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ABSTRACT

Hub location problems are derived from classical origin-to-destination problems.

The difference of hub location problems is the existence of hub nodes that merge/split

transportation demands. A hub also acts as a node where demand originates or ar-

rives. The presence of hub nodes simplifies the network structure. Because of the

economy of scale, the hub networks’ benefit is saving transportation costs between

hubs. This kind of problem is commonly encountered in the design of postal distribu-

tion, airline passenger transport, and telecommunication networks. In the current

literature, hub location problems are classified into hub median, hub center, and

hub covering. The least studied of these is the hub covering problems due to the

network’s lack of full connectivity. For this type of problem, the elements of ca-

pacity and transportation costs are generally ignored in studies. For filling this gap

in the literature, new deterministic multiple assignment hub covering models have

been developed. These proposed models were examined with numerical experiments

using benchmark data sets. It was revealed how important it is to consider the el-

ements mentioned above in the hub covering problem. Another issue that has not

been studied for hub location problems in general and hub coverage problems, in

particular, is the effect of uncertainties that may be encountered. In this thesis, new

two-stage stochastic mixed-integer linear optimization models have been developed

to examine the effect of uncertainties on transportation costs and transportation

demand. The L-shaped algorithm has been adapted to solve these models, and nu-

merical experiments have been performed with the help of benchmark data sets. As

a result of these experiments’ analysis, it was shown that the uncertainties should

be taken into account for the hub covering problem.

Keywords : Hub-and-Spoke Networks, Hub Covering, Stochastic Programming,

Uncertainty Modeling, Capacity Constraints



ÖZET

Ana Dağıtım Üssü (ADÜ) yerleşim problemleri klasik kaynaktan hedefe taşıma prob-

lemlerinden türetilmiştir. ADÜ yerleşim problemlerinin farklılığı taşıma taleplerini

birleştiren/ayrıştıran ADÜ düğümlerinin varlığıdır. ADÜ’ler ayrıca diğerleri gibi ta-

lebin oluştuğu veya vardığı düğümlerdir. Birleştirme düğümlerinin varlığı ağ yapısını

basitleştirmektedir. ADÜ’ler bulunan ağlarının faydası ölçek ekonomisi sayesinde

ADÜ’ler arası taşıma maliyetlerinde elde edilecek tasarruftur. Bu problem türüyle

genel olarak posta dağıtım, havayolu yolcu taşımacılığı ve telekomünikasyon ağla-

rının tasarımında karşılaşılır. Güncel yazında ADÜ yerleşim probleminin üç türü

vardır: ADÜ medyan, ADÜ merkez ve ADÜ kapsama. Ağ yapısının tam bağlan-

tılı olmamasından dolayı bunlar arasında en az çalışılmış olan tür ADÜ kapsama

problemidir. Bu problem türü için kapasite ile taşıma maliyetleri unsurları çalış-

malarda genellikle göz ardı edilmiştir. Yazındaki bu boşluğu doldurmak amacıyla

yeni determinist çoklu atamalı ADÜ kapsama modelleri geliştirilmiştir. Önerilen bu

modeller, kıyaslama veri kümeleri kullanılarak yapılan sayısal deneylerle incelen-

miş, anılan unsurların ADÜ kapsama probleminde dikkate alınmasının ne derece

önemli olduğu ortaya konmuştur. Genelde ADÜ problemleri için az, özelde ise ADÜ

kapsama problemleri için hiç çalışılmamış bir diğer konu da karşılaşılabilecek belir-

sizliklerin etkisidir. Bu tez çalışmasında, taşıma maliyetleri ile taşıma talebindeki

belirsizliklerin etkisini incelemek amacıyla yeni iki aşamalı rassal karışık tam sa-

yılı doğrusal eniyileme modelleri geliştirilmiştir. Bu modellerin çözümü için L-şekilli

algoritma uyarlanmış ve kıyaslama veri kümleri yardımı ile sayısal deneyler yapıl-

mıştır. Bu deneylerin analizi sonucunda ADÜ kapsama problemi için belirsizliklerin

göz önüne alınmasının gerekli olduğu gösterilmiştir.

Anahtar Kelimeler : Toplama ve Dağıtım Ağları, Ana Dağıtım Üssü Kapsama,

Rassal Eniyileme, Belirsizlik Modelleme, Kapasite Kısıtları
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1 INTRODUCTION

Creating a network structure is a complicated task as determining links, nodes, de-

pots, or hubs always includes several layers. For example, choosing depots or hubs

and assigning flows to these points are two dependent layers. Different studies in-

vestigate different aspects of this problem type due to complications of this problem

type. In this study, the hub location problem is at the focus.

Hub location and vehicle routing problems may seem like the same problem. Howe-

ver, these problems differ from the concept of hubs or depots. Depots are not serving

as a demand point. The only duty in the system of it is collecting/distributing goods

to the system. Unlike depots, hubs are a combination of a depot and a demand point.

This difference causes using these problem types in different application areas.

The hub location problem has several subtypes. According to the size of potential

hubs, the problem is divided into two types : (1) a predetermined subset of nodes

and (2) all nodes. The first type of problem decreases the size and complexity of

the problem. On the other hand, this type ignores other nodes, which can be better

hubs than potential subset nodes. Solving the second one may consume more time.

However, the problem takes in to account all of the nodes.

According to the number of hubs in which a node can be attached, hub problems can

be divided into two categories : single assignment and multiple assignment. For the

single assignment hub location problems, each node must be assigned to only a single

hub. On the other hand, a node can be assigned to one or more hubs in multiple

assignment problems. A graphical illustration of this case is shown in Figure 1.1. It

is obvious to deduct that the hub problem (whether multiple or single allocation)

has fewer links comparing other network problems.

The hub location problem has 3 distinct types : hub median, hub center, and hub

covering. Hub median problem fundamentally aims to minimize the total flow cost

required to deliver service the given n origin/destination nodes, and the certain the
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(a) single allocation hub network (b) multiple allocation hub network

Figure 1.1: The difference between single and multiple allocation hub networks

number of hubs (p) to settle. The hub center problem is a minimax version of the

hub median problem. In a classical covering problem, the demand of nodes must

be covered by a service point. In the hub covering problem, these service points are

hubs.

The demand flow has three layers in this problem type. The first layer is delive-

ring demands to hubs (deliver phase), the second layer (if necessary) hub to hub

transportation (interhub phase), the third layer is allocating demand to destination

points (allocation phase). The discount factors (per unit) of the deliver, interhub

and allocation are χ, α and δ respectively. Because of the scale economy, the inter-

hub discount factor must be the least of three factors (α < χ and α < δ) (O’Kelly

and Bryan, 1998). These discount factors are also a benefit of hub problems. In this

thesis, χ and δ are assumed to be equal to 1. Because of that, these parameters are

omitted from models.

The thesis includes five chapters. In this first chapter, basic notions are provided and

hub location problems are briefly defined and classified. A comprehensive literature

survey about the hub location problem is summarized and analyzed in detail in the

second chapter. A new formulation for the multiple allocation hub covering the flow

problem is introduced in Chapter 3. To incorporate some realistic issues, three more

models are also developed for investigating link and hub capacity. The validity of the

models is shown with computational studies based on two different data sets. Three

different two-stage mixed-integer linear optimization model for multiple allocation

hub covering flow problem is introduced in Chapter 4. These models are developed

to investigate demand and/or transportation cost uncertainties. Different scenarios
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are created to examine the consequences of uncertainty. It is assumed that the flow

demand is Poisson distributed and the transportation cost is normally distributed.

An extensive numerical study is given in this chapter. In the last chapter, whole

studies in the thesis are summarized and future research possibilities are discussed.



2 LITERATURE REVIEW

Hub location problems, which are crucial for the location science, are investigated

over 30 years. Examples of these problems occur in various application areas such

as postal networks, freight transportation via land, air or rail, airline passenger

transportation, telecommunication, etc.

Campbell and O’Kelly (2012) classify the function of hubs into two groups : (1)

a connecting, switching, or sorting function that authorizes flows to be altered at

a hub node and (2) a consolidation/breakbulk function that authorizes flows to be

amassed and dismissed. The first function is fundamentally focused on arranging flow

directions to access the destination point in the shortest possible time. The number of

links in the path between origin and destination pairs is decreased remarkably during

this occurrence. On the other hand, the second function provides cost reduction for

consolidated flows via economy of scale.

Lium et al. (2009) points out that the hub network structure in transportation

systems and telecommunication systems are similar from different aspects such as

service cost reduction, increasing service density, and appearance of demand uncer-

tainty. Transportation hub problems do not concern setting up new links. Because

road infrastructures are public (There is no opportunity to construct new roads or

design a new route by air or sea to build new links without public approval and/or

government permissions), this issue causes to shift the major focus to the cost of

flow via these links. From this aspect, constructing new links is also expensive and

difficult to set up in telecommunication hub problems (For example, set up a new

fiber optic line can be extremely expensive). Because of this, telecommunication

networks are also focused on unit flow costs.

The first articles which address the hub location problem are (O’Kelly, 1986a,b,

1987). However, Hakimi (1964, 1965) are seminal papers for hub location problem

without addressing its name. In these papers, origin-destination flows are described,

and node optimality for single or p medium location problems, which are the source
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of hub median location problems’ motivation, are proven. A single facility location

problem inspires Hakimi (1964) ’s study. Because of this, origin-destination flow pairs

are transformed to equivalent nodal demands. Similarly, O’Kelly (1986b) transforms

the continuous planar single hub location problem to the classical Weber problem.

Hakimi (1965) extends a single center to multiple switching centers. In this paper,

the network movement is possible between two hubs, the same as in a hub network.

This assumption is eliminated via neglected costs between switching centers. After

this elimination, Hakimi (1965) focuses on the p median problem.

O’Kelly (1986b) develops a heuristic algorithm that is simply assigning nodes to the

closest hub. In this study, two hubs’ location in a plane is introduced in the new

model with different assumptions about transportation economies pf scale effects on

network structure. Also, American Civil Aeronautical Board (CAB) data set is intro-

duced, which is then widely used as a benchmark in the literature. In this data set,

the passenger traffic information between 25 US cities is given. Another benchmark

data set, Australia Post (AP) data set, is first used by Ernst and Krishnamoorthy

(1996). This data set is based on an Australian City’s postal delivery service with

200 nodes.

The hub location problem is generally divided into three subcategories according to

the objective function type in literature. Consequent sections are created based on

this division.

2.1 The Hub Median Problem

Hub location problem is first formulated as an integer quadratic assignment model

(O’Kelly, 1987). This formulation is known as the first example of a single allocation

p-hub median problem. In this model, the objective function minimizes the total flow

cost, measured in time, distance, etc., to carry goods or packages from origin to

destination. There is n demand creating nodes to connect via p hubs.

Let the variable xik be 1 if node i is assigned to hub k, and 0 otherwise ; xkk equals

1 when hub k is opened and 0 otherwise. Wij symbolizes the flow amount sourced

from node i with a destination node j. Cij represents the unit flow cost between
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node i and node j. Also, α is an inter-hub cost discount factor, which is due to the

economy of scale of inter-hub transfers. Single allocation p hub median problem is

given in Eqs.(2.1a)-(2.1e). The objective function in Eq.(2.1a) includes the sum of

all flow costs that occurred in the network. Due to the economy of scale, α must be

in [0, 1) range. The first constraint in Eq.(2.1b) ensures that if a hub is not opened,

the node can be assigned to it. Constraints in Eq.(2.1c) and Eq.(2.1e) ensure single

allocation, which means that each node is allowed to be assigned to only one opened

hub. Constraint in Eq.(2.1d) enforces to open exactly p hubs.

min
∑
i,j

Wij

{∑
k

xikCik +
∑
m

xjmCjm + α
∑
k,m

xikxjmCkm

}
(2.1a)

s.t. (n+ p− 1)xkk −
∑
i

xik ≥ 0 ∀k, (2.1b)

∑
k

xik = 1 ∀i, (2.1c)

∑
k

xkk = p, (2.1d)

xik ∈ {0, 1} ∀i, k. (2.1e)

O’Kelly (1987) develops two heuristics to solve this problem with 2,3 and 4 hubs in

a subproblem of the CAB data set, including ten nodes. Besides the development of

the heuristics, the scale economy is also examined at different levels, and the article

points out its effect on the solution procedure.

In subsequent work, O’Kelly (1992) adds the fixed hub opening cost to the hub

median problem. Adding this cost eliminates the need for prior setting the number of

hubs. As a result, the number of hubs becomes a decision variable. Besides constraint

in Eq.(2.1b) is transformed into a simpler form as in Eq.(2.2b) below. Let, fj be the

fixed cost of opening a hub at node j, Oi the total amount of flow originating from

node i (Oi =
∑

jWij),Di the total amount of flow destination node i (Di =
∑

iWij),

and other parameters are same as previous. The fixed cost hub median problem due

to O’Kelly (1992) is given below.
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min
∑
i,k

xikCik

{
Oi +Di

}
+
∑
j,m

xjm
∑
i,k

xik

{
αWijCkm

}
+
∑
j

fjxjj (2.2a)

s.t. xkk −
∑
i

xik ≥ 0 ∀k, (2.2b)

(2.1c) and (2.1e). (2.2c)

The multiple allocation p-hub median problem is formulated as an integer linear

programming initially by Campbell (1992). In that paper, discrete and continuous

demands are compared, and their effects on the solution are investigated in detail. As

the first integer linear programming model of the hub median problem, the model is

given below. Define xijkm as a percentage of flow sourcing from node i to destination

node j via hubs located at node k and m respectively. Let cijkm = cik + cmj +αckm.

min
∑
i,j,k,m

wijcijkmxijkm (2.3a)

s.t.
∑
k,m

xijkm = 1 ∀i, j, (2.3b)

xijkm ≤ xkk ∀i, j, k,m, (2.3c)

xijkm ≤ xmm ∀i, j, k,m, (2.3d)

xijkm ≥ 0 ∀i, j, k,m, (2.3e)

(2.1d) and (2.1e). (2.3f)

Klincewicz (1992) develops a heuristic by combining tabu search and a greedy ran-

domized adaptive search procedure to solve the single allocation p-hub median pro-

blem. According to the paper, this metaheuristic gives the optimal solution in 90% of

the test problems. Skorin-Kapov and Skorin-Kapov (1994) develop an LP-relaxation

algorithm combined with tabu search for solving p interacting hub in n nodes. They

compared their method with the heuristics developed by O’Kelly (1987) and the me-
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taheuristic due to Klincewicz (1992). The acquired solutions are far better than prior

heuristics. On the other hand, CPU times for solving the instances are enormously

large due to the allocation phase’s burden.

The first integer linear programming model for a single allocation hub median pro-

blem is introduced by Campbell (1994). In this formulation, there are (n4 + n2 + n)

variables including (n2+n) and (n4+2n2+n+1) linear constraints. Campbell (1994)

also uses minimum flow amount as flow thresholds for allowing to use a link. If the

thresholds are fixed the maximum values, the problem is transformed into a hub

median problem with a single allocation setting. Another insight derived from the

Campbell (1994) is if the threshold is omitted from links, the decision variables for

routing(xijkm) turn binary because of directing origin-destination pair via least-cost

paths. Because of this, there is no restriction needed to turn the decision variables

integer.

Klincewicz (1996) uses the dual of the Campbell (1994) formulation. The dual as-

cending method, which has two parts : attempting to increase summation of dual

decision variables constantly, and a dual adjustment procedure for balancing dual

decision variables values, is used to solve subproblems in his branch-and-bound al-

gorithm. Comparing the exact solution of branch-and-bound in that paper, solution

times are decreased for all instances significantly. Contrary to this decrease, there is

a gap (ranging from 0% to 2.2%) between the exact and inexact branch-and-bound

solutions.

Ernst and Krishnamoorthy (1996) introduce a new approach for modeling hub me-

dian problems with a decreasing number of constraints (2n2 + n+ 1) and variables

(n3 + n2,n2 of them are integers) which are useful for solving large scale problems.

They model inter-hub transportation as a multicommodity flow problem. Let χ be

the discount factor for transferring from non-hub to hub nodes, and δ be the discount

factor for transferring from hub to non-hub. Define yikl as the total amount of flow

originating from node i routed from hubs k and l, respectively. Using previous deci-

sion variables and parameters, they formulate the problem as in Eqs.(2.4a)-(2.4e).

The constraint in Eq.(2.4b) ensures that the summation of the input flow amount

for a node and flow amount sourced from that node is equal to the summation of
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the output flow amount that node and the amount of flow destined to that node.

min
∑
i,k

cikxik

{
χOi + δDi

}
+
∑
i,k,l

αcklyikl (2.4a)

s.t.
∑
l

yikl −
∑
l

yilk = Oixik −
∑
j

wijxjk ∀i, k, (2.4b)

xij ≤ xjj ∀i, j, (2.4c)

yikl ≥ 0 ∀i, k, l, (2.4d)

(2.1c), (2.1d) and (2.1e). (2.4e)

O’Kelly et al. (1996) primarily focuses on the effects of the inter-hub discount factor

on the exact solutions of the hub median problem with both single and multiple

allocations. They apply the objective function linearization to solve the problem.

They find out that the inter-hub discount factor’s different values oblige the decision

variables to behave as integer decision variables. Because of that, the hardness of

the model increases or decreases related to the inter-hub discount factor.

Skorin-Kapov et al. (1996) find out that values of integer decision variables of the

Campbell (1994) formulation’s LP relaxation are immensely fractional. Because of

this, they reformulate the p-hub median problem with a single allocation setting.

This formulation includes (2n3+n2+n+1) linear constraints with (n4+n2) variables

including (n2) binary variables. Linear relaxation of this formulation is almost close

to its integral solutions when the CAB data set is used. They also employed an

implicit enumeration search tree to get the optimal solution. From their derived

information, the gap between this formulation’s relaxation and optimal objective

function value is less than 1%. They also solve multiple allocation setting of the hub

median problem. This paper is first to attempt to acquire an optimal solution, and

they also compare this solution with four different heuristics.
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Sohn and Park (1997) introduces the first linear programming model to determine

the location of two hubs in the hub median problem with a single allocation set-

ting. They indicate that if the location of hubs is settled, the problem is solved in

polynomial times. They transform the problem from the binary quadratic problem,

which is introduced by O’Kelly (1987). After transformation, the problem becomes

similar to the minimum cut problem. This property enables us to develop efficient

solving methods in polynomial times.

Bryan (1998) presents four extensions to the literature : (1) a capacitated model, (2)

a minimum threshold model, (3) a model that endogenously determine the number

of hubs, and (4) a model that incorporates a flow-dependent cost function for the

inter-hub links. The first and second extensions result in disconnected sub-networks,

not the desired outcome for hub problems. The third extension transforms the p-

hub median problem model like fixed cost addition to the model, which means

that number of open hubs is determined to satisfy network demands. The paper’s

numerical results indicate that an increase in flow costs can cause an increase in

total network cost while the inter-hub costs decrease.

Ernst and Krishnamoorthy (1999) introduce two new mathematical models for the

capacitated single allocation hub median location problem. Their formulations ex-

tend those of Ernst and Krishnamoorthy (1996) and Campbell (1994) in two ways :

adding hub opening cost as fixed cost and capacity constraints for each hub. These

capacity constraints take only flow into account directly coming from non-hub nodes.

They solve these problems with two heuristics. The first one is built on the simulated

annealing, and the other heuristic is built on random descent. The optimal solutions

are derived via an exact branch-and-bound method with upper bounds obtained by

these heuristics. According to the results, the formulation based on Ernst and Kri-

shnamoorthy (1996) ’s work is superior to other formulations in both solution times

and quality. They also improve their solution times and the gap between optimal

and heuristic solutions with their preprocessing approach.

Marianov et al. (1999) propose a mathematical model for the multiple allocation

hub median problem in the competitive environment. The model determines the

hubs’ location to maximize demand flow capture when different service providers
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are available in the network. The capturing procedure works as if the flow costs of

a link of the provider is less than other competitors in the network ; the provider

captures all flows in that link. On the other hand, if ; these are equal, the competi-

tors’ share flows equally. They solve the model with a tabu search based heuristic.

For measuring the performance of the solution procedure, they use well known AP

data set. Comparing the application of solution methodology to the non-competitive

version of their model, the competitive model’s procedure gives more quality results.

Sasaki et al. (1999) extend the multiple allocation hub median problem with only

1-stop in the route. They solve the problem with the branch-and-bound algorithm

and a greedy-type heuristic. They also find out that branch and bound methodo-

logy is better when the number of nodes in the system is relatively small. Greedy

type heuristic generally approaches the optimal solution when the specified integer

parameter necessary for the algorithm is equal to the number of nodes. Also, the

heuristic solves the problem quickly when the predetermined parameter equals to 1.

Ebery et al. (2000) extend the capacitated version of the multiple allocation hub

median problem, which is introduced by Campbell (1994). To solve this problem,

they develop an efficient heuristic based on the shortest path algorithm. They also

set up an upper bound derived from a hybrid algorithm that is a linear programming

based on a branch-and-bound algorithm. Their new model is solved in less amount

of time compared to previous studies. Let Γk and fk capacity and opening cost of

hub k, respectively. Also let’s define Wij, zik, yikl, xilj as the total flow between

node i to j, the flow amount which is transferred from node i to hub k, the flow

amount which is transferred from node i through hub k and hub l and the amount

of flow originated from node i with destination node j through hub l respectively.

Let hk equals 1 if the hub k is opened and 0 otherwise. Ebery et al. (2000)’s model

is given in Eqs.(2.5a)-(2.5f).
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min
∑
i,k,l

(χcik + αckl) yikl +
∑
i,k,l

δcljxilj +
∑
k

fkhk (2.5a)

s.t.
∑
l

xilj = Wij ∀i, j, (2.5b)

∑
i,l

yikl ≤ Γkhk ∀k, (2.5c)

∑
i,k

yikl ≤
∑
i,j

Wi,jhl ∀l, (2.5d)

∑
k

yikl =
∑
j

xilj ∀i, l, (2.5e)

xilj, yikl ≥ 0, hk ∈ {0, 1} ∀i, k, l, j. (2.5f)

Sohn and Park (2000) suggest three formulations for the single allocation hub me-

dian problem. They prove that when the number of hubs equals three, the problem

becomes an NP-hard problem. They formulate the problem with a mixed-integer

programming model. For reaching a feasible solution in considerable time, the poly-

hedral properties of the model are used. Because of using a fixed hub location, they

also treat hub opening costs as a constant. They also find out that this formula-

tion can be adapted to solve the three-terminal cut problem and the three-processor

distribution problem.

Ebery (2001) develop an efficient algorithm for solving the large scale single al-

location hub median problem with two and three hubs. In this study, the p hub

allocation problem is also examined. They propose new mixed-integer programming

models with fewer constraints and variables from prior studies. According to the

best of authors’ knowledge, they solve the largest single allocation problem. The

numerical results of the study are superior to the results in the literature. Howbeit,

the proposed formulations are effective only with a maximum of three hubs.

Mayer and Wagner (2002) introduce a solution procedure for the uncapacitated

multiple allocation hub median problem. This procedure is essentially based on
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the branch-and-bound algorithm combined with tightened lower bound obtained

through an aggregated model formulation and a simple heuristic determined by the

upper bounds satisfying the complementary slackness of some constraints. Their

procedure solves the problem optimally at most 40 nodes systems.

Boland et al. (2004) propose formulations for the uncapacitated and capacitated

multiple allocation hub median problems. For improving the solution quality, prepro-

cessing procedures obtained from computational results, and tightening constraints

for prior mixed-integer linear programming formulations are presented. They also

use flow covering constraints to improve solution times of the capacitated version

of the problem. They prove that their proposed approach decreases computational

times significantly to obtain optimal solutions.

Labbé and Yaman (2004) introduce multicommodity flows on the uncapacitated

single allocation hub median problem. They add flow variables to the model via

two different ways : direct projection and indirect projection. They investigate fa-

cets of the model’s polyhedron and the linearization of the model for both single

commodity and multicommodity cases. They propose reflecting flows to the mo-

del by introducing two new facet-defining inequalities. These facets dominate some

projection inequalities. This development ensures that the facet inequalities can be

detached in polynomial time.

Elhedhli and Hu (2005) combine the traffic congestion concept, which means that the

model includes delays and different route preferences due to the enormous amount

of traffic with the uncapacitated single allocation hub median problem. This com-

bination adds some nonlinear terms in the objective function. For handling this

nonlinearity, a linearization scheme is developed. They use a Lagrangian heuristic

to solve the linearized model, which also includes integer decision variables. This

heuristic is capable of finding high-quality solutions within acceptable computatio-

nal times. Their results contribute to the literature’s new and realistic insights about

hub location problems.

Labbé et al. (2005) use polyhedral properties of the capacitated single allocation hub

median problem with fixed hub opening costs, and use a branch and bound technique

to solve the problem. In the model, capacity constraints limit the amount of flow
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transferred via hubs. They investigate the effects of different types of cuts on the

problem. Their algorithm gives better results in a high amount of transferred flows

and hubs’ tight capacities comparing the low flow amounts and loose capacities.

Marín (2005a) deal with hub capacities on the multiple allocation hub median pro-

blem. They set up an upper bound to total flow that comes directly from origin. They

introduce tight integer programming formulation for solving this problem. They also

find out some useful properties of the optimal solution which can be applied to ac-

celerate the computational time. Their experiments show that their model can solve

mid-sized problems effectively, and it performs better than the existing literature.

Marín (2005b) investigate the multiple allocation hub median problem based on

valid inequalities. They introduce an integer programming model that gives the best

quality results compared to the literature available at that time. They use the fact

that flow costs between the hubs satisfy triangular inequality. The formulation of

the problem can be extended employing powerful valid inequalities acquired through

the study of the intersection graph of a combined set packing problem. They use

these inequalities in the Lagrangian context to reduce the size of the branching tree.

This reduction decreases computational times remarkably.

Topcuoglu et al. (2005) employ a genetic algorithm to solve the uncapacitated single

allocation hub median problem. They use both CAB and AP data sets. Their nu-

merical results indicate that the study is significantly superior to prior studies in

both solution quality and computational times to solve small, middle, and large-scale

problems. Especially for the CAB data set, they found the optimal solution in less

running time from existent studies remarkably. In the AP data set, they find eight

times better solution than existent solutions.

Cánovas et al. (2007) focus on the uncapacitated hub median problem with multiple

allocation. They use dual problem to solve the primal problem. For solving four

indexes dual problem, they use a heuristic based on a dual ascending method. This

heuristic includes several subroutines and an external linear programming solver

embedded into the branch and bound algorithm. The heuristic gives better lower

bounds to the branching tree. They use a maximum of 120 nodes of data sets. The

numerical experiments indicate that their results are significantly surpassing prior
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results.

Chen (2007) suggests determining the upper bound for the number of hubs in the

single allocation hub median problem with a hybrid heuristic hybridization of tabu

search and simulated annealing heuristics. Numerical studies signify that implemen-

ting the acquired upper bound for the number of hubs, the proposed heuristic is

adequate for acquiring optimal solutions for all small-scaled problems very easily.

The results show that the hybrid heuristic is better than a tabu search heuristic and

simulated annealing for solving the problem.

Cunha and Silva (2007) develop a hybrid algorithm based on a genetic algorithm for

solving the uncapacitated hub median problem with a single allocation for trucking

companies that operate less-than-truckload services in Brazil. The model consists of

calculating the number of hubs (terminals) and determining the location of termi-

nals. Their model alters from similar models found in the literature in the sense that

it authorizes variable scale-reduction factors for the flow costs according to the total

amount of flow between terminals. They brace their theoretical study in a real-world

application with a known transportation company in Brazil.

da Graça Costa et al. (2008) address the capacitated hub median problem with

single allocation. They propose a second objective function to the model, instead

of using capacity constraints to restrict the amount of flow that can be received by

the hubs. This second objective tries to minimize the time consumed from origins

to reach hubs. Two bi-criteria models are developed. In the first model, total time

is treated as the second criteria. In the second one, the maximum processing time

for the hubs is minimized. These bi-criteria problems give a non-dominated set of

solutions. They also compare their findings with classic single objective models.

Rodríguez-Martín and Salazar-González (2008) focus on a problem that includes es-

tablishing paths and locating hubs to be used to transport a group of commodities

from origins to destinations in a given capacitated hub-spoke network. For examining

this network, a mixed-integer programming model is used. The model is solved via

a branch-and-cut algorithm combined with two different decomposition techniques.

They find out that Double Benders’ Decomposition surpasses Benders’ Decomposi-

tion. However, these approaches are effective on 25 nodes and ten hubs candidates
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network. Heuristic methods are used for larger problems, and computational expe-

riences indicate that these heuristics derive near-optimal solutions rapidly.

Yaman (2008) pays attention to the hub median problem with single allocation, and

this network also has a different structure. Hubs are selected from a given set of

nodes, and each hub in the structure is attached to a central hub in this structure.

Links are established on the arcs of the arising network to transmit the flow. The

study’s objective is to determine the hub locations and the links to minimize the

link setup cost. For realizing this aim, two different mathematical models and a

metaheuristic is developed. The metaheuristic is the combination of Lagrangian

Relaxation and local search methods. The solution quality of the metaheuristic is

tested, and the formulations are compared in computational experiments.

Silva and Cunha (2009) suggest three different heuristics to solve the uncapacitated

hub median problem with single allocation : three different versions of multi-start

tabu search heuristic as a part of a two-stage integrated tabu search heuristic. Multi-

start heuristics find several different initial solutions, and then these solutions are

improved by tabu search. In the two-stage integrated heuristic, tabu search is imple-

mented to enhance both parts (location and allocation). They also use widely known

CAB and AP data sets to benchmark their findings. Computational experiments in-

dicate that their methodology is capable of solving optimally 100 nodes networks.

The solution times are considerably decreased comparing to existent literature.

Yaman (2009) proposes a special star network design for hub median problems

with single allocation, which includes three layers. There is a complete network

relating to the so-called central hubs in the first layer of the design. In the second

layer, compounds of star networks connecting the remaining hubs to central hubs

have occurred. In the third layer, the demand centers to hubs and central hubs

are unified with the star networks. In this problem, the main aim is to allocate a

predetermined number of hubs and central hubs with minimum flow costs resulting

from the network structure. Service quality constraints originating from the delivery

times are also added to the model.
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Correia et al. (2010) extend the classical capacitated hub median problem by adding

the size of hubs to the model. Each candidate hub has a set of capabilities which

is selected via available capacity. Different models are suggested for the problem,

analyzed in terms of the bound determined by linear programming relaxation. They

also search for different inequalities to improve the model. For reducing the size of

the problem, various preprocessing tests are introduced.

Ilić et al. (2010) introduce a new general variable neighborhood search heuristic to

solve the uncapacitated hub median problem with single allocation. The problem

deals with placement hubs to minimize the flow between all origin-destination pairs.

Three neighborhoods are used, and data structures for calculating new total flow in

the network are updated competently. A new strategy is offered to design a variable

neighborhood descent local search in addition to the classical sequential strategy.

Their computational experiments indicate that their results give better results than

prior studies. This methodology is superior in large examples.

Ishfaq and Sox (2011) has a different perspective on hub median problem with mul-

tiple allocation, which includes flow costs covering different transportation modes,

modal connectivity costs, and fixed hub cost contains service time requirements.

They solve large scale problems, which include 100 nodes with tabu search meta-

heuristic. The solution acquired from the tabu search is compared with another

heuristic, which setup lower bound via Lagrangian Relaxation. In their computa-

tional experiments, the intermodal hub problem’s performance and the interaction

of various factors on the design of the network with service time requirements are

measured.

Kratica et al. (2011) deal with modified multicommodity capacitated hub median

problem with multiple allocation. This modified model includes fewer variables and

constraints than previous studies. Two evolutionary algorithms that adopt binary

encoding and standard genetic operators are used to solve this modified problem.

The second algorithm also uses a recently conceived heuristic to approximate the

objective function value in large scale instances of the problem. The first one is

capable of finding optimal solutions in small and middle scale problems. Comparing

the existing literature, the second one gives the best results.



18

Lin et al. (2012) combine a well-known capacitated single allocation p-hub median

model with integral constraints on the paths. The allocation of a specific p among

a set of candidate hubs is required. The total cost on the capacitated hub-and-

spoke network is minimized even though at the same time meeting origin-destination

demands and singular path constraints. The problem structure and developed a

genetic algorithm using the path for encoding is developed. The algorithm gives

0.1% better lower bounds for the Chinese Cargo data set comparing the lower bounds

acquired from Lagrangian Relaxation.

Kratica (2013) introduces a new metaheuristic application to hub median problem

with multiple allocation. This metaheuristic is called as electromagnetism like me-

thod. They also add a new scaling technique with combining movement based on the

attraction-repulsion mechanism, which pushes the heuristic possible better search

regions. They use well-known data set to measure the effectiveness of their methodo-

logy. According to the computational experiments, their proposed method acquires

better results in large scale instances. They also extend their study with a capaci-

tated version of the problem. This methodology reaches the optimal solution which

exists in the literature for both uncapacitated and capacitated types of the problem.

Correia et al. (2014) extend the well-known capacitated single allocation hub median

problem with adding multiple products framework to the network. The study aims to

minimize the summation of setup costs for the hubs, setup costs for each product in

each hub, and flow routing costs. They extend existing capacitated single allocation

hub models for a single product to multiple products and add various inequalities

classes to make the model more powerful via lower bound acquired from Lagrangian

relaxation.

He et al. (2015) deal with a special case of uncapacitated hub median problem with

multiple allocation. This special case is known as an intermodal hub location problem

that includes setting up a set of fully interconnected facilities named intermodal

hubs. The hubs serve as a transit and swapping points for circulating flows between

predetermined origin and destination nodes. For solving the problem, they develop

a combined metaheuristic. This metaheuristic includes a complex combination of

branch-and-bound, Lagrangian relaxation, and linear programming relaxation.



19

Rothenbächer et al. (2016) examine the merged tactical planning of hub locations

and the design of a density service network. Various constraints acquired from the

real-world (multiple transportation requests, flow time limitations, splitting, and

outsourcing opportunities) are taken into account. For conceptualizing, they use a

path-based model and solve the model via a branch-and-price-and-cut algorithm.

Computational experiments are done in a German rail freight company with real

data.

2.2 The Hub Center Problem

The hub center problem is a variant of the classical p-center problem. Likewise,

the p-center problem, the hub center problem, is also a min-max type problem.

This problem is introduced by Campbell (1994). In the study, the objective of the

hub center problem is classified under three types : (1) minimizing the maximum

cost for any origin-destination path, (2) minimizing the maximum cost of change in

any link, (3) minimizing the maximum cost of change link between a hub and an

origin/destination node.

Campbell (1994) claims that the first objective type is occurred due to perishable or

time-sensitive goods. For this reason, the cost term of the objective function is related

to time. As in the first one, second objective cost terms also include time. Maximum

time on each link is important in this type. Items required to preserve and restore

processes, which is only able to do in hubs, are examples of goods in the second

type. The third type’s only difference from the second type is considering different

specialties on the hub-to-hub links. Campbell (1994) introduces and examines also

both single and multiple allocation settings of the problem. Let p and cijkm as the

number of potential hubs and consumed time amount through the path (i → k →
m → j). xijkm equals one if the flow is assigned to the associated path and zero

otherwise. Likewise, yk equals one if the hub k is opened and zero otherwise. After

the definition Campbell (1994) formulates a model for the first type as follows :
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min max {xijkmcijkm} (2.6a)

s.t.
∑
k

yk = p, (2.6b)

∑
k,m

xijkm = 1 ∀i, j, (2.6c)

xijkm ≤ yk ∀i, j, k,m, (2.6d)

xijkm ≤ ym ∀i, j, k,m, (2.6e)

xijkm, yk ∈ {0, 1} ∀i, j, k,m. (2.6f)

(Kara and Tansel, 2000) is one of the pioneer studies of p-hub center in the literature.

In this study, a new modeling approach is used to solve the p hub center problem

with single allocation. This approach is essentially a combinatorial model. They

also prove that this model is an NP-complete problem. Comparing their model

with Campbell (1994) ’s model, they use the CAB data set with 80 combinations.

For solving Campbell (1994)’ model, three different linearizations are used. They

use a linearization technique to solve their model. The computational experiments

indicate that their model is significantly better than Campbell (1994) ’s.

Pamuk and Sepil (2001) develop a metaheuristic algorithm to solve p center problem

with single allocation. The relocation part of the metaheuristic is essentially based

on tabu search because tabu search lowers the possibility of trapping to local optima.

Two different single allocation schemes are combined for the allocation phase of the

algorithm. A greedy search heuristic is attached to the algorithm for improving

assignments.

Campbell et al. (2007) focus on the p-hub center allocation part of the p-hub cen-

ter problem with both single allocation and multiple allocation settings. They also

investigate both uncapacitated and capacitated versions of the problems. For analy-

zing this, they acquire complexity results and formulate with integer programming

method. Their major drawing from the computational experiments is when there are
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less than three hubs in the system, the problem is solved with polynomial-time algo-

rithms. However, larger problems are NP-hard. They use a spanning tree algorithm

to find an initial solution.

Ernst et al. (2009) investigate the uncapacitated hub center problem with both

single and multiple allocation settings. They also prove that both settings of the

problem are NP-hard. They also find out that despite the problem with a given

predetermined potential hub set is solved to optimal, the problem is still NP-hard.
They introduce a novel integer programming model for both settings of the problem.

For solving multiple allocation settings, a branch-and-bound based algorithm is used.

Gavriliouk (2009) introduces aggregation in hub location problems for the unca-

pacitated p-hub center problem with both single and multiple allocation settings.

For solving these problems, they focus on improving error bounds with heuristics.

The structure of the error bounds leads to using instructions of aggregation for

minimizing these errors.

Meyer et al. (2009) deal with a single allocation p-hub center problem with the

third type of objective. For solving the problem, they introduce an exact two-phase

algorithm. In the first phase, a set of ideal candidate hub combinations is determined

via a branch-and-bound algorithm based on the shortest path. The second part aims

to reduce the size of the problem, which gives the optimal solution. Improving the

upper bound of the first phase, they develop an ant colony-based heuristic, which is

design for the single allocation p-hub center problem. They prove that their solution

is better than well-known MIP solvers, such as CPLEX.

Brimberg et al. (2017a) focus on the uncapacitated p-hub center with multiple al-

location and the first type of objective. They try to solve two different integer pro-

gramming models. For solving the problem, they use an essential variable search

heuristic. They also introduce new multi-start local search heuristic, and they com-

pare their results with Ernst et al. (2009) ’s. According to the computational results,

the essential variable search heuristic outperforms the other two methods.

Brimberg et al. (2017b) examine the uncapacitated p-hub center problem with single

allocation and the first type of objective. They develop a general variable search heu-
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ristic to solve the problem. A nested structure with two local search neighborhoods

is embraced for the local search step. They also compare their model with a prior

study that is a metaheuristic which is based on ant colony optimization. Computa-

tional experiments indicate that their method is superior to the existent method in

terms of both solution quality and CPU time.

2.3 The Hub Covering Problem

The hub covering problem is a hub location variant of the well-known set covering

problem. In this problem, all demand nodes must be covered by hubs in predefined

distances. Likewise, in the hub center problem, Campbell (1994) defines three dif-

ferent covering types : the path (i,j) covered by hubs k and m if (1) the cost of the

path does not exceed a predefined value, (2) each link in the path does not exceed

a predefined value, (3) distance of the each of hub/non-hub links does not exceed a

predefined value.

As in the hub center problem, Campbell (1994) introduces integer programming

formulations of the hub covering problems with both single and multiple allocations.

Besides these models, the hub maximal covering problem is also proposed. The major

objective in the hub covering problem is increasing hub coverage with minimizing

hub opening costs. In the hub maximal covering problem, only maximizing the

coverage of demands is considered.

Kara and Tansel (2003) introduce a new combinatorial integer programming formu-

lation for the hub covering problems with the single assignment, which are different

from existent studies. In the prior studies, there are only nonlinear binary integer

formulations. In their study, they linearize these models with three different me-

thods and their model with one method. Computational experiments indicate that

the linearized version of their model gives superior results from prior studies.

Define xik , to be 1 if the node i assigned to hub k, 0 otherwise. If the xkk equals to

1, it means that hub k is opened. xijkm(= xikxjm) is a binary parameter for route

assignment. tim symbolizes the transportation time between node i and node m. α

represents the inter hub cost discount factor. The coverage is ensured by a binary
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parameter, vijkm, which equals 1 if the transfer time between node i and node j

(tik + αtkm + tjm) is below a threshold time (β) and 0 otherwise. After defining

decision variables and parameters, Kara and Tansel (2003)’s model is given below.

min
∑
k

xkk (2.7a)

s.t.
∑
k

xik = 1 ∀ i, (2.7b)

xik ≤ xkk ∀i, k, (2.7c)

∑
km

vijkmxijkm ≥ 1 ∀ i, j, (2.7d)

xijkm ≥ xik + xjm − 1 ∀ i, j, k,m (2.7e)

∑
k,m

xijkm = 1 ∀i, j, (2.7f)

xijkm ≥ 0, xik ∈ {0, 1} ∀ i, j, k,m. (2.7g)

Tan and Kara (2007) design a hub network for a cargo company based in Turkey.

The design includes specific constraints, requirements, and criteria for the hub co-

vering problem. They formulate the problem with integer programming framework.

To better satisfy the requirements of the real-world, they propose two different for-

mulations. In the first formulation, they assign weights to hubs. For decreasing all

criteria into a single weight, Multiattribute Utility Theory is used. The second for-

mulation adds constraints for an obligatory driving limit for drivers, deadlines for

cargo, and different variations of real-world needs. Moreover, they solve the model

with large scale instances. Besides these, they introduce a new benchmark data set,

which is known as the Turkish Cargo (TR) data set, which includes 81 nodes/cities.

Wagner (2008) proposes an improved formulation to hub covering problems with

both single and multiple allocations. The formulations include non-increasing quantity-
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dependent transport time functions for transport links. They solve the formulations

via MIP solvers. Computational results provide comparisons with both Campbell

(1994)’s and Kara and Tansel (2003)’s formulations.

Alumur and Kara (2009) deal with cargo application of the hub covering problem.

They introduce a new model that includes the relaxation of the network’s comple-

teness and time bounds on each link in the network. The model set is the single

allocation, and the model allows upmost three hubs in a path. Well-known CAB

data set and Turkish Cargo data set is used for the computational experiments.

Calık et al. (2009) propose an integer programming formulation to solve the hub

covering problem over an incomplete network with a single allocation. The model

aims to determine hubs’ location, hub connections to be linked between the located

hubs, and the assignment of non-hub nodes to hub nodes. For solving this model,

the tabu search based metaheuristic is used. CAB and TR data set is employed for

the experiments.

Qu and Weng (2009) examine the hub maximal covering problem with multiple allo-

cation. They introduce a new evolutionary algorithm which is called path relinking.

They indicate that the algorithm performs well to solve the model. Computatio-

nal experiments are based on the Chinese aerial freight data set, which includes 82

nodes/cities.

Hwang and Lee (2012) analyze the hub maximal covering problem with single al-

location. The study’s objective is to find the location of the hubs, assign nodes to

determined hubs, and maximize the demand pertained by the time limit for trave-

ling. For formulating the problem, a novel integer programming model is introduced.

CAB data set and its subsets are used for computational studies. Two different heu-

ristics, which are distance-based allocation and volume-based allocation heuristics,

are employed to solve the problem.

Lowe and Sim (2013) introduce a new formulation to the hub covering problems

with single allocation. Prior methodologies do not include flow costs. The major

contribution of this paper is adding flow costs to the model. Besides this, they also

extend their study by increasing the types of aircraft in the system.
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Peker and Kara (2015) introduce a partial coverage concept to the hub maximal

covering problem with both single and multiple allocations. In prior studies, nodes

are completely covered and not covered by hubs. This study extends prior studies

with adding partial coverage of nodes. For formulating the problem, they introduce

an original efficient mixed-integer programming model. They use the CAB and TR

data set to compare their model’s performance. Their model usually outperforms

prior models.

2.4 Uncertainty in the Hub Location Problem

Uncertainty is inevitable and cannot be ignored in the real world. For the last decade,

recent developments in stochastic programming enabled handling uncertainty. While

inferences from small scale problems guide us to manage large scale problems, these

developments do not allow us to decrease dramatically computational times to solve

large scale problems.

Setting a hub to a specific location is a certain decision, and changing it once settled

is very costly. The hub location problems inherently include uncertainties. Uncer-

tainties originate from different sources, such as costs, transportation amounts, de-

mands, etc. The common point of these sources is that their values tend to change

over time. In the hub, location problems, flow amounts, and transportation costs

are changing over time.

Yang (2009) introduces the first two-stage stochastic programming formulation for

the hub location problem. The source of uncertainty is the demand, which changes

depending on seasonality. In the first stage, locating hubs is the major objective

with different demand scenarios during the planning horizon. In the second stage,

determining flow paths and allocation of the nodes is done—different demand levels

structure scenarios. Comparing the use of expectation of the expected value problem

with stochastic programming, they indicate that stochastic programming methodo-

logy is favorable for reflecting demand uncertainty to the hub location problem.

Sim et al. (2009) develop a chance-constrained stochastic programming formula-

tion for the hub center problem with single allocation. Chance constraints are used
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because of meeting the service level guarantee. Uncertainty in the service level gua-

rantee is occurred due to variability in transportation times. They solve the problem

with a metaheuristic, a combination of radial heuristic developed by them and the

Teitz-Bart heuristic. In their model, hub opening costs are ignored. Computational

study indicates that the Teitz-Bart heuristic random initiation generally gives the

worst result than the proposed method.

Contreras et al. (2011) investigate demand and transportation costs uncertainty

for the uncapacitated hub median problem. They also replace random variables

with their expectations. Demand uncertainty expected value problem is equivalent

to stochastic programming formulation. For transportation cost uncertainty, this

change is not equivalent to stochastic programming formulation. Because of this,

they use Monte Carlo simulation-based algorithm, which combines a sample average

approximation method with the Benders decomposition algorithm.

Alumur et al. (2012) focus on different aspects of the uncapacitated hub location

problem under uncertainty. The hub opening costs and flow amount transferred

between nodes are taken as the source of uncertainty. The sources are analyzed

separately and together. They also investigate both single and multiple allocation

settings for the problem. They find that the cost uncertainty affects the model higher

than demand uncertainty. According to computational experiments, formulations,

including uncertainty, is worth investigating.

Hult et al. (2013) develop a stochastic programming framework to the uncapacitated

hub center problem with single allocation. Their objective is minimizing the longest

path distance in the network. They take travel times as the source of uncertainty

because travel time directly affects service quality. They reformulate a stochastic hub

center problem efficiently and solve it with an algorithm based on variable reduction

and separation algorithm. Computational results show that the model is solved to

global optimal when the problem scale is small.

Meraklı and Yaman (2016) analyze the robust uncapacitated hub median problem

with multiple allocation under polyhedral demand uncertainty. They reflect uncer-

tainty on the model in two different ways. First of them is the hose model, which

accepts only having the information about the upper limit of each node’s total flow
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and the second one is the hybrid model that approves having information about

both lower and upper limits of the total flow. They formulate using minimax cri-

teria based linear mixed-integer programming model and solve it via an algorithm

that includes two Benders decomposition consecutively.

Qin and Gao (2017) formulate a novel uncapacitated hub median problem with a

fixed cost and single allocation with uncertain flow amounts. They develop the model

with two different methods according to different decision-makers. The objective of

the first method is minimizing the expected cost. The second objective is minimizing

α-cost. Because of the computational complexity of the problem, a genetic algorithm

is used to solve the model. According to computational study, the genetic algorithm

performs efficiently.

Correia et al. (2017) introduce a multi-period stochastic optimization formulation

framework to capacitated hub median problem with multiple allocation. The multi-

period concept means dividing planning horizons to periods. The source of uncer-

tainty in the model is taken hub capacity amount. This choice aims to investigate

the effects of increment and decrement of hub capacity on the model. Due to many

constraints and decision variables, it is hard to solve medium or large scale models

to optimality with general-purpose solvers. Because of this limitation, they extend

the framework and the model.

2.5 Summary Remarks for the Hub Location Problems

In our literature survey, over 70 articles about the hub location problem are exami-

ned and classified. Table 2.1 classifies literature with 3 main categories : objective

function structure (Median, Center and Covering), allocation type (single and mul-

tiple), and parameter type (deterministic and stochastic). It is appropriate to divide

the literature between three time periods. Before the year 2000, major contribu-

tions in the literature is about the new formulations and several concepts for the

hub location problem. One of the breakthrough ideas from this period is adding

the interhub discount factor to the model. This idea is suggested by O’Kelly and

Bryan (1998). This factor bears from the economy of scale application to the net-
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work. As in the economies of scale, there are discounted transportation prices when

the transferred amount is increased. As the nature of the hub location problems,

hub-to-hub transfer amounts are larger than others. So that, it is generally accep-

ted that multiplying hub-to-hub transfer costs with a factor is reflecting this idea

to the model. As this concept, there are different concepts about the problem is

observed. Between 2000 and 2009, generally, deterministic models are widely used

with all median, center, and covering formulations. Due to computational enhance-

ment, the scale of the problem is increased in these years. However, there is also an

increase in problem sizes. Because of this increase, heuristic methodologies also de-

veloped. After the year 2009, stochastic formulations are introduced. Comparing the

other formulation methods, the method needs comprehensive computation resources.

Because of the resource need, the number of these studies is limited as shown in

Figure 2.1 and Table 2.1. There are also limited studies for capacitated hub pro-

blems which are shown in Figure 2.1.

The number of studies on the hub center and hub covering problems is limited as

seen in Figure 2.1 and Table 2.1. There is no stochastic programming formulation of

the hub covering problem, including flow costs in the literature, and there is also no

multiple allocation studies for this problem. To fulfill these gaps, this thesis presents

— a new mathematical model for the multiple allocation hub covering flow pro-

blem (MAHCFP),

— new models for the capacity restricted MAHCFP,

— and a new two-stage stochastic programming model for MAHCFP considering

flow demand and flow cost uncertainties.
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Table 2.1: Summary of the Literature Survey

Article
Objective Allocation Parameter

Med Cen Cov Sin Mul Det Sto

Hakimi (1964) X X X X

Hakimi (1965) X X X X

O’Kelly (1986a) X X X

O’Kelly (1986b) X X X

O’Kelly (1987) X X X

O’Kelly (1992) X X X

Campbell (1992) X X X

Klincewicz (1992) X X X

S-Kapov and S-Kapov (1994) X X X

Campbell (1994) X X X X X X

Ernst and Krishnamoorthy (1996) X X X

Klincewicz (1996) X X X

O’Kelly et al. (1996) X X X X

Skorin-Kapov et al. (1996) X X X X

Sohn and Park (1997) X X X

Bryan (1998) X X X

Ernst and Krishnamoorthy (1999) X X X

Marianov et al. (1999) X X X

Sasaki et al. (1999) X X X

Ebery et al. (2000) X X X

Kara and Tansel (2000) X X X

Sohn and Park (2000) X X X

Ebery (2001) X X X

Pamuk and Sepil (2001) X X X

Mayer and Wagner (2002) X X X

Kara and Tansel (2003) X X X

Boland et al. (2004) X X X

Labbé and Yaman (2004) X X X

Continued on next page



30

Table 2.1: Summary of the Literature Survey

Article
Objective Allocation Parameter

Med Cen Cov Sin Mul Det Sto

Elhedhli and Hu (2005) X X X

Labbé et al. (2005) X X X

Marín (2005a) X X X

Marín (2005b) X X X

Topcuoglu et al. (2005) X X X

Cánovas et al. (2007) X X X

Campbell et al. (2007) X X X X

Chen (2007) X X X

Cunha and Silva (2007) X X X

Tan and Kara (2007) X X X

da Graça Costa et al. (2008) X X X

R-Martín and S-Gonzáles (2008) X X X

Yaman (2008) X X X

Wagner (2008) X X X X

Alumur and Kara (2009) X X X

Calık et al. (2009) X X X

Ernst et al. (2009) X X X X

Gavriliouk (2009) X X X X

Meyer et al. (2009) X X X

Qu and Weng (2009) X X X

Silva and Cunha (2009) X X X

Sim et al. (2009) X X X

Yaman (2009) X X X

Yang (2009) X X X

Correia et al. (2010) X X X

Ilić et al. (2010) X X X

Contreras et al. (2011) X X X

Ishfaq and Sox (2011) X X X

Continued on next page
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Table 2.1: Summary of the Literature Survey

Article
Objective Allocation Parameter

Med Cen Cov Sin Mul Det Sto

Kratica et al. (2011) X X X

Alumur et al. (2012) X X X X

Hwang and Lee (2012) X X X

Lin et al. (2012) X X X

Hult et al. (2013) X X X

Lowe and Sim (2013) X X X

Kratica (2013) X X X

Correia et al. (2014) X X X

He et al. (2015) X X X

Peker and Kara (2015) X X X X

Meraklı and Yaman (2016) X X X

Rothenbächer et al. (2016) X X X

Brimberg et al. (2017a) X X X

Brimberg et al. (2017b) X X X

Correia et al. (2017) X X X

Qin and Gao (2017) X X X
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Figure 2.1: Graphical Representations on the Literature Survey



3 DETERMINISTIC MULTIPLE ALLOCATION HUB COVERING

FLOW PROBLEM

Logistics, airline and postal companies are needed to be managed more cost-effective

and efficient because of the recent developments in the global economy. Before these

days, there were some tackles to cooperation between companies. For example, plane

usage was less than today. Technological improvements were not sufficient to deve-

lop long-range aircraft with more seats. Support systems (such as luggage delivery

system, ticketing, etc.) were not computerized.

On the other hand, the consumption of petroleum was less than today, and petro-

leum prices were low. Because of these, all airlines tried to fly all points without

cooperation with other airlines. According to U.S. Energy Information Administra-

tion (2019), known hydrocarbon sources meet the world’s demand through 2050. It

means that colossal petroleum deficiency will appear shortly. Besides of this inade-

quacy, there are political instabilities in some of petroleum exporter countries. After

political unrest in petroleum exporter countries (such as Iraq, Libya, Syria, and Ve-

nezuela), petroleum prices have been boomed. This increment and insufficiency of

sources force airline companies to make codesharing agreements to minimize petro-

leum consumption and operating expenses. Besides petroleum prices, many other

factors affect airline companies’ profitability and sustainability, such as qualified

staff salaries, lounge expenses, etcetera. Besides the airline companies, logistic and

postal companies also depend on petroleum prices and other expenses.

For tackling these problems, airlines make codeshare agreements to cooperate and

create flight networks more efficient. For example, Turkish Airlines has more than

50 codeshare agreements (Turkish Airlines, 2020). These intercompany flights are

connected via significant cities. Inefficient network design causes much more pe-

troleum consumption and inefficient source usage. In the short term, the effect of

inefficient network design may not be exact for companies. Many airlines were decla-

red bankruptcy because of bad network design because small cities have not enough
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demand for creating such complex connections. Because of the hardness of creating

such a complex network, hub location problems are vital for the airline industry.

Different hub location problems, which are defined in the prior section, are investi-

gated to create networks. Median and center problems ignore a plane’s maximum

flight distances. On the other hand, the classical hub covering problem ignores the

unit flow costs. Because of this, Lowe and Sim (2013) proposes to combine both

advantages of hub covering and median problem in a model. The model is known as

the Hub Covering Flow Problem. Their model uses single allocation setting. Camp-

bell (1994) defines three types of covering (where i and j represent nodes and k and

l represent hubs) :

1. length of a route (from node i to node j through hub k and hub l) does not

exceed a value,

2. length of all connections in the network does not exceed a value,

3. length of connections except hub-to-hub connections does not exceed value.

Lowe and Sim (2013) use the third definition of the covering. However, the definition

ignores hub-to-hub flight’s planes also have limitations.

min
∑
k

fkxkk + α
∑
i,k,l

ckly
i
kl +

∑
i,k

cik(χOi + δDi)xik (3.1a)

s.t. xik ≤ Aikxkk ∀i, k, (3.1b)

∑
k

xik = 1 ∀i, (3.1c)

OiZik =
∑
j

hijxjk +
∑
l

yikl −
∑
l

yilk ∀i, k, (3.1d)

∑
l,l 6=k

yikl ≤ Oixik ∀i, k, (3.1e)

yikl ≥ 0, xik ∈ {0, 1} ∀i, k, l. (3.1f)

Define xik , to be 1 if the node i assigned to hub k, 0 otherwise. If the xkk equals
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to 1, it means that hub k is opened. yikl represents the amount of flow originating

from node i through hub k and hub l, respectively. Let hij, Oi, Di, cij, fk demand

flow from node i to node j, total demand originating from node i, total demand

destined to node i, unit transfer cost from node i to node j, and opening cost for

hub k respectively. α, χ, δ represent transfer collection and distribution cost factors,

respectively. The coverage is ensured by a binary parameter, Aik, which equals 1

if node i is capable to be served by hub k and 0 otherwise. After defining decision

variables and parameters, Lowe and Sim (2013)’s model is given in Eqs.(3.1a)-(3.1f).

In the real world, it is easy to create networks with single allocation. However, most

airline company uses multiple allocation. For example, if you want to plan a flight

between Istanbul and Auckland via Expedia, there are more than five different hubs

to connect two cities with a single stop. Due to this reality, multiple allocation is a

more realistic modeling option. Transforming Lowe and Sim (2013)’s model does not

reflect multiple allocation setting ultimately. On the other side, their logic behind

the covering parameter is instrumental, and it is easy to apply in a mathematical

model. After an extensive search for a useful multiple allocation model, a model

proposed by Ebery et al. (2000) is more effective than others.

Define xk as a binary decision variable associated with the location decision of a hub

(which means if xk = 1, node k is a hub). zik, qilj, and yikl are decision variables

for symbolizing flows. cij and fk represent cost parameters for flow and hub opening

respectively. hij, Oi and Di illustrate the demand amount from node i to node j,

total demand amount which is sent from node i and the total demand amount which

is collected from node i respectively. α, χ, and δ represent the coefficients per unit

of interhub flows, distribution, and collection, respectively. Define Γk as the capa-

city limit for hub k. After definitions, the model of Ebery et al. (2000) is given below.
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min
∑
k

fkxk +
∑
i

[
α
∑
k, l

cklyikl + χ
∑
k

cikzik + δ
∑
l, j

cljqilj

]
(3.2a)

s.t.
∑
k

zik = Oi ∀i, (3.2b)

∑
l

qilj = hij ∀i, j, (3.2c)

∑
i

zik ≤ Γkxk ∀k, (3.2d)

∑
l

yikl +
∑
j

qikj −
∑
l

yilk = zik ∀i, k, (3.2e)

∑
i

qilj ≤ Djxl ∀l, j, (3.2f)

zik ≤ Oixk ∀i, k, (3.2g)

qilj, yikl, zik ≥ 0 xk ∈ {0, 1} ∀i, k, l, j. (3.2h)

Ebery et al. (2000)’s model is formulated to solve capacitated multiple allocation hub

location problems. In this study, uncapacitated formulation and covering concept is

also wanted to handle. Because of this, a novel formulation based on this model, and

the second definition of the covering is developed in Section 3.1.

3.1 Mathematical Formulation of the Multiple Allocation Hub Cove-

ring Flow Problem

In this section, we develop a mathematical model for multiple allocation hub covering

flow problems (MHCPF) with the addition of interhub cost discount factor and

different capacity constraints. Standard notation for the deterministic problems are

given below :
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V set of nodes

hij demand flow originating from node i ∈ V destined for node j ∈ V
H total amount of flow to be sent

Oi total demand arising from node i ∈ V
Dj total demand up to node j ∈ V
ωik flow amount capacity of the links connecting nodes i, k ∈ V
Γk flow amount capacity of hub k ∈ V
fi cost of establishing a hub at node i ∈ V
cij unit flow cost for the link connecting nodes i, j ∈ V
dij length of the link connecting nodes i, j ∈ V
A node coverage matrix

(Aij is 1 if node j ∈ V can be covered by node i ∈ V and 0 otherwise)

B path coverage matrix (Bikj = AikAkj )

α interhub flow cost discount factor with α ∈ (0, 1)

It is clear that Oi =
∑

j∈V hij, Dj =
∑

i∈V hij and H =
∑

i, j∈V hij. Hub opening

decision is related to the binary decision variable, xk, which equals 1 if a hub is set

to node k, 0 otherwise. Variable zik denotes the amount of flow sent from node i to

hub node k, qilj the amount of flow sent from node i to node j through hub node l,

and yikl to the amount of flow sent from node i via hub nodes k, and l.

We introduce first the formulation of model UMHCFP in Eqs.(3.3a)-(3.3g). The

objective in Eq.(3.3a) is to minimize the total cost of establishing hubs and trans-

ferring demand through links which are existed in the network by considering the

interhub flow cost discount factor. Eq.(3.3b) guarantees that all the demand ari-

sen from node i ∈ V is transported through hubs. Eq.(3.3c) ensures that the de-

mand originating from node i ∈ V up to node j ∈ V is transferred through hubs.

Eq.(3.3d) corresponds to the flow preservation constraints at each hub. Eq.(3.3e)

and Eq.(3.3f) together guarantees no demand is allowed to transfer directly between

non-hub nodes. Finally, Eq.(3.3g) demonstrates the type of decision variables.
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min
∑
k∈V

fkxk + α
∑

i, k, l∈V

cklBiklyikl

+
∑
i, k∈V

cikAikzik +
∑

i, l, j∈V

cljBiljqilj (3.3a)

s.t.
∑
k∈V

Aikzik = Oi i ∈ V , (3.3b)

∑
l∈V

Biljqilj = hij i, j ∈ V , (3.3c)

∑
l∈V

Biklyikl +
∑
j∈V

Bikjqikj −
∑
l∈V

Bilkyilk = Aikzik i, k ∈ V , (3.3d)

∑
i∈V

Biljqilj ≤ Djxl l, j ∈ V , (3.3e)

Aikzik ≤ Oixk i, k ∈ V , (3.3f)

qilj, yikl, zik ≥ 0 xk ∈ {0, 1} i, k, l, j ∈ V . (3.3g)

The following constraints are also introduced in this study :

zik ≤ ωik(1− xi) +Hxi i, k ∈ V , (3.4)

∑
i∈V

qilj ≤ ωlj(1− xj) +Hxj l, j ∈ V (3.5)

∑
i∈V

zik ≤ Γk k ∈ V . (3.6)

Constraints in Eq.(3.4) ensure that the amount of flow on the link between node i

and hub node k does not surpass the capacity ωik. In a similar sense, constraints

in Eq.(3.5) do not allow an amount of flow to be transported from hub node l to

node j outreaching the link capacity ωlj. Constraints in Eq.(3.6) limit the total flow

which reaches any hub according to its capacity. When Eqs.(3.4)-(3.6) are added to
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extend UMHCFP given in Eqs.(3.3a)-(3.3g), the following models can be built :

MHCFP-1 : Eqs.(3.3a)-(3.3g), Eq.(3.4), Eq.(3.5),

MHCFP-2 : Eqs.(3.3a)-(3.3g), Eq.(3.6),

MHCFP-3 : Eqs.(3.3a)-(3.3g), Eq.(3.4), Eq.(3.5), Eq.(3.6).

To compare numerical results, we also associate mathematical models UMHCP,

MHCP-1, MHCP-2 and MHCP-3 with UMHCFP, MHCFP-1, MHCFP-2,

MHCFP-3 respectively where transportation-related costs in the objective function

Eq.(3.3a) are omitted. The constraints of the models are the same.

3.2 Numerical Experiments

For numerical studies, the well-known CAB data set with 25 nodes (Beasley, 1990)

and TR data set with 81 nodes (Yetis Kara, 2017) are used. TR data set includes all

necessary data for the experiments such as unit flow costs, hub establishing/opening

costs, intercity links lengths, and intercity demand amounts. Meanwhile, the CAB

data set contains only links lengths and demand flows between nodes. It is assumed

that unit flow costs are a fraction of the intercity link lengths such that cij =

dij/25, 000 for all i, j ∈ V and hub establishing costs fi for all i ∈ V are set all equal

to 10, 000, 20, 000 or 30, 000 for a given instance. To achieve sensible results in terms

of the number of established hubs, the original hub establishing costs of the TR data

set are multiplied with 300. CAB data set has a symmetrical structure for all data

such that hij = hji and dij = dji for all i, j ∈ V . TR data set has a symmetrical

structure only for distances.

Interhub flow cost discount factor α is set to 0.2, 0.5 and 0.8 for CAB data set,

and 0.4, 0.6 and 0.8 for TR data set. The hub or node coverage radius is obtained

by multiplying the coverage ratio ∆ with the longest link’s length of the network.

∆ should be selected such that the existing network does not contain disconnected

sub-networks. Hence, ∆ is set to 0.6, 0.7 and 0.8 for CAB data set and 0.55, 0.65

and 0.75 for the TR data set. Then, each element Aij of the node coverage matrix is

fixed to 1 if the node coverage radius is greater than the length of the link connecting

nodes i and j, and 0 otherwise.
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Table 3.1: Solution time statistics (in seconds)

Statistics for CAB data set
Mean Time Maximum Time Minimum Time

UMHCFP 31.53 111.33 3.73
MHCFP-1 65.02 196.09 6.69
MHCFP-2 82.08 739.16 4.19
MHCPF-3 107.04 1127.27 6.73

Statistics for TR data set
Mean Time Maximum Time Minimum Time

UMHCFP 26.54 39.27 16.80
MHCFP-1 109.50 332.97 47.03
MHCFP-2 36.45 72.73 18.11
MHCFP-3 68.87 125.19 35.81

Table 3.1 summarizes CPU times of four different types of problems, including dif-
ferent numbers of trials for both CAB and TR data sets. CPU time statistics of

UMHCFP, MHCFP-1, MHCFP-2 and MHCFP-3 are acquired from (27, 9), (81,27),

(81,27) and (243,81) different settings of parameters for CAB and TR data set res-

pectively. For all problem types, all three statistics of CPU times are better without

capacity restrictions. Comparing the limitations on hub and links, the link capacita-

ted problem consumes less time than the hub for minimum CPU time in both data

set. The time of MHCFP-2 has better values comparing the MHCFP-1 in the TR

data set. The times acquired from the CAB data set show the opposite characteris-

tics of the TR data set times. The solution time statistics of MHCFP-3 are the worst

values in the table for the CAB data set. On the contrary, MHCFP-1’s statistics are

the worst for the TR data set. Each capacity constraint affects the feasible region

differently, so CPU time deviates unexpectedly for the distinct constraints.

3.2.1 CAB Data Set Results

Figures 3.1 visualize the network structure of an instance for each proposed model.
The figures show that all models follow multiple allocation assignment patterns. 5,6,6

and 7 hubs are opened for UMHCFP, MHCFP-1, MHCFP-2, MHCFP-3 consecuti-

vely. It is obvious that adding link capacity causes creating more paths around all
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USA, and nodes attached more hubs than other models. For MHCFP-2, the east

side of the USA has fewer paths comparing other models. Comparing the UMHCFP,

there is a more complex network structure in the mid-west of the USA. Constraints

of MHCFP-3 supply fewer paths comparing the other capacitated models.

Table 3.2: Summary of UMHCFP Results (CAB data set)

fi α
∆

0.80 0.70 0.60
NH IMP NH IMP NH IMP

10
,0
00 0.80 6 31.67 6 31.43 5 42.62

0.50 7 42.74 7 42.11 8 50.61
0.20 9 56.34 9 54.89 10 60.42

20
,0
00 0.80 4 24.79 4 24.38 4 36.28

0.05 5 32.67 5 32.13 5 41.92
0.20 5 44.45 5 43.59 5 50.09

30
,0
00 0.08 3 20.08 3 19.89 3 32.17

0.50 4 25.64 4 24.86 4 35.63
0.20 5 36.44 5 35.60 5 43.39

Table 3.2 summarizes NH and IMP values of the results of UMHCFP. The minimum
value of NH acquired from the results is three, and the maximum value is 10. When

the fi value increases, the NH value decreases. If we decrease α, the NH value rises

dramatically. ∆ has no meaningful effect on NH values. The best IMP percentage

is 60.42, and the worst IMP is 20.08. These values mean that adding flow costs to

the covering model lowers total costs for all settings of UMHCFP. The model shows

better cost performance when α drops. Fall in ∆ levels cause a reverse dome shape

effect on IMP, which means that the value decreases first and increases after. An

increase in fi values causes a diminish of IMP values.

Table 3.3 shows the effect of link capacity on the models with NH and IMP values.
The NH’s maximum value is 12 hubs, and the minimum value of the NH is three

hubs. If ω values become more restricted, NH values slightly increase. During the

decrease of ∆, NH values increase. The most significant change in NH is observed

during the change of α. If the α decreases, NH increases. When fi climbs up, NH

drops. The greatest value of IMP is 70, and the smallest one is 42. Commonly, an
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increase of fi causes a fall in IMP values. However, in specific cases, IMP values

follow the reverse and normal dome shape pattern. When ∆ or ω falls, IMP values

create normal or reverse dome shape pattern. The effect of change in α on IMP

levels differs according to fi. For the lower fi level, a drop of α supplies the increase

of IMP. For the middle level, there is no certainty in the patterns. For greater fi,

the fall of α generally causes a drop of IMP. Comparing UMHCFP, NH values are

boosted as well as IMP values. Adding flow costs more meaningful for MHCFP-1.

Table 3.4 recaps NH and IMP values for the model with hub capacity. The greatest
NH value is 13, and the smallest one is 4. ∆ has a slight effect on the model. The

other relationships between NH and other parameters are similar to the MHCFP-1.

If Γ increases, NH values also increase. Comparing with the prior two models, there

are more open hubs. The maximum value of IMP is 70, and the minimum one is 45.

When the ∆ increases except for the highest capacity level, there is no recognizable

pattern for IMP. If Γ decreases, IMP generally falls. If fi drops, IMP increases.

During the drop of α, IMP increases during the lowest level of fi. For the other

levels of fi, there is no explainable relationship between α and IMP. Comparing the

prior models, solving the model with flow costs are more meaningful for MHCFP-2.

Table 3.5 outlines NH and IMP values for MHCFP-3. The greatest NH value is
13, and the smallest one is 4. Hub capacity has a stronger effect on NH from link

capacity. For example, if Γ equals to smallest value, ω does not affect NH values.

Change of α, ∆, and fi has a similar effect as prior models. The maximum value of

IMP is 74, and the minimum one is 41. When Γ drops, IMP first drops after that

increases. This structure is generally observed for ω also. The effects of α and ∆ on

IMP is not explainable with patterns. Commonly, if fi increases IMP falls. As it is

compared with the prior models, there is no significant change in NH. However, the

variation of IMP is much higher than prior variations.



44

Table 3.3: Summary of MHCFP-1 Results (CAB data set)
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Table 3.4: Summary of MHCFP-2 Results (CAB data set)
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Table 3.5: Summary of MHCFP-3 Results (CAB data set)
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3.2.2 TR Data Set Results

Figures 3.2 visualize the position of opened hubs for an instance for each propo-
sed model. 15, 13, 18 and 19 hubs are opened for UMHCFP, MHCFP-1, MHCFP-

2, MHCFP-3 consecutively. The same opened hubs for all models are shown with

filled rectangles. Empty rectangles do not occur in all solutions. The lowest number

of opened hubs have occurred in MHCFP-1. The common pattern for UMHCFP,

MHCFP-2, and MHCFP-3 is more hubs in the northeastern of Turkey. Another dra-

wing from the figures is that approximately no hubs are opened in northern Turkey.

Table 3.6: Summary of UMHCFP Results (TR data set)

α

∆

0.75 0.65 0.55
NH IMP NH IMP NH IMP

0.80 7 42.97 7 76.85 11 79.33
0.60 7 44.61 15 77.77 15 80.35
0.40 21 47.96 24 79.68 25 82.01

Table 3.6 summarizes NH and IMP values of the results of UMHCFP. The minimum
value of NH acquired from the results is seven, and the maximum value is 25. When

α decreases, NH increases. Also, this pattern has occurred for ∆. The best IMP

percentage is 82.01, and the worst IMP is 42.97. These values mean that adding

flow costs to the covering model lowers total costs for all settings of UMHCFP, and

the model performs better with TR data set comparing CAB. IMP shows similar

reactions with NH to the change in parameters.
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Table 3.7 shows the effect of link capacity on the models with NH and IMP values.
The NH’s maximum value is 28 hubs, and the minimum value of the NH is eight

hubs. When ω decreases, NH values increase. The effect of ω surpasses the effect of

∆. Because of this, ∆ does not affect on the NH.

On the other hand, NH shows the same response to a change in α with UMHCFP.

The greatest value of IMP is 87.90, and the smallest one is 70.22. Adding flow cost

to MHCFP-1 is more meaningful than UMHCFP. If α decreases, IMP values drop

as well. Except for the strictest capacity level, when ∆ increases, IMP first decreases

after increases.

Table 3.8 recaps NH and IMP values for the model with hub capacity. The greatest
NH value is 34, and the smallest one is 9. Comparing the MHCFP-1 ∆ has a signifi-

cant effect on NH for MHCFP-2. When ∆, α or Γ drops, NH increases. The greatest

value of IMP is 97.21, and the smallest one is 88.61. It is obvious that MHCFP-2

outperforms both prior models with cost performance. When Γ or α increases, IMP

falls. For the greatest Γ value, when ∆ decreases, IMP shows dome-shaped behavior.

For the other values, ∆ and IMP move in the same direction.

Table 3.9 outlines NH and IMP values for MHCFP-3. The greatest NH value is 35,
and the smallest one is 10. Γ has a more significant effect on NH than ω. If the

Γ increases, NH decreases. Also, when ω decreases, NH increases slightly. Except

for the smallest value of Γ, if ∆ decreases, NH increases. For the smallest value

of Γ, there is a negative relationship between ∆ and NH. When α decreases, NH

increases. It is obvious that the average NH for all instances reaches the greatest

value at MHCFP-3. The maximum value of IMP is 97, and the minimum one is

85. Commonly, when ∆ or α falls, IMP also drops. Change of ω level has nearly no

effect on IMP. On the contrary, if Γ decreases, IMP increases.
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Table 3.7: Summary of MHCFP-1 Results (TR data set)

ω α

∆

0.75 0.65 0.55
NH IMP NH IMP NH IMP

ω
0
.9
0

0.80 8 79.13 8 78.10 8 87.90
0.60 10 76.18 10 75.15 10 85.44
0.40 25 73.00 25 72.08 25 82.12

ω
0
.8
0

0.80 9 77.62 9 75.83 9 87.28
0.60 13 74.74 13 73.00 13 84.80
0.40 26 71.75 26 70.22 26 81.48

ω
0
.7
0

0.80 9 85.46 9 85.43 9 82.40
0.60 13 83.25 13 83.22 13 80.16
0.40 28 80.53 28 80.51 28 77.65

Table 3.8: Summary of MHCFP-2 Results (TR data set)

Γ α
∆

0.75 0.65 0.55
NH IMP NH IMP NH IMP

Γ
0
.3
0

0.80 9 92.11 12 93.00 11 90.95
0.60 13 90.63 16 91.82 17 89.83
0.40 24 88.61 26 90.40 28 88.62

Γ
0
.2
0

0.80 12 95.74 13 93.98 14 93.44
0.60 14 94.82 18 92.78 18 92.20
0.40 26 93.41 28 91.13 29 90.49

Γ
0
.1
0

0.80 18 97.21 17 96.81 17 94.53
0.60 23 96.67 25 96.21 24 93.59
0.40 33 95.87 33 95.37 34 92.31
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Table 3.9: Summary of MHCFP-3 Results(TR data set)

Γ
Γ
0
.3
0

Γ
0
.2
0

Γ
0
.1
0

∆
0.
75

0.
65

0.
55

0.
75

0.
65

0.
55

0.
75

0.
65

0.
55

ω
α

N
H

IM
P

N
H

IM
P

N
H

IM
P

N
H

IM
P

N
H

IM
P

N
H

IM
P

N
H

IM
P

N
H

IM
P

N
H

IM
P

ω0.90

0.
80

10
93

12
92

14
92

13
96

13
93

14
92

18
97

17
97

17
93

0.
60

13
91

17
91

18
90

15
95

18
92

18
90

25
96

28
97

25
92

0.
40

26
89

28
90

30
89

27
94

29
91

30
88

34
95

34
96

34
91

ω0.80

0.
80

11
95

12
95

14
89

13
96

13
94

14
90

19
96

18
96

18
94

0.
60

14
94

17
94

18
88

16
95

19
93

18
88

25
96

28
96

24
92

0.
40

26
92

28
93

30
87

27
94

29
91

30
87

34
95

34
95

34
91

ω0.70

0.
80

13
95

13
94

14
89

14
96

14
94

14
89

20
96

19
97

19
93

0.
60

16
94

19
93

18
88

17
95

20
93

19
87

25
96

28
96

25
92

0.
40

27
92

28
91

30
87

27
93

30
91

30
85

35
95

34
95

34
91



4 STOCHASTIC MULTIPLE ALLOCATION HUB COVERING

FLOW PROBLEM

E-commerce has been rapidly gaining share from the global economy since the last

two decades. The share of online shopping in total retail sales is increased from 4.2

% to 8.5 % between 2014 and 2018 (Ekonomist Online, 2018). In 2020, it is expected

that the share reaches 13%. The volume of parcel delivery has been expanded ac-

cordingly. In Turkey, all major parcel delivery corporations increase their revenues

and profits. Corporations do not want to lose their customer. Because of that, they

invest in creating a network with minimum cost and maximum productivity.

Especially, the volume of parcels increases unexpectedly during the major discount

events (i.e., New Year, Valentine’s Day) or a health crisis (i.e., COVID-19). Unex-

pected demand surge also complicates storage activities. These variations highly

disturb parcel distributors’ daily routines. Delivery times double or sometimes triple

of regular times. As a result, the number of unsatisfied customers and churn rate

increases.

Besides the fluctuation in demand, there are a lot of uncertainty sources for trans-

portation costs. For example, labor costs may increase when there is a lack of labor.

During transportation, transport vehicles (plane, ship, lorry, etc.) generally use pe-

troleum. Petroleum prices change daily. Changes in demand also affect transporta-

tion costs.

Uncertainties are unavoidable in real life. Handling uncertainty is a very challenging

task considering mathematical optimization models. There are many ways to reflect

uncertainty in the models. In this chapter, we formulate the multiple allocation hub

covering flow problem as a two-stage stochastic mixed-integer linear optimization

model. For showing the appropriation of the model, we also solved models with the

expectation of expected value methodology.
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4.1 Mathematical Formulation

There are limited stochastic programming studies on hub location and none on

hub covering with flow costs. In this section, we develop a mathematical model

for stochastic multiple allocation hub covering flow problem (SMHCFP) with three

different variations for flow cost uncertainty, demand uncertainty, and demand and

cost uncertainty (SMHCFP-C, SMHCFP-D, SMHCFP-DC). We want to note that

the associated models are developed based on our deterministic model given in the

previous chapter.

Decision variables for all variants are the same. Hub opening decision is related

to the binary decision variable xk, which equals 1 if a hub is set to node k and 0

otherwise. Variable zik(s) denotes the number of goods sent from node i to hub node

k for scenario s, qilj(s) the number of goods sent from node i to node j through hub

node l for scenario s, and yikl(s) the number of goods sent from node i via hub nodes

k and l for scenario s. Common parameters of the 3 variants of SMHCFP are given

below.

hij(s) amount of goods to be sent from node i to node j for scenario s

Oi(s) total amount of goods to be sent from node i (=
∑

j∈V hij) for scenario s

Dj(s) total amount of goods to be sent to node j (=
∑

i∈V hij) for scenario s

cij(s) unit transportation cost from node i to node j scenario s

Without determining the location of hubs, we cannot form paths and flow costs. Be-

cause of this, we set x as the first-stage decision variable. Eq.(4.1a) is the objective

of the first stage problem, which is the summation of expectation of second-stage

problem concerning scenarios and hub opening costs. Other constraints are equiva-

lent to the deterministic model. For reflecting cost and demand uncertainty, related

parameters become second stage parameters. The realizations of the scenarios are

in the second stage. Using the location-allocation problem analogy, the first stage

decision must be a location decision. So, determining the hub location is the first

stage decision. After location, we decide to demand allocations. So, demand related

decision variables must be a second stage decision.
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The mathematical model of SMHCFP-DC is given as :

min
∑
k

fkxk + Eξ[Q(x, ξ(s))] (4.1a)

s.t. xk ∈ {0, 1} ∀k. (4.1b)

where

Q(x, s) = min
∑
i

∑
k

cik(s)zik(s) + α
∑
k,l

ckl(s)yikl(s) +
∑
l,j

clj(s)qilj(s)

 (4.2a)

s.t.
∑
k

Aikzik(s) = Oi(s) ∀i, (4.2b)

∑
l

Biljqilj(s) = hij(s) ∀i, j, (4.2c)

∑
l

Biklyikl(s) +
∑
j

qikj(s)−
∑
l

Bilkyilk(s)− zik(s) = 0 ∀i, k, (4.2d)

∑
i

Biljqilj(s) ≤ Dj(s)xl ∀l, j, (4.2e)

Aikzik(s) ≤ Oi(s)xk ∀i, k, (4.2f)

qilj(s), yikl(s), zik(s) ≥ 0 ∀i, k, l, j (4.2g)

4.2 Solution Algorithm

Two-stage stochastic linear optimization models with fixed recourse are widely used

for modeling uncertainty in an optimization problem. This type of model is introdu-

ced by Beale (1955) and Dantzig (1955) and can be represented in Eqs.(4.3a)-(4.3d).

A distinction is made between the first stage and second stage. The first stage

decisions are represented by the (n1 × 1) vector x. Corresponding to x are the first

stage vectors and matrices c, b, and A, of sizes (n1 × 1), (m1 × 1), and (m1 × n1)

respectively. In the second stage, several random events s ∈ S may realize. For the
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given realization s, the second stage problem data q(s), h(s), and T (s) become

known, where q(s) is (n2 × 1), h(s) is (m2 × 1) and T (s) is (m2 × n1).

min z = cTx+ Eξ[min q(s)Ty(s)] (4.3a)

s.t. Ax = b (4.3b)

T (s)x+Wy(s) = h(s) (4.3c)

x, y(s) ∈ R (4.3d)

Each component of q, T, and h is thus a random variable. Let Ti(s) be i th row

of T (s). Piecing together the stochastic components of the second stage data, we

obtain a vector ξT (s) = (q(s)T , h(s)T , T1(s), ...., Tm2(s)), with potentially up to

N = n2 + m2 + (m2 × n1) components. A single random event s influences several

random variables, here, all components of ξ.

Let also Ξ ⊂ <N be the support of ξ, that is, the smallest closed subset in <N such

that P(Ξ)=1. As just said, when the random event s is realized, the second stage

problem data, q, h, and T become known. Then, the second stage decision y(s) or

y(s, x) must be taken. The dependence of y on s is completely different from the

dependence of q or other parameters on s. It is not functional but simply indicates

that the decisions that the decision y are typically not the same under different

realizations of s. They are chosen so that constraints Eq.(4.3c) and Eq.(4.3d) hold

almost surely, i.e., for all s ∈ S except perhaps for sets with zero probability.

The objective function Eq.(4.3a) contains a deterministic term cTx and the expecta-

tion of the second stage objective q(s)Ty(s) taken over all realizations of the random

event s. The second stage term is the more difficult one because, for each s, the value

of y(s) is the linear program’s solution. To stress this fact, one sometimes uses the

notion of a deterministic equivalent program. For the given realization s, let
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Q(x, ξ(s)) = min
y

{
q(s)Ty | Wy = h(s)− T (s)x, y ≥ 0

}
(4.4)

be the second stage value function. Then define the expected second stage value

function

Q(x) = EξQ(x, ξ(s)) (4.5)

and the deterministic equivalent program

min z = cTx+ Q(x) (4.6a)

s.t. Ax = b (4.6b)

x ∈ R. (4.6c)

This representation of a stochastic program clearly illustrates that a deterministic

formulation’s significant difference is in the second stage value function. If that

function is given, a stochastic program is just an ordinary nonlinear program.

Formulation Eqs.(4.3a)-(4.3d) is the simplest form of a stochastic two-stage pro-

gram. Extensions are easily modeled. For example, if the first stage or second stage

decisions are to be an integer, constraint Eq.(4.3d) can be replaced by a more general

form :

x ∈ X, y ∈ Y, (4.7)

where X = Zn1
+ and Y = Zn2

+ . Similarly, nonlinear first stage and second stage

objectives or constraints can easily be incorporated.

There are three subtypes of two-stage stochastic problems : complete recourse, re-

latively complete recourse, and incomplete recourse problem. If any feasible value

of the first stage decision variable causes the second stage’s infeasibility, the model

is classified as an incomplete recourse problem. Suppose all first-stage decision va-

riables of our model equal zero, the second stage of our problem becomes infeasible.

Because of this, our problem is an incomplete recourse stochastic problem.

For solving this type of problem, we use an L-Shaped algorithm. The basic idea

of the L-Shaped algorithm is to approximate the nonlinear term in the objective
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of these problems. A general principle behind this approach is that the recourse

function involves a solution of all second stage recourse linear programs because

of the nonlinear objective term. We want to avoid numerous function evaluations.

Therefore, we use that term to build a master problem in x, but we only evaluate

the recourse function precisely as a subproblem.

In the L-Shaped algorithm, there are two types of cuts : feasibility and optimality.

Optimality cuts must be added in the whole L-shaped algorithm used solution me-

thodologies. However, feasibility cuts are only used if the problem is an incomplete

recourse problem. Because our problem is an incomplete recourse problem, we must

add feasibility cuts to the solution algorithm. The L-shaped algorithm is given as

Algorithm 1 below.

Algorithm 1 L-Shaped Algorithm (Birge and Louveaux, 2011)
Input r = t = ν = 0

1: Set ν = ν + 1. Solve the first stage linear optimization model Eqs.(4.8a)-(4.8e) :

min z = cTx+ θ (4.8a)

s.t. Ax = b (4.8b)

Dlx ≥ dl l = 1, ..., r, (4.8c)

Elx+ θ ≥ el l = 1, ..., t, (4.8d)

x ∈ Z, θ ∈ R (4.8e)

Assume (xν , θν) is an optimal solution for the model. If there is not Eq.(4.8d)

in the model, set θν to −∞ and ignore θν in the computation of xν .
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2: Control x ∈ K2. If not, solve the linear for k = 1, ..., K

minw′ = eTν+ + eTν− (4.9a)

s.t. Wy + Iν+ − Iν− = hk − Tk (4.9b)

y, ν+, ν− (4.9c)

where eT = (1, ..., 1), hk, Tk are stochastic parameters in the second stage, and

y is a second stage decision variable, until for any k, the optimal value ω′ > 0. In

this situation, let σν be the associated dual variables and define Dr+1 = (σν)TTk,

and dr+1 = (σν)Thk to create a feasibility cut (which represented in Eq.(4.8c).

Set r = r + 1, add to the first stage problem and return to Step 1. If for all k,

ω′ = 0, go to Step 3.

3: For all possible scenarios (k = 1, ..., K) solve the second stage linear optimization

model,

minw = qTk y (4.10a)

s.t. Wy = hk − TkXν (4.10b)

y ≥ 0. (4.10c)

Let the πνk be the dual variables derived from the optimal solution of an instance

k of the model shown in Eq.(4.10b). Define Es+1 =
∑K

k=1 pk(π
ν
k)TTk and es+1 =∑K

k=1 pk(π
ν
k)Thk. Let ων = es+1 − Es+1. If θν − wν ≥ TOL, stop ; the optimal

solution is found. Otherwise set s = s+ 1, add optimality cut which is described

in Eq.(4.8d) and go back to Step 1.
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4.3 Numerical Studies

After this introductory information, the results of the prior demand uncertainty

and cost uncertainty with different distributions, and both uncertainties are given

below. We analyze 50, 25, and 10 randomly generated equally possible scenarios for

each instance. To eliminate bias and analyze the model’s behavior, more stable ten

instances are generated for each setting. When the MP=% VSS/RP value is higher,

the RP problem is more useful, and the validity of the stochastic programming model

is more valid. Another performance measure is the mean of the percentage of the

hub costs over the total cost, which is symbolized as HCR. The hub opening cost

(fi = f) for all potential hubs is selected 30,000 and 50,000. Two levels of interhub

discount factor are analyzed : 0.8, 0.4. In some sense of the model’s deterministic

version, the covering radius is chosen as 0.8, 0.7, and 0.6. We also represent MNH,

which stands for the mean number of hubs over instances as a performance measure.

To examine the effect of demand uncertainty on the VSS, a random demand data

generation approach is implemented for all models and instances.

All instances of the problem are formulated using Python 2.7 and are solved with

Gurobi 8.0.1 on a workstation with dual Intel Xeon E5-2670 (2.6 GHz each) proces-

sors and 256 GB of RAM. All run-time statistics are given in real-time.

4.3.1 Results of SMHCFP-C

It is assumed that flow costs are distributed normally. The mean of the distribution

(µ) is assumed to be equal to deterministic flow costs. The standard deviation (σ)

is obtained by multiplying the mean with a scalar. The scalar is selected to 0.1 and

0.2. The results of the computational studies are summarized in Tables 4.1 and 4.2.

Using scenario-based stochastic programming is meant for different levels of pa-

rameters. Besides, the mean of MP is more significant than zero ; choosing EEV

methodology is preferable for some instances. The mean of MP values changes bet-

ween 0.33 and 2.33. Lowering f values with an increasing number of S generally

increases MP values. More significant values of α cause small MP levels for nearly
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all instances. Commonly, when σ increases, MP increases too. The effect of ∆ MP

changes frequently depends on other parameters.

HCR values deviate between 12.80 and 31.76. These ratios are moderate levels for

a network problem. There is a significant gap between HCR values for hub opening

cost value changes. For small instances, a higher f value provides higher HCR values.

If the instances become more extensive, the gap is decreasing significantly. When

the α value decreases, the HCR value increases. ∆ value causes different behaviors

on HCR values under various parameters.

It is expected and observed that an increase in scenario number causes a boost in

run times. The mean run time differs between 247 and 3735 seconds. If α increases,

run time increases enormously. The relationship between ∆ and run times do not

follow a classical pattern. When σ becomes smaller, solving the model consumes less

time. The relation between f and run times follows the same pattern too.

MNH values differ between 2.00 and 4.50. The most significant change in MNH value

is observed during the change of f . Smaller values of f cause higher MNH values.

When ∆ covers smaller areas, MNH usually increases as expected. The same pattern

is observed between α and MNH. Generally, dropping σ decreases MHN values. In

most cases, increasing S causes higher MNH values.

4.3.2 Results of SMHCFP-D

Demands are generated from Poisson distribution. When generating random de-

mands, each time the mean of the distribution is selected, such that it is equal to

the deterministic CAB data set demand. The summary of the results is given in

Table 4.3.

According to the minimum values of MP, using scenario-based stochastic optimiza-

tion formulation for handling demand, uncertainty is meaningful for all parameters

comparing the EEV approach. MP values change between 0.57 and 5.71. When a
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hub covers larger areas, the scenario-based approach becomes less meaningful. If α

decreases, MP values drop slightly. Increasing f value generally causes falling of MP

values. When the S value rises, the MP value drops commonly.

Demand uncertainty provides more stable HCR values comparing to the results of

the cost uncertainty model. HCR values differ from 20.04 and 33.82. It means that

the total hub establishing cost does not exceed one of the third of the total cost.

Increasing f causes greater HCR values. There is not a standardized relationship

between ∆ and HCR. This situation was also observed between S and HCR. If α

rises, HCR also enlarges too.

This model type consumes much more run times comparing to the results of the

cost uncertainty model. The run times changes between 235.87 and 41938.82 seconds.

Changing f has the strongest effect on run times. Decreasing f may cause increasing

run times to increase to five times. If the covered area becomes smaller, run times

become shorter. When the α decreases, on the contrary, run times increase. It is

expected to the rise of S causes to raise in the run times.

Uncertain demands cause to open more hubs than uncertainty in costs. Lowering

f causes to open more hubs. Changing ∆ has different effects on MNH according

to f values. For smaller f values, increasing ∆ causes opening more hubs. On the

contrary, greater f values with smaller ∆ causes to open more hubs. There is not

an explainable relationship between S and MNH values. Greater α values provide

to open fewer hubs.

4.3.3 Results of SMHCFP-DC

For observing both uncertainties in the same model, two scenario creation metho-

dology combined. This process causes different scenario structures in some S levels.

For example, transportation costs (c1, c2, c3, c4, c5) and demands(h1, h2) are

combined to create 10 scenarios as an example to the methodology (This type has

"a" extension). Another methodology example is the combination of transportation

costs (c1, c2) with demands(h1, h2, h3, h4, h5) (This type has "b" extension).

Because of using two different methodologies, there are a demand surpassed method
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and a cost surpassed method for 10 and 50 scenarios. For 25 scenarios, there are not

any surpassed sides.

Comparing the single source of uncertainty models, the results of the model indicate

that using scenario-based stochastic optimization methods are more meaningful. The

MP values deviate between 1.94 and 13.05. If σ increases, MP decreases. When α

falls, the MP value also falls. If ∆ drops, the MP value first drops, after increases

generally. Increasing f provides an increment in MP. The demand surpassed method

gives better results than the cost surpassed method. Increasing scenario numbers

makes the MP better.

HCR values acquired from the results of the model are located between HCR of

SMHCFP-D and SMHCFP-C. HCR differs from 15.14 and 32.50. If σ becomes smal-

ler, the deviation of HCR occurs in a smaller range. Increasing α causes worsened

HCR levels in common. When f is increasing, HCR is generally increasing. There

is not any explainable relationship between HCR and ∆. If Increasing or decrea-

sing S has approximately no effect on HCR values. There is also approximately no

difference in HCR values for two scenario creation methods.

The shortest run times are observed in SMHCFP-DC comparing with the prior

results. Run times differ from 113 to 2420. Increasing σ causes an increase in run

times. If S increases, it is expected and observed that the run times are also increased.

It is generally observed that if the model covers less area, the run times become

smaller. When f drops, run times climbs up. α has no explainable relation with run

times. There is an ignorable difference between the methods for run times.

MHN deviates between 2.00 and 4.00. When σ increases, MNH increases commonly.

The significant difference in MHH is observed during the change of α. Decreasing α

causes a dramatic increase in MNH. When f rises, MNH drops. Changing S or the

method has a relatively very small effect on MNH. Generally, covering more area

provides opening fewer hubs.
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5 CONCLUSIONS AND PERSPECTIVES

Every vehicle used for freight or passenger transportation has a distance range due

to energy consumption. Even if it is possible to replenish consumed energy to extend

the range, this may be economically undesirable. Especially when a vehicle carries

less than truckload or is empty in its return trip, significant economic losses occur.

Another fact is that it is much more beneficial to use low volume vehicles to col-

lect/distribute small amounts of goods in the short-range, and high volume vehicles

to mass transport these goods in the long-range. These types of economic incentives

justify the design of hub networks. A different hub covering location problems are

the subject of this thesis.

For reducing the number of constraints, mathematical models with three-indices

variables are developed. Unlike most of the studies on hub covering in the litera-

ture, transportation and hub opening costs are included in the models’ objectives.

Moreover, even all vehicles and hubs have limited capacities in real life, and this

case is also a less considered issue in hub covering problems. Three capacitated

deterministic integer linear models are introduced to fill this gap in the literature.

Well-known and widely used TR and CAB data sets are chosen to validate deter-

ministic models. Different coverage radii and interhub discount factors are used for

numerical experiments. As hub setting costs are not available, different cost sets are

generated for the CAB data set. The results show that it is crucial to include flow

costs while designing hub networks. Another drawing from the results is capacity,

whether link or hub significantly affects the model.

In real life, everything may become uncertain quickly. Handling uncertainty is a com-

plicated problem for mathematical modeling because of computational limitations.

In this thesis, three models are developed for handling uncertainty for MHCFP. The

first and second models aim to handle transportation cost and flow demand uncer-

tainties, respectively. The third model includes two uncertainties together. Two-stage

stochastic mixed-integer linear optimization modeling formulation is used. The L-
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Shaped algorithm is used for solving two-stage stochastic linear models. For showing

the efficiency of the methodology, the models are also solved with EEV methodology.

CAB data set is used for numerical studies of stochastic optimization models. 10,

25, and 50 independent scenarios are created for examining models. For decreasing

bias of created scenarios, ten independent data sets are used. Like in deterministic

models, different parameters are used for numerical studies. Normal and Poisson

distributions are used for the cost and demand uncertainties, respectively. Compa-

ring the deterministic models, solving stochastic models consumes more memory

and takes more time. Solving the models with an L-Shaped algorithm reflects the

stochasticity of the models better than EEV’s in a significant amount of scenarios.

Many future research perspectives can be conceived after this study. As it is com-

putationally very time consuming to solve large instances of the hub covering flow

problem to optimality, a natural extension is to develop efficient heuristic and/or

meta-heuristic solution approaches. As the underlying network for hub covering pro-

blems is not complete ; in other words, each network node is not directly connected

to all others, every selected hub-nodes set does not produce a feasible solution. This

is a challenging issue to overcome in devising a solution procedure.

The addition of capacity-related constraints to a mathematical model may render

it infeasible in general. As the hub covering flow problem is not feasible for all

possible hub-node sets, capacity consideration can further complicate the design of

problem-specific or the adaptation of generic solution approaches. Meanwhile, not

only the capacities of hubs or links but also their effective usage can be a concern.

This situation can be managed by altering the capacity constraints proposed in this

study, or by maximizing capacity usage as a secondary objective in a multi-objective

setting. Similarly, linear or nonlinear objectives involving various measures such as

congestion at hubs or carbon emissions of vehicles can be formulated.

Instead of being the model’s parameters, hub and link capacities can also be decision

variables. Variables associated with the capacities of hubs can be continuous and

bounded, binary to select among a set of capacity levels, or discrete to identify the

right amount of modular capacities. Meanwhile, continuous link capacities can be

increased at a cost. Another interesting line of research can be to relate hub covering
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radius with the hub capacity, i.e., a hub with a larger capacity can cover more nodes.

It is not difficult to foresee that additional variables will negatively affect the efforts

to find the optimum solution, while total cost will be significantly reduced.

The proposed stochastic programming models in this thesis have the objective to

minimize the total expected network design and operating costs under demand and

cost uncertainties. While this risk-neutral approach is appropriate most of the time,

it can not avoid rare but extreme situations. For a real network designed as the

solution of associated hub covering flow model, these extreme situations can some-

times be disastrous or even may lead to life loss. Preventing those cases requires a

risk-averse measure such as conditional value-at-risk in the model’s objective instead

of expectation. Finally, not only uncertainties on demand and costs but also on

the network structure can be taken into account. For example, some nodes can

be prohibited from being a hub, or some links can be blocked in some scenarios.

Minimizing the adverse effects of these uncertainties to obtain a most robust network

structure can be a worthwhile research direction.
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