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ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Basic Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 LITERATURE SURVEY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 The Progress of Reliability Engineering . . . . . . . . . . . . . . . . . 9



2.2 Human Reliability Analysis . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Different HRA Studies in Healthcare . . . . . . . . . . . . . . . . . . 24

2.4 Performance Influencing Factors . . . . . . . . . . . . . . . . . . . . . 28

3 METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Fuzzy Inference System and Rule Based Reasoning . . . . . . . . . . 35

3.2 Cognitive Maps and Fuzzy Cognitive Maps . . . . . . . . . . . . . . . 36

3.3 Methodology of FCM . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 HRA IN HEALTHCARE USING RULE BASED FCM . . . . . . . . . . . 39

4.1 Scope of the Rule Based FCM application . . . . . . . . . . . . . . . 39

4.2 First Step: Expert Evaluation . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Second Step: Knowledge-based fuzzy inference process . . . . . . . . 49

4.4 Third Step: Aggregation of experts’ evaluations . . . . . . . . . . . . 50

5 SENSITIVITY ANALYSIS AND ADVANTAGES OF PROPOSED
METHOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Comparison Analysis of the Results for Different α− cuts . . . . . . . 55

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

iv



A Full data for Aggregated weights matrix with different α− cuts . . . . . . 82

B Variation Tables for Positive PIFs Relations . . . . . . . . . . . . . . . . . 103

C Variation Tables for Negative PIFs Relations . . . . . . . . . . . . . . . . . 109

D Tables for Unvarying PIFs Relations . . . . . . . . . . . . . . . . . . . . . . 114

E Full Data for Indegree, Outdegree and Centrality Values of each PIF . . . . 117

BIOGRAPHICAL SKETCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

v



LIST OF SYMBOLS

APJ : Absolute Probability Judgment
ARPA : Advanced Research Projects Agency
ASEP : Accident Sequence Evaluation Program
ATHEANA : A Technique for Human Event ANAlysis
BORA : Barrier and Operational Risk Analysis
BS : British Standard
CESA : Commission Error Search and Assessment
CHEP : Conditional Human Error Probability
CMs : Cognitive Maps
COG : Center Of Gravity
CREAM : Cognitive Reliability and Error Analysis Method
EOC : Error Of Commission
EOO : Error Of Omission
EPRI-HRA : Electric Power Research Institute Human Reliability Analysis
FCMs : Fuzzy Cognitive Maps
FIS : Fuzzy Inference System
FST : Fuzzy Set Theory
HEART : Human Error Assessment and Reduction Technique
HRA : Human Reliability Analysis
IJS-HRA : Institute Jozef Stefan HRA
INEEL : Idaho National Engineering and Environmental Laboratory
ISO : International Standards Organization
JHEDI : Justification of Human Error Data Information
LCC : Life Cycle Cost
LCP : Life Cycle Profit
MCDM : Multiple Criteria Decision Making
MDTA : MisDiagnosis Tree Analysis
MLE : Maximum Likelihood Estimation
OCHRA : Observational Clinical Human Reliability Assessment
OSCEs : Objective Structured Clinical Examinations
PC : Paired Comparison
PIFs : Performance Influencing Factors
PRA : Probabilistic Risk Analysis
RA : Reliability Analysis
RAMS : Reliability, Availability, Maintainability and Safety
RBFCM : Rule Based Fuzzy Cognitive Map
SLIM-MAUD : Success Likelihood Index Method using

Multi-Attribute Utility Decomposition
SPAR-H : Standardized Plant Research Institute HRA
TFN : Triangular Fuzzy Number
THERP : Technique for Human Error Rate Prediction
WASH : The US Reactor Safety Study

vi



List of Figures

1.1 Architecture of the Study . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Distribution of HR Studies in Different Fields (Scopus) . . . . . . . . 25

2.2 Distribution of HR Studies in Different Fields (Web of Science) . . . 26

3.1 FIS Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Example of causal graph . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Membership functions corresponding to linguistic variables . . . . . . 49

4.2 Aggregation of expert evaluations for the relationship between C20
and HR (MATLAB Fuzzy Logic Designer) . . . . . . . . . . . . . . . 50

5.1 A Triangular Fuzzy Number M . . . . . . . . . . . . . . . . . . . . . 54

5.2 Variations of C20-HR relationship weights for different α− cut . . . . 55

5.3 Some Variations of relationship weights for different α− cuts (a) . . . 58

5.4 Some Variations of relationship weights for different α− cuts (b) . . . 59

5.5 Complete Variations of positive relationship weights . . . . . . . . . . 60

5.6 Complete Variations of negative relationship weights . . . . . . . . . 61



5.7 No varied relationship weights . . . . . . . . . . . . . . . . . . . . . . 62

5.8 Variation of concepts’ indegrees . . . . . . . . . . . . . . . . . . . . . 63

5.9 Variation of concepts’ outdegrees . . . . . . . . . . . . . . . . . . . . 64

5.10 Variation of concepts’ centralities . . . . . . . . . . . . . . . . . . . . 65

viii



List of Tables

2.1 Detailed Classification of Probabilistic Risk Assessment based HRA
Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Detailed Classification of Qualitative Assessment based HRA
Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 HRA Studies in Healthcare . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 The Full-set PIF (Performance Influencing Factors) Taxonomy Kim
& Jung (2003) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 (Continued ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 (Continued ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Sign of each causal relationship among PIFs assigned by the first
expert-Cardiac Surgeon . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Sign of each causal relationship among PIFs assigned by the second
expert-Surgical Intern . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Sign of each causal relationship among PIFs assigned by the second
expert-Specialist in internal medicine . . . . . . . . . . . . . . . . . . 43

4.4 Sign of each causal relationship among PIFs assigned by the second
expert-Radiology specialist . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Linguistic variables of causal relationships among PIFs assigned by
the first expert-Cardiac Surgeon . . . . . . . . . . . . . . . . . . . . . 45



4.6 Linguistic variables of causal relationships among PIFs assigned by
the first expert-Surgical Intern . . . . . . . . . . . . . . . . . . . . . . 46

4.7 Linguistic variables of causal relationships among PIFs assigned by
the first expert-Specialist in internal medicine . . . . . . . . . . . . . 47

4.8 Linguistic variables of causal relationships among PIFs assigned by
the first expert-Radiology specialist . . . . . . . . . . . . . . . . . . . 48

4.9 Aggregated weights matrix derived from Fuzzy Rules . . . . . . . . . 51

4.10 Comparison Analysis for Two Aggregated Matrices . . . . . . . . . . 52

4.11 Aggregated weights matrix derived from causal relations . . . . . . . 53

5.1 Weights of the relationship C20-HR for different α− cut . . . . . . . . 55

5.2 Intensity Degrees for different α− cuts . . . . . . . . . . . . . . . . . 67

5.2 Intensity Degrees for different α− cuts . . . . . . . . . . . . . . . . . 68

A.1 Aggregated weights matrix for α− cut 1 . . . . . . . . . . . . . . . . 83

A.2 Aggregated weights matrix for α− cut .95 . . . . . . . . . . . . . . . 84

A.3 Aggregated weights matrix for α− cut .90 . . . . . . . . . . . . . . . 85

A.4 Aggregated weights matrix for α− cut .85 . . . . . . . . . . . . . . . 86

A.5 Aggregated weights matrix for α− cut .80 . . . . . . . . . . . . . . . 87

A.6 Aggregated weights matrix for α− cut .75 . . . . . . . . . . . . . . . 88

x



A.7 Aggregated weights matrix for α− cut .70 . . . . . . . . . . . . . . . 89

A.8 Aggregated weights matrix for α− cut .65 . . . . . . . . . . . . . . . 90

A.9 Aggregated weights matrix for α− cut .60 . . . . . . . . . . . . . . . 91

A.10 Aggregated weights matrix for α− cut .55 . . . . . . . . . . . . . . . 92

A.11 Aggregated weights matrix for α− cut .50 . . . . . . . . . . . . . . . 93

A.12 Aggregated weights matrix for α− cut .45 . . . . . . . . . . . . . . . 94

A.13 Aggregated weights matrix for α− cut .40 . . . . . . . . . . . . . . . 95

A.14 Aggregated weights matrix for α− cut .35 . . . . . . . . . . . . . . . 96

A.15 Aggregated weights matrix for α− cut .30 . . . . . . . . . . . . . . . 97

A.16 Aggregated weights matrix for α− cut .25 . . . . . . . . . . . . . . . 98

A.17 Aggregated weights matrix for α− cut .20 . . . . . . . . . . . . . . . 99

A.18 Aggregated weights matrix for α− cut .15 . . . . . . . . . . . . . . . 100

A.19 Aggregated weights matrix for α− cut .10 . . . . . . . . . . . . . . . 101

A.20 Aggregated weights matrix for α− cut .05 . . . . . . . . . . . . . . . 102

B.1 Variations of positive relationship weights for different α− cuts . . . 104

B.2 Variations of positive relationship weights for different α− cuts . . . 105

xi



B.3 Variations of positive relationship weights for different α− cuts . . . 106

B.4 Variations of positive relationship weights for different α− cuts . . . 107

B.5 Variations of positive relationship weights for different α− cuts . . . 108

C.1 Variations of negative relationship weights for different α− cuts . . . 110

C.2 Variations of negative relationship weights for different α− cuts . . . 111

C.3 Variations of negative relationship weights for different α− cuts . . . 112

C.4 Variations of negative relationship weights for different α− cuts . . . 113

D.1 Unvarying relationship weights for different α− cuts . . . . . . . . . 115

D.2 Unvarying relationship weights for different α− cuts . . . . . . . . . 116

E.1 Indegree Values of Each PIF . . . . . . . . . . . . . . . . . . . . . . . 118

E.2 Outdegree Values of Each PIF . . . . . . . . . . . . . . . . . . . . . . 119

E.3 Centrality Values of Each PIF . . . . . . . . . . . . . . . . . . . . . . 120

xii



ABSTRACT

Reliability is the fundamental element of safety operation of all systems. The aim of

reliability analysis is to quantify the failure probability and its protective barriers.

These barriers are intended to protect the system from failures.

Along with the emerging world economy, the growing complexity of systems and the

advantage of increasing computational power, system reliability concept expanded

to involve service availability, organizational and human reliability, uncertainty of

complex systems, network system reliability.

Human performance plays a significant role in developing and operating complex

systems. Hence it is obvious that human errors have serious effects on complex

systems’ performance. All engineering systems are created by human endeavor, so

it is actually suitable to claim that most of the system failures are due to human

causes as ignorance, negligence or ineptitude. Human Reliability Analysis (HRA)

techniques are used in different fields such as manufacturing, transportation, military

or medicine. Human Reliability (HR) is a highly important notion as human errors

may cause serious adverse consequences.

Healthcare services sector is one of the major fields that require human reliability

assessment as most of the applications involve human handling, decisions and

processing. This study aims to draw a complete representation of doctors’ behavior

leading to clinical error by acquiring a complete causal relation model between all

possible performance-influencing factors (PIFs) in healthcare operations which have

been determined and analyzed for various healthcare operations.

A major problem of HR studies is the lack of numerical measures of the likelihood of

an erroneous event and its consequences. In these conditions, many methods have

been developed to provide a quantitative risk assessment for HR concept. On the



other hand, the nature of human error differs from the nature of component failure

with the uncertainties involved.

It is requisite to develop a clear understanding of human performance or behavior

and their dependence on dynamic context and socio-technical environment. Human

behavior can be affected by many different factors; furthermore these factors can

be the connection between different stages of human behavior. Therefore a good

mapping of PIFs is one of the essential concerns of understanding human behavior.

In this context, Fuzzy Cognitive Maps (FCM) have been used to procure an explicit

understanding of human behavior and all of the reasons relying under that behavior.

In this respect, four doctors working in different high-risk healthcare fields evaluated

all PIFs. The causal relationships are obtained and evaluated through a sensitivity

analysis using different α−cuts. In real-life decisions, decision-makers / experts may

have different confidence levels on their judgments. Sensitivity analysis procures

decision-makers, a perspective that explains how the fuzziness in judgment may

affect the solution robustness.

Keywords: Human Reliability Assessment (HRA); Healthcare; Fuzzy Cognitive

Maps (FCMs); Fuzzy Inference Systems; Fuzzy Rule-Based Systems.
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RÉSUMÉ

La fiabilité est l’élément fondamental du fonctionnement sécuritaire de tous les

systèmes. L’objectif de l’analyse de fiabilité est la quantification de la probabilité de

défaillance ainsi que la quantification de ses barrières de protection. Ces barrières

sont destinées à protéger le système contre les pannes.

Parallèlement à l’économie mondiale émergente, à la complexité croissante des

systèmes et à l’avantage de la puissance informatique, le concept de fiabilité

d’un système a été étendu pour inclure la disponibilité des services, la fiabilité

organisationnelle et humaine, l’incertitude des systèmes complexes, la fiabilité des

réseaux.

La performance humaine joue un rôle important dans le développement et le

fonctionnement des systèmes complexes. Il est donc évident que les erreurs humaines

ont des effets graves sur la performance des systèmes complexes. Considérant que

tous les systèmes techniques sont créés par des activités humaines, il faut admettre

que la plupart des défaillances du système sont dues à des défauts humains telles

que l’ignorance, la négligence ou l’ineptie. Les techniques d’analyse de fiabilité

humaine (HRA) sont utilisées dans différents domaines tels que la fabrication,

la transportation, l’armée ou la médecine. La fiabilité humaine (HR) est une

notion extrêmement importante puisque les erreurs humaines peuvent avoir des

conséquences graves.

Le secteur des services de soins de santé est l’un des principaux domaines dans

lesquels une évaluation de la fiabilité humaine est nécessaire car la plupart des

applications impliquent une manipulation, une décision et un traitement humain.

Ce travail vise à établir une représentation complète du comportement des médecins

aboutissant à une erreur clinique, en établissant un modèle complet de relation de

cause à effet entre tous les facteurs d’influence sur la performance (FIP-PIF en



anglais) possibles déterminés et analysés pour diverses opérations de soins de santé.

Un des principaux problèmes des travaux sur les ressources humaines est l’absence

de mesures quantitatives d’un événement erroné et de ses conséquences. Dans ce

contexte, de nombreuses méthodes ont été développées pour fournir une évaluation

quantitative des risques dans le concept de fiabilité humaine.

D’autre part la nature de l’erreur humaine diffère de la nature de la défaillance

d’un composant, dû aux incertitudes impliquées. Il est nécessaire de développer

une compréhension claire de la performance ou du comportement humains et de

sa dépendance au contexte dynamique et à l’environnement socio-technique. Le

comportement humain peut être affecté par de nombreux facteurs différents. En

outre, ces facteurs peuvent être le lien entre différentes étapes du comportement

humain. Par conséquent, une bonne cartographie des FIP est l’une des

préoccupations essentielles de la compréhension du comportement humain.

Dans ce contexte, les cartes cognitives floues (FCM) ont été utilisées pour permettre

une compréhension explicite du comportement humain et de toutes les raisons

invoquées sous son comportement. A cet égard, quatre médecins travaillant dans

différents domaines de la santé présentant des risques élevés ont évalué tous les FIP.

Les relations de causalité sont obtenues et évaluées par une analyse de sensibilité

utilisant différentes coupes α. Dans la vie réelle, les décideurs peuvent avoir des

niveaux de confiance différents quant aux jugements des experts. L’analyse de

sensibilité fournit aux décideurs une perspective qui explique comment la logique

flou peut affecter la robustesse de la solution.

xvi



ÖZET

Güvenilirlik, tüm sistemlerin emniyetli çalışmasının temel unsurudur. Güvenilirlik

analizinin amacı, başarısızlık olasılığının ölçülmesi ve aynı zamanda koruyucu

bariyerinin nicelleştirilmesidir. Bu engeller, sistemi arızalardan korumak için

tasarlanmıştır.

Gelişmekte olan dünya ekonomisi, sistemlerin artan karmaşıklığı ve artan veri

isleme yetisi ile birlikte, sistem güvenilirliği konsepti, hizmet kullanılabilirliğini,

organizasyonel ve insan güvenilirliğini, karmaşık sistemlerin belirsizliğini, ağ sistemi

güvenilirliğini de içerecek şekilde genişlemiştir.

İnsan performansı, karmaşık sistemlerin geliştirilmesi ve işleyişinde önemli bir rol

oynar, bu açıdan insan hatalarının karmaşık sistem performansı üzerinde ciddi

etkileri olduğu açıktır. Tüm mühendislik sistemleri, insan gayretiyle yaratılmış

olduğundan, sistem başarısızlıklarının önemli bir kısmının, cehalet, ihmal veya

beceriksizlik gibi insani nedenlere bağlı olduğunu iddia etmek yanlış olmayacaktır.

İnsan Güvenilirlik Analizi (İHD) teknikleri imalat, ulaşım, askeri veya ilaç gibi farklı

alanlarda kullanılmaktadır. İnsan Güvenilirliği (İG), insan hataları ciddi olumsuz

sonuçlara neden olabileceğinden, son derece önemli bir kavramdır.

Sağlık hizmetleri sektörü, çoğu insan uygulamaları, kararları ve işlemleri içerdiği

için insan güvenilirliği değerlendirmesi gerektiren temel alanlardan biridir. Bu

çalışma, çeşitli sağlık hizmetleri operasyonları için belirlenen ve analiz edilen

tüm olası performans etkileyen faktörler (PIF) arasında tam bir nedensel ilişki

modeli oluşturarak klinik hataya yol açan davranışların detaylı bir temsilini çizmeyi

amaçlamaktadır.

İG çalışmalarının en önemli sorunu, hatalı olay olasılığının ve sonuçlarının sayısal

ölçümlerinin olmamasıdır. Bu bağlamda, İnsan Güvenilirliğinde nicel bir risk



değerlendirmesi sağlamak için birçok yöntem geliştirilmiştir. Ancak insan hatasının

doğası, bileşen belirsizliğinin doğasından, içerdiği belirsizlikler açısından oldukça

farklıdır.

İnsan performansı veya davranışları ve bunların dinamik dünyaya ve sosyo-teknik

çevreye bağımlılıklarının net bir şekilde anlaşılması gereklidir. İnsan davranışları

birçok farklı faktörden etkilenebilir. Ayrıca bu faktörler, insan davranışının

farklı aşamaları arasındaki bağlantı olabilir. Bu nedenle, PIF’lerin iyi bir şekilde

haritalanması, insan davranışının anlaşılmasında temel kaygılardan biridir.

Bu bağlamda, Bulanık Bilişsel Haritalar (FCM), insan davranışlarını ve ardındaki

tüm nedenleri açık bir şekilde anlamak için kullanılmıştır. Bu bağlamda, sağlık

hizmetlerinde farklı alanlarda, yüksek risklerle çalışan dört doktor tüm PİF’leri

değerlendirmiştir. Nedensel ilişkiler farklı α kesileri kullanılarak bir duyarlılık

analizi ile elde edilmiş ve değerlendirilmiştir. Gerçek hayattaki kararlarda, karar

vericilerin uzman görüşlerine güven düzeyleri farklı olabilir. Bu çalışmada kullanılan

duyarlılık analizi, karar vericilere, yargıdaki belirsizliğin çözümün sağlamlığını nasıl

etkileyebileceğini açıklayan bir bakış açısı sağlar.
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1

1 INTRODUCTION

The notion of Reliability originates from before the 1800’s, differing from its current

meaning, is related rather to the personal aspects of workers rather than technical

systems. In the beginning of the 21st century, reliability was also attributed

to the engineering processes, leading to the rise of reliability engineering as a

scientific discipline. Reliability is fundamental for the safe operation of all kinds

of technological systems. In its modern sense reliability covers dependability i.e.

successful operation in the absence of failures and breakdowns (Zio, 2009). On the

other hand, the dependability of complex systems relies on human operators to a

large extent.

The definition of reliability given in standards like ISO 8402 and British Standard

BS 4778 is: “The ability of an item to perform a required function, under given

environmental and operational conditions and for a stated period of time”. Here

the word item is used to denote component, subsystem or system that is considered

as an entity (Høyland, 2009).

In fact the term ‘unreliable’ is used to describe the undependable behavior of an

individual or an item, whereas the cautionary term ‘risky’ is used to warn of possible

exposure to an adverse consequence (Singpurwalla, 2006). The management of

risk calls for the quantification of uncertain occurrence of adverse events and their

consequences. If the outcomes of interest are adverse events as a component or

system failure, then the risk analysis takes a more specialized name of ‘reliability

analysis’.

Standard definition of risk says that in order to answer the question “What is the

risk?” it is necessary to answer three subsidiary questions: “What can go wrong?”,

“How likely is it?”, “What are the consequences?” (Kaplan & Garrick, 1981). A good

answer to the first question is a list of worst case scenarios. Then, the illustration
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of these scenarios by real cases will be a good answer to the second question when

the list of consequences will be a good one for the third.

Risk characterization is mostly related to quantifying uncertainties. For engineered

systems, answering “What can go wrong?” is the hardest phase of risk assessment.

To characterize system risk one must develop a complete set of system crash scenarios

with the plant model, the collection model, the system components model, the

system operators model and the failure prevention actions must be implemented for

all of these models. After identifying a set of scenarios, the practice has been to

first develop conceptual models that describe the general behavior of the system

then use mathematical models for the quantification process. The final step is the

interpretation of the results of risk assessment from a risk manager point of view

(Garrick, 2002).

The aim of the reliability analysis is the quantification of failure probability and also

the quantification of its protective barriers. These barriers are intended to protect

the system from failures. The fundamental challenge in a reliability analysis is the

uncertainty of failure occurrences and the consequences of different sort of failures.

To handle this issue we can:

• Identify the failure event sequences that lead to a credible worst-case accident

scenarios. (design-based accidents)

• Predict the consequences of these failures

• Design safety barriers for preventing bad scenarios and their consequences and for

reducing failures (Zio, 2009).

The availability or reliability of an engineering system has significant impacts on the

operational cost and safety characteristics of a modern system over its life-cycle.

The emerging world economy, the growing complexity of the systems and the

advantage of increasing computational power, system reliability concept expanded

to involve service availability, organizational and human reliability, uncertainty of

complex systems, network system reliability. The big deal is to compromise the
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demand to improve the performance of systems and the aim of cost minimization

(Lewis, 1996).

Human performance plays a significant role in the development and operation of

complex systems so it is obvious that human errors have serious effects on the

complex system performance. HRA techniques are used in different fields such as

manufacturing, transportation, military or medicine. Human Reliability (HR) is a

highly important notion as human errors may cause serious adverse consequences.

All engineering systems are created by human endeavor so it is actually suitable to

claim that most of the system failures are due to human causes such as ignorance,

negligence or ineptitude (Lewis, 1996). On the other hand, in the operation

phase, even though the system is automated, existing very complex human-machine

interaction may also be the cause of accidents. Therefore, safety analysis has to

focus not only on machine-centered analysis but also on human centered analyses

(Vanderhaegen, 2001).

Human errors can be crucial,vital and catastrophic in many different areas such

as nuclear industry, transportation, hazardous waste disposal, heavy industry and

healthcare applications, whether established systems are automated or not.

In the next sub-section, reliability engineering and human reliability engineering

related basic terms have been enlisted followed by the sub-section where the primary

motivation of the study has been revealed. The major contribution has been put

forth for consideration in the third subsection and the overall architecture has been

given in the last sub-section.

1.1 Basic Terms

According to O’Connor and Kleyner, the usual engineering definition of reliability

is (Connor, 2012):

The probability that an item will perform a required function without failure under

stated conditions for a stated period of time.
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Thus, the problems of reliability analysis (RA) require the assessment of uncertainty

related with the undesired events such as system, component or human failures

(Singpurwalla, 2006).

Human Reliability Analysis (HRA) consists of detailed analysis and inspection of

human tasks and actions in a system in order to detect all aspects of human behavior,

to identify existent human errors and their causes, to predict possible errors and to

realize an impact analysis on system safety. The terminology used for the HRA is

as follows:

• Human Error: The major factor of catastrophic and fatal events and accidents in

diverse areas, where actions or tasks are not performed as designated.

• Failure: The inability of a system component such as a machine or a human being

to perform its or his designated duty.

• Performance: Degree of accomplishment of a task considering predetermined

standards of accuracy, completeness and speed.

• Performance Influencing Factors (PIFs): A list of diverse factors influencing the

accomplishment of a task.

1.2 Motivation

As explained widely in the last section, reliability is the fundamental element

of safety operation of all systems. Reliability engineering is a well-established,

multi-disciplinary scientific principle involving a wide range of formal methods to

manage the system sustainability/maintainability against failures. In fact, scientific

discipline tries to answer questions such as ”Why systems fail?”; ”How to develop

reliable systems?”; ”How to measure and test reliability in design, operation

and management?”; ”How to keep systems reliable, by maintenance or system

improvement?”.

Failures can originate from different types of source such as:

• Component failures
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• service failures

• mechanical failures

• control system failures

• changeover failures

• logistic failures

• instrument failures

• human errors

These are among the failures to affect the system performance and should be

taken into account for system reliability calculations. Yet, each failure type

can have a different occurrence rate function with different kind of distributions.

Occasionally, for one or more of these failure types it may be difficult to estimate

the occurrence rate of an event by using one simple probability. Besides, considering

a simple two-component parallel system, the failure rate of the system lifetime may

increase although the component lifetimes have decreasing failure rates according to

Simpson’s paradox. It is obvious that estimating complex system reliability requires

a detailed analysis of each component of the system and their interdependencies.

System reliability cannot be calculated by just a sum of component reliabilities.

In many past works, component (machine or human being) failures are assumed

statistically independent. However, failure times are often not independent, for

a number of reasons, the most important being environmental effects. Since the

components of a system share the same environment, the environment has an impact

on the failure of all components. This implies that failure times of components are

not statistically independent and it is necessary to consider their interrelationships

in assessing system reliability (Blischke, 2000).

Human performance plays a significant role in the development and operation of

complex systems so it is obvious that human errors have serious effects on the

complex system performance. HRA techniques are used in different fields such as

manufacturing, transportation, military or medicine.
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Conventionally, human errors are classified in three groups which are (Huang et al.,

2001; Yuan, 1995; Onisawa et al., 1988):

• P1: Fail to detect correctly

• P2: Fail to respond in a timely manner

• P3: Fail to execute successfully

Moreover, the total human error probability is approximated as P1 + P2 + P3.

Nevertheless there is interdependency between these types of error and estimating

human error probability without considering these interdependencies can lead to

worthless data use in reliability analysis.

The major problem of HR studies is the lack of numerical measures of the likelihood

of erroneous event and its consequences. In these conditions, many methods have

been developed to provide a quantitative risk assessment for the HR concept.

However the nature of human error differs from the nature of component failure

with the uncertainties involved. There are three categories of uncertainties. A big

part of the uncertainties comes from the variability of human performance. This

performance not only differs from man to man but also for a single man from hour

to hour. A second source of uncertainty is the variability of human performance due

to interactions between him and the environment, the working conditions, other

workers. The third source of uncertainty is his psychological background (Lewis,

1996).

On the other hand, risk management should take into account the vagueness and

uncertainty inherent in risk and provide a good assessment based upon experts

judgments as mentioned by Kahraman (2011).

It is requisite to develop a clear understanding of human performance or behavior

and their dependence on dynamic context and socio-technical environment. Human

behavior can be affected by many different factors; furthermore these factors can

be the connection between different stages of human behavior. Therefore a good



7

mapping of PIFs is one of the essential concerns of understanding the human

behavior as discussed in the following sections.

1.3 Contribution

This study incorporates HRA in healthcare systems and goes a step further by

making a detailed examination of human error nature and the dependency between

human errors. In other words, this study procures a general standpoint covering

the determination of human errors and their causes, the detection of all relations in

between as well as interdependencies.

Recent studies focus generally on analyzing some major factors leading to human

error in healthcare operations or on special cases producing defects due to human

errors. However a general study searching out all PIFs for whole situations and

analyzing them for different healthcare operations in order to acquire finally a

complete relation model between all possible causes and consequences does not exist.

This study fulfills these deficiencies in the literature.

In this context, the second section consists of a detailed reliability engineering

literature survey, an elaborate classification of HRA techniques in order to draw

a picture of what has been done in various research areas and a complete list of

PIFs created as a result of a wide literature review and expert consultation. The

methodology used to evaluate these factors and its contributions are given in section

three. The fourth section involves the complete relation model between all possible

causes and consequences. A sensitivity analysis conducted for different α − cuts is

given in section five.
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1.4 Thesis Structure

The overall architecture of the study is represented as follows in Figure 1.1.

Figure 1.1: Architecture of the Study



2 LITERATURE SURVEY

2.1 The Progress of Reliability Engineering

As explained before the notion of Reliability has been around since before the

1800s, referred to a person not a technical system. After the 1800s, the reliability

concept has grown in both qualitative and quantitative dimensions. Since 1950s,

reliability engineering has been established as a scientific discipline when social

and technological developments in reliability topic have provided the formation of

a quantitative reliability treatment framework. The mass production in 1900s of

rifle, car and vacuum tube productions became a driving force of the reliability

engineering. The relations between component faults and system failures have

been investigated and necessary measures to obtain more reliable components have

been detected. All these military-funded projects accelerated the development of

reliability discipline along two dashes; the sophistication of the techniques such as

redundancy modeling, Bayesian statistics and Markov chains and the shift of focus

from component reliability to the system reliability (Zio, 2009).

In 1960s, by the growing aerospace technology and nuclear energy use, a new,

more rational approach has appeared which focuses on the principle of looking

quantitatively at the reliability of the accident-preventing and consequence-limiting

protection systems. It is based on probability for the treatment of the uncertainty

associated with the occurrence and evolution of accident scenarios without looking

to the dimension of the accidents. In 1963, the first journal on the subject named

IEEE-Transactions on reliability came out and many papers on the subject were

edited (Høyland, 2009).

The findings motivated the first complete probabilistic risk assessment and fault

tree analysis of a nuclear power plant installation which was the new interest in

the 1970s (Zio, 2009; Garrick, 2002; Jovanovic, 2003). In the United States, a large
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research commission was organized by Norman Rasmussen to analyze the problem

and to form finally the so-called Rasmussen Report, WASH-1400 (Høyland, 2009).

During the 1980s, producers were induced to use quantified measures of reliability

for assigning competitive warranty periods to the products due to the rise of

consumerism and competitiveness (Singpurwalla, 2006). These years witnessed also

to the emergence of network reliability concept. This was motivated by the early

Advanced Research Projects Agency (ARPA) network, the forerunner of today’s

Internet and World Wide Web (Barlow, 1998). A new derivative ‘Transport network

reliability’ has been a popular subject of the 2000s. It relies on the urban road

networks and the probability that a network will deliver a required standard of

performance (Murray, 2007).

All of these discoveries and their demonstrations revealed the probabilistic approach

to risk analysis (PRA) which is an effective way of analyzing system safety. This

new approach that takes the form of probabilistic reliability analysis in the context

of engineering applications focus not only on worst-case scenarios but on all feasible

scenarios and their consequences, with the probability of occurrence of such scenarios

becoming an additional key aspect to be quantified in order to rationally and

quantitatively handle uncertainty. In fact the conversational use of reliability and

risk includes an expression of uncertainty. On the other hand, the quantification of

uncertainty is also the quantification of reliability and risk (Zio, 2009; Singpurwalla,

2006).

The emerging world economy, the growing complexity of the systems and the

advantage of the increasing computational power, system reliability concept

expanded to involve service availability, organizational and human reliability,

uncertainty of complex systems, network system reliability. The big deal is to

compromise the demand to improve the performance of systems and the aim of

cost minimization (Lewis, 1996).

Gnedenko (1999) present a brief introduction of statistical reliability analysis method

in their book (Gnedenko, 1999). The main goal of the book is statistical analysis of

system reliability. Aven and Jensen affirmed in 1998 that 1% of all mathematical

publications are connected to the keyword reliability, based on databases of

Zentralblatt/Mathematical Abstracts and Mathematical Reviews (Aven, 1999).
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Although this rate has decreased by half today due to new search areas, this

gives an impression of the importance of this field. The existing literature on

reliability covers complex system and maintenance models (Zio, 2009; Marseguerra

& Zio, 2000a,b), multi-objective maintenance problems (Zille et al., 2007), human

reliability analysis models such as THERP, CREAM, ATHEANA (Konstandinidou

et al., 2006), complex system analysis and uncertainty (Cai, 1996b,a; Utkin &

Coolen, 2007; Gudder, 2000; Zadeh, 1968) and many different system reliability

engineering applications. The aim of the book of Aven and Jensen is to give a

comprehensive presentation of some of the classical areas of reliability, based on a

more advanced probabilistic framework. This framework provides a formulation of

general failure models and allows the analyst to establish formulas for computing

various performance measures.

As mentioned previously, reliability has a potentially wide range of application

areas. The list below gives a clear categorization of main reliability applications

and research areas:

• Risk analysis: An important number of the risk analysis relies on reliability

techniques as failure analysis, fault tree analysis.

• Environmental Protection: Considering the pollution caused by the current

manufacturing systems, the safety design of antipollution systems and waste

disposal systems. However the improvement of existing systems to create more

environmentally friendly systems require a wide use of reliability techniques.

• Maintenance Optimization: Maintainability is, according to the British Standards

BS 4778, the ability of an item, under stated conditions of use, to be retained

in, or restored to, a state in which it can perform its required functions, when

maintenance is performed under stated conditions and using prescribed procedures

and resources. Hence, maintenance actions are interventions to prevent system

failures and to restore the system function in case of a failure. There is a very

strong connection between maintenance and reliability because the optimization of

maintenance actions is possible only by considering reliability analysis of the system.

Thus, many industries have implemented Reliability Centered Maintenance (RCM)

methodology that aims to improve the cost-effectiveness and the maintenance

control. Reliability is also indispensable constituent of Life Cycle Cost (LCC), Life

Cycle profit (LCP) and Logistic support.
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• Quality: Reliability may be considered as a quality characteristic perhaps even

one of the most important. The compulsory application of the ISO 9000 series of

standards promotes the reliability management and assurance.

Garrick (2002) carried out a review work on the use of risk assessment to evaluate

waste disposal facilities in USA. It is a wide study involving the review of the

risk assessment practices and standards for two different types of waste which

are radioactive waste and solid waste. According to this review study, while risk

assessment is a requirement and in the main stream of the safety management of

radioactive disposal facilities, it is really just beginning to make its move into the

world of solid waste management.

In the field of operational risk assessment there have been some important researches.

Barrier and Operational Risk Analysis (BORA) is one of these researches carried

out in the period 2003 through 2006. The aim of the researchers was to enable both

industry and authorities to improve safety through the knowledge about overall

performance of barriers and improvement potentials, the identification of the need

to reinforce the total set of barriers during operational activities. Erik Vinnem

et al. (2007); Sklet et al. (2006) handle in their study the generalized methodology

of BORA based on the use of event trees, fault trees, influence diagrams, risk

influencing factors. They affirm that the application of the methodology to real

world process will improve complex system safety. The study of Øien introduces a

methodology for the quantification of the impact of organizational factors on risk.

The framework developed by Øien (2001) provides a risk control covering the most

important parameters in the technical risk model in terms of potential change in

risk and aids in a frequent control of the risk.

The paper of Clemen and Winkler handles the problem of using multiple experts

in risk analysis. Expert judgments provide useful information for managing risk.

The main focus of the study is the combination of experts’ probability distributions

in risk analysis, comparing a group of combination methods and attempting to

determine the important issues to be used in the designing of a combination process

(Clemen & Winkler, 1999).

In the system reliability analysis, the key issue is to determine the failure occurrence

rate and the distribution that represent the failure rates. Many methods have been
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developed recently to overcome this complex problem. Song and Kang propose

a matrix-based system reliability method to compute the probabilities of general

system events efficiently by simple matrix operations. It is affirmed in the paper

that the method is applicable to any type of system events including series, parallel,

cut-set and link-set systems. The method can estimate various importance measures

without additional probability computations (Song & Kang, 2009).

In his paper, Yeh presents a simple formula for evaluating the rate of occurrence of

failures assuming that a system process is either a continuous-time Markov chain or a

higher dimensional Markov process after introducing some supplementary variables.

Yeh claims that the method is easier to adopt than Monte-Carlo simulation method

(Yeh, 1995). Several generalization of two-parameter Weibull model have been

proposed to model data sets that exhibit complex non-monotone shapes of hazard

rate function. Gupta et al. propose the Weibull extension model. They make a

complete Bayesian analysis using Markov Chain Monte-Carlo simulation. The model

does not fit to higher order observations because generally, a single mathematical

formulation cannot draw the picture of the actual shape of the bathtub curve (Gupta

et al., 2008).

Tan develops the maximum likelihood estimation (MLE) problem to handle

interval data for the Weibull distribution. The new approach combines the

Weibull-to-exponential transformation technique and the equivalent failure and

lifetime technique o estimate exponential failure rates from uncertain data. This

method is more efficient and effective than conventional MLE methods because it

allows the analyzers to involve interval data (Tan, 2009).

Traditional fault tree analysis is widely used in reliability assessment of complex

and critical engineering systems. As some important features of complex systems

as component dependencies cannot be analyzed through traditional FT analysis,

dynamic methods have been proposed by many authors. The dynamic fault tree

approach of Rao et al. defines additional gates called dynamic gates to model these

complex system features. Generally Markov models are used in solving dynamic

gates but to overcome some difficulties deriving from Markov models, Monte-Carlo

simulation-based approach is used to solve dynamic gates in this work. Because

Markov models are applicable for only exponential failure and repair distributions

and state space become to large for calculations (Rao et al., 2009).
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Marseguearra et al. discusses the use of genetic algorithms within the area of

reliability, availability, maintainability and safety (RAMS) optimization. The paper

affirms that the design and maintenance optimization problem must be developed

as a multiple criteria decision making (MCDM) problem where RAM and cost are

conflicting attributes (Marseguerra & Zio, 2000b). Marseguerra and Zio combine

genetic algorithms and Monte-Carlo simulation to optimize the logistic management

of a plant. The flexibility of Monte-Carlo methods allows the analyzers to include

several practical aspects such as stand-by operation modes, deteriorating repairs,

aging, sequences of periodic maintenances, and different kinds of repair interventions.

Genetic algorithm is used to optimize the maintenance periods (Marseguerra & Zio,

2000a).

Sikos and Klemeš used RAMS software to model a waste management system

in Hungary. Their main goal is to provide quantitative forecasts for various

performance measures of waste management systems. The use of RAMS software

can decrease or even avoid failure affecting the availability and the reliability of a

complex system (Sikos & Klemeš, 2009).

2.2 Human Reliability Analysis

During this research a lack of HRA Techniques classification has revealed itself

by the ineptitude of placement of the technique used in the study to evaluate

HR in healthcare operations. This section is composed of a com- prehensive

literature survey of HRA techniques followed by a classification of these techniques.

Mainly, HRA techniques are roughly classified in two groups; Probabilistic Risk

Assessment based techniques that seek to quantify human error probabilities in

terms of success-failure and Qualitative Assessment based techniques that models

human performance as a set of control modes (strategic, tactical, opportunistic,

scrambled) (Tuddenham, 1962).

Human reliability assessment is a crucial field in the probabilistic safety assessment

of any technological system because human performance plays a significant role in

the development and operation of these systems. The study of Mosneron-Dupin

et al. reveals that HRA methods do not cover decision-based unrequired actions

which contribute to risk significantly. They propose a human-centered model which
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highlights the active role of the operators and the importance of their culture,

attitudes and goals (Mosneron-Dupin et al., 1997).

The Idaho National Engineering and Environmental Laboratory (INEEL) has

developed and applied structured methods of human error analysis to identify

potential human errors, assess their effects on system performance and develop

strategies to prevent the errors or minimize their consequences. NASA used the

results in the airplane maintenance and air traffic management programs (Nelson

et al., 1998).

To handle the vagueness of real life data Huang et al. try to integrate fuzzy concepts

to event tree analysis in human reliability assessment. A systematic fuzzy event tree

analysis algorithm is developed to evaluate the risk of a large-scale system as nuclear

power plants (Huang et al., 2001). According to Gregoriades the use of Bayesian

Belief Network in a human error analysis enables the analyst to rapidly pinpoint

poorly performing systems. The model quantifies error influences arising from user

knowledge, ability, and task environment (Gregoriades et al., 2003). According to

Mosleh and Chang the model-based approach that provides explicit cognitive causal

links between operator behaviors and directly or indirectly measurable causal factors

is in the core of the advanced methods as conventional HRA methods have major

limitations (Mosleh & Chang, 2004).

Kostandinidou et al. uses a fuzzy classification system to calculate the probability of

human error according to CREAM methodology, the most known and used method

for HRA. This study is the successful translation of CREAM into a fuzzy logic

model (Konstandinidou et al., 2006). To improve HRA, another study proposes

simulator studies which can produce important basic information for HRA method

development and data for informing use of existing HRA methods (Bye et al., 2006).

Boring introduces the application of dynamic event tree analysis in HRA. The author

affirms that the key to dynamic HRA is not in the development of specific methods

but in the utilization of cognitive modeling and simulation to produce a framework

of data that may be used in qualifying the likelihood of human error (Boring, 2007).

The assessment of dependence among human errors is another important issue of

HRA. Zio et al. introduces a systematic framework for the elicitation of expert

knowledge on the factors influencing the dependence between two successive tasks
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(Zio, 2009).

All engineering systems are created by human endeavor so it is actually suitable

to claim that most of the system failures are due to human causes as ignorance,

negligence or ineptitude (Lewis, 1996). On the other hand, in the operation

phase, even though the system is automated, existing very complex human-machine

interaction may also be the cause of accidents. Therefore, safety analysis has to

focus not only on machine centered analysis but also on human centered analyses

(Vanderhaegen, 2001).

Human action is a specific action required by human operator and if he cannot

perform this action or cannot perform it in time and correctly, then the human

action becomes the human failure event or shortly the human error (Čepin, 2008b).

The nature of human error differs from the nature of component failure with

the uncertainties involved. There are three categories of uncertainties. A big

part of the uncertainties comes from the variability of human performance. This

performance not only differs from man to man but also for a single man from hour

to hour. A second source of uncertainty is the variability of human performance

due to interactions between him and the environment, the working conditions, other

workers and his psychological background. Even if one can construct limited models

to point out some human errors, the model parameters yet numerical probabilities

are usually very approximate and their area of usage is very slight (Lewis, 1996).

Thereby, the good collection, interpretation and application of human failure data

is an essential must of Human Reliability Analysis (HRA) (Čepin, 2008b).

One of the human failure events is the error of omission (EOO) which arises from

human inaction about a task or a problem to be solved. Another human failure

event is the error of commission (EOC) that results from the performance of an

action (Reer, 2008). It is noticeable that most of human error studies focus on the

EOC both for the lack of coverage of EOCs in the accident sequence models and

for the relative easiness of modeling such error type. However regardless to the

type of error, in the phase of error quantification, there is a strong need to model

specific decision errors and also the correlation between environmental conditions

and tendencies of human behavior.

The HRA is a systematic framework, which evaluates the process of human
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performance and associated impacts on structures, systems and components in a

complex system. A diversity of HRA methods exist in the literature for different

scopes and different approaches. Limitations in the analysis of human actions in

reliability analysis were identified years ago and the fundamental limitations are as

follows (Konstandinidou et al., 2006):

• Insufficient data

• Methodological limitations related to subjectivity of analysts and expert judgment

• Uncertainty concerning the actual behavior of people during accident conditions

An important feature of human reliability is the dependency between human actions

(Čepin, 2008a). Here human actions imply tasks performed by operator during the

operation process. There is also another subject of dependency to inspect which

is the dependency between human attitudes that can lead to failures when they

perform a single task. These attitudes can be classified as follows (Huang et al.,

2001):

• Fail to detect correctly

• Fail to respond correctly

• Fail to execute successfully

In fact, there are many ways to categorize human error, as exogenous versus

endogenous (Meister, 1993), situation assessment versus response planning (errors

in problem detection, in problem diagnosis, in action planning) (Roth et al., 1994).

HRA techniques can be roughly classified in two groups; Probabilistic Risk

Assessment based techniques and Cognitive Theory of Control based techniques.

Probabilistic Risk Assessment uses failure or error probabilities as data when

Cognitive Theory of Control tries to model human performance as a set of control

modes (strategic, tactical, opportunistic, scrambled).
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Huang et al. constructed an easy method to evaluate human errors and integrate

them into event tree analysis by using fuzzy concepts. In their study linguistic

values are used to assess human failure events and are transformed to fuzzy error

possibilities. Then by converting the possibilities into the fuzzy error rate and

by integrating them into the event tree analysis, they analyzed and interpreted

the results (Huang et al., 2001). The method is based to expert judgment and

does not consider at all the dependency between human failure events and the

interaction between the environment and human error. On the other hand it is

important to notice that the analyst is not required to understand the fuzzy partition

of the occurrence of a human error-dominated event and the overall Fuzzy Logic

model. Here a recent study of Zio et al. can be more efficient to model human

error dependency (Zio, 2009). It is obvious that when there is dependency between

two tasks the probability of the operators’ failure in the latter task is higher if the

preceding task has been failed. They introduce hereby the conditional human error

probability (CHEP).

Dependencies have been considered to a certain extent by many methods as

Technique for Human Error Rate Prediction (THERP)(Swain & Guttmann, 1983;

Kirwan, 1988, 1996; Zio, 2009), Cognitive Reliability and Error Analysis Method

(CREAM) (Hollnagel, 1998; Kim, 2001; Kim et al., 2006; Marseguerra et al., 2006;

Konstandinidou et al., 2006), A Technique for Human Error Analysis (ATHEANA)

(Commission., 1998; Kirwan, 1996), Accident Sequence Evaluation Program (ASEP)

(Swain, 1987), Electric Power Research Institute Human Reliability Analysis (EPRI

HRA) (Grobbelaar et al., 2005), Standardized Plant Research Institute HRA

(SPAR-H) (Gertman et al., 2005) , Institute Jozef Stefan (IJS-HRA) (Čepin,

2008b) and other techniques mentioned below. These methods try to calculate

the probability of erroneous human actions (Konstandinidou et al., 2006).

Human reliability assessment is a crucial field in the probabilistic safety assessment

of any technological system because human performance plays a significant role in

the development and operation of these systems. The study of Mosneron-Dupin

et al. reveals that HRA methods do not cover decision-based unrequired actions

which contribute to risk significantly. They propose a human-centered model which

highlights the active role of the operators and the importance of their culture,

attitudes and goals (Mosneron-Dupin et al., 1997).
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The Idaho National Engineering and Environmental Laboratory (INEEL) has

developed and applied structured methods of human error analysis to identify

potential human errors, assess their effects on system performance and develop

strategies to prevent the errors or minimize their consequences. NASA used the

results in the airplane maintenance and air traffic management programs (Nelson

et al., 1998).

To handle the vagueness of real life data Huang et al. try to integrate fuzzy concepts

to event tree analysis in human reliability assessment. A systematic fuzzy event tree

analysis algorithm is developed to evaluate the risk of a large-scale system as nuclear

power plants (Huang et al., 2001). According to Gregoriades the use of Bayesian

Belief Network in a human error analysis enables the analyst to rapidly pinpoint

poorly performing systems. The model quantifies error influences arising from user

knowledge, ability, and task environment (Gregoriades et al., 2003). According to

Mosleh and Chang the model-based approach that provides explicit cognitive causal

links between operator behaviors and directly or indirectly measurable causal factors

is in the core of the advanced methods as conventional HRA methods have major

limitations (Mosleh & Chang, 2004).

Kostandinidou et al. uses a fuzzy classification system to calculate the probability of

human error according to CREAM methodology, the most known and used method

for HRA. This study is a successful translation of CREAM into a fuzzy logic model

(Konstandinidou et al., 2006). In this context it is necessary to note that cognitive

or human performance modeling is a field focused on developing simulations that

mimic human decision making and behavior (Boring et al., 2010). In this approach

main issue is the data accuracy and accessibility because cognitive modeling requires

both qualitative and quantitative data.

To improve HR, another study proposes simulator studies which can produce

important basic information for HRA method development and data for informing

use of existing HRA methods (Bye et al., 2006). Boring introduces the application

of dynamic event tree analysis in HRA. The author affirms that the key to dynamic

HRA is not in the development of specific methods but in the utilization of cognitive

modeling and simulation to produce a framework of data that may be used in

qualifying the likelihood of human error (Boring, 2007).
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The assessment of dependence among human errors is another important issue of

HRA. Zio et al. introduces a systematic framework for the elicitation of expert

knowledge on the factors influencing the dependence between two successive tasks

(Zio, 2009).

It is important to point out that each HRA technique has another spectrum of

applications. In other words, different HRA methods may have different areas,

tasks, scenarios or even different types of analyses (Boring et al., 2010). There are

many comparative studies on HRA methods that reveal weak and strong parts of

HRA methods. Swain compared 14 HRA methods for their effectiveness according

to three main criteria which are usefulness, acceptability and practicality (Swain,

1990). In his study, Kirwan provided a list of eight criteria, comprehensiveness,

accuracy, consistency, theoretical validity, usefulness, resource use, auditability, and

acceptability, to assess the most appropriate HRA to use in a special condition

(Kirwan, 1992). There is also a subjective benchmark of 14 HRA methods in

terms of 21 factors concerning HRA applications for aerospace performed by NASA

(Chandler et al., 2006). The study is meaningful only for NASA HRA applications.

A validation study of three techniques of HRA consisting of three parts made by

Kirwan et al. determined the predictive accuracy and the precision of the methods,

Human Error Assessment and Reduction Technique HEART (Williams, 2015, 1988,

1992), Justification of Human Error Data Information JEDHI (Kirwan, 1990, 1994)

and THERP. It also helped to prove the consistency of usage of these techniques

and revealed the necessary improvements (Kirwan, 1996; Kirwan et al., 1997).

Later, Kirwan conducted a more extensive comparative validation study on nine

HRA methods according to five major criteria. These methods are: THERP,

the most famous technique having a large nuclear power station database and

considering dependence between errors; ASEP (Swain, 1987), a quicker but

more conservative version of THERP; Success Likelihood Index Method using

Multi-Attribute Utility Decomposition SLIM-MAUD (Embrey et al., 1984), an

approach that uses expert judges who derive an index of the relative likelihood of

errors; Absolute Probability Judgment APJ (Seaver & Stillwell, 1983), the usage of

experts to directly estimate probabilities with knowledge and experience of the task

and associated likely errors; Paired Comparisons PC (Hunns, 1982), the approach

that uses experts to create a relative scale of error probabilities through psychometric

technique of paired comparisons; HEART, a technique comprising a substantial
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section of the Ergonomics literature; Human Cognitive Reliability HCR (Hannaman

et al., 1984), the method used for assessing failure to respond in time in emergency

decision-making situations in nuclear power plants; Human Reliability Management

System HRMS (Kirwan, 1989, 1990), a technique having a set of operationally-

based error data and a set of performance shaping factors as time pressure; JHEDI,

a technique starting from a set of basic error descriptors and error data, using a

set of performance shaping factors questions to determine the error probabilities

(Kirwan et al., 1997).

In 2008, Reer reviewed the advances in HRA of errors of commission comprising both

error identification (Part 1) (Reer, 2008) and quantification (Part 2) (Reer & Dang,

2007). The review refers to methods addressing the problem of error identification

as ATHEANA, method developed by US Nuclear Regulatory Commission based

on a multidisciplinary framework that considers both the human centered factors

and the conditions of the plant that create operational causes for human-system

interactions; Misdiagnosis Tree Analysis MDTA (Kim et al., 2008, 2006), method

whose innovative steps are the assessment of the potential for diagnosis failures and

the identification of human failure events that might be induced due to diagnosis

failures; and Commission Error Search and Assessment CESA, method developed

in 2002 with the aim of providing a tool for error of commission identification in

probabilistic safety assessment practice (Dang et al., 2002; Reer et al., 2004; Reer,

2008).

A recent study of Boring et al. represents the results of several relevant

benchmarking studies of probabilistic HRA techniques and the lessons learned from

these studies (Boring et al., 2010). This study put emphasis on demonstrating the

reliability and validity of HRA methods.

An elaborate classification is given in Table 2.1 and Table 2.2.
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é
a
li
sa

ti
o
n

D
e
s

M
is

si
o
n
s

O
p
é
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2.3 Different HRA Studies in Healthcare

Healthcare services sector is one of the major fields that requires human reliability

assessment as most of the healthcare applications involve human handling, decisions

and processing. On the other hand human errors in healthcare services lead to

serious injuries or worse to death. Therefore patient safety issues have become a

new research area that emphasizes the reporting, analysis, and prevention of medical

error that often leads to adverse healthcare events.

Medical error in healthcare is one of the major HR issues as the results can be fatal.

It is highly difficult to define what medical (clinical) error is. It is a very delicate

matter and requires a considerably wide and complex research. In sixteenth century

medical books were written attacking the false beliefs and practices of other doctors

(Richman et al., 2009). It is obvious that the problem is not new coined but it is still

crucial. (Richman et al., 2009) affirm that there is no simple answer to the question

‘What is clinical error?’ and that one cannot necessarily blame clinical staff in any

cases unless he has a concrete example such as a doctor not wearing their glasses or

removing the wrong leg.

On the other hand, it must be considered that according to World Health

Organization (WHO), healthcare errors impact is calculated as one in every 10

patients since 1990s and that it is admitted as an endemic concern. It is recorded

that in 2000s deaths caused by medical error was roughly triple of deaths caused

by aids, equal to deaths caused by car accidents or by breast cancer (Institute of

Medicine, 2000).

Until 1990s, the frequency of these events was not known, as there was not a

systematic reporting system. However according to World Health Organization

(WHO, 2008; 2013), healthcare errors impact is calculated as one in every 10 patients

since that time and is admitted as an endemic concern. In other words, according

to WHOs (2008) estimations tens of millions of patients worldwide suffer disabling

injuries or death every year due to unsafe medical practices and care. Today, the

WHO patient safety curriculum includes 11 topics among which two are:

• ‘What is human factors engineering, and why is it important to patient safety?’
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• ‘Understanding systems and the impact of complexity on patient care’ and

‘Understanding and learning from errors’ (Walton et al., 2010; Carayon et al., 2014).

Sujan et al. (2018) emphasize the poor levels of reliability in healthcare processes,

the performance variability and the absence of regulatory frameworks where HRA

has the potential of being a real opportunity to contribute to making healthcare

safer.

Furthermore, a detailed research analysis performed on Scopus and Web of Science

shows that medicine, health professions and healthcare services form one of the most

studied fields which implies their significance. Figure 2.1 and figure 2.2 indicate

the distribution of HR studies conducted in different fields between 1980 and 2017

compiled using data from Scopus and Web of Science.

Figure 2.1: Distribution of HR Studies in Different Fields (Scopus)
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Figure 2.2: Distribution of HR Studies in Different Fields (Web of Science)

Concerning their delicacy, healthcare operations are highly stress-strain process

affecting human reliability and some of the important studies conducted in this

field are given in Table 2.3.
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Table 2.3: HRA Studies in Healthcare

Studies Description

Reason (1993) Accident causation model. Analysis of adverse clinical events considering human

factors.

Taylor-Adams et al. (1999) Classification of failures in two main groups: Latent and Active Failures.

Taylor-Adams et al. (2004) Review of popular HRA techniques used in different fields in order to determine

their feasibility for use in healthcare.

O’Rourke (2006) Risk issues in pediatric cases, risk prevention methods. Significant Event Auditing

(SEA) method.

Duff et al. (2005) Monitoring medical errors in a hospital to show the importance of information

management.

Trucco & Cavallin (2006) Clinical Risk and Error Analysis (CREA), quantitative risk analysis of error

modes and critical organizational factors affecting patient safety.

Karnon et al. (2007) Prospective Hazard and Improvement Analysis (PHIA): a novel quantitative

modeling method to predict preventable adverse drug events.

Flin (2007) Different dimensions of safety climate: Management/Supervision, Safety system,

Risk, Work pressure, Competence.

Stock et al. (2007) Integration of Critical Success Factors (CSFs) to reduce medical errors in

hospitals.

Johnstone (2007) Many preventable human errors are linked to cognitive errors (making the wrong

diagnosis, choosing the wrong medication etc.)

van der Geer et al. (2009) Productivity Measurement and Enhancement System (ProMES) to develop

performance indicators.

Buckle et al. (2010) System Mapping Workshops in understanding medication errors. A method to

better design requirements.

Taib et al. (2011) Comparison of 26 medical error taxonomies using human error perspective.

Occurrence of medical errors depends on factors: workers, machines, environment

Zheng et al. (2011) Classification of surgeons in two groups: Experts and Novices. Novices performed

the task faster, with less frustration and more physical demands.

Bohacik & Davis (2013) Fuzzy Rule-Based System applied to risk estimation of cardiovascular decision

support to create an application of knowledge discovery.

Bethune & Francis (2015) Description of human factors affecting surgical patients and of how well-trained

surgeons make mistakes.

Shams Ghareneh et al. (2015) Identification of human errors in the field of dentist equipment treatment and

hand washing in infection control by using SHERPA method.

van Rutte et al. (2017) OCHRA (Observational clinical human reliability analysis) developed to detect

surgical errors is used in identifying the hazard zones of the sleeve gastrectomy.

Faiella et al. (2018) HFMEA (Healthcare Failure Mode and Effect Analysis) combining two risk

analysis methods as SHERPA and STAMP-STPA to maximize the benefits of

risk analysis.

Liu et al. (2018) LGDA (Large Group Dependence Analysis) approach to evaluate dependence

among human errors within HRA.
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2.4 Performance Influencing Factors

Importance of human factors and human psychology in anesthesia management has

been emphasized since 1980s. The study of Cooper et al. (1984) on 130 anesthetists’

reports reveals that 96 percent of substantive negative outcomes among all critical

incidents are caused by human errors . Which means that human error is the

dominant issue of critical and fatal anesthesia incidents. Leape (1994) claimed that

it is requisite to consider human psychology and human factors in understanding

the nature, mechanisms and causes of error.

Taylor-Adams et al. (1999) itemized some root causes of medical errors as:

• Use of locums

• Communication problems

• Supervision problems

• Excessive workload

• Educational and training deficiencies

Their study is illustrated with a real case analysis on partum hemorrhage of 1200

ml. By analyzing that case they revealed that latent failures lying dormant under

active failures. They combined each active failure with latent failure(s) which is/are

the essential cause of the errors.

They combined each active failure with latent failure(s) which is/are the essential

cause of the errors. According to the interviews with six people involved in the

case including two junior doctors, midwifes and obstetric staff, latent failures are

mentioned below (Taylor-Adams et al., 1999). These latent failures have been

reconsidered and reevaluated by two experts, one doctor and one sociologist assisting

this study:

• Inadequate communication: The protocol states that it is necessary that

seniors help juniors but does not enforce formal communication structures. That

creates misunderstandings or misinformation.
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• Task workload: The lack of a detailed task analysis hence the ignorance of

the specific time frame in which tasks should and could be completed may lead to

overloading of the personnel.

• Environment/Task: The design of the environment is not specialized to the

task. Tasks conducted on an obstetric ward are time wise and the lack of a clock

leads to mistiming.

• Training/skills: The lack of awareness of the personal may be the indicator of

the training and experience deficiencies. This will lead to risk recognition failure.

• Knowledge and skills/supervision: Lack of supervision leads to wrong

assignments of the personal to the tasks. Assigning a worker with limited experience

to risky tasks requiring knowledge and skill may lead to important issues.

• Maintenance management: The lack of procedures to check and record the

equipment functionality and the lack of maintenance contracts with third parties to

ensure rectifying the faults may lead to serious issues as a vital equipment out of

order unexpectedly.

• Inadequate leadership skills: The lack of assertiveness by the junior doctor or

his ignorance about the hospital policies will complicate the procedures and disable

the immediate response to urgent situations.

• Safety culture/supervision: The reluctance of the personal must be

supervised and task assignment must be comprised with respect to these

supervisions. The root causes of this behavior may be poor moral, poor desire

etc. These aspects may have more profound invisible motives.

• Training: All new staff must be trained with emphasis on assertiveness and

adequate communication with supervisors. If they detect an error of their supervisor,

they should be able to utter accurately.

• Procedures: The procedures must be designed clearly and well-ordered

compromising time and risk constraints. Otherwise delays, incorrect sequencing

of events would be unavoidable.

• Team functioning: There should be a solid team structure and support in order

to handle new situations. Lack of team structure and support will most probably

lead to failure in unprecedented incidents.
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Kennedy and Mortimer classified error-causing factors as casual factors, timing

factors and mitigating factors. Casual factors are determined as active, latent

failures, planning, design, policy, communication, training, equipment/resources

deficiencies, policy violations, unawareness, team and social factors, working

conditions (Kennedy & Mortimer, 2007).

A taxonomy study, which integrates human factors, safety management systems and

wider organizational issues, offers an interesting classification of performance shaping

factors. Bellamy et al. reviewed eight chemical facility accidents between 1974 and

1998: Flixborough, Grangemouth, Allied Colloids, Hickson and Welch, Associated

Octel, Texaco in UK, Cindu in Netherlands and Longford in Australia. These

accidents have been chosen due to detailed accident investigations performed for each

of them and procuring appropriate data for taxonomy. Each performance-shaping

factor is associated to a number of accidents according to their contribution or

non-contribution to the accident occurrence. For example social norms and pressures

factor has contributed in five accidents when man-machine interface factor has

contributed to four accidents etc. (Bellamy et al., 2008). That kind of taxonomy

may be relevant to human reliability assessment in a special field but it requires

detailed incident and accident data.

Champion et al. regrouped surgical errors under three major titles: Perception

errors, Cognition errors and Technical errors (Champion et al., 2008). Their aim

is to explore the concept of surgical error and to minimize these errors by using

objective assessment. Tuddenham revealed the importance of perception errors

by his affirmation (Tuddenham, 1962): ‘One cannot interpret a shadow he has

not perceived and failure of perception must, therefore, account for a substantial

fraction of all of our diagnostic errors.’ Cognition errors in medical practice have

been researched and studied in depth by Satish and Streufert and also in the studies

OSCEs (Objective Structured Clinical Examinations), OCHRA (Observational

Clinical Human Reliability Assessment) and by using cognitive factors from aviation

(Satish, 2002; Tang et al., 2006; Stripe et al., 2006).

It is underlined that well-defined problems in surgery are rare and that more common

are ill-defined ones containing unclear information (Schön, 2017).

Recent studies focus generally on analyzing some major factors leading to human
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error in healthcare operations. Researchers work on special cases in healthcare

system producing defects due to human errors.

A general study searching out all performance influencing factors in healthcare

operations and analyzing them for different healthcare operations in order to acquire

finally a complete relation model between all possible causes and consequences,

does not exist. This study tries to procure a general standpoint covering the

determination of human errors and their causes, the formation of all possible

causes list, the detection of all relations between errors and causes as well as

interdependencies and finally the creation of a final model representing these

relations and interdependencies in different healthcare operations.

Based on a wide literature review and expert consultation, taking Kim & Jung

(2003)’s study as a starting point, a comprehensive list of PIFs has been created.

Faced with the various nomenclature and categorization of factors, it was preferred

to adapt the categorization of Kim & Jung (2003), since it was the clearest and

easiest to understand list.

Actually, PIFs named inadequate communication in Taylor-Adams et al. (1999)’s

study, communication in Kennedy & Mortimer (2007)’s study or communications

and coordination in groups and teams structures in Bellamy et al. (2008)’s study

all describe the same criteria also called team communication related factors in this

study after Kim & Jung (2003)’s study.

On the other hand, PIF with the name of human anatomical capacities including

body measurements, vision capacity and disabilities in Bellamy et al. (2008)’s study

also called human physical states in this study, has been removed from PIFs list by

experts as a medical practitioner with disabilities is oriented to risk-free medicine

and does not perform surgery. The complete list of PIFs, including their detailed

explanation, is represented in Table 2.4:
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3 METHODOLOGY

In the presence of divers performance influencing factors in healthcare operations,

it is obvious that the decision process is highly complex and vague. To establish the

relationships between these factors and to be able to interpret the effects of these

relationships, Fuzzy Cognitive Maps (FCMs) is an effective tool. The concepts here

are the actual conditions of different PIFs in healthcare operations. To be able to

map inputs to outputs, we use an algorithm called fuzzy inference using Fuzzy Set

Theory (FST) as in (C. Kutlu et al., 2014).

3.1 Fuzzy Inference System and Rule Based Reasoning

A FIS is a knowledge-based system consisting of knowledge-base which are facts

about the world. Reasoning about these facts by using rules and determining

inconsistencies are implemented by the inference engine.

A FIS four steps are as stated below, translating inputs into truth values, computing

output truth values and aggregating truth values of all experts, transfering truth

values into output.

Figure 3.1: FIS Structure
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3.2 Cognitive Maps and Fuzzy Cognitive Maps

Muzzi and Ortolani (2002) pointed out that a neoclassic decision maker would have

an unlimited capacity of cognitive adjustments to new situations.Codara (1998),

mentioned in his study that cognitive maps could be used for various purposes:

• Reconstructing of the anchor points behind the behavior of decision makers and

understanding their motives in making such decisions (explanatory function),

• Predicting future decisions (prediction function),

• Assisting decision makers to reflect upon their decision to ensure their

completeness (reflective function),

• Constructing an accurate description of complex situations (strategic function)

(Bertolini & Bevilacqua, 2010).

One of the main features of this study is to understand the behavior of human as

an agent of a complex system under different circumstances, to reveal the reasons

for his decisions and his actions, to predict his future decisions and actions, to

take preventive measures by eliminating or altering some causes. FCM is the most

effective way to procure an explicit understanding of human behavior and all of the

reasons relying under his behavior.

The term cognitive maps also called ‘Internal Spatial Representations’ designate

stored memories of experienced environments. First identification of the term

cognitive was made in 1948 in Tolman’s study on rats but in a metaphoric sense.

Today, the term is used widely in many human sciences and it implies deliberate

and motivated encoding of environmental information (G Golledge, 1999; Hollnagel,

1998). To understand human performance, one must comprehend human cognition.

That’s why today cognitive engineering and cognitive tools constitute a vast research

field. Cognitive Maps (CMs) were introduced in 1976 by Axelrod to study social

scientific knowledge in decision-making process in international politics (Kosko,

1986; Bertolini, 2007).

CMs consist of points, lines, areas and surfaces learned, experienced and recorded

in quantitative and qualitative forms (G Golledge, 1999). In CMs, nodes represent
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variable concepts where edges represent casual connections between them. The

edges are positive or negative according to the direction of the causality. In other

words a positive edge from a node to another means that an increase in the first

one causes an increase in the second one. However a negative edge from a node to

another indicates that an increase in the first one causes a decrease in the second

one (Kosko, 1986).

Causality is different from logical implication. In logical implication, “A implies B”

is always replaceable with “non-B implies non-A”. Yet in causality, “A causes B”

is not always replaceable with “non-B causes non-A” (Kosko, 1986). For example,

lack of illumination causes human error but not committing error does not cause

good illumination.

A cognitive map is an effective way to display causalities between variable concepts

however it is limited and cannot represent complex causalities in real world. Real

world causalities are gradational and vague in other words fuzzy. That’s why the

use of Fuzzy Cognitive Maps (FCMs) is a better and more effective way to represent

such relationships.

As FCMs are the symbolic representation of complex systems and illustrate

different aspects in the behavior of the system, human experience and knowledge

of the operation of the system are essential. FCMs are constructed using human

experts who know well the system and his behavior under different circumstances

(Groumpos, 2010).

3.3 Methodology of FCM

FCMs consist of fuzzy causal graphs made up of nodes representing causal concepts

occurring to some degree and edges that combine nodes representing fuzzy rules

between concepts (Kosko, 1986).

Concepts variables: C = C1, C2, ..., Cn. Causal links: Arcs (Ci, Cj), Ci causes concept

Cj.

Causalities between concepts are not formed by the usual binary logic, but have
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Figure 3.2: Example of causal graph

degrees, so their weights can be expressed in the interval [−1, 1] or by linguistic

terms, such as “negatively strong”, “zero”, “positively very weak” etc. The causality

between concepts Ci and Cj is positive (wij > 0) when an increase in the concept

Ci leads to an increase in the concept Cj or vice versa, when a decrease leads to a

decrease. When there is no causality between concepts; wij = 0. The direction of

causality indicates whether concept Ci causes concept Cj , or vice versa. The value

given to the weight wij represents the strength of the influence between Ci and Cj.

Hence, as shown in the example, an increase in the concept C2 causes a decrease in

the concept C1 to a degree w21. The values of concepts are calculated at each time

step according to the general formulation (Stylios et al., 2008):

A
(k+1)
i = f

(
A

(k)
i +

N∑
i=1
i 6=j

A
(k)
j Wij

)
(3.1)

where

A
(k)
i is the value of concept Ci at iteration step k, A

(k+1)
j is the value of the concept

Cj at iteration k + 1, wji is the weight of the connection from Cj to Ci and f is a

threshold function.



4 HRA IN HEALTHCARE USING RULE BASED FCM

4.1 Scope of the Rule Based FCM application

In order to detect all causal relations and to show their degree, four experts (medical

doctors) of different high-risk fields in healthcare sector have evaluated the causality

among PIFs using linguistic notions. The determination of causal relations between

PIFs and their effects on HR procures crucial information used in healthcare system

design, vital clinical judgements and hospital policy and procedures determination.

Next step is to construct weight matrix of FCM. The aggregated weights of

interconnections have been obtained with help of fuzzy inference rule based method

using MATLAB (Fuzzy Logic Tolbox).

In the final step of this application process, the weights of PIFs that affect

HR have been calculated for different α − cut values, using FCMapper Software

(http://www.fcmappers.net). This has allowed us to perform a sensitivity analysis

in order to observe the modification of HR with the changes on the confidence level of

experts’ judgements. In other words, this sensitivity analysis shows how the degree

of fuzziness could affect the results and the solution robustness of Rule Based FCM.

4.2 First Step: Expert Evaluation

Since this study tries to draw a real picture of HR issues and to evaluate all PIFs

in healthcare operations, four medical doctors, each experienced in his field, have

been designated as follows:

• Expert 1- Cardiac surgeon
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• Expert 2- Surgical intern

• Expert 3- Specialist in internal medicine

• Expert 4- Radiology specialist

Each expert has been interviewed in depth in two different sessions. In the first

session, they have determined the sign of causalities among PIFs as in Tables

4.1-4.4. Subsequently, they have expressed the degree of those causal relations

using a linguistic variable as in Table 4.5-4.8. The first session has lasted more

than two hours. The second session will be mentioned lately in the second-step.

The causal relations are represented by the variable influence taking values in the

universe U = [−1; 1]. The term set T (influence) consists of nine variables (C. Kutlu

et al., 2014):

T (influence) =



negatively very high (nvh)

negatively high (nh)

negatively medium (nm)

negatively small (ns)

zero (z)

positively small (ps)

positively medium (pm)

positively high (ph)

positively very high (pvh)



T (influence) =



negatively very strong (nvs)

negatively strong (ns)

negatively medium (nm)

negatively weak (nw)

zero (z)

positively weak (pw)

positively medium (pm)

positively strong (ps)

positively very strong (pvs)
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Corresponding membership functions µ of these linguistic terms are given in Figure

4.1.

Figure 4.1: Membership functions corresponding to linguistic variables

4.3 Second Step: Knowledge-based fuzzy inference process

In this step, experts have described during a second session, each interconnection

among concepts (PIFs) by an IF THEN rule that infers the fuzzy linguistic variable

determined recently to express the grade of causality between two concepts. To

facilitate their evaluations, IF rule has been given to experts as positive small and

they have been asked to determine THEN rules. Here, the necessity of the use of

causal relationships can be explained as the first step of establishing the relationship

between the criteria. In this study a single input - single output Mamdani fuzzy

model is used. The example below explains for an interconnection between two

concepts of the study, IF THEN rules determined by four experts:

Expert 1: IF a positive small change happens in the value of concept “Hospital

policy and management” THEN positive high change in the value “Reliability of

human operator in a risky healthcare operation” occurs.

Expert 2: IF a positive small change happens in the value of concept “Hospital

policy and management” THEN positive very high change in the value “Reliability

of human operator in a risky healthcare operation” occurs.
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Expert 3: IF a positive small change happens in the value of concept “Hospital

policy and management” THEN positive high change in the value “Reliability of

human operator in a risky healthcare operation” occurs.

Expert 4: IF a positive small change happens in the value of concept “Hospital

policy and management” THEN positive high change in the value “Reliability of

human operator in a risky healthcare operation” occurs.

Infer: The influence from “Hospital policy and management” to “Reliability of

human operator in a risky healthcare operation” is positively very strong.

4.4 Third Step: Aggregation of experts’ evaluations

After revealing all of the rules for each interconnection among concepts, the outputs

of each rule were combined into a single fuzzy set by the SUM method. Each fuzzy

set belongs to an interconnection among two concepts. Deffuzification of these

fuzzy sets with the Center of Gravity (COG) method procured numerical values

corresponding to the weights (wij) of the cognitive map. This process is explained

in Figure 5 based on the example mentioned above.

Figure 4.2: Aggregation of expert evaluations for the relationship between C20

and HR (MATLAB Fuzzy Logic Designer)

The aggregated matrix derived from rule-based evaluations is given in Table 4.9:
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Table 4.10: Comparison Analysis for Two Aggregated Matrices

C4-C6 C21-C12 C15-C16

E1 ps pm pvs

E2 - - pw

E3 ps ns pvs

E4 nm nm pvs

A comparison analysis between first-step outputs and second-step outputs may be

useful to understand the coherence of experts in transforming causal relations to

fuzzy rules. To procure this comparison analysis, the aggregated weights matrix

derived from first-step evaluations is created as in 4.11.

The two aggregated weights matrices are nearly similar except except for several

relationships as shown in the table 4.10 with relevant expert assessments. The

differences between two matrices have occurred when experts have made very

different incompatible assessments.

In such cases, the accuracy and delıcacy of rule-based fuzzy evaluations comes to

the fore.
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5 SENSITIVITY ANALYSIS AND ADVANTAGES OF

PROPOSED METHOD

Decision makers may claim that a positive small change in concept Ci causes a

positive high change in concept Cj but this is a highly subjective information

and depends on the confidence level of the decision maker on expert (human)

judgment (Promentilla et al., 2008). A sensitivity analysis characterized by the

degree of fuzziness would be helpful to observe the solution robustness of RBFCM.

Considering the interval of confidence level known as α − cut, TFN can be

characterized as in Figure 5.1 and Eq. 5.1.

∀α ∈ [0, 1];Mα = [lα, uα] = [l + (m− l)α, u− (u−m)α] (5.1)

where M = (l,m, u) is a TFN where l ≤ m ≤ u

Figure 5.1: A Triangular Fuzzy Number M

The sensitivity analysis characterized by the degree of fuzziness was conducted for

twenty one different α − cut values and twenty one weight matrices were obtained
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at the end of the aggregation process. These matrices are given in Appendix A.

5.1 Comparison Analysis of the Results for Different α− cuts

Considering expert highlighting, it has been properly appropriate to analyze all

of these data, beginning with twenty one different weights of one of the most

significant relationship between concept C20 (Hospital Management and Policy) and

HR computed for different α− cuts.

Table 5.1: Weights of the relationship C20-HR for different α− cut

Figure 5.2: Variations of C20-HR relationship weights for different α− cut

According to Table 5.1 and Figure 5.2, it is obvious that the relationship weight

between concepts C20 and HR decreases when the fuzziness increases and vice versa.

However this situation was predicted by experts for related concepts. They claimed

that there was a very strong relationship between hospital management-policy and

human operator reliability and that the vagueness of linguistic variables used to

evaluate causalities might have important effects on the causal relations.

Same weight values and same variations have been observed for the following

relationships as in Appendix B:
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• C1-C2: Human Cognitive States-Human Temporal Cognitive States

• C1-C5: Human Cognitive States - Social Characteristics

• C1-HR: Human Cognitive States – Human Reliability

• C2-C1: Human Temporal Cognitive States - Human Cognitive States

• C3-C8: Psychological States - Task Attribute/Requirement

• C4-C17: Personal Characteristics - Team Related Factors

• C4-C18: Personal Characteristics - Team Communication Related Factors

• C5-C4: Social Characteristics - Personal Characteristics

• C5-C17: Social Characteristics - Team Related Factors

• C6-C9: Task Procedures - Operation Room Man Machine Interface

Indicators/Controllers

• C6-C10: Task Procedures - Op. Room Man Machine Interface Panel/Screen

Layout

• C6-C11: Task Procedures - Op. Room Machine Support Systems

• C6-C18: Task Procedures - Team Communication Related Factors

• C6-C20: Task Procedures - Management and Policy

• C6-HR: Task Procedures – Human Reliability

• C7-C9: Task Type Characteristics - Operation Room Man Machine Interface

Indicators/Controllers

• C7-C10: Task Type Characteristics - Op. Room Man Machine Interface

Panel/Screen Layout

• C8-C16: Task Attribute/Requirement - Timing Aspects

• C8-C21: Task Attribute/Requirement - Safety Culture

• C9-C6: Operation Room Man Machine Interface Indicators/Controllers - Task

Procedures
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• C9-C7: Operation Room Man Machine Interface Indicators/Controllers - Task

Type Characteristics

• C9-C12: Operation Room Man Machine Interface Indicators/Controllers - Op.

Room System States

• C10-C6: Op. Room Man Machine Interface Panel/Screen Layout - Task

Procedures

• C10-C7: Op. Room Man Machine Interface Panel/Screen Layout - Task Type

Characteristics

• C10-C12: Op. Room Man Machine Interface Panel/Screen Layout - Op. Room

System States

• C11-C6: Op. Room Machine Support Systems - Task Procedures

• C11-HR: Op. Room Machine Support Systems - Human Reliability

• C13-C3: Op. Room Phenomenological Physical Characteristics - Psychological

States

• C13-C8: Op. Room Phenomenological Physical Characteristics - Task

Attribute/Requirement

• C13-C16: Op. Room Phenomenological Physical Characteristics - Timing Aspects

• C14-C3: Op. Room Phenomenological Operational Characteristics - Psychological

States

• C17-HR: Team Related Factors – Human Reliability

• C19-C1: Team Training - Psychological States

• C19-C4: Team Training - Personal Characteristics

• C19-HR: Team Training - Human Reliability

• C20-C6: Management and Policy - Task Procedures

• C20-C11: Management and Policy - Op. Room Machine Support Systems

• C20-C12: Management and Policy - Op. Room System States
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These relationships have been qualified as strong to very strong by experts as

in the causal relationship (C1-HR) Human Cognitive States including attention,

intelligence, skill and knowledge and Human Reliability or in the causal relationship

(C20-C6) Management and Policy inferring in this case hospital management policy

and Task Procedures involving availability, format, quality and logic structure of

task-performing process.

It has been observed that some relationships’ weights between concepts (PIFs)

varied slightly or didn’t vary at all when the uncertainty namely the fuzziness of the

evaluations increased as shown in Appendices B, C and D.

Figures 5.3 and 5.4 illustrate variations of the relationships: C1-C6; C10-C1; C20-HR;

C7-C13; C13-C7; C21-C5.

Figure 5.3: Some Variations of relationship weights for different α− cuts (a)

According to these charts the relationship weights among C13 (Operation Room

Phenomenological Physical Characteristics) and C7 (Task Type Characteristics) and

among C10 (Operation Room Man Machine Interface Panel/Screen Layout)and C1

(Human Cognitive States) did not vary.

All of the relationship weights that did not vary when the fuzziness increased are the

ones that were evaluated unanimously by experts. The integration of fuzziness in the

evaluation process did not affect the relationship C13-C7. The experts claim that the

default relationship belonging to these concepts is interpreted as: “If the number of

critical parameters and dynamic variables increases then monitoring, detection and

diagnosis in emergency operations will be more difficult.” Furthermore, considering
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Figure 5.4: Some Variations of relationship weights for different α− cuts (b)

C10-C1 relationship is neither affected by the degree of fuzziness: “If the reachability,

visibility and compatibility of panel/screen layout improve then the attention,

reasoning, evaluation and problem-solving of the operator will improve.”

However, the relationship weight between C1 and C6 (Task Procedures) increased

and the relationship weight between C7 and C13 decreased when the fuzziness of

the evaluations increased. As indicated by experts when human cognitive states as

intelligence, skill, experience level (C1) of the human operator (the doctor) improves,

the operation quality improves. Besides according to them, this relationship is

considerably strong and the vagueness of linguistic variables may affect the causal

relations. The sensitivity analysis indicated that the decrease of the fuzziness evoked

the increase of the corresponding relationship weight.

Variation curves for different α − cuts of all positive and negative relationships’

weights are given respectively in Figure 5.5 and Figure 5.6. The curves in Figure

5.7 show the relationships’ weights that don’t vary with the degree of fuzziness.
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In the process of determining causalities between concepts Indegree, outdegree and

centrality values have been calculated for twenty-one weight matrices by FCMapper.

These values are given in Appendix E. All the indegree, outdegree, centrality

variations are shown respectively in Figures 5.8-5.10.

Figure 5.8: Variation of concepts’ indegrees
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Figure 5.9: Variation of concepts’ outdegrees
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Figure 5.10: Variation of concepts’ centralities
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These charts show how the degree of fuzziness affects the rank order of overall

intensity degrees of all concepts. For example in Figure 5.9, the rank of outdegrees

of C10 and C12 alters. This alteration has been indicated in the Table 5.2. It occurs

at α = 0.25. This means that the sum of all outgoing influences of C12 (Operation

Room Machine Support Systems) is more affected than the sum of all outgoing

influences C10 (Operation Room Man Machine Interface Indicators/Controllers) by

the fuzziness.

In other words, the sensitivity analysis shows that the availability and adequacy of

all equipment’s (C12) outgoing influences decrease relatively lower than availability

and reliability of operation room signals (C10) outgoing influences. The experts

predicted this result as: “Operation room equipment availability is less important

than wrong signals. An experienced doctor can handle an emergency situation where

equipment is unavailable but cannot easily predict and correct a wrong signal.” They

expressed that the vagueness could be more crucial for this type of criteria.

In Figure 5.8, the rank of indegrees of C12 and C18 (Team Communication Related

Factors) behave differently towards fuzziness. The availability and adequacy of all

equipment’s (C12) incoming influences’ sum decreases by the increase of fuzziness

when team communication related factors incoming influences’ sum alters slightly

as indicated in Table 5.2. In other words, the influences of other criteria on C18 are

not affected by the fuzziness.

In Figure 5.10, it is observed that the centrality of C6 decreases relatively faster than

the centrality of C20. The centrality of the Task Procedures (C6) is more affected

by the fuzziness than the centrality of the Hospital Management and Policy (C20).

Their centralities are equal when the fuzziness reaches maximum.
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6 CONCLUSION

In this dissertation, a human reliability assessment in healthcare operations has been

conducted using Rule Based Fuzzy Cognitive Maps. In the literature, there is a lack

of overall human reliability assessment on healthcare operations.

As mentioned in previous sections, HRA in Healthcare Systems requires general

studies in different countries and cultures, in order to establish real causes leading

to human errors. Expert systems procure free and easy-access training aid to

increase the expertise of researchers and workers. On the other hand, they ensure

the generation of a realistic portrait of the existing systems and the realization of

rational decision process.

In this context, a complete list of PIFs is created and revised considering a wide

literature review and by consulting experts. In order to establish any kind of

relations, RBFCM Method is designated as the most efficient method which allowed

us to integrate fuzzy causal relations as opposition, similarity, implication etc.

What-if questions provided a more complete cognitive system.

The sensitivity analysis conducted with different -cuts represents the decision

maker’s confidence level. When α = 0, the decision maker has no confidence at

all to subjective evaluation of experts and considers a wider interval of numerical

intensity from the scale.

It is obvious in this study that some relations as C20-HR (Hospital Management and

Policy - HR) and C1-C6 (Human Cognitive States - Task Procedures and Quality)

are crucial causalities. The sensitivity analysis provides the decision maker the

ability to adapt the cognitive map to different expert profiles and to observe freely

diverse possibilities.
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There is a list of some research gaps and contributions of the paper below to draw

an overall picture of this research:

• Considering the need of an overall study to be able to design robust, error

preventing healthcare systems and to designate accurate hospital policy, all PIFs

have been determined through a wide literature survey and expert consulting. In

other words, this study procures a general standpoint covering the determination of

human errors and their causes, the formation of all possible causes list, the detection

of all relations between errors and causes as well as interdependencies and finally

the creation of a final model representing these relations and interdependencies in

different healthcare operations.

• To draw a real picture of HR issues and to evaluate all the PIFs in healthcare

operations, four medical doctors, each experienced in his field, are designated.

• The methodology used in this paper combines FCMs with Rule-based algorithm.

In order to observe the solution robustness of RBFCM, a sensitivity analysis

characterized by the degree of fuzziness was conducted and results were discussed.

• It has been observed that some relationships between concepts (PIFs) variated

slightly or didn’t vary at all when the uncertainty namely the fuzziness of the

evaluations increased. According to this sensitivity analysis, some of the causalities

are more influenced by the fuzziness. These are critically acclaimed causalities by

the experts.

• The related FCM and a scenario analysis based on critical criteria will be provided

in futur studies. It has also been envisaged for further research to integrate patients

and hospital managers as experts to the existing model in order to have a wider

insight. On the other hand, the method will be adapted to specific tasks or areas

in healthcare to form a list consisting of crucial error causing criteria clusters for

different areas.
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Duff, F. L., Daniel, S., Kamendjé, B., Beux, P. L., & Duvauferrier, R. (2005).

Monitoring incident report in the healthcare process to improve quality in

hospitals. International Journal of Medical Informatics , 74 (2-4), 111–117.

Embrey, D., Humphreys, P., Rosa, E., Kirwan, B., & Rea, K. (1984). Slim-maud:

an approach to assessing human error probabilities using structured expert

judgment. volume i. overview of slim-maud.

Erik Vinnem, J., Seljelid, J., Haugen, S., Sklet, S., & Aven, T. (2007). Generalised

methodology for operational risk analysis. Proceedings of the European Safety and

Reliability Conference 2007, ESREL 2007 - Risk, Reliability and Societal Safety ,

1 .

Faiella, G., Parand, A., Franklin, B. D., Chana, P., Cesarelli, M., Stanton, N. A.,

& Sevdalis, N. (2018). Expanding healthcare failure mode and effect analysis: A

composite proactive risk analysis approach. Reliability Engineering and System

Safety , 169 (C), 117–126.

Flin, R. (2007). Measuring safety culture in healthcare: A case for accurate

diagnosis. Safety Science, 45 (6), 653–667.



74

G Golledge, R. (1999). Wayfinding Behavior: Cognitive Mapping and Other Spatial

Processes , vol. 10.

Garrick, B. (2002). The use of risk assessment to evaluate waste disposal facilities

in the united states of america. Safety Science, 40 (1-4), 135–151.

Gertman, D., Blackman, H., Marble, J., Byers, J., & Smith, C. (2005). The spar-h

huamn reliability analysis method. Tech. rep.

Gnedenko, B. V. (1999). Statistical reliability engineering . New York: J. Wiley.

Gregoriades, A., Sutcliffe, A., & Shin, J.-E. (2003). Assessing the reliability of

socio-technical systems. Systems Engineering , 6 (3), 210–223.

Grobbelaar, J., Julius, J., Rahn, F., et al. (2005). Analysis of dependent human

failure events using the epri hra calculator. In Proc. of the ANS Topical Meeting

on Probabilistic Safety Assessment (PSA’05), (pp. 11–15).

Groumpos, P. P. (2010). Fuzzy cognitive maps: Basic theories and their application

to complex systems. In Fuzzy Cognitive Maps , (pp. 1–22). Springer Berlin

Heidelberg.

Gudder, S. (2000). What is fuzzy probability theory? Foundations of Physics ,

30 (10), 1663–1678.

Gupta, A., Mukherjee, B., & Upadhyay, S. (2008). Weibull extension model: A

bayes study using markov chain monte carlo simulation. Reliability Engineering

& System Safety , 93 (10), 1434–1443.

Hannaman, G., Spurgin, A., & Lukic, Y. (1984). Human cognitive reliability model

for pra analysis. report no. nus-4531, electric power research institute, palo alto,

ca.

Hollnagel, E. (1994). Human Reliability Analysis: Context and Control (Computers

and People). Academic Press.

Hollnagel, E. (1998). Cognitive Reliability and Error Analysis Method (CREAM).

Elsevier Science.

Huang, D., Chen, T., & Wang, M.-J. J. (2001). A fuzzy set approach for event tree

analysis. Fuzzy Sets and Systems , 118 (1), 153–165.



75

Hunns, D. (1982). The method of paired comparisons. High Risk Safety Technology,

Chichester: A.E. Green, Wiley..

Høyland, A. (2009). System Reliability Theory : Models and Statistical Methods .

Hoboken: John Wiley & Sons, Inc.

Johnstone, M.-J. (2007). Patient safety ethics and human error management in

ED contexts. Australasian Emergency Nursing Journal , 10 (1), 13–20.

Jovanovic, A. (2003). Risk-based inspection and maintenance in power and process

plants in europe. Nuclear Engineering and Design, 226 (2), 165–182.

Kahraman, C. (2011). Preface: Fuzzy decision making in risk management.

Multiple-Valued Logic and Soft Computing , 17 , 289–292.

Kaplan, S., & Garrick, B. J. (1981). On the quantitative definition of risk. Risk

Analysis , 1 (1), 11–27.

Karnon, J., McIntosh, A., Dean, J., Bath, P., Hutchinson, A., Oakley, J., Thomas,

N., Pratt, P., Freeman-Parry, L., Karsh, B.-T., Gandhi, T., & Tappenden, P.

(2007). A prospective hazard and improvement analytic approach to predicting

the effectiveness of medication error interventions. Safety Science, 45 (4), 523–539.

Kennedy, C., & Mortimer, D. (2007). Risk management in IVF. Best Practice &

Research Clinical Obstetrics & Gynaecology , 21 (4), 691–712.

Kim, I. (2001). Human reliability analysis in the man–machine interface design

review. Annals of Nuclear Energy , 28 (11), 1069–1081.

Kim, J., Jung, W., & Son, Y. S. (2008). The MDTA-based method for assessing

diagnosis failures and their risk impacts in nuclear power plants. Reliability

Engineering & System Safety , 93 (2), 337–349.

Kim, J. W., & Jung, W. (2003). A taxonomy of performance influencing factors

for human reliability analysis of emergency tasks. Journal of Loss Prevention in

the Process Industries , 16 (6), 479–495.

Kim, M. C., Seong, P. H., & Hollnagel, E. (2006). A probabilistic approach for

determining the control mode in CREAM. Reliability Engineering & System

Safety , 91 (2), 191–199.



76

Kirwan, B. (1988). A comparative evaluation of five human reliability assessment

techniques. In Human factors and decision making: their influence on safety and

reliability .

Kirwan, B. (1990). A resources flexible approach to human reliability assessment

for pra. In Safety and reliability symposium, (pp. 114–135). Elsevier Applied

Sciences London.

Kirwan, B. (1992). Human error identification in human reliability assessment.

part 1: Overview of approaches. Applied Ergonomics , 23 (5), 299–318.

Kirwan, B. (1994). A guide to practical human reliability assessment . CRC press.

Kirwan, B. (1996). The validation of three human reliability quantification

techniques — THERP, HEART and JHEDI: Part 1 — technique descriptions

and validation issues. Applied Ergonomics , 27 (6), 359–373.

Kirwan, B., Kennedy, R., Taylor-Adams, S., & Lambert, B. (1997). The validation

of three human reliability quantification techniques — THERP, HEART and

JHEDI: Part II — results of validation exercise. Applied Ergonomics , 28 (1),

17–25.

Kirwan, J. N., B. (1989). Development of human reliability assessment system for

the management of human error in complex systems.

Konstandinidou, M., Nivolianitou, Z., Kiranoudis, C., & Markatos, N. (2006).

A fuzzy modeling application of CREAM methodology for human reliability

analysis. Reliability Engineering & System Safety , 91 (6), 706–716.

Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine

Studies , 24 (1), 65–75.

Leape, L. (1994). Error in medicine. Journal of the American Medical

Associationsiology , 272 (23), 1851–1857.

Lewis, E. E. (1996). Introduction to reliability engineering . New York: J. Wiley.

Liu, H.-C., Li, Z., Zhang, J.-Q., & You, X.-Y. (2018). A large group decision making

approach for dependence assessment in human reliability analysis. Reliability

Engineering & System Safety , 176 , 135–144.



77

Marseguerra, M., & Zio, E. (2000a). Optimizing maintenance and repair policies

via a combination of genetic algorithms and monte carlo simulation. Reliability

Engineering & System Safety , 68 (1), 69–83.

Marseguerra, M., & Zio, E. (2000b). System unavailability calculations in biased

monte carlo simulation: a possible pitfall. Annals of Nuclear Energy , 27 (17),

1577–1588.

Marseguerra, M., Zio, E., & Martorell, S. (2006). Basics of genetic algorithms

optimization for RAMS applications. Reliability Engineering & System Safety ,

91 (9), 977–991.

Meister, D. (1993). Human error: Cause, prediction, and reduction edited by john

w. senders and neville p. moray 153 page., $34.50 hillsdale, NJ: Lawrence erlbaum

associates, 1991 ISBN 0–89859–538–3. Ergonomics in Design: The Quarterly of

Human Factors Applications , 1 (1), 38–38.

Mosleh, A., & Chang, Y. (2004). Model-based human reliability analysis: prospects

and requirements. Reliability Engineering & System Safety , 83 (2), 241–253.

Mosneron-Dupin, F., Reer, B., Heslinga, G., Sträter, O., Gerdes, V., Saliou, G., &
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