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Boğaziçi University

Date:



ACKNOWLEDGMENTS

I would like to express my very profound gratitude to my advisor Serge Randriambololona

who have been a tremendous mentor to me by providing me necessary direction and sharing

his vision not only during this process but also during my undergraduate studies. It has

always been simply a privilage to be his student and to work with him. Without his constant

patience, advices and encouragement, I would not be able to write this thesis.

I also owe a deep sense of gratitude to Assoc. Prof. Ayberk Zeytin, one of the mathematicians

that I respect exceedingly, for his guidance whenever I needed.

I would like to extend my sincere appreciate to the members of my thesis examining com-

mittee, Assoc. Prof. Ayhan Günaydın, Assoc. Prof. Ayberk Zeytin and Assist. Prof. Serap

Gürer for reviewing my thesis.

Finally, I wish to thank to my family and all of my friends who are always there for me and

who make me believe in myself whenever I face with a problem which seems to me that I

will not be able to deal with.
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ABSTRACT

This thesis focuses on some results regarding the axioms of o-minimality which give rise to

a restriction on definable sets ensuring the tameness of the topology, and also two regularity

notions defined by van den Dries and by Gabrielov that we will simply call vdD-regularity

which imposes some monotonicity properties on functions involved in the definition of open

cells and definable functions, and Gabrielov-regularity which provides strong topological

properties on cells. In this work, we first give some nice features of definable maps such

as the Monotonicity Theorem and the Cell Decomposition Theorem which follow from

the finiteness properties of definable sets in o-minimal structures. Then we present vdD-

regularity which combines these two results and yields to state a more powerful theorem,

namely Regular Cell Decomposition Theorem. In our work, we prove this theorem which

has no proof in the literature. Afterwards, we are interested in a new regularity notion which

is defined by Gabrielov to obtain cells that are topologically regular, whereas vdD-regularity

does not necessarily imply this property. Indeed, we will examine an example in detail,

which is given by Gabrielov, of a cell that is regular in the sense of van den Dries but not in

the sense of Gabrielov.

Keywords : O-minimality, Monotonicity Theorem, Cell Decomposition Theorem, Regular-

ity, Regular Cell Decomposition Theorem



ÖZET

Bu tez, tanımlanabilir kümelere bir kısıtlama getiren ve üzerinde çalışılan topolojinin daha

kolay olmasını sağlayan o-minimallik aksiyomlarına ilişkin bazı sonuçlara ve ayrıca van

den Dries ve Gabrielov tarafından tanımlanan, açık hücrelere ve tanımlanabilir fonksiyon-

lara monotonluk özelliği taşıyan vdD-düzenliliği ve hücrelere güçlü bir topolojik özellik

getiren Gabrielov-düzenliliği olarak adlandıracağımız iki ayrı düzenlilik kavramına odaklan-

maktadır. Bu çalışmada, tanımlanabilir fonksiyonların, o-minimal yapılardaki tanımlanabilir

kümelerin sonlu olma özellikleri sayesinde açığa çıkan Monotonluk Teoremi ve Hücresel

Ayrışma Teoremi gibi bazı önemli özelliklerini veriyoruz. Daha sonra, bu iki teoremi birleş-

tiren ve daha güçlü bir teoreme ulaşmamızı sağlayan- Düzenli Hücresel Ayrışma Teoremi-

vdD-düzenliliği ile ilgileniyoruz. Çalışmamızda literatürde kanıtı bulunmayan Düzenli Hüc-

resel Ayrışma Teoremi’ni kanıtlıyoruz. Sonrasında, vdD-düzenli olan hücreler zorunlu olarak

topolojik anlamda düzenli olmazken, topolojik olarak düzenli olan hücrelere ulaşmak ama-

cıyla Gabrielov tarafından tanımlanan yeni bir düzenlilik kavramı üzerinde çalışıyoruz. Son

olarak, Gabrielov tarafından verilen, vdD-düzenli olan ancak Gabrielov-düzenli olmayan bir

örneği detaylıca inceliyoruz.

Anahtar Kelimeler : O-minimallik, Monotonluk Teoremi, Hücresel Ayrışma Teoremi, Dü-

zenlilik, Düzenli Hücresel Ayrışma Teoremi



LIST OF ABBREVIATIONS

MT Monotonicity Theorem
CDT Cell Decomposition Theorem
RCDT Regular Cell Decomposition Theorem



1 INTRODUCTION

Model theory, a branch of mathematical logic, concerning with sentences and sets in struc-

tures that are defined by a formula in the sense of the first order logic.

O-minimality is one of the areas in this branch, studying the order structure for which de-

finable sets in one variable are a finite unions of intervals and points. The occurrence of

this domain of research dates to the works of Lou van den Dries ; he discovered that many

properties of semialgebraic sets and maps can be obtained by the axioms of o-minimal struc-

tures. He showed the excellent framework of o-minimal structures in (van den Dries, 1998)

which we will follow as the primary source. For example, one of the key theorems on o-

minimality is that this restriction on the topology of definable subsets of the line carries up

to a restriction to the topology of definable sets in any number of variables ; this is one of the

main motivation to work with definable sets in an o-minimal structure : definable sets in an

o-minimal structure give convenient setting due to the flexibility of the notion of definability

by first order formulas, and at the same time stay amenable to our understanding due to the

constraints on their topology. In addition, Wilkie’s solution to Tarski’s problem showed in

particular that the real exponential field structure is o-minimal (Wilkie, 1996).

Even though o-minimality provides a control on the topology of definable sets, computation

of topological invariants remains difficult, mainly because the topology of embedded cells -

which is a key tool for the control of the topology of definable sets - can be more complicated

than wanted. Therefore, Gabrielov, Basu and Vorobjov aim to find a stronger cell decompo-

sition theorem so as to obtain cells endowed with a simpler topology. For this purpose, they

introduce a new regularity notion, see (Gabrielov et al., 2010).

Throughout this thesis, we will be interested in the axioms of o-minimality and its conse-

quences. After that, we will consider the notions of two regularities defined by van den Dries

and Gabrielov. Finally, we will compare the definitions by considering an example, and ob-

serve that the two definitions do not match.

The outline of this thesis is as follows.

In Chapter 2, we give a survey of the literature.

In Chapter 3, we present necessary background material on model theory needed for the
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next chapters. In particular, we introduce the notion of definable sets and the theory of dense

linear orders. We also prove some basic lemmas about definability.

In Chapter 4, we focus on o-minimality and give examples which help understand the geo-

metry brought along o-minimality. Furthermore, we prove a lemma which shows tameness

of the topology of definable sets in o-minimal structures. Afterwards, we are interested in

the main results of o-minimality on definable maps, namely Monotonicity and Cell Decom-

position Theorems. We give their detailed proofs, following (van den Dries, 1998).

Chapter 5 consists of three main parts. In the first part, we deal with the regularity definition

due to Lou van den Dries which makes the Regular Cell Decomposition Theorem stron-

ger than the Cell Decomposition Theorem. We prove Regular Cell Decomposition Theorem

which is given as an exercise in (van den Dries, 1998, p. 58) and has no proof in litera-

ture. Then we pass to the second part of this chapter where we introduce another regularity

notion due to Gabrielov. We will give the important definitions regarding this new notion.

Before comparing the two regularities, we prove a topological property of k-cells in a field

expansion of o-minimal structures. Finally, we show that these two regularity definitions are

not equivalent in the last section. For this, we examine an example in detail, which is given

briefly in (Gabrielov et al., 2010).

In Appendix, we touch upon some topological preliminaries.



2 LITERATURE REVIEW

In 1951, Tarski published his proof about the decidability of the real field (R; +,−, ., 0, 1)

and asked whether it is also possible to prove this for the structure (R; +,−, ., 0, 1, expx)

(Tarski, 1951). This question inspired Lou van den Dries to propose the development an

axiomatic approach (van den Dries, 1984).

There have been other developments such as studies around subanalytic sets by

Łojasiezics (Łojasiezics, 1964), Gabrielov (Gabrielov, 1968) and Hironaka (Hironaka, 1973).

The CDT was proven for some cases in these new frameworks but it had not been genera-

lized to an axiomatic framework at the time. In 1984, Grothendieck suggested an axiomatic

unification in "Esquisse d’un Programme" (Grothendieck, 1984).

During the same period, Pillay and Steinhorn developed an axiomatization of o-minimal

theory (Pillay and Steinhorn, 1984), and they proved the CDT in (J.Knight et al., 1986)

along with other fundamental consequences of o-minimality, together with J. Knight. In

parallel to their works, Wilkie proved o-minimality of the structure (R; +,−, ., 0, 1, expx),

as a response to the version proposed by van den Dries of the problem of Tarski (Wilkie,

1996).

Lou van den Dries recapitulates what is known about o-minimality in his book (van den

Dries, 1998) and gives another proof of the CDT. He also introduces a regularity notion

which makes cells have sort of a monotonicity property. Then he leaves RCDT as an exercise

(van den Dries, 1998). In 2013, Gabrielov-Basu and Vorobjov published an article (Gabrielov

et al., 2010) where they give an example to show that the regularity defined by van den Dries

does not necessarily imply the topological regularity (Gabrielov et al., 2010).



3 PRELIMINARIES

This chapter consists of the required model theoretic preliminary.

3.1 Basics on Model Theory

Definition 3.1. A language L is a finite or infinite collection of

• a set of function symbols F and a positive integer nf for each f ∈ F,

• a set of relation symbols R and a positive integer nR for each R ∈ R,

• a set of constant symbols C.

The numbers nf and nR denote the variable numbers of f and R, respectively.

Example 3.1. • The language of rings is Lr = {+,−, ·, 0, 1} where + and · are binary

function symbols ,− is a function symbol of arity one and 0 and 1 are constant symbols.

• The language of ordered rings is Lor = Lr ∪ {<}.

• The language of pure sets is L = ∅.

Now we explain what an L-formula and a definable set are without details.

An L-formula Φ is obtained by symbols in the language L and variables , by using first

order logical symbols which are the quantifier symbols ∀ and ∃, the logical connectives

∧,∨, =⇒ , ⇐⇒ and ¬, the punctuation symbols such as parentheses , brackets etc., an

infinite set of variables and the equality symbol = and following the synthetic rules obviously

required (Marker, 2000). Here we give a few examples of first order formulas.

Example 3.2. Take the language Lo = {<} where < denotes a linear ordering. Then

∀x∀y (x < y =⇒ ∃z x < z < y) is an Lo-formula, and ∀x x+ 0 = x is an

Lg = (+,−, 0)-formula.

Definition 3.2. (L-sentence) An L-formula is said to be a sentence if it has no free variables ;

that is, all variables in the formula are bounded by a quantifier : ∀ or ∃.
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Example 3.3. Consider the language Lor and the following two Lor-formulas :

• ∃v2 v2.v2 = v1

• ∀v1 (v1 = 0 ∨ ∃v2 v2.v1 = 1)

In the second formula, we see that v1 is bounded by a quantifier while it is not in the first

formula and see also that v2 is bounded in both formulas. Thus the second formula is an

L-sentence while the first one is not.

Definition 3.3. (L-structure) An L-structure M is given by the following data :

• a nonempty set M , called the universe of M,

• a function fM : Mnf −→M for each function symbol f ∈ F,

• a set RM ⊆MnR for each R ∈ R,

• an element cM ∈M for each c ∈ C.

We denote structures as M = (M ; fM, RM, cM) where f ∈ F, R ∈ R and c ∈ C.

Example 3.4. Consider the language Lg = {+,−, e} where + is a binary function symbol,

− is a unary function symbol and e is a constant symbol. Z = (Z; +,−, 0) is an Lg-structure.

Example 3.5. Consider the language of rings Lr = {+, ·,−, 0, 1}. Then

R = (R; +,−, · , 0, 1) is an Lr-structure.

Let M = (M ; . . . .) be an L-structure, φ be an L-formula and (a1, . . . , am) ∈ Mm.

We write M |= φ(a1, . . . , am) if φ(a1, . . . , am) is true in M or equivalently, if M satisfies

φ(a1, . . . , am).

Definition 3.4. Let M = (M ; . . . .) be an L-structure. We say that a subset X of Mn is

definable with parameters b̄ = (b1, . . . , bm) ∈Mm if there is an L-formula

Φ(v1, . . . , vn, w1, . . . , wm) such that X = {ā ∈Mn : M |= Φ(ā, b̄)}. If X is defined without

parameters, then we say that X is ∅-definable.

Example 3.6. Take the structure R = (R; +,−, ·, 0, 1). Then the set

X = {x ∈ R : x.x+ a1.x+ a2 = 0} is definable with parameters (a1, a2).

Definition 3.5. A function f : Mn → Mm is said to be definable in M = (M ; . . . .) where

n,m ∈ N and M is an L-structure if its graph is a definable set in M.

Definition 3.6. (L-theory) An L-theory T is a set of L-sentences.

Definition 3.7. (Model) Let T be an L-theory and M be an L-structure. We say M is a model

of T and write M |= T if for any sentences Φ ∈ T , M |= Φ.
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Example 3.7. (Dense Linear Orders Without Endpoints) Let L = {<} where < is a binary

relation symbol. The axioms of dense linear orders without endpoints are the following

L-sentences :

• ∀x ¬(x < x)

• ∀x∀y∀z ((x < y ∧ y < z) =⇒ x < z)

• ∀x∀y (x < y ∨ x = y ∨ y < x)

• ∀x∀y (x < y =⇒ ∃z x < z < y)

• ∀x∃y∃z y < x < z

Example 3.8. The structure Q = (Q;<) is a model of the theory of dense linear orders

where the structure Z = (Z;<) is not as Z is not dense in itself.

We finish this chapter with two basic lemmas which will be used in the next chapter.

Lemma 3.1. Let R = (R; . . . ) be any structure. If A ⊆ Rn and B ⊆ Rm are definable sets

then A×B is also definable in Rn+m.

Proof Let Φ1(a1, . . . , an) and Φ2(b1, . . . , bm) be the formulas that define A and B, then the

formula Ψ(a1, . . . , an, b1, . . . , bm) : Φ1(a1, . . . , an) ∧ Φ2(b1, . . . , bm) defines the set A×B
which finishes the proof.

�

Lemma 3.2. If f : A −→ Rm is a definable function and A ⊆ Rn is a definable set then

f(A) ⊆ Rm is also definable.

Proof Let Γ(f) be the graph of f . Then we have :

f(A) = {ȳ ∈ Rm : ∃ x̄ ∈ A, f(x̄) = ȳ}

= {ȳ ∈ Rm : ∃ x̄ ∈ A, (x̄, ȳ) ∈ Γ(f)}.

Since both A and Γ(f) are definable, then so is f(A).

�



4 O-MINIMALITY AND MAIN RESULTS

Throughout this chapter, we give the definition of o-minimality and work on the conse-

quences of the axioms of the definition.

4.1 O-minimality

In this section, we will introduce o-minimal structures and give examples.

Consider a structure M = (M ;<, . . .) where < is a dense linear order without endpoints on

M .

Definition 4.1. (O-minimal Structure) A structure M = (M ;<, . . .) is said to be o-minimal

if every definable subset of M is a finite union of intervals and points.

Example 4.1. It follows from Tarski-Seidenberg Theorem (Tarski, 1951) that the

expansion of ordered field of real numbers R = (R; +,−, ·, 0, 1, <) is o-minimal.

Example 4.2. It follows from Wilkie’s Theorem (Wilkie, 1996) that the ordered field structure

of real numbers with the exponential function R = (R; +,−, ·, 0, 1, <, exp(x)) is o-minimal.

Example 4.3. Ordered structure of rational numbers Q = (Q;<) is also o-minimal.

Definition 4.2. A subset of a real closed field (a field which has the same first-order proper-

ties with the field of real numbers) is called semialgebraic set if it is defined by finitely many

polynomial equations and inequalities, or any finite union of such sets.

Example 4.4. The definable sets in the o-minimal structure R = (R; +,−, ·, 0, 1, <) are

semialgebraic sets and the Figure 4.1 below, Bonhomme, is an example of such sets. (Tarski-

Seidenberg Theorem) (Tarski, 1951). Because it can be defined as :

A = {(x, y) ∈ R2 : [x2 + y2 = 1] ∨ [x ∈ (−1
2
, 1

2
) ∧ y = −1

2
] ∨ [x = 1

3
∧ y = 1

2
]

∨ [x = −1
3
∧ y = 1

2
]}.
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Figure 4.1: Bonhomme

Example 4.5. R = (R; +,−, ·, 0, 1, <, f) where f : R −→ R : x 7→ sinx is not an

o-minimal structure since the definable set {x ∈ R : f(x) = 0} is an infinite union of points.

Now to understand better the restriction on definable sets in an o-minimal structure, we

give a number of examples of sets which cannot be definable in such structures.

Example 4.6. Take the subset A0 := {(m,n) ∈ N2 : m ≤ n} in R2. A0 is not a definable set

in the o-minimal structure R = (R;<) because the projection of A0 on the x-axis is defined

by the formula Φ(v) : ∃n (v, n) ∈ A0 ∧ (v < n ∨ v = n) which is not a finite union of

intervals and points.

Example 4.7. Take a subset of R2

A1 := {(x, y) ∈ R2 : x ∈ (1, 3)∪ (4, 6) and y ∈ R\Q if x ∈ (1, 3) and y ∈ Q if x ∈ (4, 6)}.

We will show thatA1 is not definable by contradiction. Assume thatA1 is definable. Consider

the set B = {(x, y) ∈ A1 : x < y} which is clearly definable. Now look at the projection of

B on the y-axis ; that is, Πy(B) = {y ∈ R : (x, y) ∈ A1 and x < y}. Remark that it can be

defined by the formula Φ(v) : ∃x (x, v) ∈ A1 ∧ x < v as A1 is definable but on the other

hand we have Πy(B) = (4,∞) ∪ ((1, 4) ∩R \Q) which contradicts with being definable in

an o-minimal structure. Hence A1 is not definable in R = (R;<).

Example 4.8. Take a subset A2 := {(x, y) ∈ R2 : y = x+ 2 sinx} in R2.

Similar to the previous example 4.7, we see that the projection of B on the y-axis is not

definable since it is an infinite union of intervals where B = {(x, y) ∈ A2 : x < y}. Hence

A2 is not definable in R = (R;<,+,−, ·, 0, 1).
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We finish this section with the following two lemmas which show how tame the definable

sets are in o-minimal structures. They will help us prove the CDT in the next chapter.

Lemma 4.1. Let R = (R;<, . . .) be an o-minimal structure and A ⊆ R be definable. Then

i. inf(A) and sup(A) exist in R∞ := R ∪ {∞,−∞}.

ii. the boundary bd(A) := {x ∈ R : each interval containing x intersects both A and

R \ A} is finite, and if −∞ = a0 < a1 < · · · < ak < ak+1 = ∞ are the points of

bd(A) in order, then for each i ∈ {0, . . . , k + 1}, interval (ai, ai+1) is either part of A

or disjoint from A.

Proof Since A ⊆ R is definable then by o-minimality A is a finite union of intervals and

points. Let A = (a0, a1)∪ (a2, a3)∪ · · · ∪ (an−1, an)∪{b0, . . . , bm} for some n,m ∈ N with

a0 < · · · < an and b0 < . . . . < bm.

Then it’s easy to see that inf(A) = min{a0, b0} and sup(A) = max{an, bm}. So we

proved (i.).

Now we prove (ii.). If a0, an ∈ R then it is easy to see that

cl(A) = [a0, a1] ∪ · · · ∪ [an−1, an] ∪ {b0, . . . , bm}, and

int(A) = (a0, a1) ∪ · · · ∪ (an−1, an).

Thus one can easily obtain that bd(A) = {a0, . . . , an, b0, . . . , bm}.

If a0 = −∞ or an =∞, without loss of generality assume a0 = −∞. Then

cl(A) = (a0, a1] ∪ · · · ∪ [an−1, an] ∪ {b0, . . . , bm}, and

int(A) = (a0, a1) ∪ · · · ∪ (an−1, an).

It can be easily seen again that bd(A) = {a1, . . . , an, b0, . . . , bm}.

Therefore we proved that bd(A) is finite.

Without loss of generality, assume that bd(A) = {a0, . . . , an, b0, . . . , bm}. Now we examine

the cases :

1st case : If an < b0, then we see that (an, b0), (b0, b1), . . . , (bm−1, bm) are disjoint from A

and besides these ones, other intervals will be a part of A. (The case where bm < a0 goes

exactly in the same way.)



2nd case : If there is any bj and ai, ai+1 such that ai < bj < ai+1 for some i, j with

(ai, ai+1) ∩ A = ∅, then the intervals (ai, bj) and (bj, ai+1) will be disjoint from A. This

establishes the proof of (ii.).

�

Lemma 4.2. If A ⊆ Rm is definable, then so are the topological closure A and the interior

A◦ of A.

Proof The following two formulas define A and A◦, respectively :

Φ(v1, . . . , vm) : ∀x1 . . . ∀xm∀y1 . . . ∀ym
[
x1 < v1 < y1 ∧ · · · ∧ xm < vm < ym

]
=⇒

∃z1 . . . ∃zm
(
x1 < z1 < y1 ∧ · · · ∧ xm < zm < ym ∧ (z1, . . . , zm) ∈ A

)
Ψ(v1, . . . , vm) : ∃x1 . . . ∃xm∃y1 . . . ∃ym

[(
x1 < v1 < y1 ∧ · · · ∧ xm < vm < ym

)
∧

∀z1 . . . ∀zm
(
x1 < z1 < y1 ∧ · · · ∧ xm < zm < ym =⇒ (z1, . . . , zm) ∈ A

)]

�

4.2 Main Results of O-minimality

In this section, we state two important consequences of o-minimality ; MT and CDT. By the

aid of these theorems, we will be able to see the strength of o-minimality. We will show that

the constraints on the definable sets of R impose strong constraints on the definable sets of

Rn.

4.2.1 Monotonicity Theorem

We can understand the nature of definable functions with one variable through the MT. Be-

fore giving the statement of MT, we establish three lemmas on which the theorem is based.

For this chapter, we fix an arbitrary o-minimal structure R = (R;<, . . .). Recall from the

Definition 4.1 that < is a dense linear order on the set R and that every definable subset of R
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is a finite union of intervals and points. We will consider the Order Topology on R and the

Product Topology on Rm.

For the following three lemmas, consider that f : I −→ R is a definable function on a

non-empty interval I .

Lemma 4.3. There is a subinterval of I on which f is constant or injective.

Proof If f−1(y) is infinite for some y ∈ R, then as f is definable, by o-minimality, the

preimage would contain a subinterval in I on which the function is constant.

Then we can assume that for each y in the range of f , f−1(y) is finite. It follows then f(I)

is infinite. As it is definable then it contains an interval J ⊆ f(I). Now we define a function

g : J −→ I by g(y) := min{x ∈ I : f(x) = y}. Note that g is definable and injective. Then

g(J) is infinite. Thus by o-minimality we can find a subinterval of g(J) contained in I on

which the function f is necessarily injective.

�

Lemma 4.4. If f is injective, then f is strictly monotone on a subinterval of I .

Proof Let I = (a, b) where a, b ∈ R. For each x ∈ I , we can write (a, x) as a disjoint union

of the following two sets :

(a, x) = {y ∈ (a, x) : f(y) < f(x)}
⊔
{y ∈ (a, x) : f(y) > f(x)}.

At least one of these disjoint sets is infinite, then one of them contains a subinterval (c, x)

with a < c < x. The interval (x, b) splits up similarly.

Then we obtain that each x ∈ I satisfies exactly one of the following four formulas :

Φ++(x) := ∃c1, c2 ∈ I [c1 < x < c2, ∀y ∈ (c1, x) : f(y) > f(x),

∀y ∈ (x, c2) : f(y) > f(x)],

Φ+−(x) := ∃c1, c2 ∈ I [c1 < x < c2, ∀y ∈ (c1, x) : f(y) > f(x),

∀y ∈ (x, c2) : f(y) < f(x)],
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Φ−+(x) := ∃c1, c2 ∈ I [c1 < x < c2, ∀y ∈ (c1, x) : f(y) < f(x),

∀y ∈ (x, c2) : f(y) > f(x)],

Φ−−(x) := ∃c1, c2 ∈ I [c1 < x < c2, ∀y ∈ (c1, x) : f(y) < f(x),

∀y ∈ (x, c2) : f(y) < f(x)].

I has infinitely many points that satisfy one of the four formulas above which are definable.

Then we can find a subinterval J ⊆ I , all of whose points satisfy the same formula. This

leads to four cases. Let J = (c, d).

Easy Case : Φ−+(x) for all x ∈ J .

For each x ∈ J , define s(x) := sup{s ∈ (x, d) : f(s) > f(x) on (x, s]}. Then clearly

s(x) = d, since s(x) < d contradicts Φ−+(s(x)). Thus f is strictly increasing on J .

The case that Φ+−(x) for all x ∈ J goes the same way.

Difficult Case : Φ++(x) for all x ∈ J .

Consider the set B :=
{
x ∈ J : ∀y ∈ J

(
y > x =⇒ f(y) > f(x)

)}
.

If B is infinite then B contains a subinterval. So f is strictly increasing on this subinterval

which finishes the proof of this case.

If B is finite then we can find an interval which is at the right of all points of B. Let us

denote this subinterval by J ′. We may assume then

∀x ∈ J ′ ∃y ∈ J ′
(
y > x and f(y) < f(x)

)
. ( 4.1)

Claim : Let a′ ∈ J ′. For all large enough y ∈ J ′, we have f(y) < f(a′).

Suppose not and say that for all large enough y ∈ (a′, d), we have f(y) > f(a′). Then we

can find a minimal element e ∈ [a′, d) such that ∀y
(
e < y < d =⇒ f(y) > f(a′)

)
.

We must have f(e) < f(a′) because e is minimal and Φ++(e). By assumption ( 4.1), we find

some k with e < k < d and f(k) < f(e) which gives that f(k) < f(a′). But since e < k

then we must have f(k) > f(a′). Contradiction.
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Define now y(a′) as the least element in [a′, d) where the claim holds ; that is, f(y) < f(a′)

if y(a′) < y < d. Since Φ++(a′) and y(a′) is the minimal element, then we have that

a′ < y(a′) and f(y(a′)) < f(a′). Thus we see that y(a′) satisfies the following formula :

Ψ+−(v) := ∃v1, v2 ∈ J ′
[
v1 < v < v2 and ∀z1, z2

(
v1 < z1 < v < z2 < v2 =⇒

f(z1) > f(z2)
)]

Because the minimality of y(a′) and Φ++(a′) yields that if y(a′) < y then f(y) < f(a′) and

if y < y(a′) then f(a′) < f(y).

Since a′ was arbitrary, then we have sown that ∀a′ ∈ J ′ ∃v ∈ J ′ (v > a′ and Ψ+−(v)).

Therefore, Ψ+−(v) holds for all v in an interval of the form (f, d) where f ∈ J ′. So we have

found a subinterval on which f is strictly decreasing.

Similar argument shows that we can find a smaller subinterval on which Ψ−+(v) holds. This

yields a contradiction because we cannot have both Ψ+−(v) and Ψ−+(v). So we showed that

B cannot be finite.

The case that Φ−−(x) holds for all x ∈ J is shown in a similar way with the previous. This

finishes the proof of the lemma.

�

Lemma 4.5. If f is strictly monotone, then f is continuous on a subinterval of I .

Proof Without loss of generality, assume that f is strictly increasing. As f(I) is infinite, we

can find a subinterval in f(I). Then by taking two points r, swith r < s from this subinterval

such that f(c) = r, f(d) = s, since f is strictly increasing, we get c < d. Remark that the

function defines an order preserving bijection between the intervals (c, d) and (r, s). Since R

has the order topology, f is continuous on (c, d).

�

Theorem 4.1. (Monotonicity Theorem) Let f : (a, b) −→ R be a definable function on the

interval (a, b). Then there are points a = a0 < a1 < · · · < ak < ak+1 = b in (a, b) such

that the function is either constant or strictly monotone and continuous on each subinterval

(ai, ai+1).
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Proof Let f : (a, b) −→ R be a definable function on the interval (a, b) and

X := {x ∈ (a, b) : on some interval of (a, b) containing x, the function f is either

constant or strictly monotone and continuous}.

Claim : The set (a, b) \X is finite.

We prove by contradiction. Suppose that (a, b)\X is infinite. Since (a, b)\X is definable in

an o-minimal structure R = (R;<, . . .), then it must contain a subinterval I . Then it follows

from the Lemmas 4.3, 4.4, and 4.5 that we can find a subinterval J included in I on which

the function f is either constant or strictly monotone and continuous. But then by definition,

J must be in X . We have a contradiction, thus (a, b) \X is finite.

Since (a, b) \ X is finite, we can reduce the proof to the case where (a, b) = X . With

this reduction, we have replaced (a, b) by finitely many intervals of which the open set X

consists. Again since there are finite number of points that does not belong to X , we may

assume that f is continuous. By splitting up (a, b) into subintervals, we see that on each

subinterval f must satisfy one of the following three cases. We will use (a, b) instead of

subintervals to avoid new notations.

1st Case : For all x ∈ (a, b), f is constant on some neighborhood of x.

Take x0 ∈ (a, b) and put

s := sup{x : x0 < x < b, f is constant on [x0, x)}

If s < b, then by assumption f must be constant on some neighborhood of s. Hence we get

s = b, so f is constant on [x0, b).

Now put the following set

t := inf{x : a < x < x0, f is constant on (a, x0]}.

Similarly, we obtain that t = a and so f is constant on (a, x0].

Therefore, we conclude that f is constant on (a, b).

2nd Case : For all x ∈ (a, b), f is strictly increasing on a neighborhood of x.

3rd Case : For all x ∈ (a, b), f is strictly decreasing on a neighborhood of x.

The proofs of these two cases are similar to the first case. Hence we finished the proof of the

Monotonicity Theorem. �
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Lemma 4.6. (Finiteness Lemma) Let A ⊆ R2 be a definable set. Suppose that for each

x ∈ R, the fiber Ax := {y ∈ R : (x, y) ∈ A} is finite. Then there is N ∈ N such that for all

x ∈ R, |Ax| ≤ N .

Proof See (van den Dries, 1998, p. 47) �

Before moving on to the CDT, we use the MT and the Finiteness Lemma to deduce the

following, which is a description of the definable sets in R2 :

Let A ⊆ R2 be a definable set such that each fiber Ax is finite. By Finiteness Lemma 4.6,

we know that there is a number N ∈ N such that |Ax| ≤ N . Since A is definable, then

its projection to the x-axis is a finite union of intervals and points. Then we can divide this

projection into the points a1 < · · · < ak so that for each subinterval (ai, ai+1), |Ax| = n(i)

where x ∈ (ai, ai+1) and i ∈ {1, . . . , k}.

Now for any subinterval (ai, ai+1), we define the functions fij : (ai, ai+1) → R where

j ∈ {1, . . . , n(i)}.

By MT, we know there is finitely many points b1 < · · · < bm in (ai, ai+1) so that each

function fij is continuous on (bl, bl+1) where l ∈ {1, . . . ,m}.

Therefore, we can conclude that the intersection of A with each vertical strip (bl, bl+1) × R
is of the form Γ(fi1) ∪ . . . . ∪ Γ(fin(i)) for certain definable continuous functions

fij : (bl, bl+1) −→ R with fi1 < · · · < fin(i).

Example 4.9. Here we can give a similar example to Bonhomme 4.1 again. Figure 4.2 is a

good example to understand the previous sequence of arguments.

We divide the interval (−1, 1) into the subintervals (ai, ai+1) as for any x ∈ ai, ai+1), Ax

has the same number of points where i ∈ {1, . . . , 3}, a1 = −1, a2 = −3/5, a3 = −3/5 and

a4 = 1. Consider the subinterval (a2, a3). Note that |Ax| = 3 for any x ∈ (a2, a3).

Now we have the functions f21 : (a2, a3)→ R : x 7→ −
√

1− x2,

f22 : (a2, a3) → R defined by f22(x) = −2/5 if x ∈ (−2/5, 2/5) and f22(x) = 2/5

otherwise, and f23 : (a2, a3)→ R : x 7→
√

1− x2.

Remark that f22 is not continuous but as in the MT, we find the points b1 = a2,

b2 = −2/5, b3 = 2/5 and b4 = 3/5 so that f22 is continuous on each subinterval (bl, bl+1)



where l ∈ {1, 2, 3, 4}.

Therefore, the intersection of the Frowning Bonhomme with (bl, bl+1)× R is

Γ(f21|(bl, bl+1)) ∪ Γ(f22|(bl, bl+1)) ∪ Γ(f23|(bl, bl+1)).

Figure 4.2: Frowning Bonhomme

4.2.2 Cell Decomposition Theorem

In this section, our aim is to give a brief proof of CDT which helps us develop an unders-

tanding of definable sets of higher dimensions and definable multi-variable functions in an

o-minimal structure.

Before the proof of the theorem, we present the notions of a cell and a decomposition.

For any definable set X ⊆ Rm, we put the following sets

C(X) := {f : X −→ R : f is definable and continuous},

C∞(X) := C(X) ∪ {−∞,+∞}

where we consider −∞ and +∞ as constant functions on X .

Let f, g ∈ C(X). We write f < g if for all x ∈ X, f(x) < g(x), and put

(f, g)X := {(x, r) ∈ X ×R : f(x) < r < g(x)}.



17

Note that (f, g)X is a definable set of Rm+1 by Lemma 3.1, since both X and the set

{r ∈ R : f(x) < r < g(x)} are definable.

If X is clear from the context, we will write (f, g) instead of (f, g)X .

Definition 4.3. (Cell) Let (i1, . . . , im) be a sequence of zeros and ones of length m.

An (i1, . . . , im)-cell is a definable subset of Rm obtained by induction on m as follows :

i. a (0)-cell is a set whose element is a point in R, a (1)-cell is an interval (a, b) ⊆ R

ii. suppose that (i1, . . . , im)-cells are defined, then an (i1, . . . , im, 0)-cell is the graph

Γ(f) of a function f ∈ C(X) whereX is an (i1, . . . , im)-cell ; further, an (i1, . . . , im, 1)-

cell is a set (f, g)X where X is an (i1, . . . , im)-cell and f, g ∈ C∞(X) with f < g.

Here we have an image of a (f, g)I , which is a (1, 1)-cell, for some f, g ∈ C(I) where I is

an interval :

Figure 4.3: (1, 1)-cell

Example 4.10. Now we give an example for a (1, 0, 1)-cell :

We construct it inductively. Let (1)-cell be the interval (0, 1) ⊆ R. Now we need to construct

a (1, 0)-cell. Take the function f : (0, 1) −→ R : x 7→ x2 which is definable and continuous.

Then by definition the graph Γ(f) = {(x, f(x)) ∈ R2 : f(x) = x2} is a (1, 0)-cell.

Now find the (1, 0, 1)-cell where (1, 0)-cell is the graph Γ(f) above. Take two functions

g : Γ(f) −→ R : (x, y) 7→ (xy)2 and h : Γ(f) −→ R : (x, y) 7→ (xy)1/3. See that g < h.
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Thus the set

(g, h)Γ(f) = {(x, y, z) ∈ R3 : g(x, y) < z < h(x, y)}

is by definition a (1, 0, 1)-cell.

Remark that a cell in Rm is an (i1, . . . , im)-cell for some unique sequence (i1, . . . , im).

Since (i1, . . . , im)-cells are open in Rm when all ij = 1 where j ∈ {1, 2, . . . ,m}, we call

these open cells. As we have product topology onRm, we will also call these open cells box.

Proposition 4.1. Each cell is homeomorphic under a coordinate projection to an open cell.

Proof See (van den Dries, 1998, p. 51) �

Definition 4.4. A set X in Rm is called definably connected if it is definable and is not a

disjoint union of any two non-empty definable open subsets of X .

Example 4.11. The set X = {(x, y) ∈ R2 : xy = 1} is not definably connected in the

structure (R;<,+, ·, 0, 1) as we can write X = U1 ∪ U2 where

U1 = {(x, y) ∈ R2 : xy = 1 ∧ x < 0}, and

U2 = {(x, y) ∈ R2 : xy = 1 ∧ x > 0}

which are both definable and open in X .

Proposition 4.2. Each cell is definably connected.

Proof See (van den Dries, 1998, p. 51) �

Definition 4.5. (Cell Decomposition) We say D is a decomposition of Rm if it is a finite

partition of Rm whose elements are cells in Rm. We define a decomposition by induction on

m,

i. a decomposition of R is a collection of finitely many disjoint intervals and points

{(−∞, a1), . . . ., (ak,+∞), {a1}, {a2}, . . . , {ak}}

where a1 < · · · < ak are points in R.

ii. a decomposition of Rm+1 is a finite partition of Rm+1 into cells A such that the set of

the usual projections Π(A) is a decomposition of Rm.
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Remark 4.1. By the definition of cell decomposition, we can deduce the following : Let

D = {A(1), . . . , A(k)} be a decomposition of Rm where A(i) 6= A(j) if i 6= j, and

let for each i ∈ {1, . . . , k} functions fi1 < · · · < fini
in C(Ai) be given. Then

D∗ := D1 ∪D2 ∪ · · · ∪Dk is a decomposition of Rm+1 where

Di := {(−∞, fi1), (fi1, fi2), . . . , (fini
,∞),Γ(fi1), . . . ,Γ(fini

)} is a partition of A(i)×R.

Definition 4.6. A decomposition D of Rm is said to partition a set S ⊆ Rm if each cell in D

is either in S or disjoint from S ; that is, S is a union of cells in D.

Example 4.12. Let D = {(−∞, a0), (a0, a1), (a1,∞), {a0}, {a1}} is a decomposition of R

for some a0, a1 ∈ R. Observe that D partitions (a0,∞) whereas it does not partition the set

(a2,∞) where a0 < a2 < a1. Because the cell (a0, a1) is neither a subset of (a2,∞) nor

included in it.

Definition 4.7. Let Y be a definable subset of Rm+1. We say that Y is finite over Rm if for

all x ∈ Rm, the fiber Yx := {r ∈ R : (x, r) ∈ Y } is finite.

Definition 4.8. Let Y be a definable subset of Rm+1. We say that Y is uniformly finite over

Rm if there is N ∈ N such that |Yx| ≤ N for all x ∈ Rm.

Example 4.13. Consider the set A as in the Example 4.4 which defines Figure 4.1. It is easy

to see that for any x ∈ (−1, 1), each fiber Ax = {y ∈ R : (x, y) ∈ A} is finite. We also see

that A is uniformly finite over R because |Ax| ≤ 4 for any x ∈ (−1, 1).

Lemma 4.7. (Uniform Finiteness Lemma) Suppose that Y ⊆ Rm+1 is a definable set.

If Y is finite over Rm, then Y is uniformly finite over Rm.

Proof See (van den Dries, 1998, p. 56) �

Lemma 4.8. Let X be a topological space, (R1, <), (R2, <) dense linear orderings without

endpoints and f : X ×R1 −→ R2 a function such that for each (x, r) ∈ X ×R1

i. f(x, .) : R1 −→ R2 is continuous and monotone on R1

ii. f(., r) : X −→ R2 is continuous at x.

Then, f is continuous.

Proof See (van den Dries, 1998, p. 56) �

Now we state the CDT and give the main steps of the proof without going into too much

detail.
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Theorem 4.2. (Cell Decomposition Theorem)

(Im) Given any definable sets A1, . . . , Ak ⊆ Rm, there is a decomposition of Rm partitio-

ning each of A1, . . . , Ak.

(IIm) For each definable function f : A −→ R, A ⊆ Rm, there is a decomposition D of

Rm partitioning A such that the restriction f |B : B −→ R to each cell B ∈ D with B ⊆ A

is continuous.

Proof We will prove by induction on m :

(I1) and (II1) holds by o-minimality and by the MT, respectively.

Now suppose that (I1), . . . ., (Im) and (II1), . . . ., (IIm) hold. First we show (Im+1) also

holds :

Let A1, . . . , Ak be definable sets in Rm+1. We will find a decomposition of Rm+1 that parti-

tions each Ai where i ∈ {1, . . . , k}.

For a definable set A ⊆ Rm+1, put

bdm(A) := {(x̄, r) ∈ Rm+1 : r ∈ bd(Ax̄)}

where bd(Ax̄) denotes the boundary of Ax̄ and Ax̄ = {r ∈ R : (x̄, r) ∈ A}.

By Lemma 4.1, we know that bd(Ax̄) is definable and observe that

bdm(A)x̄ := {r ∈ R : (x̄, r) ∈ bdm(A)} is finite. Then we obtain that bdm(A) is definable

and finite over Rm.

Put Y := bdm(A1) ∪ · · · ∪ bdm(Ak). Since for each i ∈ {1, . . . , k}, bdm(Ai) is definable

and finite over Rm, then by Uniform Finiteness Lemma 4.7, there is a number M ∈ N such

that for all x̄ ∈ Rm, |Yx̄| ≤M .

For each i ∈ {0, . . . ,M}, let Bi := {x̄ ∈ Rm : |Yx̄| = i} and define functions fi1, . . . , fii

on Bi by Yx̄ = {fi1(x̄), . . . , fii(x̄)} such that fi1(x̄) < · · · < fii(x̄) with fi0 := −∞ and

fi(i+1) :=∞ which are constant functions on Bi.

Remark that Bi’s are defined independently from Ai’s. We want to define such sets so that

they depend on Ai’s and find a decomposition that partitions each set we defined. Therefore,

we will obtain a decomposition partitioning each Ai.
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Now define following sets for each λ ∈ {1, . . . , k}, i ∈ {0, . . . ,M} and 1 ≤ j ≤ i;

Cλij := {x̄ ∈ Bi : fij ∈ (Aλ)x̄}

and for each λ ∈ {1, . . . , k}, i ∈ {0, . . . ,M} and 0 ≤ j ≤ i;

Dλij := {x̄ ∈ Bi : (fij, fi(j+1)) ⊆ (Aλ)x̄}.

Since each of Bi, Cλij and Dλij is in Rm, then by (Im), there is a decomposition D of Rm

which partitions each set Cλij andDλij for all i ∈ {1, . . . ,M} and for all λ ∈ {1, . . . , k}. We

know also by assumption (IIm) that if a cell E ∈ D is contained in Bi, then each restriction

of the functions fi1|E, . . . ., fii|E is continuous.

For each cell E ∈ D, define DE as follows :

DE := {(fi0|E, fi1|E), . . . , (fii|E, fi(i+1)|E),Γ(fi1|E), . . . ,Γ(fii|E)}

where i ∈ {0, . . . ,M} is such that E ⊆ Bi. Here we see that DE is a decomposition

partitioning E ×R.

Then by Remark 4.1, we get D∗ :=
⊔
{DE : E ∈ D} is a decomposition of Rm+1 which

partitions each set A1, . . . , Ak. This finishes the proof of (Im+1).

Now we prove that (IIm+1) holds :

Let f : A −→ R be a definable function on a definable set A ⊆ Rm+1.

We must show that f is cellwise continuous. By (Im+1), if we take k = 1, we obtain that A

can be partitioned into finitely many cells. Then we can consider A as a cell to avoid new

notations. Now it is enough to prove that f is cellwise continuous on this cell A. Thus we

have two cases to examine :

1st Case : If A is a non-open cell in Rm+1 :

By Proposition 4.1, let pA : A −→ p(A) be the definable homeomorphism where p(A) is

an open cell in Rn with n ≤ m. By assumption (IIn), we find a decomposition partitioning

p(A) into finitely many definable cells B1, . . . , Bk such that (f ◦ p−1
A )|Bj

is continuous for

each j ∈ {1, . . . , k}. Since pA is a homeomorphism then for each Bj , p−1
A (Bj) is definable.

Remark that the union of the definable cells p−1
A (Bj) form a partition of A. Hence A is

partitioned into p−1
A (B1), . . . , p−1

A (Bk), and so the restriction of f to each of these sets is

continuous. This concludes the first case.
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2nd Case : If A is an open cell in Rm+1 :

To prove this case, first we define the following notion :

Call f well-behaved at a point (x̄, r) ∈ A if x̄ ∈ C for some box C ⊆ Rm and a < r < b

for some a, b ∈ R such that

i. C × (a, b) is contained in A

ii. For all x̄ ∈ C, the function f(x, .) is continuous and monotone on (a, b)

iii. The function f(., r) is continuous at p.

Let A∗ be the set of all points of A at which f is well-behaved. Note that A∗ is definable

since each i., ii. and iii. can be formulated.

By the following claim and by (Im+1), we will obtain that any open cell contained in A is

included in A∗. Then f will be well-behaved on this open cell. Using the Lemma 4.8 we will

obtain that f is continuous on this open cell which is what we want to prove.

Claim : A∗ is dense in A.

It is enough to show that for any given box B in Rm and −∞ < a < c < ∞ such that

B × (a, c) is contained in A, the box B × (a, c) intersects A∗, then we will be proved the

claim.

By MT, for all x ∈ B, there is a largest λ(x) ∈ (a, c] such that the one-variable function

f(x, .) is continuous and monotone on (a, λ(x)). As λ(x) : B −→ R is definable, then by

(IIm), there is a box C ⊆ B on which λ is continuous.

If we take C small enough, we may assume that b ≤ λ(x), for all x ∈ C. So fix such a

b ∈ (a, c) and choose any element r ∈ (a, b). By (IIm), the function f(., r) : C −→ R is

continuous on some smaller box. If we replace C by this smaller box, then we see that f is

well-behaved at each point (p, r) with p in C. Because :

i. (p, r) ∈ C ′ × (a, b) where C ′ is the smaller box,

ii. for all x ∈ C ′ , the function f(x, .) is continuous and monotone on (a, λ(x)), and

iii. f(., r) is continuous on C ′ .

This establishes the claim.

Now, by (Im+1), take a decomposition D of Rm+1 that partitions A and A∗. Since A is open,
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there is at least one open cell contained in A. Let D be such an open cell.

It remains to show that f is continuous on D. We know that D partitions A∗ and D∩A∗ 6= ∅
by the previous claim, then we obtain that D ⊆ A∗ as D ⊆ A.

Since D ⊆ A, for each point (x̄, r) ∈ D the function f(., r) is continuous at x̄. Therefore, D

is the union of the boxes C × (a, b) satisfying i., ii. and iii. for each x̄ ∈ C and r ∈ (a, b). By

Lemma 4.8, the function f is continuous on each such box, thus f is continuous on D. This

concludes the proof of (IIm+1), hence the proof of the theorem.

�



5 COMPARISON OF VAN DEN DRIES AND GABRIELOV REGULARITIES

In this chapter, we will introduce regularity in the sense of Lou van den Dries. Then we will

state the Regular Cell Decomposition Theorem which is given in (van den Dries, 1998) as

an exercise and prove it. Furthermore, we will give the definition of regularity as Gabrielov

defines. In the end of the chapter, we will show these two definitions are not equivalent.

Throughout this chapter, we will call a cell (or function) vdD-regular or Gabrielov-regular

in order to avoid any misunderstanding.

5.1 vdD- Regularity

In this section, we give the definition of vdD-regular cells (also vdD-functions) and then state

the Regular Cell Decomposition Theorem which is stronger then CDT.

Definition 5.1. (vdD-Regular Cell) An open cell C ⊆ Rm is called regular for any two

points x, y ∈ C which differ only in the ith coordinate and for any point z ∈ Rm that differs

from x and y only in the ith coordinate, if we have that xi < zi < yi then z ∈ C.

Definition 5.2. (vdD-Regular Function) Consider a function f : C 7→ R where C ⊆ Rm is

a regular cell and i ∈ {1, . . . ,m}. We say that f is

i. strictly increasing in the ith coordinate if for any points x, y ∈ C that differ only in the

ith coordinate with xi < yi then f(x) < f(y).

ii. strictly decreasing in the ith coordinate if for any points x, y ∈ C that differ only in

the ith coordinate with xi < yi then f(x) > f(y).

iii. independent of the ith coordinate if for any points x, y ∈ C that differ only in the ith

coordinate with xi < yi then f(x) = f(y).

The function f is called a regular function if f is continuous and for each i ∈ {1, . . . ,m},
f is either strictly increasing, or strictly decreasing in the ith coordinate or independent of

the ith coordinate.
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Before stating the Regular Cell Decomposition Theorem, we prove a lemma which is given

as an exercise in (van den Dries, 1998).

Lemma 5.1. Let f, g : C → R be two regular definable functions with f < g whereC ⊆ Rm

is a regular cell. Then the open cell (f, g)C is regular in Rm+1.

Proof We have two cases to examine :

CASE 1 : If ā = (x1, . . . , xm, am), b̄ = (x1, . . . , xm, bm) ∈ (f, g)C and

c̄ = (x1, . . . , xm, cm) ∈ Rm+1 differ only in the (m+ 1)th coordinate with

am+1 < cm+1 < bm+1 :

Since f(x1, . . . , xm) < am < cm < bm < g(x1, . . . , xm) then by definition c̄ ∈ (f, g)C .

Thus (f, g)C is regular.

CASE 2 : If ā = (x1, . . . , xi−1, ai, xi+1, . . . , xm+1), b̄ = (x1, . . . , xi−1, bi, xi+1, . . . , xm+1)

are in (f, g)C and c̄ = (x1, . . . , xi−1, ci, xi+1, . . . , xm+1) ∈ Rm+1 differ only in the ith coor-

dinate with ai < ci < bi for some i ∈ {1, . . . ,m} :

Since C is regular then (x1, . . . , xi−1, ci, xi+1, . . . , xm) ∈ C. Now we need to show that

f(x1, . . . , xi−1, ci, xi+1, . . . , xm) < xm+1 < g(x1, . . . , xi−1, ci, xi+1, . . . , xm).

For each function, there are 3 kind of monotonicity in the ith coordinate which uncover 9

cases to examine. Since each of these cases is shown by the same way, we only give a proof

for one of them.

Case : If f and g are both strictly decreasing in the ith coordinate :

We know that ā, b̄ ∈ (f, g)C , then

f(x1, . . . , xi−1, ci, xi+1, . . . , xm) < f(x1, . . . , xi−1, ai, xi+1, . . . , xm) < xm+1

< g(x1, . . . , xi−1, bi, xi+1, . . . , xm) < g(x1, . . . , xi−1, ci, xi+1, . . . , xm).

Thus c̄ ∈ (f, g)C which implies that (f, g)C is regular. �
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Now state the Regular Cell Decomposition Theorem. We then give a proof of it. (No proof

of this theorem is given in (van den Dries, 1998) or, as far as we could see, in the literature.)

Theorem 5.1. (Regular Cell Decomposition Theorem)

(Im) Given any definable sets A1, . . . , Ak ⊆ Rm, there is a decomposition of Rm partitio-

ning each of A1, . . . , Ak, all of whose open cells are regular.

(IIm) For each definable function f : A −→ R, A ⊆ Rm, there is a decomposition D

of Rm partitioning A all of whose open cells are regular, and such that for each open cell

C ∈ D with C ⊆ A, the restriction f |C : C −→ R is regular. (van den Dries, 1998, p. 58)

Proof We will prove this by induction on m.

First show (I1) and (II1) : hold

LetA1, . . . , Ak ⊆ R be definable sets. By (I1) of the CDT, we find a common decomposition

partitioning each Ai, whose elements are (0)-cells and (1)-cells where i ∈ {1, . . . , k}. Since

the only open cells of this decomposition are (1)-cells, then we should show these are regular.

Take a (1)-cell ; that is, an interval (a, b) ⊆ R with a < b. Let x, y ∈ (a, b) and z ∈ R such

that x < z < y, then z ∈ (a, b) which shows that (a, b) is a regular cell. Thus, all of open

cells of the decomposition are regular.

Now we will show (II1) holds. Let f : A −→ R be a definable function with A ⊆ R.

As A is definable in R then it is a finite union of intervals and points. Now take an open

cell C = (a.b) ⊆ A. Then by MT, we find points a = a1 < · · · < an = b in (a.b) such

that f is continuous and strictly monotone or constant on each subinterval (aj, aj+1) where

j ∈ {1, . . . , (n − 1)}. Then the decomposition D which contains each such subinterval and

the points as elements gives the desired decomposition. These establish proofs of (I1) and

(II1).

For the rest of the proof, first we will suppose (Im) holds and show (IIm) also holds, then

assume (IIm) holds and show (Im+1) holds. Hence this will finish the proof of the theorem.

Now suppose (Im) holds and show (IIm) holds.

Let f : A −→ R be a definable function with A ⊆ Rm. We should find a decomposition

D of Rm partitioning A, all of whose open cells are regular and such that for each open cell
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C ∈ D with C ⊆ A, the restriction f |C is regular.

For each i ∈ {1, . . . ,m}, we define following sets :

Ai1 :=
{

(x1, . . . , xm) ∈ A : ∃y1, y2, y1 < xi < y2, ∀y0 ∈ (y1, y2),

(x1, . . . , xi−1, y0, xi+1, . . . , xm) ∈ A,
y0 < xi =⇒ f(x1, . . . , xi−1, y0, xi+1, . . . , xm) < f(x1, . . . , xi, . . . , xm) and

y0 > xi =⇒ f(x1, . . . , xi−1, y0, xi+1, . . . , xm) > f(x1, . . . , xi, . . . , xm)
}

,

Ai2 :=
{

(x1, . . . , xm) ∈ A : ∃y1, y2, y1 < xi < y2, ∀y0 ∈ (y1, y2),

(x1, . . . , xi−1, y0, xi+1, . . . , xm) ∈ A,
y0 < xi =⇒ f(x1, . . . , xi−1, y0, xi+1, . . . , xm) > f(x1, . . . , xi, . . . , xm) and

y0 > xi =⇒ f(x1, . . . , xi−1, y0, xi+1, . . . , xm) < f(x1, . . . , xi, . . . , xm)
}

,

Ai3 :=
{

(x1, . . . , xm) ∈ A : ∃y1, y2, y1 < xi < y2, ∀y0 ∈ (y1, y2),

(x1, . . . , xi−1, y0, xi+1, . . . , xm) ∈ A,
y0 < xi =⇒ f(x1, . . . , xi−1, y0, xi+1, . . . , xm) = f(x1, . . . , xi, . . . , xm) and

y0 > xi =⇒ f(x1, . . . , xi−1, y0, xi+1, . . . , xm) = f(x1, . . . , xi, . . . , xm)
}

.

So the sets Ai1, Ai2, Ai3 contain the points in A where the function f is locally strictly in-

creasing in the ith, strictly decreasing in the ith and independent from the ith coordinate,

respectively.

It’s clear that each Aij is definable where i ∈ {1, . . . ,m}, j ∈ {1, 2, 3}.

Let Ω := A1j1 ∩ · · · ∩ Amjm where i ∈ {1, . . . ,m} and ji ∈ {1, 2, 3}. Since for each

coordinate there are 3 kinds of monotonicity, there are at most 3m-many such Ω.

Now look at the setA\
⋃

Ω which contains all points (x1, . . . , xm) inA such that the function

f is not strictly increasing, strictly decreasing or independent from at least one component

of (x1, . . . , xm).

Note that each set Ω as well as the set A \
⋃

Ω is definable in Rm and their union gives the

set A.

Lemma 5.2. A \
⋃

Ω has no interior point.

Proof We seek for a contradiction. Suppose thatA\
⋃

Ω has at least an interior point, then we

can find an open box U = (a1, b1)×· · ·× (am, bm) around that point such that U ⊆ A\
⋃

Ω.

To get a contradiction, we want to show that U 6⊆ A \
⋃

Ω, so we need to find a point in U
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such that the function f is continuous and strictly monotone or constant at each coordinate

of that point. Thus we will find a point in U which cannot be in A \
⋃

Ω, by definition.

Therefore, we will work through f |U , the restriction of f(x1, . . . , xm) to U .

Now for each i ∈ {1, . . . ,m}, we define following set :

Hi :=
{

(x1, . . . , xm) ∈ U : ∃y1 ∃y2 with y1 < xi < y2, ∀j1, j2 ∈ {1, 2, 3} with

j1 6= j2, ∀z1 with y1 < z1 < xi, and ∀z2 with xi < z2 < y2,

(x1, . . . , xi−1, z1, xi+1, . . . , xm) ∈ Aij1 and (x1, . . . , xi−1, z2, xi+1, . . . , xm) ∈ Aij2
}

.

We clearly see that the set Hi contains the points (x1, . . . , xm) ∈ U at which the function

f(x1, . . . , xi−1, •, xi+1, . . . , xm) : (ai, bi) −→ R changes monotonicity in the ith coordinate

at the point xi. Note that each Hi is definable.

We will call (x1, . . . , xm) ∈ A is good in the ith coordinate if (x1, . . . , xi, . . . , xm) /∈ Hi,

otherwise we will call it bad in the ith coordinate. Furthermore, call (x1, . . . , xm) ∈ A
good point if it is good in each coordinate. So, we look for a good point in U to obtain a

contradiction.

Let πi and Πi be the projection maps of A onto Rm−1 and R, so we have the following maps

πi : A −→ Rm−1 : (x1, . . . , xi, . . . , xm) 7→ (x1, . . . , xi−1, xi+1, . . . , xm)

Πi : A −→ R : (x1, . . . , xi, . . . , xm) 7→ xi

We define ∀x1 . . . ∀xi−1∀xi+1 . . . ∀xm, the fiber

Πi(π
−1
i (ȳ)) :=

{
xi : (x1, . . . , xm) ∈ Hi

}
where i ∈ {1, . . . ,m}, ȳ = (x1, . . . , xi−1, xi+1, . . . , xm).

By MT, we know that ∀x1 . . . ∀xi−1∀xi+1 . . . ∀xm, there exists a number Ni such that

|Πi(π
−1
i (ȳ))| < Ni. In other words, for each i ∈ {1, . . . ,m}, the fiber Πi(π

−1
i (ȳ))

is finite over Rm−1. This finiteness will let us mention of the infimum.

We will prove by induction on k ∈ {1, . . . ,m} that there is a box Dk on which f |Dk
is

continuous and strictly monotone or constant in each ith coordinate where i ∈ {1, . . . , k}.
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We should first show that D1 exists. Let B1 = (a2, b2) × · · · × (am, bm). Since Π1(π−1
1 (ȳ))

is finite, then we can define the following function :

c1 : B1 −→ (a1, b1) by

c1(x2, . . . , xm) = inf{x1 : x1 ∈ Π1(π−1
1 (x2, . . . , xm)) or x1 = b1}.

So c1 takes a point from B1 and sends to the least x1 ∈ Π1(π−1
1 (ȳ)) that changes the mono-

tonicity of the function f(•, x2, . . . , xm) where x2, . . . , xm are fixed,

(x1, . . . , xm) ∈ H1 and ȳ = (x2, . . . , xm).

Note that c1 is definable since its graph

Γ(c1) = {(λ1, x2, . . . , xm) : λ1 = inf{x1 : Π1(π−1
1 (ȳ)) or λ1 = b1}

is definable. Since B1 ⊆ Rm−1 and c1 are definable, then by (IIm−1) of CDT, we can find

a decomposition D1 of Rm−1 partitioning B1 such that the restriction c1|C1 : C1 −→ R to

each cell C1 ∈ D1 with C1 ⊆ B1 is continuous.

Since B1 is an open set in Rm−1, then there is at least one such C1 ⊆ B1 which is open. Thus

we take a point (y2, . . . , ym) ∈ C1 ⊆ B1. Since c1 is continuous on C1, then by definition for

any σ1, σ2 with c1(y2, . . . , ym) ∈ (σ2, σ1), we can find pi, qi depending on σ1, σ2 with

yi ∈ (pi, qi) such that if (x2, . . . , xm) ∈ (p2, q2)× · · · × (pm, qm), then

c1(x2, . . . , xm) ∈ (σ2, σ1) where i ∈ {2, . . . ,m}.

We can obtain then for any fixed (x2, . . . , xm) ∈ (p2, q2) × · · · × (pm, qm), the function

f(•, x2, . . . , xm) is continuous and strictly monotone or constant on (σ3, σ2) for some σ3

with a1 < σ3 < σ2 < c1(y2, . . . , ym).

Thus we see that each point (x1, . . . , xm) in (σ3, σ2)× (p2, q2)× · · · × (pm, qm) = D1

is good in the first coordinate.

From the previous result, we conclude that f |D1 , the restriction of f(x1, . . . , xm) to this new

box D1 ⊆ U , is continuous and strictly monotone or constant in the first coordinate.

Now suppose that there exist Dk−1 ⊆ Dk−2 ⊆ · · · ⊆ D1 ⊆ U such that f |Dk−1
is continuous

and strictly monotone or constant in each ith-coordinate where i ∈ {1, . . . , (k−1)}. We will

find a box Dk ⊆ Dk−1 on which f is continuous and strictly monotone or constant in each

ith-coordinate where i ∈ {1, . . . , k}.
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Let Dk−1 = (α1, β1)× · · · × (αm, βm) be the box on which f |Dk−1
is continuous and strictly

monotone or constant in each coordinate i ∈ {1, . . . , (k − 1)}.

Let Bk = (α1, β1) × · · · × (αk−1, βk−1) × (αk+1, βk+1) × · · · × (αm, βm) be the projection

of Dk−1 on Rm−1.

Define the function

ck : Bk −→ (αk, βk), by

ck(x1, . . . , xk−1, xk+1, . . . , xm) = inf{xk : xk ∈ Πk(π
−1
k (ȳ)) or λk = βk}

where ȳ = (x1, . . . , xk−1, xk+1, . . . , xm). So ck takes a point from Bk and sends to the least

xk ∈ (αk, βk) which changes the monotonicity of the function

f(x1, . . . , xk−1, •, xk−1, . . . , xm) where x1, . . . , xk−1, xk+1, . . . , xm are fixed.

Note that ck is definable since its graph

Γ(ck) =
{

(x1, . . . , xk−1, λk, xk+1, . . . , xm) : λk = inf{xk : xk ∈ Πk(π
−1
k (ȳ)) or λk = βk}

}
is definable. Remark that Bk ⊆ Rm−1 and ck are definable, then by (IIm−1) of CDT, we find

a decomposition Dk of Rm−1 partitioning Bk such that the restriction ck|Ck
: Ck −→ R to

each cell Ck ∈ Dk with Ck ⊆ Bk is continuous.

Similarly, we find an open cell Ck ⊆ Bk. Take a point (w1, . . . , wk−1, wk+1, . . . , wm) ∈ Ck.
Since ck is continuous on Ck, then by definition for any σ4, σ5 with

ck(w1, . . . , wk−1, wk+1, . . . , wm) ∈ (σ5, σ4), we can find γi, θi depending on σ4 and σ5

with wi ∈ (γi, θi) such that if

(x1, . . . , xk−1, xk+1, . . . , xm) ∈ (γ1, θ1)× · · ·× (γk−1, θk−1)× (γk+1, θk+1)× · · ·× (γm, θm)

then ck(x1, . . . , xk−1, xk+1, . . . , xm) ∈ (σ5, σ4) where i ∈ {1, . . . , (k − 1), (k + 1), . . . ,m}.

We can obtain then for any fixed

(x1, . . . , xk−1, xk+1, . . . , xm) ∈ (γ1, θ1)×· · ·× (γk−1, θk−1)× (γk+1, θk+1)×· · ·× (γm, θm),

the function f(x1, . . . , xk−1, •, xk+1, . . . , xm) is continuous and strictly monotone or constant

on (σ6, σ5) for some σ6 < σ5 < ck(x1, . . . , xk−1, xk+1, . . . , xm).
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Thus we observe that each point (x1, . . . , xm) in Dk is good in the kth-coordinate, where

Dk = (γ1, θ1)× · · · × (γk−1, θk−1)× (σ6, σ5)× (γk+1, θk+1)× · · · × (γm, θm).

By assumption we have that Dk ⊆ Dk−1. So the restriction f |Dk
is continuous and strictly

monotone or constant in each coordinate i ∈ {1, . . . , k}, sinceDk ⊆ Dk−1 ⊆ · · · ⊆ D1 ⊆ U .

Therefore, we continue this process and find Dm ⊆ Dm−1 ⊆ · · · ⊆ D1 such that f |Dm is

continuous and constant or strictly monotone in each coordinate i ∈ {1, . . . ,m}.

Thus any point we take from Dm ⊆ U is a good point. This contradicts with the definition

of A \
⋃

Ω. Hence A \
⋃

Ω does not have any interior point.

�

Using Lemma 5.2, we see that if we have an open cell C, then there exists some Ω such that

C ⊆ Ω .

From now on, we will say that f(x1, . . . , xm) is globally monotone or constant in the ith-

coordinate if f(x1, . . . , xi−1, •, xi+1, . . . , xm) is continuous and strictly monotone or constant

along the ith-fiber of its domain.

Now look at the sets Aij’s. We see their definitions give that f(x1, . . . , xm) is locally strictly

monotone or constant in the ith-coordinate. By proving the following Lemma, we will show

that f(x1, . . . , xm) is globally strictly monotone or constant in the ith-coordinate.

Lemma 5.3. There is a decomposition D of Rm partitioning each Ω and A \
⋃

Ω such that

for each open cell C ∈ D, the restriction f |C is continuous and globally strictly monotone

or constant in the ith-coordinate.

Proof By (IIm) of the CDT, we find a decomposition D1 partitioning each Ω and A \
⋃

Ω

such that for each C ∈ D1 with C ⊆ Ω or C ⊆ A \
⋃

Ω, the restriction f |C is continuous.

As D1 is a decomposition then we can consider D1 = {D1, . . . , Dn} for some number n and

Di ∩Dj = ∅ if i 6= j where i, j ∈ {1, . . . , n}.

We know that each Di is a definable set in Rm, then by (Im) of the Regular Cell Decompo-

sition Theorem 5.1, we find a decomposition D partitioning each Di, all of whose open cells

are regular. It’s clear that D partitions Ω and A \
⋃

Ω. Thus D gives the desired
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decomposition ; that is, any open cell C ∈ D is regular and the restriction f |C is continuous

because C ⊆ Di for some i ∈ {1, . . . , n} and f |Di
is continuous.

Consider an intersection Ω = A1j1 ∩ · · · ∩ Amjm where i ∈ {1, . . . ,m}, ji ∈ {1, 2, 3}.
Suppose that for some fixed coordinate i, we have ji = 1, so Ω = A1j1∩· · ·∩Ai1∩· · ·∩Amjm .

(The proof goes the same way when ji = 2 and ji = 3).

Take an open cell C ∈ D then C ⊆ Ω by Lemma 5.2. Consider the restriction of f to this

open cell C. Since C is regular, then its ith-fiber Ci := {xi ∈ R : (x1, . . . , xi, . . . , xm) ∈ C}
can be written as an interval. So if x̄ = (x1, . . . , xm) ∈ C, then we can assume that

xi ∈ (αi, βi).

By MT, we find points αi = a1 < · · · < an = βi such that the function

f(x1, . . . , xi−1, •, xi+1, . . . , xm) : (αi, βi) −→ R is continuous and strictly monotone or

constant on each subinterval (ak, ak+1) where k ∈ {1, . . . , (n − 1)}. So here ak’s are

the points which either make the function f(x1, . . . , xi−1, •, xi+1, . . . , xm) discontinuous on

(αi, βi) or change the monotonicity of the function.

But we know C ⊆ Ω = A1j1 ∩ · · · ∩ Ai1 ∩ · · · ∩ Amjm , then on each subinterval (ak, ak+1),

the function f(x1, . . . , xi−1, •, xi+1, . . . , xm) is continuous and strictly increasing. Thus the

points ak’s do not change the monotonicity but the continuity, so they are the jumping points

of the function.

On the other hand, as C ∈ D, we know that f is continuous on C, then the function

f(x1, . . . , xi−1, •, xi+1, . . . , xm) cannot have any jumping points. So we obtain that

f(x1, . . . , xi−1, •, xi+1, . . . , xm) is continuous and strictly increasing on (a1, an) = (αi, βi).

Hence, f |C is continuous and globally strictly increasing in the ith-coordinate.

As i was arbitrary, we obtain that f |C is continuous and globally strictly monotone or

constant in each coordinate of C.

�

Hence, by Lemma 5.3, we showed that if we have a restriction of f into any open cell

C ⊆ Ω, then we know f |C is continuous and globally strictly monotone or constant in each

coordinate of C.

Finally, we finish the proof of (IIm) by showing that there is a decomposition D of Rm
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partitioning A, all of whose open cells are regular and such that for any open cell C ∈ D

with C ⊆ A, the restriction f |C is regular.

As in the proof of Lemma 5.3, by using (IIm) of CDT and (Im) of Regular Cell Decompo-

sition Theorem 5.1, we find a decomposition D of Rm partitioning each Ω and A \
⋃

Ω, all

of whose open cells are regular and for any C ∈ D with C ⊆ Ω or C ⊆ A \
⋃

Ω, f |C is

continuous.

Note that D partitions A. Now take an open cell C ∈ D with C ⊆ A. By Lemma 5.2,

C ⊆ Ω ⊆ A for some Ω = A1j1 ∩ · · · ∩ Amjm where i ∈ {1, . . . ,m} and ji ∈ {1, 2, 3}.

We want to show that f |C is regular.

Since we know that f |C is continuous, then it is enough to show that for each i ∈ {1, . . . ,m},
f |C is either strictly increasing in the ith-coordinate, or strictly decreasing in the ith-coordinate

or independent of the ith-coordinate. We know that C ⊆ Ω = A1j1 ∩ · · · ∩ Amjm and f |C is

continuous.

By Lemma 5.3, we have that f |C is continuous and globally strictly monotone or constant in

each coordinate. It follows from the lemma then for each i ∈ {1, . . . ,m}, f |C is continuous

and depending on ji, either strictly increasing in the ith-coordinate, or strictly decreasing in

the ith-coordinate or independent of the ith-coordinate. Hence f |C is regular. This finishes

the proof of (IIm).

Now we suppose that (IIm) holds and show (Im+1) holds, namely, we will show that

for any definable setsA1, . . . , Ak inRm+1, there is a decomposition ofRm+1 partitioning

each Ai, all of whose open cells are regular.

By (Im+1) of CDT, we find a decomposition D = {C1, . . . , Cn} of Rm+1 partitioning each

Ai. Then, by definition of a decomposition, we know that the set D′ = {Π(C1), . . . ,Π(Cn)}
of the projections of each cell in D is a decomposition of Rm, where Π : Rm+1 → Rm is the

natural projection. By (Im) of RCDT, we find a decomposition E
′ of Rm partitioning each

cell in D
′ such that each open cell in E

′ is regular.

By Remark 4.1, we find a new decomposition D|E′ of Rm+1 such that E′ is the set of projec-

tions of each cell in this new decomposition. To simplify, we will write E instead of D|E′ .

Note that E partitions each Ai and E
′ is a regular decomposition of Rm.
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For any decomposition F = {C1, . . . , Cn} of Rm+1 such that F partitions each Ai and

F
′
:=
{

Π(C1), . . . ,Π(Cm)
}

is a regular decomposition of Rm, we let

• kF(A
′
) = #{f : A

′ → R : f is not regular, whereA := Γ(f) ∈ F}, forA′ ∈ F
′ open,

• N(F) = max{kF(A
′
) : A

′ ∈ F
′
, A
′ is open},

• M(F) = #{A′ ∈ F
′
.A
′ open : kF(A

′
) = N(F)}.

It follows from Lemma 5.1 that if N(E) = 0 then E is a regular cell decomposition of Rm+1

partitioning each Ai.

Assume that E is not a regular decomposition of Rm+1, so N(E) 6= 0. We will see that with

the following process, either N(E) or M(E) decreases :

Take one of the open regular cells A′ ∈ E
′ which makes kE(A

′
) maximum and a function

f : A
′ → R which is not regular such that Γ(f) ∈ E.

By (IIm) of RCDT, we find a regular decomposition F
′ of Rm partitioning A′ such that the

restriction of f to any open cell in F
′ is regular.

Let G′ = E
′ \ {A′} ∪ {C ′ : C

′ ∈ F
′
, C
′ ⊆ A

′} and G = E|G′ . Remark that G′ is a regular

decomposition of Rm. Thus G is a decomposition of Rm+1 partitioning each of Ai, where G
′

is the set of projections of each cell in G.

Note that each regular cell in G
′ is included in a regular cell in E

′ . It is clear that if a function

g is regular on a cell A′ ∈ E
′ then its restriction g|B′ to a cell B′ ⊆ A

′ is also regular, hence

kG(B
′
) < kE(A

′
).

Therefore, we obtain that

if M(E) > 1 then N(E) = N(G) and M(G) = M(E) = 1

if M(E) = 1 then N(G) < N(E).

This gives us then that

(N(G),M(G)) <lex (N(E),M(E))

where ≤lex is the lexicographical order on N2. Since this is a well-ordering on N2, this

process cannot be repeated infinitely. Hence we find a decomposition H of Rm+1 where

N(H) = 0 which gives that H is a regular decomposition of Rm+1.

�



Example 5.1. Consider the function f : R2 → R : (x, y) 7→ x|y − x|. We will find a

decomposition for R2 as in (IIm) of the Regular Cell Decomposition Theorem 5.1.

Using basic calculus, we obtain :

• On the open cells 1, 3, 4 and 6, f is increasing in the first coordinate and decreasing

in the second coordinate.

• On the open cells 2.1 and 5.1, f is decreasing in the first coordinate and increasing in

the second coordinate.

• On the open cells 2.2 and 5.2, f is increasing both in the first and the second coordi-

nate.

So f is vdD-regular on these open cells. Thus the decomposition for R2 that we obtained

can be seen in the following figure 5.1 on which each cell is denoted by either a colour or a

number where the lines are y = x and y = x tan(67, 5) :

Figure 5.1: Decomposition of R2

5.2 Gabrielov-Regularity

In this section, we introduce the regularity in the sense of Gabrielov and we give the propo-

sition 5.1.

Definition 5.3. An (i1, . . . , in)-cell in Rn is said to be a k-cell if
∑n

j=1 ij = k.
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Definition 5.4. We say that two definable sets A ⊆ Rn and B ⊆ Rm are definably homeo-

morphic to each other if there is a definable homeomorphism between A and B.

Definition 5.5. (Gabrielov-regular cell) A definable set U is called a Gabrielov-regular

k-cell if the pair (U,U) is definably homeomorphic to the pair ([0, 1]k, (0, 1)k) where

[0, 1]k = [0, 1]× · · · × [0, 1], the product of k-many [0, 1]’s.

Definition 5.6. (Gabrielov-regular function) A function h : U → R is called

Gabrielov-regular if h is continuous and the graph of h is a Gabrielov-regular set.

Before the following proposition, we recall a theorem which will be used in the proof of the

proposition and which follows easily from the Intermediate Value Theorem.

Theorem 5.2. Let f be a real valued function on an open interval I . If f is continuous and

increasing (or decreasing) then f(I) is an open interval and

i. f realizes a bijection between I and f(I) , and

ii. f−1 : f(I)→ I is continuous and increasing (or decreasing).

We can observe that Gabrielov-regularity makes cells have a strong topological property,

by definition. The following proposition shows that open cells have a weaker but still a nice

feature.

Proposition 5.1. Consider the o-minimal structure (R; +,−, ·, 0, 1, · · · , <). If A is a k-cell

in Rn, then A is definably homeomorphic to the product of k-many open intervals.

Proof We will prove by induction on n. First we show the claim for n = 1 :

Let A be a cell in R. If A is a (0)-cell, it is trivial. Consider that A is a (1)-cell. Then by

definition, it is an open interval in R. Thus it is definably homeomorphic to the open interval

(0, 1).

Now we will suppose the assumption holds for the cells in Rn and show it is also true for

the cells in Rn+1.

Let A = (λ1, . . . , λn) be a k-cell in Rn and suppose that A is definably homeomorphic to

the product of k-many (0, 1)’s. We will show that B = (λ1, . . . , λn, λn+1), which is a cell in

Rn+1, is also definably homeomorphic to the product of (k + 1)-many (0, 1)’s if λn+1 = 1

and it is definably homeomorphic to the product of k-many (0, 1)’s if λn+1 = 0.
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First assume that λn+1 = 0. Then B is a k-cell which is a graph of some function f ∈ C(A).

By assumption, we know that A is definably homeomorphic to Xk := (0, 1) × · · · × (0, 1)

which is the product of k-many (0, 1)’s. Let g : Xk → A be a homeomorphism between A

and Xk.

Claim : The function

h :Xk → B

(t1, . . . , tk) 7→
(
g(t1, . . . , tk), f(g(t1, . . . , tk))

)
is a homeomorphism between Xk and B.

We show that h is a bijective :

• injectivity : Let t̄ = (t1, . . . , tk), s̄ = (s1, . . . , sk) ∈ Xk. If h(t̄) = h(s̄) then(
g(t̄), f(g(t̄))

)
=
(
g(s̄), f(g(s̄))

)
.

Since g is injective, we obtain then t̄ = (t1, . . . , tk) = (s1, . . . , sk) = s̄.

• surjectivity : Take (ā, f(ā)) ∈ B where ā = (a1, . . . , an) ∈ A. As g is

surjective, we find some t̄ = (t1, . . . , tk) ∈ Xk such that g(t̄) = ā. Thus we found a

point t̄ ∈ Xk such that h(t̄) =
(
g(t̄), f(g(t̄))

)
= (ā, f(ā)).

Hence we showed that h is a bijection.

We know that g and f are continuous functions because g is a homeomorphism and

f ∈ C(A). Therefore, h is continuous.

The preimage of h is defined by

h−1 :B → Xk

(ā, f(ā)) 7→ h−1(ā, f(ā)) = g−1(ā).

It’s clear that h−1 is also continuous which establishes the claim; that is,B is homeomorphic

to Xk, the product of k-many (0, 1)’s, when λn+1 = 0.

Now we assume that λn+1 = 1 and show that B is homeomorphic to the product of

k + 1-many (0, 1)’s. We will denote this product by Xk+1 .
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Remark that B is a k + 1-cell which is a set (f, g)A where f, g ∈ C∞(A) with f < g.

We know that A is definably homeomorphic to Xk, by assumption. Let p : Xk → A be a

homeomorphism between Xk and A. We need to examine four cases :

First Case : If f, g ∈ C(A) :

Then the following function h gives the desired homeomorphism :

h :Xk+1 → B

t̄ 7→
(
p(t1, . . . , tk) , tk+1.

[
g
(
p(t1, . . . , tk)

)
− f

(
p(t1, . . . , tk)

)]
+ f
(
p(t1, . . . , tk)

))
where t̄ = (t1, . . . , tk+1) ∈ Xk+1.

It’s clear that h is bijective and continuous.

The inverse of h is defined by h−1(ā, b) = (p−1(ā), r(ā)) where (ā, b) ∈ B and

r(ā).
(
g(ā) − f(ā)

)
= b − f(ā). See that h−1 is a continuous function since p−1 and r are

continuous.

Thus, we showed that B is homeomorphic to Xk+1 when f, g ∈ C(A).

Second Case : If f ∈ C(A) and g is the constant function∞ :

Then define the following function

h :Xk+1 → B

t̄ 7→
(
p(t1, . . . , tk), r

(
p(t1, . . . , tk)

))

is a homeomorphism where t̄ = (t1, . . . , tk+1) ∈ Xk+1 and

r
(
p(t1, . . . , tk)

)
.tk+1 = f

(
p(t1, . . . , tk)

)
.

It’s clear that h is bijective and continuous.

The inverse of h is defined by h−1(ā, b) = h−1(ā, r(ā)) = (p−1(ā), r(ā)) where b = r(ā).

Similarly, h−1 is also continuous. Thus we showed that B is homeomorphic to Xk+1 when

f ∈ C(A) and g =∞.

Third Case : If f is the constant function−∞ and g ∈ C(A) :
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Then the function

h :Xk+1 → B

t̄ 7→
(
p(t1, . . . , tk),−r

(
p(t1, . . . , tk)

))
gives the desired homeomorphism where t̄ = (t1, . . . , tk+1) ∈ Xk+1 and

r
(
p(t1, . . . , tk)

)
.tk+1 = f

(
p(t1, . . . , tk)

)
.

This case is shown by the similar way with the previous one.

Fourth Case : If f is the constant function−∞ and g is the constant function∞ :

For this case, we define the following function

h :Xk+1 → B

(t1, . . . , tk+1) 7→
(
p(t1, . . . , tk), q(tk+1)

)
where q(tk+1).(1− (2tk+1 − 1)2) = 2tk+1 − 1.

We show that h is a homeomorphism :

By Theorem 5.2, we obtain that q is bijective as it is continuous and increasing. We know

that p is also bijective. Therefore we obtain that h is a bijection.

It’s clear that h is continuous and its inverse is defined by h−1(ā, b) =
(
p−1(ā, q−1(b)

)
where (ā, b) ∈ B. We know that p−1 is continuous and by Theorem 5.2, q−1 is also

continuous. Thus we obtain that h−1 is continuous. Hence we showed that B is

homeomorphic to Xk+1 when f = −∞ and g =∞.

In each case, we showed that if λk+1 = 1, then B is homeomorphic to the product of

k + 1-many (0, 1)’s. This establishes the proposition.

�

Before passing to the next section, we state a proposition to use in the example, which is

one of the main results of continuous functions on topological spaces. Therefore, we will

skip the proof.



Proposition 5.2. Let X and Y be two topological spaces and f : X → Y be a continuous

function. If U ⊆ X is connected then f(U) is also connected.

Proof See (Wikipedia, 2018) �

5.3 Comparison of The Regularities

In this section, we compare the regularities of van den Dries and Gabrielov. For this pur-

pose, we give a counter-example included in (Gabrielov et al., 2010) and examine it in detail.

Example 5.2. (Gabrielov et al., 2010, Exercise) Consider the set X := {(x, y, z) ∈ R3 :

0 < x, 0 < y, 0 < z < 1, x+ y < z}, and the continuous function

h : X → R

(x, y, z) 7→ (x/z)2 + (y/z)2.

First show that h is vdD-regular. We know h is continuous, so it’s enough to show that it is

either strictly increasing or decreasing or independent from each coordinate.

• 1st coordinate : Take (x1, y, z), (x2, y, z) ∈ X such that x1 < x2. Since x1, x2 ∈ (0, 1),

then

h(x1, y, z) =
x2

1 + y2

z2
<
x2

2 + y2

z2
= h(x2, y, z)

So h is strictly increasing at the first coordinate.

• 2nd coordinate : The proof of that h is strictly in creasing at the first coordinate goes

exactly the similar way.

• 3rd coordinate : Take (x, y, z1), (x, y, z2) ∈ X such that z1 < z2.

Then we have h(x, y, z1) =
x2 + y2

z2
1

>
x2 + y2

z2
2

= h(x, y, z2).

Thus h is strictly decreasing at the third coordinate.

Hence we showed h is a vdD-regular function.

Now look at the following set :

B = {(x, y, z, t) ∈ R4 : (x, y, z) ∈ X, 0 < t < h(x, y, z)}.
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It follows from Lemma 5.1 that B is vdD-regular. We will prove by contradiction that B is

not Gabrielov-regular, so assume that there is a homeomorphism f : B̄ → [0, 1]4 such that

its restriction to B, f |B : B → (0, 1)4, is also a homeomorphism.

Fix the point ā = (0, 0, 0, 3/4). Then ā ∈ B̄ because any open ball around this point

intersects with the set B. Now take an open ball U around this fixed point, so we have

U = {b̄ ∈ R4 : d(ā, b̄) < ε} where ε > 0 and d is the standard metric.

We prove first by taking 0 < ε < 1/4, that U satisfies that if V is open with ā ∈ V and

V ⊆ U then V ∩B is not connected.

Define the following sets :

O1 := V ∩ {b̄ = (x, y, z, t) ∈ U : x < y} ∩B , and

O2 := V ∩ {b̄ = (x, y, z, t) ∈ U : x > y} ∩B.

We claim that V ∩B = O1∪O2. Indeed, since ε < 1/4, for all (x, y, z, t) ∈ V ∩B, t > 1/2.

But then if (x, y, z, t) ∈ V ∩ B, x 6= y : otherwise, assume x = y for a contradiction. It

follows from the definition of B that

0 < 2x = x+ y < z and tz2 < x2 + y2 = 2x2,

hence 0 < 4tx2 < tz2 < 2x2, hence t < 1/2. Thus we have a contradiction.

Now we know that V ∩B = O1∪O2. It’s clear that the sets are disjoint and open in B. Now

it is enough to show that O1 and O2 are non-empty :

Take x0 < ε/3. Since ā ∈ V and V is an open set around ā, then the points

b̄1 = (
√

11x0
4

, x0,
3x0
2
, 3

4
) and b̄2 = (x0,

√
11x0
4

, 3x0
2
, 3

4
) are clearly in O1 and O2, respectively.

Note that f(U ∩ B̄) is open, containing f(ā) because we know that U ∩ B̄ is open by

subspace topology on B̄ and f−1 is continuous.

Now take an open, connected setW from f(U∩B̄). We know f is continuous, then f−1(W )

is open. Let V = f−1(W ). Note that ā ∈ V ⊆ U ∩ B̄. By the property that U satisfies, we

know that V ∩B is not connected.

We will show now that f(V ∩B) = W ∩ (0, 1)4 :

Take y ∈ f(V ∩B). Since f |B is surjective then there is some x ∈ V ∩B such that f(x) = y.
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As x ∈ V then y ∈ f(V ) = W . Since f |B is a homeomorphism and x ∈ B, then y ∈ (0, 1)4

which implies y ∈ W ∩ (0, 1)4.

Take y ∈ W ∩ (0, 1)4. Since f |B is surjective we find some x ∈ V such that f(x) = y. Also

y ∈ (0, 1)4 and f |B is a injective then x ∈ B which implies y ∈ f(V ∩ B). This finishes the

proof of the equality.

Thus we have f(V ∩ B) = W ∩ (0, 1)4 but we can find an open ball small enough which is

connected in W ∩ (0, 1)4 while V ∩ B is not connected. But f |B is a homeomorphism then

by Proposition 5.2, the image of this open connected ball under the continuous function f−1

must also be connected in V ∩ B. Therefore we have a contradiction. Hence we proved that

B is not Gabrielov-regular.

Therefore, we showed with this example that vdD-regularity and Gabrielov-regularity are

not equivalent. If we combine Proposition 5.1 and the example 5.2, we can conclude that

any cell is homeomorphic to the corresponding product of open intervals (whether or not the

cell is vdD-regular) ; but even if the cell is vdD-regular, its closure for the ambiant topology

does not need to be homeomorphic to the corresponding product of closed intervals : the

homeomorphism cannot be extended to the boundary.



6 CONCLUSION

This thesis is based on three main motivations. Our first motivation was to understand the

tameness of the geometry when we assume the axioms of o-minimal structures. For this

purpose, first we tried to comprehend o-minimality by following (van den Dries, 1998) as

the primary source which we enriched with examples. We then studied the main results of

o-minimality for definable functions such as the Monotonicity and the Cell Decomposition

Theorems and gave their detailed proofs.

Secondly, we dealt with the regularity notion defined by van den Dries and stated Regular

Cell Decomposition Theorem which becomes stronger than Cell Decomposition Theorem

by this new notion. This theorem is left as an exercise in (van den Dries, 1998) and has no

proof in literature. We focused on this theorem and proved it since we thought it would be

a good exercise for us to understand better vdD-regularity. Then we gave an example of a

regular function. Thus, one who has difficulty with this notion could check our study.

Thirdly, we focused on Gabrielov-regularity which is given in the article (Gabrielov et al.,

2010). For this part, our aim was to compare the two regularities by working on an example

in this article which is not explained in detail. While studying on this new definition, first we

realized a topological property of k-cells in o-minimal fields and proved it. Then we finished

our work by showing these two regularity definitions are not equivalent, which was our last

motivation. To this end, we examined that example and we gave all omitted details in our

work.

We must admit that we could not understand how Gabrielov obtained this example. Also, we

noticed some other simpler examples and some generalizations of k-cells and vdD-regular

cells in lower dimensions when comparing the definitions. Therefore, we think that it may

be interesting to work on these and helpful to comprehend how Gabrielov obtained this

example.
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APPENDIX A REMINDER OF GENERAL TOPOLOGY

Let (X,T) be a topological space and A be a subset of X .

Definition APPENDIX A.1. The interior of A is the union of all open sets contained in

A, and it is denoted by A◦.

Definition APPENDIX A.2. The closure of A is the intersection of all closed sets con-

taining A, and it is denoted by A.

Definition APPENDIX A.3. The boundary of A is the set bd(A) = A \ A◦

Let (R,<) be a dense linear ordered set without endpoints.

Definition APPENDIX A.4. T is called the order topology on R if it is generated by the

subbasis of open rays (a,∞) = {x ∈ R : a < x} and (−∞, b) = {x ∈ R : x < b} where

a, b ∈ R.

Definition APPENDIX A.5. Let X and Y be two topological spaces. The topology gen-

erated by the basis

B = {U × V : U is open in X and V is open in Y}

on X × Y is called the product topology.

Lemma APPENDIX A.1. The set B is a basis for a topology on X × Y .

Proof It’s clear that X × Y is in the basis B.

Now let B1, B2 ∈ B and B1 ∩ B2 = I . By definition, B1 = U1 × V1, B2 = U2 × V2 where

U1, U2 and V1, V2 are open in X and Y , respectively.

Take (x, y) ∈ I . Then x ∈ U1 ∩ U2 and y ∈ V1 ∩ V2 which implies that (x, y) ∈ B3 where

B3 = x ∈ U1 ∩ U2 × V1 ∩ V2 and B3B.

�
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Definition APPENDIX A.6. Let (X,T) be a topological space and Y ⊆ X . The collec-

tion

TY = {U ∩ Y : U ∈ T}

is called the subspace topology on Y .

Lemma APPENDIX A.2. The collection TY is a topology on Y .

Proof It’s clear that ∅ and Y are in TY . Take Ui ∩ Y where i ∈ I with the index set I . Look

at the union: ⋃
i∈I

(Ui ∩ Y ) =
⋃
i∈I

Ui ∩ Y.

This gives that
⋃
i∈I(Ui ∩ Y ) is in TY .

Now take Ui ∩ Y where i ∈ {1, . . . , n}. Then

n⋂
i=1

(Ui ∩ Y ) =
n⋂
i=1

Ui ∩ Y.

Therefore,
⋂n
i=1(Ui ∩ Y ) is in TY . Hence we showed that TY is a topology on Y .
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