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ABSTRACT 

 

 

 

Hub location problems occupy an important place among transportation problems. In 

such problems, each node in the network including hubs can be the origin or destination 

point of a transport demand. What makes hubs different from the other nodes is that they 

also act as transit points, that is, they enable the combined demand moved from different 

origin nodes to be sent by separating according to destination nodes. The existence of 

hubs simplifies the structure of the transport network. At the same time, hubs ensure better 

use of the capacity of transportation vehicles and decreases the unit transportation cost 

due to the possibility of transporting large volumes between hubs. Hub location problems 

are frequently encountered in the design of cargo distribution, airline passenger transport 

and telecommunication networks. In this study, hub-covering problem, which is a special 

hub location problem, is emphasized. The basic assumption for this type of problems is 

that some nodes in the network cannot be directly or indirectly connected due to distance, 

time or cost constraints. Capacity utilization and transportation costs are generally 

ignored in the mathematical models developed for the hub-covering problem. To fill this 

gap in the literature, a deterministic multiple assignment mixed integer optimization 

model has been developed. How and to what extent the change in different model 

parameters affects the best solution for the proposed model was examined by numerical 

experiments using a benchmark data set. As a result, it was revealed how important it is 

to consider the aforementioned elements in the hub-covering problem and practical 

insights have been provided. 

 
 
  



 

 

ÖZET 

 

 

 

TaúÕma problemleri arasÕnda Ana Da÷ÕtÕm hss� (ADh) \erleúim problemleri |nemli bir 

\er iúgal etmektedir. Bu t�rdeki problemlerde ADh¶ler de dahil a÷daki her d�÷�m bir 

taúÕma talebinin oÕkÕú ve\a varÕú noktasÕ olabilir. ADh¶leri di÷erlerinden farklÕ kÕlan ise 

bu d�÷�mlerin geoiú noktasÕ va]ifesi de g|rmeleri, \ani farklÕ oÕkÕú d�÷�mlerinden 

taúÕnarak birleútirilen talebin varÕú d�÷�mlerine g|re a\rÕútÕrÕlarak g|nderilebilmesini 

sa÷lamalarÕdÕr. ADh¶lerin varlÕ÷Õ taúÕma a÷ÕnÕn \apÕsÕnÕ basitleútirmektedir. A\nÕ 

]amanda ADh¶ler hem taúÕma araolarÕnÕn kapasitesinin daha i\i kullanÕlmasÕnÕ, hem de 

ADh¶ler arasÕ b�\�k hacimlerde taúÕma imkknÕ bulundu÷undan birim taúÕma mali\etinin 

d�úmesini sa÷larlar. ADh \erleúim problemleri\le sÕklÕkla kargo da÷ÕtÕm, havayolu yolcu 

taúÕmacÕlÕ÷Õ ve telekomünikasyon a÷larÕnÕn tasarÕmÕnda karúÕlaúÕlÕr. Bu oalÕúmada |]el bir 

ADh \erleúim problemi olan ADh kapsama problemi �]erinde durulmuútur. Bu t�rdeki 

problemlerin temel varsa\ÕmÕ mesafe, s�re ve\a mali\et kÕsÕtÕ nedeni\le a÷daki ba]Õ 

d�÷�mler arasÕnda do÷rudan ve\a dola\lÕ ba÷lantÕ kurulama\aca÷ÕdÕr. ADÜ kapsama  

problemi için geliútirilen matematiksel modellerde kapasite kullanÕmÕ ve taúÕma 

mali\etleri unsurlarÕ genellikle g|] ardÕ edilmiútir. Ya]Õndaki bu boúlu÷u doldurmak 

amacÕ\la determinist ooklu atamalÕ karÕúÕk tam sa\ÕlÕ eni\ileme modeli geliútirilmiútir. 

gnerilen model ioin farklÕ model parametrelerindeki de÷iúimin en i\i o|]�m� nasÕl ve ne 

derecede etkiledi÷i kÕ\aslama veri k�mesi kullanÕlarak \apÕlan sa\Õsal dene\lerle 

incelenmiútir. Sonuçta anÕlan unsurlarÕn ADh kapsama probleminde dikkate alÕnmasÕnÕn 

ne derece önemli oldu÷u ortaya konmuú ve pratik oÕkarÕmlar sunulmuútur. 
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1. INTRODUCTION 

 

 

 

By virtue of advanced technology and changed regulatory, hub networks took a 

noticeable role in last years for many sectors such as networks of airline passenger 

transportation, emergency treatment service, telecommunication, express delivery 

service, postal, urban traffic and trucking systems. Hubs can be categorized in many 

different ways. For example, a terminal or a transit stop for many routes stands for a hub 

in urban traffic networks; a warehouse or a facility located at the center implies a hub in 

trucking systems; both a transit point and a geographical area which is having vast amount 

of passengers exceeding a specific level symbolizes a hub in airline transportation 

systems; a server both to receive, to process and to send information represents a hub  in 

telecommunication systems; a center in which switching and sorting operations are done 

means a hub in express delivery service networks. Hub-and-spoke systems share common 

features even if these hubs serve in various industries with different concepts. One of 

these features is that hub facilities are points and are utilized in order to consolidate, to 

disseminate, to switch, to transship as well as to sort demand flows. The second one is 

that in order to send to lots of O-D pairs, relatively small number of arcs and indirect 

connections are allowed in hubs. Two features decrease the number of connections 

needed in network. Not only a simplified network structure but also reduced construction 

costs are the results of fewer connections. Inter-hub links have a lower cost for unit 

transportation that is expressed as a discount rate G, when compared with other links 

through a consolidated and disseminated demand flows. A hub-and-spoke system is 

shown in Figure 1.1. Nodes i and j are assigned to hub node k and m and inter-hub links 

are shown by bold lines for the sake of clearly.  
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Figure 1.1: Hub-and-spoke network (Wu, 2006, p.2) 

 

There are various Hub Location Problems (HLP) in the literature that it requires to be 

classified in 8 main categories such as: a) solution domain, b) criterion, c) source 

determining the number of hubs to locate, d) the number of hub nodes, e) hub capacity, 

f) the cost of locating hub nodes, g) the allocation of a non-hub node to hub nodes, h) the 

cost of connecting non-hub nodes to hub nodes. Domain is for whether there is a 

connected or discrete or continuous network. Criterion is either mini-sum in which the 

total cost incurred by locating hub nodes and allocation of non-hub nodes to hub nodes is 

minimized, or mini-max in which the maximum transportation cost from origin nodes to 

destination nodes is minimized. Source which is determining the number of hubs to locate 

is either exogenous which means that the number of hubs to locate is known or 

endogenous which means that the number of hubs to locate is not known at the beginning 

but is obtained as a result of solution. The number of hubs can be single or multiple. Hubs 

have capacity or not. No-cost, fixed cost and variable cost are different forms of costs not 

only for locating hub nodes but also for connecting non-hub nodes to hub nodes features. 

Single and multiple allocation are for allocation of a non-hub node to hub node feature. 

 

Concentrated through hubs in the HLPs that is substantial feature of the HLPs serves a 

good transportation between the nodes. For example, in case of presence of a single hub 

in network, the network will need 2(n-1) pairs to connect the O-Ds instead of n(n-1) which 

is the case of not presence of a hub in the network. Thus, this is a clear evidence of that 

hubs decrease the number of links in structure of transportation network (Farahani et al., 
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2013). In addition, one another beneficial effect is about economies of scale since there 

are flows concentrated among hubs. On the top of that, the transportation cost between 

hubs is arranged to be decreased by a certain discount factor. In brief, the economies of 

scale as a result of concentrated flows and smaller number of links and smaller investment 

for network are advantages of hub networks. However, investments for hubs, demand for 

switching, operations for transshipment and organizing of operations and movements for 

greater distance and also requirement of greater time are disadvantages of hub networks.  

 

Many researchers focused on the location theory because of increasing commercial 

activities in the developing world. HLP is emerged as one of the developing research 

areas in location theory. HLP is both a facility location and location-allocation problem 

consisting of selection of hubs at first and then of allocation of demand hubs to previously 

selected hubs.  Although there are some studies solely focusing on allocation part, both 

must be taken into consideration as the optimal solution is affected by the locations of 

hubs. Briefly, HLPs can be divided in two steps such as to select hub location for p nodes 

within n nodes, and to allocate demand points. HLPs structures also can be divided in two 

with respect to the allocation of demand points to the hubs, either single or multiple 

allocation. 

 

 

Figure 1.2: Network structures for single and multiple allocation (Yildirim, 2013) 

 

 

 

 



 

 

4 

 

This thesis is organized as follows. In Chapter 2, we provide a literature review about hub 

location problems in terms of their types, problem environments, solution approaches and 

applications. In Chapter 3, we first mention three different types of hub covering models   

and then give information about our proposed hub covering flow problem model with 

two formulations. Chapter 4 contains data, model implementation and the results based 

on the computational analysis of our mathematical model mentioned. Finally, Chapter 5 

includes conclusion and insights. 

 
 



 

  

 

 

 

 

 

 

2. LITERATURE REVIEW: HUB LOCATION PROBLEM  

 

 

 

A brief about network design before keep going to literature of HLP is nice to be 

explained. Forsgren and Prytz (2006) expressed the important problem classes of network 

design in many ways such as minimum cost multicommodity flow, uncapacitated 

network design-fixed charge, capacitated network design, network loading problem, 

topology constraints, routing constraints, multiperiod problems, hierarchical network 

design and survivability. The question in minimum cost multicommodity flow problem 

is how to send a number of commodities via network with minimum cost subject to 

capacity constraints of links. In the uncapacitated network design-fixed charge which is 

a fundamental network design problem the case whether the replacement of capacity 

constraints with a cost for utilizing the arc is examined. Capacitated network design is 

examined if a fixed cost pls capacity constraints in the arc are added to the minimum cost 

multicommodity flow problem. The question in network loading problem is what the 

capacity levels of arcs are, from given set of capacity levels, since that which links can 

be used has already been decided. Topology constraints may be imposed to have a certain 

type such as ring-structures, tree structures or more specific structure. Routing constraint 

represents the routing in the network may be forced in a more complex manner than in 

capacity levels. Multiperiod problems do not include timescale. Hierarchical network 

design consists of several levels; on the top there is a backbone network as so to refer 

different criteria; for the lowest level, a local network within either a company or a private 

home can be given as example; for the intermediate level, a range of various network 

levels can be examined. Survivability means to construct network that are robust in case 

of a link of node failure. 

 

In the literature, the location-allocation problem has been issued with the assumption that 

sources are solely interacted with its destinations which are assigned to them. Therefore, 
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the source is not allowed to connect with neither the other non-hubs nor the destinations 

for other hubs. This is very limiting result of that assumption in many diversifications of 

applications (i.e. communication satellites and the airline industry). However, that the 

location-allocation problem considering interaction between the sources is equivalent to 

the hub location problem is stated b\ O¶Kell\ (1986). Then, the term source and 

destination are interchanged with hub and spoke, respectively. In detail, the location of 

hubs and the allocation of spokes to hubs are considered in the hub location problem. 

Thus, the level of interaction in between hubs is calculated by the amount of flow in 

between spokes. 

 

2.1. Types of HLPs  
 
This problem can be classified as either continuous or discrete. If hubs can be located 

anywhere in the plane, it is called continuous, otherwise, if there are finite number of 

points for hub location, it is called discrete. In most cases, assumptions for finding the 

number of hubs to be located are relaxed since the problem is already quite complex even 

though the number of hubs is exogenous. 

 

2.1.1. Continuous Hub Location Problem  

 
In many surveys, the continuous hub location problems that are concerned with the 

locating hub facilities on a plane instead of the nodes of a network. This continuous type 

problem is first represented b\ O¶Kell\ (1986a). In his stud\, that the single hub location 

problem in a plane reduces to the classical Weber least cost location problem is showed. 

In two-hub case, a procedure given by Ostrech (1975) to solve the two-center location-

allocation problem is adopted to solve it. In two-center problem, Ostrech displayed that 

the optimal solution must be among a finite number of 𝑛ሺ𝑛 െ 2ሻ/2 of non-overlapping 

partitions. Picking a pair of nodes, passing a line through them and rotating the line 

slightly to divide the nodes in two groups result in a partition. O¶Kelly (1986a) pointed a 

drawback of using results found by Ostrech (1975) to solve the two-hub problem, that the 

optimal allocation pattern could be found by one of the non-overlapping will never be 

examined. This issue is further discussed in Aykin (1988) in detail. In addition, one 

another drawback of O¶Kell\¶s (1986a) stud\ is that it cannot be applicable to solve 
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problems including more than two hubs, unless serious computational efforts are 

provided. 

 

Aykin and Brown (1992) suggested a heuristic approach in order to solve the continuous 

hub location problem with more than two hubs, in other words, p-hubs. The heuristic 

based on the alternate location and allocation heuristics in Cooper (1964), figures out the 

location and allocation phases individually and iteratively. They tested two different 

versions of heuristic with respect to the original alternate location and allocation heuristic. 

That the loss of applying the original alternate location and allocation heuristic to HLP 

can be calculated as 11.4%. Then, authors made some modifications on their heuristic 

with the aim of solving the HLP on sphere. To represent the earth¶s surface b\ a sphere 

is more accurate in particular applications of more planetary attributes (i.e. international 

travel or defense issues). One ma\ refer to O¶Kell\ (1986a, 1992b), A\kin (1988,1995b), 

Campbell (1993), O¶Kell\ and Miller (1991) and A\kin and Brown (1992) for more 

details. 

 
2.1.2. Discrete Hub Location Problems 

 

Discrete hub location problems are mentioned by Campbell (1994): ³Hub location 

problems can be viewed as embedded in an undirected network N = (V, A), where the set 

of nodes, or vertices, of the network V = {v1, v2, ..., vq} correspond to origins/destinations 

and potential hub locations. Thus, hubs are restricted to be located at a subset of the 

vertices. Associated with link (a, b) ࣅ A, which connects vertices va and vb, is a non-

negative weight d(a, b) = d(b, a) representing its length. This may correspond to travel 

distance, time, cost or some other attribute. Define Cab to be the length of the shortest 

path between nodes a and b. The cost for movement on the path from origin i to 

destination j via hubs at nodes k and m, in that order, is Cik + ĮCkm + Cmj, where α is the 

discount factor for the inter-hub transportation. If k = m, then there is no inter-hub 

transportation. Associated with each O-D pair (i, j) is a non-negative weight representing 

the flow from i to j.´ 
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As discrete hub location type is more realistic than continuous one, it received more 

attention in many works in literature. The researchers addressed on finding heuristic 

solution approaches solving the discrete HLP, under two assumptions given below: 

-the number of hubs (p) is exogenous/given 

-each spoke has to be assigned to just one hub. 

 

HLPs which satisfy these two conditions are called as discrete p-HLPs in simple terms in 

early literature. The discrete hub location models can be classified in four categories 

(Alumur and Kara, 2008). These categories are: 

x The p-hub median problems (pHMP),  

x The hub location problems with fixed costs,  

x The p-hub center problems (pHCP) and  

x The hub covering problems that involve the p-hub maximal covering problem and 

hub set covering problem.  

 

The rest of this chapter is devoted to the first three categories. As the subject of this study 

is a hub covering problem, the next chapter will be entire dedicated to the literature survey 

of the last category. Figure 2.1 provides the derivation of problems in detail. 

 

  
Figure 2.1: Development of HLP (Yildirim, 2013) 
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Each class name is correlative to a classical facility location problem. For example, the 

p-Hub Median Problem is also named with the p-Hub Location Problem. Yet, from this 

point on, the names and the notations given above are used to refer various HLP classes.  

 

x p-Hub Median Problem (p-HMP) 
 

O¶Kell\ (1987) is the first researcher to formulate the p-hub median problem as a 

quadratic integer programming. To locate the hubs and allocate non-hub nodes to hubs 

with the aim of minimizing the total cost in the network is p hub median models¶ 

objective. A p-hub median in O¶Kell\ (1987) is the first hub-and-spoke network model 

without restrictions of the hubs number ever formulated. The USApHMP-Q, 

uncapacitated single allocation p-hub median problem and Q is for quadratic, problem 

was formulated in the paper:  

 

min ∑ ∑ 𝑊௜௝௝௜  (∑ 𝑍௜௞𝐶௜௞௞   + ∑ 𝑍௝௠𝐶௝௠௠   + 𝛼∑ ∑ 𝑍௜௞𝑍௝௠𝐶௞௠௠௞ ) (2.1) 

s.t. 

 (𝑛 í 𝑝 + 1) 𝑍௞௞ í ∑ 𝑍௜௞௜  � 0 for all k (2.2) 

 ∑ 𝑍௜௞௞   = 1  for all i (2.3) 

 ∑ 𝑍௞௞௞ = 𝑝  (2.4) 

 𝑍௜௞ ∈ {0,1}  for all i, k (2.5) 

 

𝑍௜௞ is a variable and equals to one as node i is, if and only, assigned to hub k and equals 

to zero in contrary situation. 𝑍௞௞ has a specific situation in which that parameter equals 

to one only if node k is a hub (O¶Kell\, 1987). The other parameters that defined in paper 

are: 

𝑊௜௝ : the number of units of flow from node i to node j, , 

𝐶௜௝: the transportation cost of a unit of flow from node i to node j, 

𝑊௜௜ = 0 and 𝐶௜௜=0 by assumption, 

p: the total number of hubs to set, 

n:  the total number of cities to link. 

 

Eq. (2.1) represents the total cost of assigning a node for outgoing and incoming flows 

and also the costs of their interactions in hubs which are given inside the brackets,  once 
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units of flows are transferred from originated node i to hub k and from hub k to hub m 

and from hub m to destination hub j. Eq.(2.2) represents that it is impossible to assign a 

node to a hub if a hub is not opened at that location. Moreover, it ensures that there can 

be at most n-p+1 nodes to be assigned to a certain hub. Eq. (2.3) provides that there is 

only one hub to be assigned by each node. Eq. (2.4) ensures that there are p hubs to be 

opened. Eq. (2.5) represents whether node i is assigned to hub k or not. 

 

O¶Kell\ (1987) also formulated the objective function differently by means of defining 

𝑂௜ and 𝐷௜, which are the total amount of flow launching from node i, and the total amount 

of flow that terminates in node i, in turn.   

 

Min ∑ ∑ 𝑍௜௞𝐶௜௞௞௜  (𝑂௜ ൅ 𝐷௜ሻ  + ∑ ∑ 𝑍௝௠ ∑ ∑ 𝑍௜௞ሺα𝑊௜௝𝐶௞௠ሻ௞  ௜  ௠  ௝   (2.6) 

 

Since both objective functions are in quadratic form, solving large instances of this model 

can become very complicated. O¶Kell\ stated that this problem is NP-hard and suggested 

two enumeration-based heuristics with the aim of providing a solution. In each heuristic, 

all possible combinations of p-hub are taken into consideration. In first heuristic, the 

nearest hub is chosen for allocation while in second one, the first and the second nearest 

hub are chosen for allocation. As a result, that the second heuristic gives a tighter upper 

bound on objective function with respect to the first one is concluded. 

 

Klincewicz (1991, 1992) proposed different heuristic approaches for p-hub median 

problem. Klincewicz (1991) included two solution approaches such that the first is based 

on single and double heuristics and the second is based on clustering. A multi-criteria 

assignment procedure which considers not only the distance from spoke s to hub but also 

the flow between s and the other spokes of the network while assigning a spoke, to 

allocate spokes to hubs is suggested by the author. In Klincewicz (1992), tabu search and 

a greedy randomized adaptive search procedure (GRASP) are used to solve pHMP. Both 

are developed from artificial intelligence techniques in order to solve combinatorial 

optimization problems. The author discussed that the use of sophisticated assignment 

rules is not necessary and recommended to use the distance-based assignment rule that is 

proposed previousl\ (O¶Kell\, 1987). In addition, A\kin (1990) studied this assignment 

issue. The heuristic approaches in Klincewicz (1991, 1992) not only need less 
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computational effort when compared to the enumeration-based heuristics in O¶Kell\ 

(1987) and also are used to solve problems with large size. 

 

Campbell (1991a,1991b) developed the more general assignment of nodes to multiple 

hubs. In these studies, the second assumption mentioned previously does not hold. Here, 

letters S and M are used in problem notation and stand for single and multiple allocation 

respectively. Yet, these letters can be located either at the beginning or at the end of 

problem notation. For instance, pHMP-S denotes the p-Hub Median Problem with single 

allocation. The fact that a solution for pHMP-M provides a lower bound for pHMP-S is 

showed by Campbell (1991a). This is rational since the total number of possible 

assignments for pHMP-M is less than that for pHMP-S. Thus, to solve pHMP-M and use 

its solution as a starting point for p-HMP-S is not very difficult. Putting this idea into 

practice, the author elaborated two heuristic approaches. Campbell (1991b) studied to 

present the mathematical formulation for each class of HLP mentioned above. Also, both 

multiple and single allocation cases are considered in the study. Moreover, the linear 

programming equivalent of cases are given even though they are quadratic programming 

problems. 

 

 

Table 2.1: Studies on pHMP-S 

Year Authors Model 

1987 O¶Kell\ The first quadratic model, HEUR1 and HEUR 2 

1994 Campbell The first linear integer formulation 

1996 Skorin-Kapov et al. A mixed 0-1 integer model, TS 

1996 O¶Kell\ et al. A model for exact solution, effect of D. 

1996 Ernst and Krishnamoorthy A mixed integer formulation, SA, BB algorithm 

2001 Ebery A mixed integer formulation for p=2 and 3 

2009 Yaman Hierarchical hub network design 

2012 Yaman and Elloumi Star pHMP 
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Table 2.2: Studies on pHMP-M 

Year Authors Model 

1992 Campbell The first linear integer programming formulation 

1994 Campbell A new formulation with flow threshold and fixed 
cost 

1996 Skorin-Kapov et al. A new mixed-integer formulation, enumeration 
search tree 

1998a Ernst and Krishnamoorthy A new formulation with LP relaxation 

1998b Ernst and Krishnamoorthy BB algorithm based on shortest path 

1999 Sasaki et al. 1-stop multiple allocation pHMP, BB method, 
greedy-type heuristic 

2004 Boland et al. Preprocessing technique, tightening constraints 

2009 Campbell Two new models, maximum traveling time 
constraint 

 

x The Hub Location Problem with Fixed Costs  
 

This type of HLP and pHMPs have common features but also two great distinctions. First 

one is that many pHMP formulations do not take the fixed costs for opening the hubs into 

consideration since they focused to consider the number of hubs to open. However, the 

hub locations problems with fixed costs include these costs in the objective function. The 

second distinction is that the number of hubs to be opened is not a fixed number but 

should be low as much as possible due to incurring costs. 

 

As there are that much similarities between them, modifying models of pHMP can give 

most of the formulations of HLP with fixed costs. Also, the difference between them 

require following two modifications:  

- the objective function has to include the fixed costs defined with 𝐹௞. 

- Eq. (3) should be disregarded from the model as the number of hubs to open is not an 

exogenous parameter anymore. 

If these two modifications are applied for O¶Kell\ (1987) in O¶Kell\ (1992), they will be 

same. Similarly, Campbell (1994) has the modifications for pHMPs that are issued in the 

same paper. 
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Table 2.3: Studies on uncapacitated fixed cost HLP-S 

Year Authors Model 

1992 O¶Kell\ Quadratic integer programming formulation 

1994 Campbell First linear formulation 

1998 Abdinnour-Helm and 
Venkataramanan 

New quadratic integer formulation, BB, multi-
commodity 

1998 Abdinnour-Helm GA, TS, shortest method and heuristic  

2005 Topcuoglu et al. GA 

2007 Cunha and Silva Hybrit GA 

2007 Chen New hybrid method with SA, tabu list 

 

Table 2.4: Studies on uncapacitated fixed cost HLP-M 

Year Authors Model 

1994 Campbell The first linear integer model 

1996 Klincewicz Dual-ascent and dual-adjustment based BB 

2002 Mayer and Wagner Hublocater 

2004 Hamacher et al. Polyhedral, facet-defining 

2004 Boland et al. Preprocessing procedure, tightening constraints 

2007 Canovas et al. Dual-ascent based heuristic 

 

Table 2.5: Studies on capacitated fixed cost HLP 

Year Authors Model 

1994 Aykin BB, a heuristic method 

1999 Ernst and Krishnamoorthy Mixed integer programming, BB 

2000 Ebery et al. New mixed integer formulation, LP-based BB 

2003 Sasaki and Fukushima 1-stop HLP, BB 

2005 Labbé BB, polyhedron studies 

2008 de Costa et al. Bi-criteria approach to minimize total and service 
time 

 

x p-Hub Center Models 
 

pHCPs are another variation of hub location problem differing in way of its minimax 

objective function. 3 t\pes of HCP are defined b\ Campbell (1994). First one¶s goal is to 

minimize the maximum cost among each O-D pair, while second one¶s goal is to 
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minimize the maximum cost on any connection either origin-hub or hub-hub or hub-

destination. And final one¶s goal is to minimi]e the ma[imum cost in all either hub-origin 

or hub-destination pair. For both the single and multiple allocation versions of these three 

objective functions, simple formulations of pHCP are presented in this part of literature 

review. 

 

First type objective function proposed for both single and multiple allocation model is: 

minmax௜௝௞௠ ሼ𝑋௜௝௞௠, 𝐶௜௝௞௠}. 

Second type objective function proposed for both single and multiple allocation model is: 

minmax௜௝௞௠ ሼmax ሺ𝐶௜௞, 𝐶௠௝, 𝛼𝐶௞௠ሻ𝑋௜௝௞௠} 

Third type objective function proposed for both single and multiple allocation model is: 

minmax௜௝௞௠ ሼmax ሺ𝐶௜௞, 𝐶௠௝ሻ𝑋௜௝௞௠} 

 

Although Campbell (1994) defined three types of pHCP, some contributions in which 

many of them are familiar to  

Table 2.6: Studies on pHCP 

Year Authors Model 

1994 Campbell Fixed integer model, three type p-center problem 

1999 Kara and Tansel New mixed integer programming, linearization of 
models of Campbell 

2000 Pamuk and Sepil Single-reallocation heuristic 

2003 Hamacher and Meyer BS algorithm 

2005 Ernst et al. New mixed integer formulation for single 
allocation, two integer programming for multiple 
allocation, shortest path-based BB 

2008 Meyer et al. Two-phase algorithm, shortest path-based BB 

 

2.2. Problem Environments 
 

As HLP includes strategic decisions for long-term, its certain parameters (i.e. flows, costs 

and distances) can alter with the time. Therefore, to consider the problem in an uncertain 

environment is meaningful. Two main environments in literature to deal with uncertainty 

are randomness and fuzziness. 
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To handle uncertainty as randomness (i.e. stochastic HLP) is one main subtopic. 

Marianov and Serra (2003) attempted to model hubs as M/D/c queuing systems and to 

formulate a linear mixed integer programming with chance-constraints. Sim et al. (2009) 

both stated stochastic pHCP and also presented a chance-constrained programming with 

constraint of service-level. Yang et al. (2011) extended the problem by considering 

discrete random travel time. Alumur et al. (2012) focused on a comprehensive model not 

only single but also multiple allocations with random demands and set-up costs. Hult et 

al. (2014) improved exact solution approaches that are based on reduction of variable and 

also a separation algorithm in order to solve uncapacitated single allocation case.  

 

A fuzzy programming approach to model dynamic virtual hub location problem is 

employed by Taghipourian et al. (2012). A fuzzy possibilistic bi-objective model for hub 

covering problem considering production facilities, time horizon and transporter vehicles 

is established by Ghodratnama et al. (2013). A fuzzy p-hub center problem in which the 

travel times are characterized by normal fuzzy vectors first proposed by Yang et al. 

(2013a). Yang et al. (2013b) continued to present a risk aversion formulation through 

adopting value-at-risk criterion in the function of objective. 

 

2.3. Solution Approaches for HLPs 

 

To cope with different types of HLPs, miscellaneous solution algorithms have been 

suggested. In this part, related articles are examined, several of represented solution 

approaches are listed. Although most of HLPs are modeled as a network location 

problem, there are some studies done in discrete and continuous domains. Note that some 

notations are given in Table 1 to better understand the various kinds of HLPs. 
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Table 2.7: Notations for different types of HLPs 

Capacity of  
hub node 

Allocation of 
nodes 

Type of  
HLP 

Number of  
hub nodes 

Capacitated (C) Single allocation 
(SA) 

Median (M) Single (1) 

Uncapacitated (U) Multiple Allocation 
(MA) 

Center (T) More than one (P) 

  Covering (V)  

  Set Covering (SV)  

  Maximum 
Covering (MV) 

 

 

When solving instances of HLPs, exact algorithms are more practical when the problem 

size is small. Larger instances in HLPs require to be solved either by heuristic procedures 

or by meta-heuristic procedures although small hub problems can be solved by integer 

programming optimization approaches. Large-sized instances can be handled by 

specialized exact methods such as benders decomposition and branch-and-price methods. 

Yet, as a matter of fact, development of meta-heuristics has a great advantageous and 

serves many real-life applications. Thus, optimal or near optimal solutions can even be 

obtained in less computational time. In this section, studies in last 10 years which make 

use of exact optimization methods and heuristics for finding solution of HLP are 

presented in Tables 2.8-2.9. 

 

2.4. Applications of HLPs 
 
Since O¶Kell\ (1987) formulated HLP as quadratic integer programming b\ choosing 

hubs and their assignments, more and more attentions of researchers who are from 

operations research, transportation, geography, network design, telecommunications, 

regional science, economics and etc., are directed to this field. Campbell and O¶Kell\ 

(2012) is suggested for further details. Although applications of HLP are mostly 

encountered in air and road transportation systems, we expose all application areas as 

much as possible in this section Table 2.10 shows grouped papers with their related 

application areas. The most recent ones are also discussed briefly.  
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Table 2.8: Exact solution algorithms in HLPs (in last 10 years) 

Problem Article Solution algorithm Efficiency 
(# of 

nodes) 

# of 
hubs 

C-MA-p-
HLP  

Gelareh and Pisinger 
(2011) 

Mixed Integer Prog. 15 ± 

 Alumur et al.(2016) Mixed Integer Prog. 15-25 ± 

C-SA-p-
HLP  

Correia, Nickel, and 
Saldanha-da-Gama 
(2010a)  

Mixed Integer Prog. 50 ± 

 Correia, Nickel and 
Saldanha-da-Gama 
(2010b)  

Linear Prog. ± 
 

± 
 

 Kratica et al. (2011)  Mixed Integer Prog. ± ± 

 de Camargo and 
Miranda (2012)  

Generalized Benders 
decomposition method  
 

100 
 

20 
 

 Taghipourian et al. 
(2012)  

Fuzzy Integer Linear 
Programming  

20 4±7 

 Alumur et al.(2016) Mixed Integer Prog.  15-25 ± 

U-MA-p-
HLP  
 

Contreras, Cordeau, and 
Laporte (2011c)  

Enhanced Bender 
decomposition method  

500 ± 

 Gelareh and Nickel 
(2011)  

Bender decomposition 
method  

50 
 

20 
 

 Vasconcelos, Nassi, and 
Lopes (2011)  

Integer Prog.  12 
 

± 
 

 Vidovic et al. (2011)  Mixed Integer Prog. ± ± 
 

 Alumur et al. (2012)  Stochastic Prog. 25 4 

U-SA-p-
HLP 

Contreras, Fernandez, 
and A Marin (2010)  

Mixed Integer Prog. 25 
 

8 
 

 Lin (2010)  Integer Linear Prog. ± ± 

U-SA-1-
HLP 

Alumur, Nickel, et al. 
(2012)  

Stochastic Prog. 25 

 

5 

 

U-MA-
M-p-HLP 

Garcia, Landete, and A 
Marin (2012)  

Integer Prog.-Branch and 
Cut  

200 190 

U-SA-M-
p-HLP 

Puerto, Ramos, and 
Rodriguez-Chia (2011)  

Mixed Integer Prog. 20 

 

10 

 

U-MA-T-
p-HLP  

Yaman and Elloumi 
(2012)  

Mixed Integer Prog. 70 20 

U-SA-T-
p-HLP 

Yaman and Elloumi 
(2012)  

Mixed Integer Prog. 50 10 
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Table 2.9: Heuristics and meta heuristic solution algorithms for HLPs (in last 10 years) 

Problem Article Solution Algorithm Efficiency (# 

of nodes) 

#of 

hubs 

C-SA-p-
HLP 

Lin and Lee (2010)  Lagrangian relaxation  ± ± 

 de Camargo, 
Miranda, and 
Ferreira (2011)  

Outer 
approximation/benders 
decomposition method  

200 
 

± 
 

 Contreras, Diaz, and 
Fernandez (2011)  

Branch and price ± 
Lagrangian relaxation  

200 ± 

C-MA-M-p-
HLP 

Lin, Lin, and Chen 
(2012) 

Genetic algorithm  ± ± 

C-SA-V-p-
HLP 

Mohammadi, Jolai, 
and Rostami (2011)  

Imperialist competitive 
algorithm and genetic 
algorithm  

70 ± 

U-MA-p-
HLP 

Gelareh, Nickel, and 
Pisinger (2010)  

MILP ± Lagrangian 
decomposition method  
 

20 
 

7 
 

 Contreras et al. 
(2011a)  

Monte Carlo simulation-
based algorithm/benders 
decomposition method  

50  ± 

U-SA-p-
HLP 

Han (2010)  Integer programming ± 
Tabu search  

50  
 

11 
 

 Catanzaro, Gourdin, 
Labbe, and Ozsoy 
(2011)  

Branch and cut  20  ± 

U-MA-M-p-
HLP 

Cetiner, Sepil, and 
Sural (2010) 

Iterative heuristic 
 

81 
 

6 
 

 Ishfaq and Sox 
(2011) 

Tabu search 
 

100 
 

6 
 

 Ishfaq and Sox 
(2012) 

Tabu search 25 5 

U-SA-M-p-
HLP 

Iliü, Uroãeviü, 
Brimberg, and 
Mladenovic (2010) 

General variable 
neighborhood search  

1000 20 

U-MA-V-p-
HLP 

Karimi and Bashiri 
(2011)  

Heuristic algorithms  37 6 
 

U-SA-V-p-
HLP 

Karimi and Bashiri 
(2011)  

Heuristic algorithms  37 6 
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Table 2.10: Application areas of HLPs 

Application Area Paper 
Airlines and airports: Toh et al. (1985), Shaw (1993), Aykin 

(1995), Jaillet et al. (1996), Bania et al. 
(1998), Sasaki et al. (1999), Martin and 
Roman (2003), Adler and Hashai (2005), 
Ozger and Oktal (2009), Eiselt and 
Marianov (2009), Kawasaki (2012), Davari 
et al. (2013), Ozger and Oktal (2013). 

Transportation and handling problems: Don et al. (1995), Lumsdenk et al. (1999), 
Aversa et al. (2005), Baird et al. (2006), 
Cunha and Silva (2007), Yaman et al. 
(2007), Eiselt (2007), Verma et al. (2017), 
Li et al. (2019), Danijela (2019), Vural and 
Aygun (2019), Carman et al. (2019), 
Msakni et al. (2020), Park and Kim (2020). 

Post delivery services and fast delivery 
packing companies: 

Kuby et al. (1993), Krishnamoorthy et al. 
(1994), Ernst and Krishnamoorthy (1996), 
Ebery et al. (2000). 

Telecommunication systems and massage 
delivery networks: 

Lee et al. (1996), Klincewicz (1998), 
Carello et al. (2004), Bollapragada et al. 
(2006), Contreras and Fernandez (2012). 

Emergency services: Hakimi (1964), Berman et al. (2007), Chen 
et al. (2013), Zhang et al. (2017), Rostami 
et al. (2018) 

Chain stores in supply chain Marufuzzaman and Eksioglu (2014), Roni 
et al. (2017), Razmi and Rahmanniya 
(2019), Fakhrzad et al. (2019). 

Perishable Food sector and environment: Esmizadeh and Bashiri (2014), Etemadnia 
et al. (2015), Musavi and Bozorgi-Amiri 
(2017). 

Green environment Maiyar and Thakkar (2019), Dukkanci et 
al. (2019), Parsa et al. (2019). 

 

In airlines and airports, Ozger and Oktal (2013) modeled constrained choices when 

establishing cargo hub and its spoke networks. They improved MILP model which is 

introducing additional constraints to the traditional model of uncapacitated multiple 

allocation hub location problem. Then, this developed model is tested empirically. 

According to test results, the major factors effecting hub location along with the cost of 

airline movements are aircraft range and trip cost, runaway availability and cargo traffic 

continuity of an airport. Davari et al. (2013) dealt with an incomplete hub-covering 

network design problem in which the exact locations of demands are not know and are 
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estimated as fuzzy variables. They modified and earlier model in the HL literature in 

order to focus on the uncertainity of problem, also designed an efficient simulation 

embedded Variable Neighbourhood Search (VNS). The CAB dataset is used for its 

performance testing. Kawasaki (2012) focused on the scheduling effect on the demand 

side and the number of passengers traveling between each city pair. That the hub city is 

not always selected such that the number of rim passengers is minimized is shown by the 

study. Also, after additional simulation analyses showed that the probability of choosing 

a not preferable hub city is small.  

 

In transportation and handling problems, Park and Kim (2020) presented a real-world 

hub-and-spoke allocation problem and its mathematical model. Moreover, they 

introduced the parcel classification system currently implemented by a courier company. 

Assigning each group of destination spokes a unique code is stated as a critical issue. 

Moreover, a good solution in reasonable time is obtained by the suggested algorithm. 

Msakni et al. (2020) studied different network designs for a linear shipping company. In 

their study, a feeder network is served to connect a major European port with local port. 

Models for both design and their solutions based on realistic dataset are included and they 

provide a discussion of which network design offering better cost. Carman et al. (2019) 

proposed an integrated model simultaneously taking into consideration of cargo flight 

network design and the fleet routing selection for the air cargo transportation. The 

comparison of two transportation modes that are the direct transportation mode in point-

to-point networks and the transshipment mode in hub-and-spoke networks is provided. A 

swarm-intelligence-based algorithm is benefitted in order to solve optimization problem, 

its computational results displayed that the transportation cost can significantly decreased 

by proper setting of hub and transshipment route selection in an air cargo. 

  

In telecommunication sector, cycle hub location problem (CHLP) seeks to locate p hub 

facilities connected by means of a cycle, as well as to route flows between pair of nodes 

through the cycle-star networks that minimize the total cost. The CHLP is also useful in 

modelling applications where large setup costs on the link and reliability requirements 

make cycle topologies an outstanding network architecture. Carello et al. (2004) dealt 

with HLP and their network presented two different nodes, access nodes and transit 

nodes. While access nodes represent source and destination of traffic demands but are not 
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able to be directly connected, the transit nodes do not have their own traffic demands but 

can both collect traffics belonging to access nodes and route them through the network. 

To decide number and positions of transit nodes in order to guarantee satisfying capacity 

constraints is the problem. Thus, a local search approach is suggested and based on such 

local search 1, different metaheuristics have been developed. Bollapragada et al. (2006) 

presented a quantitative model of telecommunication network installation via companies. 

Moreover, they aimed both to maximize the expected demand coverage subject to a 

budget constraint on hub installation and technological constraints on demand coverage 

via hubs installed. They improved a practical greedy heuristic based on the budgeted 

maximum-coverage problem. In general, a data-dependent performance guarantee is 

developed. Kim and O¶Kell\ (2009) presented a new HLP, which is named reliable p-

hub location problem and which its focus is to maximize network performance in terms 

of reliability by locating hubs for delivering flows amid city nodes. They formulated two 

sub-models such as p-hub maximum reliability and p-hub mandatory dispersion. The first 

one showed how optimal HL can be determined under different reliability conditions on 

both hubs and inter-hub links, the latter take the dispersion of hub facilities in hub network 

design into consideration in order to avoiding the excessive concentration of interaction 

flows from particular hub facilities. Contreras and Fernandez (2012) first introduced this 

problem in the context of general network design problems. In addition to the network 

design and assignment decisions concerned, CHLP takes additional routing decisions into 

consideration and addresses to the minimization of the total flow cost between many node 

pairs. In telecommunication network design case, electronic equipment such as 

concentrators, multiplexors and switches correspond to hub facilities, while data 

packages routed over a variety of physical media, such as coper cables, fiber-optic cables 

and telephone lines or through the air by using satellite channels are demand flows. A 

general architecture of these networks comprised a number of tributary networks 

connecting nodes to hubs and a backbone network interconnecting the hubs. Backbone 

links have higher capacities and route larger volumes of flow as compared to tributary 

links, in general, due to the configuration of their networks. Thus, a discount on the costs 

of using backbone link is considered instead of the cost of a tributary link. A cycle-star 

topology may be chosen since it provides an alternative path between every pair of hubs 

if a link does not succeed. Klincewicz (1998) is suggested to review for more details 

about design of telecommunications hub networks.  
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In emergency service, optimal configuration of emergency response resources is 

considered as crucial in order to mitigate the disaster and to protect public health and 

safety. Chen et al. (2013) addressed to formulate the problem of configuring disaster 

response resources between a set of candidate hubs, and then took as p-hub center 

problem minimizing the maximum travel time from hubs to demand hubs. The authors 

proposed a formulation based on two-stage stochastic programming, in order to handle 

the uncertainty of travel time, and benefited from real data of Yunnan province in China. 

Zhang et al. (2017) employed uncertainty theory to focus on the location problem of 

emergency service facilities under uncertainty. They first offered the location set covering 

problem in uncertain environment, later, investigated the maximal covering location 

problem in an uncertain environment. Finally, a case study illustrated the ideas of 

uncertain models. Rostami et al. (2018) studied reliable single allocation HLP under hub 

breakdowns such as disasters or strikes, developed a nonlinear two-stage formulation for 

this problem. Moreover, they designed a branch-and-cut framework based on Bender 

decomposition. The solution instances for much bigger than those solved so far in the 

literature are obtained. 

  

In transportation sector, in particular in the design of rapid transit systems, the location 

of hub cycles arises in public transportation planning. By locating a circular rapid transit 

line (or hub cycle) such as a subway, a tram or an express bus lane, most of network 

planners may be interested in studying the effect of extending an already used public 

transportation network in a metropolitan region. The Moscow Underground, the 

Melbourne Circular Tram Line and some of the Montreal bus lines can be given as 

examples of such circular lines. Subway, tram, or bus stations where an alternation of 

mode of transportation is usually possible correspond to hub facilities, while bus stops, 

taxi stations or urban districts correspond to non-hub nodes. Users travelling between O-

D pairs is the representation of demand flow, and to improve the network¶s total 

efficiency is the goal. Moreover, the discount factor is for the use of a faster transport 

technology connecting hubs nodes. In certain situations, both due to the reliability 

requirements and because it offers an alternative path reducing the travel time for some 

pairs of O-D, a circular line may be preferred.   
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In supply chain, Razmi and Rahmanniya (2019) presented a p-median hub model that 

aims to achieve both efficient and effective distribution while designing distribution 

network. Their decision variable is type of hub, since hubs have various capacities and 

various establishing costs. As result if computational numerical experiments, it is noticed 

that reducing in service level lead to decrease in establishment cost and to increase in 

transportation cost. Moreover, that decrease in factor which represents the economics of 

scale in distribution stage in comparison with the decrease in factor which represents the 

economics of scale between hubs has greater effect on reducing value of objective 

function. Fakhrzad et al. (2019) proposed an integrated model for HLP in multi-location, 

multi-period, multi-commodity (3M) three echelon SC and formulated this problem as a 

MIP model, then used GAMS to solve it. A new algorithm for re-formulation is offered 

to transfer into MILP, since the developed model is a MINLP and NP-hard. In addition, 

a new heuristic is improved to reach a solution in a reasonable time. CAB dataset is used 

to prove the applicability and the benefits of the proposed model. Marufuzzaman and 

Eksioglu (2014) aimed to design a cost-efficient and reliable SC networks for biomass 

delivery that its supply is seasonal to biofuel plants. This SC can cope with the biomass 

supply fluctuations with the help of the dynamic intermodal HL model. As their 

suggestion of MINLP is NP-hard, they needed to develop a rolling horizon algorithm to 

solve the problem. The performance of the algorithm is tested on a case study using data 

from the southeast region of US. Then, that a near-optimal solution of large-scale problem 

is provided by this proposed algorithm in a reasonable time is concluded. Roni et al. 

(2017) is also related with a multi-objective, hub-and-spoke model to design and manage 

biofuel supply chains. 

 

In perishable food sector, some goods need to be heated or cooled at regular intervals and 

a hub center are required for this service. Musavi and Bozorgi-Amiri (2017) optimized 

scheduling and sequencing of the vehicles at hubs while considering the environmental 

conservation to design a sustainable supply chain. Their model as a multi-objective MILP 

optimizes not only the total transportation costs but also the freshness and quality during 

the delivery, the total carbon emissions of vehicles to provide the sustainability desire of 

environment as well. They suggested an adopted NSGA- II meta-heuristic in order to 

solve the NP-hard problem. Etemadnia et al. (2015) presented a MILP model for finding 

optimal hub locations in a national logistics system. They aimed to design an optimal HL 
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network to serve food consumption markets by efficient connections along with 

production sites. As the possible hub-node combination are abundant within a national 

logistics system, they developed a heuristic solution algorithm in order to reduce 

computational costs. Their first finding is that model is sensitive to the distance over 

which commodities are allowed to travel using land transportation. Second finding is 

about hub capacity constraints.  That maximum land shipping distances are held constant 

at 200 miles while minimum number of hub capacity is increased up to 100,000 tons is 

issued. Then, not surprisingly, there is a decrease by over 60 percent in the optimal 

number of hubs. Thus, the demand for air transportation will be decreased. Esmizadeh 

and Bashiri (2014) considered to develop a hierarchical hub network system with 

refreshing operation in the network. The first level includes a complete network 

connecting the centrak hubs while the second level includes a form of star networks 

connecting the remaining hubs to central hubs and third level includes demand nodes 

connecting hubs and central hubs in a star form. In their study, different level hubs 

provide refreshment operations for those goods whose delivery time exceeds the 

freshness time limit. Thus, the total cost of the network and spoilage rate in network is 

reduced. The CAB dataset is used in computational studies to illustrate the proposed 

method that is performing better than classical approaches for perishable goods. 

 

In green environmental, Maiyar and Thakkar (2019) studied a green multi-objective 

transportation problem considering wastages is formulated. Moreover, they developed a 

multi-period MINLP embedded in hub-and-spoke network. Before benchmarked with 

NSGA- II, MOPSODE is used while solving the problem. They tested the model for 

various sizes and configurations in the problem. They aimed to learn the impact of 

varying hub location, its capacity level and the wastage threshold. Dukkanci et al. (2019) 

introduced the green hub location problem and considered vehicle speed and payload to 

estimate fuel consumption. For this purpose, they improved a nonlinear formulation 

model by using second order cone programming and perspective cuts. Then, they 

conducted an extensive computational study on CAB and TR datasets. Parsa et al. (2019) 

introduced a new mitigation measures in response to the rapid growth of environmental 

problems related to air transportation including emissions and noise. They offered a 

multi-objective MIP model and utilized several methodologies to determine the best 

design. The results of their computations displayed that using the new measure can cost-
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effectively decrease the projected cumulative CO2 emission relative to the traditional 

model that is based on minimizing only the total cost of flow and opening hubs. 

 

 



 

  

 

 

3. HUB COVERING MODELS 

 

 

 

To cover all demand and to minimize either the number of hubs or the cost for opening 

are needed in hub covering problems. As in the p-hub center problems, 3 types of hub 

covering problems are stated by Campbell (1994). In first type, if the total distance from 

node i to j by hub k and m are smaller than a certain distance value, the O-D is covered. 

In second type, if the cost on all links do not exceed a certain cost value, an O-D pair is 

covered. In third type, if the origin-first hub and second hub-destination links do not 

exceed a certain difference values, the O-D pair is covered. A first basic formulation for 

the single allocation hub covering problem is provided by Campbell (1994). In his 

formulation, 𝑉௜௝௞௠ represents binary variable which equals to 1 if the hub k and m can 

cover the origin-destination pair (i, j) and  𝐹௞ stands for the cost of opening a hub in k. 

The USASCP-1L model tends to minimize the total cost of opening hubs. Similar to the 

single allocation hub covering problem, a formulation of the multiple allocation version 

of hub covering problem is suggested by Campbell (1994). The objective function of 

UMASCP-1L is identical to the one in USASCP-1L. 

 

3.1. p-Hub Maximal Covering Models 
 
This type models are not to intend to cover all nodes but strive to maximize the demand 

included by a prearranged maximal number of hubs. However, it is not as predicted, since 

the hub covering models mentioned in above, attempt to decrease the number of hubs in 

which all demands can be covered. It is noticeable that p-hub maximal covering models 

are classified as hub covering problems in the literature, although their objective function 

and constraints are the same as in a p-hub median problem. (Campbell, 1994) 
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max ∑ ∑ ∑ ∑ 𝑊௜௝𝑋௜௝௞௠𝑉௜௝௞௠௠௞௝௜  (3.1) 

s.t.  

 ∑ 𝑌௞௞ ൌ  𝑝   (3.2) 

 ∑ ∑ 𝑋௜௝௞௠௠௞  = 1 for all i, j   (3.3) 

 𝑋௜௝௞௠ � 𝑌௞  for all i, j, k, m (3.4) 

 𝑋௜௝௞௠ � 𝑌௠  for all i, j, k, m (3.5) 

 𝑌௞ ∈  ሼ0,1ሽ  for all i, k  (3.6) 

 0 � 𝑋௜௝௞௠ � 1  for all i, j, k, m (3.7) 

 

𝑋௜௝௞௠: variable indicating the proportion of flow routed by hubs 

𝑌௞: binary variable whether a hub presents in k 

𝑊௜௝: the number of unit flow from nodes i to j  

𝑉௜௝௞௠: binary parameter whether the O-D pair is covered by the hubs k and m  

 

The opening of p hubs is ensured by Eq. (3.2). All the flow is assured to be routed by the 

hubs by the Eq. (3.3). Flow from node i to j is passing thru hubs k and m is only allowed 

if hubs k and m are opened by means of Eqs. (3.4) and (3.5). Whether hub k is opened or 

not is provided by Eq. (3.6). The proportion of flow from node i to j passing thru hubs k 

and m must be between 0 and 1. This is guaranteed by Eq. (3.7). 

 

3.2. Hub Set Covering Location Problem 
 

This type model is a particular case of hub covering location model. Model¶s assumptions 

are familiar to median-p hub model excluding that the number of hubs is not known and 

that a fixed cost of hub location is incorporated in the model. Variables and parameters 

of the model are: 

𝑋௞: binary variable if hub is opened in node k 

𝑍௜௝௞௠: variable indicating the proportion of flow routed by hubs 

𝐹௞: fixed hub opening cost for candidate node k  

𝑉௜௝௞௠: binary parameter equals 1 if hubs m and k cover origin-destination pair i, j  
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min ∑ 𝐹௞𝑋௞௞   (3.8) 

s.t. 

 𝑍௜௝௞௠ � 𝑋௞     for all i, j, k, m    (3.9) 

 𝑍௜௝௞௠ � 𝑋௠      for all i, j, k, m  (3.10) 

 ∑ ∑ 𝑉௜௝௞௠𝑍௜௝௞௠௠௞ ൒ 1           for all  i, j     (3.11) 

 𝑋௞ ∈  ሼ0,1ሽ for all k (3.12) 

 0 � 𝑍௜௝௞௠ � 1     for all i, j, k, m  (3.13) 

 

Eq. (3.8) represents the objective function minimizing the total hub location costs. 

Opening of hub k and m restricts the binary variable controlling whether the amount of 

flow originated from i and destinated to j uses candidate hubs k and m in Eq. (3.9) and 

Eq. (3.10), respectively. That all of O-D pairs are, at least one time, covered is guaranteed 

by Eq. (3.11). That the variable if hub is opened in k is binary is showed in Eq. (3.12) and 

that the variable controlling whether the amount of flow originated from i and destinated 

to j uses candidate hubs k and m is showed in Eq. (3.13)  (Hekmatfar and Pishvaeel, 2009). 

 

Table 3.1: Studies on hub covering problems (1994-2011) 

Years Authors Model 

1994 Campbell First integer model, defined three coverage 
criteria 

2003 Kara and Tansel New integer programming linearizations of 
Campbell¶s models 

2006 Hamacher and Meyer BS algorithm, polyhedron studies 

2008 Wagner New formulation, preprocessing procedure 

2011 Ernst et al. New formulation, coverage radius concept 𝛽 

 

Hwang and Lee (2012) aimed to locate hubs and to allocate non-hub nodes to the hubs in 

their model, therefore, hub can maximize the demand covered by deadline travelling time. 

An integer programming formulation for the new hub covering model is stated for CAB 

dataset. In addition, two heuristics which are distance-based allocation and volume-based 

allocation, are applied and their computational results showed that good solutions, for 

most of instances, are found in relatively reasonable computation time.  
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Peker and Kara (2015) studied SApHMCP and MApHMCP then, observed that there is 

only binary coverage in HL literature. Thus, they extended the definition of coverage and 

introduced a new coverage type which is called as partial coverage. An efficient mixed-

integer programming formulation not only for single but also for multiple allocation that 

can be applied for partial coverage is developed. That both formulations generally 

perform better than the existing is concluded. Through the decreased number of variables 

and constraints, optimal or near-optimal solutions for larger dataset are obtained. If partial 

coverage is available, the coverage percentages are, as expected, increased. 

 

Alinaghian et al. (2017) presented a new robust mathematical model for the multi-product 

capacitated single allocation hub location problem with maximum covering radius. Their 

objective is to propose a model minimizing various costs such as establishing hubs, 

preparing hubs for handling products, shipping.  A single product of single node can be 

allocated at most one hub whereas different products of one node can be allocated to 

different hubs. Also, the model requires if equipment related to that product is installed 

in order to allocate a product to hub. To solve the large-scale variants of that problem, a 

GA-based meta-heuristic algorithm is suggested. After comparison of this heuristic with 

respect to the exact method and simulated annealing algorithms, respectively, the results 

displayed a good performance of the proposed algorithm. 

 

Jankovic et al. (2017) studied both USApHMCP and UMApHMCP with binary and 

partial coverage criteria. A unified MIP formulation that can be applied for two coverage 

criteria, is suggested for USApHMCP and UMApHMCP. According to results of 

computational experiments, the superiority of newly formulation for UMApHMCP is 

examined, thus, it is possible to solve larger number of instances in optimality, in a shorter 

time. However, the case is not the same for the new formulation for USApHMCP since 

it performs worse when compared to the existing others in literature. In addition, the 

authors proposed two variable neighborhood search (VNS). Having looked at the 

presented experimental results, both heuristics are capable either to reproduce an optimal 

solution or to find a new best-known solution for benchmark problems.  
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3.3. Hub Covering Flow Problem  
 
As there is an explicit discrepancy between uncapacitated hub location problem and hub 

covering problem, Lowe and Sim (2013) suggested the hub covering flow problem 

(HCFP) in which the total cost of opening hub and not only transporting demand flow but 

also meeting the coverage specifications are incorporated. Their formulation for single 

assignment HCFP is grounded on the multiple-commodity flow formulation of UHLP by 

Ernst and Krihnamoorthy (1996). Their single assignment MILP HCFP is formulated as 

below: 

min  ∑ 𝑍௞௞𝐹௞௞∈ே ൅  𝛼 ∑ 𝑌௜௞௟𝑐௞௟௜,௞,௟ ∈ ே ൅ ∑ 𝑐௞௟ሺࣲ𝑂௜ ൅  𝛿𝐷௜ሻ𝑍௜௞௜,௞∈ ே     (3.14) 

s.t. 

 𝑍௜௞ d 𝐴௜௞𝑍௞௞ for all i, k  ∈ 𝑁 (3.15) 

 ∑ 𝑍௜௞௞∈ே ൌ 1 for all i ∈ 𝑁 (3.16) 

 𝑂௜𝑍௜௞= ∑ 𝑊௜௞𝑍௝௞௝∈ே ൅ ∑ 𝑌௜௞௟௟ ∈ ே  -  ∑ 𝑌௜௟௞௟ ∈ ே  for all i, k  ∈ 𝑁 (3.17) 

 ∑ 𝑌௜௞௟௟ஷ ௞,   ௟ ∈ ே d 𝑂௜𝑍௜௞  for all i k  ∈ 𝑁 (3.18) 

 𝑌௜௞௟ ൒ 0  for all i, k, l ∈ 𝑁   (3.19) 

 𝑍௜௞ ∈ {0,1}  for all i, k ∈ 𝑁   (3.20) 

 

𝑌௜௞௟ is variable indicating the amount of flow starting from node i that stops first to hub k 

and then l. 𝐹௞ is establishing and operating cost at node k annually (Lowe and Sim, 2013). 

The total annualized fixed cost of opening hubs, the cost of transporting demand through 

the hub network, and the cost of transporting demand between a node and a hub node, 

respectively are terms of function of objective function in Eq.(3.14). Eq.(3.15) ensures 

that node is only capable to be assigned to hub opened at k which can cover node i. The 

single assignment is ruled by Eq. (3.16) and Eq. (3.20). The flow conservation constraint 

in each hub k for each commodity i is stated in Eq. (3.17). That the solution might present 

routing flow through links which are not selected for the hub network is eliminated by 

Eq. (3.18) that is akin to suggestion of Correia et al. (2010) on formulation of UHLP in 

Ernst and Krishnamoorthy (1996). 

 

Lowe and Sim (2013) noted that to fix the values for certain variables so that there is a 

reduction in size to speed computation, matrix 𝐴௜௞ can be applicable in pre-processing 

step. The results of the study are: 
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x Increase in the cost of opening hubs, relative to the cost of transferring demand flow 

through the network, causes not surprisingly that the number of hubs in the network 

decreases. 

x Hub nodes are prone to be located at or near nodes whose demand flow depending on 

the profile of the fixed cost values for the hubs, are high. 

x Hubs are inclined to be located at the high demand flow nodes if the fixed costs are 

homogeneous.  

x Hubs are prone to be located at nodes close to the high demand flow nodes but with 

lower fixed cost values if the fixed costs of the hub nodes are strongly correlated to 

their total demand flow.  

x The inefficiencies of not to take the transportation costs into account when designing 

a network (i.e. HCP) could be significant. The overall cost of establishing and 

operating the network in HCP could cost %40 more than that in HCFP. 

 

3.4. Capacitated Multiple Allocation Hub Covering Flow Problem 
 

With this thesis, we propose an extended mathematical model to the hub covering flow 

problem by considering multiple allocation of non-hub nodes to hubs, flow processing 

capacity of hubs and transport flow capacity of network links. To the best of our 

knowledge, there is no study covering all these extensions altogether as our model. We 

studied this subject as taking these concepts into consideration during facility design is 

crucial for real applications. 

 

3.4.1. Sets, parameters and decision variables 

 
In this context, some important notations for both sections are following:  

Sets: 

V  set of nodes  

Parameters: 

႙𝑖𝑗  demand flow originating from node 𝑖 ∈ 𝑉 destined for node 𝑗 ∈ 𝑉 

H   total amount of flow to be sent  

𝑂𝑖  total demand originating from node  𝑖 ∈ 𝑉 
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𝐷j  total demand destined to node 𝑗 ∈ 𝑉 

𝑤𝑖𝑘  flow capacity of the links connecting nodes  𝑖, 𝑘 ∈ 𝑉 

Γ௞  flow capacity of hub k∈ 𝑉 

fk  hub opening cost for node 𝑘 ∈ 𝑉 

𝑐𝑖𝑗  unit flow cost for the link connecting nodes 𝑖, 𝑗 ∈ 𝑉 

𝑑𝑖𝑗  length of the link connecting nodes 𝑖, 𝑗 ∈ 𝑉 

A   node coverage matrix (𝐴𝑖𝑗 1 if node j∈ 𝑉 can be covered by node  

𝑖 ∈ 𝑉 and 0 if it is otherwise)  

B  path coverage matrix (𝐵𝑖𝑗 = 𝐴𝑖𝑘𝐴𝑘𝑗)  

𝛼  inter-hub cost discount factor such that 𝛼 ∈ ሺ0,1ሻ  

𝜆௠௔௫    maximum unused capacity ratio for hub 𝑘 ∈ 𝑉  

It is not difficult to establish that 𝑂௜ ൌ ∑ ℎ௜௝௝∈௏ , 𝐷௝ ൌ ∑ ℎ௜௝௜∈௏  and 𝐻 ൌ ∑ ℎ௜௝௜,௝∈௏ . Hub 

opening decision is related with the binary decision variable 𝑥௞, which equals to 1 if node 

𝑘 is a hub and 0 otherwise. Variable 𝑧௜௞ denotes the amount of flow sent from node 𝑖 to 

hub node 𝑘, 𝑞௜௟௝ the amount of flow sent from node 𝑖 to node 𝑗 through hub node 𝑙, and 

𝑦௜௞௟ the amount of flow sent from node 𝑖 via hub nodes 𝑘 and 𝑙. Finally, variable 𝜆௞ 

designates the ratio of unused capacity for hub a node 𝑘. 

3.4.2. Formulation without Capacity Constraints  

 

min ෍ 𝑓௞𝑥௞ ൅
௞∈௏

𝛼 ෍ 𝑐௞௟𝑦௜௞௟ ൅ ෍ 𝑐௜௞𝑧௜௞ ൅
௜,௞∈௏

෍ 𝑐௟௝𝑞௜௟௝
௜,௟,௝∈௏௜,௞,௟∈௏

 (3.21) 

s.t.    

 ෍ 𝐴௜௞𝑧௜௞ ൌ 𝑂௜
௞∈௏

 𝑖 ∈ 𝑉, (3.22) 

 ෍ 𝐵௜௟௝𝑞௜௟௝ ൌ ℎ௜௝
௞∈௏

 𝑖, 𝑗 ∈ 𝑉, (3.23) 

 ෍ 𝐵௜௞௝𝑦௜௞௝ ൅ ෍ 𝐵௜௞௝𝑞௜௞௝ െ
௝∈௏

෍ 𝐵௜௟௞𝑦௜௟௞ ൌ 𝐴௜௞𝑧௜௞
௟∈௏௟∈௏

 𝑖, 𝑘 ∈ 𝑉, (3.24) 

 ෍ 𝐵௜௟௝𝑞௜௟௝ ൑ 𝐷௝𝑥௟
௜∈௏

 𝑙, 𝑗 ∈ 𝑉, (3.25) 

 𝐴௜௞𝑧௜௞ ൑ 𝑂௜𝑥௞ 𝑖, 𝑘 ∈ 𝑉, (3.26) 

 𝑧௜௞, 𝑞௜௟௝, 𝑦௜௞௟ ൒ 0,   𝑥௞ ∈ ሼ0,1ሽ, 𝑖, 𝑘, 𝑙, 𝑗 ∈ 𝑉. (3.27) 
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The objective in Eq.(3.21) is to minimize the total cost of opening hubs and routing 

demand through network links by considering inter-hub flow cost discount factor. 

Eq.(3.22) ensures that all the demand originating from node 𝑖 ∈ 𝑉 is transported through 

hubs. Eq.(3.23) guarantees that the demand originating form node 𝑖 ∈ 𝑉 destined for node 

𝑗 ∈ 𝑉 is transported through hubs. Eq.(3.24) corresponds to the flow conservation 

constraints at each hub. Eq.(3.25) and Eq.(3.26) together ensure no demand is transported 

directly between non-hub nodes. Finally, Eq.(3.27) shows the type of decision variables. 

 

3.4.3. Formulation with Capacity Constraints 

 
 ෍ 𝑧௜௞ ൅ 𝛤௞𝜆௞ ൌ

௜∈௩

𝛤௞𝑥௞                            𝑘 ∈ 𝑉 (3.28) 

 0 ൑ 𝜆௞ ൑ 𝜆௠௔௫                                        𝑘 ∈ 𝑉 (3.29) 

 ෍ 𝑞௜௟௝ ൑ 𝑤௟௝
௜∈௩

൫1 െ 𝑥௝ ൯ ൅ 𝐻𝑥௝             𝑙, 𝑗 ∈ 𝑉 (3.30) 

 𝑧௜௞ ൑ 𝑤௜௞ሺ1 െ 𝑥௜ሻ ൅ 𝐻𝑥௜                      𝑖, 𝑘 ∈ 𝑉 (3.31) 

 

Constraints in Eq.(3.28) restrict the inflow towards any hub up to its capacity. Moreover, 

the unused capacity ratio of hub 𝑘 ∈ 𝑉 is kept track of by means of the variable 𝜆௞. 

Eq.(3.29) is to restrict the unused capacity ratio up to a certain predetermined level. 

Constraints in Eq.(3.30) do not allow an amount of flow to be transported from hub node 

𝑙 ∈ 𝑉 to node 𝑗 ∈ 𝑉 surpassing the link capacity 𝑤௟௝ . In a similar fashion, constraints in 

Eq.(3.31) guarantee that the amount of flow on the link connecting node 𝑖 ∈ 𝑉 and hub 

node 𝑘 ∈ 𝑉 does not exceed the link capacity 𝑤௜௞. It can be inferred that inter-hub links 

are not capacity constrained in this formulation.  

 



 

  

 

 

4. COMPUTATIONAL ANALYSIS 

 

 

 

We make use of the well-known TR data set in our numerical study.  This benchmark 

network data set is available in OR library1. TR data set consists of 81 nodes (cities of 

Turkey) network and is complete as unit flow costs, hub-opening costs, network links¶ 

lengths and flow demands are all provided. Solving one instance of our proposed model 

to optimality with the original TR data set and our available computational facilities takes 

considerable amount of time. As we are concerned with the validation of the model 

through a computational study, we rather preferred to work on a restricted data set. Our 

approach was to select nodes, which correspond to the most populated 25 cities of Turkey, 

and to update original parameter tables as given in the Appendix.  

 

Inter-hub cost discount factor 𝛼 is set to 0.4, 0.6 or 0.8. The hub or node coverage radius 

Δ is obtained by multiplying the coverage ratio R with length of the longest link of the 

network, i.e. Δ ൌ 𝑅 ൈ 𝑚𝑎𝑥௜௝൛𝑑௜௝ൟ. R should be selected such that the existing network 

does not contain disconnected sub-networks.  Hence, R is set to 0.6, 0.7 or 0.8. Then, each 

element 𝐴௜௝ of the node coverage matrix is fixed to 1 if 𝑑௜௝ ൑ Δ, and 0 otherwise. 

 

Link  capacities, 𝑤௜௝  for all 𝑖, 𝑘 ∈ 𝑉, are not included in the original TR data sets, so we 

developed a procedure to identify them. First, the model without capacity constraints 

given in Eq.(3.21)-(3.27) is solved to optimality  to obtain optimum link flows. As there 

is no limit on the amount of flow that can be sent between hubs, we excluded inter-hub 

flows among the optimum link flows and calculated the average (𝜇) and the standard 

deviation (𝜎) of the remaining link flow values. Finally, assuming that the link flows are 

normall\ distributed, all of links¶ capacities 𝑤௜௝  𝑖, 𝑘 ∈ 𝑉 were set equal to 𝑤௉ ൌ 𝜇 ൅ 𝜁௣𝜎 

where 𝜁௣ is the z-score corresponding to probability 𝑝 with 𝑝 ൌ {0.70, 0.80, 0.90}.

 
1 http://people.brunel.ac.uk/~mastjjb/jeb/info.html 
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Original TR data set does not contain also hub capacities, so we designated all 𝛤௞ 𝑘 ∈ 𝑉 

equal to a fraction (15%, 20%, «, 65%) of the total demand H. Finally, maximum unused 

capacity ratio 𝜆௠௔௫  for a hub varies from 0.05 up to 1.00 with 0.05 increments. 

 

All solutions presented in this analysis are obtained by using the CPLEX solver accessed 

through GAMS 24.9.2. In the subsequent tables given in Tables 4.1-4.6, the horizontal 

a[is corresponds to the hubs¶ capacities given as a fraction of H, and vertical axis is 

related to maximum unused capacity ratio. Quadrants are also indicated on these tables, 

and simple statistical inferences about the tables and their quadrants are given beneath 

each table. Cost values are in thousands. 

 

We first investigate how the optimum number of hubs (oNHs) changes depending on the 

model parameters. Decrease in the value of inter-hub discount factor α, in other words 

increase in the cost savings due to the aggregation of flows between hubs, increases 

oNHs. The average and standard deviation of oNHs given beneath Tables 4.1-4.3 clearly 

reveal this empirical outcome. This is an expected result as more hubs enables to 

aggregate more flows. Meanwhile, an interesting observation is that given all 

combinations of hub capacities (Γ௞) and maximum unused hub capacity ratios (λ௠௔௫), the 

smallest oNHs which can be attained does not change depending on the discount factor 

α. This implies that in some cases, hub capacity related constraints are so restrictive that 

reduction in the total cost becomes a less important issue. This empirical study also 

justifies some logical expectations. As for example, oNHs decreases as Γ௞ increases or 

high-capacity hubs are admitted. Meanwhile, oNHs increases as λ௠௔௫ increases or 

capacity usage constraints are relaxed.  

 

Another outcome is that, as the capacities of links (𝑤௜௞) become less restrictive, oNHs 

decreases. Tight link capacities restrict the amount of flow that a non-hub node can send 

to a single hub node and thus more hubs are needed at the optimum solution to transfer 

the total flow. Irrespective of link capacities, highest oNHs are observed when hub 

capacities are low and low capacity utilization is tolerable. 
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 (a) 𝑝 ൌ 0.70 (b) 𝑝 ൌ 0.80 

 

 

 

 

 

 

 

 

 

 

 

 

 (c) 𝑝 ൌ 0.90 (d) no link capacity 

  

 Overall Q1 Q2 Q3 Q4 
Mean 5.61 3.00 5.02 7.64 5.06 
St.Dev. 2.27 0.00 1.58 1.82 2.21 

 Overall Q1 Q2 Q3 Q4 
Mean 5.36 3.00 4.98 7.38 4.64 
St.Dev. 2.13 0.00 1.58 1.93 1.76 

 Overall Q1 Q2 Q3 Q4 
Mean 5.00 3.00 4.95 6.92 3.92 
St.Dev. 1.95 0.00 1.53 1.97 0.90 

 Overall Q1 Q2 Q3 Q4 
Mean 4.59 2.28 4.93 6.66 3.92 
St.Dev. 1.99 0.46 1.55 1.85 0.90 

a4-r6-z7 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
0.05 7 5 4 - 3 - - - - - -
0.10 7 5 4 - 3 - - - - - -
0.15 7 5 4 - 3 - - - - - -
0.20 7 5 5 4 3 3 - - - - -
0.25 7 5 5 4 3 3 - - - - -
0.30 8 5 5 4 3 3 3 - - - -
0.35 8 5 5 4 3 3 3 3 - - -
0.40 8 6 5 4 4 3 3 3 3 - -
0.45 9 6 5 5 4 3 3 3 3 3 -
0.50 9 6 5 5 4 4 3 3 3 3 3
0.55 9 6 5 5 4 4 3 3 3 3 3
0.60 9 7 6 5 5 4 4 3 3 3 3
0.65 9 8 6 5 5 4 4 4 3 3 3
0.70 9 8 6 6 5 5 4 4 4 4 3
0.75 9 8 8 6 6 5 4 4 4 4 4
0.80 9 8 8 8 6 6 5 4 4 4 4
0.85 10 8 8 8 8 8 6 5 4 4 4
0.90 10 9 9 8 8 8 8 8 8 6 5
0.95 10 9 9 9 9 9 9 9 8 8 8
1.00 10 9 9 9 9 9 9 9 9 9 9

a4-r6-z8 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
0.05 7 5 4 - 3 - - - - - -
0.10 7 5 4 - 3 - - - - - -
0.15 7 5 4 - 3 - - - - - -
0.20 7 5 5 4 3 3 - - - - -
0.25 7 5 5 4 3 3 - - - - -
0.30 8 5 5 4 3 3 3 - - - -
0.35 8 5 5 4 3 3 3 3 - - -
0.40 8 5 5 4 4 3 3 3 3 - -
0.45 9 6 5 4 4 3 3 3 3 3 -
0.50 9 6 5 5 4 4 3 3 3 3 3
0.55 9 6 5 5 4 4 3 3 3 3 3
0.60 9 6 5 5 4 4 4 3 3 3 3
0.65 9 7 6 5 4 4 4 4 3 3 3
0.70 9 8 6 6 5 4 4 4 4 3 3
0.75 9 8 6 6 5 4 4 4 4 4 3
0.80 9 8 8 7 6 5 4 4 4 4 4
0.85 10 8 8 8 7 5 5 5 4 4 4
0.90 10 9 9 8 7 7 7 6 5 5 5
0.95 10 9 9 9 8 8 8 8 7 7 7
1.00 10 9 9 9 8 8 8 8 8 8 8

a4-r6-z9 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
0.05 7 5 4 - 3 - - - - - -
0.10 7 5 4 - 3 - - - - - -
0.15 7 5 4 - 3 - - - - - -
0.20 7 5 5 4 3 3 - - - - -
0.25 7 5 5 4 3 3 - - - - -
0.30 8 5 5 4 3 3 3 - - - -
0.35 8 5 5 4 3 3 3 3 - - -
0.40 8 5 5 4 4 3 3 3 3 - -
0.45 8 6 5 4 4 3 3 3 3 3 -
0.50 9 6 5 4 4 4 3 3 3 3 3
0.55 9 6 5 4 4 4 3 3 3 3 3
0.60 9 6 5 4 4 4 4 3 3 3 3
0.65 9 6 6 4 4 4 4 4 3 3 3
0.70 9 7 6 5 4 4 4 4 3 3 3
0.75 9 7 6 5 5 4 4 4 4 3 3
0.80 9 8 7 5 5 5 4 4 4 4 3
0.85 10 8 8 6 5 5 5 4 4 4 4
0.90 10 9 8 7 7 6 5 5 4 4 4
0.95 10 9 8 8 8 7 6 6 4 4 4
1.00 10 9 8 8 8 7 6 6 5 5 5

a4-r6 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
0.05 7 5 4 - 3 - - 2 - - -
0.10 7 5 4 - 3 - - 2 2 - -
0.15 7 5 4 - 3 - - 2 2 - -
0.20 7 5 5 4 3 3 - 2 2 2 -
0.25 7 5 5 4 3 3 - 2 2 2 2
0.30 8 5 5 4 3 3 3 2 2 2 2
0.35 8 5 5 4 3 3 3 3 2 2 2
0.40 8 5 5 4 3 3 3 3 3 2 2
0.45 8 6 5 4 4 3 3 3 3 2 2
0.50 9 6 5 4 4 4 3 3 3 3 2
0.55 9 6 5 4 4 4 3 3 3 3 3
0.60 9 6 5 4 4 4 4 3 3 3 3
0.65 9 6 6 4 4 4 4 4 3 3 3
0.70 9 6 6 5 4 4 4 4 3 3 3
0.75 9 7 6 5 5 4 4 4 4 3 3
0.80 9 7 7 5 5 5 4 4 4 4 3
0.85 10 7 7 6 5 5 5 4 4 4 4
0.90 10 8 8 6 6 6 5 5 4 4 4
0.95 10 8 8 7 7 7 6 6 4 4 4
1.00 10 8 8 7 7 7 6 6 5 5 5

Table 4.1: Optimum number of hubs for Į=0.40 and R = 0.60 
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 (a) 𝑝 ൌ 0.70 (b) 𝑝 ൌ 0.80 

 

 

 

 

 

 

 

 

 

 

 

 

 (c) 𝑝 ൌ 0.90 (d) no link capacity 

 

  

 Overall Q1 Q2 Q3 Q4 
Mean 4.85 3.00 4.93 6.68 3.68 
St.Dev. 1.80 0.00 1.49 1.67 0.62 

 Overall Q1 Q2 Q3 Q4 
Mean 4.50 3.00 4.90 6.06 3.32 
St.Dev. 1.74 0.00 1.48 1.89 0.47 

 Overall Q1 Q2 Q3 Q4 
Mean 4.35 3.00 4.83 5.72 3.20 
St.Dev. 1.67 0.00 1.46 1.87 0.40 

 Overall Q1 Q2 Q3 Q4 
Mean 4.01 2.25 4.83 5.56 3.10 
St.Dev. 1.75 0.44 1.46 1.94 0.36 

a6-r6-z7 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

0.05 7 5 4 - 3 - - - - - -
0.10 7 5 4 - 3 - - - - - -
0.15 7 5 4 - 3 - - - - - -
0.20 7 5 5 4 3 3 - - - - -
0.25 7 5 5 4 3 3 - - - - -
0.30 7 5 5 4 3 3 3 - - - -
0.35 8 5 5 4 3 3 3 3 - - -
0.40 8 5 5 4 4 3 3 3 3 - -
0.45 8 6 5 4 4 3 3 3 3 3 -
0.50 9 6 5 5 4 3 3 3 3 3 3
0.55 9 6 5 5 4 4 3 3 3 3 3
0.60 9 6 5 5 4 4 3 3 3 3 3
0.65 9 7 5 5 5 4 4 3 3 3 3
0.70 9 7 5 5 5 4 4 4 3 3 3
0.75 9 7 5 5 5 5 4 4 4 3 3
0.80 9 7 7 5 5 5 4 4 4 4 3
0.85 9 7 7 7 6 5 5 4 4 4 4
0.90 10 7 7 7 7 6 5 4 4 4 4
0.95 10 7 7 7 7 6 5 4 4 4 4
1.00 10 7 7 7 7 6 5 4 4 4 4

a6-r6-z8 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

0.05 7 5 4 - 3 - - - - - -
0.10 7 5 4 - 3 - - - - - -
0.15 7 5 4 - 3 - - - - - -
0.20 7 5 5 4 3 3 - - - - -
0.25 7 5 5 4 3 3 - - - - -
0.30 7 5 5 4 3 3 3 - - - -
0.35 8 5 5 4 3 3 3 3 - - -
0.40 8 5 5 4 4 3 3 3 3 - -
0.45 8 5 5 4 4 3 3 3 3 3 -
0.50 8 5 5 4 4 3 3 3 3 3 3
0.55 9 6 5 5 4 3 3 3 3 3 3
0.60 9 6 5 5 4 4 3 3 3 3 3
0.65 9 6 5 5 4 4 3 3 3 3 3
0.70 9 6 5 5 4 4 4 3 3 3 3
0.75 9 6 5 5 4 4 4 3 3 3 3
0.80 9 7 6 5 4 4 4 4 3 3 3
0.85 9 7 6 5 4 4 4 4 4 3 3
0.90 10 7 6 5 4 4 4 4 4 3 3
0.95 10 7 6 5 4 4 4 4 4 3 3
1.00 10 7 6 5 4 4 4 4 4 3 3

a6-r6-z9 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

0.05 7 5 4 - 3 - - - - - -
0.10 7 5 4 - 3 - - - - - -
0.15 7 5 4 - 3 - - - - - -
0.20 7 5 4 4 3 3 - - - - -
0.25 7 5 5 4 3 3 - - - - -
0.30 7 5 5 4 3 3 3 - - - -
0.35 7 5 5 4 3 3 3 3 - - -
0.40 8 5 5 4 3 3 3 3 3 - -
0.45 8 5 5 4 4 3 3 3 3 3 -
0.50 8 5 5 4 4 3 3 3 3 3 3
0.55 8 5 5 4 4 3 3 3 3 3 3
0.60 9 5 5 4 4 3 3 3 3 3 3
0.65 9 5 5 4 4 4 3 3 3 3 3
0.70 9 6 5 5 4 4 3 3 3 3 3
0.75 9 6 5 5 4 4 4 3 3 3 3
0.80 9 6 5 5 4 4 4 3 3 3 3
0.85 9 6 5 5 4 4 4 4 3 3 3
0.90 10 6 5 5 4 4 4 4 3 3 3
0.95 10 6 5 5 4 4 4 4 3 3 3
1.00 10 6 5 5 4 4 4 4 3 3 3

a6-r6 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

0.05 7 5 4 - 3 - - 2 - - -
0.10 7 5 4 - 3 - - 2 2 - -
0.15 7 5 4 - 3 - - 2 2 - -
0.20 7 5 4 4 3 3 - 2 2 2 -
0.25 7 5 5 4 3 3 - 2 2 2 2
0.30 7 5 5 4 3 3 3 2 2 2 2
0.35 7 5 5 4 3 3 3 3 2 2 2
0.40 8 5 5 4 3 3 3 3 2 2 2
0.45 8 5 5 4 4 3 3 3 3 2 2
0.50 8 5 5 4 4 3 3 3 3 3 2
0.55 8 5 5 4 4 3 3 3 3 3 2
0.60 9 5 5 4 4 3 3 3 3 3 3
0.65 9 5 5 4 4 3 3 3 3 3 3
0.70 9 5 5 4 4 4 3 3 3 3 3
0.75 9 6 5 4 4 4 4 3 3 3 3
0.80 9 6 5 4 4 4 4 3 3 3 3
0.85 9 6 5 4 4 4 4 3 3 3 3
0.90 10 6 5 4 4 4 4 3 3 3 3
0.95 10 6 5 4 4 4 4 3 3 3 3
1.00 10 6 5 4 4 4 4 3 3 3 3

Table 4.2: Optimum number of hubs for Į=0.60 and R = 0.60 
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 (a) 𝑝 ൌ 0.70 (b) 𝑝 ൌ 0.80 

 

 

 

 

 

 

 

 

 

 

 

 

 (c) 𝑝 ൌ 0.90 (d) no link capacity 

 

  

 Overall Q1 Q2 Q3 Q4 
Mean 4.37 3.00 4.79 5.70 3.24 
St.Dev. 1.46 0.00 1.37 1.31 0.43 

 Overall Q1 Q2 Q3 Q4 
Mean 4.18 3.00 4.79 5.52 3.00 
St.Dev. 1.50 0.00 1.37 1.58 0.00 

 Overall Q1 Q2 Q3 Q4 
Mean 4.12 3.00 4.79 5.32 3.00 
St.Dev. 1.48 0.00 1.37 1.62 0.00 

 Overall Q1 Q2 Q3 Q4 
Mean 3.81 2.25 4.76 5.14 2.98 
St.Dev. 1.53 0.44 1.39 1.58 0.14 

a8-r6-z7 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
0.05 7 5 4 - 3 - - - - - -
0.10 7 5 4 - 3 - - - - - -
0.15 7 5 4 - 3 - - - - - -
0.20 7 5 4 4 3 3 - - - - -
0.25 7 5 5 4 3 3 - - - - -
0.30 7 5 5 4 3 3 3 - - - -
0.35 7 5 5 4 3 3 3 3 - - -
0.40 7 5 5 4 3 3 3 3 3 - -
0.45 7 5 5 4 4 3 3 3 3 3 -
0.50 7 5 5 5 4 3 3 3 3 3 3
0.55 8 5 5 5 4 3 3 3 3 3 3
0.60 8 5 5 5 4 3 3 3 3 3 3
0.65 8 6 5 5 4 4 3 3 3 3 3
0.70 8 6 5 5 5 4 4 3 3 3 3
0.75 8 6 5 5 5 4 4 3 3 3 3
0.80 8 6 5 5 5 4 4 4 3 3 3
0.85 8 6 5 5 5 5 4 4 3 3 3
0.90 8 6 5 5 5 5 4 4 3 3 3
0.95 8 6 5 5 5 5 4 4 3 3 3
1.00 8 6 5 5 5 5 4 4 3 3 3

a8-r6-z8 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
0.05 7 5 4 - 3 - - - - - -
0.10 7 5 4 - 3 - - - - - -
0.15 7 5 4 - 3 - - - - - -
0.20 7 5 4 4 3 3 - - - - -
0.25 7 5 5 4 3 3 - - - - -
0.30 7 5 5 4 3 3 3 - - - -
0.35 7 5 5 4 3 3 3 3 - - -
0.40 7 5 5 4 3 3 3 3 3 - -
0.45 7 5 5 4 4 3 3 3 3 3 -
0.50 7 5 5 4 4 3 3 3 3 3 3
0.55 8 5 5 4 4 3 3 3 3 3 3
0.60 8 5 5 5 4 3 3 3 3 3 3
0.65 8 5 5 5 4 3 3 3 3 3 3
0.70 8 6 5 5 4 3 3 3 3 3 3
0.75 8 6 5 5 4 3 3 3 3 3 3
0.80 8 6 5 5 4 3 3 3 3 3 3
0.85 8 6 5 5 4 3 3 3 3 3 3
0.90 8 6 5 5 4 3 3 3 3 3 3
0.95 8 6 5 5 4 3 3 3 3 3 3
1.00 8 6 5 5 4 3 3 3 3 3 3

a8-r6-z9 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
0.05 7 5 4 - 3 - - - - - -
0.10 7 5 4 - 3 - - - - - -
0.15 7 5 4 - 3 - - - - - -
0.20 7 5 4 4 3 3 - - - - -
0.25 7 5 5 4 3 3 - - - - -
0.30 7 5 5 4 3 3 3 - - - -
0.35 7 5 5 4 3 3 3 3 - - -
0.40 7 5 5 4 3 3 3 3 3 - -
0.45 7 5 5 4 4 3 3 3 3 3 -
0.50 7 5 5 4 4 3 3 3 3 3 3
0.55 8 5 5 4 4 3 3 3 3 3 3
0.60 8 5 5 4 4 3 3 3 3 3 3
0.65 8 5 5 4 4 3 3 3 3 3 3
0.70 8 5 5 4 4 3 3 3 3 3 3
0.75 8 6 5 4 4 3 3 3 3 3 3
0.80 8 6 5 4 4 3 3 3 3 3 3
0.85 8 6 5 4 4 3 3 3 3 3 3
0.90 8 6 5 4 4 3 3 3 3 3 3
0.95 8 6 5 4 4 3 3 3 3 3 3
1.00 8 6 5 4 4 3 3 3 3 3 3

a8-r6 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
0.05 7 5 4 - 3 - - 2 - - -
0.10 7 5 4 - 3 - - 2 2 - -
0.15 7 5 4 - 3 - - 2 2 - -
0.20 7 5 4 4 3 3 - 2 2 2 -
0.25 7 5 5 4 3 3 - 2 2 2 2
0.30 7 5 5 4 3 3 3 2 2 2 2
0.35 7 5 5 4 3 3 3 3 2 2 2
0.40 7 5 5 4 3 3 3 3 2 2 2
0.45 7 5 5 4 3 3 3 3 3 2 2
0.50 7 5 5 4 3 3 3 3 3 2 2
0.55 7 5 5 4 3 3 3 3 3 3 2
0.60 8 5 5 4 3 3 3 3 3 3 3
0.65 8 5 5 4 4 3 3 3 3 3 3
0.70 8 5 5 4 4 3 3 3 3 3 3
0.75 8 5 5 4 4 3 3 3 3 3 3
0.80 8 5 5 4 4 3 3 3 3 3 3
0.85 8 5 5 4 4 3 3 3 3 3 3
0.90 8 5 5 4 4 3 3 3 3 3 3
0.95 8 5 5 4 4 3 3 3 3 3 3
1.00 8 5 5 4 4 3 3 3 3 3 3

Table 4.3: Optimum number of hubs for Į=0.80 and R = 0.60 
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A close investigation based on quadrants of Tables 4.1-4.3 exposes that smallest and 

highest oNHs are observed in the first and third quadrants respectively, when the amount 

of flow that can be sent on a link is not bounded. When flows on links are restricted, now 

the fourth quadrant contains smallest oNHs while highest oNHs remain again in the third. 

This suggests that when high capacity utilization is not a priority, the requirement of low-

capacity hubs increases oNHs while the opportunity of opening high-capacity hubs helps 

to decrease oNHs. Finally, the smallest oNHs are observed when network links have 

unlimited capacit\, hubs¶ capacities are large and capacit\ utili]ation is required to be 

high.  

 

As a second analysis, we provide how the optimum total cost (𝑧∗) which is the sum of 

hub opening and transportation costs, changes depending on the model parameters. 

According to the average and standard deviation values given beneath Tables 4.4-4.6 as 

discount factor α value decreases, cost savings due to the flow aggregation increase and 

thus 𝑧∗ decrease as expected. 𝑧∗ also decrease when link capacities are less restrictive. 

This can be easily explained as increasing link capacities allows to send flows from least-

cost links.  

 

If we look at the quadrants of Tables 4.4-4.6, highest optimum total costs always occur 

in the second quadrant. This quadrant corresponds to where hub capacities and maximum 

unused capacity ratios have the smallest values. Thus, when only low-capacity hubs can 

be opened, requiring high capacity usage rises the optimum total cost the most. 

Meanwhile, least total costs are almost always observed in the fourth quadrant where the 

aforementioned capacities and ratios have the highest values. Another point worth to 

mention is that fourth quadrants in Tables 4.4-4.6 not only contain the smallest average 

𝑧∗ values but also the smallest standard deviations. The opposite is true for the second 

quadrant, in other words largest standard deviations of empirical 𝑧∗ values are observed 

in this quadrant. Hence relaxing capacity related constraints leads to low and close 

optimum total cost values, while tighter capacity bounds result in high and dispersed 

costs.  
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 (a) 𝑝 ൌ 0.70 (b) 𝑝 ൌ 0.80 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 (c) 𝑝 ൌ 0.90 (d) no link capacity  

 Overall Q1 Q2 Q3 Q4 
Mean 3638 3710 3769 3597 3555 
St.Dev. 113 31 81 79 78 

 Overall Q1 Q2 Q3 Q4 
Mean 3537 3572 3664 3528 3439 
St.Dev. 110 35 97 77 53 

 Overall Q1 Q2 Q3 Q4 
Mean 3477 3490 3600 3493 3365 
St.Dev. 114 38 107 79 42 

 Overall Q1 Q2 Q3 Q4 
Mean 3448 3500 3569 3465 3317 
St.Dev. 121 51 118 91 43 
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Table 4.4: Optimum total cost for Į=0.40 and R = 0.60 
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 (a) 𝑝 ൌ 0.70 (b) 𝑝 ൌ 0.80 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 (c) 𝑝 ൌ 0.90 (d) no link capacity  

 Overall Q1 Q2 Q3 Q4 
Mean 3759 3749 3878 3791 3646 
St.Dev. 120 36 117 99 28 

 Overall Q1 Q2 Q3 Q4 
Mean 3656 3619 3781 3718 3518 
St.Dev. 140 39 135 116 27 

 Overall Q1 Q2 Q3 Q4 
Mean 3594 3543 3725 3677 3436 
St.Dev. 157 43 147 129 36 

 Overall Q1 Q2 Q3 Q4 
Mean 3562 3540 3700 3654 3394 
St.Dev. 160 45 156 141 38 
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Table 4.5: Optimum total cost for Į=0.60 and R = 0.60 
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 (a) 𝑝 ൌ 0.70 (b) 𝑝 ൌ 0.80 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 (c) 𝑝 ൌ 0.90 (d) no link capacity  

 Overall Q1 Q2 Q3 Q4 
Mean 3840 3788 3970 3914 3693 
St.Dev. 158 41 151 148 21 

 Overall Q1 Q2 Q3 Q4 
Mean 3736 3665 3879 3838 3559 
St.Dev. 182 44 169 161 33 

 Overall Q1 Q2 Q3 Q4 
Mean 3676 3595 3828 3797 3476 
St.Dev. 200 47 180 169 41 

 Overall Q1 Q2 Q3 Q4 
Mean 3641 3579 3807 3778 3439 
St.Dev. 200 41 189 179 42 
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Table 4.6: Optimum total cost for Į=0.80 and R = 0.60 
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The general expectation about hub capacity usage is that the optimum total cost falls when 

it is allowed to fall. It can be detected from tables that this expectation is realized. 

However, increasing the capacity of hubs do not always reduce 𝑧∗. Especially, optimum 

total cost may increase when high capacity usage is desired for high-capacity hubs. In 

general, 𝑧∗ values do not follow a specific trend for a given capacity usage level. The 

lowest total cost values are observed when network links have unlimited capacit\, hubs¶ 

capacities are large and capacity utilization is required to be very low. 

 

 



 

  

 

 

5. CONCLUSION 

 

 

 

This study deals with capacitated multiple allocation hub covering flow problem. The aim 

is to optimally design and operate hub-and-spoke networks while taking into account hub 

opening and demand routing costs. It is assumed that a hub covers a node if their distance 

is less than a predefined value, while the distance between hubs is not restricted. 

Moreover, flow demand associated with a specific origin-destination node pair must be 

routed by visiting at least one hub.  

 

Our proposed mathematical model is inspired b\ the work of ùener (2020) and is 

formulated as a mixed integer linear program. A benchmark data set well-known from 

the literature is used to validate the model. A thorough sensitivity analysis is conducted 

to detect how and to what extent the change in different model parameters affects the best 

solution. It was shown how important it is to consider the capacity and its utilization and 

also transport costs in the hub-covering problem. Finally, many practical insights have 

been provided for the decision makers. 

 

It is not difficult to figure out several future research directions. Our analysis has shown 

that coverage ratios are not influential on results. This is unexpected as it directly affects 

the network structure. The analysis can be extended to include more restrictive coverage 

ratios. The ratio of total hub opening cost to total transportation cost in the optimum 

solution can play an important role in the results, especially on the number of hubs to 

locate. Therefore, more analysis can be done on different ratios. Original TR data set and 

other known data sets such as CAB and AP can be investigated to further generalize 

obtained results.  
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As the number of network nodes and links increases, time to find the optimum solution 

also increases considerably. Hence, heuristic approaches instead of deterministic 

procedures can be developed to solve the proposed model.  As the underlying network 

for hub covering problems is not complete, every selected hub-nodes set does not produce 

a feasible solution. Moreover, the addition of capacity related constraints to a 

mathematical model may render it infeasible in general. These are clearly challenging 

issues to overcome in developing a solution method. 

 

As the decisions related to the network design problems are of strategic nature and span 

several future years, they involve a certain level of uncertainty. Therefore, instead of 

being deterministic, model parameters can be probabilistic of possibilistic. New extended 

models covering those cases can be derived from the model proposed in this study and 

solution procedures can be developed accordingly.  
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Appendix A. Distance between cities 25 cities. 

 
 

İSTANBULANKARA İZMİR BURSA ANTALYA ADANA KONYA ŞANLIURFAGAZİANTEPKOCAELİ İÇEL DİYARBAKIRHATAY MANİSA KAYSERİ SAMSUN BALIKESİRKAHRAMANMARAŞVAN AYDIN TEKİRDAĞDENİZLİ SAKARYA MUĞLA ESKİŞEHİR
1 İSTANBUL 0 453 561 243 716 939 660 1261 1124 111 932 1363 1130 525 771 734 390 1044 1638 681 132 639 148 780 322
2 ANKARA 453 0 579 382 544 490 258 808 671 342 483 910 681 561 318 414 530 591 1232 603 585 477 305 622 233
3 İZMİR 561 579 0 322 446 900 550 1242 1105 450 892 1418 1091 36 848 993 173 1085 1762 126 505 224 481 225 412
4 BURSA 243 382 322 0 537 837 487 1179 1042 132 829 1281 1028 286 689 745 151 962 1603 442 375 437 159 541 149
5 ANTALYA 716 544 446 537 0 558 322 900 763 605 489 1076 749 428 618 954 510 743 1453 344 848 222 568 313 424
6 ADANA 939 490 900 837 558 0 356 342 205 828 69 518 191 882 333 729 894 185 895 894 1071 768 791 871 688
7 KONYA 660 258 550 487 322 356 0 698 561 549 348 874 547 532 304 640 544 541 1218 542 792 416 512 556 338
8 ŞANLIURFA 1261 808 1242 1179 900 342 698 0 137 1150 411 176 333 1224 490 836 1236 217 553 1236 1393 1110 1113 1213 1030
9 GAZİANTEP 1124 671 1105 1042 763 205 561 137 0 1013 274 313 196 1087 353 725 1099 80 690 1099 1256 973 976 1076 893
10 KOCAELİ 111 342 450 132 605 828 549 1150 1013 0 821 1252 1019 414 660 623 279 933 1527 570 243 528 37 669 211
11 İÇEL 932 483 892 829 489 69 348 411 274 821 0 587 260 874 326 740 886 254 964 833 1064 711 784 802 680
12 DİYARBAKIR 1363 910 1418 1281 1076 518 874 176 313 1252 587 0 509 1400 592 818 1412 369 377 1412 1495 1286 1215 1389 1132
13 HATAY 1130 681 1091 1028 749 191 547 333 196 1019 260 509 0 1073 449 821 1085 176 886 1085 1262 959 982 1062 879
14 MANİSA 525 561 36 286 428 882 532 1224 1087 414 874 1400 1073 0 830 975 137 1067 1744 156 515 206 445 255 394
15 KAYSERİ 771 318 848 689 618 333 304 490 353 660 326 592 449 830 0 449 837 273 914 842 903 716 623 860 540
16 SAMSUN 734 414 993 745 954 729 640 836 725 623 740 818 821 975 449 0 896 645 974 1017 866 891 586 1036 647
17 BALIKESİR 390 530 173 151 510 894 544 1236 1099 279 886 1412 1085 137 837 896 0 1079 1751 293 380 288 310 392 297
18 KAHRAMANMARAŞ 1044 591 1085 962 743 185 541 217 80 933 254 369 176 1067 273 645 1079 0 746 1079 1176 953 896 1056 813
19 VAN 1638 1232 1762 1603 1453 895 1218 553 690 1527 964 377 886 1744 914 974 1751 746 0 1756 1770 1630 1490 1766 1454
20 AYDIN 681 603 126 442 344 894 542 1236 1099 570 833 1412 1085 156 842 1017 293 1079 1756 0 629 126 601 99 483
21 TEKİRDAĞ 132 585 505 375 848 1071 792 1393 1256 243 1064 1495 1262 515 903 866 380 1176 1770 629 0 668 280 728 454
22 DENİZLİ 639 477 224 437 222 768 416 1110 973 528 711 1286 959 206 716 891 288 953 1630 126 668 0 491 145 357
23 SAKARYA 148 305 481 159 568 791 512 1113 976 37 784 1215 982 445 623 586 310 896 1490 601 280 491 0 636 174
24 MUĞLA 780 622 225 541 313 871 556 1213 1076 669 802 1389 1062 255 860 1036 392 1056 1766 99 728 145 636 0 502
25 ESKİŞEHİR 322 233 412 149 424 688 338 1030 893 211 680 1132 879 394 540 647 297 813 1454 483 454 357 174 502 0
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Appendix B.  Flow amounts between cities. 

 
Appendix C. Fixed linked costs between 25 cities. 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
İSTANBULANKARA İZMİR BURSA ANTALYA ADANA KONYA ŞANLIURFAGAZİANTEPKOCAELİ İÇEL DİYARBAKIRHATAY MANİSA KAYSERİ SAMSUN BALIKESİRKAHRAMANMARAŞVAN AYDIN TEKİRDAĞDENİZLİ SAKARYA MUĞLA ESKİŞEHİR

1 İSTANBUL 0 694878 584437 368455 298169 320661 380075 250259 222835 209110 286318 236265 217370 218487 183857 209639 186616 173792 152144 164841 108118 147377 131104 124023 122407
2 ANKARA 629407 0 211768 133508 108040 116190 137718 90680 80743 75770 103746 85609 78763 79168 66620 75962 67619 62973 55129 59729 39176 53401 47505 44939 44354
3 İZMİR 524138 209674 0 111178 89970 96757 114685 75514 67239 63097 86394 71291 65590 65927 55477 63257 56310 52441 45908 49740 32624 44470 39560 37423 36935
4 BURSA 324172 129681 109070 0 55645 59843 70931 46704 41586 39025 53434 44093 40566 40775 34312 39124 34827 32434 28394 30763 20177 27504 24467 23146 22844
5 ANTALYA 260724 104299 87722 55304 0 48130 57048 37563 33447 31387 42975 35463 32627 32794 27596 31466 28010 26086 22836 24742 16228 22121 19678 18615 18373
6 ADANA 280943 112387 94525 59593 48225 0 61472 40476 36041 33821 46308 38213 35157 35337 29736 33906 30183 28109 24607 26661 17487 23836 21204 20059 19798
7 KONYA 334738 133907 112625 71003 57459 61793 0 48226 42942 40297 55175 45530 41888 42104 35430 40399 35962 33491 29319 31766 20835 28400 25264 23900 23589
8 ŞANLIURFA 217920 87176 73320 46224 37407 40228 47682 0 27956 26234 35920 29641 27270 27410 23066 26300 23412 21803 19087 20680 13564 18489 16448 15559 15357
9 GAZİANTEP 193578 77438 65131 41061 33228 35735 42356 27889 0 23304 31908 26330 24224 24349 20489 23362 20797 19368 16955 18370 12049 16424 14610 13821 13641
10 KOCAELİ 181439 72582 61046 38486 31145 33494 39700 26140 23276 0 29907 24679 22705 22822 19204 21897 19493 18153 15892 17218 11293 15394 13694 12955 12786
11 İÇEL 250103 100050 84149 53051 42931 46169 54724 36033 32084 30108 0 34018 31297 31458 26472 30184 26869 25023 21906 23734 15567 21220 18877 17857 17624
12 DİYARBAKIR 205484 82201 69136 43587 35272 37933 44961 29605 26360 24737 33870 0 25714 25846 21749 24799 22076 20559 17998 19500 12790 17434 15509 14671 14480
13 HATAY 188741 75503 63503 40035 32398 34842 41298 27192 24213 22721 31110 25672 0 23740 19977 22779 20277 18884 16532 17911 11748 16014 14245 13476 13300
14 MANİSA 189729 75899 63836 40245 32568 35024 41514 27335 24339 22840 31273 25806 23742 0 20082 22898 20383 18983 16618 18005 11809 16097 14320 13546 13370
15 KAYSERİ 159179 63678 53557 33765 27324 29385 34830 22933 20420 19162 26238 21651 19919 20022 0 19211 17101 15926 13942 15106 9908 13505 12014 11365 11217
16 SAMSUN 181906 72769 61204 38585 31225 33580 39802 26208 23336 21898 29984 24742 22763 22880 19254 0 19543 18200 15933 17263 11322 15434 13729 12988 12819
17 BALIKESİR 161607 64649 54374 34279 27740 29833 35361 23283 20732 19455 26638 21981 20223 20327 17105 19504 0 16169 14155 15336 10059 13711 12197 11539 11388
18 KAHRAMANMARAŞ 150335 60140 50581 31889 25806 27752 32894 21659 19286 18098 24780 20448 18813 18909 15912 18144 16151 0 13168 14266 9357 12755 11347 10734 10594
19 VAN 131363 52550 44198 27864 22549 24250 28743 18926 16852 15814 21653 17868 16439 16523 13904 15854 14113 13143 0 12466 8176 11145 9915 9379 9257
20 AYDIN 142482 56998 47939 30223 24458 26302 31176 20528 18278 17152 23485 19380 17830 17922 15081 17196 15307 14255 12480 0 8868 12089 10754 10173 10041
21 TEKİRDAĞ 92997 37202 31290 19726 15963 17167 20348 13398 11930 11195 15329 12649 11638 11697 9843 11224 9991 9304 8145 8825 0 7890 7019 6640 6553
22 DENİZLİ 127195 50883 42796 26980 21834 23480 27831 18325 16317 15312 20966 17301 15917 15999 13463 15351 13665 12726 11141 12071 7917 0 9600 9082 8963
23 SAKARYA 112992 45201 38017 23967 19395 20859 24723 16279 14495 13602 18625 15369 14140 14212 11960 13637 12139 11305 9897 10723 7033 9587 0 8068 7962
24 MUĞLA 106824 42734 35942 22659 18337 19720 23374 15390 13704 12860 17608 14530 13368 13436 11307 12892 11476 10688 9357 10137 6649 9063 8063 0 7528
25 ESKİŞEHİR 105418 42171 35468 22361 18095 19460 23066 15188 13523 12691 17376 14339 13192 13260 11158 12723 11325 10547 9233 10004 6561 8944 7956 7527 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
İSTANBULANKARA İZMİR BURSA ANTALYA ADANA KONYA ŞANLIURFAGAZİANTEPKOCAELİ İÇEL DİYARBAKIRHATAY MANİSA KAYSERİ SAMSUN BALIKESİRKAHRAMANMARAŞVAN AYDIN TEKİRDAĞDENİZLİ SAKARYA MUĞLA ESKİŞEHİR

1 İSTANBUL 0.0000 0.0134 0.0199 0.0136 0.0501 0.0604 0.0362 0.1041 0.1042 0.0109 0.0671 0.1191 0.1072 0.0499 0.0867 0.0725 0.0435 0.1241 0.2219 0.0857 0.0252 0.0908 0.0233 0.1304 0.0556
2 ANKARA 0.0148 0.0000 0.0564 0.0590 0.1038 0.0870 0.0386 0.1842 0.1719 0.0931 0.0960 0.2197 0.1783 0.1461 0.0990 0.1137 0.1616 0.1942 0.4631 0.2082 0.3079 0.1842 0.1324 0.2854 0.1083
3 İZMİR 0.0222 0.0569 0.0000 0.0597 0.1022 0.1920 0.0991 0.3397 0.3395 0.1484 0.2131 0.4119 0.3433 0.0113 0.3156 0.3253 0.0634 0.4274 0.7937 0.0539 0.3192 0.1039 0.2507 0.1262 0.2300
4 BURSA 0.0155 0.0607 0.0609 0.0000 0.1990 0.2884 0.1416 0.5210 0.5172 0.0697 0.3199 0.6000 0.5226 0.1446 0.4153 0.3942 0.0894 0.6129 1.1685 0.2963 0.3832 0.3276 0.1340 0.4820 0.1345
5 ANTALYA 0.0573 0.1076 0.1048 0.2002 0.0000 0.2391 0.1168 0.4946 0.4710 0.4027 0.2346 0.6286 0.4734 0.2691 0.4625 0.6278 0.3755 0.5881 1.3165 0.2867 1.0877 0.2069 0.6036 0.3467 0.4759
6 ADANA 0.0689 0.0899 0.1966 0.2896 0.2386 0.0000 0.1194 0.1747 0.1179 0.5048 0.0307 0.2822 0.1120 0.5153 0.2309 0.4434 0.6115 0.1365 0.7542 0.6907 1.2630 0.6635 0.7692 0.8954 0.7166
7 KONYA 0.0412 0.0397 0.1009 0.1414 0.1159 0.1188 0.0000 0.2989 0.2699 0.2850 0.1301 0.3981 0.2693 0.2610 0.1769 0.3282 0.3125 0.3337 0.8595 0.3512 0.7918 0.3013 0.4244 0.4797 0.2955
8 ŞANLIURFA 0.1195 0.1916 0.3499 0.5264 0.4967 0.1758 0.3023 0.0000 0.1011 0.9055 0.2365 0.1252 0.2518 0.9223 0.4381 0.6555 1.0904 0.2052 0.6018 1.2325 2.1208 1.2380 1.3979 1.6089 1.3844
9 GAZİANTEP 0.1199 0.1792 0.3505 0.5238 0.4741 0.1189 0.2736 0.1013 0.0000 0.8982 0.1777 0.2483 0.1668 0.9223 0.3553 0.6408 1.0917 0.0852 0.8440 1.2336 2.1530 1.2216 1.3803 1.6068 1.3514
10 KOCAELİ 0.0126 0.0972 0.1534 0.0707 0.4059 0.5098 0.2893 0.9088 0.8992 0.0000 0.5661 1.0478 0.9255 0.3777 0.7108 0.5895 0.2994 1.0621 1.9801 0.6874 0.4437 0.7207 0.0557 1.0713 0.3532
11 İÇEL 0.0768 0.0995 0.2188 0.3222 0.2349 0.0308 0.1311 0.2358 0.1767 0.5623 0.0000 0.3589 0.1713 0.5736 0.2539 0.5076 0.6807 0.2101 0.9121 0.7237 1.4094 0.6909 0.8564 0.9261 0.7956
12 DİYARBAKIR 0.1370 0.2288 0.4247 0.6070 0.6320 0.2843 0.4031 0.1254 0.2480 1.0453 0.3604 0.0000 0.4114 1.1218 0.5613 0.6810 1.3245 0.3701 0.4319 1.4974 2.4136 1.5258 1.6181 1.9593 1.6149
13 HATAY 0.1235 0.1860 0.3546 0.5295 0.4767 0.1130 0.2731 0.2525 0.1669 0.9248 0.1723 0.4121 0.0000 0.9329 0.4635 0.7441 1.1044 0.1922 1.1102 1.2480 2.2152 1.2336 1.4215 1.6251 1.3628
14 MANİSA 0.0575 0.1524 0.0116 0.1465 0.2710 0.5199 0.2648 0.9249 0.9226 0.3774 0.5770 1.1235 0.9328 0.0000 0.8533 0.8825 0.1386 1.1613 2.1703 0.1787 0.9010 0.2639 0.6408 0.3882 0.6077
15 KAYSERİ 0.1001 0.1036 0.3269 0.4220 0.4671 0.2337 0.1800 0.4406 0.3565 0.7124 0.2562 0.5638 0.4648 0.8559 0.0000 0.4852 1.0117 0.3535 1.3577 1.1480 1.8836 1.0917 1.0727 1.5604 0.9964
16 SAMSUN 0.0835 0.1187 0.3362 0.3997 0.6327 0.4477 0.3331 0.6578 0.6415 0.5895 0.5110 0.6826 0.7446 0.8832 0.4841 0.0000 0.9486 0.7319 1.2761 1.2208 1.5827 1.1971 0.8846 1.6528 1.0488
17 BALIKESİR 0.0503 0.1691 0.0656 0.0908 0.3791 0.6186 0.3178 1.0964 1.0951 0.3000 0.6866 1.3302 1.1074 0.1390 1.0114 0.9505 0.0000 1.3786 2.5596 0.3940 0.7831 0.4331 0.5241 0.7005 0.5378
18 KAHRAMANMARAŞ0.1435 0.2033 0.4431 0.6234 0.5945 0.1382 0.3398 0.2066 0.0855 1.0653 0.2122 0.3721 0.1929 1.1658 0.3538 0.7342 1.3802 0.0000 1.1683 1.5596 2.5960 1.5407 1.6320 2.0306 1.5864
19 VAN 0.2570 0.4858 0.8244 1.1907 1.3333 0.7653 0.8767 0.6069 0.8492 1.9898 0.9228 0.4351 1.1164 2.1828 1.3615 1.2825 2.5672 1.1704 0.0000 2.9096 4.4614 3.0213 3.0968 3.8937 3.2523
20 AYDIN 0.0991 0.2182 0.0559 0.3016 0.2900 0.7001 0.3578 1.2416 1.2398 0.6901 0.7314 1.5067 1.2537 0.1795 1.1499 1.2256 0.3947 1.5608 2.9065 0.0000 1.4765 0.2149 1.1524 0.2007 0.9920
21 TEKİRDAĞ 0.0293 0.3243 0.3328 0.3920 1.1057 1.2864 0.8107 2.1470 2.1744 0.4476 1.4313 2.4404 2.2362 0.9096 1.8959 1.5966 0.7884 2.6107 4.4783 1.4837 0.0000 1.7458 0.8226 2.2795 1.4537
22 DENİZLİ 0.1052 0.1933 0.1079 0.3340 0.2097 0.6736 0.3075 1.2490 1.2296 0.7245 0.6993 1.5376 1.2411 0.2655 1.0951 1.2036 0.4346 1.5442 3.0226 0.2153 1.7399 0.0000 1.0761 0.3292 0.8213
23 SAKARYA 0.0270 0.1391 0.2609 0.1368 0.6124 0.7820 0.4337 1.4124 1.3913 0.0561 0.8680 1.6329 1.4321 0.6457 1.0776 0.8907 0.5266 1.6380 3.1025 1.1558 0.8210 1.0776 0.0000 1.6512 0.4713
24 MUĞLA 0.1513 0.3001 0.1314 0.4923 0.3520 0.9108 0.4905 1.6266 1.6206 1.0792 0.9392 1.9784 1.6382 0.3913 1.5684 1.6650 0.7043 2.0393 3.9031 0.2014 2.2764 0.3299 1.6522 0.0000 1.3751
25 ESKİŞEHİR 0.0646 0.1139 0.2395 0.1374 0.4832 0.7290 0.3022 1.3998 1.3632 0.3559 0.8070 1.6309 1.3740 0.6127 1.0017 1.0568 0.5408 1.5934 3.2606 0.9956 1.4519 0.8231 0.4717 1.3753 0.0000
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Appendix D. Fixed Hub Cost for 25 cities. 

 
 

 

 

 

1 229.729357 İSTANBUL
2 310.437927 ANKARA
3 247.333341 İZMİR
4 296.378151 BURSA
5 326.460914 ANTALYA
6 478.957924 ADANA
7 385.034994 KONYA
8 646.840153 ŞANLIURFA
9 493.975979 GAZİANTEP
10 499.616196 KOCAELİ
11 369.931717 İÇEL
12 514.788453 DİYARBAKIR
13 530.581113 HATAY
14 453.520925 MANİSA
15 403.291577 KAYSERİ
16 554.392218 SAMSUN
17 361.801799 BALIKESİR
18 625.805861 KAHRAMANMARAŞ
19 566.806027 VAN
20 549.690005 AYDIN
21 460.064483 TEKİRDAĞ
22 346.902826 DENİZLİ
23 630.034092 SAKARYA
24 447.460135 MUĞLA
25 378.539703 ESKİŞEHİR
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