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ABSTRACT

Hub location problems occupy an important place among transportation problems. In
such problems, each node in the network including hubs can be the origin or destination
point of a transport demand. What makes hubs different from the other nodes is that they
also act as transit points, that is, they enable the combined demand moved from different
origin nodes to be sent by separating according to destination nodes. The existence of
hubs simplifies the structure of the transport network. At the same time, hubs ensure better
use of the capacity of transportation vehicles and decreases the unit transportation cost
due to the possibility of transporting large volumes between hubs. Hub location problems
are frequently encountered in the design of cargo distribution, airline passenger transport
and telecommunication networks. In this study, hub-covering problem, which is a special
hub location problem, is emphasized. The basic assumption for this type of problems is
that some nodes in the network cannot be directly or indirectly connected due to distance,
time or cost constraints. Capacity utilization and transportation costs are generally
ignored in the mathematical models developed for the hub-covering problem. To fill this
gap in the literature, a deterministic multiple assignment mixed integer optimization
model has been developed. How and to what extent the change in different model
parameters affects the best solution for the proposed model was examined by numerical
experiments using a benchmark data set. As a result, it was revealed how important it is
to consider the aforementioned elements in the hub-covering problem and practical

insights have been provided.



OZET

Tasima problemleri arasinda Ana Dagitim Ussii (ADU) yerlesim problemleri nemli bir
yer isgal etmektedir. Bu tiirdeki problemlerde ADU’ler de dahil agdaki her diigiim bir
tasima talebinin ¢ikis veya varis noktasi olabilir. ADU’leri digerlerinden farkli kilan ise
bu diigiimlerin ge¢is noktasi vazifesi de gormeleri, yani farkli ¢ikig diigiimlerinden
taginarak birlestirilen talebin varig diiglimlerine gore ayristirilarak gonderilebilmesini
saglamalaridir. ADU’lerin varhigi tasima aginmn yapismi basitlestirmektedir. Aymni
zamanda ADU’ler hem tasima araglarmin kapasitesinin daha iyi kullanilmasini, hem de
ADU’ler aras1 biiyiik hacimlerde tasima imkan1 bulundugundan birim tasima maliyetinin
diismesini saglarlar. ADU yerlesim problemleriyle siklikla kargo dagitim, havayolu yolcu
tagimaciligi ve telekomiinikasyon aglarinin tasariminda karsilasilir. Bu ¢calismada 6zel bir
ADU yerlesim problemi olan ADU kapsama problemi iizerinde durulmustur. Bu tiirdeki
problemlerin temel varsayimi mesafe, siire veya maliyet kisit1 nedeniyle agdaki bazi
diigiimler arasinda dogrudan veya dolayli baglant1 kurulamayacagidir. ADU kapsama
problemi icin gelistirilen matematiksel modellerde kapasite kullanimi ve tasima
maliyetleri unsurlar1 genellikle géz ardi edilmistir. Yazindaki bu boslugu doldurmak
amactyla determinist ¢oklu atamali karisik tam sayili eniyileme modeli gelistirilmistir.
Onerilen model i¢in farkli model parametrelerindeki degisimin en iyi ¢dziimii nasil ve ne
derecede etkiledigi kiyaslama veri kiimesi kullanilarak yapilan sayisal deneylerle
incelenmistir. Sonugta anilan unsurlarin ADU kapsama probleminde dikkate alinmasinin

ne derece 6nemli oldugu ortaya konmus ve pratik ¢ikarimlar sunulmustur.



1. INTRODUCTION

By virtue of advanced technology and changed regulatory, hub networks took a
noticeable role in last years for many sectors such as networks of airline passenger
transportation, emergency treatment service, telecommunication, express delivery
service, postal, urban traffic and trucking systems. Hubs can be categorized in many
different ways. For example, a terminal or a transit stop for many routes stands for a hub
in urban traffic networks; a warehouse or a facility located at the center implies a hub in
trucking systems; both a transit point and a geographical area which is having vast amount
of passengers exceeding a specific level symbolizes a hub in airline transportation
systems; a server both to receive, to process and to send information represents a hub in
telecommunication systems; a center in which switching and sorting operations are done
means a hub in express delivery service networks. Hub-and-spoke systems share common
features even if these hubs serve in various industries with different concepts. One of
these features is that hub facilities are points and are utilized in order to consolidate, to
disseminate, to switch, to transship as well as to sort demand flows. The second one is
that in order to send to lots of O-D pairs, relatively small number of arcs and indirect
connections are allowed in hubs. Two features decrease the number of connections
needed in network. Not only a simplified network structure but also reduced construction
costs are the results of fewer connections. Inter-hub links have a lower cost for unit
transportation that is expressed as a discount rate o, when compared with other links
through a consolidated and disseminated demand flows. A hub-and-spoke system is
shown in Figure 1.1. Nodes i and j are assigned to hub node &k and m and inter-hub links

are shown by bold lines for the sake of clearly.



Discount Rate < [0,1]
Non-hub node

Hub node

Nonhub interlinkage
Hub interlinkage

oo

Figure 1.1: Hub-and-spoke network (Wu, 2006, p.2)

There are various Hub Location Problems (HLP) in the literature that it requires to be
classified in 8 main categories such as: @) solution domain, b) criterion, c) source
determining the number of hubs to locate, d) the number of hub nodes, e) hub capacity,
) the cost of locating hub nodes, g) the allocation of a non-hub node to hub nodes, /) the
cost of connecting non-hub nodes to hub nodes. Domain is for whether there is a
connected or discrete or continuous network. Criterion is either mini-sum in which the
total cost incurred by locating hub nodes and allocation of non-hub nodes to hub nodes is
minimized, or mini-max in which the maximum transportation cost from origin nodes to
destination nodes is minimized. Source which is determining the number of hubs to locate
is either exogenous which means that the number of hubs to locate is known or
endogenous which means that the number of hubs to locate is not known at the beginning
but is obtained as a result of solution. The number of hubs can be single or multiple. Hubs
have capacity or not. No-cost, fixed cost and variable cost are different forms of costs not
only for locating hub nodes but also for connecting non-hub nodes to hub nodes features.

Single and multiple allocation are for allocation of a non-hub node to hub node feature.

Concentrated through hubs in the HLPs that is substantial feature of the HLPs serves a
good transportation between the nodes. For example, in case of presence of a single hub
in network, the network will need 2(n-1) pairs to connect the O-Ds instead of n(n-1) which
is the case of not presence of a hub in the network. Thus, this is a clear evidence of that

hubs decrease the number of links in structure of transportation network (Farahani et al.,



2013). In addition, one another beneficial effect is about economies of scale since there
are flows concentrated among hubs. On the top of that, the transportation cost between
hubs is arranged to be decreased by a certain discount factor. In brief, the economies of
scale as aresult of concentrated flows and smaller number of links and smaller investment
for network are advantages of hub networks. However, investments for hubs, demand for
switching, operations for transshipment and organizing of operations and movements for

greater distance and also requirement of greater time are disadvantages of hub networks.

Many researchers focused on the location theory because of increasing commercial
activities in the developing world. HLP is emerged as one of the developing research
areas in location theory. HLP is both a facility location and location-allocation problem
consisting of selection of hubs at first and then of allocation of demand hubs to previously
selected hubs. Although there are some studies solely focusing on allocation part, both
must be taken into consideration as the optimal solution is affected by the locations of
hubs. Briefly, HLPs can be divided in two steps such as to select hub location for p nodes
within 7 nodes, and to allocate demand points. HLPs structures also can be divided in two

with respect to the allocation of demand points to the hubs, either single or multiple

allocation.
Q @)
o © 0 O
0 L
Q. ; O—
Single Allocation Multiple Allocation

Figure 1.2: Network structures for single and multiple allocation (Yildirim, 2013)



This thesis is organized as follows. In Chapter 2, we provide a literature review about hub
location problems in terms of their types, problem environments, solution approaches and
applications. In Chapter 3, we first mention three different types of hub covering models
and then give information about our proposed hub covering flow problem model with
two formulations. Chapter 4 contains data, model implementation and the results based
on the computational analysis of our mathematical model mentioned. Finally, Chapter 5

includes conclusion and insights.



2. LITERATURE REVIEW: HUB LOCATION PROBLEM

A brief about network design before keep going to literature of HLP is nice to be
explained. Forsgren and Prytz (2006) expressed the important problem classes of network
design in many ways such as minimum cost multicommodity flow, uncapacitated
network design-fixed charge, capacitated network design, network loading problem,
topology constraints, routing constraints, multiperiod problems, hierarchical network
design and survivability. The question in minimum cost multicommodity flow problem
is how to send a number of commodities via network with minimum cost subject to
capacity constraints of links. In the uncapacitated network design-fixed charge which is
a fundamental network design problem the case whether the replacement of capacity
constraints with a cost for utilizing the arc is examined. Capacitated network design is
examined if a fixed cost pls capacity constraints in the arc are added to the minimum cost
multicommodity flow problem. The question in network loading problem is what the
capacity levels of arcs are, from given set of capacity levels, since that which links can
be used has already been decided. Topology constraints may be imposed to have a certain
type such as ring-structures, tree structures or more specific structure. Routing constraint
represents the routing in the network may be forced in a more complex manner than in
capacity levels. Multiperiod problems do not include timescale. Hierarchical network
design consists of several levels; on the top there is a backbone network as so to refer
different criteria; for the lowest level, a local network within either a company or a private
home can be given as example; for the intermediate level, a range of various network
levels can be examined. Survivability means to construct network that are robust in case

of a link of node failure.

In the literature, the location-allocation problem has been issued with the assumption that

sources are solely interacted with its destinations which are assigned to them. Therefore,



the source is not allowed to connect with neither the other non-hubs nor the destinations
for other hubs. This is very limiting result of that assumption in many diversifications of
applications (i.e. communication satellites and the airline industry). However, that the
location-allocation problem considering interaction between the sources is equivalent to
the hub location problem is stated by O’Kelly (1986). Then, the term source and
destination are interchanged with hub and spoke, respectively. In detail, the location of
hubs and the allocation of spokes to hubs are considered in the hub location problem.
Thus, the level of interaction in between hubs is calculated by the amount of flow in

between spokes.

2.1. Types of HLPs

This problem can be classified as either continuous or discrete. If hubs can be located
anywhere in the plane, it is called continuous, otherwise, if there are finite number of
points for hub location, it is called discrete. In most cases, assumptions for finding the
number of hubs to be located are relaxed since the problem is already quite complex even

though the number of hubs is exogenous.

2.1.1. Continuous Hub Location Problem

In many surveys, the continuous hub location problems that are concerned with the
locating hub facilities on a plane instead of the nodes of a network. This continuous type
problem is first represented by O’Kelly (1986a). In his study, that the single hub location
problem in a plane reduces to the classical Weber least cost location problem is showed.
In two-hub case, a procedure given by Ostrech (1975) to solve the two-center location-
allocation problem is adopted to solve it. In two-center problem, Ostrech displayed that
the optimal solution must be among a finite number of n(n — 2)/2 of non-overlapping
partitions. Picking a pair of nodes, passing a line through them and rotating the line
slightly to divide the nodes in two groups result in a partition. O’Kelly (1986a) pointed a
drawback of using results found by Ostrech (1975) to solve the two-hub problem, that the
optimal allocation pattern could be found by one of the non-overlapping will never be
examined. This issue is further discussed in Aykin (1988) in detail. In addition, one

another drawback of O’Kelly’s (1986a) study is that it cannot be applicable to solve



problems including more than two hubs, unless serious computational efforts are

provided.

Aykin and Brown (1992) suggested a heuristic approach in order to solve the continuous
hub location problem with more than two hubs, in other words, p-hubs. The heuristic
based on the alternate location and allocation heuristics in Cooper (1964), figures out the
location and allocation phases individually and iteratively. They tested two different
versions of heuristic with respect to the original alternate location and allocation heuristic.
That the loss of applying the original alternate location and allocation heuristic to HLP
can be calculated as 11.4%. Then, authors made some modifications on their heuristic
with the aim of solving the HLP on sphere. To represent the earth’s surface by a sphere
1s more accurate in particular applications of more planetary attributes (i.e. international
travel or defense issues). One may refer to O’Kelly (1986a, 1992b), Aykin (1988,1995b),
Campbell (1993), O’Kelly and Miller (1991) and Aykin and Brown (1992) for more
details.

2.1.2. Discrete Hub Location Problems

Discrete hub location problems are mentioned by Campbell (1994): “Hub location
problems can be viewed as embedded in an undirected network N = (V, 4), where the set
of' nodes, or vertices, of the network V'= {vi,2, ..., v¢} correspond to origins/destinations
and potential hub locations. Thus, hubs are restricted to be located at a subset of the
vertices. Associated with link (a, b) € 4, which connects vertices vz and vs, is a non-
negative weight d(a, b) = d(b, a) representing its length. This may correspond to travel
distance, time, cost or some other attribute. Define Ca» to be the length of the shortest
path between nodes a and b. The cost for movement on the path from origin i to
destination j via hubs at nodes k and m, in that order, is Cit + aCim + Cmj, where o is the
discount factor for the inter-hub transportation. If & = m, then there is no inter-hub
transportation. Associated with each O-D pair (7, j) is a non-negative weight representing

the flow from i to j.”



As discrete hub location type is more realistic than continuous one, it received more

attention in many works in literature. The researchers addressed on finding heuristic

solution approaches solving the discrete HLP, under two assumptions given below:

-the number of hubs (p) is exogenous/given

-each spoke has to be assigned to just one hub.

HLPs which satisfy these two conditions are called as discrete p-HLPs in simple terms in

early literature. The discrete hub location models can be classified in four categories

(Alumur and Kara, 2008). These categories are:

The p-hub median problems (»HMP),

The hub location problems with fixed costs,

The p-hub center problems (pHCP) and

The hub covering problems that involve the p-hub maximal covering problem and

hub set covering problem.

The rest of this chapter is devoted to the first three categories. As the subject of this study

isa hub

covering problem, the next chapter will be entire dedicated to the literature survey

of the last category. Figure 2.1 provides the derivation of problems in detail.

Generalized Assignment

Problem
| | . |
Scheduling Vehlc‘Ie Location-Allocation Facility Location Hub Location
Problems Routing Problem
Problem Problem
Problems
— p-Median Problem L, p-Hub Median
Problem

[, Uncapacitated Facility

Uncapacitated Hub
Location Problem —

Location Problem

—» p-Center Problem L, p-Hub Center
Problem

Facility Covering L, Hub Covering
Problem Problem

Figure 2.1: Development of HLP (Yildirim, 2013)



Each class name is correlative to a classical facility location problem. For example, the
p-Hub Median Problem is also named with the p-Hub Location Problem. Yet, from this

point on, the names and the notations given above are used to refer various HLP classes.

e p-Hub Median Problem (p-HMP)

O’Kelly (1987) is the first researcher to formulate the p-hub median problem as a
quadratic integer programming. To locate the hubs and allocate non-hub nodes to hubs
with the aim of minimizing the total cost in the network is p hub median models’
objective. A p-hub median in O’Kelly (1987) is the first hub-and-spoke network model
without restrictions of the hubs number ever formulated. The USApHMP-Q,
uncapacitated single allocation p-hub median problem and Q is for quadratic, problem

was formulated in the paper:

min ;¥ Wi Bk ZikCix + Xm ZimCim + a2k 2om ZikZjm Crem) (2.1)
s.t.
m—-p+1)Zy —XiZy =0 forallk (2.2)
YiZix =1 for all i (2.3)
2k Zkk=D (2.4)
Zix € {0,1} for all i, k (2.5)

Z;i 1s a variable and equals to one as node i is, if and only, assigned to hub & and equals
to zero in contrary situation. Z, has a specific situation in which that parameter equals
to one only if node £ is a hub (O’Kelly, 1987). The other parameters that defined in paper
are:

W;j . the number of units of flow from node i to node j, ,

Cij:

the transportation cost of a unit of flow from node i to node j,
W;; =0 and C;;=0 by assumption,
p:  the total number of hubs to set,

n: the total number of cities to link.

Eq. (2.1) represents the total cost of assigning a node for outgoing and incoming flows

and also the costs of their interactions in hubs which are given inside the brackets, once
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units of flows are transferred from originated node i to hub & and from hub & to hub m
and from hub m to destination hub j. Eq.(2.2) represents that it is impossible to assign a
node to a hub if a hub is not opened at that location. Moreover, it ensures that there can
be at most n-p+1/ nodes to be assigned to a certain hub. Eq. (2.3) provides that there is
only one hub to be assigned by each node. Eq. (2.4) ensures that there are p hubs to be

opened. Eq. (2.5) represents whether node i is assigned to hub £ or not.

O’Kelly (1987) also formulated the objective function differently by means of defining
0; and D;, which are the total amount of flow launching from node i, and the total amount

of flow that terminates in node i, in turn.

Min ¥; Y Zix Cire (0; + D;) + X5 X Zjm X ke Zise (Wi Crern) (2.6)

Since both objective functions are in quadratic form, solving large instances of this model
can become very complicated. O’Kelly stated that this problem is NP-hard and suggested
two enumeration-based heuristics with the aim of providing a solution. In each heuristic,
all possible combinations of p-hub are taken into consideration. In first heuristic, the
nearest hub is chosen for allocation while in second one, the first and the second nearest
hub are chosen for allocation. As a result, that the second heuristic gives a tighter upper

bound on objective function with respect to the first one is concluded.

Klincewicz (1991, 1992) proposed different heuristic approaches for p-hub median
problem. Klincewicz (1991) included two solution approaches such that the first is based
on single and double heuristics and the second is based on clustering. A multi-criteria
assignment procedure which considers not only the distance from spoke s to hub but also
the flow between s and the other spokes of the network while assigning a spoke, to
allocate spokes to hubs is suggested by the author. In Klincewicz (1992), tabu search and
a greedy randomized adaptive search procedure (GRASP) are used to solve pHMP. Both
are developed from artificial intelligence techniques in order to solve combinatorial
optimization problems. The author discussed that the use of sophisticated assignment
rules is not necessary and recommended to use the distance-based assignment rule that is
proposed previously (O’Kelly, 1987). In addition, Aykin (1990) studied this assignment

issue. The heuristic approaches in Klincewicz (1991, 1992) not only need less
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computational effort when compared to the enumeration-based heuristics in O’Kelly

(1987) and also are used to solve problems with large size.

Campbell (1991a,1991b) developed the more general assignment of nodes to multiple
hubs. In these studies, the second assumption mentioned previously does not hold. Here,
letters S and M are used in problem notation and stand for single and multiple allocation
respectively. Yet, these letters can be located either at the beginning or at the end of
problem notation. For instance, pHMP-S denotes the p-Hub Median Problem with single
allocation. The fact that a solution for pHMP-M provides a lower bound for pHMP-S is
showed by Campbell (1991a). This is rational since the total number of possible
assignments for pHMP-M is less than that for pHMP-S. Thus, to solve pHMP-M and use
its solution as a starting point for p-HMP-S is not very difficult. Putting this idea into
practice, the author elaborated two heuristic approaches. Campbell (1991b) studied to
present the mathematical formulation for each class of HLP mentioned above. Also, both
multiple and single allocation cases are considered in the study. Moreover, the linear

programming equivalent of cases are given even though they are quadratic programming

problems.
Table 2.1: Studies on pHMP-S
Year Authors Model
1987 O’Kelly The first quadratic model, HEUR1 and HEUR 2
1994 Campbell The first linear integer formulation
1996 Skorin-Kapov et al. A mixed 0-1 integer model, TS
1996 O’Kelly et al. A model for exact solution, effect of a.
1996 Ernst and Krishnamoorthy A mixed integer formulation, SA, BB algorithm
2001 Ebery A mixed integer formulation for p=2 and 3
2009 Yaman Hierarchical hub network design

2012 Yaman and Elloumi Star pHMP
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Table 2.2: Studies on pHMP-M

Year Authors Model

1992 Campbell The first linear integer programming formulation

1994 Campbell A new formulation with flow threshold and fixed
cost

1996 Skorin-Kapov et al. A new mixed-integer formulation, enumeration

search tree
1998a  Ernst and Krishnamoorthy A new formulation with LP relaxation

1998b  Ernst and Krishnamoorthy =~ BB algorithm based on shortest path

1999 Sasaki et al. 1-stop multiple allocation pHMP, BB method,
greedy-type heuristic

2004 Boland et al. Preprocessing technique, tightening constraints

2009 Campbell Two new models, maximum traveling time
constraint

e The Hub Location Problem with Fixed Costs

This type of HLP and pHMPs have common features but also two great distinctions. First
one is that many pHMP formulations do not take the fixed costs for opening the hubs into
consideration since they focused to consider the number of hubs to open. However, the
hub locations problems with fixed costs include these costs in the objective function. The
second distinction is that the number of hubs to be opened is not a fixed number but

should be low as much as possible due to incurring costs.

As there are that much similarities between them, modifying models of pHMP can give
most of the formulations of HLP with fixed costs. Also, the difference between them
require following two modifications:

- the objective function has to include the fixed costs defined with F.

- Eq. (3) should be disregarded from the model as the number of hubs to open is not an
exogenous parameter anymore.

If these two modifications are applied for O’Kelly (1987) in O’Kelly (1992), they will be
same. Similarly, Campbell (1994) has the modifications for pHMPs that are issued in the

same paper.
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Table 2.3: Studies on uncapacitated fixed cost HLP-S

Year Authors Model
1992 O’Kelly Quadratic integer programming formulation
1994 Campbell First linear formulation
1998 Abdinnour-Helm and New quadratic integer formulation, BB, multi-

Venkataramanan commodity
1998 Abdinnour-Helm GA, TS, shortest method and heuristic
2005 Topcuoglu et al. GA
2007 Cunha and Silva Hybrit GA
2007 Chen New hybrid method with SA, tabu list

Table 2.4: Studies on uncapacitated fixed cost HLP-M
Year Authors Model
1994 Campbell The first linear integer model
1996 Klincewicz Dual-ascent and dual-adjustment based BB
2002 Mayer and Wagner Hublocater
2004 Hamacher et al. Polyhedral, facet-defining
2004 Boland et al. Preprocessing procedure, tightening constraints
2007 Canovas et al. Dual-ascent based heuristic
Table 2.5: Studies on capacitated fixed cost HLP

Year Authors Model
1994 Aykin BB, a heuristic method
1999 Ernst and Krishnamoorthy =~ Mixed integer programming, BB
2000 Ebery et al. New mixed integer formulation, LP-based BB
2003 Sasaki and Fukushima 1-stop HLP, BB
2005 Labbé BB, polyhedron studies
2008 de Costa et al. Bi-criteria approach to minimize total and service

time

e p-Hub Center Models

pHCPs are another variation of hub location problem differing in way of its minimax

objective function. 3 types of HCP are defined by Campbell (1994). First one’s goal is to

minimize the maximum cost among each O-D pair, while second one’s goal is to
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minimize the maximum cost on any connection either origin-hub or hub-hub or hub-
destination. And final one’s goal is to minimize the maximum cost in all either hub-origin
or hub-destination pair. For both the single and multiple allocation versions of these three
objective functions, simple formulations of pHCP are presented in this part of literature

review.

First type objective function proposed for both single and multiple allocation model is:
minmax; jxm {Xijkm: Cijim}-
Second type objective function proposed for both single and multiple allocation model is:
minmax; g, {max (Cix, Crmj» & Chm) Xijkm
Third type objective function proposed for both single and multiple allocation model is:

minmax; g, {max (Cix, Cmj)Xijkm

Although Campbell (1994) defined three types of pHCP, some contributions in which
many of them are familiar to

Table 2.6: Studies on pHCP

Year Authors Model

1994 Campbell Fixed integer model, three type p-center problem

1999 Kara and Tansel New mixed integer programming, linearization of
models of Campbell

2000 Pamuk and Sepil Single-reallocation heuristic

2003 Hamacher and Meyer BS algorithm

2005 Ernst et al. New mixed integer formulation for single

allocation, two integer programming for multiple
allocation, shortest path-based BB
2008 Meyer et al. Two-phase algorithm, shortest path-based BB

2.2. Problem Environments

As HLP includes strategic decisions for long-term, its certain parameters (i.e. flows, costs
and distances) can alter with the time. Therefore, to consider the problem in an uncertain
environment is meaningful. Two main environments in literature to deal with uncertainty

are randomness and fuzziness.
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To handle uncertainty as randomness (i.e. stochastic HLP) is one main subtopic.
Marianov and Serra (2003) attempted to model hubs as M/D/c queuing systems and to
formulate a linear mixed integer programming with chance-constraints. Sim et al. (2009)
both stated stochastic pHCP and also presented a chance-constrained programming with
constraint of service-level. Yang et al. (2011) extended the problem by considering
discrete random travel time. Alumur et al. (2012) focused on a comprehensive model not
only single but also multiple allocations with random demands and set-up costs. Hult et
al. (2014) improved exact solution approaches that are based on reduction of variable and

also a separation algorithm in order to solve uncapacitated single allocation case.

A fuzzy programming approach to model dynamic virtual hub location problem is
employed by Taghipourian et al. (2012). A fuzzy possibilistic bi-objective model for hub
covering problem considering production facilities, time horizon and transporter vehicles
is established by Ghodratnama et al. (2013). A fuzzy p-hub center problem in which the
travel times are characterized by normal fuzzy vectors first proposed by Yang et al.
(2013a). Yang et al. (2013b) continued to present a risk aversion formulation through

adopting value-at-risk criterion in the function of objective.

2.3. Solution Approaches for HLPs

To cope with different types of HLPs, miscellaneous solution algorithms have been
suggested. In this part, related articles are examined, several of represented solution
approaches are listed. Although most of HLPs are modeled as a network location
problem, there are some studies done in discrete and continuous domains. Note that some

notations are given in Table 1 to better understand the various kinds of HLPs.
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Table 2.7: Notations for different types of HLPs

Capacity of Allocation of Type of Number of
hub node nodes HLP hub nodes
Capacitated (C) Single allocation Median (M) Single (1)
(SA)
Uncapacitated (U)  Multiple Allocation Center (T) More than one (P)
(MA)
Covering (V)
Set Covering (SV)
Maximum
Covering (MV)

When solving instances of HLPs, exact algorithms are more practical when the problem
size is small. Larger instances in HLPs require to be solved either by heuristic procedures
or by meta-heuristic procedures although small hub problems can be solved by integer
programming optimization approaches. Large-sized instances can be handled by
specialized exact methods such as benders decomposition and branch-and-price methods.
Yet, as a matter of fact, development of meta-heuristics has a great advantageous and
serves many real-life applications. Thus, optimal or near optimal solutions can even be
obtained in less computational time. In this section, studies in last 10 years which make
use of exact optimization methods and heuristics for finding solution of HLP are

presented in Tables 2.8-2.9.

2.4. Applications of HLPs

Since O’Kelly (1987) formulated HLP as quadratic integer programming by choosing
hubs and their assignments, more and more attentions of researchers who are from
operations research, transportation, geography, network design, telecommunications,
regional science, economics and etc., are directed to this field. Campbell and O’Kelly
(2012) is suggested for further details. Although applications of HLP are mostly
encountered in air and road transportation systems, we expose all application areas as
much as possible in this section Table 2.10 shows grouped papers with their related

application areas. The most recent ones are also discussed briefly.
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Table 2.8: Exact solution algorithms in HLPs (in last 10 years)

Problem Article Solution algorithm Efficiency # of
(# of hubs
nodes)

C-MA-p- Gelareh and Pisinger Mixed Integer Prog. 15 —
HLP (2011)

Alumur et al.(2016) Mixed Integer Prog. 15-25 —
C-SA-p-  Correia, Nickel, and Mixed Integer Prog. 50 —
HLP Saldanha-da-Gama

(2010a)

Correia, Nickel and Linear Prog. - —

Saldanha-da-Gama

(2010b)

Kratica et al. (2011) Mixed Integer Prog. - —

de Camargo and Generalized Benders 100 20

Miranda (2012) decomposition method

Taghipourian et al. Fuzzy Integer Linear 20 4-7

(2012) Programming

Alumur et al.(2016) Mixed Integer Prog. 15-25 —
U-MA-p- Contreras, Cordeau, and Enhanced Bender 500 -
HLP Laporte (2011c¢) decomposition method

Gelareh and Nickel Bender decomposition 50 20

(2011) method

Vasconcelos, Nassi, and Integer Prog. 12 —

Lopes (2011)

Vidovic et al. (2011) Mixed Integer Prog. - —

Alumur et al. (2012) Stochastic Prog. 25 4
U-SA-p-  Contreras, Fernandez, Mixed Integer Prog. 25 8
HLP and A Marin (2010)

Lin (2010) Integer Linear Prog. - —
U-SA-1-  Alumur, Nickel, et al. Stochastic Prog. 25 5
HLP (2012)
U-MA- Garcia, Landete, and A Integer Prog.-Branch and 200 190
M-p-HLP Marin (2012) Cut
U-SA-M- Puerto, Ramos, and Mixed Integer Prog. 20 10
p-HLP Rodriguez-Chia (2011)
U-MA-T- Yaman and Elloumi Mixed Integer Prog. 70 20
p-HLP (2012)
U-SA-T- Yaman and Elloumi Mixed Integer Prog. 50 10
p-HLP (2012)
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Table 2.9: Heuristics and meta heuristic solution algorithms for HLPs (in last 10 years)

Problem Article Solution Algorithm Efficiency (# #of
of nodes) hubs
C-SA-p- Lin and Lee (2010)  Lagrangian relaxation - —
HLP
de Camargo, Outer 200 —
Miranda, and approximation/benders
Ferreira (2011) decomposition method
Contreras, Diaz, and Branch and price — 200 -
Fernandez (2011) Lagrangian relaxation
C-MA-M-p- Lin, Lin, and Chen  Genetic algorithm - —
HLP (2012)
C-SA-V-p-  Mohammadi, Jolai,  Imperialist competitive 70 —
HLP and Rostami (2011)  algorithm and genetic
algorithm
U-MA-p- Gelareh, Nickel, and MILP — Lagrangian 20 7
HLP Pisinger (2010) decomposition method
Contreras et al. Monte Carlo simulation- 50 —
(2011a) based algorithm/benders
decomposition method
U-SA-p- Han (2010) Integer programming — 50 11
HLP Tabu search
Catanzaro, Gourdin, Branch and cut 20 -
Labbe, and Ozsoy
(2011)
U-MA-M-p- Cetiner, Sepil, and Iterative heuristic 81 6
HLP Sural (2010)
Ishfaq and Sox Tabu search 100 6
(2011)
Ishfaq and Sox Tabu search 25 5
(2012)
U-SA-M-p-  1li¢, Urosevic, General variable 1000 20
HLP Brimberg, and neighborhood search
Mladenovic (2010)
U-MA-V-p- Karimi and Bashiri Heuristic algorithms 37 6
HLP (2011)
U-SA-V-p-  Karimi and Bashiri Heuristic algorithms 37 6

HLP (2011)
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Table 2.10: Application areas of HLPs

Application Area

Paper

Airlines and airports:

Transportation and handling problems:

Post delivery services and fast delivery
packing companies:

Telecommunication systems and massage

delivery networks:

Emergency services:

Chain stores in supply chain

Perishable Food sector and environment:

QGreen environment

Toh et al. (1985), Shaw (1993), Aykin
(1995), Jaillet et al. (1996), Bania et al.
(1998), Sasaki et al. (1999), Martin and
Roman (2003), Adler and Hashai (2005),
Ozger and Oktal (2009), Eiselt and
Marianov (2009), Kawasaki (2012), Davari
et al. (2013), Ozger and Oktal (2013).

Don et al. (1995), Lumsdenk et al. (1999),
Aversa et al. (2005), Baird et al. (2006),
Cunha and Silva (2007), Yaman et al.
(2007), Eiselt (2007), Verma et al. (2017),
Li et al. (2019), Danijela (2019), Vural and
Aygun (2019), Carman et al. (2019),
Msakni et al. (2020), Park and Kim (2020).

Kuby et al. (1993), Krishnamoorthy et al.
(1994), Ernst and Krishnamoorthy (1996),
Ebery et al. (2000).

Lee et al. (1996), Klincewicz (1998),
Carello et al. (2004), Bollapragada et al.
(2006), Contreras and Fernandez (2012).

Hakimi (1964), Berman et al. (2007), Chen
et al. (2013), Zhang et al. (2017), Rostami
et al. (2018)

Marufuzzaman and Eksioglu (2014), Roni
et al. (2017), Razmi and Rahmanniya
(2019), Fakhrzad et al. (2019).

Esmizadeh and Bashiri (2014), Etemadnia
et al. (2015), Musavi and Bozorgi-Amiri
(2017).

Maiyar and Thakkar (2019), Dukkanci et
al. (2019), Parsa et al. (2019).

In airlines and airports, Ozger and Oktal (2013) modeled constrained choices when
establishing cargo hub and its spoke networks. They improved MILP model which is
introducing additional constraints to the traditional model of uncapacitated multiple
allocation hub location problem. Then, this developed model is tested empirically.
According to test results, the major factors effecting hub location along with the cost of
airline movements are aircraft range and trip cost, runaway availability and cargo traffic
continuity of an airport. Davari et al. (2013) dealt with an incomplete hub-covering

network design problem in which the exact locations of demands are not know and are
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estimated as fuzzy variables. They modified and earlier model in the HL literature in
order to focus on the uncertainity of problem, also designed an efficient simulation
embedded Variable Neighbourhood Search (VNS). The CAB dataset is used for its
performance testing. Kawasaki (2012) focused on the scheduling effect on the demand
side and the number of passengers traveling between each city pair. That the hub city is
not always selected such that the number of rim passengers is minimized is shown by the
study. Also, after additional simulation analyses showed that the probability of choosing

a not preferable hub city is small.

In transportation and handling problems, Park and Kim (2020) presented a real-world
hub-and-spoke allocation problem and its mathematical model. Moreover, they
introduced the parcel classification system currently implemented by a courier company.
Assigning each group of destination spokes a unique code is stated as a critical issue.
Moreover, a good solution in reasonable time is obtained by the suggested algorithm.
Msakni et al. (2020) studied different network designs for a linear shipping company. In
their study, a feeder network is served to connect a major European port with local port.
Models for both design and their solutions based on realistic dataset are included and they
provide a discussion of which network design offering better cost. Carman et al. (2019)
proposed an integrated model simultaneously taking into consideration of cargo flight
network design and the fleet routing selection for the air cargo transportation. The
comparison of two transportation modes that are the direct transportation mode in point-
to-point networks and the transshipment mode in hub-and-spoke networks is provided. A
swarm-intelligence-based algorithm is benefitted in order to solve optimization problem,
its computational results displayed that the transportation cost can significantly decreased

by proper setting of hub and transshipment route selection in an air cargo.

In telecommunication sector, cycle hub location problem (CHLP) seeks to locate p hub
facilities connected by means of a cycle, as well as to route flows between pair of nodes
through the cycle-star networks that minimize the total cost. The CHLP is also useful in
modelling applications where large setup costs on the link and reliability requirements
make cycle topologies an outstanding network architecture. Carello et al. (2004) dealt
with HLP and their network presented two different nodes, access nodes and transit

nodes. While access nodes represent source and destination of traffic demands but are not
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able to be directly connected, the transit nodes do not have their own traffic demands but
can both collect traffics belonging to access nodes and route them through the network.
To decide number and positions of transit nodes in order to guarantee satisfying capacity
constraints is the problem. Thus, a local search approach is suggested and based on such
local search 1, different metaheuristics have been developed. Bollapragada et al. (2006)
presented a quantitative model of telecommunication network installation via companies.
Moreover, they aimed both to maximize the expected demand coverage subject to a
budget constraint on hub installation and technological constraints on demand coverage
via hubs installed. They improved a practical greedy heuristic based on the budgeted
maximum-coverage problem. In general, a data-dependent performance guarantee is
developed. Kim and O’Kelly (2009) presented a new HLP, which is named reliable p-
hub location problem and which its focus is to maximize network performance in terms
of reliability by locating hubs for delivering flows amid city nodes. They formulated two
sub-models such as p-hub maximum reliability and p-hub mandatory dispersion. The first
one showed how optimal HL can be determined under different reliability conditions on
both hubs and inter-hub links, the latter take the dispersion of hub facilities in hub network
design into consideration in order to avoiding the excessive concentration of interaction
flows from particular hub facilities. Contreras and Fernandez (2012) first introduced this
problem in the context of general network design problems. In addition to the network
design and assignment decisions concerned, CHLP takes additional routing decisions into
consideration and addresses to the minimization of the total flow cost between many node
pairs. In telecommunication network design case, electronic equipment such as
concentrators, multiplexors and switches correspond to hub facilities, while data
packages routed over a variety of physical media, such as coper cables, fiber-optic cables
and telephone lines or through the air by using satellite channels are demand flows. A
general architecture of these networks comprised a number of tributary networks
connecting nodes to hubs and a backbone network interconnecting the hubs. Backbone
links have higher capacities and route larger volumes of flow as compared to tributary
links, in general, due to the configuration of their networks. Thus, a discount on the costs
of using backbone link is considered instead of the cost of a tributary link. A cycle-star
topology may be chosen since it provides an alternative path between every pair of hubs
if a link does not succeed. Klincewicz (1998) is suggested to review for more details

about design of telecommunications hub networks.
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In emergency service, optimal configuration of emergency response resources is
considered as crucial in order to mitigate the disaster and to protect public health and
safety. Chen et al. (2013) addressed to formulate the problem of configuring disaster
response resources between a set of candidate hubs, and then took as p-hub center
problem minimizing the maximum travel time from hubs to demand hubs. The authors
proposed a formulation based on two-stage stochastic programming, in order to handle
the uncertainty of travel time, and benefited from real data of Yunnan province in China.
Zhang et al. (2017) employed uncertainty theory to focus on the location problem of
emergency service facilities under uncertainty. They first offered the location set covering
problem in uncertain environment, later, investigated the maximal covering location
problem in an uncertain environment. Finally, a case study illustrated the ideas of
uncertain models. Rostami et al. (2018) studied reliable single allocation HLP under hub
breakdowns such as disasters or strikes, developed a nonlinear two-stage formulation for
this problem. Moreover, they designed a branch-and-cut framework based on Bender
decomposition. The solution instances for much bigger than those solved so far in the

literature are obtained.

In transportation sector, in particular in the design of rapid transit systems, the location
of hub cycles arises in public transportation planning. By locating a circular rapid transit
line (or hub cycle) such as a subway, a tram or an express bus lane, most of network
planners may be interested in studying the effect of extending an already used public
transportation network in a metropolitan region. The Moscow Underground, the
Melbourne Circular Tram Line and some of the Montreal bus lines can be given as
examples of such circular lines. Subway, tram, or bus stations where an alternation of
mode of transportation is usually possible correspond to hub facilities, while bus stops,
taxi stations or urban districts correspond to non-hub nodes. Users travelling between O-
D pairs is the representation of demand flow, and to improve the network’s total
efficiency is the goal. Moreover, the discount factor is for the use of a faster transport
technology connecting hubs nodes. In certain situations, both due to the reliability
requirements and because it offers an alternative path reducing the travel time for some

pairs of O-D, a circular line may be preferred.
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In supply chain, Razmi and Rahmanniya (2019) presented a p-median hub model that
aims to achieve both efficient and effective distribution while designing distribution
network. Their decision variable is type of hub, since hubs have various capacities and
various establishing costs. As result if computational numerical experiments, it is noticed
that reducing in service level lead to decrease in establishment cost and to increase in
transportation cost. Moreover, that decrease in factor which represents the economics of
scale in distribution stage in comparison with the decrease in factor which represents the
economics of scale between hubs has greater effect on reducing value of objective
function. Fakhrzad et al. (2019) proposed an integrated model for HLP in multi-location,
multi-period, multi-commodity (3M) three echelon SC and formulated this problem as a
MIP model, then used GAMS to solve it. A new algorithm for re-formulation is offered
to transfer into MILP, since the developed model is a MINLP and NP-hard. In addition,
a new heuristic is improved to reach a solution in a reasonable time. CAB dataset is used
to prove the applicability and the benefits of the proposed model. Marufuzzaman and
Eksioglu (2014) aimed to design a cost-efficient and reliable SC networks for biomass
delivery that its supply is seasonal to biofuel plants. This SC can cope with the biomass
supply fluctuations with the help of the dynamic intermodal HL model. As their
suggestion of MINLP is NP-hard, they needed to develop a rolling horizon algorithm to
solve the problem. The performance of the algorithm is tested on a case study using data
from the southeast region of US. Then, that a near-optimal solution of large-scale problem
is provided by this proposed algorithm in a reasonable time is concluded. Roni et al.
(2017) is also related with a multi-objective, hub-and-spoke model to design and manage

biofuel supply chains.

In perishable food sector, some goods need to be heated or cooled at regular intervals and
a hub center are required for this service. Musavi and Bozorgi-Amiri (2017) optimized
scheduling and sequencing of the vehicles at hubs while considering the environmental
conservation to design a sustainable supply chain. Their model as a multi-objective MILP
optimizes not only the total transportation costs but also the freshness and quality during
the delivery, the total carbon emissions of vehicles to provide the sustainability desire of
environment as well. They suggested an adopted NSGA- 1II meta-heuristic in order to
solve the NP-hard problem. Etemadnia et al. (2015) presented a MILP model for finding

optimal hub locations in a national logistics system. They aimed to design an optimal HL
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network to serve food consumption markets by efficient connections along with
production sites. As the possible hub-node combination are abundant within a national
logistics system, they developed a heuristic solution algorithm in order to reduce
computational costs. Their first finding is that model is sensitive to the distance over
which commodities are allowed to travel using land transportation. Second finding is
about hub capacity constraints. That maximum land shipping distances are held constant
at 200 miles while minimum number of hub capacity is increased up to 100,000 tons is
issued. Then, not surprisingly, there is a decrease by over 60 percent in the optimal
number of hubs. Thus, the demand for air transportation will be decreased. Esmizadeh
and Bashiri (2014) considered to develop a hierarchical hub network system with
refreshing operation in the network. The first level includes a complete network
connecting the centrak hubs while the second level includes a form of star networks
connecting the remaining hubs to central hubs and third level includes demand nodes
connecting hubs and central hubs in a star form. In their study, different level hubs
provide refreshment operations for those goods whose delivery time exceeds the
freshness time limit. Thus, the total cost of the network and spoilage rate in network is
reduced. The CAB dataset is used in computational studies to illustrate the proposed

method that is performing better than classical approaches for perishable goods.

In green environmental, Maiyar and Thakkar (2019) studied a green multi-objective
transportation problem considering wastages is formulated. Moreover, they developed a
multi-period MINLP embedded in hub-and-spoke network. Before benchmarked with
NSGA- II, MOPSODE is used while solving the problem. They tested the model for
various sizes and configurations in the problem. They aimed to learn the impact of
varying hub location, its capacity level and the wastage threshold. Dukkanci et al. (2019)
introduced the green hub location problem and considered vehicle speed and payload to
estimate fuel consumption. For this purpose, they improved a nonlinear formulation
model by using second order cone programming and perspective cuts. Then, they
conducted an extensive computational study on CAB and TR datasets. Parsa et al. (2019)
introduced a new mitigation measures in response to the rapid growth of environmental
problems related to air transportation including emissions and noise. They offered a
multi-objective MIP model and utilized several methodologies to determine the best

design. The results of their computations displayed that using the new measure can cost-
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effectively decrease the projected cumulative CO2 emission relative to the traditional

model that is based on minimizing only the total cost of flow and opening hubs.



3. HUB COVERING MODELS

To cover all demand and to minimize either the number of hubs or the cost for opening
are needed in hub covering problems. As in the p-hub center problems, 3 types of hub
covering problems are stated by Campbell (1994). In first type, if the total distance from
node i to j by hub k and m are smaller than a certain distance value, the O-D is covered.
In second type, if the cost on all links do not exceed a certain cost value, an O-D pair is
covered. In third type, if the origin-first hub and second hub-destination links do not
exceed a certain difference values, the O-D pair is covered. A first basic formulation for
the single allocation hub covering problem is provided by Campbell (1994). In his
formulation, V; ., represents binary variable which equals to 1 if the hub & and m can
cover the origin-destination pair (Z, j) and Fj stands for the cost of opening a hub in k.
The USASCP-1L model tends to minimize the total cost of opening hubs. Similar to the
single allocation hub covering problem, a formulation of the multiple allocation version
of hub covering problem is suggested by Campbell (1994). The objective function of
UMASCP-1L is identical to the one in USASCP-1L.

3.1. p-Hub Maximal Covering Models

This type models are not to intend to cover all nodes but strive to maximize the demand
included by a prearranged maximal number of hubs. However, it is not as predicted, since
the hub covering models mentioned in above, attempt to decrease the number of hubs in
which all demands can be covered. It is noticeable that p-hub maximal covering models
are classified as hub covering problems in the literature, although their objective function

and constraints are the same as in a p-hub median problem. (Campbell, 1994)
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max Y, % Xk Xem WijXijemVijkm (3.1

s.t.
ke =1 (3.2)
Yk 2m Xijem = 1 forall j j (3.3)
KXijiem <Yk forall i, j, k, m (3.4)
Xijkm <V¥m forall i, j, kK, m (3.5)
Y, € {0,1} forall i, k (3.6)
0<Xijkm <1 forall i j, k, m (3.7)

Xijkm: variable indicating the proportion of flow routed by hubs
Y,:  binary variable whether a hub presents in &
W;j:  the number of unit flow from nodes i to j

Vijkm: binary parameter whether the O-D pair is covered by the hubs k and m

The opening of p hubs is ensured by Eq. (3.2). All the flow is assured to be routed by the
hubs by the Eq. (3.3). Flow from node i to j is passing thru hubs & and m is only allowed
if hubs k and m are opened by means of Egs. (3.4) and (3.5). Whether hub £ is opened or
not is provided by Eq. (3.6). The proportion of flow from node i to j passing thru hubs &
and m must be between 0 and 1. This is guaranteed by Eq. (3.7).

3.2. Hub Set Covering Location Problem

This type model is a particular case of hub covering location model. Model’s assumptions
are familiar to median-p hub model excluding that the number of hubs is not known and
that a fixed cost of hub location is incorporated in the model. Variables and parameters
of the model are:

Xy:  binary variable if hub is opened in node &

Zijim: variable indicating the proportion of flow routed by hubs

F.:  fixed hub opening cost for candidate node k&

Vijikm: binary parameter equals 1 if hubs m and k cover origin-destination pair i, j
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min Y Fi X, (3.8)
S.t.
Zijkm < Xk forall 1 j k, m (3.9)
Zijkm < Xm forall 4 j k m (3.10)
Yk 2m VijkmZijem = 1 for all i, j (3.11)
X, € {0,1} forall £ (3.12)
0<Zijkm=<1 forall 7 j k, m (3.13)

Eq. (3.8) represents the objective function minimizing the total hub location costs.
Opening of hub k and m restricts the binary variable controlling whether the amount of
flow originated from i and destinated to j uses candidate hubs k and m in Eq. (3.9) and
Eq. (3.10), respectively. That all of O-D pairs are, at least one time, covered is guaranteed
by Eq. (3.11). That the variable if hub is opened in £ is binary is showed in Eq. (3.12) and
that the variable controlling whether the amount of flow originated from i and destinated

to j uses candidate hubs k and m is showed in Eq. (3.13) (Hekmatfar and Pishvaeel, 2009).

Table 3.1: Studies on hub covering problems (1994-2011)

Years Authors Model

1994 Campbell First integer model, defined three coverage
criteria

2003 Kara and Tansel New integer programming linearizations of

Campbell’s models
2006 Hamacher and Meyer  BS algorithm, polyhedron studies
2008 Wagner New formulation, preprocessing procedure

2011 Ernst et al. New formulation, coverage radius concept 8

Hwang and Lee (2012) aimed to locate hubs and to allocate non-hub nodes to the hubs in
their model, therefore, hub can maximize the demand covered by deadline travelling time.
An integer programming formulation for the new hub covering model is stated for CAB
dataset. In addition, two heuristics which are distance-based allocation and volume-based
allocation, are applied and their computational results showed that good solutions, for

most of instances, are found in relatively reasonable computation time.
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Peker and Kara (2015) studied SApHMCP and MApHMCP then, observed that there is
only binary coverage in HL literature. Thus, they extended the definition of coverage and
introduced a new coverage type which is called as partial coverage. An efficient mixed-
integer programming formulation not only for single but also for multiple allocation that
can be applied for partial coverage is developed. That both formulations generally
perform better than the existing is concluded. Through the decreased number of variables
and constraints, optimal or near-optimal solutions for larger dataset are obtained. If partial

coverage is available, the coverage percentages are, as expected, increased.

Alinaghian et al. (2017) presented a new robust mathematical model for the multi-product
capacitated single allocation hub location problem with maximum covering radius. Their
objective is to propose a model minimizing various costs such as establishing hubs,
preparing hubs for handling products, shipping. A single product of single node can be
allocated at most one hub whereas different products of one node can be allocated to
different hubs. Also, the model requires if equipment related to that product is installed
in order to allocate a product to hub. To solve the large-scale variants of that problem, a
GA-based meta-heuristic algorithm is suggested. After comparison of this heuristic with
respect to the exact method and simulated annealing algorithms, respectively, the results

displayed a good performance of the proposed algorithm.

Jankovic et al. (2017) studied both USApHMCP and UMApHMCP with binary and
partial coverage criteria. A unified MIP formulation that can be applied for two coverage
criteria, is suggested for USApHMCP and UMApHMCP. According to results of
computational experiments, the superiority of newly formulation for UMApHMCP is
examined, thus, it is possible to solve larger number of instances in optimality, in a shorter
time. However, the case is not the same for the new formulation for USApHMCP since
it performs worse when compared to the existing others in literature. In addition, the
authors proposed two variable neighborhood search (VNS). Having looked at the
presented experimental results, both heuristics are capable either to reproduce an optimal

solution or to find a new best-known solution for benchmark problems.



30

3.3. Hub Covering Flow Problem

As there is an explicit discrepancy between uncapacitated hub location problem and hub
covering problem, Lowe and Sim (2013) suggested the hub covering flow problem
(HCFP) in which the total cost of opening hub and not only transporting demand flow but
also meeting the coverage specifications are incorporated. Their formulation for single
assignment HCFP is grounded on the multiple-commodity flow formulation of UHLP by
Ernst and Krihnamoorthy (1996). Their single assignment MILP HCFP is formulated as

below:

min  Yyen ZpFr + @ Likien YiaCr + Like n (X0 + 8D)Zy (3.14)

s.t.
Zie < A Zik foralli, k € N (3.15)
YrkenZik =1 forall i€ N (3.16)
0iZu=2jen WuZjk + Lien Vi - ZienYur  foralli k €N (3.17)
itk 1en Vi< 0 Zi forallik € N (3.18)
Yiky =0 foralli, Kk, /[EN (3.19)
Zy € {0,1) forall i, k € N (3.20)

Y:1 1s variable indicating the amount of flow starting from node i that stops first to hub &
and then /. Fj, is establishing and operating cost at node k annually (Lowe and Sim, 2013).
The total annualized fixed cost of opening hubs, the cost of transporting demand through
the hub network, and the cost of transporting demand between a node and a hub node,
respectively are terms of function of objective function in Eq.(3.14). Eq.(3.15) ensures
that node is only capable to be assigned to hub opened at £ which can cover node i. The
single assignment is ruled by Eq. (3.16) and Eq. (3.20). The flow conservation constraint
in each hub £ for each commodity i is stated in Eq. (3.17). That the solution might present
routing flow through links which are not selected for the hub network is eliminated by
Eq. (3.18) that is akin to suggestion of Correia et al. (2010) on formulation of UHLP in
Ernst and Krishnamoorthy (1996).

Lowe and Sim (2013) noted that to fix the values for certain variables so that there is a
reduction in size to speed computation, matrix 4;;, can be applicable in pre-processing

step. The results of the study are:
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e Increase in the cost of opening hubs, relative to the cost of transferring demand flow
through the network, causes not surprisingly that the number of hubs in the network
decreases.

e Hub nodes are prone to be located at or near nodes whose demand flow depending on
the profile of the fixed cost values for the hubs, are high.

e Hubs are inclined to be located at the high demand flow nodes if the fixed costs are
homogeneous.

e Hubs are prone to be located at nodes close to the high demand flow nodes but with
lower fixed cost values if the fixed costs of the hub nodes are strongly correlated to
their total demand flow.

¢ The inefficiencies of not to take the transportation costs into account when designing
a network (i.e. HCP) could be significant. The overall cost of establishing and

operating the network in HCP could cost %40 more than that in HCFP.

3.4. Capacitated Multiple Allocation Hub Covering Flow Problem

With this thesis, we propose an extended mathematical model to the hub covering flow
problem by considering multiple allocation of non-hub nodes to hubs, flow processing
capacity of hubs and transport flow capacity of network links. To the best of our
knowledge, there is no study covering all these extensions altogether as our model. We
studied this subject as taking these concepts into consideration during facility design is

crucial for real applications.

3.4.1. Sets, parameters and decision variables

In this context, some important notations for both sections are following:

Sets:

V set of nodes

Parameters:

hij demand flow originating from node i € V destined for node j € V
H total amount of flow to be sent

0; total demand originating from node i € V
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D; total demand destined to node j € V

Wik flow capacity of the links connecting nodes i,k € V

[ flow capacity of hub ke V

Tk hub opening cost for node k € V

Cij unit flow cost for the link connecting nodes i,j € V

dij length of the link connecting nodes i,j € V

A node coverage matrix (4; 1 if node j€ V can be covered by node

i € V and 0 if it is otherwise)

B path coverage matrix (Bij = AikAk;))
a inter-hub cost discount factor such that ¢ € (0,1)
Amax maximum unused capacity ratio for hub k € V

It is not difficult to establish that O; = Y ey h;j, Dj = Yiey hij and H = ¥; ;e h;j. Hub
opening decision is related with the binary decision variable x;, which equals to 1 if node
k is a hub and 0 otherwise. Variable z;, denotes the amount of flow sent from node i to
hub node k, q;;; the amount of flow sent from node i to node j through hub node [, and
Vir: the amount of flow sent from node i via hub nodes k and [. Finally, variable A,

designates the ratio of unused capacity for hub a node k.

3.4.2. Formulation without Capacity Constraints

min kaxk +a Z CrYik Z CikZix t+ Z 14t (3.21)

kev Liclev i kev iLjev
S.t.

Z Az = 0; i€V, (3.22)
kev

Z Bijquj = hij i,jev, (3.23)
kev

Z Bikjyikj + Z BikjQikj —Z BiukYik = AikZik ikev, (3.24)
lev Tev lev

z Bujquj = Djxg Lj€EvV, (3.25)
iev

ApezZix < Oixy Lk€evV, (3.26)

Zik, Qujp Vi = 0, x, € {0,13, i,k ,jEV. (3.27)
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The objective in Eq.(3.21) is to minimize the total cost of opening hubs and routing
demand through network links by considering inter-hub flow cost discount factor.
Eq.(3.22) ensures that all the demand originating from node i € V is transported through
hubs. Eq.(3.23) guarantees that the demand originating form node i € V destined for node
j €V is transported through hubs. Eq.(3.24) corresponds to the flow conservation
constraints at each hub. Eq.(3.25) and Eq.(3.26) together ensure no demand is transported
directly between non-hub nodes. Finally, Eq.(3.27) shows the type of decision variables.

3.4.3. Formulation with Capacity Constraints

Zzik + Fklk =Fkxk kevV (328)
iev
0 <Ak < Anax keV (3.29)
Zq”j <wy; (1-x)+ Hx Ljev (3.30)
iev
Zie S wy(1—x) + Hx; LkeV (3.31)

Constraints in Eq.(3.28) restrict the inflow towards any hub up to its capacity. Moreover,
the unused capacity ratio of hub k € V is kept track of by means of the variable A.
Eq.(3.29) is to restrict the unused capacity ratio up to a certain predetermined level.
Constraints in Eq.(3.30) do not allow an amount of flow to be transported from hub node
L € V to node j € V surpassing the link capacity w;;. In a similar fashion, constraints in
Eq.(3.31) guarantee that the amount of flow on the link connecting node i € V and hub
node k € V does not exceed the link capacity wy;. It can be inferred that inter-hub links

are not capacity constrained in this formulation.



4. COMPUTATIONAL ANALYSIS

We make use of the well-known TR data set in our numerical study. This benchmark
network data set is available in OR libraryi. TR data set consists of 81 nodes (cities of
Turkey) network and is complete as unit flow costs, hub-opening costs, network links’
lengths and flow demands are all provided. Solving one instance of our proposed model
to optimality with the original TR data set and our available computational facilities takes
considerable amount of time. As we are concerned with the validation of the model
through a computational study, we rather preferred to work on a restricted data set. Our
approach was to select nodes, which correspond to the most populated 25 cities of Turkey,

and to update original parameter tables as given in the Appendix.

Inter-hub cost discount factor a 1s set to 0.4, 0.6 or 0.8. The hub or node coverage radius
A is obtained by multiplying the coverage ratio R with length of the longest link of the
network, i.e. A = R X max; j{di j}. R should be selected such that the existing network
does not contain disconnected sub-networks. Hence, R is setto 0.6, 0.7 or 0.8. Then, each
element A;; of the node coverage matrix is fixed to 1 if d;; < A, and 0 otherwise.

Link capacities, w;j for all i, k € V, are not included in the original TR data sets, so we
developed a procedure to identify them. First, the model without capacity constraints
given in Eq.(3.21)-(3.27) is solved to optimality to obtain optimum link flows. As there
is no limit on the amount of flow that can be sent between hubs, we excluded inter-hub
flows among the optimum link flows and calculated the average (¢) and the standard
deviation (o) of the remaining link flow values. Finally, assuming that the link flows are
normally distributed, all of links’ capacities w;; i, k € V were set equal to wp = u + {,0

where {), is the z-score corresponding to probability p with p = {0.70, 0.80, 0.90}.

1 http://people.brunel.ac.uk/~mastjjb/jeb/info.html
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Original TR data set does not contain also Aub capacities, so we designated all [, k € V
equal to a fraction (15%, 20%, ..., 65%) of the total demand H. Finally, maximum unused

capacity ratio 4,,,, for a hub varies from 0.05 up to 1.00 with 0.05 increments.

All solutions presented in this analysis are obtained by using the CPLEX solver accessed
through GAMS 24.9.2. In the subsequent tables given in Tables 4.1-4.6, the horizontal
axis corresponds to the hubs’ capacities given as a fraction of H, and vertical axis is
related to maximum unused capacity ratio. Quadrants are also indicated on these tables,
and simple statistical inferences about the tables and their quadrants are given beneath

each table. Cost values are in thousands.

We first investigate how the optimum number of hubs (0NHs) changes depending on the
model parameters. Decrease in the value of inter-hub discount factor a, in other words
increase in the cost savings due to the aggregation of flows between hubs, increases
oNHs. The average and standard deviation of oNHs given beneath Tables 4.1-4.3 clearly
reveal this empirical outcome. This is an expected result as more hubs enables to
aggregate more flows. Meanwhile, an interesting observation is that given all
combinations of hub capacities (I} ) and maximum unused hub capacity ratios (A4 ), the
smallest oNHs which can be attained does not change depending on the discount factor
o. This implies that in some cases, hub capacity related constraints are so restrictive that
reduction in the total cost becomes a less important issue. This empirical study also
justifies some logical expectations. As for example, oNHs decreases as I, increases or
high-capacity hubs are admitted. Meanwhile, oNHs increases as A, , increases or

capacity usage constraints are relaxed.

Another outcome is that, as the capacities of links (w;;) become less restrictive, oONHs
decreases. Tight link capacities restrict the amount of flow that a non-hub node can send
to a single hub node and thus more hubs are needed at the optimum solution to transfer
the total flow. Irrespective of link capacities, highest oNHs are observed when hub

capacities are low and low capacity utilization is tolerable.
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Table 4.1: Optimum number of hubs for 0=0.40 and R = 0.60

a4-r6-z7 0.15 0.20 0.25 0.30 0.35|0.40|0.45 0.50 0.55 0.60 0.65

(]

N oflo|lo o v otw

oo oo ululu v u v uu

Overall| Q1 Q2 Q3 Q4

Mean 5.61 3.00 | 5.02 | 7.64 | 5.06

St.Dev.| 2.27 0.00 | 1.58 | 1.82 | 2.21

(@)p = 0.70

a4-r6-29 | 0.15 0.20 0.25 0.30 0.35/0.40(0.45 0.50 0.55 0.60 0.65
0.05( 7
0.10

v

[ BT T, BT, BT, BT, T, BT, |

Overall| Q1 Q2 Q3 Q4

Mean 5.00 3.00 | 495 | 692 | 392

St.Dev.| 1.95 0.00 | 1.53 1.97 | 0.90

(c)p = 0.90

a4-r6-z8 | 0.15 0.20 0.25 0.30 0.35/0.40{0.45 0.50 0.55 0.60 0.65
0.05| 7 5 - - - - - -
0.10

Overall| Q1 Q2 Q3 Q4
Mean | 536 | 3.00 | 498 | 7.38 | 4.64
St.Dev.| 2.13 | 0.00 | 1.58 | 1.93 | 1.76

(b)p = 0.80

0.15 0.20 0.25 0.30 0.35/0.40/0.45 0.50 0.55 0.60 0.65

(O]

o v v uuuuaa

Overall| Q1 | Q2 | Q3 | Q4
Mean | 4.59 | 2.28 | 493 | 6.66 | 3.92
St.Dev.| 1.99 | 046 | 1.55 | 1.85 | 0.90

(d) no link capacity
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Table 4.2: Optimum number of hubs for a=0.60 and R = 0.60

a6-r6-27[0.15 0.20 0.25 0.30 0.35]0.40[0.45 0.50 0.55 0.60 0.65 a6-r6-28[0.15 0.20 0.25 030 0.35]0.40[0.45 0.50 0.55 0.60 0.65
00s| 7 5 005| 7 5
0.10 0.10
015 015

N N NNNNNNOOojon i i n
N N NN~NUuuu v unnin o nonun

N N NNV un unln
N N~NOoOuvuunun
NNNNNOOO OO
[S 20 W< W= W= T, B, RE, BT, BT
(I T, BT, BT, B, BV, RC, T, BT

Overall| Q1 Q2 Q3 Q4 Overall| Q1 Q2 Q3 Q4

Mean 4.85 3.00 | 493 6.68 3.68 Mean 4.50 3.00 | 4.90 6.06 3.32

St.Dev.| 1.80 0.00 1.49 1.67 0.62 St.Dev.| 1.74 0.00 1.48 1.89 0.47

(a)p = 0.70 (b)p = 0.80

0.15 0.20 0.25 0.30 0.35/0.40/0.45 0.50 0.55 0.60 0.65

a6-r6-29[0.15 0.20 0.25 0.30 0.35[0.40[0.45 0.50 0.55 0.60 0.65 : 1. 1.1 .
00s[ 7 5 5
0.10| 7 5
0.1s5| 7 5
020 7 5
7 5
7 5
7 5
5

(O, BT, BT, T, RT, BT, BV, BT, BT, T )

5
5
5
5
6
6
6
6
6
6

a0 o0 o0t un
[C 3T, BV, BT, T, BT, BT, BV, BT, T )

Overall| Q1 Q2 Q3 Q4 Overall| Q1 Q2 Q3 Q4
Mean 4.35 3.00 | 483 | 5.72 | 3.20 Mean 4.01 225 | 483 | 556 | 3.10
St.Dev.| 1.67 0.00 | 1.46 | 1.87 | 040 St.Dev.| 1.75 044 | 146 | 1.94 | 036

(c)p =0.90 (d) no link capacity
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Table 4.3: Optimum number of hubs for a=0.80 and R = 0.60

a8-r6-z7 | 0.15 0.20 0.25 0.30 0.35/0.40/0.45 0.50 0.55 0.60 0.65 a8-r6-28 |1 0.15 0.20 0.25 0.30 0.35/0.40{0.45 0.50 0.55 0.60 0.65
0.05| 7 5 - - - - - - 0.05| 7 5 - - - - - -
0.10| 7 0.10( 7
0.15( 7 0.15| 7
0.20| 7 0.20( 7
0.25| 7 0.25| 7
030 7 030| 7
035| 7 035| 7
0.40( 7 7
045]| 7 7
0.50( 7 7

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

[l e I e R e ) NN e DR e )RR O V) (VL) KO, R VL B O RO RV B B )
“viuo vy v uuninun o n
(o2 I e )R e )R ) T IV R O R O KO KO R S B R O R Vo BV B )
LS Vo RS I G IV R O RV I C AR C L K0 SV R VL R O B |

LS RS L RV RO L B RV B N 5

LSS R G R B BV RV BV B

1.00

Overall| Q1 Q2 Q3 Q4 Overall| Q1 Q2 Q3 Q4

Mean 4.37 3.00 | 479 | 5.70 | 3.24 Mean 4.18 3.00 | 479 | 552 | 3.00

St.Dev.| 1.46 0.00 | 1.37 | 1.31 | 043 St.Dev.| 1.50 0.00 | 1.37 | 1.58 | 0.00

(a)p =0.70 b)p =10.80
a8-r6-29[0.15 0.20 0.25 0.30 0.35[0.40[0.45 0.50 0.55 0.60 0.65 a8-r6[0.15 0.20 0.25 0.30 0.35]0.40]0.45 0.50 0.55 0.60 0.65
005 7 5 NN 7 s . - | -

010 7 7
015| 7 7
020 7 7
025 7 7
030| 7 7
035] 7 7
7 7
7 7
7 7
7

o000 oo unun

5
5
5
5
5
5
5
5
5
5]
5
5
5
5
5
5
5
5
5

vy i unun
“vio v ununinun o nn

Overall| Q1 Q2 Q3 Q4 Overall| Q1 Q2 Q3 Q4
Mean 4.12 3.00 | 479 | 532 | 3.00 Mean 3.81 225 | 476 | 5.14 | 2.98
St.Dev.| 1.48 0.00 | 1.37 | 1.62 | 0.00 St.Dev.| 1.53 044 | 139 | 1.58 | 0.14

(c)p =0.90 (d) no link capacity
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A close investigation based on quadrants of Tables 4.1-4.3 exposes that smallest and
highest oNHs are observed in the first and third quadrants respectively, when the amount
of flow that can be sent on a link is not bounded. When flows on links are restricted, now
the fourth quadrant contains smallest oNHs while highest oNHs remain again in the third.
This suggests that when high capacity utilization is not a priority, the requirement of low-
capacity hubs increases oNHs while the opportunity of opening high-capacity hubs helps
to decrease oNHs. Finally, the smallest oNHs are observed when network links have

unlimited capacity, hubs’ capacities are large and capacity utilization is required to be

high.

As a second analysis, we provide how the optimum total cost (z*) which is the sum of
hub opening and transportation costs, changes depending on the model parameters.
According to the average and standard deviation values given beneath Tables 4.4-4.6 as
discount factor a value decreases, cost savings due to the flow aggregation increase and
thus z* decrease as expected. z* also decrease when link capacities are less restrictive.
This can be easily explained as increasing link capacities allows to send flows from least-

cost links.

If we look at the quadrants of Tables 4.4-4.6, highest optimum total costs always occur
in the second quadrant. This quadrant corresponds to where hub capacities and maximum
unused capacity ratios have the smallest values. Thus, when only low-capacity hubs can
be opened, requiring high capacity usage rises the optimum total cost the most.
Meanwhile, least total costs are almost always observed in the fourth quadrant where the
aforementioned capacities and ratios have the highest values. Another point worth to
mention is that fourth quadrants in Tables 4.4-4.6 not only contain the smallest average
z* values but also the smallest standard deviations. The opposite is true for the second
quadrant, in other words largest standard deviations of empirical z* values are observed
in this quadrant. Hence relaxing capacity related constraints leads to low and close
optimum total cost values, while tighter capacity bounds result in high and dispersed

costs.
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0.60

total cost for 0=0.40 and R

Optimum
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The general expectation about hub capacity usage is that the optimum total cost falls when
it is allowed to fall. It can be detected from tables that this expectation is realized.
However, increasing the capacity of hubs do not always reduce z*. Especially, optimum
total cost may increase when high capacity usage is desired for high-capacity hubs. In
general, z* values do not follow a specific trend for a given capacity usage level. The
lowest total cost values are observed when network links have unlimited capacity, hubs’

capacities are large and capacity utilization is required to be very low.



5. CONCLUSION

This study deals with capacitated multiple allocation hub covering flow problem. The aim
is to optimally design and operate hub-and-spoke networks while taking into account hub
opening and demand routing costs. It is assumed that a hub covers a node if their distance
is less than a predefined value, while the distance between hubs is not restricted.
Moreover, flow demand associated with a specific origin-destination node pair must be

routed by visiting at least one hub.

Our proposed mathematical model is inspired by the work of Sener (2020) and is
formulated as a mixed integer linear program. A benchmark data set well-known from
the literature is used to validate the model. A thorough sensitivity analysis is conducted
to detect how and to what extent the change in different model parameters affects the best
solution. It was shown how important it is to consider the capacity and its utilization and
also transport costs in the hub-covering problem. Finally, many practical insights have

been provided for the decision makers.

It is not difficult to figure out several future research directions. Our analysis has shown
that coverage ratios are not influential on results. This is unexpected as it directly affects
the network structure. The analysis can be extended to include more restrictive coverage
ratios. The ratio of total hub opening cost to total transportation cost in the optimum
solution can play an important role in the results, especially on the number of hubs to
locate. Therefore, more analysis can be done on different ratios. Original TR data set and
other known data sets such as CAB and AP can be investigated to further generalize

obtained results.
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As the number of network nodes and links increases, time to find the optimum solution
also increases considerably. Hence, heuristic approaches instead of deterministic
procedures can be developed to solve the proposed model. As the underlying network
for hub covering problems is not complete, every selected hub-nodes set does not produce
a feasible solution. Moreover, the addition of capacity related constraints to a
mathematical model may render it infeasible in general. These are clearly challenging

issues to overcome in developing a solution method.

As the decisions related to the network design problems are of strategic nature and span
several future years, they involve a certain level of uncertainty. Therefore, instead of
being deterministic, model parameters can be probabilistic of possibilistic. New extended
models covering those cases can be derived from the model proposed in this study and

solution procedures can be developed accordingly.
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Appendix B. Flow amounts between cities.
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Appendix C. Fixed linked costs between 25 cities.
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Appendix D. Fixed Hub Cost for 25 cities.
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460.064483
346.902826
630.034092
447.460135
378.539703

iISTANBUL
ANKARA
iZMmiR
BURSA
ANTALYA
ADANA
KONYA
SANLIURFA
GAZIANTEP
KOCAELI
ICEL
DiYARBAKIR
HATAY
MANISA
KAYSERI
SAMSUN
BALIKESIR
KAHRAMANMARAS
VAN
AYDIN
TEKIRDAG
DENIZLIi
SAKARYA
MUGLA
ESKISEHIR
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