledge of available insulins; 2) inadequate guidance 

about when to intensify insulin therapy; 3) the perception that patients will resist or be 

unable to cope insulin initiation or intensification; 4) inadequate monitoring to identify 

patients who will benefit from insulin progression; 5) concerns about hypoglycemia and 

weight gain; and 6) general clinical inertia and delayed initiation until insulin is 

“absolutely necessary”. System barriers to insulin initiation and intensification include 

lack of resources for patient education, inadequate time to provide patient education and 

address dose adjustments, and lack of staff to provide diabetes education and training. 

 

Apparently, insulin initiation in clinics is still not straightforward today. The purpose of 

this paper is to assist patients and/or health care providers in determining the best time 

for insulin onset. For this purpose, the Markov Decision Process (MDP) was used to 

take the correct measure (wait, add new drug or initiate insulin therapy) according to the 

health states of patients in the progression of T2DM treatment. 

 

The remainder of this study is organized as follows. Section 2 provides the relevant 

articles on the topic and method. Section 3 includes the theory of MDP technique and 

the application of MDP to chronic disease treatment processes. Section 4 contains the 
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design of numerical implementation and results as well as the results of sensitivity 

analysis. A summary of the work in the article and future research directions are given 

in the last two sections.    



 

 

 

 

2. LITERATURE REVIEW 

 

 

 

In this part of the report, the studies done by using Markov Chain and Markov Decision 

Processes (MDPs) will be presented in an expressive way and shown in a table at the 

end. 

 

Lefevre (1981) worked with the continuous-time MDP to deal with an epidemic 

problem in a population with N habitants. The author developed this model by defining 

states as the number of people infected and the others in the population are accepted 

open to being infected. Transition probabilities are assigned by calculating the rate of 

transmission of the epidemic from some external sources, the rate of infection from 

those infected to the susceptible people in the population, and the rate of those 

recovered from the epidemic disease. There are two parameter levels in the system to 

decide: (1) the amount of the population that needs to be quarantined, and (2) the 

amount of medical treatment to infected people. The objective is to minimize the total 

expected discounted cost which includes social expenditure, quarantine cost, and 

medical treatment cost. 

 

Hu et al. (1996) attempted to find the best dosage policy by taking drug concentrations 

into account for anesthetized patients. The problem arose from the fact that the 

imbalance in the dose caused some adverse events for the patients. They modeled the 

problem by using Partially Observable Markov Decision Process (POMDP). 

 

Ahn & Hornberg (1996) created a model in which patients' preferences were considered 

in health conditions that were effective in selecting the quality of the kidney suitable for 

transplantation. Instead of solving the problem clearly as an MDP, the authors limited 

their research to threshold policies, thus reducing the problem to the problem of finding 

the optimal threshold level.  
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Launois et al. (1996) aimed to find out the best regimen used docetaxel, paclitaxel or 

vinorelbine drugs for metastatic breast cancer in terms of cost-utility or cost-

effectiveness analysis. Since there was no concrete comparative work on docetaxel, 

paclitaxel or vinorelbine interventions, this paper was designed offering a model to 

figure out the effects of the 3 interventions on the utility of sources and cost. By the 

help of stochastic decision tree, A Markov process model, based on 53 disease states, 

was thus constructed to evaluate the socioeconomics of the 3 treatment regimens.  

 

Magni et al. (2000) suggested an MDP approach to the problem of the prophylactic 

surgery in mild hereditary spherocytosis a disease that causes the chronic destruction of 

red blood cells. The article compares the proposed model with an existing static 

approach for the same problem.  

 

Hauskrecht & Fraser (2000) developed a POMDP model to medical therapy planning 

for patients with Ischemic Heart Disease (IHD). The authors consider the diagnosis and 

treatment of a disease related to each other in a health service environment. It is, 

therefore, always good to design a model that describes an integrated decision process 

that relates diagnosis and treatment of a disease to its relevant characteristics.  

 

To design such a model, the stochastic decision tree and the Markov Decision Process 

(MDP) are the most commonly used decision tools in the literature. However, the 

stochastic decision trees are not enough to structure a model when the problem is 

complex. The standard and widely known MDP model - perfectly observable MDP - 

allows us to demonstrate the dynamics and stochastic structure of the basic process and 

captures the uncertainty about the outcome of the treatment. However, it does not 

capture the processes in which disease states are not certainly known. Hence, a Partially 

Observable Markov Decision Process (POMDP), which represents two sources of 

uncertainty in the problem, is proposed.  
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Ivy (2002) designed a POMDP model to assist clinicians in selecting one of two 

decision alternatives, clinical breast exams (CBE) and mammograms in breast cancer 

screening or examination. The author aims to minimize the total expected cost over a 

patient’s lifetime by taking into consideration the patient’s breast cancer health states. 

 

Alagoz et al. (2004)’s study is based on the increase of living donors for liver 

transplantations in the USA. Thus, the problem of optimal timing for liver 

transplantation was considered as the focus of the paper. A Markov Decision Process 

(MDP) model was designed by identifying the maximization of patient’s total reward as 

objective and defining the states of the process as patient health. In the end, the study 

seeks a policy that explains the health states of living donor liver transplantation and the 

point where waiting is the most appropriate action.  

 

Faissol et al. (2006) developed an MDP model for diseases (showing particularly for the 

case of Hepatitis C) to determine the optimal test (treatment) time for people who did 

not know they were ill.  

 

Alagoz et al. (2007) created another MDP model for liver allocation for patients in need 

of transplantation. In this study, the authors also consider the impact of the waiting list 

on the model, including patient health and, therefore, organ arrival. In the end, they 

suggest an optimal control-limit policy as a solution.  

 

Alagoz et al. (2007) designed an extensional MDP model, but this time the model 

assists to the patients with end-stage-liver disease (ESLD) in deciding which liver to 

choose when they have livers available for transplant from a deceased person and a 

living donor at the same time.  

 

Sandikci et al. (2008) estimated the price of privacy as the number of life days lost 

because of the privacy concerns (lack of publicity) in waiting lists within the models 

developed for the liver allocation system in the USA by using MDP in which the state 

of the process is described by patient health, quality of the offered liver, and a measure 

of the rank of the patient in the waiting list. 



12 

 

 

 

Shechter et al. (2008) investigated the best time to start HIV treatment with the MDP 

method that aim to maximize the expected lifetime or quality-adjusted lifetime of a 

patient, considering the negative consequences of delaying HIV treatment.  

 

Alterovitz et al. (2008) formulated an MDP model for motion planning of steerable 

needles of imaging procedures in clinics to reach the inaccessible points of conventional 

stiff needles by considering the uncertainty encountered during motion plan 

optimization. The authors describe the causes of uncertainty in needle movement as 

patient differences and difficulty in predicting needle / tissue interaction. They also 

expect their model to be useful for clinical operations in several ways.  

 

Maillart et al. (2008) sought an answer to questions about the relative value and 

frequency of mammogram screening for premenopausal and post-menopausal women. 

The authors modeled the problem with POMDP that includes the causes of conflicting 

age-based dynamics of both the disease and the accuracy of the test results.  

 

Kreke et al. (2008) designed an MDP model resulting in an optimal control-limit policy 

to eliminate unnecessary residence time in hospital and to make the length of staying 

time most efficient for patients with pneumonia-related sepsis.  

 

Wen-Lu et al. (2008) worked on an elderly diabetic patient population from Shanghai, 

China to assess the tendency and the factors that change over time and impact the 

secondary failure in efficacy of sulphonylurea by using Markov process modeling.  

 

Denton et al. (2009) investigated the optimal time to begin statin therapy for patients 

with type 2 diabetes, considering the uncertainty of time-dependent change in the 

patient's cholesterol level to reduce cholesterol levels and minimize the risk of heart 

attack or stroke. The states in the model were formed by considering cholesterol levels 

and occurrence of heart attack, stroke or any reason of mortality. The probabilities of 

occurrence of adverse events were estimated by using three different risk models. The 

decision epoch for deciding whether the statin treatment should be implemented is 
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determined as one year. The overall objective of this work was also to maximize 

quality-adjusted life years (QALYs).  

 

Kurt et al. (2012) took their study, Denton et al. (2009), of optimal time for statin 

initiation further. In their study, the authors implement an MDP by estimating the model 

for infinite decision horizons. Mason et al. (2012) conducted a study progressing their 

previous work which investigates the optimal time for statin initiation for type 2 

diabetic patients by examining the effect of statin adherence on this optimal timing 

using MDP again. Mason et al. (2014) presented an MDP model which searches the 

optimal time of blood pressure and cholesterol medications for type 2 diabetes. The 

authors’ model involves the use of multiple medications for simultaneous control of 

multiple risk factors.  

 

Chhatwal et al. (2010) developed a finite-horizon discrete-time MDP for the problem 

that addresses the breast biopsy practices in clinics. The study says that biopsy tests are 

mostly done by radiologists when the mammogram results are not clear, and this creates 

an additional burden on health expenditures. Therefore, the authors worked on an MDP 

model to help physicians perform better in determining the optimal time of biopsy 

testing for a woman, based on mammography characteristics and demographic factors. 

  

Alagoz et al. (2010) aimed to provide fundamentals of MDPs under uncertainty and a 

path for use in healthcare operations. This was demonstrated by the help of the context 

of the timing of liver transplantation in a patient who has a living donor available. 

Moreover, the study suggested that MDPs can be used for all reasonable timing 

strategies that have simple-detailed and very-well defined sequential decisions. It also 

indicated the homology between MDP and standard Markov process.  

 

Ayvaci et al. (2012) contributed a decision analysis about the diagnosis of breast cancer 

to select the best intervention among routine follow-up mammography, short-term 

follow-up mammography and biopsy based on a patient’s health state, in other words, 

risk assessment following mammography screening. The paper studied the tradeoff 

between choosing biopsy and delaying biopsy, formulating an MDP with the objective 
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of maximization the patients’ QALYs while considering the effect of budget constraints 

on the optimal decision.  

 

Erenay et al. (2014) designed a POMDP model to improve the screening policy for 

colorectal cancer (CRC) prevention and surveillance in the USA. The model provides 

an individualized CRC screening by incorporating age, gender, and risk of having CRC 

factors into a contemporary structure.  

 

Lobo et al. (2015) worked on a decision analysis process to investigate prostate cancer 

treatment decisions in the post-prostatectomy setting. The study includes a comparison 

of genomic classifier estimates of prostate cancer progress to contribute use of 

radiotherapy and hormonal treatments. A Markov state transition model was used in the 

paper for evaluation of the cancer progression of each simulated individual by taking 

into consideration everyone has their own progression in formed by a genomic 

classifier. The objective of the overall study is to maximize quality-adjusted life years 

(QALYs) of patients and the consequences of multi-year cancer progression.  

 

Suen et al. (2018) studied on drug sensitivity testing. Drug sensitivity testing is an 

expensive but definitive test for patients with drug resistance tuberculosis. The writers 

created a POMDP model that saves a big amount of money for India to develop a new 

drug sensitivity testing policy which gives the optimal time for testing.  

 

To our knowledge, our study is the first that determines the optimal time to start insulin. 

There are studies in the literature that suggest early onset, but this is the first study to 

place this on the mathematical plane with MDP. Among the previous studies, the 

studies closest to our study have investigated the optimal time of statin therapy and 

include cholesterol and high-density lipoprotein levels, and cardiovascular events as the 

risk factors for health states. In our study, we investigate the optimal time to start insulin 

for patients with type 2 diabetes without any other chronic disease such CVD, CKD or 

HF. On the other hand, our health states consider the patients’ drug history, HbA1c 

levels, and BMI levels. We anticipate our findings help eliminate the uncertainty about 

the optimal time to start insulin by being expanded in the future studies. 
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Table 2.1 Literature comparison table 

  

Disease/Work Group Author(s) Method(s) 

Epidemic disease Lefèvre MDP 

Anasthetized patients Hu et al. POMDP 

Kidney transplantation Ahn and Hornberger Markov Chain 

Metastatic breast cancer Launois et al. Markov Decision Tree 

Hereditary spherocytosis Magni et al. MDP 

Ischemic heart disease Hauskrecht and Fraser POMDP 

Breast cancer Ivy POMDP 

Liver transplantation Alagoz et al. MDP 

Hepatitis C Faissol et al. MDP 

Liver transplantation Alagoz et al. MDP 

Liver transplantation Alagoz et al. MDP 

Liver transplantation Sandikci et al. MDP 

AIDS Shechter et al. MDP 

Steerable needles in imaging Alterovitz et al. MDP 

Mammogram screening Maillart et al. POMDP 

Pneumonia-related sepsis Kreke et al. MDP 

Diabetes Wen-Lu et al. Markov Chain 

Diabetes 

Diabetes 

Diabetes  

Diabetes 

Denton et al. 

Kurt et al. 

Mason et al. 

Mason et al. 

MDP 

MDP 

MDP 

MDP 

Breast biopsy Chhatwal et al. MDP 

Liver transplantation Alagoz et al. MDP 

Breast cancer Ayvaci et al. MDP 

Colorectal cancer Erenay et al. POMDP 

Prostate cancer Lobo et al. Markov Chain 

Drug resistance in tuberculosis Suen et al. POMDP 



 

 

 

 

3. MODELING AN MDP FOR A CHRONIC DISEASE TREATMENT 

 

 

 

In this part of the section, we will provide a tutorial, in general, about how to create an 

MDP model to solve a problem in the course of the treatment for a chronic disease. 

Denton & Steimle (2016) shed light on the formulation of our structure in their article. 

 

MDPs have been becoming increasingly needed tools in making medical decisions to 

overcome the problems that arise in chronic disease treatment processes. The treatment 

process is represented by the wide definition of the disease, which expresses the 

severity of the disease, the patient's clinical condition and the medical history. Since 

there are uncertainties in the progress of the treatment which differs from patient to 

patient, MDPs are exposed to the curse of dimensionality, which means the explosion in 

the size of the state space due to history dependence of the disease to be able to cover all 

possible situations that can occur for a patient. However, these models also offer a 

structure that minimizes the problem to avoid computing difficulties by using the 

Markov feature, indicating that the next result in the progression of the disease is solely 

relevant to the current state and the action implemented. 

 

Denton & Steimle (2016) formulates a good MDP modeling approach that can be used 

to analyze and resolve a possible problem in the course of chronic disease treatment. 

The terms that should be defined in the model are specified as decision epochs, time 

horizon, state space, action space, transition probabilities, and rewards. 

 

Decision epochs: Decisions in treatment for a chronic disease are taken at the decision 

epochs. The length of time between each epoch is determined by the clinician. 

According to the guideline, for type 2 diabetes, it is more appropriate to make the 

decision to start a new drug treatment every 6 months or once a year (Denton &Steimle, 

2016). 
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Time horizon: Time horizon for an MDP model can be both finite and infinite. For 

finite-horizon models, the number of  decision epochs can be counted, whereas the 

infinite-horizon models are continuous processes. Researchers favor the use of infinite 

models when one decision period is relatively too short to the length of the time horizon 

which decisions are taken for the whole model. Infinite models are also associated with 

two different characters. First one is that they reach an absorbing state with 100%, while 

the other is that the models are not variable, they are stationary, indicating that the 

parameters do not vary over time. 

 

State space: The state space of the model demonstrates the information that may be 

helpful to a clinician when deciding on a patient. A state vector characteristically 

consists of the combination of patient’s clinical conditions which gives an idea about 

the stiffness of the disease or the probability of developing a disease, the patient’s 

demographic information like age and race, and relevant medical history such as 

medication or adverse events history. Most MDPs use the discretization technique to 

decrease the size of state space to achieve more understandable and feasible solutions. 

Better structured models include larger state spaces to reflect all aspects of the patient’s 

health. However, this also increases the size of computation to solve the model, and at 

the same time creates more sampling errors into the estimation of transition 

probabilities. Shechter (2013) discusses the balance between more discretization and 

sampling error in the article for finer discrete models. In many models of chronic 

disease using the MDP tool, it is always close to the cut to mention the presence of an 

absorbing state representing the main complications and / or death. However, in some 

embodiments, the absorbing states may be more than one absorbing state when the 

model can be derived from different health states or when the rewards for the respective 

absorbing states change. In addition to all this, patient data is always essential for the 

estimation of transition probabilities between states. 

 

Action space: Treatment options are important for choosing the action space. If the best 

treatment option is available, MDPs use two different actions, initiating or waiting for 

the treatment. Problems with this type of two action options are called optimal stopping-

time problems due to the decision taker seeks the best time to quit the process and get 
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into the absorbing after-treatment state. For some situations, there may be many 

treatment alternatives available at each decision epoch. In this kind of cases, the size of 

the action space increases exponentially. For example, for a treatment process with 

more than one drug that can be used in any combination and not known which 

combination is the best, the action space alters with the formula 

2(𝑢𝑠𝑎𝑏𝑙𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑟𝑢𝑔𝑠) at each decision epoch. 

 

Transition probabilities: The definition of this term helps to show the disease 

progression before and after the treatment. It may require building a natural history 

model that explains how the disease advances without treatment. However, in order to 

estimate the impacts of the treatment, it might be more appropriate to use longitudinal 

data by observing measurements of risk factors with and without the treatment process, 

since most data are recorded when patients are diagnosed with the disease and started 

treatment. This situation is not concerned when the best therapy is available, which 

means the problem is an optimal stopping-time problem. It is because the effects of the 

treatment do not impact the decision due to the patient will pass to an absorbing state 

with probability 1. 

 

Rewards: One important element here is the definition of the decision taker’s 

perspective. The decision maker can deal with the problem from the perspective of the 

patient, the third-party payer (insurance companies) or from the societal perspective 

which combines these two views. The treatment process includes both benefits and 

costs for the reward function. The benefit can be defined as a potentially longer life for 

the patient. The term used in literature for the benefit is QALY (quality-adjusted life 

year), which indicates a one-year measure of quality of life, combined with discomfort 

from medical interventions. 1 QALY represents a patient who has perfect health. The 

decrease in quality of life is shown as a decrease from 1 to zero in QALY score. The 

costs of the treatment, such as financial costs (medication, hospitalization) and side 

effects of medication, can be expressed as the causes of a reduction in the quality of life 

of a patient. For the models with societal perspective, willingness to pay factor is used 

as a monetary value of QALY minus costs of medical interventions. Values that have 
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mostly been used in the literature for 1 QALY are $50000 and $100000; however, the 

exact value is often controversial (Denton & Steimle, 2016).  

 

In MDP models, patient data play a vital role in predicting transition possibilities and 

rewards. The results of the solution of MDP models are generally very significant in 

terms of cost-effectiveness after collecting the correct data from the literature or 

longitudinal data. 

 

The elements used in deciding which method to choose for MDP solutions are the size 

of the state-action pair space and whether the time horizon is finite or infinite. Although 

there are different approximation algorithms in the literature to bypass the curse of 

dimensionality problem for MDP models, policy iteration, value iteration and linear 

programming are mainly applied to solve infinite-horizon problems and backward 

induction is often used for finite-horizon problems. 

 

Because chronic diseases are progressive illnesses, there is a property used for 

computational advantage while working on MDP problems. This property, called 

Increasing Failure Rate (IFR), indicates that chronic diseases will worsen over time. 

Based on this statement, the IFR, together with some other conditions, provides the 

optimal control-limit policy for certain optimal stopping-time problems. This policy 

measures a threshold to take one action before this value and another action after that 

value. In the case of problems with such a policy feature, the effort shown to solve the 

MDP is reduced because the process of calculating a value function for each state-action 

pair will be eliminated. Thus, a control-limit policy facilitates the way to the solution in 

this way. 

 

Once the model has been solved, it is important to validate the solution for chronic 

diseases. There are some common techniques used in the literature for this purpose. 

Below, you can find the brief descriptions of these methodologies.  

 

Expert Opinion: It is the easiest and simplest verification method. One who solves the 

MDP seeks the opinion of an expert in the field. This expert can be a health care 
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researcher or clinician. It is not a scientifically powerful way, because it is subjective. 

However, its ease of use makes it sometimes preferable. 

 

Independent Study: It is done by comparing the existing solution with another solution. 

This approach is helpful when a gold standard model exists to compare with. 

 

Retrospective validation: This validation technique is applied when past results of a 

patient group are used for the relevant disease. One of the important points here is to 

change the patient cohort used. Otherwise, it may cause optimism deviation. 

 

Prospective validation: Prospective validation is accepted as the gold standard of 

validation. This is because that the technical process in prospective validation is long-

term and it predicts some outcomes and compares them with actual results. However, 

the use of this method is rarely encountered in the literature.



 

 

  

 

4. MODEL 

 

 

 

4.1 Model Formulation and Assumptions 

 

To find an optimal time for insulin initiation, we use a finite-horizon discounted MDP 

model where optimal action is determined at every decision epoch based on a patient’s 

health state. First, we prefer to specify and to minimize the general insulin initiation 

problem because all possible situations of diabetes patients to be put into the model will 

cause the realization of the curse of dimensionality. In order to avoid this, we make 

several assumptions related to the patient profile and the problem itself.  

 

While identifying patients in our model, the current guideline for the management of 

type 2 diabetes, Davies et al. (2018), is considered. Here, a glucose-lowering medication 

roadmap is determined with respect to the patient type (with or without other chronic 

diseases) or the patient's primary need in the treatment process. According to the 

guideline, we determine our patient profile in which we apply our model as patients 

with type 2 diabetes who have no other chronic diseases and that it is a priority to stop 

weight gain or encourage weight loss so that we refrain from the curse of 

dimensionality. Figure 4.1.1 shows the medication stages of patients with type 2 

diabetes, including the stage used in our model.  
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Figure 4.1.1 Schematic representation of glucose-lowering medication
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Time horizon and decision epoch: In the model, t denotes the decision epochs or periods, t 

= 0,1, 2…T < ∞, and our time horizon, T, is 40 and our cycle time is six months. Thus, we 

evaluate the model for 20 years between 40 and 60 years of age. 

 

State space: As seen in the figure 4.1.1, there are three important criteria for the treatment 

of diabetes with the priority of weight-control: 1) whether the HbA1c level is below 7%, 

which is accepted as the standard of being diabetic 2) Therapy type, which refers to the 

drug combination used in the patient’s current medication stage. This could be one of the 

follows: only metformin, metformin + GLP1 RA, metformin + SGLT 2i, metformin + 

SGLT 2i + DPP 4i 3) whether the patient's weight is under control. 

 

Since glucose level (HbA1c) and weight (BMI) are directly affected by the drug 

combination used as a result of the action taken in decision making, these three criteria are 

interrelated to each other and placed in our model to define a patient's health state. 

 

To add a small note about BMI here, BMI is an indicator of height and weight ratio. We 

assume that all patients' current height and weight may change over time. However, in our 

model, since we assume the patient profile we are interested in starting from the age of 40 

and there is a low chance of a change in the patient's height after this age, it is decided 

whether the BMI is under control or not by controlling the weight of the patient. For brief 

information about BMI, we show the weights of the patients according to their heights in 

figure 4.1.2 below. 

 

 

Figure 4.1.2 Calculated BMI Chart 
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S represents the state space, S = {1, … ,17} and 𝑠𝑡  denotes the health state of a patient in 

time period t where 𝑠𝑡∊ S, and 𝑠𝑡 = {h, k, b} where ℎ stands for the HbA1c condition, k 

represents the therapy type, considering the number of drugs used in the combination, and 

b symbolizes the BMI condition of a patient at time t and 17th state represents the health 

state of insulin initiation. Instead of indicating the insulin therapy state with {h, k, b}, an 

average threshold value is assumed alone, as in the case of optimal stopping time 

problems.  

 

By implication of conditions for HbA1c and BMI, it is meant that these two types of values 

are under control or not under control. So, in our model, h and b can take one of two 

different values which we code as hc and bc for controlled situations and hu and bu for 

uncontrolled situations. 

 

We do not include the state of death in our model because, as we will discuss later, we 

looked for all numerical information in the literature, thus, it was difficult to find the death 

data of the patients from the literature, and we also considered that such a decision which 

targets to timing of insulin initiation works for the patients who survive. 

 

The notifications and their definitions are as described in Table 4.1.1. 
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Table 4.1.1 The elements of a health state and their explanations 

 

Notification Definition 

h 

hc Controlled HbA1c level  

hu Uncontrolled HbA1c level  

k 

1 Metformin 

2a Met + GLP1 RA 

2b Met + SGLT 2i 

3 Met + SGLT 2i + DPP 4i 

b 

bc Controlled BMI 

bu Uncontrolled BMI 

 

The drug combinations are sequentially placed in patients’ health states according to the 

number of drugs, considering the weight loss priority as indicated in the guideline and blue 

painted area of Figure 4.1.1. One point to note here is that GLP1 RA and SGLT 2i together 

can be used with metformin, but this triple drug therapy is not a highly preferred 

combination according to Kalra et al. (2018) due to the fact that there is not enough 

numerical analysis about the use of these drugs together. Based on this information, the 

possible use of this triple drug combination is neglected in our model.  

 

We assume first that patients are at least on monotherapy, which is the treatment with 

metformin, at the beginning of decision-time horizon for each health state. If the patient 

does not respond to metformin treatment, he or she will switch to dual therapy using one of 

the drugs GLP1 RA and SGLT 2i. In the dual drug therapy stage, if the patient uses GLP 1 

RA and metformin and does not take the expected response, the patient may prefer SGLT 

2i instead of GLP 1 RA. However, if the patient uses SGLT 2i and metformin dual therapy, 

either (s)he can switch to a triple drug therapy using DPP 4i or, (s)he can change SGLT 2i 

to GLP1 RA and remain in the dual therapy with metformin. There is an important point to 

note here that GLP1 RA and DPP 4i cannot be used together in a drug combination. 

Therefore, a combination of drugs containing GLP1 RA can only be dual therapy. On the 

other hand, if the triple therapy, metformin and SGLT 2i and DPP 4i, does not get 
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successful, we assume that the patient does not consider any other alternative drug 

combination and begins to use the insulin therapy directly. 

 

Below figure represents the model framework which demonstrates the stages of the 

treatment process in our model.  

 

 

Figure 4.1.3 Model framework for all possible actions 

 

Thus, the possible metabolic states of patients with type 2 diabetes, having no other 

chronic disease or risks and prioritizing weight loss, form 16 different health states. The 

number 16 is derived from the product of 2 HbA1c states (in control, out of control), 4 

therapy type states (met, met + GLP1 RA, met + SGLT 2i, met + SGLT 2i+ DPP 4i) and 2 

BMI states (in control, out of control) (i.e. 2x4x2=16).  

 

Table 4.1.2 below shows all health states in state space S except the insulin initiation. 

 

Table 4.1.2 All possible health states in our model except insulin therapy 

 

1 2 3 4 5 6 7 8 
(hc,1,bc) (hc,2a,bc) (hc,2b,bc) (hc,3,bc) (hc,1,bu) (hc,2a,bu) (hc,2b,bu) (hc,3,bu) 

9 10 11 12 13 14 15 16 

(hu,1,bc) (hu,2a,bc) (hu,2b,bc) (hu,3,bc) (hu,1,bu) (hu,2a,bu) (hu,2b,bu) (hu,3,bu) 
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In addition, one assumption here is related to the progression of therapies in the treatment 

process, which is that when patients switch to an advanced or an alternative therapy, they 

cannot return to receive the same therapy they used before. Although this is clinically 

possible, this assumption is made because we avoid the curse of dimensionality since we 

do not have patients’ treatment progression data. For example, we assume that a patient 

who has received metformin monotherapy and switched to metformin + SGLT 2i dual 

therapy cannot use metformin monotherapy again. This is an important assumption for our 

model because it considers the insulin therapy irreversible. 

 

Action space: The possible actions to be taken at period t, where 𝑎𝑡 ∊ 𝐴𝑡, are considered 

as, 

 

                                           𝑎𝑡 =    {
𝑊: 𝑊𝑎𝑖𝑡

                   𝐴: 𝐴𝑑𝑑 𝑛𝑒𝑤 𝑑𝑟𝑢𝑔
                     𝐼: 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑒 𝑖𝑛𝑠𝑢𝑙𝑖𝑛

                }  

 

The action of add new drug is also given in view of the transition between dual therapies. 

This not only means adding a new drug, but also a change in therapy since we eventually 

add a new drug in this case as well. 

 

Transition probabilities: State transition probabilities are demonstrated as 𝑃𝑡
𝑠,𝑠′

(𝑎). It 

shows the probability that a patient will be in state 𝑠′∊ S at decision epoch 𝑡 + 1 given that 

(s)he is in state 𝑠 ∊ S at decision epoch 𝑡 and action 𝑎 is taken. For example, 𝑃𝑡
2,3(𝐴) 

denotes the probability that a patient in state 2 (hc,2a,bc) at period 𝑡 will be in state 3 

(hc,2b,bc) in period 𝑡 + 1 when the chosen action at 𝑡 is 𝐴 (add new drug). The transition 

probability matrix in period t when action 𝑎 is taken is shown as 𝑃𝑡(𝑎). 

We need to mention here some important assumptions about the transitions. We assume in 

our model that 𝑃𝑡
𝑠,𝑠′

(𝑎) where 𝑠=1,2,3,4,9,10,11,12 and 𝑠′=5,6,7,8,13,14,15,16 for any 

action 𝑎 at any given period 𝑡 has a probability of 0. The main feature of these transitions 

is that they are transitions from where the BMI is under control, bc, to those that are not 

under control, bu. In our model, we ignore uncontrolled BMI situations due to external 

factors and focus only on the drug effect. Since none of the drug combinations except 

insulin has weight gain effect, based on many studies in the literature and guideline, the 
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transition from bc to bu is impossible with only therapy impact, thus, these values are set to 

zero.  

 

On the other hand, for the remaining health state transitions that include the transitions 

from bu to bc, only one criterion is taken into consideration, that is whether or not the drug 

therapies used leads to the desired weight loss, thus, these transition probabilities vary 

depending on the therapy type. 

 

The other assumption is that when examining the health state transitions in respect of 

HbA1c level, h, two different approaches are shown in the model. The first is how 

successful the therapy is in terms of patients’ continuity to the therapy when the patient’s 

HbA1c is in control. This indicates the probability of treatment failure due to the related 

drug combination effect. The second approach is that with which success rate patients can 

achieve the desired standard HbA1c level of 7% or less when the patient’s HbA1c is not in 

control.  

 

Rewards: 𝑅𝑡(𝑠, 𝑎) represents the expected reward between time period 𝑡 and 𝑡 + 1 when 

the patient is in state 𝑠 ∊ S and action 𝑎 is taken. In our model, we identify our point of 

view as the societal (physician indirectly) perspective. Thus, the reward is a function of an 

individual’s QALY’s monetary value at the respected state and the associated costs of that 

state.  

 

Value function: 𝑉𝑡(𝑠) denotes the value function and represents the expected remaining 

reward when the patient is in state 𝑠 in period 𝑡.  

 

Discount factor: λ is the discount factor in our model where 0 < λ < 1. We use a 97% 

annual discount factor (λ=0.97) which is considered coherent with standard practice in the 

health policy literature based on the study of (Brouwer & Exel, 2004).   

 

As described in Section 3.1, Bellman’s equations below help us to find the optimal 

solution. Also, since we have a finite state space and action set, any policy that satisfies 

Bellman’s equations is an optimal policy for our model. 
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VT(s) = 0 , ∀s ∈ S,       (1) 

 

Vt(s) = max{Rt(s, W) + ∑ Pt
si(W)λVt+1(i), Rt(s, A)

16

i=0

+ ∑ Pt
si(A)λVt+1(i),   Rt(s, I), ∀t

16

i=0

< T  

(2) 

 

 

where 𝑖 represents an individual’s health state in the next decision period 𝑡 + 1. 

 

4.2 Numerical Findings  

 

As we specified before, we assume the time horizon is between the ages 40 and 60. Since 

our cycle time is 6 months, 𝑇 is 40 where 𝑡 = 0 corresponds to age 40. In this stage of the 

study, we estimate the transition probabilities and find rewards and costs. We use a 

function of monetary value of QALYs and costs as rewards. All necessary figures are 

taken from the literature. Below you can find the detailed explanation for each of the 

estimated parameters. 

 

4.2.1 Transition Probabilities 

 

The transition probability matrices for each action are formed by scanning the medical 

publications. We use the most appropriate and reasonable values for the 6 months decision 

period due to the scarce of sources specifically for our model in the literature. The 

assumptions that are considered when estimating these values were mentioned in Section 

4.1.  

 

When the information is placed on the transition probability matrices, either they are taken 

directly, or some calculations and assumptions are made based on the articles. 
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Kwon et al. (2018) give us the probability of treatment failure of metformin monotherapy. 

The treatment failure in the transition probability matrices means that even if the patient 

has started a specific oral medication, he or she cannot control the HbA1c level in 6 

months and does not continue the therapy because of loss of glucose control. This 

transition is represented as transferring from hc (controlled) to hu (uncontrolled) in a health 

state of a patient. 

 

Brown et al. (2004) have the information about the probability of decreasing HbA1c level 

to 7% or below by using metformin. This is supplied by calculating the average likelihood 

of having HbA1c >7% after metformin monotherapy onset within a mean period of 6 

months in the article. 

 

Baptista et al. (2007) focus on the effect of metformin in weight loss. It provides us the 

transition probability of uncontrolled BMI by losing not enough weight with metformin. 

The probability is assigned by dividing the number of patients with increasing BMI or 

influencing their BMI below the average by the total number of patients. Although the 

paper has studied schizophrenia patients, we ignore this situation and take the impact of 

metformin in weight loss due to very limited number of works in the literature about 

weight change with type 2 diabetes and oral antidiabetics used.  

 

We assume about the treatment failure transition probability for metformin + GLP1 RA 

dual therapy based on Ratner et al. (2006) and take the percentage of loss of glucose 

control among causes of quitting the therapy as the probability of switching from hc to hu 

in HbA1c. On the other hand, the probability of achieving the target HbA1c level of 7% for 

this drug combination is directly taken from the 30-week trial value of the same paper. In 

contrast to studies on weight loss, many studies have been conducted and values have been 

found for different drug combinations used for type 2 diabetes related to the probability of 

reducing HbA1c to or less than 7 percent in the literature. However, the values of the 

articles and below are used in our study.  

 

Blonde et al. (2006) report that in the result part of their article, at the end of 82 weeks, 81 

percent of patients with type 2 diabetes experience weight loss by using metformin and 
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GLP1 RA combination. This value is the transition probability to the controlled state of 

BMI by assuming that the 6-month value, due to data deprivation, is close to it and, thus, 

ignoring the difference that can occur in time.  

 

Charokopou et al. (2015) directly provide the information of the probability of 

discontinuation, treatment failure, to metformin + SGLT 2i dual therapy. 

 

Bailey et al. (2013) include the likelihoods of reducing HbA1c level to 7% or below by 

combining metformin and different doses of SGLT 2i. For the probability value used in the 

model for this parameter of patient health state, we take the average of three different 

combinations made for 24 weeks. 

 

Prato et al. (2015) have the statistics of a cohort with 400 patients using metformin and 

SGLT 2i combination. The probability of whether this dual therapy results in the desired 

weight loss is calculated by dividing the number of patients with having weight loss and 

remaining in the control group at the end of the 26-week period by the total number of 

patients. 

 

Matthaei et al. (2015) give the probability of HbA1c falling to 7% or below for the triple 

therapy with metformin + SGLT 2i + DPP 4i directly as a result of the study. However, the 

probability of treatment failure is determined by the numerical information of 

discontinuation in the efficacy section of the paper, assuming lack of glucose control as the 

only cause of withdrawal of patients from the therapy. It reports that 4 patients were 

rescued or discontinued for loss of glycemic control over 153 patients. Thus, we find the 

likelihood of treatment failure by dividing 4 over 153. 

 

All these explanations are summarized in the illustrative table below to make them clearer. 
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Table 4.2.1.1 Illustrative table of the inputs used in our model 

 

Therapy Transition Probability Signification Reference Year 

  HbA1c BMI         

MONOTHERAPY 

(ONLY 

METFORMIN) 

hc→hc   0.954 Treatment 

success or not 

Kwon et al. 2018 

hc→hu   0.046 

hu→hc   0.2526 HbA1c gets 

≤7% or not 

Brown et al. 2004 

hu→hu   0.7474 

  bc→bc 1 Absolute control 

or not 

Guideline 2018 

  bc→bu 0 

  bu→bc 0.9167 Desired weight 

loss or not 

Baptista et al. 2007 

  bu→bu 0.0833 

DUAL THERAPY   

(MET + GLP1 

RA) 

hc→hc   0.97 Treatment 

success or not 

Ratner et al. 2006 

hc→hu   0.03 

hu→hc   0.46 HbA1c gets 

≤7% or not 

Ratner et al. 2006 

hu→hu   0.54 

  bc→bc 1 Absolute control 

or not 

Guideline 2018 

  bc→bu 0 

  bu→bc 0.81 Desired weight 

loss or not 

Blonde et al. 2006 

  bu→bu 0.19 

DUAL THERAPY   

(MET + SGLT 2i) 

hc→hc   0.919 Treatment 

success or not 

Charokopou et 

al. 

2015 

hc→hu   0.081 

hu→hc   0.35 HbA1c gets 

≤7% or not 

Bailey et al. 2015 

hu→hu   0.65 

  bc→bc 1 Absolute control 

or not 

Guideline 2018 

  bc→bu 0 

  bu→bc 0.885 Desired weight 

loss or not 

Del Prato et 

al. 

2015 

  bu→bu 0.115 

TRIPLE 

THERAPY   

(MET + SGLT 2i 

+ DPP 4i) 

hc→hc   0.974 Treatment 

success or not 

Matthaei et al. 2015 

hc→hu   0.026 

hu→hc   0.353 HbA1c gets 

≤7% or not 

Matthaei et al. 2015 

hu→hu   0.647 

  bc→bc 1 Weight loss is 

neglected 

Guideline 2018 

  bc→bu 0 

  bu→bc 0 Weight loss is 

neglected 

Guideline 2018 

  bu→bu 1 
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In addition, by considering the conditional probability, for the cases in which both HbA1c 

and BMI values have a chance to alter, a new single transition probability is obtained by 

multiplying the single transition probabilities of these two parameters of a patient’s health 

state. This calculation is valid for each state transition probability. However, for some 

cases, BMI value, b, has no chance to change. This provides us with ease of calculation. As 

it is mentioned that the weight gain effect of the antidiabetics other than insulin is not 

observed, they either reduce or neutralize the weight. Due to this assumption, BMI has a 

transition probability of 1 for remaining in the same state of BMI when it is in control, 

which means transitions that include from bc to bc. Thus, the product of the multiplication 

with 1 gives the same result with the probability of HbA1c changes when BMI is in state 

of bc for all therapies.  

 

Moreover, this assumption gives us the transition probability values for the states where 

BMI is not under control, bu, only within the triple therapy as well. This is because, as we 

know from the guideline, triple therapy attempts to neutralize a patient's weight, so it does 

not help to lose weight. This means that if a patient on the triple therapy is in a state where 

the b value is bu, the patient will continue to be on the same b value, bu, with a probability 

of 1. Thus, as in the state transitions that include from bc to bc, the product of the 

multiplication in this case also gives the same result with the transition probability of 

HbA1c changes. 

 

The sequential tables below show transition probability matrices for all actions used in the 

model. 
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Table 4.2.1.2 Estimated transition probability matrix of wait action 

 

Pt (W) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

S st (hc,1,bc) (hc,2a,bc) (hc,2b,bc) (hc,3,bc) (hc,1,bu) (hc,2a,bu) (hc,2b,bu) (hc,3,bu) (hu,1,bc) (hu,2a,bc) (hu,2b,bc) (hu,3,bc) (hu,1,bu) (hu,2a,bu) (hu,2b,bu) (hu,3,bu) insulin 

1 (hc,1,bc) 0.9540 0 0 0 0 0 0 0 0.0460 0 0 0 0 0 0 0 0 

2 (hc,2a,bc) 0 0.9700 0 0 0 0 0 0 0 0.0300 0 0 0 0 0 0 0 

3 (hc,2b,bc) 0 0 0.9190 0 0 0 0 0 0 0 0.0810 0 0 0 0 0 0 

4 (hc,3,bc) 0 0 0 0.9740 0 0 0 0 0 0 0 0.0260 0 0 0 0 0 

5 (hc,1,bu) 0.8745 0 0 0 0.0795 0 0 0 0.0422 0 0 0 0.0038 0 0 0 0 

6 (hc,2a,bu) 0 0.7857 0 0 0 0.1843 0 0 0 0.0243 0 0 0 0.0057 0 0 0 

7 (hc,2b,bu) 0 0 0.8133 0 0 0 0.1057 0 0 0 0.0717 0 0 0 0.0093 0 0 

8 (hc,3,bu) 0 0 0 0 0 0 0 0.9740 0 0 0 0 0 0 0 0.0260 0 

9 (hu,1,bc) 0.2526 0 0 0 0 0 0 0 0.7474 0 0 0 0 0 0 0 0 

10 (hu,2a,bc) 0 0.4600 0 0 0 0 0 0 0 0.5400 0 0 0 0 0 0 0 

11 (hu,2b,bc) 0 0 0.3500 0 0 0 0 0 0 0 0.6500 0 0 0 0 0 0 

12 (hu,3,bc) 0 0 0 0.3530 0 0 0 0 0 0 0 0.6470 0 0 0 0 0 

13 (hu,1,bu) 0.2316 0 0 0 0.0210 0 0 0 0.6851 0 0 0 0.0623 0 0 0 0 

14 (hu,2a,bu) 0 0.3726 0 0 0 0.0874 0 0 0 0.4374 0 0 0 0.1026 0 0 0 

15 (hu,2b,bu) 0 0 0.3098 0 0 0 0.0403 0 0 0 0.5753 0 0 0 0.0748 0 0 

16 (hu,3,bu) 0 0 0 0 0 0 0 0.3530 0 0 0 0 0 0 0 0.6470 0 

17 insulin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
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Table 4.2.1.3 Estimated transition probability matrix of add new drug action 

 

Pt (A) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

S st 
(hc,1, 

bc) 

(hc,2a, 

bc) 

(hc,2b, 

bc) 

(hc,3, 

bc) 

(hc,1, 

bu) 

(hc,2a, 

bu) 

(hc,2b, 

bu) 

(hc,3, 

bu) 

(hu,1, 

bc) 

(hu,2a, 

bc) 

(hu,2b, 

bc) 

(hu,3, 

bc) 

(hu,1, 

bu) 

(hu,2a, 

bu) 

(hu,2b, 

bu) 

(hu,3, 

bu) 
insulin 

1 (hc,1,bc) 0 0.4850 0.4595 0 0 0 0 0 0 0.0150 0.0405 0 0 0 0 0 0 

2 (hc,2a,bc) 0 0 0.9190 0 0 0 0 0 0 0 0.0810 0 0 0 0 0 0 

3 (hc,2b,bc) 0 0.4850 0 0.4870 0 0 0 0 0 0.0150 0 0.0130 0 0 0 0 0 

4 (hc,3,bc) 0 0 0 0.9740 0 0 0 0 0 0 0 0.0260 0 0 0 0 0 

5 (hc,1,bu) 0 0.3929 0.4067 0 0 0.0922 0.0528 0 0 0.0122 0.0358 0 0 0.0029 0.0047 0 0 

6 (hc,2a,bu) 0 0 0.8133 0 0 0 0.1057 0 0 0 0.0717 0 0 0 0.0093 0 0 

7 (hc,2b,bu) 0 0.3929 0 0.0000 0 0.0922 0 0.4870 0 0.0122 0 0.0000 0 0.0029 0 0.0130 0 

8 (hc,3,bu) 0 0 0 0 0 0 0 0.9740 0 0 0 0 0 0 0 0.0260 0 

9 (hu,1,bc) 0 0.2300 0.1750 0 0 0 0 0 0 0.2700 0.3250 0 0 0 0 0 0 

10 (hu,2a,bc) 0 0 0.3500 0 0 0 0 0 0 0 0.6500 0 0 0 0 0 0 

11 (hu,2b,bc) 0 0.2300 0 0.1765 0 0 0 0 0 0.2700 0 0.3235 0 0 0 0 0 

12 (hu,3,bc) 0 0 0 0.3530 0 0 0 0 0 0 0 0.6470 0 0 0 0 0 

13 (hu,1,bu) 0 0.1863 0.1549 0 0 0.0437 0.0201 0 0 0.2187 0.2876 0 0 0.0513 0.0374 0 0 

14 (hu,2a,bu) 0 0 0.3098 0 0 0 0.0403 0 0 0 0.5753 0 0 0 0.0748 0 0 

15 (hu,2b,bu) 0 0.1863 0 0.0000 0 0.0437 0 0.1765 0 0.2187 0 0.0000 0 0.0513 0 0.3235 0 

16 (hu,3,bu) 0 0 0 0 0 0 0 0.3530 0 0 0 0 0 0 0 0.6470 0 

17 insulin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

For add new drug action, the probabilities of transferring to possible states (if there are two possible states) are taken from the wait action matrix as half of the probabilities of the states in 

which the current state can go. The numbers in red color indicate the transition probabilities of all states with triple therapy. They are in red because they are infeasible states that have no 

effect on the action result and so they are not accurately placed. We give a very small number for their rewards in our reward vector to get the result of starting insulin therapy. 
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Table 4.2.1.4 Estimated transition probability matrix of insulin initiation action 

 

Pt (I) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

S st 
(hc,1, 

bc) 

(hc,2a, 

bc) 

(hc,2b, 

bc) 

(hc,3, 

bc) 

(hc,1, 

bu) 

(hc,2a, 

bu) 

(hc,2b, 

bu) 

(hc,3, 

bu) 

(hu,1, 

bc) 

(hu,2a, 

bc) 

(hu,2b, 

bc) 

(hu,3, 

bc) 

(hu,1, 

bu) 

(hu,2a, 

bu) 

(hu,2b, 

bu) 

(hu,3, 

bu) 
insulin 

1 (hc,1,bc) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

2 (hc,2a,bc) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

3 (hc,2b,bc) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

4 (hc,3,bc) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

5 (hc,1,bu) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

6 (hc,2a,bu) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

7 (hc,2b,bu) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

8 (hc,3,bu) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

9 (hu,1,bc) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

10 (hu,2a,bc) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

11 (hu,2b,bc) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

12 (hu,3,bc) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

13 (hu,1,bu) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

14 (hu,2a,bu) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

15 (hu,2b,bu) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

16 (hu,3,bu) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

17 insulin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
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4.2.2 Quality Adjusted Life Years (QALYs) 

 

Because there is uncertainty in a patient’s health state, the aim of our MDP model is to find 

the optimal policy which shows the optimal decisions at each 6-months decision epoch and 

state by using the available information. The optimal decision is the decision with 

estimated monetary value of QALYs minus costs averaged over all possible future states. 

Thus, a future reward is related to the monetary value of a QALY and the utility(disutility) 

of a patient’s health state.  

 

The rewards for each state depend only on the current state of a patient and action taken. 

We suppose that there is no specific burden on taking an action in our model. We use 

annual QALY's monetary value of $ 50000, which we initially assigned to a patient in 

excellent health. 

 

When calculating the QALYs, we assume at the beginning that we have a starter utility that 

belongs to patients with type 2 diabetes. This utility only includes the decrement of weight 

gain describing a patient with controlled HbA1c level. We subtract disutility and add 

QALYs gained by the medication therapy used to find expected future rewards. Therefore, 

other than BMI and HbA1c level, the selected therapies are also important because of their 

direct impact on a patient's quality of future life years.  

 

Matza et al. (2007) provide the information about the starter utilities of type 2 diabetic 

patients with basic health states. The study measures the utilities in the view of weight 

gain, treatment-related adverse events and fear of hypoglycemia. We assume that our 

patients are not exposed to an adverse event. Therefore, based on this article, we suppose 

that a patient with 3% lower weight and no adverse event has a controlled BMI state. Thus, 

the utility of 0.80 in the article represents the starter utility of the states with a value of bc 

for BMI. Unlike this situation, a patient with 3% higher weight and no adverse event has 

the starter utility of 0.68 which is used for uncontrolled BMI with a value of bu in a 

patient’s health state. 
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Hunt et al. (2015) report that controlling HbA1c levels of most of a studied group of 

patients with type 2 diabetes, whose HbA1c levels are not under control, provides an 

average of 0.16 utility on a patient’s quality of a future life year. Based on that, if a patient 

loses control of the HbA1c level, we can accept that the patient experiences a loss of 0.16 

utility. This value is subtracted from the starter utility if the level of HbA1c is hu in a 

patient's health state. Conversely, if it is hc, nothing is added or subtracted because the 

already established starter utilities in the article are evaluated with the consideration of 

type 2 diabetics who are in control of their glucose levels.  

 

For insulin initiation, we ignore the situations in which patients must start insulin 

immediately such as severe hyperglycemia attacks. Since using oral glucose-lowering 

agents will affect a patient’s quality of future life years, our model requires a new starter 

utility value for the insulin initiation. Boye et al. (2011) measure the utilities by 

considering antidiabetics that can be used up to the onset of insulin for type 2 diabetic 

patients. Based on this article, we assume the starter utility value of insulin initiation health 

state as 0.813. This is an average calculated value. The fact that antidiabetics have both 

negative and positive effects on QALY makes this value different from 0.80 and 0.68. 

And, the fact that it is higher tells us that the overall positive effect is at the forefront.  

 

The table below explains the information provided above. 

 

Table 4.2.2.1 Estimated QALY values without considering the medication effects 

 

Information Health State Starter Utility Reference Year 

Mean utility of controlled HbA1c 
(hc,*,bc) 0.8 Matza et al. 2007 

(hc,*,bu) 0.68 Matza et al. 2007 

Mean utility of uncontrolled HbA1c 
(hu,*,bc) 0.64 (0.8-0.16) Hunt et al. 2015 

(hu,*,bu) 0.52 (0.68-0.16) Hunt et al. 2015 

Mean utility of antidiabetics uses before insulin insulin initiation 0.813 Boye et al. 2011 

 

While the use of oral antidiabetics has a positive effect on QALY by inducing weight loss 

and decreasing HbA1c, the risk of hypoglycemia and the injectability, if the drug is 

injectable, cause a decrease in QALY. Chakravarty et al. (2018) calculate the QALY gain 

of 1kg weight loss and 1% HbA1c decrease. In the model, we multiply these values by the 
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weight loss and HbA1c decrease resulting from each therapy for 6 months and add the 

product of the multiplication to the starter utilities to find the specific impacts of the 

therapies on their rewards. However, insulin causes weight gain, thus, the weight effect of 

insulin on QALY is negative.  

 

The effects of therapies on weight and HbA1c are taken from as follows: Ratner et al. 

(2006) have the values which belong to the dual therapy of metformin+GLP1 RA, Bailey 

et al. (2013) have the values of metformin + SGLT 2i, Baptista et al. (2007) have the 

values of metformin mono therapy, Matthaei et al. (2015) have the values of metformin + 

SGLT 2i + DPP 4i triple therapy and Buse et al. (2009) have the values of insulin glargine 

with metformin therapy. If a note needs to be added here, since the study of Metformin + 

SGLT 2i dual therapy is performed using three different doses of SGLT 2i, the mean value 

of the data for 24 weeks is found to determine the values we need.  

 

The following table summarizes the data and gives the results used in our model. 

 

Table 4.2.2.2 QALY figures for utility effects of each therapy 

 

 
Decrease 

in HbA1c 

(%) 

Weight 

Loss 
Reference Year 

QALY GAIN 

per 1% 

HbA1c 

decrease 

QALY GAIN 

per 1 kg 

weight 

decrease 

Reference Year 

Total 

Gain in 

QALY 

Monotherapy (Met) 0.71 1.40 
Baptista et 

al. 
2007 

0,022 0,0149 
Chakravarty 

et al. 
2018 

0.0365 

Dual therapy 

(Met+GLP1 RA) 
0.70 2.30 

Ratner et 

al. 
2006 0.0497 

Dual therapy 2 

(Met+SGLT2i) 
0.713 2.51 

Bailey et 

al. 
2013 0.0531 

Triple therapy (Met 

+ SGLT 2i+DPP 4i) 
0.51 0.53 

Matthaei 

et al. 
2015 0.0191 

Insulin Therapy 

(Met + IG) 
1.70 -2.50 Buse et al. 2009 0.0001 

 

On the other hand, Zhang et al. (2014) have the disutility of hypoglycemia and injectable 

medications. These are the values that have a negative effect on QALY of a patient. The 

information in the article belongs to each single antidiabetic other than SGLT 2i. 

Therefore, to find the disutility for the therapies involving these antidiabetics in 
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combination, we sum up their single values for each therapy type and disutility category. 

Besides that, we complete the missing disutility of SGLT 2i by using the probability of 

severe hypoglycemia of dapagliflozin, which is a type of SGLT 2i, and metformin 

combination from the study of (Charokopou et al., 2015).  

 

The table below shows the disutility and overall gain or loss in QALY for each therapy. 

 

Table 4.2.2.3 QALY figures for disutility effects of each therapy 

 

 Disutility of 

hypoglycemia 

Disutility of 

injectable medication 
Reference Year 

Total Loss 

in QALY 

Overall Total 

Change in 

QALY 

Monotherapy (Met) -0.0002 0 Zhang et al. 2014 -0.0002 0.0363 

Dual therapy (Met+GLP1 RA) -0.0007 -0.0032 Zhang et al. 2014 -0.0039 0.0458 

Dual therapy 2 (Met+SGLT2i) -0.0004 0 
Charokopou 

et al. 
2015 -0.0004 0.0527 

Triple therapy (Met + SGLT 

2i+DPP 4i) 
-0.0006 0 Zhang et al. 2014 -0.0006 0.0185 

Insulin Therapy (Met + IG) -0.0143 -0.0032 Zhang et al. 2014 -0.0175 -0.0174 

 

4.2.3 Costs 

 

Each state has an associated cost. All the cost information is obtained from the literature 

and determined by taking half of the values in the articles, considering that the model has a 

6-months decision period, and adjusted to 2019 USD with 3% annual inflation rate.  

 

On the other hand, costs are grouped in three main categories: 1) total medical cost 

(inpatient, outpatient, emergency room visits, urgent care visits, calls to physicians) 2) total 

drug (medication) cost 3) total cost of weight increase which may occur as an effect of the 

therapies. 

 

Costs are taken from the studies as follows: D. P. P. Group (2012) have 10 years follow-up 

medical cost information of metformin therapy, Pharm et al. (2018) search and supply the 

medical costs of GLP1 RA and insulin dual therapies with metformin, Chakravarty et al. 

(2018) have the difference medical cost between metformin + SGLT 2i and metformin + 

GLP1 RA, the drug costs of dual and triple therapies and also the cost per 1 kg weight 
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increase which is important when calculating total insulin glargine therapy cost because in 

contrast to what we know for other therapies, we learn from Buse et al. (2009) that insulin 

therapy has a weight gain effect of about 2.5 kgs, and finally (Kwon et al., 2018) provide 

the drug costs of metformin and insulin glargine therapies. Since there is no available cost-

effectiveness study in the literature for Met + SGLT 2i + DPP 4i at the time of this study, a 

sensitivity analysis will be made for the medical cost of triple therapy. Considering the 

other medical costs, the average of triple therapy medical cost is assumed to be $ 2000 in 

our base model application. One under this value ($ 1000) and one even lower value ($ 

500) will be included for the operation of the sensitivity analysis of our model. 

 

The table below shows the costs used in our model and includes their references. 

 

Table 4.2.3.1 Associated costs with each therapy in 2019 $ 

 

 Total medical 

cost (2019 $) 
Reference 

Total drug 

cost (2019 $) 
Reference 

Cost of weight 

increase due to 

medication (2019 $) 

Reference 
TOTAL 

COST 

Monotherapy 

(Met) 
1242.14 

Group 

(2012) 
13.51 

Kwon et al. 

(2018) 
0 

Guideline 

(2018) 
1255.65 

Dual therapy (Met 

+ GLP1 RA) 
1768.58 

Pharm et al. 

(2018) 
3991.60 

Chakravarty 

(2018) 
0 

Guideline 

(2018) 
5760.17 

Dual therapy 2 

(Met + SGLT2i) 
1565.69 

Chakravarty 

(2018) 
2617.57 

Chakravarty 

(2018) 
0 

Guideline 

(2018) 
4183.26 

Triple therapy 

(Met + SGLT 2i + 

DPP 4i) 

2000.00 Assumption 5032.58 
Chakravarty 

(2018) 
0 

Guideline 

(2018) 
7032.58 

Insulin Therapy 

(Met + IG) 
2351.55 

Pharm et al. 

(2018) 
2065.31 

Kwon et al. 

(2018) 
925.24 

Chakravarty 

(2018) 
5342.10 

 

4.2.4 Rewards  

 

All in all, to find future rewards of a patient’s health states, we add the total changes in 

QALY to the starter utilities of the related states and multiply the results by $ 25000 

which, we assume, is the QALY’s 6-month monetary value. Then, we subtract the costs of 

each medication therapy from the results of the multiplications and find the willingness-to-

pay factor for each health state and action pair. Here is a note to add for the calculation of 
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rewards in action A, which is that since we add a new drug in this action, the costs 

subtracted are the costs of therapies that can be used in the next stage. If it is possible to 

choose one of two different therapies at the next stage, half of the costs of these therapies 

are deducted in our model. 

 

Below table represents the rewards of each state-action pair in period 𝑡 = 0. 

 

Table 4.2.4.1 Undiscounted rewards for each state-action pair 

 

S st Rt(st,W) Rt(st,A) Rt(st,I) 

1 (hc,1,bc) 19651.35 15935.28 14549.15 

2 (hc,2a,bc) 15384.08 16960.99 14549.15 

3 (hc,2b,bc) 17133.86 14915.75 14549.15 

4 (hc,3,bc) 13430.34 -100000.00 14549.15 

5 (hc,1,bu) 16651.35 12935.28 14549.15 

6 (hc,2a,bu) 12384.08 13960.99 14549.15 

7 (hc,2b,bu) 14133.86 11915.75 14549.15 

8 (hc,3,bu) 10430.34 -100000.00 14549.15 

9 (hu,1,bc) 15651.35 11935.28 14549.15 

10 (hu,2a,bc) 11384.08 12960.99 14549.15 

11 (hu,2b,bc) 13133.86 10915.75 14549.15 

12 (hu,3,bc) 9430.34 -100000.00 14549.15 

13 (hu,1,bu) 12651.35 8935.28 14549.15 

14 (hu,2a,bu) 8384.08 9960.99 14549.15 

15 (hu,2b,bu) 10133.86 7915.75 14549.15 

16 (hu,3,bu) 6430.34 -100000.00 14549.15 

17 insulin 14549.15 14549.15 14549.15 

 

For the triple therapy, a very small number for rewards is given in order not to get the 

action of add new drug because we already assume for our model that if it does not make 

sense to continue with triple therapy during a decision period, the patient should start 

insulin therapy. Otherwise, he or she should wait for another decision period.  

 

Subsequent to calculating the rewards, the goal is to determine the action at each state 

which has the maximum expected future reward. Expected future rewards are calculated by 
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starting with the multiplication of the rewards and the transition probabilities in each 

respective health state. This multiplication helps us to decide on the action at 𝑡 = 0. After 

deciding on the action at each state at the beginning of the decision horizon which we 

assume between 40 and 60 years of age, our objective function has a discount factor of 

0.97 to reflect the discounted value of rewards for future years of life and therapy costs.  

 

To find the optimal policy, the optimal treatment action can be computed efficiently at 

each state by using backward induction for our finite-horizon MDP model. The optimal 

action is decided by selecting between the expected discounted future rewards of 1) the 

patient waiting until the next decision epoch 2) the patient adding a new drug for another 6 

months and 3) the patient initiating insulin therapy.  

 

 

 

 

 

 

 

 



 

 

  

 

5. RESULTS  

 

 

 

5.1 Base Case  

 

After all the inputs used in the solution are decided, the results are obtained as follows 

from the MATLAB R2018b computer program to get rid of computational complexity of 

the solution.  

 

The table below shows the results taken from the $ 2000 assumption of the average 

medical cost for the triple therapy. In the table, the set of 𝑆 in the y axis indicates our 

health states, while the horizontal x axis represents a 20-year decision horizon, each of 

which is a 6-month decision period. Moreover, the internal values demonstrate the actions 

at each decision epoch as follows: W) wait at the current therapy, A) add a new drug and 

change the current therapy I) initiate insulin. 
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Table 5.1.1 The optimal policy for the base case 

 

T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

S st                     

1 (hc,1,bc) W W W W W W W W W W W W W W W W W W W W 

2 (hc,2a,bc) A A A A A A A A A A A A A A A A A A A A 

3 (hc,2b,bc) W W W W W W W W W W W W W W W W W W W W 

4 (hc,3,bc) I I I I I I I I I I I I I I I I I I I I 

5 (hc,1,bu) W W W W W W W W W W W W W W W W W W W W 

6 (hc,2a,bu) A A A A A A A A A A A A A A A A A A A A 

7 (hc,2b,bu) W W W W W W W W W W W W W W W W W W W W 

8 (hc,3,bu) I I I I I I I I I I I I I I I I I I I I 

9 (hu,1,bc) W W W W W W W W W W W W W W W W W W W W 

10 (hu,2a,bc) A A A A A A A A A A A A A A A A A A A A 

11 (hu,2b,bc) W W W W W W W W W W W W W W W W W W W W 

12 (hu,3,bc) I I I I I I I I I I I I I I I I I I I I 

13 (hu,1,bu) W W W W W W W W W W W W W W W W W W W W 

14 (hu,2a,bu) A A A A A A A A A A A A A A A A A A A A 

15 (hu,2b,bu) W W W W W W W W W W W W W W W W W W W W 

16 (hu,3,bu) I I I I I I I I I I I I I I I I I I I I 

17 Insulin W W W W W W W W W W W W W W W W W W W W 

T 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

S st                     

1 (hc,1,bc) W W W W W W W W W W W W W W W W W W W W 

2 (hc,2a,bc) A A A A A A A A A A A A A A A A A A A A 

3 (hc,2b,bc) W W W W W W W W W W W W W W W W W W W W 

4 (hc,3,bc) I I I I I I I I I I I I I I I I I I I I 

5 (hc,1,bu) W W W W W W W W W W W W W W W W W W W W 

6 (hc,2a,bu) A A A A A A A A A A A A A A A A A A A I 

7 (hc,2b,bu) W W W W W W W W W W W W W W W W W W W I 

8 (hc,3,bu) I I I I I I I I I I I I I I I I I I I I 

9 (hu,1,bc) W W W W W W W W W W W W W W W W W W W W 

10 (hu,2a,bc) A A A A A A A A A A A A A A A A A A I I 

11 (hu,2b,bc) W W W W W W W W W W W W W W W W W W I I 

12 (hu,3,bc) I I I I I I I I I I I I I I I I I I I I 

13 (hu,1,bu) W W W W W W W W W W W W W W W W W W W I 

14 (hu,2a,bu) A A A A A A A A A A A A A A A I I I I I 

15 (hu,2b,bu) W W W W W W W W W W W W W W W I I I I I 

16 (hu,3,bu) I I I I I I I I I I I I I I I I I I I I 

17 Insulin W W W W W W W W W W W W W W W W W W W W 

 



46 

 

  

 

Moreover, the value function for the first 4 and last 4 decision periods is measured as in 

Table 5.1.2. We choose these decision periods randomly as an example for the values that 

the value function takes. The numbers are given by rounding to the nearest exact value. 

 

Table 5.1.2 Value function outcomes for different decision periods 

 

T 1 2 3 4  38 39 40 41 

S st          

1 (hc,1,bc) 448790 442990 437010 430840  56730 38530 19650 0 

2 (hc,2a,bc) 386210 381220 376070 370770  49120 33380 16960 0 

3 (hc,2b,bc) 386380 381390 376250 370940  49290 33550 17130 0 

4 (hc,3,bc) 341560 337120 332550 327840  42350 28660 14550 0 

5 (hc,1,bu) 445530 439730 433740 427580  53470 35300 16650 0 

6 (hc,2a,bu) 382830 377840 372700 367390  45790 30110 14550 0 

7 (hc,2b,bu) 383010 378010 372870 367570  45960 30290 14550 0 

8 (hc,3,bu) 341560 337120 332550 327840  42350 28660 14550 0 

9 (hu,1,bc) 436280 430480 424490 418330  48160 31810 15650 0 

10 (hu,2a,bc) 377280 372290 367150 361840  42420 28660 14550 0 

11 (hu,2b,bc) 377450 372460 367320 362010  42600 28660 14550 0 

12 (hu,3,bc) 341560 337120 332550 327840  42350 28660 14550 0 

13 (hu,1,bu) 433020 427210 421230 415060  44900 28680 14550 0 

14 (hu,2a,bu) 373980 368990 363850 358540  42350 28660 14550 0 

15 (hu,2b,bu) 374160 369160 364020 358710  42350 28660 14550 0 

16 (hu,3,bu) 341560 337120 332550 327840  42350 28660 14550 0 

17 insulin 341560 337120 332550 327840  42350 28660 14550 0 

 

When we look at Table 5.1.1, the actions that should be taken in each decision period for 

most health states are constant for a long time as they started at 40 years of age. In the 

table, the cells stained with blue show the decision periods in which the actions change. 

The changes only evolve to action of starting insulin therapy. After the change, there is no 

transition from this therapy to another therapy as previously assumed for the model. This is 

the case because when a cost analysis is performed, it appears that the cost of insulin 

therapy ($ 5342,10) is higher than the costs of uncontrolled HbA1c ($ 4000) and BMI ($ 

3000). Thus, this postpones the onset of insulin in our model, which considers the reason 

for choosing actions with lower cost. The corresponding cost of uncontrolled HbA1c and 

BMI are determined from the defects of these values on QALY. That is to say: 
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uncontrolled HbA1c has a decrease of 0.16 on QALY, which corresponds to a cost of $ 

4000 ($ 25000 * 0.16) while uncontrolled BMI causes to a decrease of 0.12 (0.80-0.68) 

and this is reflected in a cost of $ 3000 ($ 25000 * 0.12). 

  

On the other hand, for any health state involving monotherapy with metformin alone, 

initiating insulin to patients is not recommended. It is recommended to continue the same 

treatment because of the low cost of the therapy. This is a predictable outcome and has 

been an output of our model. In fact, it is presumed that metformin mono therapy does not 

work in the first place, and this is considered the starting point, but the result is the 

opposite. Reaching a more realistic result is possible if real data is used. The reason here is 

the opposite of starting insulin therapy. While the cost of insulin therapy is higher than the 

uncontrolled costs of HbA1c and BMI, the cost of metformin therapy ($ 1255.65) is even 

less than half of these two costs separately. Thus, the model remains in the same therapy 

for a long time, preferring to cover the cost of therapy for metformin. 

 

For dual therapies, where any of the HbA1c or BMI is uncontrolled, transitions to insulin 

can be recommended at final decision periods. Furthermore, in health states where both 

HbA1c and BMI cannot be controlled, it is advised that the patient should be started on 

insulin from the age of 58 years according to our model. 

 

For health states involving triple therapy, continuing therapy (i.e. taking action W) is never 

meaningful because of high drug costs and the presumed medical cost of $ 2000 (for action 

A, since adding a new drug after triple therapy already means initiating insulin, we ignore 

the possible results of action A).  

 

Another conclusion that can be drawn is again related to dual therapies. Since the cost of 

metformin+GLP1 RA is high compared to metformin + SGLT 2, our model recommends 

changing this therapy by choosing action A (i.e. adding a new drug) to metformin + SGLT 

2 in health states involving metformin+GLP1 RA. However, it can be said according to our 

model that in health states where both HbA1c and BMI are uncontrolled, this difference 

disappears after the age of 58 and a direct transition to insulin can be made. 
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5.1 Sensitivity Analysis 

 

In this part of the section, we can further customize our perspective and observe the effects 

of parameter changes on the results of our model. One sensitivity analysis is carried out by 

assigning the medical cost value of $ 1000 and $ 500 for the triple therapy due to the 

failure to obtain a cost from the literature and in order to see what the cost that can change 

the outcome of action I could be in all health states of this type of treatment.  

 

The table below shows that a cost of $ 1000 does not change our result from the cost of $ 

2000. 
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Table 5.2.1 Optimal policy results of $1000 medical cost for triple therapy 

 

T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

S st                     

1 (hc,1,bc) W W W W W W W W W W W W W W W W W W W W 

2 (hc,2a,bc) A A A A A A A A A A A A A A A A A A A A 

3 (hc,2b,bc) W W W W W W W W W W W W W W W W W W W W 

4 (hc,3,bc) I I I I I I I I I I I I I I I I I I I I 

5 (hc,1,bu) W W W W W W W W W W W W W W W W W W W W 

6 (hc,2a,bu) A A A A A A A A A A A A A A A A A A A A 

7 (hc,2b,bu) W W W W W W W W W W W W W W W W W W W W 

8 (hc,3,bu) I I I I I I I I I I I I I I I I I I I I 

9 (hu,1,bc) W W W W W W W W W W W W W W W W W W W W 

10 (hu,2a,bc) A A A A A A A A A A A A A A A A A A A A 

11 (hu,2b,bc) W W W W W W W W W W W W W W W W W W W W 

12 (hu,3,bc) I I I I I I I I I I I I I I I I I I I I 

13 (hu,1,bu) W W W W W W W W W W W W W W W W W W W W 

14 (hu,2a,bu) A A A A A A A A A A A A A A A A A A A A 

15 (hu,2b,bu) W W W W W W W W W W W W W W W W W W W W 

16 (hu,3,bu) I I I I I I I I I I I I I I I I I I I I 

17 Insulin W W W W W W W W W W W W W W W W W W W W 

T 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

S st                     

1 (hc,1,bc) W W W W W W W W W W W W W W W W W W W W 

2 (hc,2a,bc) A A A A A A A A A A A A A A A A A A A A 

3 (hc,2b,bc) W W W W W W W W W W W W W W W W W W W W 

4 (hc,3,bc) I I I I I I I I I I I I I I I I I I I I 

5 (hc,1,bu) W W W W W W W W W W W W W W W W W W W W 

6 (hc,2a,bu) A A A A A A A A A A A A A A A A A A A I 

7 (hc,2b,bu) W W W W W W W W W W W W W W W W W W W I 

8 (hc,3,bu) I I I I I I I I I I I I I I I I I I I I 

9 (hu,1,bc) W W W W W W W W W W W W W W W W W W W W 

10 (hu,2a,bc) A A A A A A A A A A A A A A A A A A I I 

11 (hu,2b,bc) W W W W W W W W W W W W W W W W W W I I 

12 (hu,3,bc) I I I I I I I I I I I I I I I I I I I I 

13 (hu,1,bu) W W W W W W W W W W W W W W W W W W W I 

14 (hu,2a,bu) A A A A A A A A A A A A A A A I I I I I 

15 (hu,2b,bu) W W W W W W W W W W W W W W W I I I I I 

16 (hu,3,bu) I I I I I I I I I I I I I I I I I I I I 

17 Insulin W W W W W W W W W W W W W W W W W W W W 
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On the other hand, a $500 cost assignment results in a change. Although $500 is a small 

cost when we consider other costs, a triple therapy medical cost value of around $ 500 

concludes that a patient with controlled HbA1c and BMI values can continue triple therapy 

as shown in the table below. Moreover, in other states, no changes are observed for this 

value as well. The areas painted in green represent the health states that have completely 

different action(s) compared to the base case. 

  

Table 5.2.2 Optimal policy results of $500 medical cost for triple therapy 

 

T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

S st                     

1 (hc,1,bc) W W W W W W W W W W W W W W W W W W W W 

2 (hc,2a,bc) A A A A A A A A A A A A A A A A A A A A 

3 (hc,2b,bc) W W W W W W W W W W W W W W W W W W W W 

4 (hc,3,bc) W W W W W W W W W W W W W W W W W W W W 

5 (hc,1,bu) W W W W W W W W W W W W W W W W W W W W 

6 (hc,2a,bu) A A A A A A A A A A A A A A A A A A A A 

7 (hc,2b,bu) W W W W W W W W W W W W W W W W W W W W 

8 (hc,3,bu) I I I I I I I I I I I I I I I I I I I I 

9 (hu,1,bc) W W W W W W W W W W W W W W W W W W W W 

10 (hu,2a,bc) A A A A A A A A A A A A A A A A A A A A 

11 (hu,2b,bc) W W W W W W W W W W W W W W W W W W W W 

12 (hu,3,bc) I I I I I I I I I I I I I I I I I I I I 

13 (hu,1,bu) W W W W W W W W W W W W W W W W W W W W 

14 (hu,2a,bu) A A A A A A A A A A A A A A A A A A A A 

15 (hu,2b,bu) W W W W W W W W W W W W W W W W W W W W 

16 (hu,3,bu) I I I I I I I I I I I I I I I I I I I I 

17 Insulin W W W W W W W W W W W W W W W W W W W W 

T 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

S st                     

1 (hc,1,bc) W W W W W W W W W W W W W W W W W W W W 

2 (hc,2a,bc) A A A A A A A A A A A A A A A A A A A A 

3 (hc,2b,bc) W W W W W W W W W W W W W W W W W W W W 

4 (hc,3,bc) W W W W W W W W W W W W W W W W W W W W 

5 (hc,1,bu) W W W W W W W W W W W W W W W W W W W W 

6 (hc,2a,bu) A A A A A A A A A A A A A A A A A A A I 

7 (hc,2b,bu) W W W W W W W W W W W W W W W W W W W I 

8 (hc,3,bu) I I I I I I I I I I I I I I I I I I I I 

9 (hu,1,bc) W W W W W W W W W W W W W W W W W W W W 

10 (hu,2a,bc) A A A A A A A A A A A A A A A A A A I I 
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11 (hu,2b,bc) W W W W W W W W W W W W W W W W W W I I 

12 (hu,3,bc) I I I I I I I I I I I I I I I I I I I I 

13 (hu,1,bu) W W W W W W W W W W W W W W W W W W W I 

14 (hu,2a,bu) A A A A A A A A A A A A A A A I I I I I 

15 (hu,2b,bu) W W W W W W W W W W W W W W W I I I I I 

16 (hu,3,bu) I I I I I I I I I I I I I I I I I I I I 

17 Insulin W W W W W W W W W W W W W W W W W W W W 

 

In another sensitivity analysis, the disutility of uncontrolled HbA1c is examined. Our 

model shows sensitivity after a disutility of 0.07 for this parameter. This means that if the 

QALY loss due to uncontrolled HbA1c is 0.07 or less, whether the HbA1c is under control 

does not change the result at any future decision point. After 0.07, for health states in 

which HbA1c is uncontrolled, insulin onset is recommended earlier gradually as the value 

increases. We showed the results in the base case for 0.16. Now, you can see the outcomes 

for 0.25 in the table below.  

 

Table 5.2.3 Optimal policy result for 0.25 disutility of uncontrolled HbA1c 

 

T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

S st                     

1 (hc,1,bc) W W W W W W W W W W W W W W W W W W W W 

2 (hc,2a,bc) A A A A A A A A A A A A A A A A A A A A 

3 (hc,2b,bc) W W W W W W W W W W W W W W W W W W W W 

4 (hc,3,bc) I I I I I I I I I I I I I I I I I I I I 

5 (hc,1,bu) W W W W W W W W W W W W W W W W W W W W 

6 (hc,2a,bu) A A A A A A A A A A A A A A A A A A A A 

7 (hc,2b,bu) W W W W W W W W W W W W W W W W W W W W 

8 (hc,3,bu) I I I I I I I I I I I I I I I I I I I I 

9 (hu,1,bc) W W W W W W W W W W W W W W W W W W W W 

10 (hu,2a,bc) A A A A A A A A A A A A A A A A A A A A 

11 (hu,2b,bc) W W W W W W W W W W W W W W W W W W W W 

12 (hu,3,bc) I I I I I I I I I I I I I I I I I I I I 

13 (hu,1,bu) W W W W W W W W W W W W W W W W W W W W 

14 (hu,2a,bu) A A A A A A A A A A A A A A A A A A A A 

15 (hu,2b,bu) W W W W W W W W W W W W W W W W W W W W 

16 (hu,3,bu) I I I I I I I I I I I I I I I I I I I I 

17 insulin W W W W W W W W W W W W W W W W W W W W 

T 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

S st                     

1 (hc,1,bc) W W W W W W W W W W W W W W W W W W W W 
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2 (hc,2a,bc) A A A A A A A A A A A A A A A A A A A A 

3 (hc,2b,bc) W W W W W W W W W W W W W W W W W W W W 

4 (hc,3,bc) I I I I I I I I I I I I I I I I I I I I 

5 (hc,1,bu) W W W W W W W W W W W W W W W W W W W W 

6 (hc,2a,bu) A A A A A A A A A A A A A A A A A A A I 

7 (hc,2b,bu) W W W W W W W W W W W W W W W W W W W I 

8 (hc,3,bu) I I I I I I I I I I I I I I I I I I I I 

9 (hu,1,bc) W W W W W W W W W W W W W W W W W W W I 

10 (hu,2a,bc) A A A A A A A A A A A A A A I I I I I I 

11 (hu,2b,bc) W W W W W W W W W W W W W W I I I I I I 

12 (hu,3,bc) I I I I I I I I I I I I I I I I I I I I 

13 (hu,1,bu) W W W W W W W W W W W W W W W W W I I I 

14 (hu,2a,bu) A A A A A A A A A A I I I I I I I I I I 

15 (hu,2b,bu) W W W W W W W W W W I I I I I I I I I I 

16 (hu,3,bu) I I I I I I I I I I I I I I I I I I I I 

17 insulin W W W W W W W W W W W W W W W W W W W W 

 

Furthermore, changes according to 0.50, which can be considered a much higher value for 

the disutility caused by uncontrolled HbA1c, are observed as follows by another sensitivity 

analysis. As shown here, since the cost of uncontrolled HbA1c will be very high, direct 

insulin onset is recommended for health states where this value is not in control. However, 

for low-cost monotherapy, it is still possible to observe the wait action until the end of the 

decision horizon. 

  

Table 5.2.4 Optimal policy result for 0.50 disutility of uncontrolled HbA1c 

 

T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

S st                     

1 (hc,1,bc) W W W W W W W W W W W W W W W W W W W W 

2 (hc,2a,bc) A A A A A A A A A A A A A A A A A A A A 

3 (hc,2b,bc) W W W W W W W W W W W W W W W W W W W W 

4 (hc,3,bc) I I I I I I I I I I I I I I I I I I I I 

5 (hc,1,bu) W W W W W W W W W W W W W W W W W W W W 

6 (hc,2a,bu) A A A A A A A A A A A A A A A A A A A A 

7 (hc,2b,bu) W W W W W W W W W W W W W W W W W W W W 

8 (hc,3,bu) I I I I I I I I I I I I I I I I I I I I 

9 (hu,1,bc) W W W W W W W W W W W W W W W W W W W W 

10 (hu,2a,bc) I I I I I I I I I I I I I I I I I I I I 

11 (hu,2b,bc) I I I I I I I I I I I I I I I I I I I I 

12 (hu,3,bc) I I I I I I I I I I I I I I I I I I I I 

13 (hu,1,bu) W W W W W W W W W W W W W W W W W W W W 
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14 (hu,2a,bu) I I I I I I I I I I I I I I I I I I I I 

15 (hu,2b,bu) I I I I I I I I I I I I I I I I I I I I 

16 (hu,3,bu) I I I I I I I I I I I I I I I I I I I I 

17 insulin I I I I I I I I I I I I I I I I I I I I 

T 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

S st                     

1 (hc,1,bc) W W W W W W W W W W W W W W W W W W W W 

2 (hc,2a,bc) A A A A A A A A A A A A A A A A A A A A 

3 (hc,2b,bc) W W W W W W W W W W W W W W W W W W W W 

4 (hc,3,bc) I I I I I I I I I I I I I I I I I I I I 

5 (hc,1,bu) W W W W W W W W W W W W W W W W W W W W 

6 (hc,2a,bu) A A A A A A A A A A A A A A A A A A A I 

7 (hc,2b,bu) W W W W W W W W W W W W W W W W W W W I 

8 (hc,3,bu) I I I I I I I I I I I I I I I I I I I I 

9 (hu,1,bc) W W W W W W W W W W W W I I I I I I I I 

10 (hu,2a,bc) I I I I I I I I I I I I I I I I I I I I 

11 (hu,2b,bc) I I I I I I I I I I I I I I I I I I I I 

12 (hu,3,bc) I I I I I I I I I I I I I I I I I I I I 

13 (hu,1,bu) W W W W W W W W W I I I I I I I I I I I 

14 (hu,2a,bu) I I I I I I I I I I I I I I I I I I I I 

15 (hu,2b,bu) I I I I I I I I I I I I I I I I I I I I 

16 (hu,3,bu) I I I I I I I I I I I I I I I I I I I I 

17 insulin I I I I I I I I I I I I I I I I I I I I 

 

Another analysis is conducted on the discount factor λ. The decrease in this parameter 

makes it possible to determine that insulin initiation should be taken earlier. If HbA1c and 

BMI are uncontrolled and an individual is on dual therapy, the model recommends starting 

insulin earlier gradually up to 0.81 with minor changes in other health states. However, at 

0.80, direct insulin initiation is recommended for the entire time horizon to a patient in the 

same metabolic conditions. This explains that the discount factor should have a value 

between 0.80 and 0.81 or less to make a patient who is not in control of HbA1c and BMI 

start insulin directly after 40 years of age by bypassing dual therapies. 

  

A significant change in this analysis is also observed if a patient with uncontrolled HbA1c 

and BMI is taking monotherapy. As the discount factor decreases, we can see the result of 

insulin initiation for this health state as well. The below tables represent these changes. 
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Table 5.2.5 Action results of each decision epoch for 0.81 discount factor  

 

T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

S st                     

1 (hc,1,bc) W W W W W W W W W W W W W W W W W W W W 

2 (hc,2a,bc) A A A A A A A A A A A A A A A A A A A A 

3 (hc,2b,bc) W W W W W W W W W W W W W W W W W W W W 

4 (hc,3,bc) I I I I I I I I I I I I I I I I I I I I 

5 (hc,1,bu) W W W W W W W W W W W W W W W W W W W W 

6 (hc,2a,bu) A A A A A A A A A A A A A A A A A A A A 

7 (hc,2b,bu) W W W W W W W W W W W W W W W W W W W W 

8 (hc,3,bu) I I I I I I I I I I I I I I I I I I I I 

9 (hu,1,bc) W W W W W W W W W W W W W W W W W W W W 

10 (hu,2a,bc) A A A A A A A A A A A A A A A A A A A A 

11 (hu,2b,bc) W W W W W W W W W W W W W W W W W W W W 

12 (hu,3,bc) I I I I I I I I I I I I I I I I I I I I 

13 (hu,1,bu) W W W W W W W W W W W W W W W W W W W W 

14 (hu,2a,bu) A A A A A A A A A A A A A A A A A A A A 

15 (hu,2b,bu) W W W W W W W W W W W W W W W W W W W W 

16 (hu,3,bu) I I I I I I I I I I I I I I I I I I I I 

17 insulin W W W W W W W W W W W W W W W W W W W W 

T 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

S st                     

1 (hc,1,bc) W W W W W W W W W W W W W W W W W W W W 

2 (hc,2a,bc) A A A A A A A A A A A A A A A A A A A A 

3 (hc,2b,bc) W W W W W W W W W W W W W W W W W W W W 

4 (hc,3,bc) I I I I I I I I I I I I I I I I I I I I 

5 (hc,1,bu) W W W W W W W W W W W W W W W W W W W W 

6 (hc,2a,bu) A A A A A A A A A A A A A A A A A A A I 

7 (hc,2b,bu) W W W W W W W W W W W W W W W W W W W I 

8 (hc,3,bu) I I I I I I I I I I I I I I I I I I I I 

9 (hu,1,bc) W W W W W W W W W W W W W W W W W W W W 

10 (hu,2a,bc) A A A A A A A A A A A A A A A A A I I I 

11 (hu,2b,bc) W W W W W W W W W W W W W W W W W I I I 

12 (hu,3,bc) I I I I I I I I I I I I I I I I I I I I 

13 (hu,1,bu) W W W W W W W W W W W W W W W W W W I I 

14 (hu,2a,bu) A I I I I I I I I I I I I I I I I I I I 

15 (hu,2b,bu) W W W W W I I I I I I I I I I I I I I I 

16 (hu,3,bu) I I I I I I I I I I I I I I I I I I I I 

17 insulin W W W W W W W W W W W W W W W W W W W W 
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Table 5.2.6 Action results of each decision epoch for 0.80 discount factor 

 

T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

S st                     

1 (hc,1,bc) W W W W W W W W W W W W W W W W W W W W 

2 (hc,2a,bc) A A A A A A A A A A A A A A A A A A A A 

3 (hc,2b,bc) W W W W W W W W W W W W W W W W W W W W 

4 (hc,3,bc) I I I I I I I I I I I I I I I I I I I I 

5 (hc,1,bu) W W W W W W W W W W W W W W W W W W W W 

6 (hc,2a,bu) A A A A A A A A A A A A A A A A A A A A 

7 (hc,2b,bu) W W W W W W W W W W W W W W W W W W W W 

8 (hc,3,bu) I I I I I I I I I I I I I I I I I I I I 

9 (hu,1,bc) W W W W W W W W W W W W W W W W W W W W 

10 (hu,2a,bc) A A A A A A A A A A A A A A A A A A A A 

11 (hu,2b,bc) W W W W W W W W W W W W W W W W W W W W 

12 (hu,3,bc) I I I I I I I I I I I I I I I I I I I I 

13 (hu,1,bu) W W W W W W W W W W W W W W W W W W W W 

14 (hu,2a,bu) I I I I I I I I I I I I I I I I I I I I 

15 (hu,2b,bu) I I I I I I I I I I I I I I I I I I I I 

16 (hu,3,bu) I I I I I I I I I I I I I I I I I I I I 

17 insulin W W W W W W W W W W W W W W W W W W W W 

T 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

S st                     

1 (hc,1,bc) W W W W W W W W W W W W W W W W W W W W 

2 (hc,2a,bc) A A A A A A A A A A A A A A A A A A A A 

3 (hc,2b,bc) W W W W W W W W W W W W W W W W W W W W 

4 (hc,3,bc) I I I I I I I I I I I I I I I I I I I I 

5 (hc,1,bu) W W W W W W W W W W W W W W W W W W W W 

6 (hc,2a,bu) A A A A A A A A A A A A A A A A A A A I 

7 (hc,2b,bu) W W W W W W W W W W W W W W W W W W W I 

8 (hc,3,bu) I I I I I I I I I I I I I I I I I I I I 

9 (hu,1,bc) W W W W W W W W W W W W W W W W W W W W 

10 (hu,2a,bc) A A A A A A A A A A A A A A A A A I I I 

11 (hu,2b,bc) W W W W W W W W W W W W W W W W W I I I 

12 (hu,3,bc) I I I I I I I I I I I I I I I I I I I I 

13 (hu,1,bu) W W W W W W W W W W W W W W W W W W I I 

14 (hu,2a,bu) I I I I I I I I I I I I I I I I I I I I 

15 (hu,2b,bu) I I I I I I I I I I I I I I I I I I I I 

16 (hu,3,bu) I I I I I I I I I I I I I I I I I I I I 

17 insulin W W W W W W W W W W W W W W W W W W W W 
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One more sensitivity analysis is also performed by changing the amount of money 

corresponding to the cost-effectiveness ratio. The cost-effectiveness ratio per year is $ 

100000 instead of $ 50000 this time. In the application of the model with such monetary 

value, the initiation of insulin is observed in more decision periods, while another 

important change occurs in the states with monotherapy compared with the base case. In 

monotherapy, we also see insulin initiation actions because the higher cost-effectiveness 

ratio can tolerate the difference from the cheap therapy of metformin by the QALY 

difference between respective health states and insulin initiation state. 

 

The results appear as in the table below. 

 

Table 5.2.7 Changes in optimal policy for QALY's monetary value of $ 100000 

 

T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

S st                     

1 (hc,1,bc) W W W W W W W W W W W W W W W W W W W W 

2 (hc,2a,bc) A A A A A A A A A A A A A A A A A A A A 

3 (hc,2b,bc) W W W W W W W W W W W W W W W W W W W W 

4 (hc,3,bc) I I I I I I I I I I I I I I I I I I I I 

5 (hc,1,bu) W W W W W W W W W W W W W W W W W W W W 

6 (hc,2a,bu) A A A A A A A A A A A A A A A A A A A A 

7 (hc,2b,bu) W W W W W W W W W W W W W W W W W W W W 

8 (hc,3,bu) I I I I I I I I I I I I I I I I I I I I 

9 (hu,1,bc) W W W W W W W W W W W W W W W W W W W W 

10 (hu,2a,bc) A A A A A A A A A A A A A A A A A A A A 

11 (hu,2b,bc) W W W W W W W W W W W W W W W W W W W W 

12 (hu,3,bc) I I I I I I I I I I I I I I I I I I I I 

13 (hu,1,bu) W W W W W W W W W W W W W W W W W W W W 

14 (hu,2a,bu) A A A A A A A A A A A A A A A A A A A A 

15 (hu,2b,bu) W W W W W W W W W W W W W W W W W W W W 

16 (hu,3,bu) I I I I I I I I I I I I I I I I I I I I 

17 insulin W W W W W W W W W W W W W W W W W W W W 

T 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

S st                     

1 (hc,1,bc) W W W W W W W W W W W W W W W W W W W W 

2 (hc,2a,bc) A A A A A A A A A A A A A A A A A A A A 

3 (hc,2b,bc) W W W W W W W W W W W W W W W W W W W W 

4 (hc,3,bc) I I I I I I I I I I I I I I I I I I I I 

5 (hc,1,bu) W W W W W W W W W W W W W W W W W W W W 
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6 (hc,2a,bu) A A A A A A A A A A A A A A A A A A A I 

7 (hc,2b,bu) W W W W W W W W W W W W W W W W W W W I 

8 (hc,3,bu) I I I I I I I I I I I I I I I I I I I I 

9 (hu,1,bc) W W W W W W W W W W W W W W W W W W I I 

10 (hu,2a,bc) A A A A A A A A A A A A A A A A I I I I 

11 (hu,2b,bc) W W W W W W W W W W W W W W W W I I I I 

 

12 
(hu,3,bc) I I I I I I I I I I I I I I I I I I I I 

13 (hu,1,bu) W W W W W W W W W W W W W W W I I I I I 

14 (hu,2a,bu) A A A A A A A A A A A A I I I I I I I I 

15 (hu,2b,bu) W W W W W W W W W W W W I I I I I I I I 

16 (hu,3,bu) I I I I I I I I I I I I I I I I I I I I 

17 insulin W W W W W W W W W W W W W W W W W W W W 

 

We also apply such an analysis for an annual monetary value of $ 200000 for 1 QALY. 

The results turned out to be much more interesting and to include many more wait actions. 

When we look at dual therapy results, we can conclude that if both of HbA1c and BMI or 

only HbA1c are uncontrolled, either of GLP1 RA or SGLT 2i can be used for this QALY 

monetary value without having to choose between them. Such a conclusion for triple 

therapy is obtained because the higher cost-effectiveness ratio for QALY tolerates the 

difference in cost between therapies. However, for dual therapies, the result stems from the 

transition probabilities between therapies. For example, when we look at the health state of 

(hu,2a,bc), this health state has lower QALY and higher cost compare to the insulin 

initiation state. The result is supposed to be insulin initiation action, but it is still wait 

action. Therefore, the difference in transition possibilities appears to be the cause. 

 

Table 5.2.8 represents the outcomes. 

 

Table 5.2.8 Changes in optimal policy for the cost-effectiveness ratio of $ 200000 

 

T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

S st                     

1 (hc,1,bc) W W W W W W W W W W W W W W W W W W W W 

2 (hc,2a,bc) A A A A A A A A A A A A A A A A A A A A 

3 (hc,2b,bc) W W W W W W W W W W W W W W W W W W W W 

4 (hc,3,bc) W W W W W W W W W W W W W W W W W W W W 

5 (hc,1,bu) W W W W W W W W W W W W W W W W W W W W 

6 (hc,2a,bu) A A A A A A A A A A A A A A A A A A A A 
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7 (hc,2b,bu) W W W W W W W W W W W W W W W W W W W W 

8 (hc,3,bu) I I I I I I I I I I I I I I I I I I I I 

9 (hu,1,bc) W W W W W W W W W W W W W W W W W W W W 

10 (hu,2a,bc) W W W W W W W W W W W W W W W W W W W W 

11 (hu,2b,bc) W W W W W W W W W W W W W W W W W W W W 

12 (hu,3,bc) I I I I I I I I I I I I I I I I I I I I 

13 (hu,1,bu) W W W W W W W W W W W W W W W W W W W W 

14 (hu,2a,bu) W W W W W W W W W W W W W W W W W W W W 

15 (hu,2b,bu) W W W W W W W W W W W W W W W W W W W W 

16 (hu,3,bu) I I I I I I I I I I I I I I I I I I I I 

17 insulin W W W W W W W W W W W W W W W W W W W W 

T 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

S st                     

1 (hc,1,bc) W W W W W W W W W W W W W W W W W W W W 

2 (hc,2a,bc) A A A A A A A A A A A A A A A A A A A A 

3 (hc,2b,bc) W W W W W W W W W W W W W W W W W W W W 

4 (hc,3,bc) W W W W W W W W W W W W W W W W W W W W 

5 (hc,1,bu) W W W W W W W W W W W W W W W W W W W W 

6 (hc,2a,bu) A A A A A A A A A A A A A A A A A A I I 

7 (hc,2b,bu) W W W W W W W W W W W W W W W W W W W I 

8 (hc,3,bu) I I I I I I I I I I I I I I I I I I I I 

9 (hu,1,bc) W W W W W W W W W W W W W W W I I I I I 

10 (hu,2a,bc) W W W W W W W W W W W W W W W I I I I I 

11 (hu,2b,bc) W W W W W W W W W W W W W W W I I I I I 

12 (hu,3,bc) I I I I I I I I I I I I I I I I I I I I 

13 (hu,1,bu) W W W W W W W W W W I I I I I I I I I I 

14 (hu,2a,bu) W W W W W W W W W I I I I I I I I I I I 

15 (hu,2b,bu) W W W W W W W W W I I I I I I I I I I I 

16 (hu,3,bu) I I I I I I I I I I I I I I I I I I I I 

17 insulin W W W W W W W W W W W W W W W W W W W W 

 

Another analysis is also established to see what happens if we change the starter utility of 

insulin initiation. As expected, as the value moves away from our base case value of 0.813, 

the transition to insulin decreases in the negative direction of 0,813 and increases in the 

positive direction of 0,813 in the optimal policy. The model does not recommend taking 

insulin initiation action, especially when the starter utility of insulin onset has values less 

than 0.68. When we give a value (0.70) between the other two starter utilities (0.68 and 

0.80), the results change as in Table 5.2.9. 
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Table 5.2.9 Optimal policy for the starter utility of 0.70 for insulin initiation 

 

T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

S st                     

1 (hc,1,bc) W W W W W W W W W W W W W W W W W W W W 

2 (hc,2a,bc) A A A A A A A A A A A A A A A A A A A A 

3 (hc,2b,bc) W W W W W W W W W W W W W W W W W W W W 

4 (hc,3,bc) W W W W W W W W W W W W W W W W W W W W 

5 (hc,1,bu) W W W W W W W W W W W W W W W W W W W W 

6 (hc,2a,bu) A A A A A A A A A A A A A A A A A A A A 

7 (hc,2b,bu) W W W W W W W W W W W W W W W W W W W W 

8 (hc,3,bu) I I I I I I I I I I I I I I I I I I I I 

9 (hu,1,bc) W W W W W W W W W W W W W W W W W W W W 

10 (hu,2a,bc) A A A A A A A A A A A A A A A A A A A A 

11 (hu,2b,bc) W W W W W W W W W W W W W W W W W W W W 

12 (hu,3,bc) W W W W W W W W W W W W W W W W W W W W 

13 (hu,1,bu) W W W W W W W W W W W W W W W W W W W W 

14 (hu,2a,bu) A A A A A A A A A A A A A A A A A A A A 

15 (hu,2b,bu) W W W W W W W W W W W W W W W W W W W W 

16 (hu,3,bu) I I I I I I I I I I I I I I I I I I I I 

17 insulin W W W W W W W W W W W W W W W W W W W W 

T 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

S st                     

1 (hc,1,bc) W W W W W W W W W W W W W W W W W W W W 

2 (hc,2a,bc) A A A A A A A A A A A A A A A A A A A A 

3 (hc,2b,bc) W W W W W W W W W W W W W W W W W W W W 

4 (hc,3,bc) W W W W W W W W W W W W W W W W W W W W 

5 (hc,1,bu) W W W W W W W W W W W W W W W W W W W W 

6 (hc,2a,bu) A A A A A A A A A A A A A A A A A A A A 

7 (hc,2b,bu) W W W W W W W W W W W W W W W W W W W W 

8 (hc,3,bu) I I I I I I I I I I I I I I I I I I I I 

9 (hu,1,bc) W W W W W W W W W W W W W W W W W W W W 

10 (hu,2a,bc) A A A A A A A A A A A A A A A A A A A A 

11 (hu,2b,bc) W W W W W W W W W W W W W W W W W W W W 

12 (hu,3,bc) W W W W W W W W W W W W W W W I I I I I 

13 (hu,1,bu) W W W W W W W W W W W W W W W W W W W W 

14 (hu,2a,bu) A A A A A A A A A A A A A A A A A A A I 

15 (hu,2b,bu) W W W W W W W W W W W W W W W W W W W I 

16 (hu,3,bu) I I I I I I I I I I I I I I I I I I I I 

17 insulin W W W W W W W W W W W W W W W W W W W W 
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One another analysis is based on the cost of metformin, which is always reflected in the 

results as wait action because it has a much lower cost than other costs in our model. When 

deciding on the assigned value, a cost of $ 4,000 is preferred to be equivalent to the 

uncontrolled costs of HbA1c and BMI and close to other therapy costs. With such a cost, 

more health states involving monotherapy take add new drug action, as shown in Table 

5.2.10.  

 

Table 5.2.10 Results for metformin mono therapy cost of $ 4000 

 

T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

S st                     

1 (hc,1,bc) W W W W W W W W W W W W W W W W W W W W 

2 (hc,2a,bc) A A A A A A A A A A A A A A A A A A A A 

3 (hc,2b,bc) W W W W W W W W W W W W W W W W W W W W 

4 (hc,3,bc) I I I I I I I I I I I I I I I I I I I I 

5 (hc,1,bu) W W W W W W W W W W W W W W W W W W W W 

6 (hc,2a,bu) A A A A A A A A A A A A A A A A A A A A 

7 (hc,2b,bu) W W W W W W W W W W W W W W W W W W W W 

8 (hc,3,bu) I I I I I I I I I I I I I I I I I I I I 

9 (hu,1,bc) A A A A A A A A A A A A A A A A A A A A 

10 (hu,2a,bc) A A A A A A A A A A A A A A A A A A A A 

11 (hu,2b,bc) W W W W W W W W W W W W W W W W W W W W 

12 (hu,3,bc) I I I I I I I I I I I I I I I I I I I I 

13 (hu,1,bu) A A A A A A A A A A A A A A A A A A A A 

14 (hu,2a,bu) A A A A A A A A A A A A A A A A A A A A 

15 (hu,2b,bu) W W W W W W W W W W W W W W W W W W W W 

16 (hu,3,bu) I I I I I I I I I I I I I I I I I I I I 

17 insulin W W W W W W W W W W W W W W W W W W W W 

T 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

S st                     

1 (hc,1,bc) W W W W W W W W W W W W W W W W W W W W 

2 (hc,2a,bc) A A A A A A A A A A A A A A A A A A A A 

3 (hc,2b,bc) W W W W W W W W W W W W W W W W W W W W 

4 (hc,3,bc) I I I I I I I I I I I I I I I I I I I I 

5 (hc,1,bu) W W W W W W W W W W W W W W W W W W W I 

6 (hc,2a,bu) A A A A A A A A A A A A A A A A A A A I 

7 (hc,2b,bu) W W W W W W W W W W W W W W W W W W W I 

8 (hc,3,bu) I I I I I I I I I I I I I I I I I I I I 

9 (hu,1,bc) A A A A A A A A A A A A A A A A A I I I 

10 (hu,2a,bc) A A A A A A A A A A A A A A A A A A I I 

11 (hu,2b,bc) W W W W W W W W W W W W W W W W W W I I 
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12 (hu,3,bc) I I I I I I I I I I I I I I I I I I I I 

13 (hu,1,bu) A A A A A A A A A A A A A A I I I I I I 

14 (hu,2a,bu) A A A A A A A A A A A A A A A I I I I I 

15 (hu,2b,bu) W W W W W W W W W W W W W W W I I I I I 

16 (hu,3,bu) I I I I I I I I I I I I I I I I I I I I 

17 insulin W W W W W W W W W W W W W W W W W W W W 

 

 

Finally, if we set our perspective from the patient's perspective by resetting the cost values, 

the results below occur. No painted areas are specified here, because the results refer to 

another perspective independent of the base case. According to these results, the following 

can be said in general. Monotherapy and triple therapy are not recommended for any health 

state, but rather staying in dual therapy is recommended. In some health states, in the 

second half of the decision horizon, some changes between dual therapies are 

recommended, while direct insulin transitions are also observed. Non-monotonicity in a 

few health states appears in the result because we only focus on the QALY values in this 

perspective and there are very small differences in QALY, which is also multiplied by the 

transition probabilities of less than 1. This can be neglected for the stability of the 

treatment process. 

 

Table 5.2.11 Optimal policy result from patient perspective 

 

T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

S st                     

1 (hc,1,bc) A A A A A A A A A A A A A A A A A A A A 

2 (hc,2a,bc) W W W W W W W W W W W W W W W W W W W W 

3 (hc,2b,bc) W W W W W W W W W W W W W W W W W W W W 

4 (hc,3,bc) W W W W W W W W W W W W W W W W W W W W 

5 (hc,1,bu) A A A A A A A A A A A A A A A A A A A A 

6 (hc,2a,bu) W W W W W W W W W W W W W W W W W W W W 

7 (hc,2b,bu) W W W W W W W W W W W W W W W W W W W W 

8 (hc,3,bu) I I I I I I I I I I I I I I I I I I I I 

9 (hu,1,bc) A A A A A A A A A A A A A A A A A A A A 

10 (hu,2a,bc) W W W W W W W W W W W W W W W W W W W W 

11 (hu,2b,bc) W W W W W W W W W W W W W W W W W W W W 

12 (hu,3,bc) I I I I I I I I I I I I I I I I I I I I 

13 (hu,1,bu) A A A A A A A A A A A A A A A A A A A A 

14 (hu,2a,bu) W W W W W W W W W W W W W W W W W W W W 

15 (hu,2b,bu) W W W W W W W W W W W W W W W W W W W W 

16 (hu,3,bu) I I I I I I I I I I I I I I I I I I I I 
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17 insulin W W W W W W W W W W W W W W W W W W W W 

T 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

S st                     

1 (hc,1,bc) A A A A A A A A A A A A A A A A A A A W 

2 (hc,2a,bc) W W W W W W W W W W W W W W W W W A A W 

3 (hc,2b,bc) W W W W W W W W W W W W W W W W W W W W 

4 (hc,3,bc) W W W W W W W W W W W W W W W W W W W W 

5 (hc,1,bu) A A A A A A A A A A A A A A A A A A I I 

6 (hc,2a,bu) W W W W W W W W W W W W W W A A A A I I 

7 (hc,2b,bu) W W W W W W W W W W W W W W W W W W I I 

8 (hc,3,bu) I I I I I I I I I I I I I I I I I I I I 

9 (hu,1,bc) A A A A A A A A A A A A I I I I I I I I 

10 (hu,2a,bc) W W W W W W W W W W W W W W I I I I I I 

11 (hu,2b,bc) W W W A A A A A A A A W I I I I I I I I 

12 (hu,3,bc) I I I I I I I I I I I I I I I I I I I I 

13 (hu,1,bu) A A A A A A I I I I I I I I I I I I I I 

14 (hu,2,bu) W W W W W W W W I I I I I I I I I I I I 

15 (hu,2.2,bu) W W W I I I I I I I I I I I I I I I I I 

16 (hu,3,bu) I I I I I I I I I I I I I I I I I I I I 

17 Insulin W W W W W W W W W W W W W W W W W W W W 

 

  



 

 

  

 

6. SUMMARY OF RESULTS 

 

 

 

Our study provides a mathematical approach to the controversy about when insulin therapy 

should be initiated in patients with type 2 diabetes. We made several assumptions at the 

beginning of the study.  However, the most important of these is that we set it for a specific 

patient profile because observing other health problems such as CVD, heart failure and 

chronic kidney disease increases the risk factors of patients and makes their metabolic 

states more complex.  

 

On the other hand, we get some conclusions from our model.  

 

First, we can assert that controlling the weight is almost as important as the patient's blood 

sugar control for the group of type 2 diabetic patients in our study, and that also it leads to 

gain a good quality of future life for a patient.  

 

Second, the effect of cost and QALY gains on initiation of insulin, which varies according 

to the type of therapy, demonstrates the importance of the type of therapy used.  

 

Furthermore, the importance of the current metabolic state of a patient (i.e., which HbA1c 

and BMI values are under control) is recognized. The uncontrolled HbA1c and BMI values 

together negates the type of dual therapy used after a certain age (58 years) and makes it 

important to start insulin directly. The use of GLP1 RA is not preferred because it is 

injectable and more expensive than SGLT 2i. Unlike the other types of therapy, insulin 

therapy causes a reduction in a patient's QALY in total from year to year because of its 

weight gain effect.  
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Additionally, some sensitivity analysis was used to test the model by changing the values 

in the table below. 

 

Table 6.1 Summary of tests done in the sensitivity analysis 

 

Parameter 
Value Used in the Base 

Case  

Value Changed to for Sensitivity 

Analysis  

Medical cost of triple therapy $ 2000 
$ 1000 

$ 500 

Disutility of uncontrolled HbA1c 0.16 

0.07 

0.25 

0.5 

The discount factor 0.97 
0.81 

0.8 

Annual cost-effectiveness ratio $ 50000 
$ 100000 

$ 200000 

The starter utility of insulin 

therapy 
0.813 0.7 

Cost of metformin mono therapy $ 1255.65 $ 4000 

Perspective Physician Patient 

 

Because we did not have the necessary data, first sensitivity analysis was applied to the 

medical cost of triple therapy to see how much triple treatment cost changed the result. It 

was found that the result has changed at a cost of $ 500.  

 

In order to see the effect of non-control of HbA1c level which is an important parameter in 

our health states, the results were evaluated for lower and higher values than the value we 

considered. It was found that a disutility up to 0.07 does not actually make a difference 

with the absence of it. Early insulin initiation is recommended for a larger value of 0.25, 

while direct insulin initiation has been detected in dual and triple therapies for a high value 

of 0.50. 

 

By testing the discount factor, it was observed that if the value is between 0.81 and 0.80, it 

may be advisable to eliminate the difference between dual therapies and start insulin 

directly after 40 years of age. 
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It was observed that doubling the putative cost-effectiveness ratio resulted in initiating 

insulin treatment earlier, and when it was quadrupled, the individual should stay on the 

dual therapy if (s)he uses a dual therapy and more wait action would make sense in 

general. 

 

The results were seen when the larger, compared to other starter utilities (0.68 and 0.80), 

insulin initiation starter utility (0.813) had an occasional value. While the results of the 

base case already represent the value for greater than 0.80, it was tested by assigning a 

value of 0.70 as it would be difficult to start insulin if it was less than 0.68. 

 

The fact that monotherapy with much lower cost than other costs resulted in continuous 

wait action led us to see how the result changes if we accept this value close to other 

values. As a result, it was suggested action 𝐴, which can be considered more logical, for 

the health state of mono therapy when the two parameters (HbA1c and BMI) are not under 

control. 

 

For the last sensitivity analysis, the changes in the optimal policy were observed when the 

perspective is changed to the patient perspective by resetting the cost of all types of 

therapies. In this way, it was determined how the perspective can make big differences in 

optimal policy.  



 

 

  

 

7. CONCLUSION 

 

 

 

7.1 Thesis Contribution 

 

In our model, we use the Markov decision process to determine the optimal time for insulin 

onset for type 2 diabetic patients. We found that the patient's metabolic states and the type 

of therapy currently used has a direct effect on insulin initiation time. We have also 

investigated and demonstrated the sensitivity of this optimal time to start insulin to annual 

therapy costs (or the reward for future years of life). In conclusion, based on our study, we 

can clearly state that the patient's profile (whether there are any other chronic disorders), 

the metabolic states (whether weight and blood sugar levels are under control), and the 

medication the patient is currently using  play an important role in making a decision about 

starting insulin. On the other hand, based on our numerical experiments, for the groups of 

patients with type 2 diabetes we identified, we can recommend that patients should remain 

in metformin + SGLT 2i therapy until the age of 60 when any of HbA1c and BMI values 

are not under control, and if both of them are not under control, they would pass insulin by 

the age of 58. As a result of our study, we provide a mathematical perspective in addition 

to the effects of therapy in guideline on insulin therapy which often has a controversy over 

the early or late onset, and on the cost values of the types of therapy used before insulin 

initiation. 

 

7.2 Limitations and Future Works 

 

To the best of our knowledge, a mathematical approach for initiating insulin has not been 

studied in the literature before, thus, it has not been possible to work with the relevant
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longitudinal data in the short period of writing this thesis. Actual data will make the 

transition probability matrices more accurate, especially BMI-related probabilities. 

 

Due to the shortage of access to an already held data, it was necessary to ignore some of 

the situations and reveal a general conclusion. Since the data are provided from the 

literature and the data for each sex are not clear, the probabilities of transition matrices and 

QALY inputs and cost values are considered as an average value without considering 

gender and age differences.  

 

 In addition, in our study, we assumed that patients always go forward in the treatment 

process (i.e. for example, if they switch from monotherapy to dual therapy, they cannot 

switch to monotherapy again, or that there will be no return to oral antidiabetics after 

starting insulin therapy) but these assumptions can be experienced in clinics, as our expert 

doctors say. Furthermore, our model considers a single patient type according to guideline 

(chronic disease-free, hypoglycemia risk and cost is not a priority, weight gain is 

minimized, and weight loss is encouraged) but it does not include other patient profiles. 

For a future study, an inclusive new model, based on carefully maintained data and 

considering the fact that most patients with type 2 diabetes also have other chronic 

diseases, will make the clinical applications of our model that we presented in this study 

for the sake of a beginning more practical and meaningful. 
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