## POTMITPIAL APPLICATION OF VORTTHX SEPARATOR

by
OKTAY YAVUZ
B.Sc. in Civil Engineering,1972

Thesis Superviser
Prof. Rascoe F. Ward

Bogazici University Library
Submitted to the faculty of the Graduate School
in Partial Fulfilment of
the Requirements for the Degree of Master of Science
in
Civil Engineering

Boçaziçi University
Istanbul_TURKFY
June, 1975
 COWITTHE HAVE DBAD AND APPROVE THIS THESIS

POTEMTIAI APPLICATION OF VORTEX SEPARATOR
by
OKTAY YAVUZ


## TABLEOTCONTENTS

ACKNOWLEIGEDUNTS ..... i
ABSTRACT ..... ii
NOTATIOH ..... iii

1. IITROUUCTION ..... I
2. LITERATURE SURVEY ..... 7
2.1. Operational Theory ..... 7
2.2. Previous Hork ..... 8
3. EXPERIJHJTAL PROCRUURE ..... 22
3.1. Experimental Set_Up ..... 22
3.2. Procedure ..... 27
4. EVALUATION OF EXPERIITITAL DATA ..... 29
5. DISCUSSION ..... 39
6. CONCLUSION ..... 45
7. RECOHEHUATION FOR FUTURE WORK ..... 47BIBLIOGRAPIIYAPPENDIXES : Photograghs, experimental data

## ACKNOWLEDGEMENT

I feel grateful to all Givil Engineering Faculty who were guiding me while writing my thesir, especially my advisor. He Was the one to choose of the references that I have used for my thesis. He read all the draft and G geve his invaluable advice in every single detail that I think was very useful as well as helpful.

I also thank Jamil Dalkak and Hasan Alpan for all the help they: have offered end thanks Miss Vered Farhi for having the type the draft.

## ABSTRACT

It has been proposed that the type of separator be used as a primary or intermediate unit in wastewater treatment pró cesses.

Following positive laboratory studies using synthetic material, the vortex type separator was tested using domestic sewage. Twenty experiments were conducted in eleven untreated sewage was used, in the remaining nine chemicals were added.

The parameters used to determine the efficiency of the unit were $\mathrm{BOD}_{5}$, total solids, $\operatorname{suspended~solids~and~settleable~}$ solids.

Using flows lower than the ones recommended in the laboratory, orifice one ( 1.27 cm ) gave best results. The efficiency for the removal of the two most important parameters, namely $B O D_{5}$, and suspended solids, were $11 \%$ and $30 \%$ respectively for untreated sewage discharge, where as for sewage treated with coagulants and polyelectrolyte it was $10 \%$ and $36 \%$.

TOTATION

Symbol
?inlet
Qorifice
Qoutlet
$B C D$ inlet
BOL orjfice
$\mathrm{BOL}_{\text {outlet }}$
S.S.inlet
S.S.orifice
S.S.outlet
T.S.inlet
P.S. orifice
T.S.outlet

Set.S. inlet
Set.S. orifice
Set.S. outlet e

## Keaning

Hischarges through, inlet channel
Discharges through orifice
Discharges through outlet channel
${ }^{D O D_{5}}$ at the inlet channel
$\mathrm{BOD}_{5}$ at the orifice
$\mathrm{BOH}_{5}$ at the outlet chamnel
suspended solids at the inlet channel
suspended solids at the orifice
suspended solids at the outlet channel
total solids at the inlet chamel
total solids at the orifice
total solids at the outlet chamnel
settleable solids at the outlet channel
settleable solids at the orifice
settleable solids at the outlet channel
efficiency

## Dimensions

$\mathrm{LT}^{-3}$
$\mathrm{LT}^{-3}$
$\mathrm{LT}^{-3}$
$\mathrm{MH}^{-3}$
$\mathrm{BL}^{-3}$
$\mathrm{HL}^{-3}$
$\mathrm{ML}^{-3}$
$1 \mathrm{I}^{-3}$
$1 L^{-3}$
$\mathrm{HL}^{-3}$
$\mathrm{WL}^{-3}$
$\mathrm{HL}^{-3}$

1. ITTRODUCTIOM

The sedimentation process has long been used in vater and wastewater treatment. Sedimentation is the separatinn, by gravita tional settling of suspended particles that have a specific gravity greater than that of water. The process, one of the most widely used operation in wastesater treatnent, is usedito remove grit, inorganic material with a specific gravity of 2.65 and a diameter of $2 \times 10^{-2} \mathrm{~cm}$, particulate matter. and chemical floc. It can also be used for the concentration of solids for the sludge thickening. The primary purpose of the sedimentation process is the prouced aclarified effluent and a sludge that can be aesily treated. The primary purpose of sludge is to concentrate the slunge and rediuce the quality that has to be treated.

Serimentation processes have some importance among other treatment unite (See Fis. 1). Efficiencies of sevage treatment operations and processes as percent removals are depicted in Table 1.


FIGURE I Typical sewage treatment plant

Tablel
Removal Erficiencies of Wastewater
Treatment Plants

| Ireatment Operation or Process | BOD $_{5}$ | Suspended <br> Solids |
| :--- | :---: | :---: |
| Fine Screening |  |  |
| Plain Sedimentation |  |  |
| Chernical Precipitation |  |  |
| Tricklins filter preceeded <br> and followed by plain <br> sedimentation <br> nctivated sludse treatment <br> preceeded and followed by <br> plain sedimentation | $5-10$ | $25-40$ |

(Fair and Geyer,1971)

The general form of an ideal sedimentation basin is shown in Fig. 2. Water enters the sedimentation basin at the left and it is assumed that it spreads out uniformly over a verticle plane $\mathrm{A} A$ in such a way that the concentration of suspended particles of all sizes and densities is constant throughout the incremental volune of the tank of length ( $L$ ). The incremental volume of water moves from inlet to outlet through the settling zone at a uniform velocity "v" and arrives at a position. "A'-A' " without a change in shape.


## THESIS

BOĞAZIÇi UNIVERSITY

This velocity could be calculated by dividing the flow rate "?" by the cross-sectional area of the basin "h.w." where "h" is the depth and "w" is the width. Then the increased amounts of water will flow through the outlet zone carrying along all the particles that did not settle. Those particles which strike the bottom are considered renoved. Then the path "V" representing the maximum elevation at which particles of the smallest settling velocity " $v$ " and experiencing $100 \%$ removal may be found. That is to say, if a particle with a settling velocity "v" enters the basin at height "h" above the bottom, will travel along the path "V" and will be removed near the outlet zone.

Another form of sedimentation basin is the vortex type of sedimentation basin. The advantage in the latter is that the de tention time is short ( $7-23 \mathrm{sec}$ ). In the primary sedimentation basin, detention time varies with the percent removal desired as ghown in Fig. 3.

The vortex type of serimentation can potentially treat water, wastewater, storm sewers, and industrial waste efficiently. It. separates the solid phase from the liquia at the lower unit cost than other methods employed.

The purpose of the experiment is to find the efficiency of the vortex separator in the field and to see if it can be used in place of primary sedimentation tanks.


Figure 3
of Removal of Solids and $\mathrm{BOD}_{5}$. versus time in $a$
sedimentation Basin (Fair and Geyer 1971)

## 2. LITERRATURE SURVEY

### 2.1. Operational Theory

The vortex type sedimentation tank secerates solids from liquids. The vortex type separator concentrates the solid phase in a dilute slurr, by accelerating the velocity of flow of the solid particles rather than by reducins their horizontal velocity. The mathematical theory for vortex motion and for the vortex separator was developed by Valantine (1965) and Veliogiu (1972) to confirm laboratory observations that particles in a moving fluid, subject to a non-linear flow pattern, tend to rotate, and that this ron tational motion causes the particles to move into the stream lines of the highest velocity. The factors that determine the direction and rate of movement of a particle in a fluid are the particle dimensions effective diameter, shape, drag coefficient, weicht, fluid viscosity, unit weight of the fluid, velocity of the fluid, and its flow pattern.

In this device, an orifice is used to senerate a relatively high-velocity rotational field of flow. Particles of sufficient size are trapped in the nonminear flow field of the vortex induced by the flow from the orifice, causing them to rotate and accelerate as they move into the higher velocity flow. Particles thus seperated from the effluent, are concentrated in a significantly smaller volume of liquici and flow through the orifice. A larger volume of the fluid.
flows throush another outlet with a much lower velocity.

Chemical and physical techniques cause particle nucleation to generate particles of an appropriate size for trapping in the vortex flow field of the orifice. The various processes used to create larger particles are those now in common use industrial processes and in water and wastewater treatment. It is the combination of particle growth and particle concontration in a vorter flow-field to obtain efficient, low cost sclid_liquid separation that constitutes the unique process, (Curi et.al.,1973).

### 2.2. Previous Work Done

Smisson (1964) used the first circular vortex device in the city OP Bristol, England, to increase the efficiency of existing regulator facilities for the purpose of minimizing overilow quan tities and maximizing the quality of wastes discharged into rece_ iving waters. This circular chamber concept sas used to obtain adequate weir length for overflow discharge without the expense of constructing a long sidespill wein for this purpose. At Eristol Laboratory, studies were carried out on this confisuration to determine its hydranlic characteristics and performance, prior to construction of the facilities in 1964. Smisson (1967) published a report about the research work at Bristol and the actual details of vortex chamber installed at Thite Ladies Road. The White Ladies Road device as shown in Fis. 4, provided an 18 ft diameter chamber, an overflow weir , a scum ring for retention of the floating material

trigure (4)
WIITE LADIES ROAD - VORTEX REGULATOR (Field, et.al., 1972)
mounted on the central colun, and a sewer outlet for the concen trated solids. Flow entered the circular chamber tangentially at the floor level. The foul sewer outlet was located on the floor of the charaber, near the central colum, at a point where it would collect the solids deposited on the floor of the chamber. The supernatant clarified liquid overflowed the weir and was discharged into receiving waters (walk up 1972). Tests done by Smisson were first cam rijed out without any deflectors in the chamber. Galsonite with specific gravity of 1.06 and particle sizes between one and three millimeters was used. Very few galsonite particles settled to the bottom to be drawn off through the foul sewer outlet, the rest remained in suspension in the rotating water mass for several turns before overflowing. After installing a flow deflector into the chamber adjacent to the inlet, the flow conditions changed, so that the water entering the chamber from the inlet pipe was slowed down and diffused with very little turbulance. When the galsonite particles entered the chamber, they spread over the larger cross section of the chamber and settled rapidly. Particles vere entrained along the bottom around the chamber and were con centrated by two secondary vortices located under the lip of the weir approxinately $200^{\circ}$ and $290^{\circ}$ from the inlet point. Foul sewer outlets at each of these positions didnot draw off all the gilsonite: the greater part remained in deposits on the chamber floor, away from the central shaft. Volumetric measurements of the total galsonite recovers from both the foul outlet and the floor deposit, for three

PAGE 11
tests yiclded the following results. (Walk up, 1972).

Table 2

| Storm Discharge | Galsonite Romoval efficiency |
| :---: | :---: |
| 50 cis |  |
| $100 "$ | $97 \%$ |
| $162 "$ | $87 \%$ |

Smisson (1967) found that larse diameter weirs, with horizontal undersides but with no deflector walle, removed small solids better than that provided by smaller diameter weir having a sloping underside and a deflector wall. Smisson (1967) also suggested that a smaller diameter storm water down shaft would improve efficiency.

After 1967, Smisson kept on working with Sullivan, Conn, and Coombes on this device and developed its design criteria in 1971. From the work of Smisson, a swirl concentrator was developed which offers a high degree of performance in reducing the amount of settle_ able solids in combined sewer overflows. This new type of vortex device was called a swirl concentrator. Some tests were conducted on the device by American Public Horks Association APWA in the U.S.A. (See Fig. 5). The APWA tests, using a swirl concentrator, showed that it was possible to remove significant anounts of settleable


FIGURE 5
ISOMEMRIC VIEN OR SUIRL CONCHTMATOR (Field et.al., 1972)
and floatable solids from combined sewer overflows.

This device has the advantege of low capital cost because of its simple structure. The absence of primary mechanical parts should also reduce maintenance problems. The motion is automatically induced by the inflowing combined sewage so that operating problems normal to dynamic regulators, such as clogging, would be very in frequent.

The swirl consentrator has a circular channel in which rotary motion of the sewage is induced by the kinetic energy of the sewage entering the chamber. Flow is deflected and discharged, through an orifice called the foul sewer outlet. This orifice is located near the center of the chamber. The rotary motion causes the sewage to follow a long spiral path through the circular-chamber. A flow deflector prevents the flow in the chamber from merging with inlet flow. A free surface vortex was also eliminated by this deflector. Some rotational movement in the form of a gentle swirl remains, so that water coming from the inlet pipe is slowed down and diffused with very little turbulence. The particles entering the basin spread over the full cross section of the channel and settle rapidly. Solids are entrapped along the bottom and around the chamber, then they are concentrated at the foul sewer outlet.

The study by American Public Works Association (APWA) in 1971-72 showed that the swirl concentrator was very efficient in separating both grit and settleable solids for the middle $0,2 \mathrm{~mm}$ and
larger grain sizes ranges. By weight, these fractions represent about two_thirds of the respective materials in combined sewage. Separation of smaller grain sizes was less efficient.

A different type of vortex seperator for the removal of solids was constructed and tested at the Hydraulic Laboratory of the State Water Works, a Directorate of the Ninistry of Energy and Natural Resources in Ankara by Akmandor (1972). The unit at the Ankara laboratory was designed for removal of heavy particles from water, such as sand and silt. The vortex seperator which was used by Akmandor is very similar to the one that is used in this study. Akmandor used five different types of materials in his work. These materials had a $\mathrm{D}_{50}$ (particle size correspondins to particles $50 \%$ finer) which ranged from 1.72 mm to 3.20 mm , and their specific gravities ranged from $1.047 \mathrm{gm} / \mathrm{cm}^{3}$ to $1.425 \mathrm{gm} / \mathrm{cm}^{3}$.

A vortex-assisted oil removal unit was reported in the American literature, by Walkup, et.al. (1972). This unit, however, used the surface phenomena of a vortex to draw an oil film to appoint over the vortex where it could be drawn off in an upward direction by an airlift. The vortex-assisted nozzle system is shown in Fig. 6. In this figure the main conponents are identified. As an additional aid, operational capabilities such as air flow and water flow are also given in Fis. 6.


Figure 6
VORTEK SEPARATOR with AIRLIFT for OIL REMOVAL
(Walk up et.al. 1972)

Flow controlled was accomplished by adjusting the gate valve on thecaischarge side of the pump. The water level was controlled by pumping water into or out of the basin. The lower part of vortex generator was moved down orwup manualy to change the quantity of water entering the vortex from the side, thus controlling the vortex from the side, thus controlling the vortex size.P.C.Walkup, J.D.Smith, andE.R.Siminson have worked on this marine oil spill recovery by vortex-assisted airlift in I972.(Walkup I972).

PAGE 16

Another vortex type sclidmliquid seperator study was carried out in the laboratories of Boçaziçi University in Istanbul, Turkey, In 1972 by Velioğlu. This work was done to check whether a vortex type sedimentation unit could be used in water and wastevater treat_ met processes. A measure of applicability was sought through finding the ratio of the amount of removed particles with the amount initially present. A design formula was developed for a vortex type sedimen. tation tank. The design of this separator is given in part 3.1 .

Velioglu (1972), in the laboratory evaluated the vortex separator using five different materials having a wide of unit weight and particle diameter. The removal efficiency in the laboratory at different inlet flow-rates, orifice discharge rates, orifice diameters, and depths of flow in the tank was measured. Table 3 is a summary of the variables and the solid liquid separation efficiencies obtained by Velio: 1 (1972).

Observations of Veliosfu (1972) showed that the vortex type sedimentation tank was efficient for medium discharges of 4.59.0 It/sec of total discharges. As the discharge was increased, the strength of vortex was more due to increased, velocity, and thus a highly turbulent flow was generated, resulting in a decrease in effi-: ciency on the other hand, to prevent the settling of particles in the inlet channel necessitates a minimum discharge, but this minimum might cause some difficulties in the generation of the vortex, especially for small orifice sizes. The particles used were of various shapes. Veliosslu did not take into consideration the

Table 3

Sumary of Laboratory for Vortex Separator
(Veliogrv, 1972)

| VARIAELE | UNIT | HINIUULi | HRXImUn |
| :---: | :---: | :---: | :---: |
| Specıfic gravity of particle | $g / \mathrm{cm}^{3}$ | 0.45 | $\therefore \quad \because 1.12$ |
| $D_{50} \text { media particle }$ | nm | 0.80 | 3.40 |
| Orifice size | cm | 1.27 | 5.08 |
| Inlet flow, Q | 1t/sec | 4.46 | 12.73 |
| Efficiency | - | 30.00 | 100.00 |
| Orifice discharge, $0_{0}$ | I.t/sec | 0.22 | 1.68 |
| Ratio of $Q_{0}$ to $Q$ | - | 0.03 | 0.35 |
| Detention time | sec | 7 | 28 |

difference in shapes, although the particle size was thought to be an important parameter in sedimentation theory. Due to short detention times ( 7.28 sec.) in the trial runs, headloss between the inflow and the outflow was neglected.

Velioglu noted that efficiencies ranged from $32 \%$ to $100 \%$ and that the median efficiency was $39 \%$. These results were the subject of multinvariate analysisis and an appropriate relation ship between the variables and the removal efficiency was obtained. This relationship is used as a design guide in prototype units.

An inspection of the obtained efficiencies allowed Velioglu to think that the vortex type sedimentation tank could be used as a unit in water and wastewater treatment processes instead of sedimentation tanks.

A study was conducted by the American Public Work Association to determine the efficiency of the swirl concentrator chamber $t_{0}$ perform the functions of a grit separation and removal facility in 1974. Sullivan, Cohn, Ure, Fred Parkinson had worked on the swirl concentrator as a grit separator device. (See Fig. 7).

Grit chambers are designed to remove grit, consisting of sand, gravel, cinders, or other heavy solid materials that have specific gravities greater than the organic solids in wastewater. It is one of the conventional pretreatment unit in sewage or in dustrial wastes treatment plants. The removal of inorganic grit prevents excessive wear on subsequent handling operations such as


A Inlet
B Deflector
C Weir and Weir Plate
D Spoiler
E Floor
F Conical Hopper

FIGURE 7
ISONEIRIC VIEN, SWIRL CONCERTRATOR AS A GRTT SEPARATOR (Sullivan et.al., 1974)
pumping, comminuting and screening of sewage and pumping of sludge. Elimination of inert solids prevents deposition of such material in settling tanks, sludge hoppers, sludge digestion chambers, aeration chambers, pipelines and other locations. (Sullivan, 1974)

The removal of grit material involves separation or classi fication by means of flow ratemcontrol, thus utilizing the difference in settling rates, or buoyancy, between the different specific gravities of the two types of waste solid (organic and inorganic). Design is based on the principle that average sewage solids - organic and inorganic in character - can be held in suspension in a so called self_scouring sewer line at flow velocities over 0.61 m (2 ft) per second. Similarly, grit chamber design is based on the principle that heavier grit will settle at velocities of flow of 0.3 m (1 ft) per second, while lighter organics will be held in suspension under these hydraulic conditions until they reach settling chambers where flow velocities are reduced to rates in the general range is the basic criterion for the separation of solids-fromliquid in clarification or settling chambers.

The application of the swirl concentrator phenomenon for the grit removal is dependent upon flow conditions and internal hydraulic patterns which will separate heavier as well as larger solids particles from lighter and mimiller ones. Then it will allowr the two separated classifcations to be collected and removed at separate points. Sullivan (1974) found out that the swirl concentrator could only be

## used for large materilas.

The swirl concentrator principle involves the development of a flow chamber utilizing circular, long-path kinetic energy to sepa rate the solid particles and let them settle. The settling is achieved by having optirnum hydraulic conditions without the use of mechanical accessories.

## 3. EXPERIRUNTAL PROCEDURE

### 3.1. Experimental Set_Up

The vortex separator was constructed as a circular tank of 2 mm galvanized steel, about 30 cm deep. At the center of the sepa rator there is an orifice from which the solid particles are to pass. (More details can be obtained from Velioğiu's thesis, 1972) In the experiment a series of different orifices were used to evaluate the most efficient orifice dimension for the sewer used.

The wastewater source used to feed the separator was a 40 cm sewer in Levend. The wastewater was diverted into a galvanized pipe which was connected to the main sever. The pipe was supported on a wooden frame. The separator itself was installed on a wooden table. (See Fig. 8) Under the wooden table there was a barrel which was supposed to collect the flow from the orifice. The barrel was not used because of the small quantity of sample. When the sampling period was one hour, grab samples were taken every ten minutes, when the sampling period was half an hour, grab samples were taken every five minutes.

The wastewater was diverted into the galvanized pipe inlet by blocking the sewer outfall. Initial twelve runs, the channel was blocked with stones and soil to divert the flow to the separator. During the initial runs, it was noticed that the soil from the dike was eroded and carried to the separator, thereby increasing the

## SIDE VIEW



TOP VIEW

FIGURE 8
FIELD SET_UP OF VORTHX SEPARATOR
total solids. For the later runs, sand bags were used to reduce the erosion and the solids in the separator. At the end of the galvanized pips there was a transition section from the circular to the rectangular inlet channel of the separator. At that section, the bottom was filled with concrete to supply a smooth transition. To reduce the seepage, the concrete was covered with a very thin layer of tar.

After passing the transition section, the wastewater entered the separator through the inlet and depending on the size of the orifice used, a classified portion of the liquid was discharged through the outlet to the field. According to the theory of the unit, the solid particles and a portion of the liquid flowed through the orifice. (See Fig, 9).

Both polyolectrolyte and alum were fed into a manhole 12 m from the main sewer outlet to give time for mixing and flocculating to take place. The chemicals were fed by a 6 lt . bottle which had two tubes, one for discharging the solution, the other for supplying pressure (See Fig. 10).

Experiments were conducted to check the rate of feeding. It was noticed that the rate differed depending upon whether the bottle was full, half_full or almost empty. The three points were plotted on a sraph (Fig. 11.)

They came out to be on a straight line. For practical reasons the average discharge rate was accepted to be the rate when the bottle was half full.

## Dimensions in mm.



figure 10 FRED BOTPILE


DISGHARGE VERSUS IEPTH BOR FHEI BOTNLE

### 3.2. Procedure

3.2.1. Field Vork:-

After the wastewater discharge was diverted to the vortex separator, three different samples were taken every ten minutes for one hour. Grab samples were taken with a one liter beaker from the inlet channel. The samples may not be representative since some of the solids were carried along the bottom and the wastewater was not well mixed. ITo other alternative for sampling of the inlet vas fourd, Another sample was taken from the orifice by means of a graduated cyclinder. This mas quite a representative sample since all the dism charge was collected in the cyclinder. Using a stop watch and the graduated cyclinder, the rate of flow through the orifice was measured. The third sample was taken from the outlet by means of a graduated container. This sample was also a representative one because in this case, all of the discharce was also collected into the craduated container. The discharge was measured in the same way as the orifice sample. Since there was only one man taking the samples, they were collected in the sequence, inlet, orifices and outlet.

After eleven runs using only untreated wastewater, coagulants were added at the manhole for the rest of the runs. The quantity of coagulant added depended on the flow. Samples were taken either every ten minutes for one hour, when the feeding rate of coapulant was low, or every five minutes for half an hour when the feeding rate was high.

After the grab samples had been collected, composite samples were made combining the individual samples proportional to the flow rate. These three composite samples were used in the lavoratory tests.

### 3.2.2. Laboratory Hork:--

After the composite samples taken from the field were trans fered to the laboratory and throughly mived, the following tests Were conducted.

Solid tests:- Settleable solids, total solids were determined according to the Standard Methods for the exanination of Hater and Wastenater. (Standard Methods)

The susperded solids that vere modified because glass fiber filters were not available. An attempt was made to use the gooch crucibles with asbestos filter, but another problem occured. The asbestos available in Tumey is very fine and in spite of numerous washing, fine particles were lost while filtering the sample. This loss of fine cainsed a loss of weight in the sample plus crucible. In order to overcome this problen, Ho. 40 Whatman filter paper was placed on the bottom of the gooch crucibles and over it an esbestos layer was put. The fine particles blocked the pores of the filter paper. Finally class crucibles were used with a dish of No. 40 Whatman filter paper. Everything else in the test was done according to the Standard Methods.
$\mathrm{BOD}_{5}$ : The $\mathrm{BOH}_{5}$ tests were done according to Azide modification Wrinkler explained in Standard hethods for the water and wastewater.

## 4. EVALUATION OF EXPERTHIHNTAL DATA

In the experiments, three sizes of orifices were used, 1.27 cm (1/2 in), $2.54 \mathrm{~cm}(1 \mathrm{in})$ and $5.08 \mathrm{~cm}(2 \mathrm{in})$. Only one experiment was conducted with the third orifice ( 5.08 cm ). Since the flow was small and the orifice was large, all the sewage flowed out of the orifice. The second orifice ( 2.54 cm ) was used five times in the experiments, and the first orifice ( 1.27 cm ) was used fifteen times in the experiments.

Table 4
Bxperiments Conducted

| ORIPICE |  | No. of Exp. without chemicals | No. of Exp. with chemicals |
| :---: | :---: | :---: | :---: |
| No. | Diameter |  |  |
| 1 | 1.27 cm | 9 | 9 |
| 2 | 2.54 cm | 2 | 3 |
| 3 | 5.08 cm | 1 | - |

The efficiency was defined to be the ratio of the amount of material removed of an item to the total amount of material in the item which can be expressed as:-

$$
e=\frac{A_{\text {in }}-A_{\text {out }}}{A_{\text {in }}}
$$

where:- e : efficiency
$A_{i n}$ : Amount incoming through inlet channel.
Aout : Amount out ${ }^{\text {going }}$ through outlet channel.
The efficiency, of total solids, suspended solids, settleable solids and $B O D$ are calculated for each run and given in the appendix.

Material balances were determined usiag the equation below:-
$Q_{\text {inlet }} \times A_{\text {inlet }}=Q_{\text {outlet }} \times A_{\text {outlet }}+Q_{\text {orifice }} \times A_{\text {orifice }}$ amount incoming Amount outgoing
$Q_{o u t l e t}:$ Total discharge incoming (1t/sec)
$Q_{\text {outlet }}:$ Discharge from outlet channel (1t/sec)
Qorifice: Discherge through orifice (1t/sec)
$A_{i n l e t}=$ Amount of solids or $\mathrm{BOD}_{5}$ in the inlet channel $(\mathrm{mg} / \mathrm{h} t)^{+}$ Aoutlet : Amount of solids or $\mathrm{BOD}_{5}$ from the outlet channel (mg/lt) ${ }^{+}$
Aorifice: Anount of solids or $\mathrm{BOD}_{5}$ through the orifice $(\mathrm{mg} / 1 \mathrm{t})^{+}$

In most of the experiments the amount of solids did not balance as (discussed in Chapter 5).

Since suspended solids and $\mathrm{BOD}_{5}$ are considered two of the most important parameters in wastewater treatment, a multi-linear regression program of Prof. Hehmet Tïmay at Boğaziçi University was used to check whether these parameters are a function of the

[^0]other parameters. Suspended solids out $\Omega_{\text {inlet }}, Q_{\text {orifice }}, S . S ._{\text {in }}$, TS ${ }_{\text {in }}$ were considered as dependent variables and BOD $_{\text {out }}, \Omega_{\text {inlet }}, Q_{\text {orifice }}$, $\mathrm{BOD}_{\text {in }}, \mathrm{S} . \mathrm{S}_{\text {in }}$, and TS in were considered as dependent variables. (Sse Table 5).

A computer program was used to find a relationship for S.S. out, and ${ }^{\text {BOD }}$ out in terms of the other parameters for treated and untreated discherge.

Table 5
Variables used in Computer Program

| Type of run | Dependent Variable | Independent Variable |
| :---: | :---: | :---: |
| 1 | ${ }^{\text {BOD }}$ out | $\begin{aligned} & Q_{\text {inlet }}, Q_{\text {orifice }} \\ & \text { BOD }_{\text {inlet }}, \text { S.S }_{\text {inlet }} \\ & \text { T.S. }{ }_{\text {inlet }} \end{aligned}$ |
| 2 | S.S.out | $\begin{aligned} & Q_{\text {inlet }}, Q_{\text {orifice' }} \\ & \text { BOD }_{\text {inlet }}, S_{\text {inlet }} \\ & \text { T.S. }{ }_{\text {inlet }} \end{aligned}$ |

Out of the twenty experiments, data for fifteen experiments were used for the computer ran. Asfits was discussed in section 3.2.2. in the first five runs, it was impossible to obtain suspended solids values since the fine asbestos used in the Gooch crucibles were lost. Since
no reliable results were obtained for S.S. from the first five ex periments, and since S.S. was used as a parameter for all types of computer runs, the first five experiments were not used for the computer program. Among these fifteen experiments, there were six chemicals runs for the first orifice and three chemical runs for the second orifice. Since the number of data of the second orifice was not sufficient, it was impossible to find any mathematical relationship for the second orifice. Table-5 above shows the types of the mun and the parameters used in the computer program.

The data used for the program is given in the followine Table 6.

The equations below were obtained from the computer output.

$$
\begin{aligned}
& B O D_{\text {out }}=\left(Q_{\text {inlet }}\right)^{-0,17}\left(Q_{\text {orifice }}\right)^{0,90}\left(\mathrm{BOL}_{\text {in }}\right)^{1,33} \ldots \ldots .1 \text { a } \\
& \text { (free) } \\
& B_{\text {out }}=e^{-4,45} \cdot\left(\text { BOD }_{\text {in }}\right)^{1,70} \cdot\left(\text { T.S. }_{\text {in }}\right)^{0,14} \ldots \ldots \ldots 1 \mathrm{C} \\
& \text { (chemical) }
\end{aligned}
$$

$99.47 \%$ correlation ${ }^{+}$
S.S. out $=\mathrm{e}^{3.09} \cdot\left(Q_{\text {inlet }}\right)^{0.44} \cdot\left(Q_{\text {orifice }}\right)^{2,10} \cdot\left(\text { S.S. }_{\text {inlet }}\right)^{1,01} \cdot 2 \mathrm{a}$

+ $99.81 \%$ correlation ${ }^{+}$
s.s. out $=\mathrm{e}^{-2.20}\left(Q_{\text {orifice }}\right)^{-1,01} \cdot\left(\text { S.s. }_{\text {inlet }}\right)^{1.00} \ldots . .2 \mathrm{~b}$
(chemical)
$99.26 \%$ correlation ${ }^{+}$

Table VI
Data Used For Computer Program

|  | DEPENDENT VARIABLES |  | INDEPENDENT |  |  | VARIABLES |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $B O D_{\text {out }}$ | S.S Out | Qinlet | Oorifice | $\mathrm{BOD}_{\text {inlet }}$ | S. $\mathrm{S}_{\text {inlet }}$ | T. infet $^{\text {inl }}$ |
|  | 90.00 | 23.00 | 1.15 | 0.I6: | 105.60 | 48.30 | 597.00 |
|  | 189.60 | 44.50 | I. 7.78 | 0.17 | 183.60 | 61.83 | 815,00 |
|  | 102.00 | 37.00 | 1.04 | 0.18 | 99.00 | 5 T . 50 | 747:00 |
|  | 164.00 | 40.00 | 0.93 | 0.21 | 132.00 | 52.00 | 649.00 |
| $\bar{山}$ | 90.00 | 53.00 | I. 08 | 0.19 | 94.30 | 69.50 | 580.00 |
|  | 57.00 | 850.00 | 2.55 | 0.16 | 81.00 | I124.00 | 2305.00 |
| $\sum_{\alpha}^{\infty}$ | I26.00 | 578.00 | 3.01 | 0.16 | 138.00 | 1089.00 | I599.00. |
|  | I65.00 | 10.40 | . 0.69 | 0.23 | 162.00 | 24.00 | 952.00 |
|  | I32.00 | 24.00 | 0.64 | 0.17 | 138.00 | 36.00 | 903.00 |
|  | 33.00 | 835.00 | 3.85 | 0.21 | 58,20 | 7763.00 | 2202.00 |
|  | I59.00 | 106.50 | I. 86 | 0.19 | 150.00 | 120.00 | 912.0 |
|  | 90.00 | 3092.00 | I. 28 | 0.18 |  | 3656.00 | 4048.00 |

Also the following graphs were given in the output where computed values versus calculated values.

+ Correlation refers to degree of association between one variable and several others, so correlation coefficent is a measure of the amount of relation between these variables. (Volk, 1958)

THESBS


THESIS




# THESIS <br> BOGAZIÇI UNIVERSITY 

bebek, Istanbul
PAGE 39

## 5. DISCUSSIOM

If a comparasion is to be made between the results of the labonetory studies and the ficld application on the solid removal, a great difference can be noticed. Velio. $\mathrm{g}_{\mathrm{j}} \mathrm{l} u$ in 1972 conducted a laboratory study on the vortex seperator and obtained efficiencies as high as $100 \%$ (See table 3). In this field application the efficiency of suspended solid removal was about $30 \%$ for untreated sewage and about $36 \%$ for treated sewage concidering both orifices. (See tables 7 and 8). Lower efficiencies can be attributed to difference in the dischare. In the laboratory study the discharge vas much higher than in the field application. The discharge varied from $3.52 \mathrm{lt} / \mathrm{sec}$. to $12 \mathrm{lt} / \mathrm{sec}$, while in the field application it varied from $0.64 \mathrm{lt} /$ sec to $3.85 \mathrm{It} / \mathrm{sec}$. So, hicher velocities in the laboratory prevented settling of the particles at the bottom of the tank. Another reason for the inigher efficiencies obtained in the laboratory study may have been due to the fact that the particles used as S.S. were uniform while in the field application different sizes of S.S. Were present, and may therefore have affected the settling of the solids.In addition in every laboratory experiment the flow was constant but in the field, the flow varied from minute to minute.

In the field application two types of mans were made, one using untreated sewage and another using sewage treated with coasulants. The coagnlants almost doubled the efficiency of solid removal. In untreated samples $20 \%$ to $25 \%$ of S.S. were removed and for treated samples $30 \%$ to $50 \%$
of S.S. were removed. But in the $\mathrm{BOD}_{5}$ removal a small change was noticed. In untreated sewage an average of $11 \%$ of $\mathrm{BOD}_{5}$ was removed and for treated sewace an average of $10 \%$ of $\mathrm{BOD}_{5}$ was removed. Tables 7 and 8 give the efficiencies for treated and untreated sewafe. Comparing the efficiencies with a sedimentation tank a very bie difference can be noticed after the addition of coagulants and polyelectrolytes. For untreated sewage, $50 \%-65 \%$ of S.s. and $25 \%-$ $40 \%$ of $\mathrm{EOD}_{5}$ are removed while in treated sevage $85 \%$ to $90 \%$ of s.S. and $50 \%$ to $60 \%$ of $\mathrm{BOD}_{5}$ are removed. The reason is that in the primary sedimentation tank the movement of the flocs is so negligible that there will be no shearing of the flocs while in the vortex separator due to relatively high velocities in the inlet discharge shearing occured.

Also if we compare the solid content of the orifice discharge in the field application with the solid content of the sludge collected from the primary sedimentation tank we see that in the latter it is about $5 \%$ while in the orifice discharge it is about $0.01 \%$. So in the case of tho primary sedimentation tank the solid particles are taken to be digested directly but in the case of the vortex separator the orifice discharge cannot be taken directly to be digested unless it is treated further.

At the location used the flow was generally very low, except when it rained. The third orifice ( 5.08 cm ) was used only once because all the flow went through the orifice. The orifice which showed best results was the first orifice ( 1.27 cm ) since the second orifice

PAGE 41
was fairly large ( 2.54 cm ), high percentage of discharge flowed through it. (See Tables 7 and 8).

Difficulties were encountered trying to obtain material balances for the suspended solids, settleable solids, total solids and $\mathrm{BOD}_{5}$. As an example the solids found in the outlet discharge plus the orifice discharge were lower than the amount of solids found in the imlet discharge when the flow was in the range of $0.641 t / \mathrm{sec}$. This was due to the fact that the solids settled at the bottom of the flat tank. The solids found in the outlet discharge were lower than the amount of solids found in the inlet discharge. One experiment was conducted at flow in which the solids on the flat bottom were removed, dried and weighed. When these solids are added to the solids found in the outlet and orifice, the solids balanced.

As for the equations mentioned in the evaluation of experimental data they could be stated as follows: $\operatorname{BOD}_{\text {out (free })}=Q_{\text {in }^{-0.17}} \cdot Q_{\text {orifice }}{ }^{0.90} \cdot$ BOin $_{\text {in }}^{1.33} \ldots \ldots . .$. la

 S.S. ${ }_{\text {out (chemical })}=e^{-2.20} \cdot\left(Q_{\text {orifice }}\right)^{-1.01}\left(\text { s.s. }_{\text {in }}\right)^{1.00} \ldots$. r $^{\text {b }}$

Equation $1=$ is used for untreated discharge. The equation gives reliable results since the variables, namely $B O D_{i n}, Z_{i n}$, can

## THESIS

Table 7
First Orifice Efficiencies

|  | T.S.Effi and \% re from | ciencies moval of harges orifice | S.S.Effi and \% ren Discha from | ciennies <br> moval of arges rifice | Settleab Effici and \% re Disch from | e Solid encies noval of arges rifice | BOD Effi and \% re Disch from | ciencies <br> moval of <br> arses <br> rifice |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Free Runs | Chemical Runs | Free Runs | $\begin{gathered} \text { Chemical } \\ \text { Runs } \\ \hline \end{gathered}$ | Free Runs | Chemical Runs | Free Runs | $\begin{array}{\|c} \hline \text { Chemical } \\ \text { Runs } \\ \hline \end{array}$ |
|  | $\begin{aligned} & 13.50 \\ & 14.26 \\ & \hline \end{aligned}$ | $\begin{array}{r} 5.32 \\ 29.52 \\ \hline \end{array}$ | $13.50$ | $\begin{array}{r} 5.32 \\ 46.92 \end{array}$ | $\begin{aligned} & 13.50 \\ & 19.26 \\ & \hline \end{aligned}$ | $\begin{array}{r} 5.32 \\ 51.28 \\ \hline \end{array}$ | $\begin{aligned} & 13.50 \\ & 24.01 \end{aligned}$ | $\begin{aligned} & 5.32 \\ & 8.70 \\ & \hline \end{aligned}$ |
|  | $\begin{aligned} & 15.15 \\ & 20.00 \end{aligned}$ | $\begin{array}{r} 34.78 \\ 26.47 \\ \hline \end{array}$ | 15.15 $-* *$ | $\begin{aligned} & 34.78 \\ & 56.67 \\ & \hline \end{aligned}$ | $\begin{aligned} & 15.15 \\ & 31.03 \\ & \hline \end{aligned}$ | $\begin{aligned} & 34.78 \\ & -(*) \\ & \hline \end{aligned}$ | $\begin{aligned} & 15.15 \\ & 18.32 \\ & \hline \end{aligned}$ | 34.78 - |
|  | $\begin{aligned} & 10.13 \\ & 11.70 \end{aligned}$ | $\begin{aligned} & 26.56 \\ & 24.90 \\ & \hline \end{aligned}$ | 10.13 ** | $\begin{aligned} & 26.56 \\ & 33.33 \end{aligned}$ | $\begin{aligned} & 10.13 \\ & 46.00 \end{aligned}$ | $\begin{array}{r} 26.5 f \\ -(*) \end{array}$ | $\begin{aligned} & 10.13 \\ & 14.22 \end{aligned}$ | $\begin{array}{r} 26.56 \\ 5.80 \\ \hline \end{array}$ |
|  | $\begin{array}{r} 13.91 \\ 6.31 \end{array}$ | $\begin{array}{r} 5.46 \\ 27.19 \end{array}$ | $\begin{aligned} & 13.91 \\ & 52.38 \end{aligned}$ | $\begin{array}{r} 5.46 \\ 52.64 \end{array}$ | $\begin{aligned} & 13.91 \\ & 73.80 \end{aligned}$ | $\begin{array}{r} 5.46 \\ 21.20 \end{array}$ | $\begin{aligned} & 13.91 \\ & 14.7 ? \end{aligned}$ | $\begin{array}{r} 5.46 \\ 43.30 \end{array}$ |
|  | 9.55 - | $\begin{array}{r} 10.22 \\ 1.85 \end{array}$ | $\begin{array}{r} 9.55 \\ 28.03 \end{array}$ | $\begin{aligned} & 10.22 \\ & 11.67 \end{aligned}$ | $\begin{array}{r} 9.55 \\ 60.00 \end{array}$ | $\begin{array}{r} 10.2 ? \\ 2.20 \\ \hline \end{array}$ | 9.55 | 10.22 |
|  | $\begin{array}{r} 17.31 \\ 7.97 \\ \hline \end{array}$ | $\begin{aligned} & 13.28 \\ & 10.35 \end{aligned}$ | $\begin{aligned} & 17.31 \\ & 28.16 \end{aligned}$ | $\begin{aligned} & 13.28 \\ & 15.43 \end{aligned}$ | $\begin{aligned} & 17.31 \\ & 77.94 \end{aligned}$ | $\begin{aligned} & 13.28 \\ & 51.43 \end{aligned}$ | 17.31 | $\begin{array}{r} 13.28 \\ 6.25 \end{array}$ |
|  | $\begin{array}{r} 22.58 \\ 5.13 \\ \hline \end{array}$ |  | $\begin{aligned} & 22.58 \\ & 23.08 \end{aligned}$ |  | $\begin{aligned} & 22.58 \\ & 20.69 \end{aligned}$ |  | 22.58 |  |
|  | 17.59 1.26 |  | $\begin{aligned} & 17.59 \\ & 23.74 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 17.59 \\ & 69.92 \end{aligned}$ |  | $17.59$ |  |
|  | $\begin{array}{r} 6.28 \\ 21.52 \end{array}$ |  | $\begin{array}{r} 6.28 \\ 24.38 \end{array}$ |  | $\begin{aligned} & 6.28 \\ & 33.33 \end{aligned}$ |  | $\begin{array}{r} 6.28 \\ 29.63 \end{array}$ |  |
| TOTAL | $\begin{array}{r} 126.00 \\ 88.15 \\ \hline \end{array}$ | $\begin{array}{r} 95.62 \\ 120.28 \end{array}$ | $\begin{aligned} & 126.00 \\ & 179.77 \\ & \hline \end{aligned}$ | $\begin{array}{r} 95.62 \\ 216.66 \end{array}$ | $\begin{array}{r} 126.00 \\ 431.97 \\ \hline \end{array}$ | $\begin{array}{r} 95.62 \\ 126.11 \\ \hline \end{array}$ | $\begin{aligned} & 126.00 \\ & 105.51 \end{aligned}$ | $\begin{aligned} & 95.62 \\ & 64.05 \\ & \hline \end{aligned}$ |
| AVG. | $\begin{array}{r} 14.00 \\ 9.79 \end{array}$ | $\begin{aligned} & 15.94 \\ & 20.05 \\ & \hline \end{aligned}$ | $\begin{aligned} & 14.00 \\ & 29.96 \end{aligned}$ | $\begin{array}{r} 15.94 \\ 36.11 \\ \hline \end{array}$ | $14.00$ | $\begin{aligned} & 15.94 \\ & 31.53 \end{aligned}$ | $\begin{aligned} & 14.00 \\ & 11.72 \end{aligned}$ | $\begin{aligned} & 15.94 \\ & 10.68 \end{aligned}$ |

(Birst figures : \% removal of discharges from orifice.)
(Second figures: Solids or BOD Efficiencies.)
(*) There were not settleable solids in the sample.
(**) In the first few runs no results were obtained. (Explained in 3.2)

Table 8
Second Orifice efficiencies
9

(First figures : \% removal of discharges from orifice,)
(Second figures : Solids or BOD Efficiencies.)
(*) In the first few rune no results were obtained. (Explained in 3.2)
be determined easily and $Q_{\text {orifice }}$ can only be assumed based on past experience. Equation 16 is used for treated discharge. The result it grives is fairly accurate since $\mathrm{BOD}_{\text {in }}$ and $T . S ._{\text {in }}$ could be detrmined easily.

Equation $2 a$ is used for untreated discharge while eq. ab is used for treated discharce. Also here reliable results could be found since $Q_{i n}$ and $S . S ._{\text {in }}$ could be measured and $Q_{\text {orifice }}$ could be assumed.

## 6. COMCLUSIONS

1. If a comparasion is to be made between the efficiencies of a primary sedimentation tank and the efficiencies obtained for the vortex separator in this field application, the following results are obtained:-
a) In the primary sedimentation time for a detention time of about two hoursusing untreated sewage, $50 \%$ to $65 \%$ of suspended solids are removed while in the vortex separator with a detention time of about two seconds $20 \%$ to $25 \%$ of S.S. were removed.
b) For $\mathrm{BOD}_{5}$ with the same detention time using also un treated sewage $25 \%$ to $40 \%$ of $\mathrm{BOD}_{5}$ is removed in the primary sedimentation tank while in the vortex separator $10 \%$ to $20 \%$ of $\mathrm{BOD}_{5}$ was removed.
c) In the case of sewase treted with coagulants and polyelectrolyte, the removal of S.S. from the primary se. dimentation tank for a detention time of 2 hours was $85 \%$ to $90 \%$. While in the vortex separation using a D-4100 polyelectrolyte and a detention time of about 2 sec. $30 \%$ to $50 \%$ of S.S. were removed.
d) The $\mathrm{BOD}_{5}$ removal for a sewage treated with coagulants and polyelectrolyte in a primary sedimentation tank is about $50 \%$ to $60 \%$. In the vortex separator using the $\mathrm{D}-4100$ polyelectrolyte $5 \%$ to $15 \%$ of $\mathrm{BOD}_{5}$ was removed.
2. 

$$
\begin{aligned}
& B_{\text {out }}(\text { free })=Q_{i n}{ }^{-0.17} \cdot Q_{\text {orifice }}{ }^{0.90} \cdot \mathrm{BOD}_{\text {in }}{ }^{1.33} \cdot \ldots . .1 \text { la } \\
& \text { BOD } \text { out (chemical })=e^{-4.45}\left(\mathrm{BOD}_{\text {in }}\right)^{1.70}\left(\mathrm{~T}_{\mathrm{S}}^{\text {in }}\right)^{0.14} \ldots \ldots \mathrm{lb} \\
& \text { S.S. }{ }_{\text {out }(\text { free })}=e^{3.09}\left(Q_{\text {in }}\right)^{0.44} \cdot\left(Q_{\text {orifice }}\right)^{2.10}\left(\text { S.s. }_{\text {in }}^{1.01} \ldots 2 a\right. \\
& \text { S.S.out(chemical) }=e^{-2.20} \cdot\left(Q_{\text {orifice }}\right)^{-1.01}\left(\text { S.s. }_{\text {in }}\right)^{1.00} \ldots \text { 2b }
\end{aligned}
$$

Equations above were found when using a linear regression computer program to calculate $B O D_{\text {out }}$ and S.S. out for treated and untreated discharges prior to installation of the device. This will give a rough estimation of what will be the $\mathrm{BOD}_{\text {out }}$ and the S.S. out before settings up the the apparatus. These equations are applicable only when $Q_{i n l e t}$ is in the limit of 0.64 to 3.85 .
3. Based on the above results, a vortex separator unless improved and tested for higher discharges in this field application proved to be inefficient to use for a primary sedimentation tank.

## 7.RECOMENDATION FOR FUTURE WORK

-The vortex separator should be redesigned to have the bottom sloping towards the orifice in order to try to reduce the settling of solids at the bottom.
-A difficülty was faced while feeding the coagulant into the sewage discharge. Since the flow varies, the concentration of the coagulant:must be kept constant with time by trying to control the dosage.
-A settling coloumn should be used to evaluate the removal of suspended solids and $B O D$ to correlate these results with those of the vortex separator.
-The glass fiber disks should be used rather than the glass crucibles for suspended solids.
-In the laboratory study the discharge was much higher than in the field application. It will be better to use larger discharges or to use astill smaller orifice to see the efficiencies: whether they are close to laboratory results.
-A study should be made for a number of vortex separators to see whether their efficiencies approximately match the efficency of a primary sedimentation tank. Also some kind of a cost analysis should be done concerning both to see which one is cheaper to use.

BIBIIOGRAPHY

A K w A N D OR, Neşet. "Tabanı Yatay Daire Biçinli Çökeltne Havuzunda fookelme Olayı". Ph.D. Thesis, ITU Türkiye Bilinsel ve Teknik Araştırma Kunumu Matbaası, Ankara 1973.

Amertcar Public Health Association, Anerican Water Work Association and Water Pollution Control Federation. "Standerd Kethods for the examonation of water and wastewater". Fublished by American Public Health Association, Washinston, 13 th Edition, 1971 (p. 535)

BOLTON, R.L.; K L E I N, L., "Sewage Treatment Easic Principles and Trends", Ann Arbur Science Publishers Inc, Hichiçan, 1973 (p. 60) (p. 70).
 Neşet; HERNANDEZ, John, "United States of America Patent Disclosure for A Vortex.Type Solid-Liquid Separator". November $25,1973$.

FAIR,G.M.; G EYER, J.C.; OKUN, D.A., "Elements of Water Supply and Waste-Water Disposal". Second Bdition Toppan Company Imited, Tokyo, 1971 (p. 390).

FIELD, Richard, "The Swirl Concentrator as a Combined Sewer Overflow Regulator Facility". Environmental Protection Technology Series, Washington, September 1972, (p.53).

GENME L, Robert S. "Water Quality and Treatment". The American Water Works Association Inc. Third Edition, 1971 (p. 140)

HERD $\operatorname{H} N \mathrm{BERG,W.A.;RUDRE,EdwardB.}, \mathrm{"Water} \mathrm{Swply} \mathrm{and}$ Waste Disposal ${ }^{\text {" }}$, International Textbook Company Scranton, Pennsylvania. Second Printing, May 1963 (p. 336).

KATIEI, Peter F., "Combined Sewer Regulator Overflow Facilities". American Public Work Association, Water Pollution Control Research Se_ ries, Washington, July 1970 (p. 100).

METCALF and EDDY, Inc., "Wastewater Engineering, Collection Treatment Disposal" Mc. Graw Hill Company, 1972 (p. 288).

S U L L I VAN, Richard H.; C OHN, M.M.; URE, J.B; ; P ARKINSOI, Fred, "The Swirl Concentrator as a Grit Separator Device" Environmental Protection Technology Serias, Washington, Tune 1974 (p. 18).

SULLIVAN, Richard.; GOMN, M.M.; URE, J.E.; PARKIISSON, F.E.; GA L I A N A, George, "Relationship Between Diameter and Height for the Design of a Swirl Concentrator as a Combined Sewer Overflow Regulator". Rnvironmental Protection Technoloछy Series, Hashington, July 1974.

TU If A Y, Mehmet, "Fultiple Linear Regression Program TUMTO" Computer Library, Boëraziçi University, 1975.

VALLANTINE, H.R., "Applisd Hydrodynamics" Buttervorth and Company. London , 1965 (p. 13).

VELİ O ̆̆ L U', S. Giray, "Vortex Type Sedimentation Tank", Master of Science Thesis, Eoğaziçi University, 1972.

V 0 L K, William, "Applied Statistics for Engineering", Nc.Graw Hill Book Company, New York, 1958 (p. 224).

WALKUP, P.C., SHITII, J.D., SMISSON, E.R., "Marine Oil Spill Recovey by Vortex-Assisted Airlift". Journal Nater Pollution Control Federation. Volume 44, Mo. 4, April 1972 (p. 595).


1-Sewer entrance of the galvanized pipe to the vortex seperator

2. Discharge from the outlet channel.

THESIS


3- A top view of circular chamber and vortex.


4_ Discharge: from orifice and discharge from outlet channel.


5-The incoming galvanized pipe, vortex seperator and discharge from the outlet channel.


6-Transition: From circular to rectangular channel.


7- Blocking the sewer outfall by sand-bags and diverting the sewer into the galvanized pipe.


8_Diverted sewer into the galvanized pipe.

# THESIS <br> BOĞAZIÇI UNIVERSITY BEBEK, ISTANBUL 

PAGE

Table 9
Discharges, $\mathrm{BOD}_{5}$ and efficiencies

(*) Experiments with the second orifice. (**) First figures: Discharges (1ps), Second figures: $\mathrm{BOD}_{5}(\mathrm{mg} / \mathrm{l}) \quad(* * *) \frac{\text { inlet }}{\text { infet }}$ outlet. $\times 100=$ removal

Table 10
Discharges, Settleable Solids and efficiencies


Table 11
Discherges, Total slids and efficiencies


## 

BOGAZIÇl UNIVERSITY bebek, Istanbul

PAGE

Table 12
Discharges, suspended solids and efficiencies

(*) Experiments with the second orifice. (**) First figures: Discharges(lps) Second figures : S.S (mg/1) (***) Inlet - Outlet $\times 100=$ Removal

Inlet


[^0]:    ${ }^{+}$Vith the exceptions of settleable solids (ml/lt)

