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ABSTRACT

Anomaly detection is considered as a challenging task due to its imbalanced and un-

labelled nature. Numerous machine learning methods are applicable to the anomaly

detection task. Conventional machine learning algorithms, such as supervised anomaly

detection methods require labeled data sets and can obtain reasonable achievements

on balanced data sets. However, they mostly suffer from the class imbalance prob-

lem. Unsupervised anomaly detection methods, on the other hand, assume that the

more significant part of the data is normal and are inclined to label the least fit in-

stances as anomalies. Semi-supervised methods create structures from normal data,

which represents standard data distribution. To overcome this challenge, the com-

bination of different machine learning approaches such as supervised, unsupervised,

semi-supervised learning are proposed in the literature. With the advent of neural net-

works and generative models, different methodologies derived from neural networks are

applied to anomaly detection tasks. In this study, we use the KDDCUP99 and Credit

Card Fraud Detection data set, consider them as an anomaly detection task, and im-

plement Bidirectional Generative Adversarial Networks, considering it as a one-class

anomaly detection algorithm. Since generator and discriminator are highly dependent

on each other in the training phase, to reduce this dependency, in this paper, we propose

three different training approaches for Bidirectional Generative Adversarial Networks

by adding extra training steps to it. We also demonstrate that proposed approaches in-

creased the performance of Bidirectional Generative Adversarial Networks on anomaly

detection task.

Keywords : generative adversarial networks, bidirectional generative adversarial net-

works, intrusion detection, fraud detection, anomaly detection



ÖZET

Anomali tespiti, anomalilerin yetersiz sayıda bulunması ve etiketlenmemiş olması ne-

deniyle zorlu bir problem olarak kabul edilir. Anomali tespiti problemi için çok sayıda

makine öğrenme yöntemi uygulanabilir. Denetimli anomali tespiti yöntemleri gibi ge-

leneksel makine öğrenme algoritmaları, etiketli veri kümeleri gerektirir ve dengeli veri

kümelerinde makul başarılar elde edebilir. Ancak, çoğunlukla sınıf dengesizliği proble-

minden muzdariptirler. Denetimsiz anomali tespit yöntemleri ise verilerin daha önemli

kısımlarının normal olduğunu ve anormallik olarak en az uyuşan durumları etiketlemeye

meyillidirler. Yarı denetimli yöntemler, normal verilerden standart veri dağılımını tem-

sil eden yapılar oluşturur. Bu problemin üstesinden gelmek için, literatürde denetimli,

denetimsiz, yarı denetimli öğrenme gibi farklı makine öğrenme yaklaşımlarının kombi-

nasyonu önerilmektedir. Yapay sinir ağlarının ve üretken modellerin ortaya çıkmasıyla,

sinir ağlarından türetilen farklı metodolojiler anomali tespit görevlerine uygulanmak-

tadır. Bu çalışmada, KDDCUP99 ve Kredi Kartı Dolandırıcılık Tespiti veri kümelerine,

bir anomali tespit problemi olarak yaklaşılmış ve Çift Yönlü Çekişmeli Ağlar tek sınıf

bir anomali tespit algoritması olarak değerlendirilerek bu verisetlerine uygulanmıştır.

Üretici ağ ve ayırt edici ağ eğitim aşamasında birbirine oldukça bağımlı olduğundan,

bu bağımlılığı azaltmak için, bu çalışmada, Çift Yönlü Çekişmeli Ağlar’ın eğitim aşa-

masına ekstra adımları ekleyerek üç farklı eğitim yaklaşımı önerilmiştir. Ayrıca önerilen

yaklaşımların anomali saptama görevinde Çift Yönlü Çekişmeli Ağlar’ın performansını

artırdığını gözlemlenmiştir.

Anahtar Kelimeler : çekişmeli üretici ağlar, çift yönlü çekişmeli üretici ağlar, siber

saldırı tespiti, dolandırıcılık tespiti, anomali tespiti
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1 INTRODUCTION

Anomalies are data patterns which do not comply with a clear concept of normal data

behavior. The unexpected manners whose pattern significantly different from other

observations are named as anomalous observations. Detecting anomalies aims at dis-

covering unexpected objects or occurrences in data sets that differ from the standard.

Categorizing, specifying, and classifying abnormal observations is crucial for data mi-

ning, decision-making, and business intelligence. Advances in artificial intelligence, ma-

chine learning, and deep learning algorithms have allowed automatic and real-time

identification of anomalies. Anomaly detection has many applications in real-life cases

such as :

— Intrusion detection

— Fraud detection

— Fault detection

— Detecting healthcare anomalies

— Detecting manufacturing anomalies

— Detecting anomalies in computer vision tasks

— Detecting anomalies in text data

Numerous machine learning methods are applicable to the anomaly detection task.

Conventional machine learning algorithms, such as supervised anomaly detection me-

thods require labeled data sets and can obtain reasonable achievements on balanced

data sets. However, they mostly suffer from the class imbalance problem. Unsupervised

anomaly detection methods, on the other hand, assume that the more significant part

of the data is normal and are inclined to label the least fit instances as anomalies.

Semi-supervised methods create structures from normal data, which represents stan-

dard data distribution. Anomaly detection, due to its imbalanced or unlabelled nature,

may require a combination of the machine learning approaches mentioned above. Other

challenges on anomaly detection tasks described by the study of (Chandola et al., 2009)

as follows :

— Since, in many cases, anomaly observations and normal data are not separable
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accurately, it is hard to describe the boundaries of normal data. In these cases,

anomalies might be misclassified as normal observation and vice-versa

— Commonly, malicious actions are tried to conform to normal data behavior. This

similarity makes anomaly detection tasks harder in these cases.

— Due to the transformation in many businesses, the concept of normal observa-

tions keeps on changing, and today’s normal behavior can not be an efficient

representative of normal data characteristics in the future.

— Different domains have different dynamics and work on distinct scales. Therefore,

it is not an efficient way to apply one technique established in one domain to

another.

— Acquiring labeled data for training and test set sufficiently is another main diffi-

culty.

— In real-life cases, data noise makes the process of distinguishing normal data from

anomalous data more difficult.

One of the most challenging problems of anomaly detection is the class imbalance

problem. In a data set, the amount of observations in each class is described as class

distribution. When the class distribution in the training set is not balanced, the class

imbalance problem occurs. There are two fundamental causes of class imbalance pro-

blem, namely properties of the domain and sampling. When the cause of the class

imbalance problem is the sampling error, the imbalance problem can be corrected by

using advanced sampling methods.

In some real cases, the natural occurrence of any class may dominate other classes. In

such cases, gathering more observations from the minority class’s domain to enhance

the class distribution is impracticable. Alternatively, an advanced model is needed to

learn to distinguish each class from each other. In this study, we are mostly interested

in the imbalance problem caused by the properties of the domain.

If class distribution in training data is a little skewed, this is called a slight imbalance.

On the other hand, if hundreds or thousands of times more observations from one class

are compared to the other class, this classification problem is named a severe imbalance.

While slight imbalance is not considered as a problem and standard machine learning

classification approaches can be built on the data with a slight imbalance, to build

a model on data with severe imbalance problems can be seen as a difficult task and
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may require specialized techniques. On the imbalanced classification task, predicting

minority class correctly is usually the primary concern.

Most ML classification algorithms are modeled and illustrated on the data with the

balanced class distribution. This implies that the model can mislead by the imbalanced

class distribution and neglects the observation from minority class whose prediction is

the more valuable and primary concern of the client. In this thesis, we focused on solving

the severe class imbalanced problem with one-class generative adversarial networks

approaches and extended Bidirectional Generative Adversarial Networks (BiGAN).

With the advent of neural networks, different methodologies derived from neural net-

works have been applied to anomaly detection to overcome this challenging task. Au-

toencoders performed very well and contributed to anomaly detection methodologies.

By adding variational inference to neural networks, probabilistic approaches have been

introduced, and variational autoencoders (Kingma and Welling, 2013) have been uti-

lized to conduct anomaly detection task more principled by using reconstruction pro-

bability rather than reconstruction error (An and Cho, 2015).

After (Goodfellow et al., 2014) introduced Generative Adversarial Networks, GANs

have emerged as a leading technique for both unsupervised and semi-supervised lear-

ning on anomaly detection problem. GANs’ architecture is evolved in such a way that

it has been used to produce an anomaly score. (Schlegl et al., 2017) speculated that

the representative vector of data in the latent space of a GAN stands for the real

distribution of the data. Intuitively, well trained GANs can learn the input data distri-

bution, reproduce data from latent representation in corresponding distribution, and

distinguish the instances from corresponding distribution.

Two deep neural networks, the generator and discriminator, constitute GANs’ struc-

ture. Generators and discriminators are trained in turn by playing an adversarial game.

Discriminator takes the output of the generator (fake data) and real data as input. The

discriminator aims to distinguish fake data from real data. The generator focuses on

convincing the discriminator so that the generator can learn to generate realistic data.

Generators and discriminators are highly dependent on each other in the training phase.

This dependency creates a hard problem for the generator’s training. In this thesis, to

reduce this dependency and force generator produce more reliable data that represents

the real data, we added extra training step for generator independent from the discrimi-
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nator, which updates only the generator’s parameters by calculating the loss between

the input of the encoder and the output of the generator at the end of each epoch. We

proposed three different approaches. Our contribution is that these approaches showed

that updating the generator independent from discriminator improved the generator

performance, thus discriminator performance, and we increased the performance of Bi-

GAN on anomaly detection task. The proposed approach is explained in detail in the

section of 3.2.3.

The rest of this thesis is organized as follows. Section 2 summarizes the literature

regarding this thesis’s topic. The methods studied in this thesis are presented in section

3. Section 4 demonstrates the numerical results on the test data. Section 5 discusses

future studies and gives concluding results.
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2 LITERATURE REVIEW

2.1 Overwiev

Anomaly detection has been the topic of numerous surveys, reviews and researches. In

this section, the related literature regarding the topic of this thesis is reviewed. Anomaly

detection approaches are mentioned in five main streams. Proximity-based algorithms,

clustering-based algorithms, tree-based algorithms, kernel-based algorithms and deep

approaches for anomaly detection are reviewed in sections 2.2, 2.3, 2.4, 2.5 and 2.6,

respectively. The contribution and motivation of this thesis are presented in section

2.7. In figure 2.1, a summary chart of anomaly detection algorithms mentioned in this

chapter are illustrated.

2.2 Proximity Based Algorithms

The primary motivation behind proximity-based anomaly detection algorithms is to

reveal the neighborhood relationship. This relationship is determined by the distance

or derivative of distance-based methods (Knox and Ng, 1998; Ramaswamy et al., 2000;

Angiulli and Pizzuti, 2002)

(Brito et al., 1997) studied on mutual-nearest-neighbor graph for detecting anomalies in

multivariate data sets and introduced Mutual-Nearest Neighbor (MkNN ) graph-based

undirected graph method, which is a specified type of kNN. MkNN graphs consist of

edges between vectors in the case that vectors are k-neighborhoods of each other. Each

node has a pointer to its k nearest neighbors. Anomalies are assumed to be a component

connected only to one vector.

(Knox and Ng, 1998) focused on detecting distance-based anomaly detection methods

and proposed optimized cell-based algorithm and two basic algorithms that they have

both complexity of O(kN2) where k represents the dimensionality of data and N stands

for the observation in the corresponding data set. While the cell-based algorithm is ac-

ceptable when k <= 4, nested-loop algortihm performs well in the cased that k >= 5.

While taking advantage of being simple, (Knox and Ng, 1998) had certain drawbacks
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that the distance is required as input and dependence between complexity and di-

mensionality are linear. (Ramaswamy et al., 2000) concentrate on the shortcomings of

(Knox and Ng, 1998) and introducing a new description for novelties. (Ramaswamy

et al., 2000) proposed a partition-based method for detecting outliers that takes the

distance to kth nearest neighbor as anomaly score measurement. The proposed method

first divides the data into clusters, and pruning is applied to clusters to obtain intense

clusters. On the final step, the distance to each point in the partition is calculated. The

proposed algorithm performance exceeded the nested-loop and index-based algorithms’

performances on not only the area of detecting anomalies but also on the scalability.

(Angiulli and Pizzuti, 2002) recommended a new method to overcome the detecting

anomalies on high dimensional data sets. They utilized weighted distances. Weights

are calculated as the sum of each observations’ distance to k nearest neighbors. Find

the k nearest neighbors of each observation is optimized by using the Hilbert space-

filling curve. Anomaly score of each point is defined as the weights calculated for each

observation. (Angiulli and Pizzuti, 2002) concluded that increasing the dimensionality

by fixing the size of data decreased the number of iterations required by the proposed

method to obtain a solution.

(Hautamaki et al., 2004) proposed a method of detecting anomalies using indegree num-

bers that make use of k-nearest neighbor graphs. Observations connected to at most

5 neighborhoods are defined as an anomaly. In contrast to (Brito et al., 1997),in this

study kNN graph is taken into consideration as weighted directed graph. Anomaly clas-

sification task conducted according to the in-degree number in the graph.(Hautamaki

et al., 2004) performed much better than (Knox and Ng, 1998) on real data sets.

On clustering algorithms, observations do not belong to any cluster is called anomaly

or noise, and the performances of clustering algorithms are highly dependent on model

parameters. (Breunig et al., 2000) proposed a new algorithm for detecting anomalies

that does not need the concept of clustering on multivariate data sets to overcome

the drawbacks of clustering algorithms on anomaly detection tasks. The local outlier

factor is based on a local density concept, where locality is given by k nearest neighbors,

whose distance is used to estimate the density. Observations with a significantly lower

density than their neighbors are determined as an anomaly.

The effectiveness of density-based approaches will decrease if the density of anomaly

observation is close to the density of its neighbors. (Tang et al., 2002) proposed a
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connectivity-based outlier factor (COF) algorithm, which deals with the case that ano-

maly has a similar pattern as the neighborhoods have. The COF structure improved

the effectiveness of the local outlier factor (LOF). However, the certainty of the genera-

ted anomaly score will reduce when the groups from different densities are exceedingly

close to each other. The drawback mentioned above is later solved in the Influenced

Outlierness (INFLO) algorithm which is introduced by (Jin et al., 2006)

(Papadimitriou et al., 2003) introduced a method of Local Correlation Integral and

multi− granularity deviation factor. Additionally proposed aLOCI, which uses the

approximation of box-counting to reduce complexity to O(kN) and fastens the anomaly

detection process to deal with large scale data sets. It ıs proven that the proposed

method is successful in dealing with both local density and multiple granularities.

(Kriegel et al., 2009) formulate a new local density-based, probability scoring method

for anomaly detection tasks combining LOF (Breunig et al., 2000) and LOCI (Papadi-

mitriou et al., 2003). The algorithm ’s based on the assumption that distance between

instances acts like the positive leg of gaussian distribution. Generating an anomaly

score in the range of [0,1] as the probability contributes to the interpretability and

comparison of observations in the data set.

2.3 Clustering Based Algorithms

Clustering is a Machine Learning technique that involves the grouping of data points.

Given a set of data points, a clustering algorithm can be used to classify each data

point into a specific group. In theory, data points that are in the same group should

have similar properties or features, while data points in different groups should have

profoundly different properties or features. Clustering is a method of unsupervised

learning and is a common technique for statistical data analysis used in many fields.

Clustering-based techniques depend on the following assumptions. Firstly, while nor-

mal data belongs to a cluster, anomalous observations is not a member of any cluster.

Secondly, normal observations are members of dense clusters ; on the other hand, ano-

malous observations belong to small clusters.

K-means, which is proposed by James MacQueen, is the perhaps most popular and

simplest clustering algorithm (MacQueen et al., 1967). K-means algorithm groups the
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observations according to the given number of clusters by initializing the centroids ran-

domly and updating the centroids in each iteration. If the data points do not have for-

mal shape, K-means can be ineffective in grouping the observations. Moreover, outliers

in the training data can probably influence the centroids of clusters in each iteration.

This may increase the misclassification error of observation in the test set since the

outlier in the training set increases the distance threshold. Lastly, there is no restric-

tion to determine the number of observations in clusters. For the reasons mentioned

above, the K-means algorithm does not give good results most of the time.

(He et al., 2003) proposed a clustering-based method that utilizes k-means, a Cluster-

Based Local Outlier Factor (CBLOF). The anomaly score of the observation is obtained

by measuring the distance to the next populous cluster. The main drawbacks of this

method are the hardship of choosing the correct number of clusters and the impracti-

cability of reproducing just the same outlier score since the clustering algorithms are

non-deterministic.

Clustering algorithms like CLARANS (Ng and Han, n.d.), DBSCAN (Ester et al.,

1996), BIRCH (Zhang et al., 1996), CURE (Guha et al., 1998), STING (Wang et al.,

1997), WAVECLUSTER (Sheikholeslami et al., 1998), DENCLUE (Hinneburg et al.,

1998), CLIQUE (Agrawal et al., 1998) are slightly able to detect anomalies. Clustering

is not ideal for all the problems related to anomaly detection, but combining clustering

techniques with others like smart feature extraction can help to solve many problems.

Commonly, clustering algorithms ignore anomalies in the process of grouping observa-

tions, which leads to non-optimal solutions on anomaly detection tasks. Since they are

designed to group the observations in an optimized way, outlier detection is not their

first concern, and they do not provide any measure about the outlying observations.

2.4 Tree Based Algorithms

In tree-based anomaly detection methods, an anomaly score is assigned to each obser-

vation, and each observation is ranked and ordered hierarchically according to their

anomaly score. In tree-based anomaly detection algorithms, each node keeps weight

to calculate the anomaly score. The anomaly score is calculated with the combination

of weights on the path of the corresponding observation pursues. What sets a specific

tree-based anomaly detection algorithm to other tree-based algorithms is the different
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Table 2.1: Node weight of tree based algorithms

Algorithm Internal Node Weight Leaf Node Weight
Isolation Forrest -1 -1

HS-Trees 0 (Tan et al., 2011)
RS-Forrest 0 (Wu et al., 2014)
RPAD normalized pattern freq. normalized pattern freq.

Random Projection Forrest log-prob. at the node log-prob. at the node

weight choice approaches showed on table 2.1.

(Liu et al., 2008) proposed the Isolation Forest algorithm that aims to separate outliers

rather than characterize normal observations and has a linear time complexity with a

low constant and memory usage. Isolation trees with the same architecture of Binary

Search Tree constitute the Isolation Forrest. These trees are obtained with random

partitioning at each node. While conducting random partitioning, the features and

thresholds are chosen uniformly random. Observations with shorter than average path

length are labeled as an anomaly in this method. The algorithm has two hyperpara-

meters : number of trees and sub-sampling size. In contrast to other machine learning

algorithms, using small sub-samples is expected to create more efficient isolation trees

since swamping and masking are lessened.

Conducting an anomaly detection task in streaming data has the following aspects.

First, memory problems occur while keeping the whole stream for offline learning algo-

rithms since the stream is infinite. Second, usually, classifiers suffer from insufficiency

of anomalous observations in stream data. Third, since the stream data changes the

characteristics in the progress of time, the trained model must stay focused on various

detail of stream. (Tan et al., 2011) proposed a method of Streaming Half-Space Trees

for conducting anomaly detection on stream data, which concerns the problem mentio-

ned above. Instead of producing trees from training data, HS-Tree’s, dissimilar to other

decision trees, utilize only data space dimensions to produce its tree structure without

requiring no split point and feature calculation. HS-Tree is an effective algorithm in

imbalance anomaly detection tasks since it is one class detector with O(1) space and

time complexity and robust to emerging data streams.

In 2014, to overcome the difficulty mentioned above of the anomaly detection on stream

data, (Wu et al., 2014) introduced a one-class semi-supervised algorithm RS-Forest.

The proposed algorithm is based on estimating density by use of RS-Trees. At the
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beginning of the algorithm, trees are initialized randomly without data, and statistical

evaluations are conducted to estimate the potential direction of attribute ranges to

make the use of it while splitting the tree. The aim of building trees in this way is

to ensure to be robust in evolving characteristic of stream data and to augment the

diversification of ensembles that boosts to have better density estimation. As in the

(Tan et al., 2011), this method is one pass resulting in linear time and constant space

complexity, and since the algorithm is one class, it does not suffer from an imbalanced

class problem.

In PAC learning theory, characterizing the concept of a hypothesis space, computing

the relationship between the complexity of this space and the volume of training data

needed to establish an acceptable hypothesis in the space and relaxing the limit of

identifying the most fitting hypothesis are the main steps.(Siddiqui et al., 2016) propo-

sed Probability Approximately Correct Rare Pattern Anomaly Detection (PAC-RPAD)

framework for discovering the unusual patterns by following the same procedure above.

Observations that meet lower probability patterns are determined as anomalies. Outlier

detection benchmarking researches (Emmott et al., 2013) illustrated that algorithms

focused on finding rare patterns for detecting anomalies, such as RPAD-style approach,

inclined to outperform the common pattern approaches such as OC-SVM (Schölkopf

et al., 2001). Additionally, empirical results show that PAC-RPAD is competitive with

the Isolation Forrest (Liu et al., 2008) when the same pattern space is utilized and

provides fast convergence.

(Chen et al., 2015) introduced a novel anomaly detection algorithm with an online

updatable structure to get the better of new outliers. Random Projection Forest. The

splitting rule of Random Projection Forest is adjusted to maximize the marginal space

for anomalies. A decision tree carries out hierarchical clustering, and the elements are

dissociated iteratively as right and left child nodes. On the other hand, in (Chen et al.,

2015), each observation are projected into an optimal direction derived from a ran-

domly determined set. The KL Divergence is utilized to check the fitting quality of the

experimental density of projected observations. To obtain optimal splits, this diver-

gence is maximized. In test, the aggregated density of each observation is calculated

to analyze the irregularity by comparing it with the determined threshold value. This

architecture enables the model to be robust to under or overfitting problems.
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2.5 Kernel Based Anomaly Detection

Perhaps the most famous example of kernel-based one classification algorithm is One-

Class Support Vector Machines (OC-SVM) (Schölkopf et al., 2001). The main moti-

vation of this study arises from the study of (Vapnik, 1963). (Vapnik, 1963; Vapnik

and Chervonenkis, 1974) proposed an algorithm that classifies the group of unlabelled

observations by utilizing a hyperplane that distinguishes the points from the origin.

However, the proposed algorithm was restricted with the linear decision rules, and co-

ping with the anomalies was impossible. (Schölkopf et al., 2001) utilized two tricks to

deal with above-mentioned drawbacks of Vapnik : Kernel trick and v trick (Schölkopf

et al., 2000). While kernel trick enabled (Schölkopf et al., 2001) to represent the data

in high dimensional space to enhance the possibility of distinguishing from the origin,

v trick contributed to the integration of prior belief on the portion of anomalies into

the model.

(Tax and Duin, 2004), motivated by the Support Vector Classifier, proposed a new

method for detecting anomalies on a multidimensional dataset by drawing a spherically

shaped boundary over the data set and avoiding to approximate a density to the data

set. They illustrated that altering the ball shaped boundary to a flexible boundary

contributed to the control of anomaly sensitivity. While SVDD with polynomial kernel

had the substantial impact of the norm of the object vectors, in opposition to Support

Vector Classifier, SVDD with Gaussian kernel achieved competitive descriptions.

The Support Vector Data Description and one Class Support Vector Machines are ana-

logous. Support vector data description (Tax and Duin, 2004) finds the smallest hyper-

sphere that contains all samples, except for some outliers. One-class SVM (OC-SVM)

separates the inliers from the outliers by finding a hyperplane of maximal distance from

the origin. SVDD and OC-SVM are also equivalent in the case that all samples lie on

a hypersphere centered at the origin, and are linearly separable from it.

2.6 Deep Approaches for Anomaly Detection

With the advent of neural networks, autoencoders, variational autoencoders, GANs

have been widely used thanks to their training architecture. Autoencoders, with their

reconstruction loss as an anomaly score, is used in anomaly detection task (Sabokrou
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et al., 2016; Zhou and Paffenroth, 2017). Obtaining the representation of the distri-

bution of normal data enables us to generate normal-like data, similarly enables us to

detect the data from a different distribution.(An and Cho, 2015) proposed reconstruc-

tion probability on anomaly detection tasks instead of reconstruction cost and used

the generative structure to obtain the anomaly score.

Considering the insufficient computational scalability and curse of dimensionality, tra-

ditional anomaly detection algorithms such as One-Class SVM (Schölkopf et al., 2001)

and Kernel Density Estimation (Parzen, 1962) generally do not succeed in the high

dimensional data. Autoencoders are not aimed to detect anomalies on given data set

directly but utilized for dimensionality reduction. The main struggle in autoencoders

is choosing the most suitable compactness of data representation degree because of the

unsupervised nature of autoencoders. Motivated by the kernel-based one-class classifi-

cation and minimum volume estimation, (Ruff et al., 2018) proposed the Deep Support

Vector Data Description (Deep SVDD) algorithm that trains neural network by mini-

mizing the volume of hypersphere to extract the common factors of variation. By doing

so, the Deep SVDD algorithm covers the compactness of representation.

Generative models, recently, are gaining popularity in detecting anomalies while conduc-

ting anomaly detection tasks. Since anomalies are rarely occurring in data, unsuper-

vised models perform very well when compared to conventional supervised machine

learning algorithms. In various network intrusion, fraud detection, medical domain,

computer vision tasks, these models achieved significant results (Zenati et al., 2018;

Schlegl et al., 2017; Bian et al., 2019).

The main intuition behind using GAN on detecting novelties is that generator is taught

to reproduce normal data and discriminator is used to discriminate normal and non-

normal data. As an unsupervised learning algorithm, generative adversarial networks

are used to learn the representation of the distribution of normal data and produce

anomaly scores according to the latent representation of each instance (Schlegl et al.,

2017). To obtain the anomaly score, residual loss between generated data and test

instance is combined with the discriminator loss. Discriminator loss is obtained by

feeding the discriminator network with the generator’s output (Schlegl et al., 2017).

(Zenati et al., 2018) used Bidirectional GAN (Donahue et al., 2016) architecture that

consists of encoder, generator and discriminator networks. Encoder and generators

outputs and inputs together feed the discriminator. While encoder networks are trained
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to obtain the latent representation of input instances, generator networks are trained

to produce normal data from given noise input.

Similar to (Schlegl et al., 2017), the anomaly score is calculated with residual loss of

encoder and generator outputs and added to discriminator loss.(Akcay et al., 2018)

proposed a different pipeline that combines autoencoder network as the generator and

another encoder network with discriminator. Due to (Akcay et al., 2018), architecture,

contextual, encoder, and adversarial loss constitutes the anomaly score. (Chen et al.,

2018) tackled the fraud detection problem as a one-class anomaly detection task and

combined sparse autoencoders and GAN to detect fraudulent activities. The proposed

architecture is formed of two steps. First, SAE is trained separately from GAN to

obtain critical features of the observations. After extracting the key features of the

data, the GAN algorithm is trained with the extracted features from SAE. Dissimilar

to (Schlegl et al., 2017; Zenati et al., 2018), they only used discriminator component

of GAN to distinguish the fraudulent observations. SAE + GAN outperformed to the

SVDD and One-Class GP.

(Fiore et al., 2019) overcome the imbalance dataset problem by using GAN as an over-

sampling technique for minority class, instead of anomaly classifier. They trained a

classifier with augmented data by GAN and original data. They concluded that clas-

sifiers trained on augmented data perform better than the classifier performed on the

original data. They also compared their approach with the SMOTE, which is a similar

approach for oversampling. While lower sensitivity is usually obtained the data aug-

mented by SMOTE, specificity is inclined to be more when compared to the proposed

approach.

In the medical domain, (Baur et al., 2018) dealt with the outlier segmentation of brain

MR images. (Baur et al., 2018) proposed anoVAEGAN with the adaptation of VAE-

GAN (Donahue et al., 2016) to anomaly detection task. In this study, L1 loss between

the input image and the reconstructed image is used as an anomaly score. (Chen and

Konukoglu, 2018) focused on discovering brain lesions by using constrained adversarial

autoencoders. AAE (Makhzani et al., 2015) implements an encoding-decoding archi-

tecture equivalent to VAE, but instead of KL divergence uses Jensen-Shannon(JS)

divergence on adversarial training. (Chen and Konukoglu, 2018) proposed two-step

anomaly detection structure. On the first step, autoencoder learns a latent representa-

tion of health images, and on the second step, non-normal images are given as input.
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Since non-normal images are less likely to be reconstructed, L2 loss is calculated as

an anomaly score. (Schlegl et al., 2019) proposed f-AnoGAN, which is aimed to de-

tect anomalous image segments and images, especially in the medical domain. What

sets f-AnoGan apart from anoGAN (Schlegl et al., 2017) is that f-anoGAN utilizes

improved Wasserstein GAN (Arjovsky et al., 2017a) architecture instead of DCGAN

(Radford et al., 2015)and by replacing iterative gradient descent with learned map-

ping, it accelerates the process of mapping input to latent space. The training phase

has two steps : GAN training and encoder training dependent on the GAN model.

While the f-AnoGAN method is suitable for detecting anomalous 1D, 2D, 3D images,

it has some limitations on locating anomaly in the image and can be considered as

coarse localization.

2.7 Motivation and Contribution

The impact of a generator weight depends on the impact of the discriminator weights

it feeds into. So backpropagation starts at the output and flows back through the

discriminator into the generator. At the same time, we do not want the discriminator

to change during generator training. Training generator with the error of discriminator

makes the process deeper in terms of generator. This thesis is focused on reducing

the effect of this dependency and on improving the generator’ learning process and

dependently discriminator’s learning process, and aims to obtain improvements on the

test set performances.

In this study, we proposed three different training structures for BiGAN by adding one

more step for the generator’s training phase. Similar to our approaches DiscoGAN (Kim

et al., 2017) and DualGAN (Yi et al., 2017) proposed to add additional reconstruction

loss term to GAN and ALICE(Li et al., 2017) proposed to add additional reconstruc-

tion loss term to BiGAN but these three methods dissociate from us in terms of the

model architecture and reconstruction loss. Those approaches also aimed to improve

the reconstruction quality of GAN and BiGAN, and they are used in computer vision

tasks. In this study, we will apply the BiGAN structure in the anomaly detection task.

In addition to BiGAN’s training process, we proposed three separate methods for Bi-

GAN’s training. In the first method, the generator is trained according to its custom

loss at the end of each epoch, and in the second method in addition to the first method,

we started BiGAN’s training with the pre-trained generator to improve the generation
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quality of generator consequently discriminators’ capability, to obtain more composite

anomaly scores, since we use both discriminator and generator to obtain anomaly score

for the test set. In the third approach, we only pre-trained generator before BiGAN’s

simultaneous training begins. We followed the same approach to obtain the anomaly

score as in the EGBAD(Zenati et al., 2018).
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3 METHODOLOGY

3.1 Generative Adversarial Networks

3.1.1 Overview

The GAN (Goodfellow et al., 2014) was introduced in 2014. Two main parts constitute

the GANs architecture, namely generator and discriminator. Both generator and dis-

criminator are deep neural networks, including the convolutional layer and the dense

layer.

Figure 3.1: GAN architecture. G takes the input z and generates fake x and D is fed

by fake x and real x to discriminate true from fake

While the generator takes the input z which is low dimensional and sampled from

assumed probability distribution p(x) (e.g., multivariate Gaussian distribution) and

generates fake x by mapping the z to certain data dimensionality, the discriminator

takes fake and real data as input. The discriminator is expected to distinguish real

and fake data points in the training phase of the discriminator.

min
G

max
D

= Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] ( 3.1)

Generator and discriminator are trained separately playing deception game. While

discriminator tries to distinguish fake data generated from noise by generator and real

data, the generator aims to convince the discriminator so that generator can learn to
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Algorithm 1: GAN algorithm

for number of training iterations do

for k steps do

Sample zt ∼ p(z);

Choose xt ∈ X;

Update D(x) and D(G(z)) by maximizing Eq. 3.1 do not update G;

end

Sample zt ∼ p(z);

Update G(z) by minimizing Eq. 3.1 don’t update D;

end

generate realistic data. With the feedback of discriminator, generator performances on

generating realistic data are improved.

Equation 3.1, where x is the real data and G(Z) is the fake data, is maximized by

discriminator and minimized by the generator. If pf is defined as the density of the

data generated by the generator and pdata is defined as the density or real data, the

training of GAN is equivalent to process of minimizing KL-divergence between pdata

and pf .

There are many applications of GAN especially in computer vision. Some examples

are (Zhu et al., 2017a; Dong et al., 2017) for image to image translation, (Ledig et al.,

2017) for increasing the image resolution, (Yeh et al., 2017) for image inpainting, (Luc

et al., 2016) for image segmentation, (Zhang et al., 2017; Reed et al., 2016) for text

to image synthesis. Apart from computer vision, GANs and iys variants are gained

popularity in anomaly detection task due to their one-class oriented architecture on

which this thesis mainly focuses (Schlegl et al., 2017; Baur et al., 2018; Akcay et al.,

2018; Schlegl et al., 2019; Chen et al., 2018; Fiore et al., 2019; Zenati et al., 2018).

3.1.2 Training GAN

Theoretically, GANs are built on non-cooperative minimax game. When one player

wins the other loses. While one player aims to minimize the objective, others make an

effort to maximize it. Since this is a minimax game, convergence occurs when the dis-
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criminator and generator reach the Nash equilibrium. Nash equilibrium is the optimum

point of the minimax game from the point of game theory view and reached when one

of the competitors stops updating itself in any case. Hence, GANs are hard to train for

several reasons for non-convergence.

GANs target to generate a number of fake data from random input, which imitates the

real data from different distributions. Doubtless, in the GAN training phase, the most

frequent problem is mode collapse. Mode collapse is that the generator component of

GAN learns to generate only one or a restricted diversity rather than all modes. The

mode collapse problem arises when the discriminator is stuck in the local minima,

and the generator keeps reproducing the same output since the discriminator fooled

easily by the mode generated by the generator. Using different losses like Wasserstein

loss is recommended to avoid this situation (Arjovsky et al., 2017b). Unrolled GANs

(Metz et al., 2016) is another approach to prevent this situation. To avoid being over-

optimized for a unique discriminator, Unrolled GANs utilizes not only the current

discriminator but also the output of future discriminator versions for updating the

generator component, which is computationally expensive. Applying penalty term for

the missing modes in the training phase is presented in the mode regularized GAN (Che

et al., 2016). In the literature, there are numerous researches regarding mode collapse

problem (Arjovsky et al., 2017b; Salimans et al., 2016; Warde-Farley and Bengio, 2016;

Qi, 2019; Mirza and Osindero, 2014)

During backpropagation, the chain rule of differentiation is utilized, and this created

a multiplying impact, flowing the gradient from the last layer to the first layer. It

gets smaller while flowing to the first layer and sometimes becomes so small that

preliminary layers can stop the learning process resulting in vanishing gradients. Using

ReLU, LeakyReLU instead of sigmoid or tanh is common and well known approach to

avoid vanishing gradient. Wasserstein loss is also formed to avoid the same problem.

In the original GAN paper (Goodfellow et al., 2014), proposed modified minimax loss

for vanishing gradient problem.

To stabilize the GAN training, various approaches are using different loss functions.

Least square GAN (LSGAN) (Mao et al., 2017) focused on improving the generated

image quality and implemented the least square loss function for the discriminator.

Loss Sensitive GAN (LS-GAN) (Qi, 2019) not only uses Wasserstein loss but also takes

advantage of the prior on the real data with utilizing Lipschitz regularity condition.
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To stabilize GAN training, an autoencoder like architecture for the discriminator and

various energy functions are introduced in Energy-Based GAN (Zhao et al., 2016).

3.2 BiGAN

3.2.1 Overview

While GAN has the ability to generate x from any given z, it does not contains an

inverse mapper to generate z for any given x. BiGAN model is introduced by (Donahue

et al., 2016) and contains an encoder part that enables the model to map x to z. Dissi-

milar to proper GAN, discriminator in BiGAN sees not only x but also z. The encoder

is also a deep neural network, generally structured as the inverse of the generator.

Figure 3.2: EGBAD (Zenati et al., 2018) BiGAN architecture. Discriminator takes

the concatenated pair (shown as ’⊕’) as input. Before concatenation, both inputs are
mapped to the same dimension.

BiGAN is an extended version of GAN that adds the encoder part, which maps the

input into a latent space. The discriminator takes the concatenated pair z, x as in-

put. Differing from standard GAN, in BiGAN, discriminator takes not only input but

also latent representations (generator’s input and encoder’s output) into account. Loss

function is as follows (Donahue et al., 2016) :

min
G,E

max
D

= −Ex∼px [Ez∼pE(·|x)[logD(x, z)]] + Ez∼pz [Ex∼pG(·|z)[log(1−D(x, z))]] ( 3.2)
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Algorithm 2: BiGAN algorithm

for number of training iterations do

for k steps do

Sample zt ∼ p(z);

Choose xt ∈ X;

ẑ = E(xt);

x̂ = G(zt);

Update D(x, ẑ) and D(x̂, z) by maximizing Eq. 3.2;

end

Sample zt ∼ p(z);

x̂ = G(zt);

Update G(z) and E(x̂) by minimizing Eq. 3.2;

end

(Zenati et al., 2018) used BiGAN (Donahue et al., 2016) architecture that consists of

encoder, generator and discriminator networks. Encoder and generators outputs and

inputs together feed the discriminator. While encoder networks are trained to obtain

the latent representation of input instances, generator networks are trained to produce

normal data from given noise input. Similar to (Schlegl et al., 2017), the anomaly

score is calculated with residual loss of encoder and generator outputs and added to

discriminator loss. To obtain anomaly score, equation ( 3.3) is used as proposed by

(Zenati et al., 2018) :

A(x) = αLG(x) + (1− α)LD(x) ( 3.3)

LG(x) = ‖x−G(E(x))‖1 ( 3.4)

LD(x) = σ(D(x,E(x)), 1) ( 3.5)
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3.2.2 Variants of BiGAN

In the literature, various approaches are using BiGAN like structure. They usually

focus on image processing and computer vision topics. Some approaches using BiGAN

like structure become prominent on improving the learning and generation performance

of BiGAN.

Invertible CGAN (Perarnau et al., 2016) used two encoders and assigned the encoders

separately to produce a latent representation of example and latent representation of

attributes. The generator is fed with the output of the encoders. They illustrated that

using two separate encoders end up with better results. In the invertible CGAN ap-

proach, pre-trained CGAN is utilized. However, in BiCoGAN (Jaiswal et al., 2018),

almost identical to invertible CGAN, encoder, discriminator and generator are trained

at the same time, and BiCoGAN put forward an improved the learning performance.

Triangle GAN (Gan et al., 2017) used two discriminators and two generators. While the

generator aims to learn bidirectional mappings between two domains, discriminators

targeted at distinguishing the different sorts of fake data produced by two separate

domains. Adversarial Variational Bayes (AVB) (Mescheder et al., 2017) applies varia-

tional training to its BiGAN like structure. In CycleGAN (Zhu et al., 2017b), different

from the algorithms uses BiGAN like structure, inverse mapping is utilized for mapping

source image to the target image, and cycle consistency loss is proposed to keep the

balance of training.

3.2.3 Proposed training architecture for BiGAN

In GAN and BiGAN architecture, the generator is linked to the loss function indirectly,

via discriminator. The loss that we want to minimize is obtained by generator, encoder

and the discriminator fed by generator and encoder. The generator is penalized for

generating samples that discriminator component classifies as fake. The effect of the

generator’s parameters depends on the discriminator’s parameters fed by the generator.

Hence, the back-propagation begins from the output of the discriminator and proceeds

through the discriminator to the generator. In this part of the training process, the

discriminator is not updated. Generators and discriminators are highly dependent on

each other. This dependency makes a hard problem for the training and even harder

problem for the generator component.
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Generators and discriminator are highly dependent on each other. In this paper, to

reduce this dependency and force generator produce more reliable data that represents

the real data, we proposed three different approaches. We used the BiGAN structure

for anomaly detection proposed in (Zenati et al., 2018).

MSE = (
1

n
)

n∑
i=1

(xi −G(zi))2 ( 3.6)

3.2.3.1 Method 1

We added extra training steps for generator independent from the discriminator, which

updates only the generator’s parameters by calculating the loss between the input of

encoder and output of generator at the end of each epoch, illustrated in Algorithm 3. In

the training phase, the generator aims to convince the discriminator so that generator

can learn to generate more realistic data. To the end of each epoch, to increase the

generator’s learning performance, we added another custom loss function shown in

equation 3.6, which updates only the generator’s parameters. This loss is calculated,

taking the mean squared error between the input of encoder (real data point) and the

output of the generator.

3.2.3.2 Method 2

In addition to the proposed method in Algorithm 3, to improve the training and testing

performance of BiGAN and to reduce the dependency of the generator, discriminator

and encoder, we trained the generator component beforehand according to the equation

3.6. We feed the BiGAN with a pre-trained generator for simultaneous learning of

generator, discriminator and encoder. Algorithm details are illustrated in Algorithm 4.

3.2.3.3 Method 3

In this approach, the generator is trained by minimizing the equation 3.6, before

BiGAN training begins. Using a pre-trained generator in the BiGAN structure on an
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Algorithm 3: Proposed BiGAN training structure

for number of training iterations do

for k steps do

Sample zt ∼ p(z);

Choose xt ∈ X;

ẑ = E(xt);

x̂ = G(zt);

Update D(x, ẑ) and D(x̂, z) by maximizing Eq. 3.2;

end

Sample zt ∼ p(z);

x̂ = G(zt);

Update G(z) and E(x̂) by minimizing Eq. 3.2;

Update G(z) by minimizing Eq. 3.6;

end

anomaly detection task is proposed in this approach. We feed the BiGAN with a pre-

trained generator for simultaneous learning of generator, discriminator and encoder.

Algorithm details are illustrated in Algorithm 5.
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Algorithm 4: Proposed BiGAN training structure with pre-trained and si-

multaneously updated generator

for number of training iterations do

if the first training iteration then

for l steps do

Update G(z) by minimizing Eq. 3.6;

end

end

for k steps do

Sample zt ∼ p(z);

Choose xt ∈ X;

ẑ = E(xt);

x̂ = G(zt);

Update D(x, ẑ) and D(x̂, z) by maximizing Eq. 3.2;

end

Sample zt ∼ p(z);

x̂ = G(zt);

Update G(z) and E(x̂) by minimizing Eq. 3.2;

Update G(z) by minimizing Eq. 3.6;

end
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Algorithm 5: Proposed BiGAN training structure with pre-trained generator

for number of training iterations do

if the first training iteration then

for l steps do

Update G(z) by minimizing Eq. 3.6;

end

end

for k steps do

Sample zt ∼ p(z);

Choose xt ∈ X;

ẑ = E(xt);

x̂ = G(zt);

Update D(x, ẑ) and D(x̂, z) by maximizing Eq. 3.2;

end

Sample zt ∼ p(z);

x̂ = G(zt);

Update G(z) and E(x̂) by minimizing Eq. 3.2;

end
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3.3 Model Evaluation Metrics

Since we need to overcome class imbalance problems, determining accuracy as an eva-

luation metric could mislead us about the results. The confusion matrix that defines

precision and recall metrics is usually preferred for the imbalanced class problem.

One should take precision and recall into consideration together as an evaluation me-

tric for the imbalanced class problem. We will compare implemented algorithms by

their precision, recall, accuracy and F1 score metrics calculated from the confusion

matrix. Precision means the percentage of our results, which are relevant. On the other

hand, recall refers to the percentage of total relevant results correctly classified by our

algorithm. We showed all metrics used in comparison in equation 3.7, 3.8, 3.9 and

3.10.

precision =
TP

TP+ FP
( 3.7)

recall =
TP

TP+ FN
( 3.8)

accuracy =
TP+ TN

TP+ FP+ TN+ FN
( 3.9)

F1 = 2 · precision · recall
precision+ recall

( 3.10)

We tested all models on the same test set. We took One-Class SVM and BiGAN as

our baseline methods. Since OC-SVM and BiGAN based approaches generate anomaly

scores, they need a score threshold to classify the observations. In this study, we consi-

dered our test set as a validation set as well to determine the best threshold for each

approach.

We classify the test set according to the percentile of generated scores in the test set.

Any observation greater than the determined percentile of generated scores is labeled
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as an anomaly. We conduct exhaustive search and observed percentile zones to obtain

the best F1 score while determining the threshold for each algorithm.
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4 EXPERIMENT

4.1 Datasets and Descriptions

We evaluated our approaches and other state-of-the-art approaches on the KDDCUP99

10 percent dataset (Lichman, n.d.) and Credit Card Fraud Detection dataset (Credit

Card Fraud Detection - Anonymized credit card transactions labeled as fraudulent or

genuine, n.d.).

4.1.1 KDDCUP99 10 Percent Dataset

4.1.1.1 Overview

The KDDCUP99 data set is created for building a network intrusion detector, a pre-

dictive model capable of distinguishing between bad connections called intrusions or

attacks, and good normal connections. It provides labeled observations according to

attack type. Provided features’ types and class distribution of the original data set are

illustrated in the table 4.2 and 4.1 respectively.

4.1.1.2 Preprocessing

As a preprocessing step we applied one hot encoding to categorical features and nor-

malized the data.

One Hot Encoding : Many machine learning algorithms require numerical values

rather than categorical values. In the case that there is an ordinal relation between

categories, turning categories into integer values may work. However, this approach

affects the learning process in a negative way if there is no ordinal relation. In this

case, one hot encoding is one of the most preferred approaches. According to one-hot

encoding, categorical variables are represented as binary vectors. If the cardinality (the

# of categories) of the categorical features is low (relative to the amount of data),
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Table 4.1: Distribution of attacks and normal observations in data set.

Class Ratio
smurf 0.568377

neptune 0.216997
normal 0.196911
back 0.004459
satan 0.003216

ipsweep 0.002524
portsweep 0.002105
warezclient 0.002065
teardrop 0.001982

pod 0.000534
nmap 0.000468

guess_passwd 0.000107
buffer_overflow 0.000061

land 0.000043
warezmaster 0.000040

imap 0.000024
rootkit 0.000020

loadmodule 0.000018
ftp_write 0.000016
multihop 0.000014

phf 0.000008
perl 0.000006
spy 0.000004

one-hot encoding gives reasonable results. We can use it as input into any model. In

our data set, there are categorical and continuous features. To deal with categorical

features in our data set, we implemented one-hot-encoding and enlarged the feature

set.

Standardization : The result of standardization (or Z-score normalization), showed

in equation 4.1, is that the features will be re-scaled so that they will have the proper-

ties of a standard normal distribution with zero mean and one variance. Standardizing

the features so that they are centered around 0 with a standard deviation of 1 is not

only important if we compare measurements with different units but also a general

requirement for many machine learning algorithms. Intuitively, we can think of gra-

dient descent as a prominent example (an optimization algorithm often used in logistic

regression, SVMs, perceptrons, neural networks, etc.) with features being on different

scales, and certain weights may update faster than others since the feature values x play

a role in the weight updates. Since we use a neural network architecture, we conduct
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Table 4.2: Features and types of KDDCUP99 10 Percent dataset

Column Type
duration continuous

protocol_type symbolic
service symbolic
flag symbolic

src_bytes continuous
dst_bytes continuous

land symbolic
wrong_fragment continuous

urgent continuous
hot continuous

num_failed_logins continuous
logged_in symbolic

num_compromised continuous
root_shell continuous

su_attempted continuous
num_root continuous

num_file_creations continuous
num_shells continuous

num_access_files continuous
num_outbound_cmds continuous

is_host_login symbolic
is_guest_login symbolic

count continuous
srv_count continuous
serror_rate continuous

srv_serror_rate continuous
rerror_rate continuous

srv_rerror_rate continuous
same_srv_rate continuous
diff_srv_rate continuous

srv_diff_host_rate continuous
dst_host_count continuous

dst_host_srv_count continuous
dst_host_same_srv_rate continuous
dst_host_diff_srv_rate continuous

dst_host_same_src_port_rate continuous
dst_host_srv_diff_host_rate continuous

dst_host_serror_rate continuous
dst_host_srv_serror_rate continuous

dst_host_rerror_rate continuous
dst_host_srv_rerror_rate continuous
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feature-wise standardization by utilizing the formula in equation 4.1.

z =
x− µ
σ

( 4.1)

4.1.1.3 Train and Test Set Preparation

Some attack types are rarely seen on data, and they come up with a class imbalance

problem. We filtered mentioned attack types and aimed to predict correctly on the test

set those attacks such as pod, nmap, guesspasswd, bufferoverfl, land, warezmaster

and normal. In table 4.3, the distribution of data set labels is illustrated.

Since we train models with only normal observations, we include all anomalies in the

test and validation set. We randomly select normal observation for the test and vali-

dation set. Eventually, 619 observations constitute our validation set containing 313

normal observations and 306 attack observations, and another 619 observations consti-

tute our test set containing 306 normal observations and 313 attack observations. We

use the validation set to determine the best score threshold since the experimented

algorithms produce anomaly scores for each observation. In section 4.2, we elaborate

on how we extract the best threshold from the validation set. Test, training, validation

set do not include the same observations.

Table 4.3: Distribution of selected attacks and normal observations in data set.

Class Ratio
normal 0.9937
pod 0.0027
nmap 0.0024

guess_passwd 0.0005
buffer_overflow 0.0003

land 0.0002
warezmaster 0.0002
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4.1.2 Credit Card Fraud Detection Dataset

4.1.2.1 Overwiew

The credit card fraud dataset was downloaded from Kaggle (Credit Card Fraud De-

tection - Anonymized credit card transactions labeled as fraudulent or genuine, n.d.).

It contains 492 fraudulent records out of 284807 transactions. Because of the privacy

concerns, features were shared with the name of V 1, . . . , V 28 as principle components

acquired with PCA. Only time and amount features have not been transformed with

PCA. Features types and class distribution are illustrated in table 4.4 and 4.5 res-

pectively.

Table 4.5: Distribution of fraudulent and non-fraudulent observations in data set

Class Ratio
non-fraudulent 0.998273
fraudulent 0.001727

4.1.2.2 Preprocessing

Since we did not tackle the problem as a time series problem, the time feature was not

considered and dropped from the feature set. Due to the privacy concerns, features were

shared with the name of V 1, . . . , V 28 as principle components acquired with PCA. As

a preprocessing step, we implement feature-wise standardization process by following

equation 4.1.

4.1.2.3 Train and Test Set Preparation

Since we use a one-class algorithm, only non-fraudulent observations are included in

the training set. We set class distribution of test set as illustrated in 4.6. The training

set is constructed to include only non-fraudulent observations that are not in the test

set.



34

Table 4.4: Features and types of Credit Card Fraud Detection dataset

Column Type
Time continuous
V1 continuous
V2 continuous
V3 continuous
V4 continuous
V5 continuous
V6 continuous
V7 continuous
V8 continuous
V9 continuous
V10 continuous
V11 continuous
V12 continuous
V13 continuous
V14 continuous
V15 continuous
V16 continuous
V17 continuous
V18 continuous
V19 continuous
V20 continuous
V21 continuous
V22 continuous
V23 continuous
V24 continuous
V25 continuous
V26 continuous
V27 continuous
V28 continuous

Amount continuous

Since we train models with only normal observations, we include all anomalies in the

test and validation set. We randomly select normal observation for the test and vali-

dation set. Eventually, 1241 observations constitute our validation set containing 990

normal observations and 241 fraudulent observations, and another 1242 observations

constitute our test set containing 1001 normal observations and 241 fraudulent ob-

servations. We use the validation set to determine the best score threshold since the

experimented algorithms produce anomaly scores for each observation. In section 4.2,

we elaborate on how we extract the best threshold from the validation set. Test, trai-

ning, validation set do not include the same observations.
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Table 4.6: Distribution of fraudulent and non-fraudulent observations in test set.

Class Ratio
non-fraudulent 0.805958
fraudulent 0.194042

4.2 Numerical Results

This section provides numerical results for the OC-SVM, BiGAN, and three proposed

approaches introduced in subsections 3.2.3.

In this study, we discuss an anomaly detection problem. We converted the process

of anomaly detection to a one-class classification task and trained algorithms using

normal data only. Each algorithm discussed in this study generates an anomaly score

for each observation and conducts the detection process by considering the anomaly

scores. Since we trained all models on normal data, observations with higher anomaly

scores are considered anomalies. After generating anomaly scores, to make classifica-

tion, determining a threshold specified for each algorithm is needed.

We trained each model for 20 epochs. The classification task is conducted for each

algorithm as follows. We used the validation set to determine the best anomaly score

threshold. After generating a set of scores with each algorithm for the test and vali-

dation set, we determined the best score threshold as the anomaly score giving the

best F1 score by conducting an exhaustive search. This process was conducted for each

algorithm. We obtained different thresholds for each approach. We classified the ob-

servation according to the threshold of each algorithm. Observations greater than the

corresponding threshold were labeled as an anomaly for the corresponding algorithm.

4.2.1 Results on KDDCUP99 10 Percent Dataset

619 observation constitutes our test set that contains 313 normal observations and 306

observations labeled as an attack. We classify the observation according to the threshold

of each algorithm. Observations greater than the corresponding threshold are labeled

as an anomaly for the corresponding algorithm. Table 4.7 shows the numerical results
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and table 4.10 shows the run-time of each algorithm.

Our proposed three methods improved the performance of BiGAN. One-Class SVM

gave the best precision score with low recall. When we pulled the recall of OC-SVM

to %98 by changing the threshold, we noted that the precision of OC-SVM decreased

dramatically to %65 implying that scores generated by OC-SVM are not as heteroge-

neous as the anomaly scores generated by BiGAN like approaches. Our first proposed

method, algorithm 3, achieved an acceptable improvement when compared to BiGAN.

Our second proposed method, algorithm 4, made drastic progress in the performance

of BiGAN, giving the best F1 score, among other methods. Algorithm 4 and algorithm

5 gave similar results.

Table 4.7: Results according to the determined thresholds that render best F1 score on

KDDCUP99 10 Percent dataset

Methods Precision Recall Accuracy F1-score
OC-SVM 0.957 0.752 0.853 0.842
BiGAN 0.7 0.915 0.764 0.793

BiGAN with Alg. 3 0.811 0.967 0.872 0.882
BiGAN with Alg. 4 0.836 0.994 0.895 0.908
BiGAN with Alg. 5 0.842 0.969 0.889 0.901

Table 4.8: Run-time in second of each algorithm experimented on KDDCUP99 10

Percent dataset.

Methods Total run-time 1 epoch run-time 1 epoch run-time for
in second for training BiGAN pre-trained generator

(µ ± σ) (µ ± σ)
OC-SVM 738.58 - -
BiGAN 76.66 3.79 ± 0.19 -

BiGAN with Alg. 3 90.24 5.24 ± 0.18 -
BiGAN with Alg. 4 87.71 + 90.32 5.24 ± 0.18 0.89 ± 0.06
BiGAN with Alg. 5 87.04 + 75.52 3.79 ± 0.19 0.89 ± 0.06

4.2.2 Results on Credit Card Fraud Detection Dataset

2483 observation constitutes our test set that contains 1991 normal observations and

492 observations labeled as fraudulent activities. We classify the observation according

to the threshold of each algorithm. Observations greater than the corresponding thre-
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shold are labeled as an anomaly for the corresponding algorithm. Table 4.9 shows the

numerical results.

Our proposed method algorithm 5, 4 and 3 improved performance of BiGAN. One-Class

SVM gave the F1 score. Algorithm 3 which trains generator separately at the end of

each epoch, 4 which uses pre-trained generator and trains generator separately at the

end of each epoch, 5 which uses a pre-trained generator and trains all components only

simultaneously, achieved an acceptable improvement when compared to BiGAN.

Table 4.9: Results according to the determined thresholds that render best F1 score on

Credit Card Fraud Detection dataset

Methods Precision Recall Accuracy F1-score
OC-SVM 0.859 0.868 0.946 0.863
BiGAN 0.784 0.831 0.921 0.807

BiGAN with Algorithm 3 0.816 0.866 0.935 0.84
BiGAN with Algorithm 4 0.852 0.817 0.936 0.834
BiGAN with Algorithm 5 0.843 0.852 0.939 0.847

Table 4.10: Run-time in second of each algorithm experimented on Credit Card Fraud

Detection dataset.

Methods Total run-time 1 epoch run-time 1 epoch run-time for
in second for training BiGAN pre-trained generator

(µ ± σ) (µ ± σ)
OC-SVM 4816.72 - -
BiGAN 209.13 10.47 ± 0.24 -

BiGAN with Alg. 3 251.34 13.26 ± 0.26 -
BiGAN with Alg. 4 231.06 + 250.47 13.26 ± 0.26 2.31 ± 0.46
BiGAN with Alg. 5 231.67 + 208.78 10.47 ± 0.24 2.31 ± 0.46
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5 CONCLUSION AND FUTURE WORKS

In this study, we considered the network intrusion detection and credit card fraud

detection tasks as anomaly detection tasks. Since the class imbalance problem is hard

to overcome, we applied GAN based approaches, discussing the problem as a one-class

problem.

Since the loss is calculated by the discriminator and the discriminator is fed by the

output of generator and encoder, the effect of the generator’s parameters depends on the

impact of the discriminator’s parameters. Hence, the back-propagation begins from the

output of the discriminator and proceeds through the discriminator to the generator.

The discriminator’s parameter is not updated during this part of the training process.

To reduce the effect of this dependency and to improve the generator’s learning process

and dependently discriminator’s learning process, we applied three different training

architecture for BiGAN and demonstrated that our three proposed approaches made

progress on the performances of BiGAN.

According to our findings, we increased the performance of BiGAN on intrusion de-

tection and credit card fraud detection tasks by changing the training architecture

and adding extra training step for only updating the generator’s parameters accor-

ding to the loss described in the equation 3.6. Additionally, starting BiGAN training

with pre-trained generators contributed the performance on the test set more than the

proposed algorithm 3 and 4 since we initialized the parameters of BiGAN’s generator

components by training generator on the training data beforehand. In this thesis, we

demonstrated that the mentioned approaches increased the performance of BiGAN in

the relatively low dimensional data set. We concluded that initializing the generators

parameter by training it with the real data before BiGAN training and keeping up-

dating the generator independent from discriminator at the end of each epoch had a

major contribution to BiGAN training in anomaly detection tasks on KDDCUP99 10

Percent and Credit Card Fraud Detection data set. Starting the BiGAN training with

pre-trained generator as in algorithm 5 contributed to the performance of BiGAN the

most on both data set. We conclude from our experiments that BiGAN for anomaly

detection setup is affected positively in terms of performance on test set when it is
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trained with our proposed approaches.

In this study, we added the mean squared error term to the generator’s training process.

In algorithm 3, we updated the generator at the end of each epoch, in algorithm 4 we

pre-trained and updated generator and in algorithm 5 we only pre-trained the genera-

tor. On all of these three methods, we used the mean squared error. In N dimensional

signal space, a signal is represented by signal points. If any distortion vector is added

to a signal point with the same length will result in an equal mean squared error. In

this thesis, we studied two different, relatively low dimensional data sets. We left an

open point to analyze how proposed approaches result on the high dimensional feature

sets. Apart from the mean squared error, different loss metrics can be applied to deal

with drawbacks of mean squared error and make progress on the BiGAN performance

on anomaly detection tasks.

There are different loss terms introduced for increasing the performance of GANs. They

are mainly conducted on computer vision tasks. Applying approaches presented in this

study on the BiGAN version of corresponding GANs architectures such as Wasserstein

GAN (Arjovsky et al., 2017a), least-squares GAN (Mao et al., 2017), loss-sensitive

GAN (Qi, 2019) is another future research direction.

Various anomaly detection tasks require multi-class classification. In this study, binary

classification is conducted by labeling all different attack types as an anomaly obser-

vation. Our approach only considers all types of attacks as an anomaly and does not

classify them according to their type. In future works, these methods can be studied

to handle multi-class anomaly detection tasks.
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APPENDIX A MODEL ARCHITECTURE OF KDDCUP99 10

PERCENT DATA SET

APPENDIX A.1 Generator

Figure APPENDIX A.1: KDDCUP99 10 Percent data set generator architecture



APPENDIX A.2 Encoder

Figure APPENDIX A.2: KDDCUP99 10 Percent data set encoder architecture



APPENDIX A.3 Discriminator

Figure APPENDIX A.3: KDDCUP99 10 Percent data set discriminator architecture



APPENDIX B MODEL ARCHITECTURE OF CREDIT CARD

FRAUD DETECTION DATA SET

APPENDIX B.1 Generator

Figure APPENDIX B.1: Credit Card Fraud Detection data set generator architec-
ture



APPENDIX B.2 Encoder

Figure APPENDIX B.2: Credit Card Fraud Detection data set encoder architecture



APPENDIX B.3 Discriminator

Figure APPENDIX B.3: Credit Card Fraud Detection data set discriminator archi-
tecture
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