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Thesis

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

in

MATHEMATICS

in the

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

of

GALATASARAY UNIVERSITY

August 2020



This is to certify that the thesis entitled

A Novel Design Method For Compressive Sensing Matrices
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Abstract

In this thesis, we studied the mathematical foundations of Compressive Sensing.
Compressive Sensing is an area which gives us more ability than Nyquist-Shannon
Theorem with an extra condition: Sparsity. If a signal is sparse, we can recover the
signal using fewer measurements than the required in Nyquist-Shannon Theorem.

Firstly, we examined the necessary conditions to use compressive sensing for recovery.
Sparsity is the key to use compressive sensing for signal recovery. Besides, we look into
the relationship between sparsity of a signal and sensing matrices.

Then, we look into recovery algorithms, sensing matrix design methods and properties
of sensing matrices. Two most imporant properties of sensing matrices are Null Space
Property and Restricted Isometry Property. We also examined the relationship between
Null Space Property and Restricted Isometry Property.

Later, we made experiments using different sensing matrix generation methods. Lastly,
we propose a novel design for sensing matrix generation and compared the results of
these experiments with the other sensing matrix design methods using different recovery
algorithms.

Keywords: Compressive Sensing, Signal Recovery, Null Space Property, Restricted
Isometry Property.



Özet

Bu tez çalışmasında sıkıştırmalı algılamanın matematiksel temelleri üzerine çalıştık.
Sıkıştırmalı algılama bize seyreklik koşuluyla beraber Nyquist-Shannon Teoreminden
daha iyi bir sonuç verir. Bir sinyal seyrekse Nyquist-Shannon Teoreminde gerektiğinden
daha az bir ölçümle bu orijinal sinyali kurtarabiliriz.

İlk olarak, sıkıştırmalı algılama için gerek koşulları inceledik. Seyreklik, sinyal
kurtarmada sıkıştırmalı algılamayı kullanmanın anahtarıdır. Bunun yanında, seyreklik ile
sıkıştırmalı algılama matrisleri arasındaki ilişkiyi inceledik.

Ardından, kurtarma algoritmaları, sıkıştırmalı algılama matris tasarımları ve sıkıştırmalı
algılama matris özelliklerini inceledik. Sıkıştırmalı algılama matrislerinin en önemli iki
özelliği Kısıtlı İzometri Özelliği ve Hiçlik Uzayı Özelliğidir. Bu iki özellik arasındaki
ilişkiyi de inceledik.

Daha sonra, farklı sıkıştırmalı algılama üretme yöntemleri kullanarak deneyler yaptık.
Son olarak, yeni bir sıkıştırmalı algılama matrisi üretme yöntemi önerdik ve sonuçlarını
diğer sıkıştırmalı algılama matris üretme yöntemleriyle farklı kurtarma algoritmaları
aracılığıyla deneyerek kıyasladık.

Anahtar Sözcükler : Sıkıştırmalı Algılama, Sinyal Kurtarma, Hiçlik Uzayı Özelliği,
Kısıtlı İzometri Özelliği.



1 INTRODUCTION

Compressive sensing was introduced in two papers [7] by Donoho and [2] by Candès,
Romberg and Tao in 2006. Compressive sensing is being used in many areas such as
applied mathematics, computer science. There are a lot of applications in biology,
medicine and radar technology.

An example for technological application of compressive sensing is single-pixel camera.
The idea behind using compressive sensing techniques in single-pixel camera is correlate
in hardware a real-world image. Another example from applications in biology is
Magnetic Resonance Imaging. MRI is a common technology used for various tasks such
as scan anomalies of the brain, follow-up tumors, breast cancer screening. In traditional
approaches, we need time (several minutes or hours) to get a high-resolution image. For
example, childen are too impatient to sit still more than two minutes. Thanks to
compressive sensing, we can get high-resolution images using fewer samples than the
traditional methods.

Figure 1.1: Schematic representation of a single-pixel camera (Image courtesy of Rice
University)

Today, we are in the middle of a digital revolution and we are more concerned with data
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than in previous years. The data generated by us is rapidly rising every year. One of the
problems is how to store that amount of data. One solution to this problem is sampling.
In this approach, we don’t store the whole data, bu we take some samples and then store
them. One needs good algorithms to recover data from these samples.

Compressive sensing gives us a better way to reconstruct original signals with less
samples than the conventional data acquisition methods. It helps us about the storage
problem.

Compressive sensing is useful only with sparse signals. Compressive sensing gives us a
better rate than Nyquist rate through the sparsity of the signal. This is a efficient method
of signal processing using in acquisition and reconstruction of a sparse signal.
Compressive sensing is important in the areas in which we can not measure data as much
as we want. A sparse signal can be reconstructed from small set of linear measurements
using Compressive Sensing.

Imagine we have a signal G of length # . It means that we have # measurements of G.
For some reason, we can only obtain < < # measurements. We represent <
measurements with the vector H. We use the matrix � to recover the vector G using H. We
call � the sensing matrix which helps us to recover G from H with G = �× H.

We can find infinitely many solution matrices � satisfying H = �× G. To choose the best
solution, we use the algorithms. We can categorize the algorithms for choosing the best
solution in 3 categories:

• Optimization Methods

• Greedy Methods

• Thresholding-Based Methods

1.1 Sampling

Sampling is the reduction of a continuous-time signal to a discrete-time signal. A sample
can be a value or a set of values. The sampling theorem let us connect continuous signals
and discrete signals.
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1.2 Sparsity

A sparse signal is a signal which is represented as a linear combination of relatively few
base elements in a basis. In mathematics, we take signals as vectors.
Firstly, we use [#] for the set {1,2,3,4...#}. Let G ∈ R# be a (high-dimensional) vector.

Definition 1.2.1. (Support) The support of a vector G ∈ R# is defined as:

supp(G) = { 9 ∈ [#] : G 9 ≠ 0}

Definition 1.2.2. (B-sparse) A vector G is called B-sparse if at most B of its element is

nonzero, i.e.

‖G‖0 B card(supp(G)) ≤ B

The set of all :-sparse vectors is denoted by

Σ: = {G : ‖G‖0 ≤ :}.

Definition 1.2.3. (?-compressible with constant) Let 1 ≤ ? <∞ and A > 0. A vector

G = (G8)=8=1 ∈ R
# is called ?-compressible with constant � and rate A, if

f: (G)? := min
G̃∈∑:

‖G− G̃‖? ≤ � × :−A for any : ∈ {1, ..., =}

Definition 1.2.4. (Sensing matrix) Suppose we want to recover a signal G ∈ R=. Let

01, 02, ..., 0< ∈ R# , then measurements are linear combinations of the entries of G:

H8 = 〈08, G〉, 8 = 1,2, ...,<

where 〈·, ·〉 is the inner product and < is the number of measurements. We will store 08’s

in a matrix, denoted � ∈ R<×# , as follows

� =



0C1
0C2
0C3
...

0C<


which is called the sensing matrix and 0C

8
is the conjugate of 08.
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We define H = �G as

H =



H1

H2

H3
...

H<


Problem: Let � ∈ R<×# a matrix and H ∈ R<, solve the minimization problem

min
Ḡ∈R#
‖Ḡ‖0 B.C. �Ḡ = H (%0)

We assume that Ḡ ∈ R# is sparse and in this case, there are infinite many solutions. The
problem is how to choose G = Ḡ.
We have two main questions:

1. Is there any conditions about the sensing matrix?

2. Which algorithm should we use?



2 LITERATURE REVIEW

Kotelnikov, Nyquist, Shannon and Whittaker worked on sampling continuous-time
signals. Their stuides [12], [13], [15] and [17] are the theoretical foundation of today’s
digital revolution about sensing systems. The results of these studies shows us that
signals, images or videos can be exactly recovered from a set of uniformly spaced
samples taken at Nyquist rate which is the twice the highest frequency present in the
original signal. This is called the Nyquist-Shannon Theorem. The Nyquist-Shannon
Theorem provides a bridge between discrete-time signals and continuous-time signals.
We can take the discrete-time signals as discrete functions and the continuous-time
signals as continuous functions. This theorem gives us a sufficient condition for a sample
rate to transform a discrete function to continuous function. The Nyquist-Shannon
Theorem honours Harry Nyquist and Claude Shannon. The Nyquist-Shannon Theorem
stated as follows: “If a continuous time signal contains no frequency components higher
than, hz, then it can be completely determined by uniform samples taken at a rate 5B
samples per second where 5B ≥ 2, or, in term of the sampling period ) ≤ 1

2, ”.

Compressive sensing was introduced in two papers [7] by Donoho and [2] by Candès,
Romberg and Tao in 2006. The main idea behind the Compressive Sensing is to get a
better rate than the Nyquist-Shannon rate. The Nyquist-Shannon Theorem states that a
certain minimum number of samples is required to recover an arbitrary signal but when
the signal is sparse, we can reduce the number of required measurements. Sparsity is the
working condition for Compressive Sensing.

The sparse recovery problem can be traced back to earlier papers from the 1990s such as
[6] by Donoho and Starck. Two prominent papers [8] by Donoho and Elad and [9] by
Donoho and Huo was published in early 2000s. The studies of Emmanuel Candès,
Justing Romberg, Terrence Tao and David Donoho had a large impact on the progress of
this field. They showed that a finite-dimensional signal having a sparse or compressible
representation can be recovered from a small amount of measurements.

The Compressive Sensing approach has many recovery algorithms such as optimization

5
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methods, greedy methods and thresholding-based methods. Basis Pursuit is an example
of optimization methods and mathching pursuit algorithms are categorized in greedy
methods. In [16], J. A. Tropp proved that a greedy algorithm called Orthogonal
Matching Pursuit (OMP) can recover a signal with : non-zero entries in dimension =
from random lienar measurements of that signal. J. A. Tropp stated that OMP is an
effective alternative to Basis Pursuit for signal recovery.



3 PRELIMINARIES

Definition 3.0.1. A vector space + is a set over a field K equiped with addition and

scalar multiplication which satisfies the following properties:

1. Commutativity of addition: D + E = E +D.

2. Associativity of addition: D + (E +F) = (D + E) +F.

3. Additive identity: There exists a zero element 0 ∈ + such that D +0 = 0+D = D.

4. Additive inverse: For each D ∈ + there is D′ such that D +D′ = 0 = D′+D.

5. Distribution of scalar multiplication with respect to field addition:

(U+ V)D = (UD) + (VD)

6. Distribution of scalar multiplication with respect to vector addition:

U(D + E) = UD +UE.

7. Associativity of scalar multiplication: (UV)D = U(VD)

8. Identity element of scalar multiplication: There is a scalar 1 ∈ K such that 1D = D.

where U, V ∈ K and D, E,F ∈ + .

Definition 3.0.2. Let*,+ two vector spaces. A function ) :*→+ is called a linear

transformation if it satisfies:

1. ) (D +F) = ) (D) +) (F).

2. ) (UD) = U) (D).

where D,F ∈* and U ∈ K.

Definition 3.0.3. The Null Space of the linear transformation ) is a set of vectors such

that ) (D) = 0.

Definition 3.0.4. An inner product on a vector space + is a function which takes two

vectors D and E of + to a number 〈D, E〉 ∈ K satisfying the following properties:

7
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1. positivity: 〈D,D〉 ≥ 0 for all D ∈ + .

2. definitiveness: 〈D,D〉 = 0 if and only if D = 0.

3. linearity in the first argument:

〈D + E,F〉 = 〈D,F〉 + 〈E,F〉 for all D, E,F ∈ +

〈UD, E〉 = U〈D, E〉 for all U ∈ K and all D, E ∈ +

4. conjugate symmetry: 〈D, E〉 = 〈E,D〉 for all D, E ∈ + .

Definition 3.0.5. For E ∈ + , we define the norm of E by

‖E‖ =
√
〈E, E〉

Cauchy-Schwarz Inequality: If D, E ∈ + then

|〈D, E〉| ≤ ‖D‖‖E‖.

Definition 3.0.6. For a vector G ∈ K# , the usual ?-norm is denoted as

‖G‖? =
(
#∑
;=1
|G; |?

)1/?

, 1 ≤ ? <∞

‖G‖∞ = max
;∈[#]
|G; |.

Let � = (0 9 : ) ∈ K<×= be an <×= matrix, we denote the conjugate transpose of � as
�∗ = (0: 9 ).
The operator norm of a matrix from ℓ? into ℓ? is

‖�‖?→? B max
‖G‖?=1

‖�G‖? .

We can write an explicit expression of the operator norm of � for ? = 1,2,∞:

‖�‖1→1 = max
:∈[#]

<∑
9=1
|0 9 : |,

‖�‖∞→∞ = max
:∈[<]

#∑
:=1
|0 9 : |,

‖�‖2→2 = fmax(�) =
√
_max(�∗�),
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where _max(�∗�) > 0 is the largest eigenvalue of �∗�. Note that ‖�‖1→1 = ‖�∗‖∞→∞.

Definition 3.0.7. Let � be a matrix. � is hermitian (or self-adjoint) if its conjugate

transpose is equal to itself:

08 9 = 0 98,

where 08 9 is the element in the 8-th row and 9-th column of �.

For a hermitian matrix � = �∗,

‖�‖2→2 = sup
‖G‖2=1

|〈�G,G〉|.



4 SPARSE RECOVERY

We will study the conditions of sensing matrix and the sparsity of the original vector G
for exact recovery. In this chapter, we will focus on ℓ1-minimization which is one of the
most popular methods. We follow mainly the book [10] in this chapter.

Definition 4.0.1. Let � be an <×# matrix. The spark of � is the smallest number :

such that there exists a set of : linearly dependent columns of �. We note it as spark(�).

Formally, we can write it as,

spark(�) =min
G≠0
‖G‖0 s.t. �G = 0,

where G is a nonzero vector and ‖G‖0 denotes its number of nonzero coefficients.

The notion of spark was first introduced by Donoho and Elad in [8]. We say that the
spark of a matrix � is 1 if there is a zero column. Also if the rank of � is full, the spark
of � is +∞.

Example 4.0.1. Let

� =



1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0


be an 5×5 matrix. This matrix has no zero column but it has a set of 2 columns which

are linearly dependent. So the spark of � is 2.

The word spark comes from the verbal fusion of the word “sparse” and “rank”.
We denote the null space of � as N (�).

Lemma 4.0.1. Let � be an <×# matrix. Then

spark(�) =min{: :N(�) ∩Σ: ≠ {0}},

and spark(�) ∈ [2,< +1] .

10
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Lemma 4.0.2. For any non-zero 2:-sparse vector ℎ, there are two different :-sparse

vectors G and G̃ such that ℎ can be written as the difference of these two vectors. In other

words, for any non-zero vector ℎ, ℎ ∈ Σ2: if and only if ℎ = G− G̃ for some G, G̃ ∈ Σ: .

Proof. (⇒)
Let ℎ = (ℎ1, ℎ2, ℎ3, ...) be a vector in Σ2: where every ℎ8 ∈ R is an entry of ℎ. Let ( be the
support of the vector ℎ. As ℎ is a non-zero vector there is at least one entry which is not
zero and ( ≠ ∅. As ℎ is 2:-sparse, it has at most 2: entries which are not zero. So
1 ≤ |( | ≤ 2: .
Let (1, (2 be subsets of ( such that:

(1∪ (2 = (, (1∩ (2 = ∅ and |(1 | ≤ :, |(2 | ≤ :.

We also assume (1 ≠ ∅, (2 ≠ ∅.
Let G = (G1, G2, G3, ..., G=) and G̃ = (G̃1, G̃2, G̃3, ..., G̃=) be vectors in Σ: where:

G8 =

{
ℎ8 8 ∈ (1

0 otherwise
and G̃8 =

{
−ℎ8 8 ∈ (2

0 otherwise

So, by substraction ℎ = G− G̃ where G, G̃ ∈ Σ: and ℎ ∈ Σ2: .
(⇐)
Assume G ≠ G̃ and G, G̃ ∈ Σ: . Let ℎ = G− G̃ be a vector, so its entries are ℎ8 = G8 − G̃8. We
want to show that ℎ ∈ Σ2: . Let the sets  , 1 and  2 be the supports of ℎ,G and G̃
respectively. As G, G̃ ∈ Σ: , the cardinality of  1 and  2 is less than or equal to : . We
need to show that  ⊆  1∪ 2.
Suppose 8 ∈  . As ℎ8 = G8 − G̃8, G8 ≠ 0 and G̃8 ≠ 0, then ℎ8 ≠ 0. So we can say that 8 ∈  1 or
8 ∈  2 therefore 8 ∈  1∪ 2. Hence  ⊆  1∪ 2. Since  1∪ 2 has at most 2: non-zero
entries, ℎ ∈ Σ2: .
So | | ≤ | 1 | + | 2 | ≤ : + : = 2: which means ℎ ∈ Σ2: .

Theorem 4.0.3. Let � be an <×# matrix and let : ∈ N. Then the following conditions

are equivalent:

(i) If a solution G of (%0) satisfies ‖G‖0 ≤ : , then this is the unique solution.

(ii) : < spark(�)/2

Proof. (8) ⇒ (88): We will prove it by contradiction.
If (88) does not hold, we can say that there exists ℎ ∈ N (�), ℎ ≠ 0 such that ‖ℎ‖0 ≤ 2: .
So, there exists G and G̃ satisfying ℎ = G− G̃ and ‖G‖0, ‖G̃‖0 ≤ : but �G = �G̃. It is a
contradiction to (8).
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(88) ⇒ (8): Let us assume G and G̃ two vectors which are satisfying H = �G = �G̃ and
‖G‖0, ‖G̃‖0 ≤ : . Thus G− G̃ ∈ N (�) and ‖G− G̃‖0 ≤ 2: < spark(A). By the previous
lemma, we can say that G− G̃ = 0 and it implies (8).

Theorem 4.0.4. Let � be an <×# matrix. The following properties are equivalent:

1. Every s-sparse vector G ∈ R# is the unique s-sparse solution of �I = �G, that is, if

�G = �I and both G and I are s-sparse, then G = I.

2. The null space N(�) does not contain any 2s-sparse vector other than the zero

vector, that is, N(�) ∩ {I ∈ R# : ‖I‖0 ≤ 2B} = {0}

3. For every ( ⊂ [#] with 20A3 (() ≤ 2B, the submatrix �( is injective as a map from

R( to R<.

4. Every set of 2B columns of � is linearly independent.

Recall that the Vandermonde matrix is a matrix with the terms of a geometric
progression in each row, an <×# matrix:

+ =



1 U1 U2
1 U3

1 ... U=−1
1

1 U2 U2
2 U3

2 ... U=−1
2

1 U3 U2
3 U3

3 ... U=−1
3

...
...

...
...

. . .
...

1 U< U2
< U3

< ... U=−1
<


The following proposition is well-known.

Proposition 4.0.1. The determinant of a square Vandermonde matrix (i.e. < = =) can be

written as

det(+) =
∏

1≤8< 9≤=
(U 9 −U8).

Theorem 4.0.5. For any integer # ≥ 2B, there exists an <×# sensing matrix � with

< = 2B rows such that every s-sparse vector G ∈ R# can be recovered from its

measurement vector H = �G ∈ R< as a solution of (%0).

Proof. Let C# > · · · > C2 > C1 > 0 be real numbers and � ∈ C<×# be a matrix with < = 2B

� =


1 1 1 . . . 1
C1 C2 C3 . . . C#
...

...
...

. . .
...

C2B−1
1 C2B−1

2 C2B−1
3 . . . C2B−1

#


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Let ( = { 91 < · · · < 92B} be an index set. The square matrix �( is the transpose of a
Vandormonde matrix. We can calculate determinant of the matrix �(.

det (�() =

����������
1 1 1 . . . 1
C1 C2 C3 . . . C#
...

...
...

. . .
...

C2B−1
1 C2B−1

2 C2B−1
3 . . . C2B−1

#

���������� =
∏
:<;

(C 9; − C 9: ) > 0.

We can say that �( is invertible. So every B-sparse vector G ∈ C# is the unique B-sparse
solution vector that satisfies �I = �G. Hence, we can recover it as the unique solution
(%0).



5 SOME SENSING MATRIX GENERATION
METHODS

In this chapter, we will examine the following sensing matrix generation methods:
Gaussian, Bernoulli, Hadamard, Toeplitz and Circulant matrices. Gaussian, Bernoulli
and Hadamard matrices are random matrices, Toeplitz and Circulant matrices are
deterministic matrices [1]. We will make some experiments with these types of matrices
using the Orthogonal Matching Pursuit and Iterative Hard Thresholding recovery
algorithm.

Bernoulli, Gaussian and Hadamard matrices generated as # ×# matrices with the given
distribution. But in Compressive Sensing, we need that the sensing matrix has a lot more
columns than the rows. We choose < random rows from the generated matrices.

Definition 5.0.1. A random Gaussian matrix is a matrix, each of whose entries is a

random variable with normal distribution.

Definition 5.0.2. A random Bernoulli Matrix is a matrix, whose entries are ±1 with

equal probability.

Definition 5.0.3. A Hadamard matrix is a square matrix whose entries are ±1 and

whose rows are mutually orthogonal.

Hadamard matrices were invented by James Joseph Sylvester in 1867. Let � be a
Hadamard matrix of order =, then the following matrix is a Hadamard matrix of order 2=[

� �

� −�

]
.

Definition 5.0.4. A Toeplitz matrix is in the following form

14
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

00 0−1 0−2 . . . . . . 0−(=−1)

01 00 0−1
. . .

. . .
...

02 01
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0−1 0−2
...

. . .
. . .

. . . 00 0−1

0=−1 . . . . . . 02 01 00


where �8, 9 = 0 9−8.

Definition 5.0.5. A Circulant matrix is in the following form



20 2=−1 2=−2 . . . 22 21

21 20 2=−1
. . .

. . . 22

22 21
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 2=−2

2=−2
. . .

. . .
. . . 20 2=−1

2=−1 2=−2 . . . . . . 21 20


which is a special kind of Toeplitx matrix. In each column, instead of a random number,

we use the last element of previous column.



6 RECOVERY ALGORITHMS

In this chapter, we will study some recovery algorithms to find the original vector G.
These algorithms are divided in three categories:

• Optimization Methods

• Greedy Methods

• Thresholding-Based Methods

6.1 Optimization Methods

An optimization problem is a problem of type

minimize
G∈R#

�0(G) subject to �8 (G) ≤ 18, 8 ∈ [=],

where the function �0 : R# → R are called constraint functions. If �0, �1, ..., �= are all
convex functions, then the problem is called a convex optimization problem.
Our sparse recovery problem is an optimization problem. We can write it as:

minimize ‖I‖0 subject to �I = H (%0)

The main idea of Chen, Donoho and Saunders in the fundamental paper [3] was to
substitute the ℓ0 norm by the closest convex norm, which is the ℓ1 norm. This method is
called convex-relaxation:

minimize ‖I‖1 subject to �I = H (%1)

This idea says that the solution of (%1) coincides with the solution of (%1). The figure
gives us a geometric intuition why the solution of (%1) coincides with the solution of
(%1).
In Figure 6.1, we can see unit spheres for the ℓ? norms with ? = 1,2,∞ and for the ℓ?
quasinorm with ? = 1

2 in R2 [5].

16
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Figure 6.1: Unit spheres in R2 for the ℓ? norms with ? = 1,2,∞ and for the ℓ? quasinorm
with ? = 1

2 .

Solving an underdetermined system is impossible if we don’t have another additional
information. For Compressive Sensing, sparsity is the additional information to solve the
underdetermined system.

Figure 6.2: Best approximation of a point in R2 by a one-dimensional subspace using the
ℓ? norms for ? = 1,2,∞ and the ℓ? quasinorm with ? = 2.

In Figure 6.2, we can examine the optimization problem from a geometric view [5].
From this view, an optimization problem is blowing up the ℓ? ball until they touch the
hyperplane �G = H. The intersection point is the optimal solution of sparse recovery
problem. We can see that for ? = 2 and ? =∞ the intersection points are not on the
coordinate axis so the intersection point is not sparse. So, for ? ≤ 1, ℓ? norm ensure the
sparsity of the solution. Also, we know that for ? < 1, the ℓ? balls are not convex, we use
the ℓ1 norm for sparse recovery problem.
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Basis Pursuit

Input: sensing matrix �, measurement vector H
Instruction:

G♯ = argmin ‖I‖1 subject to �I = H

Output: the vector G♯

argmin function gives us the vector I whose ℓ1-norm is the minimum.

Theorem 6.1.1. Let � ∈ R<×# be a sensing matrix with columns 01, ..., 0# . Assuming

the uniqueness of a minimizer G♯ of

minimize
I∈R#

‖I‖1 subject to �I = H

the system {0 9 , 9 ∈ supp(G♯)} is linearly independent, and in particular

‖G‖0 = card(supp(G♯)) ≤ <.

Proof. We will prove this theorem by contradiction. Assume that the system {0 9 , 9 ∈ (}
is linearly dependent where ( = supp(G♯). So, there is a nonzero vector E ∈ R# supported
on ( which satisfies �E = 0. We can say that for any C ≠ 0,

‖G♯‖1 < ‖G♯ + CE‖1 =
∑
9∈(
|G♯ + CE 9 |.

We can write it as below:∑
9∈(
|G♯ + CE 9 | =

∑
9∈(

sgn(G♯
9
+ CE 9 ) (G♯9 + CE 9 ).

If we take |C | small enough, we have

sgn(G♯ + CE 9 ) = sgn(G♯
9
) for all 9 ∈ (.
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Hence

‖G♯‖1 <
∑
9∈(

sgn(G♯
9
) (G♯

9
+ CE 9 ) =

∑
9∈(

sgn(G♯
9
) (G♯

9
) + C

∑
9∈(

sgn(G♯
9
) (E 9 )

= ‖G♯‖1 + C
∑
9∈(

sgn(G♯
9
)E 9 .

We can always choose a small C ≠ 0 such that C
∑
9∈( sgn(G♯

9
)E 9 ≤ 0, so it is a

contradiction.

Let E ∈ C# , ( ⊂ [#] and E( be the restriction of E on (.

6.1.1 Null Space Property

Null Space Property is an important specification of sensing matrices. Let � be an <×#
matrix. Recall that the null space N(�) of the matrix � is defined as:

N(�) = {G ∈ R# : �G = 0}.

To recover all :-sparse signals G from H = �G, the matrix � must uniquely represent all
G ∈ Σ: . It means:

∀G, G̃ ∈ Σ: , G ≠ G̃ =⇒ �G ≠ �G̃.

Otherwise we can not recover the original vector from H.

Example 6.1.1. Let � be our sensing matrix defined as:

� =

[
1 3

]
The Null Space of this matrix is N(�) = {(G, H) : G +3H = 0}. Let G = [0; 1] be the

original vector.

Figure 6.3: Example for ℓ1 norm approximation
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The red dot G in the Figure 6.3 is the original vector x. The blue square is the unit sphere

for ℓ1 norm.

Definition 6.1.1. (Null Space Property) Let � be an <×# matrix. We say that �

satisfies the Null Space Property relative to a set ( ⊂ [#] if ‖E(‖1 < ‖E (̄‖1 for all

E ∈ N (�)\{0}.

Theorem 6.1.2. Let � be an <×# matrix. Every vector G ∈ R# supported on a set ( is

the unique solution of (%1) with H = �G if and only if � satisfies the Null Space Property

relative to S.

Proof. Given an indexed set (, Assume that every vector G ∈ R# supported on ( is the
unique minimizer of ‖I‖1 subject to �I = �G. Thus for any vector E ∈ N�\{0}, the
vector E( is the unique minimizer of ‖I‖1 subject to �I = �E(. We have �(−E(2 ) = �E(
and −E(2 ≠ E( because �(E(2 + E() = �E = 0 and E ≠ 0. We can conclude that
‖E( |1 < ‖E(2 ‖1. This establishes the Null Space Property relative to (.
Conversely, let us assume that the Null Space Property relative to S holds.
Given a vector G ∈ R# supported on ( and a vector I ∈ R# , I ≠ G satisfying �I = �G, we
consider the vector E = G− I ∈ N (�)\{0}.

‖G‖1 ≤ ‖G− I(‖1 + ‖I(‖1
= ‖E(‖1 + ‖I(‖1
< ‖E(2 ‖1 + ‖I(‖1
= ‖ − I(2 ‖1 + ‖I(‖1
= ‖I‖1.

So, we can say that the vector G is the unique solution of (%1) with H = �G.

This theorem first appeared explicitly in [11]. We show the term NSP in [4] which was
suggested by A. Cohen, W. Dahmen and R. DeVore. The Null Space Property is usually
difficult to show directly. Instead of showing the Null Space Property we will use the
Restricted Isometry Property which will be introduced in the next chapter. Restricted
isometry property is much popular than the Null Space Property.
There is another definition of the Null Space Property using ℓ2-norm. We will use it later
to establish a connection between Null Space Property and Restricted Isometry Property.

Definition 6.1.2. Let � be an <×# matrix. The matrix � satisfies the Null Space

Property of : if there exists a contant � ∈ R such that for all E ∈ N (�),

‖E(‖2 ≤ �
‖E(2 ‖1√

:
for all ( ⊂ [#] with |( | ≤ :.
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Let Δ : R<→ R# be a linear map which will be our recovery method. The following
property of this method guarantees exact recovery of all sparse signals in Σ: :

‖Δ (�G) − G‖2 ≤ �
f: (G)1√

:
, for all G ∈ R=,

where f: (G)? = inf
G̃∈Σ:

‖G− G̃‖? for ? = 1.
(6.1)

If G ∈ Σ: then we can say that f: (G)1 = 0. It implies that ‖Δ (�G) − G‖2 is zero and
Δ (�G) = G.

Theorem 6.1.3. Let � be an <×# sensing matrix and let Δ : R<→ R= be a recovery

algorithm. If the sensing matrix � and the recovery algorithm Δ satisfies the property

6.1 then � satisfies the Null Space Property of order 2: .

Proof. Let E ∈ N (�) be a vector and we define ( for the indices of 2: largest entries of
the vector v. We can write E = E( + E(2 .
We separate the set ( to (0 and (1 such that both of them has : elements. As |( | = 2: ,
we can write E( = E(0 + E(1 . We define the vector G = E(1 + E(2 and we will write the
vector v as the difference of two vectors: E = G− G̃ where G̃ = −E(0 .
So, by construction of G̃, G̃ is a :-sparse vector as |(0 | = : .
We apply Equation (6.1) which guarantees the exact recovery of all vectors in Σ: . We
get G̃ = Δ (�G̃) and as E ∈ N (�):

�E = �(G− G̃) = 0.

So �(G) = �(G̃) and we have G̃ = Δ (�(G)).
We can say that ‖EB‖2 ≤ ‖E‖2 = ‖G− G̃‖2 = ‖G−Δ (�G)‖2.
We apply Equation (6.1) and we get:

‖G−Δ (�G)‖2 ≤
�f: (G)1√

:
.

And we extend by
√

2 the right side of the equation:

‖G−Δ (�G)‖2 ≤
�
√

2f: (G)1√
2:

.

We have f: (G)1 = inf G̃∈Σ:
‖G− G̃‖1. As G = E(1 + E(2 and E(1 ∈ Σ: , we also have

f: (G)1 ≤ ‖G− E(−1‖1 = ‖E(2 ‖1. We finally get:

‖E(‖2 ≤
�
√

2‖E(2 ‖1√
2:

.
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So, the sensing matrix � satisfies the Null Space Property of order 2: .

6.1.2 Restricted Isometry Property

Definition 6.1.3. Let � ∈ C<×# , the restricted isometry constant XB is defined as the

smallest X( such that

(1− XB)‖G‖22 ≤ ‖�G‖
2
2 ≤ (1+ XB)‖G‖

2
2 (6.2)

for all B-sparse G ∈ C# .

A matrix � satisfies the RIP if XB is between 0 and 1.
In the RIP, we have bounds around 1 but in practice, we can always use the scalars U and
V with 0 < U < V <∞:

U‖G‖22 ≤ ‖�G‖
2
2 ≤ V‖G‖

2
2 .

To examine the scalars U and V, we write � = 1
\
(\�) where \� = �̃ and \ is a scalar. We

can write the equation as follows:

U\2‖G‖22 ≤ ‖ �̃‖
2
2 ≤ V\

2‖G‖22 .

We have U\2 = 1−f: and V\2 = 1+f: . It gives us (U+ V)\2 = 2 and we obtain \ =
√

2
U+V .

Now, we will get X: using \.

U\2 = 1− X: =⇒ U
2

U+ V = 1− X: =⇒
2U
U+ V −1 = −X:

=⇒ X: =
V−U
U+ V .

This gives us our desired bounds of X: : 0 < X: < 1.
It is important to notice that if a sensing matrix � satisfies the Restricted Isometry
Property of order : with the Restricted Isometry Constant 0 < X: < 1 then the matrix �
satisfies the Restricted Isometry Property of order :′ with :′ < : and X: ′ < X: .
In the next section, we will see the relation between the Null Space Property and the
Restricted Isometry Constant. Before this, we will examine some properties of Restriced
Isometry Contants.

Proposition 6.1.1. Let � ∈ C# with isometry contants X(.

1. The restricted isometry contants are ordered, X1 ≤ X2 ≤ X3 ≤ . . .
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2. It holds

XB = max
(⊂[#],|( |≤B

‖�∗(�( − Id ‖2→2

= sup
G∈)B
|〈(�∗�− Id)G, G〉|,

where )B = {G ∈ C# , ‖G‖2 = 1, ‖G‖0 ≤ B}.

3. Let D, E ∈ C# with adjoint supports, suppD∩ suppE = ∅. Let B = | suppD | + | suppE |.
Then

|〈�D, �E〉| ≤ XB‖D‖2‖E‖2.

Proof. First property is clear since an B-sparse vector is also B+1-sparse.
For the second property, we can denote the following equation by subtracting ‖G‖2 from
Equation 6.2:

|‖�G‖22 − ‖G‖
2
2 ≤ XB‖G‖

2
2 for all ( ⊂ [#], |( | ≤ B, for all G ∈ C# , suppG ⊂ (

We can write the term on the left hand side as |〈(�∗�− Id)G, G〉|. We take the supremum
over all G ∈ C# with suppG ⊂ ( and unit norm ‖G‖2 = 1. It gives us the operator norm
‖�∗

(
�( − Id ‖2→2. We take the maxiumum of the expression over all subsets S with

|( | ≤ B and it completes the proof.
For the third property, we denote ( = suppD,) = suppE and let D̃, Ẽ denote the vector D, E
restricted to their supports. We can write

〈�D, �E〉 = D̃∗�∗(�) Ẽ.

We can write this equality as

D̃∗�∗(�) Ẽ = (D̃
∗,0∗) )�∗(∪) �(∪) (0

∗
(, Ẽ
∗)∗.

where 0( is the zero vector restricted on (. Since the supports of D and E are disjoint,
(D̃∗,0∗

)
) Id(0∗

(
, Ẽ∗)∗ = 0 and we can write

D̃∗�∗(�) Ẽ = (D̃
∗,0∗) ) (�∗(∪) �(∪) − Id) (0∗(, Ẽ

∗)∗.

So, we can write
|〈�D, �E〉| ≤ ‖�∗(∪) �(∪) − Id ‖2→2‖D‖2‖E‖2.

We apply the second property of this proposition and complete the proof.
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6.1.3 Experiments

We made some experiments to test the Restricted Isometry Property using Matlab. In the
first experiment, we tried to measure the Restricted Isometry Property. We choose
# = 256, < = 16, : = 6 where # is the length of original vector, < is the length of
measurement vector and : is the sparsity level. First, we generate two original vectors
and a <×# matrix whose elements are normally distributed random numbers. Then, we
calculate the measurement vectors using this matrix. Lastly, we calculate the ratio of the
difference between original vectors to the difference between measurement vectors using
ℓ1 norm. We repeated these calculations 100.000 times and the following graphic is the
the number of ratios. 91.98% of the calculations are between 0.1 and 0.3. The lowest
one is 0.0976 and the biggest one is 0.6811.

Figure 6.4: RIP test using the Gaussian Matrix

I repeated the experiment using Hadamard matrix. It gives 84.25% of the calculations
are between 0.1 and 0.3. The lowest one is 0.1546 and the biggest one is 0.8137.

6.1.4 Relation between Null Space Property and Restricted Isometry
Property

We will see that the Restricted Isometry Property is a stronger condition than the Null
Space Property. We will prove this condition for both definitions of the Null Space
Property. Firstly, we will use the first definition of the Null Space Property. Secondly, we
will give the main theorem that used the second definition of the Null Space Property
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Figure 6.5: RIP test using the Hadamard Matrix

and then we will examine and prove the required lemmas. Lastly, we prove the main
theorem.

Theorem 6.1.4. Suppose the restricted isometry constant X2B of a matrix � ∈ C<×#

satisfies

X2B <
1
3

then the Null Space Property of order s is satisfied. In particular, every B-sparse vector

G ∈ C# is recovered by ℓ1-minimization.

Proof. Let E ∈ N (�) be given. We define the set (0 as the index set of B largest absolute
entries of the vector E. We partition the complement of (0 as (20 = (1∪ (2∪ . . . where (1

is the index set of B largest absolute entries of [#]\(0 and (2 is the index set of B largest
absolute entries of [#]\((0∪ (1) etc.
As E ∈ N (�), we can write �(E(0) = −�(E(1 + E(2 + . . . ).

‖E(0 ‖22 ≤
1

1− X2B
‖�(E(0)‖22

=
1

1− X2B
〈�(E(0), �(−E(1) + �(−E(2) + . . . 〉

=
1

1− X2B

∑
:≥1
〈�(E(0 , �(−E(: )〉.
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We can apply the third property of the previous proposition:

〈�(E(0), �(−E(: ) ≤ X2B‖E(0 ‖2‖E(: ‖2.

So;
‖E(0 ‖22 ≤

X2B
1− X2B

∑
:≥1
‖E(: ‖2‖E(0 ‖2.

We divide the expression by ‖E(0 ‖2:

‖E(0 ‖2 ≤
X2B

1− X2B

∑
:≥1
‖E(: ‖2.

As B entries of E(: don’t exceed B entries of E(:−1 for : ≥ 1, we have

| | < 1
2

∑
;∈(:−1

|; | for all 9 ∈ (: ,

and therefore

‖E(: ‖2 =
( ∑
9∈(:
| 9 |2

) 1
2 ≤ 1
√
B
‖E(:−1 ‖1.

We obtain by the Cauchy-Schwarz inequality

‖E(0 ‖1 ≤
√
B‖E(0 ‖2 ≤

X2B
1− X2B

‖E(:−1 ‖1

≤ X2B
1− X2B

(‖E(0 ‖1 + ‖E(20 ‖1)

Since X2B <
1
3 , one has 1− X2B <

2
3 and X2B

1−X2B
< 1

2 .
We can write ‖E(0 ‖1 < 1

2 ‖E(0 ‖1 + 1
2 ‖E

2
(0
‖1, so ‖E(0 ‖1 < ‖E(20 ‖1.

Theorem 6.1.5. Let � be an <×# sensing matrix. Suppose that the matrix � satisfies

the Restricted Isometry Property of order 2: with X2: <
√

2−1 ≤ 1
2 . Then the matrix �

satisfies the Null Space Property of order 2: with constant:

� =

√
2X2:

1− (1+
√

2)X2:
.

Lemma 6.1.6. Let E be a :-sparse vector. Then:

‖E‖1√
:
≤ ‖E‖2 ≤

√
: ‖E‖∞.

Proof. For any vector E, we can denote ‖E‖1 = |〈E, sgn(E)〉|. We apply Cauchy-Schwarz
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inequality and we obtain:

|〈E, sgn(E)〉| ≤ ‖E‖2‖ sgn(E)‖2.

So, we have also:
‖E‖1 ≤ ‖E‖2‖ sgn(E)‖2.

As E ∈ Σ: , it has no more than : non-zero entries and sgn(E) has no more than :
non-zero entries equal to ±1. So, we have ‖ sgn(E)‖2 ≤

√
: . We obtain

‖E‖1√
:
≤ ‖E‖2,

which is our lower bound. By definition we know that ‖E‖2 = (
∑=
8=1(E8)2)

1
2 and

‖D‖∞ =max8=1,2,...,= |D8 |. So ‖D‖∞ is an upper bound for each non-zero entry of D and we
get the upper bound:

‖E‖2 ≤
√
: ‖E‖∞.

We conclude:
‖E‖1√
:
≤ ‖E‖2 ≤

√
: ‖E‖∞.

Lemma 6.1.7. Let � be an <×= matrix satisfying Restricted Isometry Property of order

2: . Let E ∈ R= be a non-zero vector. Let (0 ∈ [#] be any set such that |(0 | ≤ : . We define

(1 as the index set of : largest entries of (20 and we set ( = (0∪ (1. Then, we have the

following equation:

‖E(‖2 ≤ U
‖E(0 ‖1√

:
+ V |〈�E(, �E〉|‖E(‖2

,

where U =
√

2X2:
1−X2:

and V = 1
1−X2:

.

To prove this lemma, we need the following lemmas.

Lemma 6.1.8. Suppose D, E are orthogonal vectors, then

‖D‖2 + ‖E‖2 ≤
√

2‖D + E‖2.

Proof. We define a 2×1 vector F = [‖D‖2, ‖E‖2]C ∈ R2. We apply Lemma (6.1.6) with
: = 2 and we have

‖F‖1 ≤
√

2‖F‖2.
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Using (0 + 1)2 ≤ 2(02 + 12), we have

‖D‖2 + ‖E‖2 ≤
√

2
√
‖D‖22 + ‖E‖

2
2 .

As D and E are orthogonal vectors, ‖D‖22 + ‖E‖
2
2 = ‖D + E‖

2
2 , so we have

‖D‖2 + ‖E‖2 ≤
√

2‖D + E‖2.

Lemma 6.1.9. Let � be an <×= matrix satisfying the Restricted Isometry Property of

order 2: , then for vector D, E ∈ Σ: with disjoint support,

|〈�D, �E〉| ≤ X2: ‖D‖2‖E‖2.

Proof. Suppose D, E ∈ Σ: vectors with disjoint support, also that ‖D‖2 = ‖E‖2 = 1 and
D ⊥ E. As supports of D and E are disjoint, D + E ∈ Σ2: and ‖D± E‖22 = 2. We apply the
Restricted Isometry Property and we have

‖D± E‖22 (1− X2: ) ≤ ‖�D± �E‖22 ≤ ‖D± E‖
2
2 (1+ X2: ).

So
2(1− X2: ) ≤ ‖�D± �E‖22 ≤ 2(1+ X2:).

We know that

‖�D + �E‖22 = 〈�D + �E, �D + �E〉 = 〈�D, �D〉 + 〈�D, �E〉 + 〈�E, �D〉 + 〈�E, �E〉,

and

‖�D− �E‖22 = 〈�D− �E, �D− �E〉 = 〈�D, �D〉 − 〈�D, �E〉 − 〈�E, �D〉 + 〈�E, �E〉.

By taking the sum of these equations,

|〈�D, �E〉| = 1
4
��‖�D + �E‖22 − ‖�D− �E‖22 �� ≤ X2: .

We have shown that if ‖D‖2 = ‖E‖2 = 1 and they have disjoint supports and they are
:-sparse then |〈�D, �E〉| ≤ X2: .
Suppose D, E ∈ Σ: are non-zero with disjoint support and let D0 =

D
‖D‖ , E0 =

E
‖E‖ so
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‖D0‖ = ‖E0‖ = 1 with disjoint support, then

|〈�D0, �E0〉| =
|〈�D, �E〉|
‖D‖‖E‖ .

So, we have
|〈�D, �E〉| ≤ X2: ‖D‖2‖E‖2.

Lemma 6.1.10. Let (0 ⊂ [#] such that |(0 | ≤ : . Let E ∈ R= be a vector, we define (1 as

the set of the : largest absolute entries’ index of E(20 , a set (2 as the set of the next :

largest absolute entries’ index and so on. Then, we have∑
9≥2
‖E( 9
‖2 ≤

‖E(20 ‖1√
:

.

Proof. By Lemma 6.1.6, we know that:∑
9≥2
‖E( 9
‖2 ≤
√
:
∑
9≥2
‖E( 9
‖∞.

As ( 9 ’s are decreasing, we can say that for 9 ≥ 2 ‖E( 9
‖∞ ≤

‖E( 9−1 ‖1
:

. So,

∑
9≥2
‖E( 9
‖2 ≤
√
:
∑
9≥2
‖E( 9
‖∞ ≤

1
√
:

∑
9≥1
‖E( 9
‖1 =
‖E(20 ‖1√

:
.

as (20 = (1∪ (2∪ (3∪ ...∪ (=.

Lemma 6.1.11. Let � be an <×= matrix satisfying Restricted Isometry Property of

order 2: an let E ∈ R= be a non-zero vector. Let (0 ⊂ [#] be a set such that |(0 | ≤ : . We

define the set (1 as the index set of : absolute largest entries of E(20 and ( = (0∪(1. Then

‖E(‖2 ≤ U
‖E(20 ‖1√

:
+ V |〈�E(, �E〉|‖E(‖2

where

U =

√
2X2:

1− X2:
, V =

1
1− X2:

.

Proof. We know that E( ∈ Σ2: and as � satisfies Restricted Isometry Property of order
2: we have

(1− X2: )‖E(‖22 ≤ ‖�E(‖
2
2 .
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We define ( 9 as in the previous lemma. By the definition E( = E−
∑
9≥2 E( 9

= E(0 + E(1

and by linearity of the matrix �, �E( = �E−
∑
9≥2 �E( 9

. We have

(1− X2: )‖E(‖22 ≤ 〈�E(, �E(〉 = 〈�E(, �E−
∑
9≥2

�E( 9
〉.

(1− X2: )‖E(‖22 ≤ 〈�E(, �E〉 − 〈�E(,
∑
9≥2

�E( 9
〉.

We know that E(8 , E( 9
∈ Σ: for 8 ≠ 9 have disjoint supports and they are orthogonal:

|〈�E(8 , �E( 9
〉| ≤ X2: ‖E(8 ‖2‖E( 9

‖2

for any 8 ≠ 9 .
Lemma (6.1.8) gives us ‖E(0 ‖2 + ‖E(1 ‖2 ≤

√
2‖E(‖2 and we have

����〈�E(,∑
9≥2

�E( 9
〉
���� = ����∑

9≥2
〈�E(0 , �E( 9

〉 +
∑
9≥2
〈�E(1 , �E( 9

〉
����

≤
∑
9≥2
|〈�E(0 , �E( 9

〉| +
∑
9≥2
|〈�E(1 , �E( 9

〉|

≤ X2: ‖E(0 ‖2
∑
9≥2
‖E( 9
‖2 + X2: ‖E(1 ‖2

∑
9≥2
‖E( 9
‖2

= X2:
∑
9≥2
‖E( 9
‖2(‖E(0 ‖2 + ‖E(1 ‖2)

≤
√

2X2: ‖E(‖2
∑
9≥2
‖E( 9
‖2.

We use Lemma (6.1.10): ����〈�E(,∑
9≥2

�E( 9

���� ≤ √2X2: ‖E(‖2
‖E(20 ‖1√

:
.

So, we have:

(1− X2: )‖E(‖22 ≤
����〈�E(, �E〉 − 〈�E(,∑

9≥2
�E( 9
〉
����

≤ |〈�E(, �E〉| +
����〈�E(,∑

9≥2
�E( 9
〉
����

≤ |〈�E(, �E〉| +
√

2X2: ‖E(‖2
‖E(20 ‖1√

:
.
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We divide by (1− X2: )‖E(‖2:

‖E(‖2 ≤
√

2X2:
‖E(20 ‖1√
: (1− X2:

+ |〈�E(, �E〉|‖E(‖2(1− X2:
.

We set: √
2X2:

1− X2:
= U,

1
1− X2:

= V.

So, we have:

‖E(‖2 ≤ U
‖E(20 ‖1√

:
+ V |〈�E(, �E〉|‖E(‖2

.

Notice that if X2: <
√

2−1 then U < 1, we will use it in the proof of next lemma.

Theorem 6.1.12. Let � be an <×= matrix satisfying the Restricted Isometry Property of

order 2: with
√

2−1. � satisfies the Null Space Property of order 2: with constant

� =

√
2X2:

1− (1+
√

2)X2:
.

Proof. We know that the matrix � satisfies the Null Space Property of order 2: if there
exists a non-negative constant � such that for all E ∈ N (�),

‖E(‖2 < �′
‖E(2 ‖1√

2:
≤ � ‖E(

2 ‖1√
:

where |( | ≤ 2:.

We need to show that for the set ( as the index of 2: largest entries of E, ‖E(‖2 < � ‖E(2 ‖1√
:

.
We define (0 the index set of : largest entries of E and we apply Lemma 6.1.11.
As �E = 0, the term V

|〈�E( ,�E〉|
‖E( ‖2 is zero, so we have:

‖E(‖2 ≤ U
‖E(20 ‖1√

:
.

We use Lemma 6.1.6 and we have:

‖E(20 ‖1 ≤
√
: ‖E(20 ‖2.

We know that ( = (0∪ (1 where (0 and (1 are disjoint with |(0 | = |(1 | = : . We use
Lemma 6.1.6

‖E(20 ‖1 = ‖E(1 ‖1 + ‖E(2 ‖1 ≤
√
: ‖E(1 ‖2 + ‖E(2 ‖1.
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So, we have:

‖E(‖2 ≤ U(‖E(1 ‖2 +
‖E(2‖1√

:
).

We know that ‖E(1 ‖2 ≤ ‖E(‖2, so we have:

‖E(‖2−U‖E(‖2 ≤ U
‖E(2 ‖1√

:

⇒ (1−U)‖E(‖2 ≤ U
‖E(2 ‖1√

:
.

We know that X2: <
√

2−1 by assumption, so U < 1. We can divide by (1−U) and we
get:

‖E(‖2 ≤
U

1−U
‖E(20 ‖1√

:
.

Hence, we proved the theorem with:

� =
U

1−U =
√

2X2:

1− (1+
√

2)X2:
.

6.2 Greedy Methods

In this section, we study the orthogonal matching pursuit algorithm which is the most
well-known greedy approach. We call (= the target support and G= the target vector
which is supported on (=. In each iteration of this algorithm, the index is added to the
target support and the target is updated.

Orthogonal Matching Pursuit

Input: sensing matrix �, measurement vector H
Initialization: (0 = ∅, G0 = 0.
Iteration: repeat until a stopping criterion is met = = =̄:

(=+1 = (=∪ { 9=+1}, 9=+1 := argmax{|�∗(H− �G=)) 9 |},

G=+1 = argmin
I∈CN

{‖H− �I‖2, supp(I) ⊂ (=+1}

Output: the =̄-sparse vector G♯ = G=̄
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6.2.1 Experiments

We made some experiments using the Orthogonal Matching Pursuit algorithm. In the
first experiment, we generate a random 256-dimensional 5-sparse vector G and a sensing
matrix � ∈ R25×256. Then, we calculate the measurement vector H ∈ R25×1. We use the
Orthogonal Matching Pursuit algorithm to recover G. So my variables of this experiment
are < = 25, # = 256, B = 5.

Figure 6.6: Recovery using the Random Gaussian Matrix and the Orthogonal Matching
Pursuit algorithm

As shown in the figure above, the original vector G and the recovered G are exactly the
same. We compare also the difference between these vectors using ℓ1-norm and ℓ2-norm.
The difference calculated using ℓ1-norm between the original vector G and the recovered
vector is 1.249×10−15. If we use ℓ2-norm, the difference would be 7.494×10−16.
We repeat this experiment using Gaussian matrices, Bernoulli matrices, Hadamard
matrices and Toeplitz matrices 10000 times.

Sensing Matrix Error using ℓ1 Error using ℓ2
Gaussian 0.2058 0.1555
Bernoulli 0.2069 0.1558
Hadamard 0.1678 0.1373
Toeplitz 0.5195 0.3911
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Compared to the first experiment which have been only repeated once, these averages are
very high. We also control if there is some error. We stored all the records in a list and it
shows me that the errors are generally (8804 of 10000 for ℓ1-norm) less than 1×10−4 but
also there are some greater errors. For example, in one of the 10000 repetitions using
Gaussian Matrix, the error was 2.6513.

6.3 Thresholding-Based Methods

We need to define two operators:

!B (I) := index set of B largest absolute entries of I ∈ C#

�B (I) := I!B (I)

The operator �B is called hard thresholding operator of order B. The operator �B keeps
the B largest absolute entries of the vector I ∈ C# and set the others to zero.
The basic thresholding algorithm firstly determine the support of the B-sparse vector
G ∈ C# which we don’t know yet. Then, it recovers the vector G ∈ C# from the
measurement vector H = �G ∈ C# as the indices of B largest absolute entries of �∗H and
finds the vector with this support that best fits the measurement.

Basic Thresholding

Input: sensing matrix �, measurement vector H, sparsity level B.
Instruction:

(♯ = !B (�∗H),

G♯ = argmin
I∈CN

{
‖H− �I‖2, supp(I) ⊂ (♯

}
Output: the B-sparse vector G♯.

Proposition 6.3.1. Let G ∈ C# be a vector supported on the set (. G can be recovered

from H = �G using the basic thresholding algorithm if and only if

min
9∈(
| (�∗H) 9 | > max

;∈(
| (�∗H); |.

Proof. We can say that G can be recovered if and only if the set (♯ defined in basic
thresholding algorithm and the set ( are the same. It means that if any entry of �∗H on (
is greater than any entry of �∗H on (.
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Iterative Hard Thresholding

Input: sensing matrix �, measurement vector H, sparsity level B.
Initialization: B-sparse vector G0, typically G0 = 0.
Iteration: repeat until a stopping criterion is met at = = =:

G=+1 = �B (G= + �∗(H− �G=)).

Output: the B-sparse vector G♯ = G=.

6.3.1 Experiments

I repeated the experiment that I did with Orhogonal Matching Pursuit algorithm with
Iterative Hard Thresholding algorithm. Compared to Orthogonal Matching Pursuit
algorithm, using Iterative Hard Thresholding gives us bigger errors using ℓ1-norm and
ℓ2-norm.

Sensing Matrix Error using ℓ1 Error using ℓ2
Gaussian 1.0044 0.9885
Bernoulli 0.7522 0.5764
Hadamard 0.7607 0.5815
Toeplitz 1.2042 0.9390

In 8137 of 10000 experiments, the errors calculated using ℓ1-norm and Gaussian
matrices as sensing matrices are less than 1×10−4. The greatest error using ℓ1-norm is
2.5356. As the results of OMP experiments and IHT experiments, there is no big
difference between them. But Orthogonal Matching Pursuit algorithm provided us better
recoveries than Iterative Hard Thresholding algorithm.



7 CONCLUSION

In this chapter, we propose a novel design method to generate a sensing matrix. First, we
will explain the new method and then we will make experiments with the matrices
generated using the novel design method. Also, we will compare the recovery success’
of this method for sensing matrices and the others.

7.1 A Novel Design Method for Sensing Matrices

The novel method is a deterministic method for generating sensing matrices. Firstly, we
generate a random =×= matrix using the normal distribution whose entries are between
0 and 1. Let us call it base matrix, I use the word “base” to indicate that we use it to
generate the sensing matrix. We need a real number 2 to use it in generation process of
the matrix. We use the base matrix to generate a =2×=2 matrix and a random number
2 ∈ R between 0 and 1. Firstly, We divide the =2×=2 matrix to =2 pieces of =×= matrix.
We generate the =2×=2 matrix by looking the entries of =×= matrix. Then, as the
generated matrix is a square matrix, we choose < random rows from this matrix.

The advantage of this method is instead of storing a =2×=2 matrix, it is enough to store
an =×= matrix and the algorithm that generates =2×=2 matrix from =×= matrix.

I will explain this method with an example. Let � be a 2×2 random matrix whose
entries are between 0 and 1 as follows:

� =

[
0.4 0.6

0.75 0.35

]
We define the matrix �′ = 1−� and we take the constant 2 = 0.5.

�′ =

[
0.6 0.4

0.25 0.65

]
We generate the 4×4 matrix � using the matrix � and �′. First, we denote matrix � as

36
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follows

� =


01,1 01,2 01,3 01,4

02,1 02,2 02,3 02,4

03,1 03,2 03,3 03,4

04,1 04,2 04,3 04,4


We look at the matrix � like

� =

[
�1,1 �1,2

�2,1 �2,2

]
where �8, 9 ’s are 2×2 matrices.

We look at the 11,1 and if it is bigger than the contant 2 then �1,1 = � if not �1,1 = �
′.

In this example, 11,1, 12,2 < 2 so �1,1 = �2,2 = �
′ and 11,2, 12,1 > 2 so �1,2 = �2,1 = �.

Our generated matrix would be

� =


0.6 0.4 0.4 0.6

0.25 0.65 0.75 0.35
0.4 0.6 0.6 0.4

0.75 0.35 0.25 0.65


To terminate this process, we need to choose < random rows of from this matrix. Let me
choose the first and the fourth rows, so our generated sensing matrix would be:

� =

[
0.6 0.4 0.4 0.6

0.75 0.35 0.25 0.65

]
.

We repeated the experiments that I did before with the Orthogonal Matching Pursuit and
Iterative Hard Thresholding algorithms using the novel design method for sensing
matrices. The results are below:

Sensing Matrix Error using ℓ1 Error using ℓ2
Gaussian 0.2058 0.1555
Bernoulli 0.2069 0.1558
Hadamard 0.1678 0.1373
Toeplitz 0.5195 0.3911

Novel Design Method 0.9331 0.7197

Table 7.1: Results using the OMP algorithm
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Sensing Matrix Error using ℓ1 Error using ℓ2
Gaussian 1.0044 0.9885
Bernoulli 0.7522 0.5764
Hadamard 0.7607 0.5815
Toeplitz 1.2042 0.9390

Novel Design Method 1.2643 0.9838

Table 7.2: Results using the IHT algorithm
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Birkhäuser Basel, 2013. 

39 



 

 

40 
 
 

R. Gribonval and M. Nielsen. Highly sparse representations from dictionaries are 
unique and independent of the sparseness measure. Applied and 
Computational Harmonic Analysis, 22(3):335 – 355, 2007. 

V. Kotelnikov. On the capacity of ether and wire in telecommunications. In 
Proceedings of the First All-Union Congress on Technical Reconstruction 
of Communication, Union Energy Committee, 1933. 

H. Nyquist. Certain topics in telegraph transmission theory. Transactions of the 
American Institute of Electrical Engineers, 47(2):617–644, 1928. 

M. Safarpour, I. Hautala, and O. Silvén. Iht mine.m, 01 2020. 
 

C. E. Shannon. Communication in the presence of noise. Proceedings of the IRE, 
37(1):10–21, 1949. 

J. A. Tropp and A. C. Gilbert. Signal recovery from random measurements via 
orthogonal matching pursuit. IEEE Transactions on Information Theory, 
53(12):4655–4666, 2007. 

E. T. Whittaker. Xviii.—on the functions which are represented by the expansions of 
the interpolation-theory. Proceedings of the Royal Society of Edinburgh, 35:181–
194, 1915. 

S. Yoo. Matching pursuit (mp) / orthogonal matching pursuit (omp). 
https://github.com/seunghwanyoo/omp, 2016. 



Appendix

7.2 Sensing Matrix Generation

7.2.1 Gaussian Matrix

The code below generates a 25×256 Gaussian Matrix.

N=256;
m=25;
A = randn (m,N ) ;

Listing 7.1: Gaussian Matrix Generation

7.2.2 Bernoulli Matrix

The code below generates a 25×256 Bernoulli Matrix. We use ? = 0.5 to get equal
probability of 0 and 1.

N=256;
m=25;
p = 0 . 5 ; %p r o b a b i l i t y o f s u c c e s s

A = rand (m,N ) ;
A = d ou b l e (A<p ) ;

Listing 7.2: Gaussian Matrix Generation

7.2.3 Hadamard Matrix

The code below generates a 25×256 Hadamard Matrix using hadamard function in
Matlab.

N=256;
m=25;

H = hadamard (N ) ;
rows = randperm (N,m) ;
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A = H( rows , : ) ;

Listing 7.3: Hadamard Matrix Generation

7.2.4 Toeplitz Matrix

The code below generates a 25×256 Toeplitz Matrix using toeplitz function in Matlab.

N=256;
m=25;

T = t o e p l i t z ( r and ( 1 ,N ) ) ;
rows = randperm (N,m) ;
A = T ( rows , : ) ;

Listing 7.4: Gaussian Matrix Generation

7.3 Restricted Isometry Test Using Different Sensing Matrix
Design Methods

The code below calculates the recovery success using Gaussian Matrix as sensing matrix
and Iterative Hard Thresholding algorithm as recovery algorithm. It repeats the recovery
process 1000 times and calculates the average error using ;1-norm and ;2-norm.

n = 1 6 ;
N = n∗n ;
m = 1 6 ;
k = 6 ;

% G a u s s i a n
%M = randn (m,N ) ;
%M = randn (m,N) > 0 ;

% Hadamard
M = hadamard (N ) ;
M = M( randperm (N,m ) , : ) ;
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% T o e p l i t z
%T = t o e p l i t z ( r and ( 1 ,N ) ) ;
%rows = randperm (N,m) ;
%M = T ( rows , : ) ;

% My Custom Ma t r i x
%M = m y c u s t o m m a t r i x v 2 (m, n ) ;

d = [ ] ;

f o r q = 1:100000

xa = z e r o s (N , 1 ) ;
s u p p o r t = randperm (N, k ) ;
xa ( s u p p o r t ) = ( r andn ( s i z e ( s u p p o r t ) ) ) ;

xb = z e r o s (N , 1 ) ;
s u p p o r t = randperm (N, k ) ;
xb ( s u p p o r t ) = ( randn ( s i z e ( s u p p o r t ) ) ) ;

ya = M∗xa ;
yb = M∗xb ;

d ( q ) = norm ( xa−xb ) / norm ( ya−yb ) ;

end

r i c m a x = max ( d )
r i c m i n = min ( d )
d2 = d ( d >= 0 . 1 & d <= 0 . 3 ) ;
dc = l e n g t h ( d2 ) / 1 0 0 0 0 0
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h i s t o g r a m ( d )

Listing 7.5: Matlab code for the RIP using different sensing matrix design methods

7.4 Novel Design Method For Sensing Matrices

The code below calculates the recovery success using Gaussian Matrix as sensing matrix
and Iterative Hard Thresholding algorithm as recovery algorithm. It repeats the recovery
process 1000 times and calculates the average error using ;1-norm and ;2-norm.

f u n c t i o n M = m y c u s t o m m a t r i x v 2 (m,N)
M = z e r o s (N ˆ 2 ) ;
s u p p o r t = randperm (Nˆ 2 ,m) ;

B = rand (N ) ;
B t = 1−B ;

k = 1 ;

s = rand ( ) ;

f o r d =1:N:Nˆ2
f o r c =1:N:Nˆ2

i f B( k)< s
M( c : c+N−1 , d : d+N−1) = B t ;

e l s e
M( c : c+N−1 , d : d+N−1) = B ;

end
k = k +1;

end
end
M = M( s u p p o r t , : ) ;

Listing 7.6: Matlab code for novel design method for sensing matrices
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7.5 Experiment to Compare Sensing Matrices Using OMP
and IHT Algorithms

The code below calculates the recovery success using Gaussian Matrix as sensing matrix
and Iterative Hard Thresholding algorithm as recovery algorithm. It repeats the recovery
process 1000 times and calculates the average error using ;1-norm and ;2-norm. I get the
Orthogonal Matching Pursuit algorithm Matlab implementation from [18] and Iterative
Hard Thresholding algorithm Matlab implementation from [14].

c l e a r
n =16;
N=n∗n ;
m=25;
k =5;

c = 10000 ;

l1 sum = 0 ;
l2 sum = 0 ;

l 1 e s = [ ] ;
l 2 e s = [ ] ;

l 1 s u c r a t e = 0 ;
l 2 s u c r a t e = 0 ;

f o r i =1 : c
% G a u s s i a n Normal D i s t r i b u t i o n

A = randn (m,N ) ;
A = A/ norm (A , 2 ) ;

% Random B e r n o u l l i
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% p = 0 . 5 ; %p r o b a b i l i t y o f s u c c e s s
% A = rand (m,N ) ;
% A = do ub le (A<p ) ;
% A = A∗2 − 1 ;

% Hadamard

% H = hadamard (N ) ;
% rows = randperm (N,m) ;
% A = H( rows , : ) ;

% T o e p l i t z

% T = t o e p l i t z ( r and ( 1 ,N ) ) ;
% rows = randperm (N,m) ;
% A = T ( rows , : ) ;

% My Custom Ma t r i x

% A = m y c u s t o m m a t r i x v 2 (m, n ) ;

% C o n s t r u c t x f o r sys tem Ax = b
x = z e r o s (N , 1 ) ;
s u p p o r t = randperm (N, k ) ;

%x ( s u p p o r t ) = s i g n ( randn ( s i z e ( s u p p o r t ) ) ) ;
x ( s u p p o r t ) = randn ( s i z e ( s u p p o r t ) ) ;
y = A∗x ;

%x r e c = omp (A, y , k ) ;
x r e c = i h t m i n e ( y , A, k ,N ) ;
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%l 1 e s = [ l 1 e s norm ( x−x r e c , 1 ) / norm ( x , 1 ) ] ;
%l 2 e s = [ l 2 e s norm ( x−x r e c , 2 ) / norm ( x , 2 ) ] ;

l1 sum = l1 sum + norm ( x−x r e c , 1 ) / norm ( x , 1 ) ;
l2 sum = l2 sum + norm ( x−x r e c , 2 ) / norm ( x , 2 ) ;

end

l 1 a v g = l1 sum / c
l 2 a v g = l2 sum / c

Listing 7.7: Matlab code for the experiment to compare sensing matrices using
Orthogonal Matching Pursuit and Iterative Hard Thresholding Algorithms
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İstanbul Saint-Joseph French High School, İstanbul, Turkey




