
 
 

GALATASARAY UNIVERSITY 

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING 

 

 

LEARNING ENABLED NEWSVENDOR PROBLEM 

 

 

 

 

Gözde KÖYBAŞI 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

Jul 2020 



 
 

LEARNING ENABLED NEWSVENDOR PROBLEM 

(ÖĞRENME TABANLI GAZETE SATICISI PROBLEMİ) 

 
 
 
 
 

by 
 
 

G ö z d e  K Ö Y B A Ş I ,  B . S .  
 
 

Thesis 
 
 

Submitted in Partial Fulfillment 

of the Requirements 

for the Degree of 

 
 
 

MASTER OF SCIENCE 

in 

INDUSTRIAL ENGINEERING 

in the 

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING 

of 

GALATASARAY UNIVERSITY 

 
 
 

Jul 2020 



 

    

This is to certify that the thesis entitled 

 

 

LEARNING-ENABLED NEWSVENDOR PROBLEM 
 
 
 
 

prepared by Gözde KÖYBAŞI in partial fulfillment of the requirements for the degree 
of Master of Science in Industrial Engineering at the Galatasaray University is 
approved by the  
 
 
 
Examining Committee: 
 
Doç. Dr. Sezi ÇEVİK ONAR 
Department of Industrial Engineering 
İstanbul Technical University     ------------------------- 
 
Prof. Dr. Temel ÖNCAN 
Department of Industrial Engineering 
Galatasaray University      ------------------------- 
 
Doç. Dr. M. Ebru ANGÜN (Supervisor) 
Department of Industrial Engineering 
Galatasaray University      ------------------------- 
 
 

 
Date:   ----------------------  



 

 
 

iii 

ACKNOWLEDGEMENTS 

 

 

 

I would like to express my sincere gratitude to my advisor Doc. Dr Ebru ANGÜN who 

has helped tremendously in carrying out this research. Her exceptional guidance, 

extensive knowledge, and high motivation allow me to keep progressing throughout the 

study. 

 

I would also like to take this opportunity to declare my profound appreciation to my 

family for providing full support and inspiration in each and every moment of my life. 

 

Jul 2020 

Gözde KÖYBAŞI



 

   

TABLE OF CONTENTS 

 

 

 

LIST OF SYMBOLS ...................................................................................................... v 

LIST OF FIGURES ....................................................................................................... vi 

LIST OF TABLES ........................................................................................................ vii 

ABSTRACT .................................................................................................................  viii 

ÖZET .............................................................................................................................. ix 

1. INTRODUCTION ...................................................................................................... 1 

1.1 Classical Newsvendor Problem and Its Extensions ............................................... 1 

1.2 Binary Choice Modelling ....................................................................................... 5 

1.3 Estimation Methods  ............................................................................................ 10 

2. LITERATURE REVIEW ........................................................................................ 12 

3. PROBLEM FORMULATION ................................................................................ 16 

3.1 Statistical Learning .............................................................................................. 17 

3.2 Optimization ......................................................................................................... 20 

4. BENCHMARK PROBLEMS .................................................................................. 22 

4.1 Robust Solution of the Newsvendor Problem ...................................................... 22 

4.2 Sample Average Approximation Solution of the Newsvendor Problem ............. 23 

5. NUMERICAL EXAMPLES .................................................................................... 24 

4.1 Normal Distributed Demands .............................................................................. 24 

4.2 Gamma Distributed Demands .............................................................................. 26 

4.3 Lognormal Distributed Demands ......................................................................... 28 

6. CONCLUSION ......................................................................................................... 31 

6.1 Thesis Contribution .............................................................................................. 31 

6.2 Limitations and Future Work ............................................................................... 32 

REFERENCES ............................................................................................................. 33 

BIOGRAPHICAL SKETCH ....................................................................................... 35 

 

 

 

 



 

 

LIST OF SYMBOLS 

 

 

 

NV : Newsvendor 
SAA : Sample Average Approximation 
MLE : Maximum Likelihood Estimator



 

 
 

LIST OF FIGURES 

 

 

 

Figure 3.1: Proposed methodology process ................................................................... 17 

Figure 5.1: Normal distributed demands and their corresponding prices ...................... 25 

Figure 5.2: Ordering quantities at different levels of the critical ratio: normal demands

 ........................................................................................................................................ 26 

Figure 5.3: Gamma distributed demands and their corresponding prices ..................... 27 

Figure 5.4: Ordering quantities at different levels of the critical ratio: gamma demands

 ........................................................................................................................................ 27 

Figure 5.5: Lognormal distributed demands and their corresponding prices ................ 29 

Figure 5.6: Ordering quantities at different levels of the critical ratio: lognormal 

demands .......................................................................................................................... 29



 

 
 

LIST OF TABLES 

 

 

 

Table 2.1: Literature comparison ................................................................................... 14 

Table 5.1: Order quantities at different critical ratios: normal demands ....................... 26 

Table 5.2: Order quantities at different critical ratios: gamma demands ....................... 28 

Table 5.3: Order quantities at different critical ratios: lognormal demands .................. 30 

 

 
 
 
 
 
 



 

 
 

ABSTRACT 

 

 

 

 The newsvendor model is one of the most popular analytical models in decision science 

and operations management. The standard newsvendor problem is a single period 

inventory management problem in which the newsvendor has to decide the optimal 

stocking quantity for a single product. With the consideration of overstocking and 

understocking costs, the optimal quantity can be found that minimizes the newsvendor's 

total expected cost. Because of its simple structure, the newsvendor model has been 

widely applied to analyze several issues in supply chain systems involving perishable 

and seasonal products since the mid-1980s. 

The standard newsvendor problem assumes the knowledge of the demand distribution 

so that the optimal stocking quantity is given by the critical fractile. In practice, 

however, this distribution is unknown; yet, there usually exist enormous historical 

demand data and demand related data. Then, the complexity of optimal ordering 

decision not only comes from coping with the ambiguity of demand, but also from 

incorporating a vast range of demand related information available into the decision 

process in order to make an enhanced decision.  

This research considers a data-driven newsvendor problem for a single product and a 

single period, where historical data of aggregated demands and attributes that can be 

used to leverage the demand distribution are available. Distribution of demand is 

assumed to be unknown except for its support. By modelling probability of buying the 

product through binary logit model, the demand process is approximated by a binomial 

process, and the resulting newsvendor problem is solved as a linear programming 

problem. Within the framework of this research, the robust approach is adopted as a 

benchmark problem, along with the Sample Average Approximation (SAA) approach. 

The separate numerical experiments for normal, gamma, and lognormal distributions 

show similarities with the well-known SAA-based optimization method. 



 

 
 

ÖZET 

 

 

 

Gazete satıcısı problemi, oldukça geniş bir uygulama alanına sahip olmakla birlikte 

temelde kolay bozulabilen ürünler için bir envanter yönetimi problemidir. Belirlenecek 

sipariş miktarı; müşteri talebini karşılayacak derecede yüksek, aynı zamanda gereğinden 

fazla stok tutulmasının önüne geçecek derecede düşük olmalıdır. Bu durumda elde 

bulundurmama maliyeti ile envanter maliyeti eş zamanlı olarak dikkate alınmalıdır. 

Gazete satıcısı problemi de bu iki maliyet türünü dengeleyen bir sipariş miktarı 

belirlemeyi amaçlar. Problemin literatürdeki çözümü, genellikle talep dağılımının 

bilindiği varsayımına dayanır. Ancak pratikte karar verici, talep dağılımı bilgisi yerine 

geçmişe dönük talep verilerini elinde bulundurur. Bu tür bir sipariş miktarı kararının 

karmaşıklığı yalnızca talep belirsizliğiyle başa çıkmaktan değil, talebe ilişkin mevcut 

bilgilerin karar sürecine olabildiğince dahil edilmeye çalışılmasından da kaynaklanır. 

Bu çalışma tek bir ürün ve tek bir dönem için gazete satıcısı problemini ele almakta, 

talep dağılımını tahmin ederken geçmiş talep ve niteleyici faktör verilerini dikkate 

almaktadır. Talebin alabileceği maksimum değer dışında, talep dağılımı ile ilgili 

herhangi bir bilgi olmadığı varsayılmıştır. Ürünü satın alma olasılığının ikili logit 

modeli kullanılarak modellenmesiyle, talep binom dağılımına yaklaştırılmış ve ortaya 

çıkan gazete satıcısı problemi doğrusal bir programlama modeli olarak çözülmüştür. Bu 

çalışma çerçevesinde, denektaşı problemi olarak Örneklem Ortalaması Yakınsama 

(SAA) yaklaşımının yanı sıra, robust yöntemi de benimsenmiştir. Normal, gama ve 

lognormal dağılımları için ayrı ayrı yapılan sayısal deneyler, elde edilen sonuçların 

Örneklem Ortalaması Yakınsama (SAA) yaklaşımı sonuçlarıyla benzerlik taşıdığını 

göstermiştir. 

 



 

 
 

1. INTRODUCTION 

 

 

 

The newsvendor problem, otherwise known as the newsboy problem, is a widely 

acknowledged problem of stochastic inventory management. Initially introduced by 

Whitin (1955) to literature, the problem focuses on determining the order quantity of a 

perishable product that maximizes the expected profit and by all means, minimizes the 

expected cost simultaneously. Since the ordering is deemed to have completed prior to 

the actual selling period, the customer demand is uncertain during the ordering process. 

Considering the fact that an unsold perishable product loses its value in whole or in part 

over time, the vendor confronts a situation in which there should be a balance between 

disposal of an unsold product for a salvage value and miss of a sales opportunity. 

Facing demand uncertainty, the trade-off is defined to be between the risks of 

overstocking and understocking (Gallego & Moon, 1993). Therefore, the order quantity 

needs to be not only high enough to meet the entire demand but also low enough to 

avoid having excessive unsold inventory.   

 

1.1 Classical Newsvendor Problem and Its Extensions 

 

In the classical newsvendor problem, a decision maker plans to sell a product over a 

single period to meet a stochastic demand 𝐷	(Zipkin, 2000). Thus, the scope of the 

problem at its simplest form consists of a random demand of a single perishable product 

for a single selling period. The decision maker now needs to commit to a non-negative 

order quantity 𝑞 before observing the actual demand at the end of the sales period. 

 

The basic assumption of the newsvendor problem is that the demand distribution 𝐹 is 

known. It is assumed that uncertain demand 𝐷 is a random variable with a known 
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probability distribution function. The goal of the decision maker is to choose an order 

quantity 𝑞∗ that minimizes the expected total cost, which can be formulated as in Eq. 

(1): 

 
 
 min

)*+
𝐸[𝐶(𝑞, 𝐷)] (1) 

   
 
The decision maker incurs an under-stocking cost 𝑐4 for each unit of unsatisfied 

demand, and an overstocking cost 𝑐5 for each unsold unit of products. The expected 

cost can be reformulated as the sum of the expected overage (overstocking) cost and the 

expected underage (understocking) cost. Considering that the overage cost 𝑐5	arises 

when the demand is less than the order quantity, and the underage cost 𝑐4 arises if not 

so, the problem can be represented as in Eq. (2). The following random quantities 

(𝐷 − 𝑞)7	and (𝑞 − 𝐷)7 are the total units of the unsatisfied demand and units of unsold 

product at the end of the period, respectively shown in Eq. (3.a) and Eq. (3.b). 

 

 min
)*+

𝐸[𝐶(𝑞, 𝐷)] = min
)*+

𝑐5	𝐸[(𝑞 − 𝐷)7] +	𝑐4	𝐸[(𝐷 − 𝑞)7] (2) 

 
 
where 

 
 (𝑞 − 𝐷)7 = 𝑚𝑎𝑥	{𝑞 − 𝐷, 0}  (3.a) 

 
 (𝐷 − 𝑞)7 = 𝑚𝑎𝑥	{𝐷 − 𝑞, 0}   (3.b) 

   
 
The optimal order quantity solution 𝑞∗	of the classic newsvendor problem is the 

formulated as in Eq. (4) and Eq. (5), where Eq. (5) is called as critical fractile solution, 

that are equivalent to each one another. 

 
 
 𝐹(𝑞∗) = 	 @A

@A7	@B
    (4) 

 

 𝑞∗ = 	𝐹CD E @A
@A7	@B

F   (5) 



 
 

 
 

3 

where 𝐹 and  𝐹CD represent the cumulative distribution function of demand and its 

inverse respectively. According to the probability theory, on the other hand, a 

cumulative distribution function is non-decreasing and right continuous by definition 

(Limaye, 2004). Due to the fact that a function is not necessarily strictly increasing, not 

every cumulative distribution function is invertible. Hence, a pseudo-inverse function 

that is valid under all circumstances is defined (Santambrogio, 2015). In that case, the 

optimal order quantity 𝑞∗ is the smallest 𝑞 that satisfies the condition in Eq. (4), which 

leads us to obtain Eq. (6). 

 
 𝑞∗ = 𝑖𝑛𝑓 J𝑞: 𝐹(𝑞) ≥ @A

@A7@B
M.   (6) 

 
 
The primary problem with the classical newsvendor problem is that the probability 

distribution of demand is assumed to be known. Nevertheless, 𝐹 is typically unknown in 

real-life cases. Besides the absence of sufficient information, it is considered hard to 

identify the true distribution of the customer demand in an accurate manner. In fact, 

even if the demand data are presumed to conform to a certain probability distribution, 

reliable results cannot be acquired since the demand for perishable products is 

inherently fluctuating most of the time. Owing to this high degree of unforeseeability, 

data coming from a specific demand distribution can easily be misleading for perishable 

products (Bertsimas & Thiele, 2005). In order to overcome such complication, 

distribution free newsvendor models, in which the distribution of the demand remains 

unknown, are established. 

 

As it is stated previously, in most of the practical cases, 𝐹 is unknown; yet, there can be 

some prior knowledge ℐ about the demand and its distribution such as population mean, 

variance, range, median, skewness, unimodality, etc., and/or there can exist 𝑁 demand 

observations 𝒯R = {𝑑D, … , 𝑑R}. As one of the distribution free approaches, the data-

driven newsvendor problem is based on the notion that demand data comes from an 

unknown distribution. In this problem, actual past demand data coming from 𝑁 different 

demand observations are used instead as input. 

 



 
 

 
 

4 

The objective remains unchanged, but the expected cost from the classical newsvendor 

problem turns into a formulation of an estimated expected cost as in Eq. (7). The new 

sets of information ℐ and 𝒯R are introduced to Eq. (2) to obtain and solve a reasonable 

substitute 

 
 
 min

)*+
𝐸[𝐶(𝑞, 𝑑)	|	ℐ] or  min

)*+
𝐸[𝐶(𝑞, 𝑑)	|	𝒯R]  (7) 

 
 
where 𝒯R is called the training set and the dependence on 𝒯R is called data-driven.   

 

The estimated expected cost 𝐸𝐶V(𝑞, 𝐷)	can be simply redefined as sample average 

approximation of the traditional expected cost 𝐸𝐶(𝑞)	as indicated below in Eq. (8). 

 
 
 𝐸𝐶V (𝑞, 𝑑) 	= 	 D

W
∑ 	[𝑐5	(𝑞 − 𝑑Y)7 +	𝑐4	(𝑑Y − 𝑞)7]W
YZD   (8) 

 
 
where 

 
 
 (𝑞 − 𝑑)7 = 	max

	
	{ 𝑞 − 𝑑, 0	}  (9.a) 

 
 (𝑑 − 𝑞)7 = 	max

	
	{ 𝑑 − 𝑞, 0	}  (9.b) 

 
 
where each of the realization 𝑑] is given an empirical probability of occurrence 1/N. 

The optimal order quantity decision based on sample average approximation of the data-

driven newsvendor problem is given in Eq. (10). 

 
 

 𝑞aW = 	 inf	 E	𝑞:		𝐹
cW(𝑞) ≥ 	

@A
@A7	@B

F  (10) 

 
 
where 𝐹cW(𝑞)	represents the empirical cumulative distribution function of past demand 

data obtained from 𝑁 observations. 
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As a matter of fact, the aforementioned data-driven newsvendor model mostly falls 

short of reflecting more complex, real-world situations since multiple forms of data 

regarding demand can be gathered alongside with their value. The decision maker may 

have the opportunity to benefit from a wider range of information during the ordering 

decision-making process (Rudin and Vahn, 2019). Demand-related information may 

include price of the good, season at the time, sales region of the good, sales channel of 

the good, and even consumer profile regarding both demographic and socioeconomic 

traits such as age, gender, education, occupation, income. 

 

The featurized newsvendor problem assumes to have a data set of the form 𝒯R =

{(𝑑D, 𝒙D), … , (𝑑R, 𝒙R)}, where 𝑑W denotes a realization of the random demand and 𝒙W is 

the vector of attributes represented as 𝑥W 	= [𝑥WD, 𝑥We, … , 𝑥Wf	] with each containing 𝐾 

attributes, which can be used to leverage demand distribution or order quantity for 𝑛 =

1,… ,𝑁.  

 

In this study, a newsvendor problem has been constructed by taking features (in other 

words attributes) of demand into account, similarly to the abovementioned featurized 

newsvendor problem. For the demand, its conditional probability is modelled by using 

binary choice modelling, which is explained in the next section. 

 

1.2 Binary Choice Modelling 

 

Discrete choice analysis concerns with the modelling of an individual’s selection 

process, which is required to be made among mutually exclusive alternatives. The 

analysis is based on the principle that the individual as the decision-maker chooses the 

alternative that provides her maximum utility. As the utility of each alternative is treated 

as a random variable, it is assumed that the probability of an alternative to be chosen 

corresponds to the probability that the relevant alternative has the highest utility 

compared to remaining alternatives. 

  

In case that a discrete choice model is composed of merely two available alternatives, 

the model is called as a binary choice model. In the circumstances, the probability of 
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any alternative 𝑖 to be preferred to any alternative 𝑗, both included in the choice set 𝐴W, 

by the individual 𝑛 is demonstrated as in Eq. (11). 

 
 
 𝑃(𝑖	|	𝐴W) = 	𝑃k𝑈YW ≥ 𝑈mW, ∀𝑗 ∈ 𝐴Wp  (11) 

 
 
The probability of choosing alternative 𝑗 instead can be therefore demonstrated as in Eq. 

(12). 

 
 
 (𝑗	|	𝐴W) = 	1	 − 	𝑃(𝑖	|	𝐴W)                                               (12) 

 
 
Reminding that 𝑈YW and 𝑈mW are random variables, each utility function can be divided 

into two main components: deterministic component (𝑉) and random component (𝜀) as 

the following. 

 
 
 𝑈YW = 	𝑉YW +	𝜀YW   (13.a) 

 
 𝑈mW = 	𝑉mW +	𝜀mW   (13.b) 

 
 
𝑉YW and 𝑉mW are named as systematic, non-random components possibly consisting of 

deterministic functions, which yield the same results as long as inputs remain the same. 

𝜀YW and 𝜀mW , on the other hand, are considered random. 

Component-wise, the probability of selecting alternative 𝑖 over alternative 𝑗 can be 

reformulated as in Eq. (14). 

 
 
 𝑃	k𝑈Ym ≥ 𝑈mWp = 𝑃k𝑉YW +	𝜀YW ≥ 𝑉mW +	𝜀mWp 

																												= 	𝑃k𝜀mW −	𝜀YW ≤ 𝑉YW −	𝑉mWp                                               
(14) 

 
 
By investigating the new version of the probability formulation of alternative 𝑖 selection 

from above, it can be deducted that the significant point is whether the difference 

between random components is smaller than the one between deterministic components 
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or not, rather than the numerical values of these components. Hence, binary choice 

models can be set up by designating purely the differences and neglecting separate 

component values.  

 

Deterministic components can be identified by a vector of attributes 𝑥 and a vector of M 

unknown regression coefficients, namely 𝛽, where 𝛽u = 	 [𝛽D, 𝛽e, … , 𝛽f]. Most of the 

time, deterministic functions are established in the manner that they can be linear in 

vector of parameters 𝛽 in order to ease the estimation of parameters. 

 

Given the sub-components, deterministic components can be specified as follows. 

 
 
 𝑉YW = 𝑉(𝑥YW) = 	𝛽u𝑥YW = 	𝛽D𝑥YWD +	𝛽e𝑥YWe + ⋯+	𝛽f𝑥YWf                                (15.a) 

 
 𝑉mW = 𝑉k𝑥mWp = 	𝛽u𝑥mW = 	𝛽D𝑥mWD +	𝛽e𝑥mWe + ⋯+	𝛽f𝑥mWf                                (15.b) 

 
 

where 𝛽u stands for transpose of vector of parameters while 𝑥YW and 𝑥mW represent 

vectors of attributes for alternatives 𝑖 and 𝑗 respectively, under the acceptance that non-

random components are emphatically linear in variables and parameters. 

 

As regards to random components 𝜀YW and 𝜀mW that represent the combination of all 

unobserved attributes, different distribution assumptions result in different binary 

choice models. Widely used binary choice models include the linear probability model, 

the binary probit, and the binary logit models. 

 

Before examining the most frequently used distribution assumptions, let us define a 

random variable 𝜀W = 	 𝜀mW −	𝜀YW, which brings about a reformulation of the aforesaid 

probability function of choosing alternative 𝑖 over 𝑗. 

 
 
 𝑃	k𝑈Ym ≥ 𝑈mWp = 	𝑃k𝜀W ≤ 𝑉YW −	𝑉mWp                 (16) 
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In the linear probability model, it is simply assumed that the difference of random 

components 𝜀W = 	 𝜀mW −	𝜀YW is uniformly distributed along with the random components 

themselves. Its density function 𝑓(𝜀W) is defined within a range from −𝑀 to +𝑀, with 

𝑀 > 0. The probability function is obtained by the cumulative distribution function of 

𝜀W as indicated in Eq. (17). 

 
 

𝑃	k𝑈Ym ≥ 𝑈mWp = 	

⎩
⎪
⎨

⎪
⎧ 0, 𝑖𝑓	𝑉YW −	𝑉mW 	< 	−𝑀

~ 𝑓(𝜀W)𝑑𝜀W
���C	���

C�
= 	
𝑉YW −	𝑉mW + 𝑀

2𝑀 , 𝑖𝑓 −𝑀 ≤

1, 𝑖𝑓		𝑉YW −	𝑉mW 	> 	𝑀	

𝑉YW −	𝑉mW ≤ 𝑀 (17) 

 
 
At this point, it is important to mention that numerical value of the parameter M solely 

has influence on the scale of the utility function, so it can be arbitrarily determined. 

 

The binary probit model is based on the assumption that distributions of random 

components approach a normal distribution by using the central limit theorem. Both 

components of 𝜀YW and 𝜀mW conform to a normal distribution with means zero and 

standard deviations of 𝜎Y and 𝜎m, respectively. In that case, the difference 𝜀W follows a 

normal distribution with mean zero and a variance of 𝜎 with 𝜎 > 0, as shown in Eq. 

(18). 

 
 
 𝜀W 	≈ 𝑁(0, 𝜎e) ≈ 𝑁k0, 𝜎Ye +	𝜎me − 2𝜎Ymp  (18) 

 
 
where 𝜎Ym represents covariance between alternatives I and j. 

 

Recalling the probability density function of normal distribution by Eq. (19.a), the 

probability function 𝑃	k𝑈Ym ≥ 𝑈mWp is acquired by 𝜀W’s cumulative distribution function 

of standard normal distribution Φ as simplified in Eq. (19.b). 

 
 
 

𝑃	k𝑈Ym ≥ 𝑈mWp = 	~
1

√2𝜋𝜎

���C	���

C�
	𝑒
CD
e E

�
�F

�

𝑑𝜖 (19.a) 
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 																																								= 	Φ	 E���C	���
�

F = 	Φ	 ��
�k���C	���p

�
�	  (19.b) 

 
 
It is well-known that Eq. (19.a) has no explicit mathematical formulation. This time, the 

utility function is scaled according to reciprocal of variance D
�
, which can take an 

arbitrary value. 

 

Lastly, in the binary logit model, it is accepted that 𝜀W follows a logistic distribution. In 

addition to the logistic cumulative distribution function 𝐹(𝜀R) in Eq. (20), logistic 

density function 𝑓(𝜀R) is recollected in Eq. (21). 

 
 

 𝐹(𝜀W) = 	
D

D7	�����
		𝜇 > 0,−∞ < 𝜀W < +∞         (20) 

 
 𝑓(𝜀W) = 	

������

(D7	�����)�
   (21) 

 
 
Supposing that random components are logistically distributed, the related probability 

function for preferring alternative 𝑖 to alternative 𝑗 can be demonstrated as in Eq. (22). 

 
 
 𝑃	k𝑈Ym ≥ 𝑈mWp = 	

D

D7	���E�������F
	= 	 �����

�����7	�����
        (22) 

 
 
In the event of linearity of deterministic functions, the choice probability function can 

be presented in the following. 

 
 
 

𝑃	k𝑈Ym ≥ 𝑈mWp = 	
���

����

�������7	���
����

        (23) 

 
Since components’ differences are the main concern in the sense of finding probabilities 

of selection, the selection probabilities remain unchanged in case of an addition of a 

constant figure to both utility functions 𝑈YW and 𝑈mW. Within this context, any random 

components’ means 𝜇 that are not equal to zero are consumed by deterministic 
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components of the utility function. Therefore, there exist no discrepancy between 

altering the means of random components and adding (or subtracting) the equal quantity 

from deterministic component. From this point of view, it is worth emphasizing that the 

mean parameter 𝜇 cannot be evaluated separately from the deterministic parameter 𝛽 in 

terms of scaling. 

 

Within the scope of this study, the probability of selling the product (therefore the 

demand) has been modeled using a binary logit model. 

 

1.3 Estimation Methods 

 

Suppose that the data set 𝒯R is available. Then, there are two estimation techniques for 

the unknown vector of regression parameters 𝛽in Eq. (15a) and (15b). These techniques 

are maximum likelihood estimation and and least squares estimation. (Akiva & Lerman, 

1985). 

 

The likelihood function basically shows how probable for the sample data to be 

observed. Hence, the maximum likelihood estimator (MLE) corresponds to the 

parameter value that gives the highest probability of occurrence of the sample data. The 

general form of a likelihood function 𝐿 regarding a sample data of size 𝑁 is in Eq. (24). 

 
 
 𝐿(𝜷) = ∏ 𝑓(𝒚W|	𝛽, 𝒙W)R

WZD                                                        (24) 

 
 
Afterwards, the likelihood function or its natural logarithm (i.e., log-likelihood 

function) is maximized over the feasible parameter values.  

 

On the other hand, if a linear regression model is fitted to the sample data, least squares 

estimation is mostly preferred. Least square estimators are computed by finding the 

parameter value that gives the minimum sum of squares of differences between the 

expected values and the sample values. Its general formulation is given in Eq. (25). 
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 𝑓 = 	∑ (𝑦W − 𝐸[(𝒚W|	𝛽, 𝒙W)])eR
WZD      (25) 

 
 
where 𝐸[(𝒚W|	𝛽, 𝒙W)] represents the expected value of 𝑦W, which depends on both 

parameters 𝛽 and 𝒙W. Later on, a solution is found for 𝛽 by minimizing the function in 

(25). 

 

In this study, it is preferred to adopt the maximum likelihood estimation function, more 

specifically log-likelihood function, while estimating the unknown coefficients vector 

of choice probability function in a manner to maximize the likelihood of the historical 

demand data. 

 

To sum up, similar to the featurized newsvendor problem, we assume to have 𝒯R =

{(𝑑D, 𝒙D), … , (𝑑R, 𝒙R)} at the beginning, which we use to leverage the demand 

distribution through a logit model for a single product and a single period newsvendor 

model. Afterwards, the acquired integer programming problem is solved to identify the 

optimum ordering decision. 

 

We obtain the estimated order quantities for each level of critical ratio selected and 

compare these quantities with the ones obtained from various benchmark problems, 

namely the robust newsvendor as in Gallego & Moon (1993) and the SAA solutions. 

We find that our procedure gives very similar results to those of the SAA, and the order 

quantities are usually higher than the true order quantities. 

 

The remainder of this paper can be summarized as follows. The literature review, 

regarding the treatment of different newsvendor problem types and different solution 

approaches proposed for them, is introduced in Section 2. Section 3 is divided into two 

subsections, where Subsection 1 introduces the demand learning process and Subsection 

2 demonstrates the optimization problem. Section 4 presents the two benchmark 

problems, and the numerical results are given for normally, gamma, and lognormally 

distributed demand data separately in Section 5. The last section summarizes the 

findings of the study. 



 

 
 

2. LITERATURE REVIEW 

 

 

 

In recognition of perishable inventory management, the newsvendor problem is still 

being worked on intensely even though the widely recognized problem has been 

enquired for such a long time. Over the course of many years, the simple version has 

been expanded using various forms, including a data-driven approach (Janssen et al., 

2016). Various approaches to solve the problem defined in Eq. (7) have been adopted in 

the literature; the prominent studies are summarized below. 

 

Robust optimization addresses the distribution uncertainty by allowing the distribution 

to belong to a specified class of distributions, and applies a min-max approach to 

minimize the worst-case (i.e., maximum) expected cost over the allowed class of 

distributions. It is usually considered as a highly conservative approach since it takes 

the most unfavorable distribution of the demand into account while determining the 

order quantity. Scarf (1958), Gallego & Moon (1993), and Natarajan et al. (2008) all 

derive the min-max order quantity, which maximizes the worst-case expected 

newsvendor profit over a class of distributions for which population mean and variance 

of the demand are assumed to be known in the works of Scarf (1958) and Gallego & 

Moon (1993), and semi-variance (used as a measure of asymmetry) in addition to 

population mean and variance is assumed to be known in the paper of Natarajan et al. 

(2008). Gallego & Moon (1993) start by identifying a lower bound for the expected cost 

with the intention of pointing out the effect of parameters on the worst-case expected 

cost. They also expand Scarf’s study by adding a multitude of distinct cases. A recourse 

case, in which making an order for the second time subsequent to an observation of the 

true demand becomes an option, a fixed ordering cost case, in which both fixed cost and 

initial level of inventory considerations are introduced, a random yield case, in which a 

notion of ordering 𝑞 units of product randomly brings out 𝐺(𝑞) good units is promoted, 

and finally a multi-product case, in which more than one product is to be ordered under 
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budget constraints are all included in the study. By combining a measure of asymmetry 

to demand distribution, the work of Natarajan et al. (2008) differentiates itself from 

those of Scarf (1958) and Gallego & Moon (1993). Another expression of a lower 

bound for the expected cost is established, and the optimal solution is revealed to be less 

conservative than the solution of Scarf approach. 

 

Furthermore, Rahimian et al. (2019) considers the minimization of the worst-case 

expected cost over a class of distributions formed by those which are within a certain 

variation distance from a nominal distribution that is chosen as a reference distribution. 

Another robust approach is to minimize the worst-case regret over a class of 

distributions, where the regret is formulated as the opportunity cost from not making the 

optimal decision in Perakis and Roels (2008). The last paper assumes the presence of 

knowledge of some properties regarding the distribution’s shape such as range, 

unimodality, skewness to define the class of distributions. 

 

Another line of research which considers a data set 𝒯R is given in Levi et al. (2007) and 

Levi et al. (2015). Levi et al. (2007) derives sampling-based optimal policies based on 

𝒯R, and also establishes bounds on the number of samples required to guarantee that 

with high probability, the expected cost of the sample-based policies is sufficiently 

close to the expected cost of the true optimal policies. To solve the problem that is 

studied over both classical single period and multi period, SAA approach is adopted. 

Moreover, another study of Levi et al. (2015) improves the bounds of the study of Levi 

et al. (2007). These improved bounds allow to indicate the influence of the 

distribution’s mean range on the SAA result’s quality of approaching the true demand 

value. 

 

A further related line of research is called the “featurized newsvendor problem” treated 

in the works of He et al. (2012), Green et al. (2013), and Rudin & Vahn (2019). He et 

al. considered a nurse staffing decision in which number of staff needed to be assigned 

in each specialty is modelled using linear regression under the assumption that it is 

normally distributed. Green et al. (2013), however, approximates the absenteeism 

probability through a logit regression model while dealing with the nurse staffing 

problem. Hence, both demand and supply ambiguity are integrated within the study, and 
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additionally it involves a recourse option allowing to reregulate the supply after 

observation of the demand as in reordering. Rudin & Vahn (2019) approximates the 

order quantity through linear decision rule (i.e., a linear regression model), and solves 

the resulting problem through the Sample Average Approximation (SAA) method. A 

very similar problem to Rudin & Vahn (2019), namely quantile regression is dealt with 

in Huber et al. (2019) for the combination of demand estimation and inventory 

optimization. 

 

Literature review of methodology is presented in Table 2.1 with the inclusion of 

authors, dates on which stated articles are published, considered uncertain parameter, 

related methodologies, and known parameter(s). 

 
 

Table 2.1: Literature comparison 
 
 

Author NV Problem 
Type 

Uncertain 
Factor 

Given 
Factor(s) Methodology 

Scarf 
(1958) 

Distribution 
Free NV 

Demand 
Distribution 

Distribution 
Mean and 
Variance  

Min-max 
Approach 

Gallego 
& Moon 
(1993) 

Distribution 
Free NV 

Demand 
Distribution 

Distribution 
Mean and 
Variance 

Min-max 
Approach 

Levi et 
al. (2007) 

Data-driven 
NV 

Demand 
Distribution 

Data 
Samples 
from the 

Distribution 

SAA 

Natarajan 
et al. 

(2008) 

Distribution 
Free NV 

Demand 
Distribution 

Mean, 
Variance, 
and Semi-
variance  

Min-max 
Approach 

Perakis & 
Roels 
(2008) 

Distribution 
Free NV 

Demand 
Distribution 

Distribution 
Mean, 

Variance, 
Range, 

Unimodality, 
Skewness  

Min-max 
Regret 

Approach 

He et al. 
(2012) 

Featurized 
NV 

Demand 
Distribution 

Feature 
based 

Demand 

Linear 
Regression 
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Data 

Green et 
al. (2013) 

Featurized 
NV 

Supply and 
Demand 

Distribution 

Feature 
based 

Demand 
Data 

Logit 
Regression 

Levi et 
al. (2015) 

Data-driven 
NV 

Demand 
Distribution 

Data 
Samples 
from the 

Distribution 

SAA 

Huber et 
al. (2019) 

Featurized 
NV 

Demand 
Distribution 

Feature 
based 

Demand 
Data 

Quantile 
Regression 

Rahimian 
et al. 

(2019) 

Distribution 
Free NV 

Demand 
Distribution 

Variation 
Distance 
from a 

Nominal 
Distribution 

Min-max 
Approach 

Rudin & 
Vahn 
(2019) 

Featurized 
NV 

Demand 
Distribution 

Feature 
based 

Demand 
Data 

SAA 



 

 
 

3. PROBLEM FORMULATION 

 

 

 

In the following two subsections, we consider a data-driven newsvendor problem, 

where the demand distribution is unknown except its support given by {0, … , 𝐷¥¦�}. 

However, there are historical data of aggregated demands and attribute vectors that can 

be used to leverage the demand distribution. Let 𝒯R = {(𝑑D, 𝒙D), … , (𝑑R, 𝒙R)} denote 

this set of training data, where 𝑑W denotes the aggregated demand corresponding to the 

attribute vector 𝒙W for 𝑛 = 1,… ,𝑁. Then, our newsvendor formulation initially defined 

in Eq. (2) becomes 

 
 
 min

)*+
𝐸[𝑐4(𝐷 − 𝑞)7 + 𝑐5(𝑞 − 𝐷)7] ≅

min
)a¨*+

∑ 𝑤ª¥(𝛽«R¥, 𝒙¬)�
¥ZD [𝑐4(𝑑¥ − 𝑞)7 + 𝑐5(𝑞 − 𝑑¥)7]   

(26) 

 
 
where 𝒱� is a set of sampled data which does not overlap with 𝒯R, 𝒙¬ is the current 

vector of attribute available before the ordering decision 𝑞 is made, and 𝑤ª¥(𝛽«R¥, 𝒙¬) is 

an estimate of the conditional distribution of demands given 𝒙¬. The remaining notation 

in Eq.(26) is the same as in Eq.(2). Similar formulations to Eq. (26) for general 

stochastic optimization problems are given in Bertsimas and Kallus (2019), where the 

conditional probabilities are estimated through different machine learning techniques 

such as local regression, regression trees, and random forests. Moreover, the 

formulation on the right-hand-side of Eq.(26) is similar to the Sample Average 

Approximation solution of the newsvendor problem in, e.g., Ban and Rudin (2019) 

except that 𝑤ª¥(𝛽«R¥, 𝒙¬) is not 1/𝑀 for every realization 𝑚. 

 

Visual illustration of our open-loop integrated proposed methodology is indicated in 

Fig. 3.1. 
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Fig. 3.1: Proposed methodology process 
 
 
The initial step is the generation of demand related training data 𝒯R by using normal, 

gamma, and lognormal distributions, as it can be seen in each subsection of Numerical 

Examples. In the subsection named Statistical Learning, we detail how we obtain the 

random sample 𝒱� and how we estimate 𝑤ª¥(𝛽«R¥, 𝒙¬). Finally, in the subsequent 

subsection named Optimization, the formulation Eq. (26) is minimized to find an 

estimate 𝑞a� of the ordering decision. 

 

3.1 Statistical Learning 

 

For simplicity, we assume that there are two alternatives substitutable alternatives 𝑔+ 

and 𝑔D, where 𝑔+ and 𝑔D correspond to “buy-nothing” and “buy-product” alternatives, 

respectively. Each customer, independent of the others, maximizes her utility while 

selecting between 𝑔+ and 𝑔D; i.e., if her utility of 𝑔D exceeds the one of 𝑔+, then she 

prefers 𝑔D, and vice versa. In particular, it is assumed that the customer’s demand for 𝑔D 

is given by the following logit model 

 
 
 𝑝(𝑔D|𝒙W) =

�𝜷
�𝒙�

(D7�𝜷�𝒙�)
		𝑛 = 1,… ,𝑁  (27) 

 
 
where 𝑝(𝑔D|𝒙W) is the conditional probability of selecting 𝑔D given the attribute vector 

𝒙W = (𝑥WD, … , 𝑥Wf)u, 𝑇 denotes the transpose of a vector or a matrix, 𝜷 = (𝛽D, … , 𝛽f)u 

is the vector of unknown coefficients. Furthermore, the terms 𝜷u𝒙W and the zero in 

𝑒+ = 1 in Eq. (27) are the linear-in-parameters utilities of selecting 𝑔D and 𝑔+, 

respectively. The conditional probability of selecting 𝑔+ given 𝒙W is simply given by 

𝑝(𝑔+|𝒙W) = 1 − 𝑝(𝑔D|𝒙W). Akiva & Lerman (1985) is a general reference for discrete 

choice models such as the one in Eq. (27). 



 
 

 
 

18 

 

It is intended to estimate the 𝜷 so as to maximize the likelihood of the training set 𝒯R. 

Note that because of the independence of the customers and Eq.(27), the demand 

process is approximated by a binomial process for a given 𝒙W. Hence, the likelihood 

function is given by 

 
 
 𝐿(𝜷) = ∏ E±²³�

´�
F 𝑝(𝑔D|𝒙W)´�𝑝(𝑔+|𝒙W)±²³�C´�R

WZD    (28.a) 

 
 

														= ∏ E±²³�
´�

FR
WZD � �𝜷

�𝒙�

D7�𝜷�𝒙�
�
´�
E D
D7�𝜷�𝒙�

F
±²³�C´�

    (28.b) 

 
 
and the log-likelihood function 𝑙(𝜷) = ln	[𝐿(𝜷)], where 𝑙𝑛 is the natural logarithm, is 

given by 

 
 
 

𝑙(𝜷) = ·¸𝜏 + 𝑑W𝜷u𝒙W − 𝐷¥¦�	𝑙𝑛(1 + 𝑒𝜷
�𝒙�)º

R

WZD

 (29) 

 
 
where 𝜏 is the constant given by 𝜏 = ln(𝐷¥¦�!) − [ln(𝑑W!) + ln	((𝐷¥¦� − 𝑑W)!)]. 

Then, the maximum likelihood estimator 𝜷¼R is given by 

 
 
 𝜷¼R = argmax

𝜷
𝑙(𝜷).  (30) 

 
 
Corollary 1. The 𝜷¼R in Eq. (30) is estimated by solving the following system of 

nonlinear equations: 

 
 ¿À(𝜷)

¿�Á
= ∑ Â𝑑W𝑥WÃ − 𝐷¥¦�

��Á�𝜷
�𝒙�

D7�𝜷�𝒙�
ÄR

WZD 	=	0		for		k	=	1,	…,	K	 (31) 

 
 
Proof. We prove that the log-likelihood function 𝑙(𝜷) in Eq. (29) is concave so that an 

optimal 𝜷¼R in Eq. (30) is found by solving the Karush-Kuhn-Tucker first-order 
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necessary conditions in Eq. (31). The function – ln	(1 + 𝑒É) is known to be concave and 

𝜷u𝒙W is an affine substitution for 𝑦, which preserves concavity. Furthermore, 𝜷u𝒙W is 

affine, and the summation in Eq. (29) for 𝑑W > 0 and 𝐷¥¦� > 0 corresponds to taking 

the conic combination of concave functions, which again results in a concave function. 

Hence, 𝑙(𝜷) is concave, and Corollary 1 follows. 

 

To obtain the random sample 𝒱�, we proceed as follows. It is known that the maximum 

likelihood estimator 𝜷¼R in Eq.(30) has asymptotically a multivariate normal distribution 

with mean vector 𝜷 and covariance matrix 𝚺, which is given by the Cramér-Rao bound 

(Akiva & Lerman, 1985); i.e., this 𝚺 is given by 𝚺 = 𝑩CD, where 𝑩 is an 𝐾 × 𝐾 matrix 

with components. 

 
 
 

𝐵ÃÃ = 	−𝐸 Î
𝜕e𝑙(𝜷)
𝜕𝛽Ãe

Ð = 𝐷¥¦�·𝑥WÃe 𝐸[𝑝̂R(𝑔D|𝒙W)𝑝̂R(𝑔+|𝒙W)]
R

WZD

 

𝑓𝑜𝑟	𝑘 = 1,… , 𝐾 

(32.a) 

 
 𝐵Ãm = 	−𝐸 Â

¿�À(𝜷)
¿�Á¿��

Ä = 𝐷¥¦� ∑ 𝑥WÃ𝑥Wm𝐸[𝑝̂R(𝑔D|𝒙W)𝑝̂R(𝑔+|𝒙W)]R
WZD  

	𝑓𝑜𝑟	𝑘, 𝑗 = 1,… , 𝐾    𝑘 ≠ 𝑗   
(32.b) 

 
 
where the 𝑝̂R are obtained by replacing the 𝜷 by its estimator 𝜷¼R in Eq. (30). In 

particular, if there is a scalar attribute 𝑥W (i.e., 𝐾 = 1), then the Cramér-Rao bound for 

the variance 𝜎e of 𝛽«R simplifies to 

 
 
 𝜎e ≥ D

CÖÂ×
�Ø(�)
×��

Ä
= D

±²³� ∑ ���Ö¸ÙaÚk𝑔DÛ𝒙WpÙaÚk𝑔+Û𝒙WpºÚ
�ÜÝ

.  (33) 

 
 
In the rest of this paper, we assume a scalar attribute 𝑥W. The maximum likelihood 

estimators can be biased, and the lower bound on the right-hand-side of Eq. (33) is only 

achieved as 𝑁 → ∞. Nevertheless, we estimate the mean by its maximum likelihood 

estimate and the variance by the right-hand-side of Eq. (33), where we ignore the 

dependence between 𝑝̂R(𝑔D|𝒙W) and 𝑝̂R(𝑔+|𝒙W); i.e., 
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 𝜇̂R = 𝛽«R, 𝜎aRe =

D

±²³� ∑ ���
ß�¼Ú��

(Ýàß�¼Ú��)�
Ú
�ÜÝ

.      (34) 

 
 
Let 𝛽«R¥ for 𝑚 = 1,… ,𝑀 be a sample from the normal distribution with the parameters 

given in Eq.(34) and 𝑝̂R¥(𝑔D|𝑥¬) be its corresponding conditional probability of 

selecting 𝑔D; i.e., 

 
 
 𝑝̂R¥(𝑔D|𝑥¬) =

��¼Ú
²�á

D7��¼Ú
²�á. (35) 

 
 
To form 𝒱�, a realization 𝑑¥¬  is sampled with replacement from {0, 1, … , 𝐷¥¦�} with 

respect to the binomial distribution with parameters 𝐷¥¦� and 𝑝̂R¥(𝑔D|𝑥¬). Then, the 

normalized weights 𝑤ª¥(𝛽«R¥, 𝒙¬) are found by 

 
 
 

𝑤ª¥(𝛽«R¥, 𝒙¬) =
E±²³�
´²á

F (𝑝̂R¥(𝑔D|𝑥¬))´²
á (𝑝̂R¥(𝑔+|𝑥¬))±²³�C´²á

∑ E±²³�
´âá

F (𝑝̂Rã (𝑔D|𝑥¬))´â
á (𝑝̂Rã (𝑔+|𝑥¬))±²³�C´âá�

ãZD

 (36) 

 
 
for 𝑚 = 1,… ,𝑀. Therefore, the set 𝒱� is formed by 𝒱� =

{k𝑑D¬ , 𝑤ªD(𝛽«RD , 𝒙¬))p, … , k𝑑�¬ , 𝑤ª�(𝛽«R�, 𝒙¬)p}, and this set 𝒱� is used to find an estimate 𝑞a� 

of the order quantity in the next subsection. 

 

3.2 Optimization 

 

Given 𝒱�, the problem given in Eq. (26) can be written as the following linear 

programming problem: 

 
 
 

min
)a¨,4²,5²*+

· 𝑤ª¥k𝛽«R¥, 𝑥¬p[𝑐4𝑢¥ + 𝑐5𝑜¥]
�

¥ZD

	 (37) 
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																																					s.t.		𝑢¥ ≥ 𝑑¥¬ − 𝑞a�		𝑚 = 1,… ,𝑀	

																					𝑜¥ ≥ 𝑞a� − 𝑑¥¬ 		𝑚 = 1,… ,𝑀. 

 
 
Since the demands are discrete random variables, the problem in Eq. (37) is in fact an 

integer programming problem. However, for a big 𝑀, solving a linear programming 

problem instead of an integer one is computationally more efficient. After solving Eq. 

(37), the estimated optimum order quantity can be rounded upwards to the nearest 

integer to obtain 𝑞a�∗ = ⌈𝑞a�⌉. 

  



 

 
 

4. BENCHMARK PROBLEMS 

 

 

 

We consider the following two benchmark problems plus the classic newsvendor 

problem for which the optimization problem and the optimum order quantity are given 

in Eq. (2) and Eq. (6), respectively. 

 

4.1 Robust Solution of the Newsvendor Problem 

 

In this problem, it is assumed that the population mean 𝜇 and variance 𝜎e of the 

demands are known, and they are the only information on the distribution of demands. 

Their interpretation of the problem is formulated as in Eq. (38) 

 
 
 min

)*+
max
é∈ℱ

𝐸[𝑐4(𝐷 − 𝑞)7 + 𝑐5(𝑞 − 𝐷)7|ℐ] (38) 

 
 
where ℱ is a class of distributions for which the mean and the variance are equal to 𝜇 

and 𝜎e, respectively, and ℐ is the given set of information (i.e., the knowledge of 𝜇 and 

𝜎e). By adopting a min-max approach, the decision maker determines an order quantity 

in a way that minimizes the expected cost for the worst distribution of the class, in other 

words the distribution with the highest expected cost among the distributions with the 

mean 𝜇 and the variance 𝜎e. We assume that 𝑐4 + 𝑐5 and 𝑐5 are unit selling price and 

unit acquisition cost, respectively, and that there is no salvage value. Furthermore, let 

𝑠 = E@A7@B
@B

F − 1 be the mark up. Initially introduced by Scarf (1958) to the literature 

and extended by Gallego & Moon (1993) later on, the definitive Scarf’s ordering rule 

which solves Eq. (38) is given by  

 
 
 𝑞∗ì = 𝜇 +

𝜎
2 [𝑠

D
e − (

1
𝑠)
D/e] (39) 
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provided that 𝑠 ≥ E�
�
F
e
, and 𝑞∗ì = 0 otherwise. 

 
4.2 Sample Average Approximation Solution of the Newsvendor Problem 

 

As one of the most inherently prominent data-enabled heuristic techniques, the Sample 

Average Approximation allows to minimize the expected cost by obtaining a numerical 

average over the unknown demand distribution, presented by a random sample of size 

𝑀.  

 

For this problem, we assume that the random sample 𝒱� in Section 3 is given only by 

the demand realizations; i.e., 𝒱� = {𝑑D¬ , … , 𝑑�¬ }. Now, the problem in Eq. (26) is 

rewritten as 

 
 

min
)*+

𝐶«� (𝑞) =
1
𝑀min

)*+
·[𝑐4(𝑑¥ − 𝑞)7
�

¥ZD

+ 𝑐5(𝑞 − 𝑑¥)7] (40) 

 
 
where the only difference is 𝑤ª¥k𝛽«R¥, 𝒙¬p = 1/𝑀 for all 𝑚 = 1,… ,𝑀. Under the 

assumption that each demand has an equal probability of realization, an estimated 

optimum order quantity 𝑞a�∗ìí can be found by solving the linear programing problem in 

(9) after replacing all normalized weights 𝑤ª¥k𝛽«R¥, 𝒙¬p by D
�
. It is worth emphasizing 

that the solution of  the SAA heuristic 𝑞a�∗ìí is   non-deterministic  as  the order quantity  

acquired comes from a random sample of demand (Levi et al., 2015).



 

 
 

5. NUMERICAL EXAMPLES 

 

In this section, we compare the optimal order quantities of the classic newsvendor 

problem 𝑞∗ in Eq.(6), our proposed 𝑞a�∗ , the Scarf’s ordering rule 𝑞∗ì, and the Sample 

Average Approximation solution 𝑞a�∗ìí for different levels of the critical ratio @A
@A7@B

. We 

set the overstocking cost to 𝑐5 =1 and change the understocking cost 𝑐4 such that the 

critical ratios are from 0.2 to 0.8. For the Scarf’s ordering rule 𝑞∗ì in Eq.(39), the mark 

ups corresponding to the critical ratios are: 𝑠 = 0.25 for  @A
@A7@ï

= 0.2, 𝑠 = 0.43 for  

@A
@A7@ï

= 0.3, 𝑠 = 0.67 for  @A
@A7@ï

= 0.4, 𝑠 = 1 for  @A
@A7@ï

= 0.5, 𝑠 = 1.5 for  @A
@A7@ï

= 0.6, 

𝑠 = 2.33 for  @A
@A7@ï

= 0.7, and 𝑠 = 4 for  @A
@A7@ï

= 0.8. 

 

We use the sample size 𝑀 = 1000, where only 𝑞a�∗  and 𝑞a�∗ìí depend on 𝑀. The 

demands are generated through normal, gamma, and lognormal distributions, but the 

newsvendor observes only the histograms in Fig. 5.1, Fig. 5.3 and Fig. 5.5, where the 

scalar attribute 𝑥 is the price. Moreover, the price for the next period is 𝑥¬ = 115 

monetary units, the maximum demand is 𝐷¥¦� = 100, and 𝑁 = 10. 

 

5.1 Normal Distributed Demands 

 

For this subsection, the demands are generated through a normal distribution with 

means given by 

 
 
 𝜇W = 𝐷¥¦� − 0.4𝑥W = 100 − 0.4𝑥W (41) 

 
 
where the 𝑥W’s 𝑛 = 1,… , 10 are the prices corresponding to the observed demands in 

Fig. 5.1; i.e., as the price increases, less demands should be observed. The variance is 

𝜎We = 𝜎e = 100 for all 𝑛. The maximum likelihood in Eq.(30) is estimated as 𝛽«D+
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= 0.016 and its estimated standard deviation (i.e., the positive square root of Eq.(34)) is 

𝜎aD+ = 0.001. 

 

For 𝑥¬ = 115, the next period demand is normally distributed with parameters 𝜇¬ =

100 − 0.4 ∗ 115 = 54 and variance 𝜎e = 100. Now, for normally distributed demands, 

the true optimal order quantity from Eq.(6) is given by 𝑞∗ = 𝜇¬ + 𝜎ΦCD(𝑐4/(𝑐4 + 𝑐+)), 

where Φ is the cumulative distribution function of the standard normal distribution. 

Furthermore, the Scarf’s ordering rule 𝑞∗ì in Eq. (39) is strictly greater than zero at all 

levels of the critical ratio because for all mark up values, the following is satisfied: 𝑠 ≥

E�
�
F
e
= 0.0039. 

 
 

 
Fig. 5.1: Normal distributed demands and their corresponding prices 

 
 
Fig. 5.1 shows the prices and demands as observed by the newsvendor. For the prices 

and demands given in Fig. 5.1, the four different order quantities resulting from our 

procedure 𝑞a�∗ , Sample Average Approximation 𝑞a�∗ìí, true optimal 𝑞∗, and the Scarf’s 

ordering rule 𝑞∗ì are shown in Fig. 5.2, and these ordering quantities are presented in 

Table 5.1. For normal demands, the optimal ordering quantities 𝑞a�∗  are very similar to 

𝑞a�∗ìí; see Fig. 5.2 or Table 5.1. Both 𝑞a�∗  and 𝑞a�∗ìí are below 𝑞∗ as the critical ratio 

increases. For normal demands, the best approximation to 𝑞∗ is given by 𝑞∗ì. 
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Fig. 5.2: Ordering quantities at different levels of the critical ratio: normal demands 

 
 

Table 5.1: Order quantities at different critical ratios: normal demands 
 
 

  Order quantities 
Critical 

ratio 
Mark 

up 𝑞a�∗  𝑞a�∗ìí 𝑞∗ 𝑞∗ì 

0.2 0.25 49 48 45.58 46.50 
0.3 0.43 50 50 48.76 49.65 
0.4 0.67 51 51 51.47 51.98 
0.5 1.0 52 52 54.00 54.00 
0.6 1.5 53 53 56.53 56.04 
0.7 2.33 53 54 59.24 58.36 
0.8 4.0 54 55 62.42 61.50 

 
 

5.2 Gamma Distributed Demands 

 

Now, we assume that the demands are gamma distributed with shape parameter one and 

scale parameters are given by 

 
 

 𝐷¥¦�
3 − 0.2𝑥W (42) 

 
for 𝑛 = 1,… , 10. The observed demands as well as the prices are shown as a histogram 

in Fig. 5.3. The maximum likelihood estimate is 𝛽«D+ = −0.015 and its estimated 

standard deviation is 𝜎aD+ = 0.001. 
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Fig. 5.3: Gamma distributed demands and their corresponding prices 

 
 
We again consider 𝑥¬ = 115 as the next period price so that the next period demand is 

gamma distributed with shape parameter one and scale parameter 10.33. The true 

optimal solution 𝑞∗ is given by Eq. (6) for those values of the critical ratio in Fig. 5.4. 

 
 

 
Fig. 5.4: Ordering quantities at different levels of the critical ratio: gamma demands 

 
 
For this case, we find the order quantities 𝑞a�∗ , 𝑞a�∗ìí, and 𝑞∗ at different levels of the 

critical ratio in see Fig. 5.4 for which the actual values of the order quantities are given 

in Table 5.2. Once again, our order quantities and the order quantities suggested by the 

Sample Average Approximation are very similar, and are always higher than the true 

order quantities. Because the newsvendor does not know the true distribution, by 
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estimating the order quantities by either method, the newsvendor will order more than 

necessary except at the critical ratio 0.8. 

 
 

Table 5.2: Order quantities at different critical ratios: gamma demands 
 
 

 Order quantities 
Critical 

ratio 𝑞a�∗  𝑞a�∗ìí 𝑞∗ 

0.2 12 12 2.31 
0.3 13 13 3.69 
0.4 14 14 5.28 
0.5 15 15 7.16 
0.6 15 16 9.47 
0.7 16 17 12.44 
0.8 17 18 16.63 

 
 

5.3 Lognormal Distributed Demands 

 

For this section, the demands are assumed to be lognormal with the means and variance 

given by 

 
 
 𝜇W = 𝐷¥¦� − 0.4𝑥W = 100 − 0.4𝑥W (43) 

 
 
and 𝜎We = 𝜎e = 100 for 𝑛 = 1,… , 10 as in Subsection 1 of this section. Then, the 

means 𝜇W5ã¥¦À and the variances 𝜎W5ã¥¦Àe  of the underlying normal demands are given 

by 

 
 
 

𝜇W5ã¥¦À = 𝑙𝑛 ö
𝜇We

÷𝜇We + 𝜎e
ø , 𝜎W5ã¥¦Àe = 𝑙𝑛 ö1 +

𝜎e

𝜇We
ø. (44) 

 
 
The next period price is again 𝑥¬ = 115. The maximum likelihood estimate is 𝛽«D+ =

0.016 with an estimated standard deviation 𝜎aD+ = 0.001. The demands observed by the 

newsvendor is given in the histogram in Fig. 5.5. 
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Again, the true optimal order quantities 𝑞∗ obtained from the true distribution by Eq. (6) 

are compared with 𝑞a�∗  and 𝑞a�∗ìí in Fig. 5.6 for which the numerical values are given in 

Table 5.3. For this case, for low values of the critical ratio, the ordering quantities of our 

procedure and Sample Average Approximation are very big compared to 𝑞∗; see Fig. 

5.6 and Table 5.3. 

 
 

 
Fig. 5.5: Lognormal distributed demands and their corresponding prices 

 
 

 
Fig. 5.6: Ordering quantities at different levels of the critical ratio: lognormal 

demands 
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Table 5.3: Order quantities at different critical ratios: lognormal demands 
 
 

 Order quantities 
Critical 

ratio 𝑞a�∗  𝑞a�∗ìí 𝑞∗ 

0.2 84 83 45.49 
0.3 85 84 48.22 
0.4 86 85 50.68 
0.5 86 86 51.09 
0.6 87 87 55.63 
0.7 88 88 58.47 
0.8 89 89 61.97 

 

 

 



 

 
 

6. CONCLUSION 

 

6.1 Thesis Contribution 

 

In this research, we consider the classic newsvendor problem with a single product and 

a single period. We assume that the demand distribution is unknown except for its 

support, yet there exist data of aggregated demands and attribute vectors that can be 

used to leverage the demand distribution. Considering that the probability of buying a 

product is approximated by a logit model, we approximate the demand by a binomial 

process, and decide the estimated demand by using this process. Afterwards, we identify 

the estimated optimal order quantity by minimizing the expected cost function through 

optimization. Therefore, an integrated methodology is employed by performing both 

estimation of demand, which is assumed to be depending on a single extraneous 

determinant named price, and identification of optimal order quantity as an inventory 

decision. 

 

With the intention of practicing numerical examples, demands based on a single 

attribute, specifically price, are generated by using normal, gamma, and lognormal 

distributions in separate cases. We also consider two benchmark problems, namely the 

robust newsvendor and the Sample Average Approximation (SAA) solutions of the 

order quantity. We make a comparison between the solutions of the aforementioned 

approaches and the solution obtained by our proposed integrated method and observe 

their results for different levels of critical ratio, hence for different levels of mark up. 

We conclude that our procedure gives very similar results as those of the SAA. 

Furthermore, we tend to order more than the true optimal order quantity, similarly to the 

SAA solution. 
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6.2 Limitations and Future Work 

 

In this study, we provide a learning-enabled stochastic inventory problem for a single 

product. It can be extended by employing the proposed data-driven methodology to a 

newsvendor problem with multiple products, in which an ordering policy for a group of 

products has to be determined rather than a single ordering quantity.  

 

This study can also be improved by associating multiple attributes. In case of the 

presence of data regarding attributes that have influence on the product’s demand other 

than its price, utilization of those data values of external attributes could allow to have 

more accurate demand estimate results. 
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