ESNEK ALTERNATİF AKIM İLETİM SİSTEMLERİ VE ÖZEL GÜÇ CİHAZLARINDA KULLANILAN EVİRİCİ YAPILARIN İNCELENMESİ

MELEK DİCLE

YÜKSEK LİSANS TEZİ
ELEKTRİK ELEKTRONİK VE BİLGİSAYAR MÜHENDİSLİĞİ
ANABİLİM DALI

DANIŞMAN
DR. ÖĞR. ÜYESİ M. MUSTAFA ERTAY

DÜZCE, 2019
T.C.
DÜZCE ÜNİVERSİTESİ
FEN BİLİMLERİ ENSTİTÜSÜ

ESNEK ALTERNATİF AKIM İLETİM SİSTEMLERİ VE ÖZEL GÜÇ CİHAZLARINDA KULLANILAN EVİRİCİ YAPILARIN İNCELENMESİ

Melek DİCLE tarafından hazırlanan tez çalışması aşağıdaki jüri tarafından Düzce Üniversitesi Fen Bilimleri Enstitüsü Elektrik Elektronik ve Bilgisayar Mühendisliği Anabilim Dalı’nda YÜKSEK LİSANS TEZİ olarak kabul edilmiştir.

Tez Danışmanı
Dr. Öğr. Üyesi M. Mustafa ERTAY
Düzce Üniversitesi

Jüri Üyeleri
Dr. Öğr. Üyesi M. Mustafa ERTAY
Düzce Üniversitesi

Prof. Dr. İhsan PEHLİVAN
Sakarya Uygulamalı Bilimler Üniversitesi

Doç. Dr. Murat KALE
Düzce Üniversitesi

Tez Savunma Tarihi: 25/07/2019
BEYAN

Bu tez çalışmasının kendi çalışmam olduğunu, tezin planlanmasından yazımına kadar bütün aşamalarda etik dışı davranışımın olmadığını, bu tezdeki bütün bilgileri akademik ve etik kurallar içinde elde ettiği, bu tez çalışmasıyla elde edilmeyen bütün bilgi ve yorumlara kaynak gösterdiğini ve bu kaynakları da kaynak listesine aldığı, yine bu tezin çalışılması ve yazımı sırasında patent ve telif haklarını ihlal edici bir davranışımın olmadığını beyan ederim.

12 Temmuz 2019

(İmza)

Melek DİCLE
TEŞEKKÜR

Yüksek Lisans öğrenimimde ve bu tezin hazırlanmasında gösterdiği her türlü destek ve yardımdan dolayı çok değerli hocam Dr. Öğr. Üyesi M. Mustafa ERTAY’a en içten dileklerimle teşekkür ederim.

Bu çalışma boyunca yardımlarını ve desteklerini esirgemeyen sevgili aileme ve çalışma arkadaşlarına sonsuz teşekkürlerimi sunarım.

12 Temmuz 2019

Melek DİCLE
İÇİNDEKİLER

ŞEKİL LİSTESİ ... VII
ÇİZELGE LİSTESİ ... IX
KISALTMALAR ... X
SİMGELEK ... XI
ÖZET .. XII
ABSTRACT .. XIII

1. GİRİŞ ... 1
 1.1 MATERİAL VE YÖNTEM ... 10
 1.2 TEZİN ORGANİZASYONU .. 11

2. FACTS VE ÖZEL GÜÇ CİHAZLARI 12
 2.1 FACTS CİHAZLARININ ÖNEMİ 12
 2.1.1 Evirici Tabanlı FACTS Cihazlarının Sınıflandırılması 13
 2.1.1.1 Statik Senkron Kompanzatör (STATCOM) 14
 2.1.1.2 Statik Senkron Seri Kompanzatör (SSSC) 17
 2.1.1.3 Birleştirilmiş Güç Akış Kontrolörü (IPFC) 18
 2.1.1.4 Birleşik Güç Akış Kontrolörü (UPFC) 18
 2.1.2 Özel Güç Cihazlarının Önemi 19
 2.2.1 Evirici Tabanlı Özel Güç Cihazlarının Sınıflandırılması 19
 2.2.1.1 Dağıtım Statik Senkron Kompanzatör (DSTATCOM) 20
 2.2.1.2 Dinamik Gerilim Düzenleyici (DVR) 21
 2.2.1.3 Aktif Güç Filtreleri (AGF) 21
 2.2.1.4 Birleşik Güç Kalite Düzenleyicisi (UPQC) 22
 2.2.1.5 Kesintisiz Güç Kaynakları (UPS) 23

3. FACTS VE ÖZEL GÜÇ CİHAZLARINDA KULLANILAN
 EVİRİCİ YAPILARI .. 24
 3.1 İKİ SEVİYELİ EVİRİCİLER ... 25
 3.2 ÇOK SEVİYELİ EVİRİCİLER ... 27
3.2.1 Diyot Kenetlemeli Evirici (DKE) .. 28
3.2.2 Kapasitör Kenetlemeli Evirici (KKE) ... 30
3.2.3 Kaskat Evirici (KE) .. 33
3.3 EVİRİCİ YAPILARININ DEĞERLENDİRİLMESİ .. 35
4. EVİRİCİLERDE KULLANILAN MODÜLASYON TEKNİKLERİ .. 41
4.1 DARBE GENİŞLİK MODÜLASYONU (PWM) ... 43
4.2 SİNÜZOIDAL DARBE GENİŞLİK MODÜLASYONU (SPWM) 46
5. BENZETİM ÇALIŞMALARI .. 49
5.1 GİRİŞ ... 49
5.2 ÜÇ FAZLI SEVIYE SAYILARI FARKLI EVİRİCİLER İÇİN GERÇEKLEŞTİRİLEN MATLAB/SIMULINK BENZETİMİ ... 50
5.2.1 İki Seviyeli Evirici İçin Matlab/Simulink Benzetimi ... 53
5.2.2 Üç Seviyeli Diyot Kenetlemeli Evirici Matlab/Simulink Benzetimi 58
5.2.3 Üç Seviyeli Kapasitör Kenetlemeli Evirici Matlab/Simulink Benzetimi 64
5.2.4 Üç Seviyeli Kaskat Evirici Matlab/Simulink Benzetimi ... 69
5.2.5 Beş Seviyeli Diyot Kenetlemeli Evirici Matlab/Simulink Benzetimi 75
5.2.6 Beş Seviyeli Kapasitör Kenetlemeli Evirici Matlab/Simulink Benzetimi 80
5.2.7 Beş Seviyeli Kaskat Evirici Matlab/Simulink Benzetimi .. 86
6. SONUÇLAR VE ÖNERİLER ... 92
ÖZGEÇMİŞ ... 108
ŞEKİL LİSTESİ

Sayfa No

Şekil 1.1 Elektrik enerjisi iletim ve dağıtım sisteminde FACTS ve özel güç cihazları.................. 3
Şekil 2.1 FACTS cihazlarının sınıflandırılması.. 15
Şekil 2.2 Bir STATCOM’un temel şeması.. 15
Şekil 2.3 STATCOM’a ait reaktif güç üretimi ve tüketimi... 157
Şekil 2.4 STATCOM’un V-I karakteristikleri... 157
Şekil 2.5 Bir SSCC’nin temel şeması... 158
Şekil 2.6 Bir IPFC’nin temel şeması... 159
Şekil 2.7 Bir UPFC’nin tek hâli şeması.. 20
Şekil 2.8 Özel Güç Cihazlarının sınıflandırılması.. 21
Şekil 2.9 Bir STATCOM’un temel şeması.. 22
Şekil 2.10 Bir DVR’nin temel şeması... 22
Şekil 2.11 Bir APF’nin temel şeması... 23
Şekil 2.12 Bir UPQC’nin temel şeması... 24
Şekil 2.13 Tek fazlı basit bir UPS için şematik diyagram... 24
Şekil 3.1 Evirici yapılarının sınıflandırılması.. 26
Şekil 3.2 Çok darbeli STATCOM yapıtı.. 27
Şekil 3.3 Üç fazlı iki seviyeli bir evirici yapıtı... 27
Şekil 3.4 Ideal anahtar kullanılan farklı seviyelerdeki eviricilerin bir faz yâğızın şematik diyagramı a) iki seviye b) üç seviye c) m seviye... 28
Şekil 3.5 Üç fazlı üç seviyeli DKE’nin devre şeması.. 29
Şekil 3.6 Tek fazlı üç seviyeli KKE’nin devre şeması... 32
Şekil 3.7 Tek fazlı H köprü hücresi.. 34
Şekil 3.8 Üç fazlı, H köprü KE genel yapısı (yıldız bağlı)... 35
Şekil 4.1 Evirici devre yapılarında gerilim ile frekans kontrolü için yöntemler..................... 43
Şekil 4.2 Tek fazlı evirici anahtarlama sinyali ile PWM çıkış dalga formu............................ 43
Şekil 4.3 PWM yöntemleri... 44
Şekil 4.4 PWM’in çalışma presişi.. 45
Şekil 4.5 SPWM’ın sınıflandırılması... 48
Şekil 4.6 Alt-harmonik PWM.. 49
Şekil 5.1 Sistemin MATLAB/Simulink modeli... 52
Şekil 5.2 PD modülasyonu ile anahtarlanan üç fazlı eviriciye ilişkin referans ve taşıyıcı sinyal şekilleri a) iki seviye b) üç seviye c) m seviye.. 54
Şekil 5.3 SPWM denetimli iki seviyeli filtreli evirici kullanılan M=1, f_{sw}=4 kHz alınaması durumunda a) faz gerilimi b) fazlar arasi gerilim c) filtre edilmiş faz gerilimi d) filtre edilmiş fazlar arasi gerilim ... 55
Şekil 5.4 SPWM denetimli iki seviyeli filtreli evirici kullanılan asenkron motor sürüşünün a) rotor akımı b) stator akımı c) açısından hız d) tork dalga şekilleri 57
Şekil 5.5 SPWM denetimli iki seviyeli filtresiz evirici kullanılan asenkron motor sürüşünün a) rotor akımı b) stator akımı c) açısından hız d) tork dalga şekilleri 58
Şekil 5.6 SPWM denetimli üç seviyeli filtreli diyot kenetlemeli evirici kullanılan M=1, f_{sw}=4 kHz alınması durumunda a) faz gerilimi b) fazlar arası gerilim c) filtre edilmiş faz gerilimi d) filtre edilmiş fazlar arası gerilim 61
Şekil 5.7 SPWM denetimli üç seviyeli filtreli diyot kenetlemeli evirici kullanılan
asentron motor sürücünün a) rotor akımı b) stator akımı c) açısal hız d) tork dalga şekilleri ...62
Şekil 5.8 SPWM denetimli üç seviyeli filtresiz diyot kenetlemeli evirici kullanılan asentron motor sürücünün a) rotor akımı b) stator akımı c) açısal hız d) tork dalga şekilleri ...64
Şekil 5.9 SPWM denetimli üç seviyeli filtreli kapasitör kenetlemeli evirici kullanılan \(M_1=1, f_{sw}=4 \) kHz alınması durumunda a) faz gerilimi b) fazlar arası gerilim c) filtr edilmiş faz gerilimi d) filtr edilmiş fazlar arası gerilim 66
Şekil 5.10 SPWM denetimli üç seviyeli filtreli kapasitör kenetlemeli evirici kullanılan asentron motor sürücünün a) rotor akımı b) stator akımı c) açısal hız d) tork dalga şekilleri ...67
Şekil 5.11 SPWM denetimli üç seviyeli filtresiz kapasitör kenetlemeli evirici kullanılan asentron motor sürücünün a) rotor akımı b) stator akımı c) açısal hız d) tork dalga şekilleri ...69
Şekil 5.12 SPWM denetimli üç seviyeli filtreli kaskat evirici kullanılan \(M_1=1, f_{sw}=4 \) kHz alınması durumunda a) faz gerilimi b) fazlar arası gerilim c) filtr edilmiş faz gerilimi d) filtr edilmiş fazlar arası gerilim 72
Şekil 5.13 SPWM denetimli üç seviyeli filtreli kaskat evirici kullanılan asentron motor sürücünün a) rotor akımı b) stator akımı c) açısal hız d) tork dalga şekilleri ...73
Şekil 5.14 SPWM denetimli üç seviyeli filtresiz kaskat evirici kullanılan asentron motor sürücünün a) rotor akımı b) stator akımı c) açısal hız d) tork dalga şekilleri ...75
Şekil 5.15 SPWM denetimli seviyeli filtreli diyot kenetlemeli evirici kullanılan \(M_1=1, f_{sw}=4 \) kHz alınması durumunda a) faz gerilimi, b) fazlar arası gerilim, c) filtr edilmiş faz gerilimi d) filtr edilmiş fazlar arası gerilim 77
Şekil 5.16 SPWM denetimli beş seviyeli filtreli diyot kenetlemeli evirici kullanılan asentron motor sürücünün a) rotor akımı b) stator akımı c) açısal hız d) tork dalga şekilleri ...79
Şekil 5.17 SPWM denetimli beş seviyeli filtresiz diyot kenetlemeli evirici kullanılan asentron motor sürücünün a) rotor akımı, b) stator akımı, c) açısal hız, d) tork dalga şekilleri ...80
Şekil 5.18 SPWM denetimli beş seviyeli filtreli kapasitör kenetlemeli evirici kullanılan \(M_1=1, f_{sw}=4 \) kHz alınması durumunda a) faz gerilimi b) fazlar arası gerilim c) filtr edilmiş faz gerilimi d) filtr edilmiş fazlar arası gerilim 83
Şekil 5.19 SPWM denetimli beş seviyeli filtreli kapasitör kenetlemeli evirici kullanılan asentron motor sürücünün a) rotor akımı b) stator akımı c) açısal hız d) tork dalga şekilleri ...84
Şekil 5.20 SPWM denetimli beş seviyeli filtresiz kapasitör kenetlemeli evirici kullanılan asentron motor sürücünün a) rotor akımı b) stator akımı c) açısal hız d) tork dalga şekilleri ...86
Şekil 5.21 SPWM denetimli beş seviyeli filtreli kaskat evirici kullanılan \(M_1=1, f_{sw}=4 \) kHz alınması durumunda a) faz gerilimi b) fazlar arası gerilim c) filtr edilmiş faz gerilimi d) filtr edilmiş fazlar arası gerilim 88
Şekil 5.22 SPWM denetimli beş seviyeli filtreli kaskat evirici kullanılan asentron motor sürücünün a) rotor akımı b) stator akımı c) açısal hız d) tork dalga şekilleri ...90
Şekil 5.23 SPWM denetimli beş seviyeli filtresiz kaskat evirici kullanılan asentron motor sürücünün a) rotor akımı b) stator akımı c) açısal hız d) tork dalga şekilleri ...91
<table>
<thead>
<tr>
<th>Sayfa No</th>
<th>Çizelge LİSTESİ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Çizelge 3.1 Tek fazlı üç seviyeli diyot kenetlemeli eviricinin anahtarlama durumları.</td>
</tr>
<tr>
<td></td>
<td>Çizelge 3.2 Tek fazlı üç seviyeli KKE’deki anahtarlama durumları</td>
</tr>
<tr>
<td></td>
<td>Çizelge 3.3 A fazına ait H köprü KE’nin ilgili voltaj seviyelerinin anahtarlama durumları</td>
</tr>
<tr>
<td></td>
<td>Çizelge 3.4 İki seviyeli evirici ile m seviyeli eviricinin her fazı için gereken farklı bileşen sayısı açısından yapılan kıyaslanmanın değerlendirilmesi</td>
</tr>
<tr>
<td></td>
<td>Çizelge 5.1 Benzetimde kullanılan filtre parametreleri</td>
</tr>
<tr>
<td></td>
<td>Çizelge 5.2 İki, üç ve beş seviyeli eviricilerin benzetiminde kullanılan parametreler</td>
</tr>
<tr>
<td></td>
<td>Çizelge 5.3 Filtreli üç faz iki seviyeli eviricinin THD değerleri</td>
</tr>
<tr>
<td></td>
<td>Çizelge 5.4 Filtresiz üç faz iki seviyeli eviricinin THD değerleri</td>
</tr>
<tr>
<td></td>
<td>Çizelge 5.5 Filtreli üç faz üç seviyeli diyot kenetlemeli eviricinin THD değerleri</td>
</tr>
<tr>
<td></td>
<td>Çizelge 5.6 Filtresiz üç faz üç seviyeli diyot kenetlemeli eviricinin THD değerleri</td>
</tr>
<tr>
<td></td>
<td>Çizelge 5.7 Filtreli üç faz üç seviyeli kapasitör kenetlemeli eviricinin THD değerleri</td>
</tr>
<tr>
<td></td>
<td>Çizelge 5.8 Filtresiz üç faz üç seviyeli kapasitör kenetlemeli eviricinin THD değerleri</td>
</tr>
<tr>
<td></td>
<td>Çizelge 5.9 Filtreli üç faz üç seviyeli kaskat eviricinin THD değerleri</td>
</tr>
<tr>
<td></td>
<td>Çizelge 5.10 Filtresiz üç faz üç seviyeli kaskat eviricinin THD değerleri</td>
</tr>
<tr>
<td></td>
<td>Çizelge 5.11 Filtreli üç faz beş seviyeli diyot kenetlemeli eviricinin THD değerleri</td>
</tr>
<tr>
<td></td>
<td>Çizelge 5.12 Filtresiz üç faz beş seviyeli diyot kenetlemeli eviricinin THD değerleri</td>
</tr>
<tr>
<td></td>
<td>Çizelge 5.13 Filtreli üç faz beş seviyeli kapasitör kenetlemeli eviricinin THD değerleri</td>
</tr>
<tr>
<td></td>
<td>Çizelge 5.14 Filtresiz üç faz beş seviyeli kapasitör kenetlemeli eviricinin THD değerleri</td>
</tr>
<tr>
<td></td>
<td>Çizelge 5.15 Filtreli üç faz beş seviyeli kaskat eviricinin THD değerleri</td>
</tr>
<tr>
<td></td>
<td>Çizelge 5.16 Filtresiz üç faz beş seviyeli kaskat eviricinin THD değerleri</td>
</tr>
<tr>
<td>KISALTMALAR</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>AGF</td>
<td>Aktif güç filtresi</td>
</tr>
<tr>
<td>AKE</td>
<td>Akım kaynaklı evirici</td>
</tr>
<tr>
<td>CM</td>
<td>Ortak mod</td>
</tr>
<tr>
<td>DAVIC</td>
<td>Dağıtımlı uyarlama sanal empedans kontrol</td>
</tr>
<tr>
<td>DKE</td>
<td>Diyot kenetlemeli evirici</td>
</tr>
<tr>
<td>DSP</td>
<td>Dijital sinyal işlemci</td>
</tr>
<tr>
<td>DSTATCOM</td>
<td>Dağıtımlı statik senkron kompanzatör</td>
</tr>
<tr>
<td>DTF</td>
<td>Ayrık zaman çatı</td>
</tr>
<tr>
<td>DVR</td>
<td>Dinamik gerilim düzenleyici</td>
</tr>
<tr>
<td>EMPT</td>
<td>Electromagnetic transients program</td>
</tr>
<tr>
<td>EPRI</td>
<td>Elektrik enerjisi araştırma enstitüsü</td>
</tr>
<tr>
<td>FACTS</td>
<td>Esnek alternatif akım iletim sistemi</td>
</tr>
<tr>
<td>GKE</td>
<td>Gerilim kaynaklı evirici</td>
</tr>
<tr>
<td>IACFFS</td>
<td>Anlık ortala akım ileleri besleme paylaşımı</td>
</tr>
<tr>
<td>IGBT</td>
<td>İzole edilmiş kapı, iki kutuplu transistör</td>
</tr>
<tr>
<td>IPFC</td>
<td>Birleştirilmiş güç akış kontrolörü</td>
</tr>
<tr>
<td>KE</td>
<td>Kaskat evirici</td>
</tr>
<tr>
<td>KKE</td>
<td>Kapasitör kenetlemeli evirici</td>
</tr>
<tr>
<td>MÇSE</td>
<td>Modüler çok seviyeli evirici</td>
</tr>
<tr>
<td>PSCAD</td>
<td>Power systems computer aided design</td>
</tr>
<tr>
<td>PWM</td>
<td>Darbe genişlik modülasyonu</td>
</tr>
<tr>
<td>RMS</td>
<td>Root mean square</td>
</tr>
<tr>
<td>SMIB</td>
<td>Tek makinali sonsuz bara</td>
</tr>
<tr>
<td>SOGI-PLL</td>
<td>İntegratör tabanlı faz kilitlemeli döngü</td>
</tr>
<tr>
<td>SPS</td>
<td>Sim güç sistemi</td>
</tr>
<tr>
<td>SPWM</td>
<td>Sinüzoidal darbe genişlik modülasyonu</td>
</tr>
<tr>
<td>SSCL</td>
<td>Yarı iletken akım sınırlayıcı</td>
</tr>
<tr>
<td>SSSC</td>
<td>Statik senkron seri kompanzatör</td>
</tr>
<tr>
<td>SSTS</td>
<td>Yarı iletken transfer anahtarı</td>
</tr>
<tr>
<td>STATCOM</td>
<td>Statik senkron kompanzatör</td>
</tr>
<tr>
<td>SVC</td>
<td>Statik var kompanzatör</td>
</tr>
<tr>
<td>TCSC</td>
<td>Tristör kontrollü seri kapasitör</td>
</tr>
<tr>
<td>TCPST</td>
<td>Tristör kontrollü faz kaydırmalı transformatör</td>
</tr>
<tr>
<td>THD</td>
<td>Toplam harmonik bozunum</td>
</tr>
<tr>
<td>UPFC</td>
<td>Birleşik güç akış kontrolörü</td>
</tr>
<tr>
<td>UPQC</td>
<td>Birleşik güç kalite düzenleyici</td>
</tr>
<tr>
<td>UPS</td>
<td>Kesintisiz güç kaynağı</td>
</tr>
</tbody>
</table>
SİMGELER

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{dc}</td>
<td>DC hat kapasite değeri</td>
</tr>
<tr>
<td>f</td>
<td>Temel frekans</td>
</tr>
<tr>
<td>f_m</td>
<td>Referans dalganın frekansı</td>
</tr>
<tr>
<td>f_s</td>
<td>Üçgen taşıyıcı dalganın frekansı</td>
</tr>
<tr>
<td>f_{sw}</td>
<td>Eviricinin anahtarlama frekansı</td>
</tr>
<tr>
<td>I_r</td>
<td>Rotor akımı</td>
</tr>
<tr>
<td>I_s</td>
<td>Stator akımı</td>
</tr>
<tr>
<td>L_c</td>
<td>Çıkış filtresi</td>
</tr>
<tr>
<td>L_m</td>
<td>Motorun mıknatıslanma indüktanşı</td>
</tr>
<tr>
<td>L_f</td>
<td>LC filtre indüktör değeri</td>
</tr>
<tr>
<td>m</td>
<td>Seviye sayısı</td>
</tr>
<tr>
<td>m_t</td>
<td>Frekans modülasyon oranı</td>
</tr>
<tr>
<td>M_i</td>
<td>Modülasyon indeksi</td>
</tr>
<tr>
<td>n</td>
<td>Modül sayısı</td>
</tr>
<tr>
<td>T_e</td>
<td>Tork</td>
</tr>
<tr>
<td>V_{dc}</td>
<td>DC bara gerilimi</td>
</tr>
<tr>
<td>V</td>
<td>Sistem gerilimi</td>
</tr>
<tr>
<td>V_o</td>
<td>Eviricinin çıkış gerilimi</td>
</tr>
<tr>
<td>V_R</td>
<td>Referans sinyalin tepe değeri</td>
</tr>
<tr>
<td>V_p</td>
<td>Üçgen sinyalin tepe değeri</td>
</tr>
<tr>
<td>W_r</td>
<td>Açısal hız</td>
</tr>
<tr>
<td>ϕ</td>
<td>Faz farkı</td>
</tr>
<tr>
<td>X</td>
<td>Kaçak reaktanşı</td>
</tr>
<tr>
<td>$\Delta i_{L,max}$</td>
<td>Filtre İndüktör akımı</td>
</tr>
</tbody>
</table>
ÖZET

ESNEK ALTERNATİF AKIM SİSTEMLERİ VE ÖZEL GÜÇ CİHAZLARINDA KULLANILAN EVİRİCİ YAPILARIN İNCELENMESİ

Melek DİCLE
Düzce Üniversitesi
Fen Bilimleri Enstitüsü, Elektrik Elektronik ve Bilgisayar Mühendisliği Anabilim Dalı
Yüksek Lisans Tezi
Dr. Öğr. Üyesi M. Mustafa ERTAY
Temmuz 2019, 107 sayfa

Anahtar sözcükler: Güç sistemleri, Eviriciler, FACTS cihazları, Özel güç cihazları, STATCOM
ABSTRACT

INVESTIGATION OF INVERTER STRUCTURES USED IN FLEXIBLE ALTERNATIVE CURRENT TRANSMISSION SYSTEMS AND CUSTOM POWER DEVICES

Melek Dicle
Düzce University
Graduate School of Natural and Applied Sciences, Department of Electrical-Electronics and Computer Engineering
Master’s Thesis
Supervisor: Assist. Prof. Dr. M. MustafaERTAY
July 2019, 107 pages

Nowadays energy is essential in every field and every place where the human activity is existed. Energy cost and environmental issues has delayed not only construction of the new power plants but also delayed the new transmission lines, but the demand for energy increases day by day and power requirements has been caused to use the electric power systems as an alternative solution. In order to run the electric power systems reliable and safe power electronics technologies were used. Improvements in power electronics technology, increase the reliability and functionality of the caused the power electronics based control device FACTS (Flexible Alternative Current Transmission Systems) and custom power devices and make them to be preferred. FACTS and custom power devices is performing an important role to raise the power transmission capacity of the network to the utmost level, providing the high power quality at the common connection port of the distribution system and decreasing the harmonic waves. Therefore it is commonly used and accepted in the electric energy sector. STATCOM (Static Synchronous Compensator), is used in the transmission lines as a kind of FACTS device. In the distribution line special power device is used known as DSTATCOM (Distribution Static Synchronous Compensator). The most important unit of the STATCOM and DSTATCOM are inverters. In the literature numerous inverter structure are advised and used in many implementations. In this thesis study two level and multi-level inverter structures were examined where used in the FACTS devices and two level inverter, diode clamping inverter, cascade inverter, capacitor clamped inverter structures were used. Then these inverter structures were modeled and simulations were performed on MATLAB/Simulink environment. Simulations were analyzed in three phases. In the first stage simulation has been performed by switching the inverters with SPWM (Sine Pulse Width Modulation) neutrally. In the second stage a motor load system was analyzed by these inverter structures. Motor load has been used as a load and simulation was analyzed according to it. In these simulations Total Harmonic Distortion (THD) of inverters which modulation index value was changed, and analysis were made by using MATLAB FFT tool. In line with these results, both advantages and disadvantages of inverter structures are explained. In addition, examples applications in the literature are presented.

Keywords: Power systems, Inverters, FACTS devices, Custom power devices, STATCOM
GİRİŞ

 Günümüzde enerji tüketimine bağlı olarak sürekli artan elektrik enerji ihtiyacıverständece bir durumdadır. Bu endişe endüstriyel büyüme, nüfustaki artış, artan yaşam standartları ve temel olarak elektrik şebekesine bağlı elektronik cihazların artan uygulamalarıyla ilgilidir. Dünya çapında 1980’den bu yana %45 artış gösteren enerji tüketiminin, 2030 yılından sonra %70’ten daha fazla artacağı öngörülmektedir [1]. Elektrik enerjisi ihtiyacının her geçen gün giderek artması, geleneksel kompanzasyon cihazlarının yetersiz kalması, yeni hatların yapılmasındaki güçlükler gibi birçok sebepten dolayı, yeni enerji kaynakları araştırılmakta, tüketimi azaltmak için gerekli düzenlemeler uygulanmakta, verimliliği maksimum olan sistemlerin tasarlanması yönünde yoğun çalışmalar yapılmaktadır. Diğer yandan, mevcut güç dağıtım sisteminin kaynak akımında harmonikler, gerilim düşmesi ve yükselmeler vb. gibi güç kalitesi sorunlarını ortaya çıkaran doğrusal olmayan yükler içermesi de elektrik enerji verimliliğini düşürmektedir. Bu nedenle mevcut olan enerji dağıtım sistemlerinin verimliliğinin en yüksek seviyeye çıkarılması, seçeneğ olmaktan çıkmış ve zorunluluk haline gelmiştir [2], [3].

Yapılan araştırmalarda, mevcut enerji iletim sistemlerinden en yüksek seviyede nasıl yararlanacağı konusunda, güvenilirliği ve kararlılığı yüksek seviyeli olan güç elektronik teknolojisinin önem kazandığı görülmektedir. Teknoloji ilerledikçe ve güç elektronikinin uygulama alanları genişledikçe daha yüksek sıcaklıklarda daha az kayıplarla çalışabilen yeni nesil yarı iletken aygıtlar geliştirilmektedir. Gelişen yarı iletken teknolojisi akım ve gerilim sınırlarının sürekli olarak yükselmesine ve aynı zamanda yarı iletkenlerin çalışma hızlarının artmasına olanak tanımaktadır. Yarı iletken güç elemanları ile ilgili geçtikimiz yıllarda çok önemli gelişmeler olmuştur. Yarı iletken teknolojisindeki bu gelişmeler, güç elektronik devrelerinin güç kapasitelerinin artmasına, boyutlarının küçülmesine ve maliyetlerinin azalmasına imkân sağlamıştır [2], [3], [4].

Güç elektronik teknolojisindeki bu gelişmeler doğrultusunda, iletim ve dağıtım sistemlerinden daha yüksek düzeyde verim alabilmek için araştırmalar yapılmakta ve
çalışmalar devam etmektedir. Bunun sonucu olarak enerji iletim ve dağıtım sistemlerindeki en önemli sorunun güç kalitesi sorunları ve reaktif güç kompanzasyonu olduğu öngörülmektedir. Güç sistemlerinin sağlıklı işlenmesi için endüstriyel güç tüketiminin neden olduğu güç kalitesi sorunlarının tespiti ve çözümü şu anda enerji endüstrisinin karşılaştığı en önemli araştırma konularından biridir. [5]. Güç kalitesi sorunları genel olarak geçici ve hızlı değişimler, RMS (Root Mean Square) gerilim değişimleri ve kesintiler, kısa süreli değişimler, uzun süreli değişimler, sürekli devam eden değişimler, dalga şekli bozulmaları, DC offset, harmonikler, gerilim dalgalanmaları, güç frekansı değişimleri şeklinde sınıflandırılabilir [4], [5]. Bu sorunların bir çoğunun çözümü reaktif güç kompanzasyonu ile mümkündür. Geçen sürece enerji verimliliğini ve kalitesini artıran hassas yüklerin endüstride kullanılması ciddi gelişim göstermesi reaktif güç kompanzasyonunun önemini artırmıştır [6], [7].

Şekil 1.1 Elektrik enerjisi iletim ve dağıtım sisteminde FACTS cihazları ve özel güç cihazları [10].

FACTS ve özel güç cihazlarının ve bu cihazlardan özellikle STATCOM ve DSTATCOM’ un evirici kısmı için, çalışma prensiplerinin anlatıldığı, modelleme ve analizlerinin yapıldığı birçok evirici yapısı literatürde önerilmiş, ayrıca bir çoğu çeşitli uygulamalarda kullanılmıştır. Aşağıdaki bölümde bu cihazlarda kullanılan evirici yapıları ile ilgili son yıllarda yapılan çalışmalar hakkında literatür bilgisi verilmiştir.
Vinnakoti ve Kota 2018 yılında yaptıkları çalışmada yapay sinir ağı tabanlı kontrol cihazı tasarlamıştır. Tasarımında beş seviyeli diyet kinetlemeli evirici tabanlı UPQC (Birleşik Güç Kalite Düzenleyici) kullanılmıştır. Bu çalışma beş seviyeli UPQC’nin yük gerilimi ve besleme aksimlarındaki harmonikleri başarıyla azalttığı ayrıca voltaj düşüşünü ve voltaj yükselmesini etkili bir şekilde telafi ettiği göstermektedir [13].

Fubo ve arkadaşları 2016 yılında gerçekleştirdikleri çalışmada 35kV MÇSE (Modüler Çok Seviyeli Evirici) tabanlı UPQC’nin şönt ve seri dönüştürücüleri arasında oluşan salınım akımının bastırılması içini bir mekanizma tasarlamıştır [14].

Khadkikar ve Chandra 2009 yılında yaptıkları çalışmada dengesiz yük akımlarını dengelemek amacıyla üç fazlı dört seviyeli GKE (Gerilim Kaynaklı Evirici) kullanan UPQC tabanlı yeni bir kontrol stratejisi önermektedir [15].

Hu ve arkadaşları tarafından 2018 yılında gerçekleştirilen çalışmada dengesiz elektrik şebekesi koşullarında kullanılabilecek modüler çok seviyeli evirici içeren UPFC (Birleşik Güç Akış Kontrolörü) için oldukça güvenilir bir kontrol stratejisi önerilmiştir. [16].

Pu ve arkadaşları 2018 yılında yapmış oldukları çalışmada modüler çok seviyeli evirici UPFC’ nin topoloji yapısını ve çalışma prensibini analiz etmiştir. Daha sonra çok modüler çok seviyeli eviricili UPFC’nin tek fazlı topraklama hata durumu ile iki fazlı kısa devre hata durumu altında çalışma özelliklerini çalışmıştır. Ayrıca, UPFC cihazının özellikleri ile ve seri ve paralel tarafın farklı yapılarına göre, çok seviyeli eviricili UPFC cihazı için genel koruma tasarımını sunulmaktadır [17].

Arun ve Manikandan 2014 yılında yaptıkları çalışmada aktif güç akışını kontrol etmek amacıyla gerilim kaynaklı çok seviyeli evirici tabanlı UPFC için yeni bir yapılandırma sunmaktadır [18].

Panda ve Patnaik 2015 yılında yapmış oldukları çalışmada dağıtım ağlarında aktif harmonik filtreleme için kaskat bağlı çok seviyeli evirici kullanmış ve AGF (Aktif Güç Filtresi)’yi gerçekleştirmiştir. Kullanılan evirici yapısı üç, beş, yedi ve dokuz seviyelidir [19].

Kararaslan ve arkadaşları tarafından 2015 yılında gerçekleştirilen çalışmada kaskat bağlı çok seviyeli evirici yapısına sahip seri bağlı AGF (Aktif Güç Filtresi) için bir kontrol algoritmasına yer verilmiştir. Seri AGF ile yük geriliminin sinüzoidal sinyale dönüştürülmesi amaçlanan çalışmalarının simülasyon sonuçlarında gerçekleştirilir kontrol
algoritması ile yük geriliminin sinüzoidal sinyale yakın hale geldiği görülmüştür [20].

Jungling ve arkadaşları 2008 yılında yaptıkları çalışmada çok seviyeli KE (Kaskat Evirici) tabanlı 40 kVA gücünde bir prototip AGF gerçekleştirmiş ve bu AGF için kapasitör gerilim dengeleme kontrol yöntemiyile kapalı döngü seçici harmonik telafi yöntemi önermiştir. Önerilen yöntem bir DSP (Dijital Sinyal İşleme) kontrol sistemi ile uygulanmış ve sonuçları yapılan deneyler ile gösterilmiştir. [21].

Rokhafrooz ve Mosallanejad tarafından 2017 yılında gerçekleştirilen çalışmada 230 kV iletim hattının güç kapasitesini artırmak için çift KKE (Kapasitor Kenetlemeli Evirici) tabanlı çok hücreli kaskat bağlantısına dayanan SSSC (Statik Senkron Seri Kompanzatör) içeren bir sistem önerilmiştir. Önerilen sistemde SSSC’nin içeriği çok seviyeli eviricinin çıkış voltajı 21 seviyeye sahiptir. Yapılan çalışmada çok seviyeli evirinin yapısı ve anahtarlama stratejisi incelenmiş, sistemin yapısı ve kontrol yöntemi ile anlık p-q gücünü sunulmuştur. Önerilen sistemde ayrıca analizleri yapılmış ve simülasyon sonuçları MATLAB/Simulink tarafından sunulmuştur [22].

Geethalakshmi ve Dananjayan tarafından 2009 yılında gerçekleştirilen çalışmada yüksek güç uygulamaları için hat üzerindeki güç akışını düzenleyen SSSC tabanlı yeni bir çok darbeli - çok seviyeli gerilim kaynaklı evirici topolojisi önerilmiştir. Bu yeni evirici SSSC’nin çalışmaları gerçekleştirmek için kullanılmış ve performansı otomatik güç akışı kontrol modunda çalıştırılacak şekilde değerlendirilmiştir [23].

Griffio ve Lauria 2008 yılında yaptıkları çalışmada evirici tabanlı FACTS cihazları olan STATCOM ve SSSC uygulamaları için yeni bir topoloji önermiştir. İki seviyeli üç fazlı gerilim kaynaklı evirici kullanın bu topoloji hem seri hem de paralel reaktif güç kompanzasyonunda kullanılmıştır [24].

Geethalakshmi ve arkadaşları 2007 yılında yapmış oldukları çalışmada SSSC’nin ana özelliklerinin ve çalışma prensiplerinin ayrıntılı analizini gerçekleştirmişlerdir. Çalışmalarında 48 seviyeli çok darbeli bir gerilim kaynaklı evirici kullanılmışlardır. 48 seviyeli çok darbeli gerilim kaynaklı eviricinin, harmonik içeriği düşük üç fazlı sinüzoidal giriş gerilimi ürettiği gözlemlemişlerdir. Önerdikleri SSSC modelinin performansı sonuçlarını, MATLAB/Simulink ortamında gerçekleştirmiş ve bu sonuçları sunmuştur [25].

Han ve arkadaşları tarafından 2002 yılında gerçekleştirilen çalışmada faz başına altı H- köprü modüldenden oluşan bir çoklu köprü eviriciyi temel alan bir SSSC önerilmektedir.
Önerdikleri sistem, H köprü modüllerinin sayısı ekleyerek veya çıkararak çalışma voltajını güç sistemi voltajıyla eşleştirmeye esnekliğe sahiptir. Bu sistemin dinamik karakteristikini, EMTP (Electromagnetic Transients Program) kodlu simülasyonlarla analiz etmişler ve uygulanabilirliğini, ölçüklendirilmiş bir model kullanarak yaptıkları deneysel çalışmalar ile doğrulamışlardır [26].

İnci ve arkadaşları 2016 yılında yapmış oldukları çalışmada şebekedeği istenmeyen gerilim düşmelerinin hızlı ve güvenli bir şekilde belirlenebilmesi için bir sistem yapısı geliştirmişler. Geliştirilen İkinci Dereceden Genelleştirilmiş SOGI-PLL (İntegratör Tabanlı Faz Kilitlemeli Döngü) yapısı 5 seviyeli DKE (Diyot Kenetlemeli Evirici)’li DVR (Dinamik Gerilim Düzenleyici)’de uygulanmış ve sistemin performansını PSCAD/EMTDC (Power Systems Computer Aided Design/Electromagnetic Transients with DC Analysis) programı ile sunulmuştur [27].

Bhumkittipich ve arkadaşları tarafından 2013 yılında gerçekleştirilen çalışmada dengeleme gerilimi oluşturmak için üç seviyeli diyot kenetlemeli evirici kullanılan 10 kW DVR uygulaması sunulmuştur. Üç seviyeli evirici anahtarlama kısmı IGBT (İzole Edilmiş Kapılı, İki Kutuplu Transistör) kullanılarak tasarlanmış ve bu evirici ile daha yüksek bir voltaj aralığı elde edildiği görülmüştür. Sonuçlar dSPACE kartı üzerinden MATLAB/Simulink kullanılarak kontrol edilmekte ve simülasyon sonuçları, önerilen evirici ve denetleyici dahil olmak üzere DVR’in performansını sunmaktadır [28].

Al-Hadidi ve arkadaşları tarafından 2008 yılında gerçekleştirilen çalışmada önemli ölçüde daha az enerji depolama kapasitesi gerektiren kaskat evirici tabanlı DVR tasarıımı sunulmuştur. Kaskat evirici yapısı şönt bağlı tristör anahtarlama bir bobin ile

Ghosh ve arkadaşları 2004 yılında yapmış oldukları çalışmada hassas ancak dengesiz ve bozulmuş yükler için şönt bağlantılı kondansatöre sahip gerilim kaynaklı evirici kullanılan bir DVR tasarımını önermiştir. DVR’nin temel amacı, besleme gerilimindeki dengesizlikten bağımsız olarak yük terminalindeki voltajı düzenlemektir. Önerdikleri DVR tasarımını, kapsamlı dijital bilgisayar simülasyon çalışmaları ile doğrulamıştır [32].

Wei ve arkadaşları 2019 yılında yaptıkları çalışmada yeni bir DAVIC (Dağıtılmış Uyarlamalı Sanal Impedans Kontrol) yöntemi sunmuştur. Önerilen yöntem ile paralel bağlı gerilim kaynaklı eviricileri içeren Modüler UPS (Kesintisiz Güç Kaynağı) sistemlerinin kontrolü sağlanmaktadır. Yapılan çalışmada daha ucuz bir dijital kontrol cihazı seçerek hem şebekenin hem de kontrol ünitesinin maliyetinin düşürülebileceği görülmüştür. Kullanılabilirliğini ve güvenilirliğini doğrulamak için iki evirici modülü içeren simülasyon sonuçları PLECS yazılımı ile kontrol edilmektedir [33].

Kim ve arkadaşları tarafından 2017 yılında yapılan çalışmada paralel gerilim kaynaklı evirici modüllerine sahip bir UPS sistemi için üçüncü dereceden multinominal düşüş modelini kullanan yeni bir kontrol yöntemi geliştirilmiştir. Geliştirilen multinom modelin, dinamik cevabı azaltmadan kararlı durum hatasını azalttığı görülmektedir. Paralel eviricilerin önerilen multinom modeliyle ile simülasyon sonuçları MATLAB ve PSIM yazılımı ile gösterilmiştir [34].

Singh ve arkadaşları 2017 yılında yaptığı çalışmada IACFFS (Anlık Ortalama Akım İleri Besleme Paylaşımı) özelliğli bir UPS için çok seviyeli evirici sistem gerçekleştirilmiştir. Sistemi doğrulamak için kritik yükler içeren iki seviyeli UPS evirici sistemi kullanılmakta ve tasarım simulink ile SPS (Sim Güç Sistemi) araç kutuları
kullanılarak MATLAB ortamında DTF (Ayrık Zaman Çatışında)’de simülasyonu gerçekleştirilmiştir [35].

Reedy ve arkadaşları 2017 yılında yaptıkları çalışmada multibus sisteminin güç kalitesinin iyileştirilmesi ve geçici kararlılığın artırılması için çok seviyeli GKE kullanan IPFC (Birleştirilmiş Güç Akış Kontrolörü) önermiştir. Önerilen sistemde IPFC’li dokuz veriyolu ve on dört veri yolu Matlab/Simulink kullanılarak modellenmiş ve simülasyonları gerçekleştirilmiştir [35].

Bharathi ve Rajan 2011 yılında yapmış oldukları çalışmada iletişim sisteminde güç akışı yönetimi için FACTS kontrol cihazlarından diytot kenetlemeli evirici tabanlı IPFC geliştirmiştir. IPFC’nin 48 darbeli çok seviyeli gerilim kaynaklı eviriciden oluşan performansının artırılması için tipik ve basit bir güç sistemi modeli önerilmiştir [36].

Salem ve Sood tarafından 2007 yılında yapılan çalışmada benzer şekilde boyutlandırılmış iki paralel iletişim hattının empedanslarını telafi etmek için iki seviyeli iki diytot kenetlemeli evirici kullanan bir IPFC sistemi için kontrol şeması modeli sunulmuştur. Gerçekleştirilen model, IPFC’nin sistem davranışını göstermek için EMTP-RV programı ile simüle edilmiştir [38].

Gawande ve arkadaşları 2018 yılında yapmış oldukları çalışmada üç seviyeli evirici tabanlı DSTATCOM için taşıyıcı bazı histeresiz modülasyonu kullanarak sabit anahtarlama frekans akımı kontrol tekniğini önermiştir [39].

Deniz ve arkadaşları 2010 yılında yapmış oldukları çalışmada 3 seviyeli kaskat evirici kullanan STATCOM’un denetimi amacıyla önermiştir. DSTATCOM’un performansı, gerçekleştirdikleri deney düzeyi aracılığıyla elde ettikleri deneysel sonuçlar ile gösterilmiştir [40].

Çetin ve Ermiş 2009 yılında yaptıkları çalışmada Kemerköy Elektrik Üretim A.Ş.’nin kömür hazırlama sisteminin reaktif güç kompanzasyonu için 2 seviyeli gerilim kaynaklı evirici kullanan 1 kV seviyesinde bir DSTATCOM uygulaması gerçekleştirilmiştir [41].

Masdi ve arkadaşları tarafından 2009 yılında geliştirilen üç seviyeli gerilim kaynaklı eviricili bir DSTATCOM uygulaması ile dengesiz dağıtım sisteminde yük kompanzasyonu amaçlanmıştır [42].

Bilgin ve arkadaşları 2007 yılında yaptıkları çalışmada Türkiye Kömür işletmelerindeki elektrik kömür kazı makinelerinin reaktif güç kompanzasyonu için 2 seviyeli AKE
(Akım Kaynaklı Evirici) kullanan 1 kV düzeyinde bir DSTATCOM sistemi gerçekleştirmiştir [43].

Shukla ve arkadaşları 2005 yılında yaptıkları çalışmada kapasitör gerilimlerinin sabit kalmasını ve aynı zamanda istenen akım profilinin korunmasını sağlayan, histerezis kontrolü kullanarak akımı kontrol etmek amacıyla bir yöntem önermiştir. Bunun için KKE kullanan DSTATCOM uygulaması gerçekleştirilmiştir [44].

Benzerafa ve arkadaşları 2018 yılında yaptıkları çalışmada üç seviye gerilim kaynağı evirici tabanlı DSTATCOM kullanarak bulanık bir denetleyici gerçekleştirmiştir [45].

Elserougi ve arkadaşları tarafından 2017 yılında yapılan çalışma orta ve yüksek voltaj uygulamalarında şönt reaktif güç kompansasyonu için yeni bir üç fazlı transformatörsüz MÇSE (modüler çok seviyeli evirici)’ye sahip STATCOM önermiştir [46].

Shu ve arkadaşları 2013 yılında yaptıkları çalışmalarda 5 seviyeli DKE (Diyot Kenetlemeli Evirici) tabanlı STATCOM ile DC bağlantılı kondansatör gerilimini dengede tutmak amacıyla bir kontrol yöntemi geliştirmiştir. Geliştirilen yöntemin uygulaması gerçekleştirilerek ve benzetim sonuçları elde edilmiştir [47].

Filizadeh ve Gole 2005 yılında yaptıkları çalışmada STATCOM’daki harmonik bozulmayı incelemek ve buradaki DC kapasitör değerinin önemini belirtmek amacıyla 2 seviyeli bir gerilim kaynağı eviricinin harmonik performansını araştırılmıştır [48].

Muyeen ve arkadaşları 2009 yılında yaptıkları çalışmada iki seviyeli gerilim kaynağı evirici tabanlı STATCOM kullanarak iki rüzgar çiftliğindeki rüzgar jeneratörlerinin hem geçici ve hem de dinamik durum analizini incelemiştir [49].

Saeedifard ve arkadaşları tarafından 2007 yılında yapılan çalışmada harmonik içeren bir sistemde STATCOM’un reaktif gücü hızlı ve kararlı bir şekilde dengeye getirmedeki performansı araştırılmıştır. 3 seviyeli DKE kullanan STATCOM’un çeşitli sistem şartları göz önüne alınarak yapılan simülasyonlarında PSCAD yazılımı kullanılarak doğrulanmıştır [50].

Ran ve arkadaşları 2002 yılında yapmış olduklarını çalışmada 3 seviyeli DKE tabanlı STATCOM’dan meydana gelen harmoniklerin birbirlerine olan etkisini hem AC hemde DC kısımda için incelerek uygulaması gerçekleştirilmiştir [51].

Liang ve Nwankpa tarafından 1998 yılında yapılan çalışmada yeni bir STATCOM türü önerilmiştir. Bobin ve DC kapasitörlerin boya tutunun daha da azaltıldığı ve reaktif güç
değişimine son derece hızlı cevap veren bu yeni STATCOM, birkaç özdeş tam köprü gerilim kaynaklı eviricinin kaskat bağlantısıyla oluşturulmuştur [52].

Peng ve arkadaşları tarafından 1996 yılında yapılan çalışmada yüksek volajlı, yüksek güçlü uygulamalar için ayrı DC kaynaklarına sahip yeni birçok seviyeli KE önerilmiş ve STATCOM’da uygulanmıştır. Eviricinin seviye sayısı arttıkça döngü başına sadece bir kez anahtarlama ile sinüzoidal sinyal gerilimi üretildiği ve trafo bazlı çok seviyeli eviricili STATCOM’da boyut ve ağırlık problemlerini çözübliği gösterilmiştir [53].

Literatürde çok seviyeli KE tabanlı STATCOM için önerilen birçok çalışma bulunmaktadır [54]-[68].

Eviricilerin gelişimiyle birlikte günümüzde STATCOM ve DSTATCOM cihazlarında tercih edilen diğer eviri ise MÇSE (Modüler Çok Seviyeli Evirici) yapılarıdır. MÇSE benzersiz modülerliği, düşük anahtarlama frekansı, yüksek verimlilik ve düzgün sinüzoidal çıkış gerilimleri nedeniyle güç uygulamalarında daha yüksek güvenilirlik ve daha iyi performans sunmaktadır [69].

Chen ve arkadaşları tarafından 2015 yılında yapılan çalışmada kapsatör gerilimi dengeleme amacıyla MÇSE tabanlı üç fazlı DSTATCOM için yeni bir kontrol yöntemi önerilmiştir [70].

Mohammadi ve Bina tarafından 2011 yılında yapılan çalışmada orta gerilim yüksek akım güç uygulamalarında yüklerin tam olarak dengelenmesi, reaktiv güç kompanzasyonu ve özellikle üç veya dörtlü hatlı sistemlerin dengelenmesi için yeni bir MÇSE yapısı önerilmiş ve bu yapı bir STATCOM’ a uygulanmıştır. Önerilen MÇSE’nin performansını değerlendirmek için sekiz yarım köprü modülünden oluşan 15 kVA, 400 V modüler bir laboratuvar prototipi tasarlanmış ve deneySEL sonuçlar sunulmuştur [71].

Bu çalışmaların yanı sıra literatürde yer alan MÇSE tabanlı STATCOM için önerilen başka çalışmalarında bulunmaktadır [72]-[78].

1.1 MATERYAL VE YÖNTEM

Literatürde güç sistemlerinde FACTS ve özel güç cihazlarında ve bu cihazlardan özellikle üstün avantajları sebeiyle en çok tercih edilen STATCOM ve DSTATCOM cihazlarında kullanılan evirici yapılarının belirlenmesine yönelik yapılan çalışmalarda

1.2 TEZİN ORGANİZASYONU

2. FACTS VE ÖZEL GÜÇ ÇIHAZLARI

FACTS ve özel güç çihaýları temel olarak güç sistemindeki çeşitli kontrol problemlerini çözmeý için kullanılmaktadır. Ayrıca yapılan son çalışmalar, bu çihaýların temel işlevlerine ek olarak güç sistemi kararlılığını artırmak için kullanlabileceğini ortaya koymaktadır. Son yıllarda, bir güç sistemi aýnda FACTS ve özel güç çihaýları kullanılarak güç sistemi kararlılığının arttırılması yoğun bir şekildedir araştırılmıştır. FACTS ve Özel Güç çihaýları son nesil kontrolörler olarak kullanılmaktadır [80].

Bu bölümde, FACTS ve özel güç çihaýlarının temel özellikleri ile bu çihaýların yapý ve isleyiş şekline göre sınıflandırılması açıklanmaktadır. Ayrıca STATCOM, SSSC, IPFC, UPFC isimli FACTS çihaýları ile DVR, UPQC, APF ve UPS isimli özel güç çihaýlarının donanım yapıları, çalışma yöntemi ve uygulamaları da bu bölümde anlatılmıştır.

2.1 FACTS ÇIHAZLARININ ÖNEMİ

Günümüzde endüstriyel güç tüketimine bağlı olarak ortaya çıkan güç kalitesi ile ilgili problemlerin tespit edilmesi ve çözüme ulaştırılması, güç sistemlerinin güvenilir çalışması için zorunlu hale gelmiştir [5]. Daha çok iletim sistemlerini ilgilendiren güç kalitesi problemleri farklı konuları içerir ve çoğunu çözüm için reaktif güç kompansasyonu ve harmonik filtreleme gibi uygulamalar önerilmektedir [80].

Yarı ileten ve güç elektronîgi teknolojisindeki gelişmeler, geleneksel kontrolörlerle kıyasla bu uygulamalar daha hızlı ve güvenli bir şekilde yapabilen güç elektronîgi tabanlı kontrolörlerin gelişmesine imkan sağlamıştır. 1980'lerin sonunda, Elektrik Enerjisi Araştırma Enstitüsü (EPRI), çeşitli güç elektronîgi tabanlı kontrolörlerin güç akışını ve iletim gerilimini düzenlediğini, dinamik bozuklukları azalttığını belirtmiş ve FACTS çihaýlarının vizyonunu oluşturmuştur [81]. Genel olarak, FACTS'in temel amacı, iletim hatlarının kullanabilir iletim kapasitesini artırmak ve belirlenmiş iletim yollarındaki aktif ve reaktif güç akışını sürekli kontrol etmektir [82]-[89]. FACTS, kullanabilir iletim kapasitesindeki kısıtlamaların üstesinden gelmek için çözümler sunar. Bu kısıtlamalar şunlar olabilir:
Dinamik koşullar:

1- Geçici ve Dinamik Kararlılık
2- Eşzamanlı Salınımılar
3- Dinamik Aşırı Gerilim ve Düşük Gerilim
4- Gerilim çöküşü

Veya Kararlı Durum durumları:

1- İstenmeyen Güç Akışı
2- Aşırı Reaktiv güç Akışı
3- Sürekli gerilim
4- Termal Sınırlar

Pek çok kararlı durum, sık anahtarlama gerekli olmadıkça, mekanik olarak anahtarlanmış bobinler ve kapasitörler ile aşılabilir [90]. Bununla birlikte, son çalışmalar, FACTS kontrolörlerinin, güç akışı kontrolünün temel işlevlerine ek olarak güç sistemi kararlılığını arttırmak için kullanılabileceğini ortaya koymaktadır. Bir FACTS kontrol cihazı çok amaçlı kullanılabileceği gibi güç sistemlerinin çeşitli yerlerinde kullanılabilir. Ek bir avantajı, DC kapasitörler, depolama pilleri gibi ek depolama sistemlerine uyum sağlamaları ve böylece sistem dinamikleri üzerinde daha iyi kontrol sağlamakta [91]-[98].

2.1.1 Evirici Tabanlı FACTS Cihazlarının Sınıflandırılması

Devre yapılarında kullanılan güç elektronigi teknolojisine göre FACTS aygıtları, Tristör Tabanlı FACTS Cihazları ve Evirici Tabanlı FACTS Cihazları olmak üzere iki kısımda incelenebilir. Bunlardan Tristör Tabanlı FACTS Cihazları; Statik Var Kompanzatör (SVC), Tristör Kontrollü Seri Kapasitör (TCSC) ve Tristör Kontrollü Faz Kaydırma Transformatör (TCPST) olmak üzere üç çeşit sıfırdan sınıflandırılabilirler [99]. Evirici tabanlı FACTS cihazları; Statik Senkron Kompanzatör (STATCOM), Statik Senkron Seri Kompanzatör (SSSC), Birleştirilmiş Güç Akış Kontrolörü (IPFC), Birleşik Güç Akış Kontrolörü (UPFC) olmak üzere dört çeşit sıfırdan sınıflandırılabilir. Evirici tabanlı FACTS cihazları geleneksel tristör tabanlı FACTS cihazlarına göre gerilim, hat empedansı ve faz açısı kontrolü açısından kolaylıkla uygulanabilme ve yüksek performans karakteristikleri sağlamaktadır. Birçok avantaj sağlayan evirici tabanlı FACTS cihazları
kullanılarak reaktif güç kompanzasyonu yapılması durumunda kompanzatörün fiziksel boyutu küçültülbilmektede, güç sisteminin dinamik kararlılığı artırılabilme ve talep edilen reaktif gücün bağıntı noktasının geriliminden bağımsız ve hızlı bir şekilde elde edilmesi sağlanabilmektedir [2]. Bu nedenle bu bölümde evirici tabanlı FACTS cihazları incelenecektir. Aşağıdaki Şekil 2.1’de trütor tabanlı ve evirici tabanlı FACTS cihazlarına ait sınıflandırılma gösterilmmektedir.

Çalışmanın bu kısmında evirici tabanlı FACTS cihazları incelenecektir.

2.1.1.1. Statik Senkron Kompanzatör (STATCOM)

Statik Senkron Kompanzatör (STATCOM), reaktif gücün kontrol etmek amacıyla iletim ağında kullanılan, sistem geriliminden bağımsız olarak kapasitif veya endüktif akım üreten, şönt bağlı, gerilim kaynağı evirici tabanlı bir FACTS cihazıdır. Çeşitli FACTS cihazları arasında en iyi cihazlardan biri olan STATCOM, bir şebeke devre reaktif gücün telafi etme, şebeke gerilimini sabitleme, sistemın güç faktörünü iyileştirmeye ve kararlılığını artırma, sistemdeki güç kayıplarını azaltma gibi birçok cazip özelliklere sahiptir [101]. Şekil 2.2’de gösterildiği gibi, bir STATCOM cihazının ana bileşenleri, DC kondansatör, yarı iletkle anahtar ve bağlı transformatörü, en temel bileşeni ise gerim kaynağı eviricidir.
Şekil 2.2. Bir STATCOM’un temel şeması [101].

Gerilim kaynağı evirici, DC kondansatör tarafından sürekli sağlanan DC giriş gerilimini sabit frekans ve faz açısından AC çıkış gerilimine dönüştürür. Literatürde yer alan bazı çalışmalar STATCOM’u bir akım kaynağı evirici kullanarak tanıtmıştır [102], [103]. Gerilim kaynağı evirici kullanan STATCOM ise birçok endüstriyel uygulamada yaygın olarak kullanılmıştır [104]-[113]. Bir STATCOM uygulaması için, gerilim kaynağı eviricinin çıkış, düşük toplam harmonik bozulmaya sahiptir. Bu durum, kompanzasyon için ideal olarak nötrleştirilmiş harmonik akım üretim ihtiyacını karşılar ve büyük bobin ihtiyacını ortadan kaldırır [114], [115].

İdeal bir STATCOM’un reaktif güç kontrolü için evirici çıkış gerilimi kontrol edilir. Eğer şebeke gerilimi STATCOM geriliminden büyük ise STATCOM iletim hattından reaktif güç tüketir, evirici akımı iletim hattı geriliminden 90º geridedir ve STATCOM endüktif modda çalışır. Eğer şebeke gerilimi STATCOM geriliminden küçük ise STATCOM iletim hattı için reaktif güç üretir, evirici çıkış akımı iletim hattı geriliminden 90º ileridedir ve STATCOM kapasitif modda çalışır. Böylece AC güç sistemine reaktif sağlanır. Eğer şebeke gerilimi STATCOM gerilimine eşit ise, herhangi bir reaktif güç aktarımı olmaz [99]. Bu durum Şekil 2.3’de ve STATCOM’un V-I karakteristikleri Şekil 2.4’de gösterilmektedir [2].

STATCOM’ın ürettiği ve tükettiği reaktif güç değeri aşağıda verilen Denklem (1.1) ile hesaplanabilir [118].

\[Q = \frac{V}{X} (V - V_o \cos \varphi) \] \hspace{1cm} (1.1)

STATCOM’ın sisteme verdiği veya sistemden aldığı aktif güç değeri ise Denklem (1.2) ile ifade edilebilir [118].
1.2

\[P = \frac{V_V o}{X} \sin \phi \]

Burada \(V_s \) sistem gerilimi, \(V_o \) eviricinin çıkış gerilimi, \(X \) bağlantı transformatörünün kaçak reaktansı ve \(\phi \) ise STATCOM 'un bağlı bulunduğu sistemin gerilimi ile eviricinin çıkış gerilimi arasındaki faz farkıdır.

2.1.1.2. Statik Senkron Seri Kompanzatör (SSSC)

Statik Senkron Seri Kompanzatör (SSSC), güç hattıyla seri olarak bağlanan, gerilim kaynağı evirici tabanlı ve seri kompanzasyon sağlayabilen seri FACTS cihazıdır. FACTS cihazları arasında çok önemli yere sahip olan Statik Senkron Seri Kompanzatör (SSSC), akım ve güç akışını etkileyen basit tasarımı nedeniyle popüler hale gelmiştir. Temel yapısı, gerilim kaynağı bir evirici ile güç hattına seri olarak bağlı bir transformatör, DC depolama kapasitörü ve enerji kaynağı içerir [120]. Seri transformatör, hat boyunca genel reaktif gerilim düşüşünü artırmak veya azaltmak ve böylece illetilen gücü kontrol etmek amacıyla, bağımsız olarak kontrol edilen bir gerilim uygulamak için kullanılır. DC depolama kapasitörü ise DC gerilimini korumak için kullanılır [121]. Bir SSSC’nin temel yapısı, Şekil 2.5’de gösterilmektedir [120].

Şekil 2.5. Bir SSSC’nin temel şeması [120].
2.1.1.3. Birleştirilmiş Güç Akış Kontrolörü (IPFC)

Birleştirilmiş güç akış kontrolörü (IPFC), çok fazlı iletim sistemleri arasındaki güç akışını kontrol eden en gelişmiş ve yeni nesil FACTS kontrol cihazıdır [3], [122]. IPFC’nin faydaları, şebekenin stabilitesinin iyileştirilmesi, şebekedeki aktif ve reaktif güç akışının kontrolü, kayıpların en aza indirilmesi ve artan şebekenin verimidir. Başlıca uygulamalar arasında, güç iletimi, güç kalitesi, güç akışı kontrolü, reaktif güç kompanzasyonu, güç koşullandırma alanları yer alır [124]. IPFC’nin önemli bileşenleri evirici ve kontrol tekniğidir. IPFC, iki enjeksiyon hattına seri enjeksiyon transformatörleri yardımı ile arka arka bağlanan iki gerilim kaynağı eviriciden oluşur. Eviricilerin arasında aktif güç aktarımını sağlayan ortak bir DC bağlantısı vardır. IPFC için ortak DC bağlantısı bir kapasitördür [125]. Bir SSSC’nin temel yapısı, Şekil 2.6’da gösterilmektedir [124].

Şekil 2.6. Bir IPFC’nin temel şeması [124].

2.1.1.4. Birleşik Güç Akışı Kontrolörü (UPFC)

UPFC, güvenilirliği ve esnekliği nedeniyle çoğunlukla kullanılan bir FACTS cihazıdır. Yüksek gerilimli elektrik iletim şebekesini dengelenen hızlı etkili reaktif güç sağlar. Düğüm gerilimleri, hat empedansı ve faz açısı gibi ayarlanan hat parametrelerini gerçekleştirir [125]. İletim sistemlerinde gerçek ve reaktif gücü, gerilim büyüklüğünü ve hat empedansını aynı anda kontrol edebilme yeteneğine sahiptir ve bu nedenle sistemin genel çalismasını iyileştirmir. Sadece güç aktarım kapasitesini arttırmakla kalmaz aynı zamanda aktarım kayıplarını azaltmanın yanı sıra stabilizeyi, aktarım kapasitesini de artırır. Bu özellikler UPFC’yı kontrol ve iletim sistemindeki en güçlü cihaz haline getirmektedir [127]. UPFC hibrit bir cihazdadır dC kapasitöre bağlı STATCOM ve
SSSC’nin birleşiminden oluşur. SSSC ve STATCOM, güç aktarım sisteminin performansını artırmak için sürekli çalışan çoklu senkron gerilim kaynaklarını kullanan gerilim kaynağı evricularıdır. Basitleştirilmiş UPFC’nin şematik gösterimi Şekil 2.7’de gösterildiği gibidir [126].

Şekil 2.7. Bir UPFC’nin tek hatlı şeması [126].

2.2. ÖZEL GÜÇ CİHAZLARININ ÖNEMİ

2.2.1. Evirici Tabanlı Özel Güç Cihazlarının Sınıflandırılması

Çeşitli güç kalitesi sorunlarının çözümü ve sistem güvenilirliğinin artırılması için kullanılan özel güç cihazları hakkında literatürde kesinleşmiş bir sınıflandırma yoktur. Ancak devre yapısında yer alan güç elektronikleri teknolojisine bağlı olarak iki kategoriye ayrılır. Bunlardan Tristör Tabanlı Özel Güç Cihazları; Statik Var Kompanzatör (SVC),
Yarı İletken Transfer Anahtarı (SSTS), Yarı İletken Devre Kesici (SSCB) ve Yarı İletken Akım Smürlayıcı (SSCL) olmak üzere dört çeşitte sınıflandırılabilir. Evirici Tabanlı Özel Güç Cihazları ise Dağıtım Statik Senkron Kompanzatör (DSTATCOM), Dinamik Gerilim Düzenleyici (DVR), Birleşik Güç Kalitesi Düzenleyicisi (UPQC), Aktif Güç Filtreleri (AGF) ve Kesintisiz Güç Kaynakları (UPS) olmak üzere beş çeşitte sınıflandırılabilir [3]. Aşağıda Şekil 2.8’de tristör tabanlı ve evirici tabanlı Özel Güç cihazlarına ait sınıflandırma gösterilmektedir.

![Özel Güç Cihazları Haritası](image)

Şekil 2.8. Özel Güç cihazlarının sınıflandırılması [3].

Çalışmanın bu kısmında evirici tabanlı Özel Güç cihazları incelenecektir.

2.1.1.1. Dağıtım Statik Senkron Kompanzatör (DSTATCOM)

STATCOM, düşük gerilimli dağıtım sistemlerinde kullanıldığında DSTATCOM olarak tanımlanır. En basit halıyle, bir gerilim kaynaklı evirici, bir DC enerji depolama cihazı, AC sistem ile şönt bağlanmış bir bağlantı transformatörü ve ilgili kontrol devresinden oluşur. STATCOM ile devre yapısı aynı olmakla beraber ilgilendikleri güç kalitesi sorunları farklıdır. DSTATCOM’un şematik yapısı Şekil 2.9’da gösterilmektedir. DSTATCOM’da aktif güç akışı, AC sistem ve GKE gerilimleri arasındaki açı ile reaktif güç akışı ise bu gerilimlerin büyüklükleri arasındaki farkla kontrol edilir [130]. DSTATCOM kontrol cihazı, yük gerilimlerini ve akımlarını sürekli olarak izler ve AC sistemden kaynaklanan çeşitli kayıplar için gereken telafi
miktarını belirler. DSTATCOM’un en önemli ana bileşeni GKE’dır. AC sistem ile şönt bağlı GKE, voltaj regülasyonu ve reaktiv gücün telafisi, güç faktörünün düzeltilmesi ve oluşan harmoniklerin kaldırılması şeklinde üç farklı amaca hizmet eder [131].

Şekil 2.9. Bir STATCOM’un temel şeması [130].

2.1.1.2. Dinamik Gerilim Düzenleyici (DVR)

DVR, DSTATCOM’a benzer devre yapısına sahiptir. Şekil 2.10’da gösterildiği gibi, bir GKE, bir anahtarlama kontrol devresi, bir DC enerji depolama cihazı ve bir bağlantı transformatöründen oluşur. Ancak burada bağlantı transformatörü AC sistemine seri bağlanır. En temel bileşeni olan GKE, fazı ve genliği kontrol edilebilen üç fazlı bir AC çıkış gerilimi üretir. Bu gerilimler, yük gerilimini istenen gerilim değerinde tutmak için AC dağıtım sisteminde üretilir [131].

Şekil 2.10. Bir DVR’nin temel şeması[131].

2.1.1.3. Aktif Güç Filtreleri (AGF)

Aktif Güç Filtresi (AGF), doğrusal olmayan ve dengesiz yüklerin oluşturduğu harmonik akımları azaltan ve böylece şebekenin güç kalitesini artıran bir dengeleyici sinyal üreten özel bir güç cihazıdır. Pasif güç filtrelerinin birçok dezavantajı nedeniyle AGF, son

Şekil 2.11. Bir AGF’nin temel şeması [135].

2.1.1.4. Birleşik Güç Kalite Düzenleyicisi (UPQC)

Birleşik Güç Kalite Düzenleyicisi (UPQC), yüksek gerilimli elektrik şebekelerinde hızlı ve güvenilir reaktif güç kompansasyonu sağlamak için kullanılan kontrol cihazıdır. Reaktif güc düzenlerken hassas elektrik yüklerini etkileyebilecek gerilim ve akım bozulmalarının azaltılmasını sağlar [136]. Şekil 2.12’de gösterildiği gibi seri ve paralel aktif güç filtrelerinin ortak bir DC hat kondansatörü vasıtasıyla birbirine bağlanmış bir filtre sistemidir. Birleşik güç kalitesi düzelticinin ana bileşenleri güç Kaynağı, aktif güç filtresi ve yük’tür [137]. UPQC’nin ana amacı gerilim dengesizliği, reaktif güç ve
harmoniklerin düzeltilmesidir.

Şekil 2.12. UPQC'nin temel şeması [137].

2.1.1.5. Kesintisiz Güç Kaynakları (UPS)

Kesintisiz güç kaynağı (UPS) sistemleri, ana güç kaynağı enerji sağlamadığında veya güç kalitesi için gerekli yük gereksinimleri karşılanamadığında hassas yükleri beslemek ve korumak için kullanılan, normal AC kaynağının olmadığı durumlarda kullanıma hazır kaynaklardır. UPS’ler sürekli devrede kalır ve elektrik kesintilerinde kesintinin yük tarafından hissedilmesini engeller. Bunun dışında şebekede meydana gelebilecek dalgalanmalardan yükü korur [138].

Şekil 2.13. Tek fazlı basit bir UPS için şematik diyagram [139].
3. FACTS VE ÖZEL GÜÇ CİHAZLARINDA KULLANILAN EVİRİCİ YAPILARI

Eviriciler, bir DC gerilim ile frekansı, genliği ve faz açısı kontrol edilebilen AC gerilim üreten güç elektronik dönüştürücü devrelerdir [79]. Bu devreler motor sürücü devrelerinde, yüksek gerilim doğru akım iletim sistemlerinde, orta ve yüksek güç değişkenli regülatör devrelerinde, yenilenebilir enerji sistemlerinin geniş uygulamalarında, UPS’lerde, FACTS ve özel güç cihazları gibi endüstriyel uygulamalarda kullanılmaktadır. Eviricilerde kullanılan yarı iletken anahtarlar transistör, tristör, GTO, MOSFET, IGBT şeklindedir. Bu yarı iletkenlerden düşük ve orta güç uygulamalarında, transistör ile tristör, yüksek güç uygulamalarında ise GTO, IGBT, IGCT anahtarlari kullanılmaktadır. Bu anahtarlarnın tümü, harmonikleri azaltmak için yüksek frekansta çalıştırılır. Eviriciler akım kaynaklı evirici ve gerilim kaynaklı evirici olarak sınıflanabilmektedir. Eğer DC kısımda endüktans elemanı varsa akım kaynaklı evirici, kondansatör elamanı varsa gerilim kaynaklı evirici olarak bilinmektedir. Eviricilerden üretilen çıkış gerilim seviyelerinin sayısı göre eviriciler iki gruba ayrılır. Bunlar, iki seviyeli eviriciler ve çok seviyeli eviricilerdir. İki seviyeli evirici bilinen en genel evirici yapısıdır. İki seviyeli bir eviricide +V_{dc} ve −V_{dc} olmak üzere sadece iki gerilim seviyesi vardır. Çok seviyeli eviricide ise çıkış seviyesi ikiden fazladır ve ilk üç seviyeli evirici ile başlamıştır. Örneğin, üç seviyeli eviricide gerilim seviyesi +V_{dc}/2, 0, −V_{dc}/2 olmak üzere üç gerilim seviyesi vardır. Daha düşük harmonik içerikler, daha düşük anahtarlama kaybı, yüksek gerilim kapasitesi ve yüksek güç kalitesi sağlayan çok seviyeli eviricilerden çok sayıda çıkış gerilim seviyesi üretilabilir. Çok seviyeli eviricilerin temel işlevi, istenen DC gerilimi birkaç DC gerilim seviyesinden sentezlemektir. Genel olarak üç gruba ayrılan çok seviyeli eviriciler, diyot kenetlemeli evirici, kapasitörlü kenetlemeli evirici ve kaskat evirici şeklinde sınıflandırılmaktadır [79], [87], [118], [150]. Çok seviyeli evirici, geleneksel iki seviyeli eviriciye göre birçok avantaja sahiptir. Çok seviyeli eviricinin dikkat çekici özellikleri aşağıdaki gibi kısaca özetlenebilir [100]:

1. Anahtarlarda düşük voltaj gerilimi sağlar.
2. Daha yüksek çıkış akımı harmonikleri aynı anahtarlama frekansı ile azaltılabilir, böylece güç kalitesini artırır.

3. Açık durumdayken anahtarlarda düşük güç tüketimi sağlar.

5. Düşük anahtarlama frekansı kullanılabilir ve böylece anahtarlama kayıplarında azalma ve daha yüksek verimlilik elde edilebilir.

6. Çok seviyeli dönüştürcüler giriş akımını düşük bozulma ile çekebilir.

Bu çalışmada FACTS ve özel güç cihazlarından özellikle STATCOM ve DSTATCOM cihazlarında kullanılan evirici yapılara yer verilmiştir. Aşağıda Şekil 3.1’de FACTS ve özel güç cihazlarında kullanılan evirici yapılarının sınıflandırılması gösterilmektedir.

Şekil 3.1. Evirici yapılarının sınıflandırılması [79].

3.1. İKİ SEVIYELİ EVİRİCİLER

FACTS ve özel güç cihazlarında kullanılan PWM denetimli iki seviyeli eviriciler diğer iki seviyeli evirici yapılardır. Farklı PWM yöntemlerinin kullanlabildiği bu evirici yapısı Şekil 3.3’de gösterildiği gibidir. Bu yapının yer aldığı uygulamalarda güç
kalitesini düzeltmek için yüksek anahtarlama frekansı kullanılmaktadır. Ancak bu durum anahtarlama kayıplarını artırılmaktadır. Bu dezavantajlar orta ve yüksek güç uygulamalarında çok seviyeli eviricilerin kullanımını arttırmuştur [150], [116].

Şekil 3.2. Çok darbeli STATCOM yapısı [123].

Şekil 3.3. Üç fazlı iki seviyeli evirici yapısı [117].

2007 ve 2010 yıllarında Bilgin ve arkadaşları gerçekleştirdikleri çalışmalarında, iki seviyeli evirici tabanlı DSTATCOM’u bir kömür madenindeki cihazların kompansasyonunda kullanmışlardır [152], [153]. Yine 2007 yılında Çetin ve Ermiş yaptıkları çalışmada iki seviyeli evirici tabanlı DSTATCOM ile kömür konveyör sürücüsü için kompansasyon işlemini gerçekleştirmiştir [140]. 2008 yılında Chang ve arkadaşları, 2014 yılında Gürav ve arkadaşları, 2004 yılında Escobar ve arkadaşları ile 2008 yılında Chen ve arkadaşları yük kompansasyonu yapmak için gerçekleştirdikleri çalışmada iki seviyeli eviricili DSTATCOM kullanmışlardır [141], [142], [143], [144], [145]. 2006 yılında Singh ve arkadaşları ile Rahmati ve arkadaşları ve 2008 yılında Vincent ve arkadaşları tarafından doğrusal olmayan yük kompansasyonu ile ilgili çalışmalar iki seviyeli eviricili STATCOM için yapılmıştır [145], [146], [147]. Rajiv ve arkadaşları

3.2. ÇOK SEVIYELİ EVİRİCİLER

Çok seviyeli eviriciler, orta gerilimli yüksek güç uygulamaları için tercih edilen seçeneklerden biri olarak ortaya çıkmıştır. Çok seviyeli eviricilerde indüktör ve kapasitör olmadığından yüksek güç, yüksek voltaj, iyi güç kalitesi, düşük mertebeden harmonikler, düşük anahtarlama kayıpları ve düşük elektromanyetik parazit taşıma kabiliyetine sahiptir. Çok seviyeli eviriciler, birkaç DC gerilim kaynağı kullanarak, kademeli gerilim dalga formu biçiminde olduğu gibi, temel referans gerilimine yakın olarak üretilmektedir. Çok seviyeli bir eviricide, çıkış seviyesi sayının arttırılması çıkış geriliminde THD’nin düşmesine neden olur. [150], [151]. Eklenen her DC gerilim seviyesi, AC çıkış geriliminin sinyal şeklinde bir kademeye olarak görülür.

Şekil 3.4’te, ideal anahtar kullanılan farklı seviyelerdeki eviricilerin bir faz ayağının şematik bir diyagramı gösterilmektedir.

![Şekil 3.4. İdeal anahtar kullanan farklı seviyelerdeki eviricilerin bir faz ayağının şematik bir diyagramı](image)

a) b) c)

Şekilden görüleceği üzere, iki seviyeli bir evirici, kapasitörün negatif terminaline göre iki seviyede bir çıkış gerilimi üretir. Üç seviyeli evirici ise üç seviyede üretir. Çok seviyeli eviricilerin en çekici özellikleri aşağıdaki gibidir. [151], [154].

1. Çok düşük harmonik bozulma ve daha düşük çıkış gerilimleri üretbilirler.
2. Çok düşük bozulma ile giriş akımı çekerler.

3. Daha küçük ortak mod (CM) gerilimi üretir ve karmaşık modülasyon yöntemleri kullanılarak, CM gerilimlerini elimine edilebilirler.

4. Daha düşük anahtarlama frekansı ile çalışabilirler.

Son yirmi yılda birçok çok seviyeli evirici yapısı önerilmiştir. Literatürde belirtilen temel sayılabilecek üç farklı çok seviyeli evirici yapıları aşağıdaki gibidir [150], [151].

1- Diyot Kenetlemeli Evirici (DKE)

2- Kapasitör Kenetlemeli Evirici (KKE)

3- Kaskat Evirici (KE)

3.2.1. Diyot Kenetlemeli Evirici (DKE)

Şekil 3.5. Üç fazlı üç seviyeli DKE’nin devre şeması [154].

Çizelge 3.1’de, DKE’ye ait çeşitli anahtarlama kombinasyonları ile çıkış gerilim seviyeleri gösterilmektedir. İki kapasitörün orta noktası ‘n’ nötr naktasıdır. Anahtarın iletimde olması ON durumu ve anahtarın kesimde olması OFF durumu anlamına gelmektedir. S₁i ve S₂i anahtarları ON durumunda iken çıkış gerilimi +Vdc/2 olur. Benzer şekilde S’₁i ve S’₂i anahtarları ON durumunda iken çıkış gerilimi -Vdc/2’dir. Çıkış geriliminin sıfır gerilim seviyesi için S₂i ve S’₁i anahtarları ON durumunda olmalıdır. Dₐ3 ve D’ₐ₃ diyotların iletimi ise yük akımı yönlerine bağlıdır ve bu diyotlar sayesinde anahtar gerilimi kaynak DC geriliminin yarısına eşitlenir [155].

Çizelge 3.1. Tek fazlı üç seviyeli DKE’deki anahtarların durumları. [155]

<table>
<thead>
<tr>
<th>Anahtarlama Durumu</th>
<th>İnverter Gerilimi (i=a,b,c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S₁i</td>
<td>S₂i</td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>

3.2.2. Kapasitör Kenetlemeli Evirici (KKE)

Şekil 3.6’da üç fazlı üç seviyeli KKE devresi gösterilmektedir [165]. Eviricinin çıkış gerilim seviyesi anahtarlama elemanlarının durumlarına göre her bir bağımsız kondansatör geriliminin toplanma-styla oluşur. KKE’lerde, her kondansatör üzerine
düşen gerilimin kendinden sonra gelen kondansatör gerilimiyle eşit olmaması için DC kondansatörler merdiven şeklinde sıralanmaktadır [166].

Çizelge 3.2'den görüldüğü gibi üç seviyeli KKE yapısında, sıfır gerilim seviyesi iki anahtarlama durumuna sahiptir. Bu devredeki iki kapasitör üç farklı gerilim seviyesi elde etmek için kullanılır, yani gerilim seviyeleri \(V_{an} \) noktaları arasında \(V_{dc}/2 \), 0, şeklindedir. \(V_{dc}/2 \) gerilim seviyesinin elde edilmesi için \(S_{1i} \) ve \(S_{2i} \) anahtarları, \(-V_{dc}/2\) gerilim seviyesinin elde edilmesi için \(S'_{1i} \) ve \(S'_{2i} \), 0 seviyesi için ise \(S_{1i} \) ve \(S'_{1i} \) veya \(S_{2i} \) anahtarları.
ve S'₂i anahtarları ON konumunda olmalıdır. C₁i kenetleme kondansatörünün şarj olması S₁i ve S'₁i anahtarlarının ON konumunda olmasıyla, deşarj olması S₂i ve S'₂i anahtarlarının ON konumunda olmasıyla sağlanır. C₁i'nin şarj durumunun dengelenebilmesi için uygun anahtarlama seçmelidir.

KKE’ler için belirtilenen birçok önemli avantaj vardır. KKE yapısında, çok sayıda büyük boy depolama kapasitörleri bulunmasından dolayı geçici koşullar sırasında kapasitelerde ekstra gezinme imkanı sunar. Ayrıca bu kapasitörler enerji kesintisi olsa bile çalışmasını sürdürebilir. C₁i kenetleme kondansatörünün şarj olması S₁i ve S'₁i anahtarlarının ON konumunda olmasıyla, deşarj olması S₂i ve S'₂i anahtarlarının ON konumunda olmasıyla sağlanır. C₁i’nin şarj durumunun dengelenebilmesi için uygun anahtarlama seçmelidir.

KKE’ler için belirtilinen birçok önemli avantaj vardır. KKE yapısında, çok sayıda büyük boy depolama kapasitörleri bulunmasından dolayı geçici koşullar sırasında kapasitelerde ekstra gezinme imkanı sunar. Ayrıca bu kapasitörler enerji kesintisi olsa bile çalışmasını sürdürebilir. C₁i kenetleme kondansatörünün şarj olması S₁i ve S'₁i anahtarlarının ON konumunda olmasıyla, deşarj olması S₂i ve S'₂i anahtarlarının ON konumunda olmasıyla sağlanır. C₁i’nin şarj durumunun dengelenebilmesi için uygun anahtarlama seçmelidir.

KKE’ler için belirtilinen birçok önemli avantaj vardır. KKE yapısında, çok sayıda büyük boy depolama kapasitörleri bulunmasından dolayı geçici koşullar sırasında kapasitelerde ekstra gezinme imkanı sunar. Ayrıca bu kapasitörler enerji kesintisi olsa bile çalışmasını sürdürebilir. C₁i kenetleme kondansatörünün şarj olması S₁i ve S'₁i anahtarlarının ON konumunda olmasıyla, deşarj olması S₂i ve S'₂i anahtarlarının ON konumunda olmasıyla sağlanır. C₁i’nin şarj durumunun dengelenebilmesi için uygun anahtarlama seçmelidir.

3.2.3. Kaskat Evirici (KE)

KE’ler, diğer çok seviyeli evirici yapıları arasında en uygunsuz yapıdır, çünkü daha az bileşen gereksinimi, daha az anahtarlama kaybı, kontrol tasarısında uygulanabilirlik, ve daha iyi AC çıkış dalga formu kalitesi gibi birçok ayrı edici özellikleri vardır. Aynı zamanda yüksek modülerlik derecesine sahiptir, çünkü her evirici benzer devre yapısına, kontrol yapısına ve modülasyona sahip bir modul olarak görülebilir [43], [150]. Bu nedenle, bu modüllerden birinde bir arıza olması durumunda, hızlı ve kolay bir şekilde değiştirilmesi mümkündür. Ayrıca, uygun bir kontrol stratejisi ile hatalı modülü yük durdurmadan atlayarak neredeyse kesintisiz bir genel kullanılabilirlik elde etmek mümkündür. DC gerilim dengeleme ve ortak bağlantı noktasındaki reaktif güç kompanzasyonu ise KE’lerin üstünlüğünü artıran diğer konulardır. Bu özellikler son yıllarda FACTS ve özel güç cihazları, orta gerilim endüstriyel sürücüler, yüksek güçlü motor sürücüler, fotovoltaik hücres üretime sistemleri, yüksek gerilim ve gücü sahip iletim ve dağıtım sistemlerinde kompanzasyon uygulamalarında kullanıımı artmıştır [150], [176]. KE’lerin temel birimi, tek fazlı H köprü hücresidir ve bu yapı Şekil 3.7’de gösterilmiştir.

Şekil 3.7. Tek fazlı H köprü hücresi [176].

Farklı anahtarlama durumu kombinasyonları kullanarak, H köprü hücresi +Vdc, 0 ve -
V_{dc} şeklinde üç farklı gerilim seviyesi üretbilir. Bu üç gerilimin toplamı, sonucla ortaya çıkan çıkış dalga formunun üretmesine neden olur [150], [176]. KE’ler, yüksek gerilimli düşük harmonik AC çıkış dalga formu üretmek için birbirine seri bağlı ve birbirinden ayrı denetlenebilen, her birim için ayrı DC kaynağına sahip çok sayıda H köprü bloğu kullanır. Çıktı geriliminin seviyesi artırılması için, her faza ait H köprü hücreleri seriyi olarak bağlanmalıdır. Her H köprüünün DC tarafında farklı bir DC kondansatör mevcuttur. Her fazdaki seviye m sayısı, m=2n+1 formülü ile hesaplanabilir. Buradaki n modül sayısını gösterir [176]-[178]. Üç faz m seviye H köprüsü KE’nin genel yapısı Şekil 3.8’de gösterilmektedir [179], Çizelge 3.3 ise, Şekil 3.8’deki A fazi için ilgili gerilim seviyelerine sahip anahtarlama durumlarını göstermektedir.

Şekil 3.8. Üç fazlı, H köprü KE genel yapı (yıldız bağlı) [179].

Çizelge 3.3. A fazına ait H köprü KE’nin ilgili voltaj seviyelerinin anahtarlama durumları [176].

<table>
<thead>
<tr>
<th>Anahtarlama Durumu</th>
<th>İnverter Gerilimi</th>
</tr>
</thead>
<tbody>
<tr>
<td>S<sub>N1</sub></td>
<td>S<sub>N2</sub></td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
</tr>
</tbody>
</table>

KE’lerde H köprü modül sayısının artırılması kaskat evirici çıkışındaki güç ve gerilim kapasitesini artırmaktadır. Ayrıca hiçbir bağlantı trafosu kullanılmadan orta gerilim dağıtım hattına doğrudan bağlanabilir [177]. KE’lerde, kullanılan anahtarlama
yöntemlerine bağlı olarak, çıkış geriliminde harmonik bozunum azalır [178].

KE’lerde, her bir H köprüye ait ayrı kondansatör olması her fazın kontrolünü kolaylaştırır ve meydana gelen AC sistem gerilimlerinin yeniden dengelenmesini sağlar [180].

3.3. EVİRİCİ YAPILARININ DEĞERLENDİRİLMESİ

Geçen zaman içerisinde STATCOM ve DSTATCOM’un devre yapısının güç kısmında çeşitli evirici yapıları kullanıldığı yapılan literatür çalışmalarında görülmektedir. Eviricilerin temel yapı taşı oluşturutan iki seviyeli eviriciler ilk kullanılan evirici
yapısıdır. Bu eviriciler ile birlikte zigzag transformatörler kullanılarak STATCOM’un çıkışında meydana gelen harmonik bozulma azaltılmaya çalışılmıştır. Daha öncede ifade edildiği gibi zigzag transformatörlerin dezavantajları, yapı olarak ağır bir yapıya sahip olması ve maliyet açısından daha pahalı olduğu için sistem maliyetini artırmasıdır [150].

Günümüzde yapılan çalışmalar sonucunda iki seviyeli eviricilere alternatif olarak çok seviyeli eviriciler önerilmektedir. Çok seviyeli eviriciler genellikle yüksek gerilim ve akım uygulamalarının yanı sıra reaktif güç kompansasyonu, motor sürücülerini, evirici tabanlı FACTS ve özel güç cihazları, enerji piyasası, taşmacılık, yakıt hücre uygulaması, yenilebilir enerji uygulamaları alanlarında da tercih edilmektedir. İki seviyeli eviricilerde belirtilen zigzag transformatörler ile seri bağlı anahtarlamalı cihazlar çok seviyeli eviricilerde kullanılmaz. THD değeri küçük yüksek gerilim elde edebilmek için
anma değeri yüksek eleman kullanılmaz. Evircideki gerilim seviyesi arttıkça çıkış gerilimindeki THD değeri küçülür, eviricinin çıkışındaki gerilim değeri yükselir ve güç değeri artar. Evircide yer alan elemanlar üzerindeki gerilim denetlenebilir. Bu avantaj düşük THD değerli ve yüksek gerilimli evirici üretimini kolaylaştırmıştır [150].

Literatüre bakıldığında DKE’ler, çok seviyeli eviricilerde ilk önerilen yapılardır [165]. DKE’lerde giriş gerilim istenilen seviyeye bölünebilmektedir. Bu seri bağlı kapasitörler arasındaki yer alan düğüm noktasını gerçekleştirmek için seviye sayısı artırıldığında daha düzgün sinüsoidal sinyal elde edilir. Eleman sayısı açısından DKE’den daha avantajlıdır, ancak THD değeri artar, çıkış gerilimindeki THD değeri küçülmesi ve güç değeri artması durumunda bu avantaj kaybolur [154]-[163] çalışmalarda incelenmiştir. Birçok çözüm yöntemi önerilecek uygulaması gerçekleştirilmiştir. DKE’lerde, seviye sayısı arttıkça kapasitörlerin açılış ve kapatılması karmaşıklığı artar, bu durumda iki anahtarlama elemanı iki ayrı kapasitör ile çalıştırılır. Çizelge 3.4’de verildiği gibi, m seviyeli çok seviyeli DKE’lerde, DC bara kapasitör sayısının seviye sayısından bir eksik olduğu görülmektedir. Ayrıca DC barada C1,C2,C3 ve C4 şeklinde dört adet kapasitör vardır. Her kapasitör üzerinde düğüm noktası ile DC bara kapası birlikte çalışır. Seviye sayısı arttıkça çıkışta daha düzgün sinüsoidal sinyal elde edilir. Eleman sayısı açısından değerlendirilecek olursa Çizelge 3.4’de verildiği gibi, m seviyeli çok seviyeli DKE’lerde, DC bara kapasitör sayısının seviye sayısından bir eksik olduğu görülmektedir. Ayrıca DC barada C1,C2,C3 ve C4 şeklinde dört adet kapasitör vardır. Her kapasitör üzerinde düğüm noktası ile DC bara kapası birlikte çalışır. Seviye sayısı arttıkça çıkışta daha düzgün sinüsoidal sinyal elde edilir. Eleman sayısı açısından değerlendirilecek olursa Çizelge 3.4’de verildiği gibi, m seviyeli çok seviyeli DKE’lerde, DC bara kapasitör sayısının seviye sayısından bir eksik olduğu görülmektedir. Ayrıca DC barada C1,C2,C3 ve C4 şeklinde dört adet kapasitör vardır. Her kapasitör üzerinde düğüm noktası ile DC bara kapası birlikte çalışır. Seviye sayısı arttıkça çıkışta daha düzgün sinüsoidal sinyal elde edilir. Eleman sayısı açısından değerlendirilecek olursa Çizelge 3.4’de verildiği gibi, m seviyeli çok seviyeli DKE’lerde, DC bara kapasitör sayısının seviye sayısından bir eksik olduğu görülmektedir. Ayrıca DC barada C1,C2,C3 ve C4 şeklinde dört adet kapasitör vardır. Her kapasitör üzerinde düğüm noktası ile DC bara kapası birlikte çalışır. Seviye sayısı arttıkça çıkışta daha düzgün sinüsoidal sinyal elde edilir. Eleman sayısı açısından değerlendirilecek olursa Çizelge 3.4’de verildiği gibi, m seviyeli çok seviyeli DKE’lerde, DC bara kapasitör sayısının seviye sayısından bir eksik olduğu görülmektedir. Ayrıca DC barada C1,C2,C3 ve C4 şeklinde dört adet kapasitör vardır. Her kapasitör üzerinde düğüm noktası ile DC bara kapası birlikte çalışır. Seviye sayısı arttıkça çıkışta daha düzgün sinüsoidal sinyal elde edilir. Eleman sayısı açısından değerlendirilecek olursa Çizelge 3.4’de verildiği gibi, m seviyeli çok seviyeli DKE’lerde, DC bara kapasitör sayısının seviye sayısından bir eksik olduğu görülmektedir. Ayrıca DC barada C1,C2,C3 ve C4 şeklinde dört adet kapasitör vardır. Her kapasitör üzerinde düğüm noktası ile DC bara kapası birlikte çalışır. Seviye sayısı arttıkça çıkışta daha düzgün sinüsoidal sinyal elde edilir. Eleman sayısı açısından değerlendirilecek olursa Çizelge 3.4’de verildiği gibi, m seviyeli çok seviyeli DKE’lerde, DC bara kapasitör sayısının seviye sayısından bir eksik olduğu görülmektedir. Ayrıca DC barada C1,C2,C3 ve C4 şeklinde dört adet kapasitör vardır. Her kapasitör üzerinde düğüm noktası ile DC bara kapası birlikte çalışır. Seviye sayısı arttıkça çıkışta daha düzgün sinüsoidal sinyal elde edilir. Eleman sayısı açısından değerlendirilecek olursa Çizelge 3.4’de verildiği gibi, m seviyeli çok seviyeli DKE’lerde, DC bara kapasitör sayısının seviye sayısından bir eksik olduğu görülmektedir. Ayrıca DC barada C1,C2,C3 ve C4 şeklinde dört adet kapasitör vardır. Her kapasitör üzerinde düğüm noktası ile DC bara kapası birlikte çalışır. Seviye sayısı arttıkça çıkışta daha düzgün sinüsoidal sinyal elde edilir. Eleman sayısı açısından değerlendirilecek olursa Çizelge 3.4’de verildiği gibi, m seviyeli çok seviyeli DKE’lerde, DC bara kapasitör sayısının seviye sayısından bir eksik olduğu görülmektedir. Ayrıca DC barada C1,C2,C3 ve C4 şeklinde dört adet kapasitör vardır. Her kapasitör üzerinde düğüm noktası ile DC bara kapası birlikte çalışır. Seviye sayısı artık...
elemanların kontrol edilmesini güçleştirir. Ayrıca, harmonik dalgalanma bakımından DKE’ye göre daha verimli olan KKE yapısının FACTS ve özel güç cihazlarında kullanımını kısıtlar. Bu kısıtlamalarla rağmen literatürde yapılan çalışmalarda görüldüğü gibi [150], [169], [171], [173] şönt kompanzasyon uygulamaları, yenilebilir enerji sistemleri uygulamaları, güç sistemlerinde güvenliğin geliştirilmesi, verimin artırılması, osilasyon önlemleme ile gerilimin kontrol edilmesi, yüksek çıkış gerilimi ile düşük elektromanyetik bozulma gibi birçok uygulama için önerilmiş ve uygulamalarnda kullanılmıştır. Çizelge 3.4’de verildiği gibi, seviye sayısı m olan bir KKE’de (m-1) tane ana kapasitör ile (m-1)(m-2)/2 tane yardımcı kapasitör kullanılır. Eviricideki seviye sayısının artması kapasitör sayısını artırır. Bu durumun dezavantajı maliyeti artırması ve elemanların kontrolünü zorlaştırması.

Yapılan araştırmalar sonucunda KKE’ye alternatif olarak birbirine seri olarak bağlı H köprü bloklarından oluşan çok seviyeli KE yapıları önerilmiştir. KE’ler diğer çok seviyeli evirici yapıları arasından en uygun yapıdır, çünkü yapıdaki modülerlik ve kontrol tasarımında uygulanabilirlik, daha az anahtarlama ve daha iyi çıkış dalga formu kalitesi bakımından ayırt edici özelliklere sahiptir. Kullanılan eleman açılsından diğer eviricilerden farklı, gerilim ketenleme diyotu ile gerilim dengelene kapasitörü yoktur. Ayrıca diğer evirici yapıları ile kıyaslandığında en az sayıda elemana gereksinim duyar. Çizelge 3.4’de verildiği gibi, seviye sayısı m olan bir KE’de 2.(m-1) tane temel anahtarlama elemanı ile temel diyot elemanı ve (m-1)/2 tane ana kapasitör kullanılmaktadır. KE’lerde gerilim paylaşıımı için bağımsız DC kaynak gerilimine ihtiyaç duyulur. İstenilen gerilimin paylaşımı ve kontrolünün sağlanması birden fazla bağımsız DC kaynak ile gerçekleştirilebilir. Eviricide DC kaynak olarak, batarya, solar hücre, en üst seviye kapasitör yada yakıt türeteri kullanılabilir. Bu özellik KE’lerin birçok yenilebilir enerji kaynaklarında kullanımını sağlar. KE’lerde ana frekansa benzer şekilde her bir H köprünün anahtarlaması düşük frekansta gerçekleşir. Düşük frekansta anahtarlama nedeniyle toplam harmonik bozunum daha düşüktür ve eviricinin çıkış gerilimi sinüzoidal sinyale daha çok benzer. Faz akımının sinüzoidal olması durumunda, bir periyot boyunca her bir kondansatör için ortalaması yükün sıfır olduğu görülür ve böylece kondansatör gerilimleri dengelenmiş olur. Bu durum seviye saylarının genişletilebilmesi kolaylığını sağlar. KE’ler aynı zamanda modülerliği, kullanılabilirliği, genel verimliliği gibi avantajları sebebiyle FACTS ve özel güç cihazları, HVDC, SVC ve yüksek güç motor sürücüleri vb. uygulamalarda kullanılmıştır. Aynı zamanda
literatürde açıklandığı üzere [53], [61], [150], [182] FACTS ve özel güç cihazlarında DC gerilim seviyesi ile anahtarlanmanın düzeltilmesi, kaynağı güç faktörünün iyileştirilmesi, verimli ve güvenilir şekilde reaktif güç kompansasyonunun hızlı yapılması, yüksek gerilim özellikle enerji iletim hatlarının reaktif güç kompansasyonu için çok seviyeli KE’ler tavsiye edilmiş ve uygulamalarda kullanılmıştır. KE’lerin kullanıldığı uygulamalar literatürde yer alan çalışmalarda [7], [40], [93], [109], [149], [150], [182]-[184] desteklenmiştir.

İki seviyeli eviriciler ile çok seviyeli evirici yapılarının her faz için kullanılan eleman sayısı açısından kıyaslama Çizelge 3.4’de verilmiştir. Gerilim değerinin bütün elemanlarda aynı olduğu farz edilmiştir. Akım değerleri ise farklı olabilir.

Çizelge 3.4. İki seviyeli evirici ile m seviyeli çok seviyeli eviricinin her faz için gereken farklı bileşen sayısı açısından yapılan kıyaslamanın değerlendirilmesi.

<table>
<thead>
<tr>
<th>Evirici Yapısı</th>
<th>Temel anahtarlama</th>
<th>DC bara kapasitörü</th>
<th>Dengeleme kapasitörü</th>
<th>Temel diyot</th>
<th>Kenetleme diyotu</th>
<th>Kullanım Yeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Seviyeli Evirici</td>
<td></td>
<td></td>
<td>Temel diyot</td>
<td></td>
<td></td>
<td>MOTOR SÜRÜCÜLERİ, EVIRICI TABANLI FACTS VE ÖZEL GÜÇ CIHAZLARI (STATCOM, SSSC, vb.), YAKIT HÜCRESİ UYGULAMALARI.</td>
</tr>
<tr>
<td>DKE</td>
<td>2.(m-1)</td>
<td>(m-1)</td>
<td>-</td>
<td>2.(m-1)</td>
<td>(m-1),(m-2)</td>
<td>MOTOR SÜRÜCÜLERİ, EVIRICI TABANLI FACTS VE ÖZEL GÜÇ CIHAZLARI (STATCOM, SSSC, vb.).</td>
</tr>
<tr>
<td>KKE</td>
<td>2.(m-1)</td>
<td>(m-1)</td>
<td>(m-1),(m-2)/2</td>
<td>2.(m-1)</td>
<td>-</td>
<td>BAZO ORTA VE YÜKSEK GERILIM UYGULAMASINDA, EVIRICI TABANLI FACTS VE ÖZEL GÜÇ CIHAZLARI, PV SİSTEMLERI, MOTOR SÜRÜCÜLERİ, KESINTİSIZ GÜÇ KAYNAĞI.</td>
</tr>
<tr>
<td>KE</td>
<td>2.(m-1)</td>
<td>(m-1) / 2</td>
<td>-</td>
<td>2.(m-1)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Yapılan araştırma sonucunda, iki seviyeli evirici ile çok seviyeli evirici yapıları karşılaştırıldığında, Çizelge 3.4’de görüldüğü gibi, KE yapısı daha üstün özellikleriyle dikkat çekmektedir. Alternatif evirici yapılarına göre, modüler yapısının yüksek olması, kullanabilir olması, maliyetinin düşük olması, eleman sayısının yerleri olması, yapılarının esnek olması sebebiyle seviye saylarının ve güç kapasitelerinin kolay artırılabilmesi, anahtarlama frekansı aynı iken kısıtlanğı gerilimin toplam harmonik bozunumunun düşük olması, daha düşük DC hat gerilimi ile aynı çıkış geriliminin elde

39
4. **EVİRİCİLERDE KULLANILAN MODÜLASYON TEKNİKLERİ**

Şekil 4.1. Evirici devre yapılarında gerilim ile frekans kontrolünü gerçekleştiren yöntemler

Bu yöntemlerden Darbe Genlik Modülasyonu ve Faz Kaydırma Denetim tekniklerinin harmonik içeriği yüksektir ve sinyaller sinüzoidal değildir. Bu nedenlere birçoğu yeni yöntem önerilmiştir. Önerilen bu yöntemlerden en çok kullanılan Darbe Genişlik Modülasyonu (PWM) yöntemidir [151].

PWM yöntemi en çok iki seviyeli eviricilerde tercih edilmektedir. Bu yöntemde darbe genişliği ayarlanarak ve sabit anahtarlama frekansları kullanılarak eviricinin çıkışında temel frekansta sinüzoidal sinyal üretilir. Bir taşıyıcı dalga ile bir modülsyon dalgasının karşılaştırıldığı yöntemde, taşıyıcı dalga olarak anahtarlama frekansında bir üçgen dalga ve modülsyon dalgası olarak ise istenen frekans ve genlikte bir sinüzoidal dalga karşılaştırılır. Taşıyıcı dalga ile modülsyon dalgasının birleşme noktaları anahtarların anahtarlama durumlarını belirlemektedir. Evirici devredeki tüm fazlarda taşıyıcı dalga ortaktır ancak sinüzoidal dalga her bir fazda bulunur. Şekil 4.2’de tek fazlı evirici için anahtarlama sinyali ile PWM’in çıkış dalga formu verilmektedir [187].

Şekil 4.2. Tek fazlı evirici için anahtarlama sinyali ile PWM çıkış dalga formu [187].
Gerilim kontrolü için bu yöntemlerden en çok kullanılan Sinüzoidal PWM yöntemidir. Bununla beraber, darbe genişlik modülasyonu, PWM modülasyon tekniklerinin daha iyi anlaşılmasını için bir temel oluşturur.

Bu çalışmada iki seviyeli evirici ile diyet kenetlemeli, kapasitör kenetlemeli ve kaskat eviricilerin üç ve beş seviyeli devrelerinin MATLAB/SimPower System’de SPWM yöntemi kullanılarak simüle edileceğini için sadece darbe genişlik modülasyonu (PWM) ile sinüzoidal darbe genişlik modülasyonu (SPWM) dan bahsedilecektir.

4.1. DARBE GENİŞLİK MODÜLASYONU (PWM)

Darbe Genişlik Modülasyonunda en çok tercih edilen yöntemler Şekil 4.3’de verilmektedir [4].

![PWM Yöntemleri](image-url)

Şekil 4.3. PWM yöntemleri [4].
PWM’de istenen darbe şeklinin kare dalga olması ve evirici çıkışındaki dalganın harmoniğini azaltmak için bu darbelerin genişliği değiştirilebilir. İlk yarı periyotta iken darbe sayısı artırılarak anahtarlama harmoniklerinin frekansının yükseltildiği sağlanır. Ancak bu durum anahtarlama kayıplarını artırmaktadır. Bu nedenle PWM yöntemi seçilikken dikkat edilmesi gereken nokta, düşük seviyeli harmonik akımların engellenmesi ve anahtarlama kayıplarının minimum yapılmasıdır. Böylece çıkış geriliminin frekans ve harmonik içeriğinin büyüklüğünü aynı anda eviriciden kolayca kontrol edilebilecektir. Üç fazlı eviricilerin çıkış dalga şekillerinde ise çıkış gerilimleri arasında 120° faz farkı bulunduğuundan, PWM sinyalleri arasında da 120° faz farkı bulunmalıdır [151], [188].

Referans sinyalin tepe değerinin (V_R) üçgen sinyalin tepe değerine (V_P) oranı modülasyon indeks değerini verir. Modülasyon indeks sembolü M_i’dir. Modülasyon indeks değeri değiştirilerek çıkış geriliminin ana harmonik genliği ayarlanır. Bu çalışmada DC bara sabit tutularak M_i değeri değiştirilmiştir. Üçgen sinyalin frekansının

![Şekil 4.4. PWM’in çalışma prensibi](image-url)
(fₙ) referans sinyalin frekansi (fₘ)’na oranı frekans modülasyon oranı denir ve sembolü mₖ'dir. mₖ değerinin minimum 9 olması gerekir. mₖ değeri büyüdükçe harmonik bileşenler azalır.

Aşağıda modülasyon indeksi ve frekans modülasyon oranı hesabı için gerekli formül verilmektedir.

Mᵢ=Modülasyon indeksi,

mₖ=Frekans modülasyon oranı,

fₛ= Üçgen taşıyıcı dalganın frekansı,

fₘ=Referans dalganın frekansı,

fₖ=Çıkıştaki işaretin ana harmoniğinin frekansı olmak üzere,

\[Mᵢ = \frac{Vᵢ}{Vₚ} \] \hspace{1cm} (4.1)

\[mₖ = \frac{fₛ}{fₘ} \] \hspace{1cm} (4.2)

Bu çalışmada DC bara sabit tutularak Mi değeri değiştirilmiştir. Modülasyon indeksi değişince eviricinin çıkış geriliminde değişmektedir. Aşağıda fazlar arası gerilim ile faz gerilimi hesaplamak için gerekli formül verilmektedir.

Faz gerilimi için,

\[V_f = \frac{MᵢVₑ}{2\sqrt{2}} \] \hspace{1cm} (4.3)

Fazlar arası gerilim için,

\[V_{LL} = \frac{\sqrt{3}MᵢVₑ}{2\sqrt{2}} \] \hspace{1cm} (4.4)

Modülasyon indeksinin (Mᵢ), üretilen AC çıkış voltajının büyüklüğünün, üretilbilecek maksimum AC çıkış voltajının büyüklüğüne oranı olarak da tanımlanabilir. Bu durumda AC çıkış voltajında üretilen toplam harmonik bozulma (THD) yüzdesi aşağıdaki gibi tanımlanmaktadır [190].

\[THD(\%) = 100.\sqrt{\sum_{n=3,5,7} Vₙ^2 / V₁} \] \hspace{1cm} (4.5)

\[V(n) = 4.Vₑ \left(\cos(nα₁) + \cdots + \cos(nα₅) \right)/nπ \] \hspace{1cm} (4.6)
4.2. **SİNÜZÖİDAL DARBE GENİŞLİK MODÜLASYONU (SPWM)**

SPWM tekniği, çok seviyeli PWM teknikleri içerisinde PWM sinyallerinin elde edilmesi ve aynı zamanda birçok uygulamada kullanılması açısından bilinen en eski tekniktir. SPWM uygulanırken bir üçgen sinyal ile bir sinüzoidal sinyal doğal örneklemeye yoluyla karşılaştırılmaktır. Bu yönteme Sinüzoidal PWM denilmesinin nedeni, referans işaret olarak bir sinüzoidal sinyalin kullanılmasını kaynaklanır. SPWM yönteminde sinüzoidal sinyal sabit kalmak koşuluyla, eviricinin seviye durumuna bağlı olarak taşıyıcı sinyal sayısı artırılmaktadır. m seviyeli bir eviricide, taşıyıcı sinyal sayısının (m-1) tane olması gerekir. Ancak burada taşıyıcı sinyalin genliği ve frekansı aynı olması [150].

Literatür taraması, Sinüzoidal PWM yönteminin tüm modülasyon teknikleri içerisinde en basit yöntem olduğunu göstermektedir [191]. Sinüzoidal PWM yönteminde modülasyon indeksi M_i, frekans modülasyon oranı m_f ve sinüzoidal referans sinyalinin frekansı f_{m} olmak üzere üç kontrol bileşeni bulunur [4].

Doğal örneklemeli sinüzodal PWM’de kullanılan referans sinüzoidal sinyal ve taşıyıcı üçgen sinyalin özellikleri ile bu sinyalların frekans ve genliklerindeki değişikliklerin eviricinin çıktısı nasıl etkilediğini aşağıdaki verildiği gibidir [4].

1- Referans Sinüzoidal Sinyalin Özellikleri ve Etkisi:

 a. Referans işaretini temsil eden sinüzoidal sinyale aynı zamanda, kontrol işaretini denilmektedir. Genliği V_R ile frekansı f_{m} ile gösterilmektedir.

 b. Sinüzoidal sinyalin frekansı f_{m}, eviricinin çıkış frekansıdır. Bu nedenle eviricinin çıkış frekansı sinüzoidal sinyalin frekansı değişirilerek ayarlanabilmektedir.

 c. Eviricinin çıkış gerilimindeki harmonin genliği azaltılabilir veya artırılabilir. Bunun için M_i ve V_P sabit tutulmak şartıyla referans sinyalin genliği azaltılmalı yada artırılmalıdır.

2- Taşıyıcı Üçgen Sinyalin Özellikleri ve Etkisi:

 1. Taşıyıcı sinyal olan üçgen sinyalin genliği V_P ile frekansı f_s ile gösterilmektedir. Buradaki f_s frekansı eviricinin anahtarlama frekansıdır.

 2. Taşıyıcı sinyalin frekansı ile sinüzoidal sinyalin frekansı karşılaştırıldığında, taşıyıcı sinyalin frekansının çok büyük olduğu görülmektedir. Bu nedenle eviricinin anahtarlama frekansını belirlemede etkilidir.
3. Taşıyıcı sinyalin genliğinin genellikle sabit olması istenir.

SPWM yönteminde, taşıyıcı dalgaların referans sinyale göre yerleştirilme şekillerine bağlı olarak, PD (Düz dizme), POD (Ters dizme) ve APOD (Düz ters dizme) PWM olarak sınıflandırılır. Bu sınıflandırma Şekil 4.5’de gösterilmiştir [193].

Şekil 4.5. SPWM’in sınıflandırılması [192].

Aşağıdaki şekil 4.6’dan PD, POD ve APOD PWM’in sabit anahtarlama frekansı teknigiinde taşıyıcı ve referans dalgalarının düzenini göstermektedir [194]. Bu çalışmada PD (Düz Dizme) tekniği kullanılmıştır. Bunun nedeni en az miktarda THD üretmesi ve diğer tekniklere göre en yüksek voltaj çıkışını sağlamasıdır.

![Diagram](image)
Şekil 4.6. Alt-harmonik PWM a) PD b) POD c) APOD yöntemlerinin taşıyıcı ve referans dalga formları [192].
5. BENZETİM ÇALIŞMALARI

5.1. GİRİŞ

Bu tez çalışmasında FACTS ve özel güç cihazlarının devre yapılarını incelenmiş, sonrasında bu cihazlarda kullanılan iki seviyeli ve çok seviyeli evirici yapıları araştırılmıştır. Bu amaçla iki seviyeli evirici, diyot kenetlemeli evirici, kaskat evirici, kapasitör kenetlemeli evirici yapılarının modellemesi MATLAB/Simulink programında gerçekleştirilmiştir. Bu bölümde benzetim sonuçları gösterilmiş ve bütün detaylarıyla ayrı ayrı incelenmiştir. Yapılan benzetimlerde kullanılan parametreler, $M_i=1$, $f_m=50$ Hz, $f_{sw}=4$ kHz ve $V_{dc}=650$ V şeklindedir. Benzetim çalışmaları iki ana kısımdan oluşmaktadır;

Birinci kısımda SPWM ile anahtarlama yapılan eviricilerin yük kullanılmadan benzetimi gerçekleştirilmiş ve sonuçları verilmiştir. İkinci kısımda yine SPWM ile anahtarlama yapılan filtreli ve filtersiz evirici yapılarının üç fazlı asenkron motor yükü kullanılarak benzetimi gerçekleştirilmiştir.

Yapılan benzetimlerde ilk önce iki seviyeli eviricinin, daha sonra 3 ve 5 seviyeli evirici yapıları kullanılarak diyot kenetlemeli, kaskat ve kapasitör kenetlemeli eviricinin benzetimi yapılarak incelenmiştir. Çok seviyeli eviricilerin PWM denetiminde PD modülasyonu kullanılmıştır. Bu benzetimlerde, modülasyon indeksi değiştirilen filtreli ve filtersiz eviricilerin MATLAB FFT aracı ile analizi yapılarak elde edilen THD sonuçları karşılaştırılmıştır. Elde edilen sinyaller ile THD sonuçları çizelge halinde gösterilmiştir. LCfiltre tasarım metodolojisi ise şu şekildedir;

Sincap kafesli asenkron motorun ihtiyaç duyduğu reaktif güç tamamen filtre kapasitörü tarafından sağlanmaktadır. Aktif güç ise sadece inverter ucu tarafından sağlanmaktadır. Filtre kapasitörünün değeri aşağıdaki Denklem (5.1) ile hesaplanmıştır [195].

$$C_f = \frac{1}{4.\pi^2 f_s^2 L_m}$$ (5.1)

Bu denklemde;

f_s = Temel frekansı,
L_m= Motorun mıknatıslanma induktörünü ifade etmektedir.

LC filtenin induktörün bileşenini ise Denklem (5.2) ile hesaplanmıştır. Burada filtre induktör maksimum dalgalanma akımını kullanılarak gerekli hesaplamalar yapılmıştır. LC filtenin induktörünün maksimum dalgalanma akımı ise şu şekilde hesaplanır [195].

$$\Delta i_{L_f}^{max} = \frac{V_{dc}}{8f_{sw}L_f}$$ \hspace{1cm} (5.2)

Verilen Denklem (5.2)’de;

V_{dc}= DC bara gerilimini,

f_{sw}= Eviricinin anahtarlama frekansını,

L_f= LC filtre induktör değerini,

$\Delta i_{L_f}^{max}$= Filtre induktör akıımının maksimum dalgalanma akımını ifade etmektedir. Burada maksimum dalgalanma akımı motor faz akımının tepe değerinin %20’si olarak alınmıştır. LC filtre hesabında L_f değeri bu şekilde hesaplanmıştır. Hesaplanan filtre değerleri aşağıda tabloda verildiği gibidir.

<table>
<thead>
<tr>
<th>V_{dc}</th>
<th>C_f</th>
<th>f_r</th>
<th>f_{sw}</th>
<th>$\Delta i_{L_f}^{max}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>650 V</td>
<td>5,88.10^{-5} F</td>
<td>196,12 Hz</td>
<td>4 kHz</td>
<td>1,2</td>
</tr>
</tbody>
</table>

5.2. ÜÇ FAZLI SEVIYE SAYILARI FARKLI EVİRİCİLER İÇİN GERÇEKLEŞTİRİLEN MATLAB/SİMULİNK BENZETİMİ

Tezin bu kısmında SPWM denetimli iki seviyeli, üç seviyeli ve beş seviyeli evirici ile beslenen, asenkron motorun açık çevrim kontrolünün hem filtre ile hem de filtre kullanılmadan benzetimi MATLAB/Simulink’te yapılmış ve buna ait sistem modeli Şekil 5.1’de verilmiştir. Modellemede sabit referans çatısı ile sincap kafesi 400 V gücünde üç fazlı asenkron motor kullanılmıştır. Eviriciler için kullanılan anahtar ise IGBT’dir.
Şekil 5.1. Sistemin MATLAB/Simulink modeli.

Benzetim sonuçları anahtarlama frekansının 4 kHz olduğu farklı modülasyon değerleri için gerçekleştirilmiş olup, tablo halinde verilen eviricilerin benzetiminde kullanılan parametreler, asenkron motora ait parametreler, filtreye ait parametreler ile filtre hesabında kullanılan formüller aşağıda verilmektedir.

Çizelge 5.2. İki, üç ve beş seviyeli eviricilerin benzetiminde kullanılan parametreler.

<table>
<thead>
<tr>
<th>Vdc</th>
<th>f</th>
<th>R</th>
<th>Lf</th>
<th>Cf</th>
<th>Mi</th>
</tr>
</thead>
<tbody>
<tr>
<td>650 V</td>
<td>50 Hz</td>
<td>0,001Ω</td>
<td>0,0120 H</td>
<td>5,88.e-5 F</td>
<td>0,6-1</td>
</tr>
</tbody>
</table>

Çizelge 5.3. Benzetimde kullanılan asenkron motor parametreleri.

<table>
<thead>
<tr>
<th>Güç</th>
<th>Gerilim</th>
<th>Frekans</th>
<th>Anma hızı</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 kW</td>
<td>400V</td>
<td>50 Hz</td>
<td>1450 RPM</td>
</tr>
</tbody>
</table>

Ancak evirici çıkışına bağlanan filtre devresindeki endüktans değerinin büyük olması ve sinyallerin dengeye ulaşmasını geçiktirmesi nedeniyle motorun çalışmasını yavaşlattığı gözlemlenmiştir. İndüktansın düşürülmesi gerilimi azaltmakta ve harmoniği artırmaktadır. Bu nedenle sistem davranışını önemli ölçüde etkileyen filtre devresi için önce filtre hesabı yapılmıştır. Bunun için önce \(C_f=5,88.10^{-5} \) F ve \(f_r=196\) Hz olarak belirlenmiş, ardından \(L_f \) değeri hesaplanmıştır. Daha sonra deneme yarımla yoluyla en iyi sonuç elde edilmiştir. Yapılan hesaplama ile bulunan sonuç \(L_f=0,0169 \) H olmasına
karşılık, bu değer deneme yanlısyla yoluya simülasyonun daha hızlı cevap vermesi ve gerçek sistem değerlerine yaklaşılması için \(L_f = 0,0120 \) H’ye düşürülmüştür. Böylece harmoniğin azalması ve cevap süresinin daha hızlı olması sağlanmıştır.

Evrircilerin anahtarlaması için gerekli SPWM işaretlerini üretmek amacıyla, referans üç faz sinüs dalgaları ile bir adet taşıyıcı üçgen dalgaya kullanılmıştır. Şekil 5.2’de referans üç faz sinüzoidal sinyaller ile taşıyıcı üçgen sinyallerin karşılaştırılması verilmiştir.
Şekil 5.2. PD modülasyonu ile anahtarlanan üç fazlı eviriciye ilişkin referans ve taşıyıcı sinyal şekilleri a) iki seviyeli b) üç seviyeli c) beş seviyeli.

Bu karşılaştırmadan elde edilen SPWM işaretleri ile anahtarlanan üç fazlı iki seviyeli, üç seviyeli ve beş seviyeli evricilerin faz-nötr ve faz-faz gerilim dalga şekilleri, faz-faz çıkış gerilim ve faz-nötr çıkış gerilim dalga şekilleri elde edilmiştir. Daha sonra ise filtre kullanılarak ve filtre kullanılmadan oluşturulan SPWM beslemeli evirici asenkron motor sürücünün dalga şekilleri gösterilmiştir.

5.2.1. İki Seviyeli Evirici İçin Matlab/Simulink Benzetimi
Şekil 5.3. SPWM denetimli iki seviyeli filtreli eviriciye ilişkin \(M_1=1, \ f_{sw}=4 \text{ kHz} \) alınması durumunda a) faz gerilimi b) fazlar arası gerilim c) filtre edilmiş faz gerilimi d) filtre edilmiş fazlar arası gerilim.
Şekil 5.4. SPWM denetimli iki seviyeli filtreli evirici kullanılan asenkron motor sürücünün a) rotor akımı b) stator akımı c) açısal hız d) tork dalga şekilleri.

Şekil 5.3 a)’da iki seviyeli eviricinin çıkış faz gerilimi verilmiştir. Şekil 5.3 b)’de iki seviyeli eviricinin fazlar arası geriliminin dalga şekli görülmektedir. Şekil 5.3 c), d)’de ise iki seviyeli filtreli eviricinin çıkış faz ve fazlar arası gerilimi dalga şekli görülmektedir. Görüldüğü gibi filtre kullanıldığında evirici çıkışta dalga şekli sinüzoidal olmaktadır. Şekil 5.4 a)’da asenkron motora ilişkin rotor akımları görülmektedir. Şekil 5.4 b)’de asenkron motora ilişkin stator akımları dalga şekli görülmektedir. Şekil 5.4 c), d)’de ise sırasıyla asenkron motora ilişkin rad/s olarak hız grafiği ve tork grafiği verilmektedir. Şekil 5.5 a)’da iki seviyeli filtersiz evirici için asenkron motor rotor akımları verilmiştir.
Şekil 5.5. SPWM denetimli iki seviyeli filtresiz evirici kullanılan asenkron motor sürücünün a) rotor akımı b) stator akımı c) açısal hız d) tork dalga şekilleri.
Şekil 5.5 b)’de iki seviyeli filtersiz evirici için asenkron motor stator akımları dalga şekilleri verilmiştir. Şekil 5.5 c) ve d)’de sırasıyla iki seviyeli filtersiz evirici için asenkron motor hızı ve tork grafiği gösterilmiştir. Çizelge 5.3 ve 5.4’de SPWM yöntemi ile anahtarlanan filtersiz üç faz iki seviyeli eviriciye ilişkin farklı modülasyon indeksine göre elde edilen THD değerleri verilmiştir. Elde edilen sonuçlara göre filtersiz eviricide modülasyon indeksi değeri arttıkça genel olarak stator akım harmonikleri azalmaktadır. Eviricinin çıkış faz gerilimi ile fazlar arası çıkış gerilim harmonikleri modülasyon indeksi artışta benzer olarak azalmıştır. İki seviyeli filtersiz eviricide ise eviricinin çıkış faz ve fazlar arası gerilim harmonikleri modülasyon indeksi artışta azalma göstermiştir. İki seviyeli filtersiz eviricinin stator akım harmonikleri ise modülasyon indeksi artışta fazla bir değişme göstermemiştir.

Çizelge 5.3. Filtreli üç faz iki seviyeli eviricinin THD değerleri.

<table>
<thead>
<tr>
<th>Değerler</th>
<th>THD %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Ma</td>
<td>0.46</td>
</tr>
<tr>
<td>Is</td>
<td>0.22</td>
</tr>
<tr>
<td>Vab</td>
<td>0.24</td>
</tr>
<tr>
<td>Van</td>
<td>8.92</td>
</tr>
<tr>
<td></td>
<td>68.60</td>
</tr>
<tr>
<td></td>
<td>99.98</td>
</tr>
</tbody>
</table>

Çizelge 5.4. Filtresiz üç faz iki seviyeli eviricinin THD değerleri.

5.2.2. Üç Seviyeli Diyot Kenetlemeli Evirici İçin Matlab/Simulink Benzetimi

Şekil 5.6 a)’da üç seviyeli DKE eviricinin çıkış faz gerilimi verilmiştir. Şekil 5.6 b)’de üç seviyeli DKE eviricinin fazlar arası geriliminin dalga şekli görülmektedir. Şekil 5.6 c), d)’de ise üç seviyeli DKE filtreli eviricinin çıkış faz ve fazlar arası gerilimi dalga şekli görülmektedir. Görüldüğü gibi fazlar arası çıkış gerilimi üç seviyelidir.
Şekil 5.6. SPWM denetimli üç seviyelifiltreli diyot kenetlemeli eviriciye ilişkin $M_i=1$, $f_{sw}=4$ kHz alınması durumunda a) faz gerilimi b) fazlar arası gerilim c) filtre edilmiş faz gerilimi d) filtre edilmiş fazlar arası gerilim.

Şekil 5.7 a)’da üç seviyeli diyot kenetlemeli evirici kullanılan asenkron motora ilişkin rotor akımları görülmektedir. Şekil 5.7 b)’de üç seviyeli diyot kenetlemeli evirici kullanılan asenkron motora ilişkin stator akımları dalga şekli görülmektedir. İki seviyeli eviriciye nazaran stator ve rotor akımlarının daha düzgün olduğu gözlenmektedir. Şekil 5.7 c), d)’de ise sırasıyla asenkron motora ilişkin rad/s olarak hız grafiği ve tork grafiği verilmektedir.
Şekil 5.7. SPWM denetimli üç seviyelifiltreli diyot kenetlemeli evirici kullanılan asenkron motor sürücünün a) rotor akımı b) stator akımı c) açısal hız d) tork dalga şekilleri.
a)

b)

c)
Şekil 5.8. SPWM denetimli üç seviyeli filtresiz diyot kenetlemeli evirici kullanılan asenkron motor sürücünün a) rotor akımı b) stator akımı c) açısal hız d) tork dalga şekilleri.

Şekil 5.8 b)’de üç seviyeli filtresiz diyot kenetlemeli evirici için asenkron motor stator akımları dalga şekilleri verilmiştir. Şekil 5.5 c) ve d)’de sırasıyla üç eviyeli filtresiz diyot kenetlemeli evirici için asenkron motor hızı ve tork grafiği gösterilmektedir. Çizelge 5.5 ve 5.6’da SPWM yöntemi ile denetlenen filtreli ve filtresiz üç faz üç seviyeli diyot kenetlemeli eviriciye ilişkin farklı modülasyon indeksine göre elde edilen THD değerleri verilmiştir. Elde edilen sonuçlara göre filtreli ve filtresiz eviricide modülasyon indeksi değeri arttıkça asenkron motorun stator akım harmoniklerinde azalma olmaktadır.

Çizelge 5.5. Filtreli üç faz üç seviyeli diyot kenetlemeli eviricinin THD değerleri.

<table>
<thead>
<tr>
<th>Değerler</th>
<th>THD %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma</td>
<td>0.9</td>
</tr>
<tr>
<td>Is</td>
<td>0.73</td>
</tr>
<tr>
<td>Vab</td>
<td>0.31</td>
</tr>
<tr>
<td>Van</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Çizelge 5.6. Filtresiz üç faz üç seviyeli diyot kenetlemeli eviricinin THD değerleri.

<table>
<thead>
<tr>
<th>Değerler</th>
<th>THD %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma</td>
<td>0.9</td>
</tr>
<tr>
<td>Is</td>
<td>2.23</td>
</tr>
<tr>
<td>Vab</td>
<td>35.12</td>
</tr>
<tr>
<td>Van</td>
<td>51.99</td>
</tr>
</tbody>
</table>
5.2.3. Üç Seviyeli Kapasitör Kenetlemeli Evirici İçin Matlab/Simulink Benzetimi

![Diagram](image1)

a)

![Diagram](image2)

b)

c)
Şekil 5.9. SPWM denetimli üç seviyeli filtreli kapasitör kenetlemeli eviriciye ilişkin $M_i=1, f_{sw}=4$ kHz alınması durumunda a) faz gerilimi b) fazlar arası gerilim c) filtre edilmiş faz gerilimi d) filtre edilmiş fazlar arası gerilim.
Şekil 5.10.SPWM denetimli üç seviyeli filtreli kapasitör kenetlemeli evirici kullanılan asenkron motor sürücünün a) rotor akımı b) stator akımı c) açısal hız d) tork dalga şekilleri.

Şekil 5.9 a)’da üç seviyeli kapasitör kenetlemeli eviricinin çıkış faz gerilimi verilmiştir. Şekil 5.9 b)’de üç seviyeli kapasitör kenetlemeli eviriciinin fazlar arası geriliminin dalga şekli görülmektedir. Şekil 5.9 c), d)’de ise üç seviyeli filtreli kapasitör kenetlemeli eviriciinin çıkış faz ve fazlar arası gerilimi dalga şekli görülmektedir. Görüldüğü gibi filtre kullanılarak evirici çıkış dalga şeklinin sinüzoidal olması sağlanmaktadır. Şekil 5.10 a)’da üç seviyeli filtreli kapasitör kenetlemeli evirici kullanan asenkron motora ilişkin rotor akımları görülmektedir. Şekil 5.10 b)’de üç seviyeli filtreli kapasitör kenetlemeli evirici kullanan asenkron motora ilişkin stator akımları dalga şekli görülmektedir. Şekil 5.10 c), d)’de ise sırasıyla üç seviyeli filtreli kapasitör kenetlemeli...
evirici kullanan asenkron motora ilişkin rad/s olarak hız grafiği ve tork grafiği verilmektedir. Şekil 5.11 a)’da üç seviyeli滤siz kapasitör kenetlemeli evirici için asenkron motor rotor akımları verilmiştir.

![Hız Grafiği](image1.png)

a)

![Tork Grafiği](image2.png)

b)
Şekil 5.11. SPWM denetimli üç seviyeli filtresiz kapasitör kenetlemeli evirici kullanılan asenkron motor sürücünün a) rotor akımı b) stator akımı c) açısal hız d) tork dalga şekilleri.

Şekil 5.11 b)’de üç seviyeli filtresiz kapasitör kenetlemeli evirici için asenkron motor stator akımları dalga şekilleri verilmştir. Şekil 5.11 c) ve d)’de sırasıyla üç seviyeli filtresiz kapasitör kenetlemeli evirici için asenkron motor hızı ve tork grafiği gösterilmektedir. Çizelge 5.7 ve 5.8’de SPWM yöntemi ile anahtarlanan filtreli ve filtresiz üç faz üç seviyeli kapasitör kenetlemeli eviriciye ilişkin farklı modülasyon indeksine göre elde edilen THD değerleri verilmştir. Elde edilen sonuçlara göre filtreli eviricide modülasyon indeksi değeri arttıkça genel olarak stator akım harmonikleri...
azalmaktadır. Eviricinin çıkış faz gerilimi ile fazlar arası çıkış gerilim harmonikleri modülsyon indeksi arttıkça benzer olarak azalmıştır. Üç seviyeli filtresiz kapasitör kenetlemeli eviricide ise eviricinin çıkış faz ve fazlar arası gerilim harmonikleri modülsyon indeksi arttıkça azalma göstermiştir. Üç seviyeli filtresiz kapasitör kenetlemeli eviricinin stator akım harmonikleri ise modülsyon indeksi arttıkça bir artış göstermiştir.

Çizelge 5.7. Filtreli üç faz üç seviyeli kapasitör kenetlemeli eviricinin THD değerleri.

<table>
<thead>
<tr>
<th>Değerler</th>
<th>THD %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td>Is</td>
<td>0.29</td>
</tr>
<tr>
<td>Vab</td>
<td>0.14</td>
</tr>
<tr>
<td>Van</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Çizelge 5.8. Filtresiz üç faz üç seviyeli kapasitör kenetlemeli eviricinin THD değerleri.

<table>
<thead>
<tr>
<th>Değerler</th>
<th>THD %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td>Is</td>
<td>40.96</td>
</tr>
<tr>
<td>Vab</td>
<td>34.81</td>
</tr>
<tr>
<td>Van</td>
<td>51.56</td>
</tr>
</tbody>
</table>

5.2.4. Üç Seviyeli Kaskat Evirici İçin Matlab/Simulink Benzetimi

Şekil 5.12 a)’da üç seviyeli KE eviricinin çıkış faz gerilimi verilmiştir. Şekil 5.12 b)’de üç seviyeli KE eviricinin fazlar arası geriliminin dalga şekli görülmektedir. Şekil 5.12 c), d)’de ise üç seviyeli DKE filtreli eviricinin çıkış faz ve fazlar arası gerilimi dalga şekli görülmektedir. Dalga şekillerinden fazlar arası çıkış geriliminin üç seviyeli olduğu görülmektedir.
Şekil 5.12. SPWM denetimli üç seviyeli filtreli kaskat eviriciye ilişkin $M_1=1$, $f_{sw}=4$ kHz alınması durumunda a) faz gerilimi b) fazlar arası gerilim c) filtre edilmiş faz gerilimi d) filtre edilmiş fazlar arası gerilim.

Şekil 5.13 a)’da üç seviyeli filtreli kaskat evirici kullanılan asenkron motora ilişkin rotor akımları görülmektedir. Şekil 5.13 b)’de üç seviyeli filtreli kaskat evirici kullanılan asenkron motora ilişkin stator akımları dalga şekli görülmektedir. İki seviyeli eviriciye ve üç seviyeli kapasitör kenetlemeli eviriciye göre stator ve rotor akımlarının daha düzgün olduğu gözlenmektedir. Şekil 5.13 c), d)’de ise sırasıyla üç seviyeli filtreli kaskat evirici kullanılan asenkron motora ilişkin rad/s olarak hız grafiği ve tork grafiği verilmektedir.
Şekil 5.13. SPWM denetimli üç seviyeli filtreli kaskat evirici kullanılan asenkron motor sürücünün a) rotor akımı b) stator akımı c) açısal hız d) tork dalga şekilleri.
Şekil 5.14. SPWM denetimli üç seviyeli filtresiz kaskat evirici kullanılan asenkron motor sürücünün a) rotor akımı b) stator akımı c) açısal hız d) tork dalga şekilleri.

Şekil 5.14 a)’da üç seviyeli filtresiz KE evirici için asenkron motor stator akımları dalga şekilleri verilmiştir. Şekil 5.14 b)’de ise üç seviyeli filtresiz KE evirici için asenkron motor stator akımları dalga şekilleri verilmiştir. Çizelge 5.9 ve 5.10’da SPWM yöntemi ile denetlenen filtreli ve filtresiz üç faz üç seviyeli KE eviriciye ilişkin farklı modülasyon indeksine göre elde edilen THD değerleri verilmiştir. Elde edilen sonuçlara göre filtreli ve filtresiz eviricide modülasyon indeksi değeri arttıkça stator akım harmonikleri azalma göstermektedir.

Çizelge 5.9. Filtreli üç faz üç seviyeli kaskat eviricinin THD değerleri.

<table>
<thead>
<tr>
<th>Değerler</th>
<th>THD %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma</td>
<td>1</td>
</tr>
<tr>
<td>Is</td>
<td>0.28</td>
</tr>
<tr>
<td>Vab</td>
<td>0.13</td>
</tr>
<tr>
<td>Van</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Çizelge 5.10. Filtresiz üç faz üç seviyeli kaskat eviricinin THD değerleri.

<table>
<thead>
<tr>
<th>Değerler</th>
<th>THD %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma</td>
<td>1</td>
</tr>
<tr>
<td>Is</td>
<td>2.19</td>
</tr>
<tr>
<td>Vab</td>
<td>35.31</td>
</tr>
<tr>
<td>Van</td>
<td>52.28</td>
</tr>
</tbody>
</table>
5.2.5. Beş Seviyeli Diyot Kenetlemeli Evirici İçin Matlab/Simulink Benzetimi

Şekil 5.15 a)'da beş seviyeli DKE eviricinin çıkış faz gerilimi verilmiştir. Şekil 5.15 b)'de beş seviyeli DKE eviricinin fazlar arası geriliminin dalgalı şekli görülmektedir. Şekil 5.15 c), d)'de ise beş seviyeli DKE filtreli eviricinin çıkış faz ve fazlar arası gerilimi dalgalı şekli görülmektedir. Görüldüğü gibi fazlar arası çıkış gerilimi beş seviyelidir.
Şekil 5.15. SPWM denetimli beş seviyeli filtreli diyon kenetlemeli eviriciye ilişkin $M_i=1, f_{sw}=4$ kHz alınması durumunda a) faz gerilimi b) fazlar arası gerilim c) filtre edilmiş faz gerilimi d) filtre edilmiş fazlar arası gerilim.
Şekil 5.16 a)’da kullanılan asenkron motora ilişkin rotor akımları görülmektedir. Şekil 5.16 b)’de beş seviyeli diyot kenetlemeli evirici kullanılan asenkron motora ilişkin stator akımları dalga şekli görülmektedir. Üç seviyeli diyot kenetlemeli eviriciye nazaran stator ve rotor akımlarının daha düzgün olduğu gözlenmektedir. Şekil 5.16 c), d)’de ise sırasıyla beş seviyeli diyot kenetlemeli evirici asenkron motora ilişkin rad/s olarak hız grafiği ve tork grafiği verilmektedir. Şekil 5.17 a)’da beş seviyelifiltresiz KKE kullanılan asenkron motor için rotor akımları verilmiştir.
Şekil 5.16. SPWM denetimli beş seviyeli filterli diyot kenetlemeli evirici kullanılan asenkron motor sürücünün a) rotor akımı b) stator akımı c) açısal hız d) tork dalga şekilleri.
Şekil 5.17. SPWM denetimli beş seviyeli filtresiz diyot kenetlemeli evirici kullanılan asenkron motor sürücünün a) rotor akımı b) stator akımı c) açısal hız d) tork dalga şekilleri.
Şekil 5.17 b’de beş seviyeli filtrsiz diyot kenetlemeli evirici kullanan asenkron motor stator akımları dağa şekilleri verilmiştir. Şekil 5.17 c) ve d’de sırasıyla beş seviyeli filtrsiz diyot kenetlemeli evirici kullanan asenkron motor hızı ve tork grafiği gösterilmektedir. Çizelge 5.11 ve 5.12’de SPWM yöntemi ile denetленen filtrsel ve filtrsiz üç faz beş seviyeli diyot kenetlemeli eviriciye ilişkin farklı modülasyon indeksine göre elde edilen THD değerleri verilmiştir. Elde edilen sonuçlara göre filtrsel ve filtrsiz eviricide modülasyon indeksi değeri arttıkça asenkron motorun stator akım harmoniklerinde genel olarak azalma olmaktadır. Filtresiz beş seviyeli DKE eviricide ise modülasyon indeksi değeri arttıkça stator akım harmoniklerinde dalgalanma olduğu gözlenmiştir.

Çizelge 5.11. Filtreli üç faz beş seviyeli diyot kenetlemeli eviricinin THD değerleri.

<table>
<thead>
<tr>
<th>Değerler</th>
<th>1</th>
<th>0.9</th>
<th>0.8</th>
<th>0.7</th>
<th>0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma</td>
<td>0.55</td>
<td>0.52</td>
<td>0.69</td>
<td>0.74</td>
<td>1.38</td>
</tr>
<tr>
<td>Is</td>
<td>0.17</td>
<td>0.18</td>
<td>0.24</td>
<td>0.23</td>
<td>0.36</td>
</tr>
<tr>
<td>Vab</td>
<td>0.18</td>
<td>0.18</td>
<td>0.25</td>
<td>0.22</td>
<td>0.38</td>
</tr>
<tr>
<td>Van</td>
<td>0.55</td>
<td>0.52</td>
<td>0.69</td>
<td>0.74</td>
<td>1.38</td>
</tr>
</tbody>
</table>

Çizelge 5.12. Filtresiz üç faz beş seviyeli diyot kenetlemeli eviricinin THD değerleri.

<table>
<thead>
<tr>
<th>Değerler</th>
<th>1</th>
<th>0.9</th>
<th>0.8</th>
<th>0.7</th>
<th>0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma</td>
<td>0.96</td>
<td>0.87</td>
<td>1.18</td>
<td>1.19</td>
<td>0.93</td>
</tr>
<tr>
<td>Is</td>
<td>17.07</td>
<td>17.39</td>
<td>21.75</td>
<td>24.35</td>
<td>25.65</td>
</tr>
<tr>
<td>Vab1</td>
<td>36.95</td>
<td>33.50</td>
<td>38.50</td>
<td>42.04</td>
<td>44.75</td>
</tr>
<tr>
<td>Van1</td>
<td>0.18</td>
<td>0.18</td>
<td>0.25</td>
<td>0.22</td>
<td>0.38</td>
</tr>
</tbody>
</table>

5.2.6. Beş Seviyeli Kapasitör Kenetlemeli Evirici İçin Matlab/Simulink Benzetimi

Şekil 5.18. SPWM denetimli beş seviyeli filtreli kapasitör kenetlemeli eviriciye ilişkin $M_i=1$, $f_{sw}=4$ kHz alınması durumunda a) faz gerilimi b) fazlar arası gerilim c) filtre edilmiş faz gerilimi d) filtre edilmiş fazlar arası gerilim.
Şekil 5.19. SPWM denetimli beş seviyeli filtreli kapasitör kenetlemeli evirici kullanılan asenkron motor sürücünün a) rotor akımı b) stator akımı c) açısal hız d) tork dalga şekilleri.

Şekil 5.18 a)’da beş seviyeli KKE’ nin çıkış faz gerilimi verilmiştir. Şekil 5.18 b)’de beş seviyeli KKE’ nin fazlar arası geriliminin dalga şekli görülmektedir. Şekil 5.18 c), d)’de ise beş seviyeli filtreli KKE’nin çıkış faz ve fazlar arası gerilimi dalga şekli görülmektedir. Şekil 5.19 a)’da beş seviyeli filtreli KKE kullanılan asenkron motora ilişkin rotor akımları görülmektedir. Şekil 5.19 b)’de beş seviyeli filtreli KKE kullanılan asenkron motora ilişkin stator akımları dalga şekli görülmektedir. Şekil 5.19 c), d)’de ise sırasıyla beş seviyeli filtreli KKE kullanılan asenkron motora ilişkin rad/s olarak hız grafiği ve tork grafiği verilmektedir. Şekil 5.20 a)’da beş seviyeli filtresiz KKE kullanılan asenkron motor için rotor akımları verilmiştir.
Şekil 5.20. SPWM denetimli beş seviyeli filtresiz kapasitör kenetlemeli evirici kullanılan asenron motor sürücünün a) rotor akımı b) stator akımı c) açısal hız d) tork dalga şekilleri.

Şekil 5.20 b)’de beş seviyeli filtresiz KKE için asenron motor stator akımları dalga şekilleri verilmiştir. Şekil 5.20 c) ve d)’de sırasıyla beş seviyeli filtresiz KKE için asenron motor hızı ve tork grafiği gösterilmektedir. Çizelge 5.13 ve 5.14’de SPWM yöntemi ile anahtarlannan filtreli ve filtresiz üç faz beş seviyeli KKE’ye ilişkin farklı modülasyon indeksine göre elde edilen THD değerleri verilmiştir. Elde edilen sonuçlara göre filtreli eviricide modülasyon indeksi değeri arttıkça genel olarak stator akım harmonikleri azalmaktadır. Filtresiz beş seviyeli KKE’de ise modülasyon indeksi değeri arttıkça stator akım harmonikleri artış ve azalışlar şeklinde bir dalgalanma göstermektedir.

Çizelge 5.13. Filtreli üç faz beş seviyeli kapasitör kenetlemeli evirinin THD değerleri.

<table>
<thead>
<tr>
<th>Değerler</th>
<th>THD %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma</td>
<td>1</td>
</tr>
<tr>
<td>Is</td>
<td>0.14</td>
</tr>
<tr>
<td>Vab</td>
<td>0.08</td>
</tr>
<tr>
<td>Van</td>
<td>0.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Değerler</th>
<th>THD %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma</td>
<td>1</td>
</tr>
<tr>
<td>Is</td>
<td>0.96</td>
</tr>
<tr>
<td>Vab</td>
<td>17.07</td>
</tr>
<tr>
<td>Van</td>
<td>26.94</td>
</tr>
</tbody>
</table>
5.2.7. Beş Seviyeli Kaskat Evirici İçin Matlab/Simulink Benzetimi

Şekil 5.21 a)’da beş seviyeli kaskat eviricinin çıkış faz gerilimi verilmiştir. Şekil 5.21 b)’de beş seviyeli kaskat eviricinin fazlar arası geriliminin dalga şekli görülmektedir. Şekil 5.21 c), d)’de ise beş seviyeli KE filtreli eviricinin çıkış faz ve fazlar arası gerilimi dalga şekli görülmektedir. Görüldüğü gibi fazlar arası çıkış gerilimi beş seviyelidir.
Şekil 5.21. SPWM denetimli beş seviyeli filtreli kaskat eviriciye ilişkin $M_i=1$, $f_{sw}=4$ kHz alınması durumunda a) faz gerilimi b) fazlar arası gerilim c) filtre edilmiş faz gerilimi d) filtre edilmiş fazlar arası gerilim.

Şekil 5.22 a)’da beş seviyeli filtreli kaskat evirici kullanılan asenkor motora ilişkin rotor akımları görülmektedir. Şekil 5.22 b)’de beş seviyeli filtreli kaskat evirici kullanılan asenkor motora ilişkin stator akımları dalga şekli görülmektedir. Üç seviyeli eviriciye nazaran stator ve rotor akımlarının daha düzgün olduğu gözlenmektedir. Şekil 5.22 c), d)’de ise sırasıyla beş seviyeli filtreli kaskat evirici kullanılan asenkor motora ilişkin rad/s olarak hız grafiği ve tork grafiği verilmektedir.
Şekil 5.22. SPWM denetimli beş seviyeli filtreli kaskat evirici kullanılan asenkron motor sürücünün a) rotor akımı b) stator akımı c) açısal hız d) tork dalga şekilleri.
Şekil 5.23. SPWM denetimli beş seviyeli filtresiz kaskat evirici asenkron motor sürücünün a) rotor akımı b) stator akımı c) açısal hız d) tork dalga şekilleri.

Şekil 5.23 b)’de beş seviyeli filtresiz kaskat evirici kullanan asenkron motor stator akımları dalga şekilleri verilmiştir. Şekil 5.23 c) ve d)’de sırasıyla beş seviyeli filtresiz kaskat evirici kullanan asenkron motor hızı ve tork grafiği gösterilmektedir. Çizelge 5.15 ve 5.16’da SPWM yöntemi ile denetlenen filtreli ve filtresiz üç faz beş seviyeli kaskat eviriciye ilişkin farklı modülsyon indeksine göre elde edilen THD değerleri verilmiştir. Elde edilen sonuçlara göre beş seviyeli filtreli ve filtresiz kaskat eviricide modülsyon indeksi değeri arttıkça stator akım harmonikleri benzer şekilde azalmaktadır. Beş seviyeli filtresiz KE’de ise modülsyon indeksi arttıkça stator akım harmonikleri değerleri artış ve azalışlar göstermektedir. Burada stator akım harmoniklerinde bir dalgalanma gözlenmektedir.
Çizelge 5.15. Filtreli üç faz beş seviyeli kaskat eviricinin THD değerleri.

<table>
<thead>
<tr>
<th>Değerler</th>
<th>THD %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma</td>
<td>1</td>
</tr>
<tr>
<td>Is</td>
<td>0.22</td>
</tr>
<tr>
<td>Vab</td>
<td>0.05</td>
</tr>
<tr>
<td>Van</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Çizelge 5.16. Filtresiz üç faz beş seviyeli kaskat eviricinin THD değerleri.

<table>
<thead>
<tr>
<th>Değerler</th>
<th>THD %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma</td>
<td>1</td>
</tr>
<tr>
<td>Is</td>
<td>0.96</td>
</tr>
<tr>
<td>Vab1</td>
<td>17.07</td>
</tr>
<tr>
<td>Van1</td>
<td>26.95</td>
</tr>
</tbody>
</table>
6. SONUÇLAR VE ÖNERİLER

asenkron motor sürücünün rotor akımı, stator akımı, açısal hız ve tork dalga şekilleri gösterilmiştir. Son olarak, MATLAB/FFT analizi kullanılarak, farklı modülasyon indeksine göre eviriciye ilişkin elde edilen THD değerleri çizelge halinde sunulmuştur. Yapılan benzetim sonuçlarında, elde edilen gerilim ve harmonik dalga şekillerine göre seviye sayısı düşük olmasından dolayı harmonik değerlerin yüksek, gerilim dengesizliğinin ise olmadığı görülümdedir. Eviricide seviye sayısı arttıkça ortaya çıkan gerilim dengesizliği eviricinin çıkış dalga şekillerinin bozulmasına sebep olmaktadır. Ayrıca modülasyon indeksi değeri arttırıldığında akım ve gerilim THD değerlerinde azalma olduğu ve daha iyi sonuçlar elde edildiği görülüştür.

KAYNAKLAR

http://www.nap.edu/read/12091/chapter/13

Research, c. 30, sayı 1, ss. 112-127, 2009.

ÖZGEÇMİŞ

KİSİSEL BİLGİLER

Adı Soyadı : Melek DİCLE

Doğum Tarihi ve Yeri : 08.09.1976

Yabancı Dili : İngilizce

E-posta : melek_yildir@hotmail.com

ÖĞRENİM DURUMU

<table>
<thead>
<tr>
<th>Derece</th>
<th>Alan</th>
<th>Okul/Üniversite</th>
<th>Mezuniyet Yılı</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y. Lisans</td>
<td>Elektrik Elektronik Mühendisliği</td>
<td>Gazi Üniversitesi</td>
<td>2004</td>
</tr>
<tr>
<td>Y. Lisans</td>
<td>Elektrik Elektronik Bilgisayar Mühendisliği</td>
<td>Düzce Üniversitesi</td>
<td>2019</td>
</tr>
<tr>
<td>Lisans</td>
<td>Elektronik ve Bilgisayar Eğitimi Elektronik Öğretmenliği</td>
<td>Sakarya Üniversitesi</td>
<td>1999</td>
</tr>
<tr>
<td>Lise</td>
<td>Fen Bilimleri</td>
<td>Düzce Lisesi</td>
<td>1993</td>
</tr>
</tbody>
</table>

YAYINLAR
