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UZETCE

Dogrusal ve ramanla dedismeyen sistemler i¢in
en iyi Orneklenmis Zenetiminin €ldesi ayrik en az ilkesi
uygulanarak ve karesel maliyet Ol¢iiti kullanilarak ger-
cektestirildi. A}r?k en az i]kesi, sirekli sistem durum
denklemleri ve ?&?egra1 perforhans indisleri ayrik duruma geti-
rilerek uygulendi. En iyi denetimin Ornekleme hizy ile ilintisinin
¢coziimsel ifade: '»i bulmak lzere genis bir ¢alisma yapids.
Boylece orneklew: hiza degisim%nin kapali c¢evre sistem
nerformansini nasiil etkiledigi arast{r11d1.

En iyi Ornekleme hizini ve en iyi geri besleme
kazapc dizeyini saptamak-i¢in yukaridaki kurama bagla
ka]a}ak sayisal yontemler ve bir bigisayar program
g§1ist1ri1di. Cesitli dodrusal ve zamanla dedismeyen
sirgclerde Ornekleme hiz1 ve en iwi denetimi iceren say1-
sal sonug¢lar elde edildi ve her sistemlie ilgili maliyet
hosaplandi. Ek.olarak, tanimlanan zaman araliginda
denetimin ve sistem durumlarinin zamana bagdli dedisimleri

£izildi.



ABSTRACT

Optimal Sampled-data controls for linear time
invariant processes with quadratic cost criteria are de-
termined through the application of the discrete minimum
principle. In order to gbply the discrete minimum princi-
ple both continuous system's state equations and integral
performance indices are discretized. An extensive work
is done to find an analytical expression for the depen-
Jance of the optimal control on the sampling period. .
Thus the effect of changing the sampling time upon the
closed loop system's performance is investigated.

Based on the theory cited above original numeri-
cal mgthods and a computer program have been developed,
to compute optimum sampling period and the matrix of
optimum- feedback gains. Then for various linear time
invariant processes numerical results are obtained for
‘the sampling period and the optimal control and, the
associated costs are evaluated. Additionally the tra-
jectories of the states, and the controls are plotted

within the time interval of interest.
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~is the matrix of the feedback gains. The elements of

CHAPTER 1

INTRODUCTION

One of the most frequent problems in the field
of optimal control is the optimal 1inear regulator pro-
blem.

It is well known that the optimal control u#*(t)
for teft ,tc], for Tinear systems subject to a quadratic
performance criteria is .generated by a linear feedback

control law of the form:
u*r(t) = - G*(t) x(t)

where x(t) is the current state of the system and Gx(t)

:
the matrix G*(t) are computed from the solution of a
non]inear matrix differential equation, called the ma-
trix Riccati Equation.

In spite of the apparent mathematical simplicity
there are certain engineering difficulties associated
with the reélizatioh and implementation of the time
varying feedback gains. It is gen2rally not possible

to compute G*(t) accurately in an on line manner,



These practical considerations impose further
restrictions on the controller- The goal is to deter-
mine a lTinear feedback law which is relatively easy to
implement, but which results in a system performance
closest to the optimal. Such controllers are referred to
as suboptimal control schemes in which a trade-off be-
tween mathematical optimality and practical usefulness
is made by constraining the structural form of the time
varying feedback gains, while leaving various free para-
meters to be chosen in an optima] manner. One form of
‘the feedback gain structures that leads to a suboptimal
control for a linear regqgulator system is the piecewise
constant gains which are re]atjve]y easy to implement,.

The piecewise constant gains can be obtained
through a sample and hold mechanism, and the control
schemes established in this manner form sampled data
control systems.

| In addition to the practical restrictions stated
. aboye that favor the use of sampled data systems in
whiéh the sampling operation occurs between the plant
andithg controller, the nature of the system itself may
dictate the use of éamp]ed data. Among such systems
those that have a telemeter link in the feedback loop,
or use a single instrument to monitor several variables
in a sequential manner may be mentioned.

When the samp]ing‘operation is introduced to the

system, one has to choose a convenient sampling strategy



if it is not inherently imposed by the system itse]f.A
Due to their relative simplicity, sampled data control
systems generally have fixed sampling frequencies. But
several non-uniform sampling schemes have been proposed
in the literature. The rationale behind these sampling
schemes is to achieve a given performance using more
information about the system structure. In this case,
the problem is finding a system signal and the functions
of that signal for controlling the variable frequency
sampler, so that over a given time interval fewer samples
*will be needed with the variab]e frequency system than
with a fixed frequency-system while maintaining essen-
tially the same response characteristics. The cost of
the savings produced by reduc{ng the overall number of
samples, is increased complexity of‘the adaptive samp-
ling systems.

In addition to the simplicity in implementation,
a fixed rate sampled systems facilitates the use of time
sharing strategies which achieve economy in the usé of
equipment.

In this thesis, an algorithm has been developed
to compute optimum sampling period and the matrix of
optimum feedback gains for a linear system employed in
a reqgulator problem. fhe structure of the thesis is as
follows.

In Chapter 2 the optimal regulator problem is

studied for the case of continuous time system and samp-



led data systems. In the latter case the regulator pro~-
blem is transformed into an equivalent discrete-time
problem and thus through the application of the Discrete
minimum principle the Matrix-Difference Riccati Equation
is derived. Then the optimal control law is determined
as a function of the solution to the non-linear Riccati
matrix difference equation. Using this control iaw.the
optimal closed-~loop sampled data system design is achieved.
Finally, the stability of the optimal closed loop system
isiexamined by considering the location of its eigen-
values,

In Chapter 3, the problem of choosing a suitable
sampling period and its éffegts on the closed loop opti-
mal system's performance is treated. The behavior of
the optimal cost as a function of the sampling period
is }nvestigated analytically. Experimental results
based on the computer studies are also presented.

In Chapter 4, the overall package program which
can be used in the design of optimal sampled-data or
discrete requlators is presented. A simplified flow
chart which describes the general features of the pro-
gram flow is giveﬁ. The use of the program and sub-
routines and their properties are pgxplained briefly.

Fina]]y in Chapter 5 concluding remarks and sug-

gestions for further study and development are given.



CHAPTER 2

OPTIMAL SAMPLED DATA LINEAR REGULATORS

Consider the linear time invariant dynamical sys-

tem, modeled as

R(t) = A x(t) + B u(t) (2.1)

x(t)) = x, (2.7a)

y(t) = C' x(t) + D u(t) (2.2)
where

x(t) - state vector e R"

y(t) - output vector e RT

u(t) - input vector e R'

" and

A - (nxn) system matrix

joo

- {(nxr) input matrix
C - (nxm) output matrix
In order to simplify the problem it is assumed
that the system is time invariant, and therefore A, B
gnd g are constant matrices. Aléo for physical systems

those matrices are assumed to be finite dimensional.



It is further assumed that D = 0.

With the above system equations the regulator
problem can qualitatively be stated as foilows:

Suppose that initially the plant output as given
by (2.2) or any of its derivatives, is non-zero. Pro-
vide a plant input to bring the output and its deriva-
tives to zero.

In other words, the problem is to apply a control
to take the plant from a nonzero state preferably gs
fast as possible to the zero state. If the constant matfix
pair A and B [A,B] is completely controllable, then
this objective can be achieved. The definition of com-
plete controllability requires that there exists a con-
trol taking any nonzero state x(to) at time t, to the
zero state at some time te. In fact, since A and B are
constant, te can be taken as close to t, as desired.
Howgver, the closer te is to t0 the greater is the amount
of ;0ntro1 energy (and the greater is the magnitude of
coniro]) required to effect the state transfer. 1In any
engineering system an upper bound is set on the magni-
tude of the various variables in the system by practical
considerations.

Therefore, tf can not be taken arbitrarily close
to to without exceeding these bounds. In addition the

actual control can not be implemented as a linear feed-

back law for finite te unless ore is prepared to tolerate



at tf.
Any other control scheme for which one or both of
the above objections is valid is equally unacceptable.
In an effort to meet the first objection, it is
necessary to keep some measure of control magnitude,

v

such as

te
Joon'(t) R uft)dt ,
t

0
»

bounded during the course of control action, where E is
a symmetric positive definite matrix.

In engineering problems, however, driving the
state near enough to the desired state may be accepted
as a satisfactory so1ut%on to the control problem. So
the aim of achieving the - zero state will be relaxed
and it is merely required that the state as measured by
some norm should become small, for some fixed time te.

' The term x'(t) S x(t), with S some positive de-
finite matrix, if made small meets the requirement.
Also, it is clearly helpful from the control point of
view to have ||x(t)|]| (Norm of State Vector) small for
any t in the interval over which control is being exer-
jeed. and this fact can pe expressed 35 making the

[ n



small. Where Q is a symmetric positive definite matrix.
The desirable properties of a regulator system
may be summarized as follows:
Property 1: The regulator system should involve

a linear control law, of the form
u(t)® -6 x(t)

Property 2: The regulator scheme should ensure

the smallness of quantities such as

ft

t v u(t) R u(t) dt ,
o - 2 2

5'(tf) S x(t), and i
BT o ’

where R, S, ane Q have the positivity properties men-
tioned earlier.

Now, if the specified cowntrol input over the time
interval of definition of the system [t ,t.], where t_
is the initial time and t, is the final time; 1is u(.),
then the trajectory of the state generated by the con-
trof u starting at staEe X6 at time to is given by the
equation
At-tg) be GA(t-1)

t) = e~ X .+

Xo B u(t)dt (2.3)

%, (

The above expression indicates the entire time response



of the system. A
If the final time tf is assumed to be infinite
then an ordered set of real numbers, called the time

set, can be used to indicate thewsuccessive time points.

{ti} = {tys t, =t + iT; 1 = 0,1,2,...,1} (2.4)
If however the ;grmina] time tf is finite, an

assumption is made that the time interval of interest is

subdivided into a sequence of N intervals of equal length

T

NT = te - t, or te =ty + NT | (2.9)
where the constant T is called the ;amp1ing period or
sampling interval.

Next, a crucial assﬁmption is made on the struc-
ture of the time function u(t) which requires that the
control vector u takes some constant value over a par-
ticular interval and that changes in the values of u(t)
occur.on1y at the sampling instant ti‘ The constraint
imposed above corrésponds‘to the sample and hold opera-

tion, therefore,

e

u(t) = u(t0+iT) u; for to+iT§tito+(i+1)T (2.6)

=i

where i = 0,1,..., N -1
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A choice for the cost crierion with respect to
which the performance of the system is optimized is of
the form of a quadratic functional as required by Pro-

perty 2 mentioned earlier.

ot

1
J[io’to;tf;u(')] =3 < _)i(tf)nf_ ._X(tf)>

t

= {f [<y(t).0y(t)¥+<u(t),Ru(t)>]dt (2.7a)
0

_Thé above choice for the form of performance index is

‘appropriate to achieve Property 2. Since the main con-
cern is maintaining the output close to the zero vector
a measure is defined in terms.of output in (2.7a).

The notation <a,M a> is used to denote the inner
product of vectors a and M a, But for simnlicity in
writing in the foregoing paragraphs a'M'a will be used,
where the superscript prime denotes transpositioh.

In (2.7a) the matrix F is used‘to weight the ter-
minal deviation, the matrix Q to weight the output tra-
jectory deviation, and the matrix B to penalize the ex-
cessive magnitudeslof the control input. F and Q are
positive semidefinite, mxm symmetric matrices not both
identically zero, and R is a positive definite, symmetric

rxr matrix.

These requirements are necessary to ensure the

linearity of the feedback law,
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the output y, from (2.7a) so that the cost functional
can be expressed in terms of states as suggested by
Property 2; then the cost functional takes the form:

J[f_oato;tf;u(-)].: X'(tf,)EE_E'X(tf)

1
2

t
) ‘;' £ TIx(8)C Q C'x(t) + u'(t)R u(t)]dt  (2.7b)
t
0

The sampled data optimization problem under considera-
tion can be formally stated as follows:

Given a dynamical systém characterized by equa-
tions (2.1) through (2.6) with piecewise constant inputs,
determine a control sequence

{u i=0,1,..., N-1}

i
that minimizes the quadratic cost functional J of equa-
tion (2.7h) while driving the system from an arbitrary
initial state to zero state.

This regulator problem can not be solved direct-
1y, because the admissible controls are constrained to
be piecewise constant.

Nevertheless, it is possible to transform the
problem from a constrained one to an unconstrained one
by integrating the differential equation and the cost

functional and thus going from a continuous time problem

to a discrete time one.
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THE EQUIVALENT DISCRETE TIME OPTIMIZATION PROBLEM

The optimization problem that was posed at the
end of the previous section can now be transformed to an
equivalent discrete time one in a form that permits the
direct application of the discrete minimum principle.

The transformation is accqnplished through the
use of the state equation (2.3) evaluated for ti<t<ts g
thus expressing the state at (i+1)T in terms of the state
at iT and the constant control u(iT). The resulting dis-
‘crete time system is obtained as:

s

Xiep = X(tgaq) = 2(T)x; *+ D(TIugs x=x(ty)  (2.8)

where

T =1, - t. for i=0,1,..., N-1

It is observed that the matrices ¢ and D are time
invariant but depend parametrically on the size of samp-

ling period T. This can be shown as follows:

(b, at) = e =" = o(T,0) (2.9)
and
te T At
ti 0
T
= s o(t,0) B dt = D(T,0) (2.10)

0
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where ¢(T) is the fundamental matrix (STM) and is non
singular. In order to simplify the expressions in the
subsequent paragraphs, with no conceptual Toss in gene-
rality, the initial time t, will be taken to coincide
with the origin as was done in equations (2.8) and (2.9)
above.

The cost functional of equation (2.7b) can be ex-
pressed as the sum over i of N integrals and, if the
state equation (2.3) is substituted into each integral
and if the fact that u is constant over the interval of
“each integration is taken into account, then the fol-
lowing expression for J is derived (See Appendix A).

1 N-1 -

1 \ ' ‘ l
J[Xo’to;tN] =3 [ﬁN S iN] Yy 450 X'y 8x;

+22(_'._M.u.+_(i'.5u

c MUt (2.11)

b

where the weighting matrices § é M and R respectively

given as:
S=CEC' (2.12a)
-~ - ti
= = {
Q g(ti+],t1) t{ ¢(t,t1) E g E g(t,t1)dt
i
T A't At -
= f e CQC'e dt ='Q(T,0) (2.12b)
0
ti+.‘ ] 1
ﬁ = ﬂ(ti+1,ti) = f ) (t,ti)g Q g Q(t,t1)dt
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t,
- - : .
R=R(t;,15t) ! TTUO[R+D(t,14)C Q C'D(t,t5)]dt
1. o
T t A'S t AS
=TR+B'" {y/ [fe™ ds]CQC'[/ e ds]dt}B
- T o o 0
= R(T,0) (2.12d)

In order to simplify the appearance of relations
the arguments (T7,0) of the above transformed matrices
are suppressed.

These weighting matrices are time invariant and
depend parametrically on the sampling interval. How-
ever, if the sampling period is not constant (for in-
stance, adaptive sampling systems, or state dependent
sampling systems) then the discrete time system and the
weighting matrices would become time varying, that is;
they woud depend on the index i even though the con-
tinuous-time system- was time invariant. Furthermore,
it can.be shown that if R and Q are symmetric positive
definite and semidefinite respectively, so are é and é.
This property is essential for the existence of the so-
lTution of the Riccati equation which will be derived in

the following section. It should also be noted that
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é, M and R can be evaluated numerically for a given
sampling period T.
With the above transformations the problem can

now be formulated as a discrete optimal control problem.

The equivalent discrete time optimization problem

can be restated as follows:

Given the linear discrete time system

X

~1+] = 22(..

pr Doy Xy = x(tg) (2.13)
.

determine the control sequence

{u,*%, i = 0,1,..., N-1} (2.14)

and corresponding trajeé%ory {51*}, such that the cost

functional

I3
=
lwn

+
~nNY
»
w—
=
{
md
+
{c
-
{2
je=
—
s
—
~n
P
(&,
S

attains its minimum value.
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APPLICATION OF THE DISCRETE MINIMUM PRINCIPLE

At the end of the previous section the discrete
optimization problem has been stated, and to avoid re-
dundancy it is not repeated here. Since the objective
is to minimize J given by equation (2.15) subject to
‘the conétraint equations specified by (2.13), the pro-
blem of this type may be treated as the minimization
problem involving a function of several variables,

) To get the Hami]fénian function the performance
ﬁndex, J of equation (2.15) is augmented through the

use of a set of Lagrange multipliers {Ai’ i=0,1,...,N=1}
and the constraint equations (2.15).

Boundary conditions are as follows:

a) Initial time and state are fixed, i.e.,

b) Terminal time may be free or fixed. The
former corresponds to an infinite-time
requlator problem while the latter to a
finite requlator problem.

c) Terminal State is fixed, that is, it is
specified as the orgin for the linear
regulator problem.

The form for the Hamiltonian is:



W
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= 3 | 'A ' 1 |‘
Ho o2 Gy’ QX+ 0" Mug v 50y R,
i=0
AP SFTORR IS PR SN ITFRESE PUERD (2.16)

Since the variables are x,, u, and A, we seek to

i
obtain the partial derivatives of H with respect to all
of the above variables for all values of i, and then

equate them to zero.

?_ﬂ... = _0__ V i s 'i=0,],...,N-] (2'17)

i
o
<

i3 4=0,1,...,N-1 (2.18)

an_ - ¥ i 3 i=0,1,...,N-1 (2.19)
M. '

Equations (2.17) through (2.19) comprises the necessary

conditions for H to have a minimum. However, as might

be seen from equation (2.16) the individual relations

(2.17) through (2.19) involve the differentiation of

quadratic terms like x' M u, x' Q x, and u' M x.

Each of the above expressions is a scalar, but

. »
requires a differentiation with respect to the vector
variables x and u.

Now the differentiations as indicated by the ne-

cessary conditions will be carried out for i=0,1,...,N-1.
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oH - )
. =Qx; +Mu, + 0", - Ay =0 Vi (2.202)
2
Moo ‘ =0 2.20b
—— = M'x; + Ru; + DAy 4 =0 Vi (2. )
Bu
oH _
— =8 x; *+Duyu; -x5,,=0 ¥i (2.20c)
I

For 1 = 0:
i ézso *Mu, v 22y =0 (2.21a)
3%,
Ho o oy - Ny )
T e WXyt RY, v DAy =0 (2.21b)
3,
L =.‘R§.o +~D-—-0 +2(__'] =9. (2.21C)
3,

But, when i N-1, a term with the index N appears in
H as given by equation (2.16) so this should also be

included in our conditions also,

M oo =0 (2.21d)

2N
‘BxN
This condition specifies a boundary value for the
set of Lagrange multipliers at time i=N. This boundary
value will be used in the solution of equations (2.20)

and (2.21).
From (2.20a) and (2.20b):
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Ay = Qx; + Mus + 2L, (2.22)
5 — 1 1

S Ruy = WXy DA, or
u. ko= - E-I[E'ii + 2'li+]] (2.23)

This latter expression for u; comprises an open loop
optimal control law for the system (2.13). If this op-
timal value of u; is substituted into equation (2.20c)

the following expression is obtained for the states

X+l
or

—~i+]

In order to simplify the results of optimization the

following matrix is defined:

2 - D RTINS (2.24)

@
]

then.’

i+ (2.25)
This optimum open loop control law may now be

turned into a feedback control law with the introduction

of linear transformation known as the Riccati transfor-
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mation, which relates the state vector to the Lagrange

multipliers vector.

As = P. X,

If this transformation is used to eliminate li in
tions (2.22) through (2.25) the following results

obtained:

-E’i -&1' g X; * My;, w J E.-i+] 3.(.1-!-]
= - p-! '

ug* s - RTE[MIXG DY Py xg4]
y ~—1 t -1

.)5_1'4.] [.I_ p _D_B. .Q. P_'|+'|] «-e--)-(-'l

(2.26)
equa-
are
(2.27)
(2.28)

(2.29)

Equation (2.28) is substituted into equation (2.27)

Pixy = Q%3 + M (- Ei[ﬂlii * D'Piq §1+11}
* 0 Paiy X, = [Q - MRTIMY) x,
. .
+ (o' - M RT'D'] Piv1 %441

Recall that 6 was defined as ¢ - D E“lﬂ', then g-Mﬁ'lg'

is recognized as 8', since R is assumed to be a symme-

tric matrix. Again for simplicity a matrix I is defined
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D=Q- MR (2.30)
“Finally, the equation can be put in the form of
Pixqy = I X5 + 8'Ps 1% 9 (2.31)

Solving for u,* in terms of P. after eliminating x

L9+
terms by substituting equation (2.29) into (2.28) yields,

Application of the matrix operations on the above equa-

tion, considerably simplifies the expression (see Appen-
dix B I)

-

- - 2 -1
uj {R7IM" + [R + E'£1¢1E] D'Piq8x;

u, 6 X; (2.32)

where the feedback gain matrix Eiis given by

o

-

= =1t 5 ! - '
G = R7IM' + [R+ D'P. 4D]TID'Ps, 0 (2.33)

This is the sampled data optimal feedback control law.

It states that in order to evaluate the constant con-

trol for the interval [iT,(i+1)T], only the state at time
iT ha~ to be =~ su--~-
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Alternatively, the elements of the matrix G spe-
cify the optimal weighting of the states.

In the case of finite time regulator G is a time
varying matrix, that is the elements of G change as the
index i changes and approaches a constant as the fina1s
time tf approaches infinity, so the regulator becomes

an infinite time requlator.

The structure of the optimal sampled-data feed-

. back control system is shown in Figure 1 below:

X
™ B D= J 18T -
+
A K
" X (kT) TUOURK1ly
u'kT) - - - |L. | BILIMSEL vye TEEKNm
G .0.H, jsampler } ARASTIRMA KURUMY

KUTUPHANES}

“FIGURE 2.1. The Structure of the Optimal Sampled-Data
: Feedback Control System.

In order to obtain the final form of the Riccati
transformed expression equation (2.31) is considered.

Substitution of equation (2.29) into (2.31) for

i . v
Xj4q Yields:
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— [} ‘-1 1 -1
PiXy =T x5 +8'Py [T # DRTID'P, 477 8 X

=0'P. (I +DRT'D'PL T eH (2.34a)

After applying matrix inversion lemma (See Appendix B II)
on the above equation, the required matrix multiplications
are considerably reduced

= ! - o t “int

- 9. {_’.).-i+] P;i+12[8_ * _D_ Ei+'|2] 2 E.-i+'|}§_ 4 ,I.:

(2.34b)

This form of the Riccati equation is more useful
than equation (2.33a) because it simplifies the necessary
calculations during the numerical solution of the problem.

The nxn time varying matrix P. is the solution
to the.matrix Riccati difference equation (2.33b) with.

the boundary condition (See Appendix D).
Py =S (2.35)

The minimum cost J*, associated with the optimal trajec-

tory from state X5 at time tj to the final time ty =t

has been shown (1) to be

.F

1L 1 -
* ° . * |- S . N - . =z e .I . »
TH(xgatystyitt) = 5 < Xye By xp> o= 5(x5'Ryx5)  (2.36)

oA
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As in the continuous case, the solution to the
Riccati equation determines the feedback gain matrix,
the optimal closed-loop system and the minimum cost.
Consequently, investigation of its properties yields
information about the optimal system's performance. The
first result concerns the matrix I defined by equation
(2.30).

Lemma 1: The symmetric matrix I is positive
semidefinite, if C Q C' is positive semidefinite.

3

Proof: Let C Q C' be positive semidefinite. The

cost J of equation (2.7a) can be expressed as:

' 1
AN S xy * 5 :

which is non negative. FEach integral of the sum i, also
non-negative since the integrand cannot be negative,

i.e.,

If a piecewise constant control function is assumed then

the integral above becomes:

Now let u; be given by:
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then

Since this holds true for all x.,, it follows that T is

=1 s

spositive definite. Similarly if CQC' is positive de-

finite, then so is I'. This result is essential for
the existence of the solution to the Riccati equation

for all T.

The sequence of so1ut10ns‘{Pi} consist of symmetric
positive semidefinite matrices. Semidefiniteness can
be justified directly from the quatratic form of equation
(2.36) since the optimal cost is non negative.

If time invariance is assumed, then the sequence

'{Bi}, i=N,N-1,...,0 is monotonically nondecreasing.

Furthermore, if the discrete system equation (2.13) is

controi]ab]e, then the sequence is bounded from above

for any value of N (6).

INFINITE TIME REGULATOR PROBLEM

N

The results described in the previous paragraphs

are based on the assumption that the interval of defini-
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tion of the system is finite, that is, the optimization
problem is considered to be a finite time requlator.
These results are now extended to cover the infinite
time regqgulator.

As the terminal time tf approaches infinity, the

discrete cost-functional of equation (2.15) becomes:

[x3'Q; + 2x3'M uy + u; 'R u,] (2.37)

where the terminal cost matrix F has been set equal to

zero. The optimal control law is given by:

k= -6 oxg*, 1= 0,1,2,. .. (2.38)
where
G=R7IM + [R+DPD]T DR
“ The matrix P is the steady-state solution
P = L&im P,

7 >

of the matrix Riccati equation (2.32) with the boundary

condition

Po=Py=0 (2.39)
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Since the feedback gain matrix is constant, the
closed Toop system is time-invariant. Substitution of

equation (2.36) into systems equation (2.13) yields

~i+l

m
(]
*

(2.40)

The steady state solution P exists and unique, provided
the discrete system is controllable. In general, P is
positive semidefinite, but if the system is also obser-

vable, then it is definite.

STABILITY OF THE TIME INVARIANT REGULATOR

>
Consider the closed loop system equation (2.38)

repeated here for convenience.

(2.41)

The optimal closed loop system is stable if absolute-
values of all the eigenvalues of ¢* matrix are less than

one, that is
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If the above inequality holds true for all J,
then it is said that the closed loop system is stable.
If, however, a single root is cequal to one in absolute
value, then the optimal closed loop system is marginal-
ly stable. If the absolute value of single complex
eigenvalue is exactly one, then this produces sustained
"oscillations" of angular frequency 2n/%T where T is the

sampling interval and ¢ is the angle of the root, i.e.,

(2.42)

This is also form of marginal st¥bility. In the case
that more than one eigenvalues are found to be equal to
one in absolute value then the stability of the system
is determined by the minimal polynomial. For stability
the minimal polynomial should not have multiple eigen-
values on the unit circle in the complex plane.
Instability may arise due to two factors:
1. The original open-loop system is unstable.
2. The unstable trajectories do not contribute
in any way .o.the performance index - in ‘a
sense, the unstable states are not observed
by the perfbrmance index.
If (1) and (2) is true, then there would be
grounds for supposing that the closed loop system would

be unstable.
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To ensure asymptotic stability of the closed-loop
system it is necessary to prevent the occurrence of (1)

and (2). In this thesis unstable open loop systems are
not considered. Thus the occurrence of (1) is avoided.
The performance index of equation (2.7a) was de-
fined in terms of output and then using output equation
(2.2) output y is expressed in terms of state x and the
equation (2.7b) was arrived at which is repeated here

for convenience,

I[x,stystesu(0)] = % X' (te) Q x(te)
1 e
+ oo L [xN(e)Q,x(t)  u(t)R u(t)] dt (2.43)
tO

where Q is chosen such that the pair [A,I] is observable

1

where is the matrix such that

1#

— L
gx - I’

Then, all trajectories will show up in the 5ng5 part of
performance index of equation (2.43). It ha§ been shown
'(7,8,9) that the above choice of Q, matrix ensures the
stability of the closed loop system. Thus, any potential-
1y unstable trajectories will be stabilized by the appli-

cation of feed-back control.
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CHAPTER 3

EFFECTS OF THE SAMPLING PERIOD ON THE
CLOSED LOOP SYSTEM'S PERFORMANCE

The design of optimal sampled data linear
tors described in the previous chapter depends parametri-
‘ca11y on the size of sampling interval T. If the samp-
1ing interval T is specified beforehand, then optimal
design associated with this value of T can be determined.
In practice, however, it might be desirable to work with
a range of acceptable values, or alternatively, with
qualitative criteria for T and some desired performance
characteristics for the overall closed-loop system. In
that case, knowledge for the parametric dependence of
the optimal solution on the sampling time T is required.
But the nonlinear nature of the Riccati equation forces
one to obtain solutions numerically for different values
of T, on a digital Eomputer. Then, based on the results
obtained in this manner, the sampling period which gives
the best performance can be chosen. But, this however
is a time consuming, and costly operation. Therefore,
it is of interest to obtain information on the effect

of the choice of T on the optimal-closed-loop system
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performance without actually solving numerically the
problem.

A rational way to study the performance of the sys-
tem with respect to the choice of sampling time is to
display the effect of T on certain characteristic quan=
tities, such as the optimal cost, the eigenvalues of the
closed loop system, etc. Since for each choice of T
there is an optimal cost J* associated with it then, the
optimal cost is a very good indicator of the systems
pefformance. It is then natural to choose it as a per-

‘formance criterion even though it depends on the initial
conditions. Ideally, it would be desirable to obtain

an analytical expression for the optimal cost as an ex-
plicit function of T and then inVes{igate the change of
J*¥ with T, i.e., evaluate 3J*%/3T with respect to T.

Since the optimal cost is given by
(3.1)

which is a highly nonlinear funcfion of T. The above
apprpaph does not yield a useful expression, because,
thelresu]ting expréssion for the derivative requires
more computational effqrt than the actual solution of
the problem. Alternatively, if the optimal cost (3.1)
is normalized with respéct to initial conditions, it is
then possible to obtain upper and lower bounds that are

independent of the initial state.
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It has been shown (2) that fomin{f} and Amax{P}

denotes the minimum and maximum eigenvalues of the sym-
metric positive semidefinite matrix P, then the following

inequality holds for all values of x other than zero.

For simplicity, the normalized ratio is denoted by

A J#E(T

1/2<kg 00>
so that equation (3.2) becomes

Apintld < 8(T) < Amax{%}
Numerical solutions showed that the cost increases very
slowly for small T, and for large T the curves become
straight lines., This fact is illustrated in Figure 3.1
'where curves A and B correspond to two sets of data.
Thisﬁimplies that there are two basic modes of behavior
of the systém,., The first mode, for small T, is essen-
tially similar to that of th'e optimal continuous system
and it exhibits fast oscillatory Fesponse. In the second
mode the effect of the feedback is to make all the closed-

loop eigenvalues real and negative; that is the optimal



system is overdamped.

In the

33

transition region between the

two modes each successive pair of eigenvalues becomes a

pair of negative real ones.

It can be concluded, there-

fore, that a satisfactory upper bound for design values

£ 7
. Max P | A (R}
Upper bound max =
PP Upper bound
&0 r hoO | ;
4o 40
2o} Lower bound =0 Lower bound
¢ Amin 2 Myin P
. . . A —mM -
..... — a2 s a4 5 & r “ 3 3 4 5 6 T
FIGURE 3.1. The normalized optimal cost as a function

of the sampling period.

of the sampling interval, such that the cost increase

remains small, is the smallest T for which all eigen-

values of the optimal closed-loop system become real.

On the other hand, T cannot be increased arbi-

trarily,

possiible value T can ta

where Amax

system matrix.

ke as,

Because Ny quist criteria determines the highest

(3.4)

is the largest eigenvilue of the continuous

It is possible now to derive results for

the eignevalues of P or equivalently eigenvalues of &x(T),
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fur small and large values of T, since finding an analy-

tic expression for them is almost impossible.

THE BEHAVIOR OF THE OPTIMAL TIME-INVARIANT SYSTEM FOR
SMALL T

If T is sufficiently small, i.e., terms 1in T2 or

higher can be neglected then equation (2.32) takes the
following form:

=T(CQC") + (I +AT)'(P p B T(RT

i+l T —je1 2 TMD2

+ TB'Pi,qBT)T'TB'P. 1} (1 + AT) (3.5)

This equation had been derived by Kleinman (8) to appro-
ximate the Riccati differential equation. Indeed, as T
goes to zero, the solution to the above equation approaches
the solution to the differential one and, at the 1imit,

the difference equation becomes the differential one. This
establishes the continuous feedback control law as the
limiting case of the optimal sampled-data control for

linear processes. This implies the following requirement

J*¥(0) < J*(T) ¥ T |0, (3.6)

where J#%(0) is the optimal cost associated with the con-

tinuous time regulator problem. Since continuous state
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feedback is the optimal control, it is reasonable to de-
cide that piecewise constant controls produce costs that
are larger than the optimal (minimum) cost of the con-
tinuous-time system. It can also be established that
J#(T) is monotonically nondecreasing with respect to T.
But it has been shown by Kalman, Ho and Narendra (4) that
such a statement, however is not always true. Because,
if the periodicity inherent in sampling at constant rate
is allowed to interact with the natural frequencies of
the open loop plant, then the resulting discrete system
,may not be controllable. Loss in controllability may
result in unbounded P and hence unbounded optimal cost
for a countable set of values of T. When the plant has
only real poles, then controllability is preserved for
all values of T unless it exceeds the value determined
by Nyguist criterion. In this case the optimal cost is
monotonically nondecr%asing with respect to T.

»
THE ‘ASYMPTOTIC BEHAVIOR OF THE OPTIMAL SYSTEM FOR LARGE T

The asymptotic behavior for large T is determined
as follows: ; .

First complete fesu1ts are presented for the first
order system then the results are generalized and the
form of the asymptote is related to the location and

multiplicity of the plant's eigenvalues.

Proofs are presented for two cases.



36

1. Single input, single output n'th order system,
2. Multiple input, multiple output n'th order

system.

THE FIRST ORDER SYSTEM WITH REAL EIGENVALUE

Consider the continuous plant defined by the

state equations:

X(t) = Ax(t) + u(t) t e|0,=) (3.7a)

x(o0) = X V (3.7b)

y(t) = x(t) (3.8)
A3

With the quadratic cost functional

Lo fax®(e) + ur(t)]at (3.9)
20
where the coefficients of u and u? have been suppressed
in eqhations (3.7a). and (3.9) without any loss of gene-
ra]iﬁy.

If the control ‘is piecewise constant, then appli-

cation of the discretization procedure of Chapter 2 gives

the first order discrete regulator problem
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Xip1 = X4 * dui s 1 =20,1,2, (3.10)
J[xO,O;w;u(= - .§ (qxi2+ 2mx ;U
i=0
b ouy?) (3.11)
where
o = el (3.12a)
d = L1 (rT 21y (3.12b)
A ‘

,Obviously, the scalar regulator problem is the simplest
one, and the Riccati-difference equation associated with

it can be solved analytically.

g =+ 9 (2T _qy (3.72c)
2
1 AT 2

m=L1a (AT _ 4 3.12d
7 2 ¢ ) ( )

- 1 el )

T O Ch I TULE MY PR

32 23

It is clear that ¢, d, q, m and r are all positive num-
bers. " The optimal.time varying feedback gain is given
as:

d P,

N B (3.13)

3 2
r+d Pi+1

(e
-
i1
"‘S)}g
+
D
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tion

_ ) -1
Ppo=x + 0 [Py =Py qd(redPy d)7HdPy 4] O (3.14)
with y and 6 is defined as
~ 2

y =q -0 (3.15a)
r

5 = ¢ - Nd (3.15b)
r

Solution of the Riccati equation (see Appendix C) is

then
oo Vier Yy
i A A (3.16)
i
where
Vi = — 10-le] eme(NTe
lo]!
(1-1e] e¥)ye {N-1)a
and 2
X
o ]+62+—-g—- .
a = cosh™! —m (3.17)
‘ 2{e]

[f the Timit is taken as the index i goes to -« the

steady state solution is obtained as

-

P = 2im P, = %(19[& -1) (3.18)

ir-w d
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This final result valid for all values of A,
contains in it all the informatiog on the behavior of
the steady state solution to the Riccati equation as a
function of the sampling period T. Although the result
is expressed simply, actual evaluation is impractical,
as it involves the nontrivial determination of a. For

this reason only the asymptotic behavior of P as t goes

to infinity is derived for the three distinct cases.

Case i A < 0
Case 1ii A= 0
Case iii A >0

Case (i) A < 0 Stable Plant.
Taking 1Timit as T » « in equation (3.12), it fol-

tows that for » less than zero

Cboo:O; doo=—l; (ioo-_:-_]_._g_
A 2 3
19 - q
m o= — = ; = (1 - T
® 2>\2 Y‘oo ( +>\2)
Yoo = -vl.q. . O = O
2 &

Since 6_ = 0, then it is obscrved from cquation (3.17)
as « goes to infinity, the product [0]e¢”™ is indeterminate.

This difficulty may be avoided by observing that
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a, . -o 1+8+12i
Cosha = &*¥& = I T (3.19)
2 210
and hence
2
le|e* - 1 = 92 + Y? - lole® (3.20)
r

Now for o » « and 6_ = 0, the right hand side be-

comes yd?/# and so

-

. imP(T) = 2im — (lole®:1) =y =- - & (3.21)
T Tox d? a
Case ii: A = 0 Simple Integrator
It can be shown that
- R 1
¢ =1 35d=T3:;§¢=29T 5 m= 5 AT 3

" 1
F =T+ - qT?
3 q

and taking the limit as T goes to infinity
1 ' 1
e:-___; =
o 5 Yo

Therefore, form equation (3.17), cosha is equal to 2, and

e® = 2 + /3, and as a consequence of the above results,

P(T) = —— qT for X = 0 and large T (3.22)
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Case iii: A > O Unstable Plant

Since the fundamental solution to this system is
the growing exponential, only the dominant terms in
equation (3.12) are retained in determining the asympto-

tic behavior for large T.

eAT
o, = -1, Y, = (g + A%)T, d, = — ,
4 )\
roo q eZAT
2)2
S0 that ®
2
cosho = A (1 + 5~)T , e% = 2cosha for large T
q
and
P(T) = (g + A*)T ~ (3.22)

The above results show that the optimal cost
approaches a constant value for stable plants, and it is
proportional to sampling period T for plants with a non-
negative eigenvalue; the slope of the asymptote depends
on g and A. In Figures 3.2 and 3.3 below numerical re-
sults that are obtained through a general digital com-
puter algorithm' are illustrated to demonstrate the proper-
ties of the first order-system.

For T = 0, the optimum cost of the system may be

computed from the equation (5) below:
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1o T 112_34 -+

FIGURE 2.3. \ FIGURE 3.3

.....

Optimal Normalized Cost Curves for the First Order Systems.
A'P+PA-PBRIB'P+Q=0 (3.23)
*This is known as the algebraic Riccati equation (ARE), and
for the first order plant all of the above matrix quan-

tities become scalars. For the problem under considera-

tion the equation (3.23) reduces to
P2 - 2P - 1 = 0 (3.24)
The solution to this equation is given by
P =2+ (A2 + 1)% (3.25)

where the larger root is selected since P must be posi-

tive,



THE SINGLE-INPUT, SINGLE OUTPUT n-th ORDER SYSTEM

Consider the following single input, single out-
put n'th order system whose eigenvalues are all distinct

and negative real.

g(t) = A x(t) + b u(t) (3.26a)
x(0) = x(t,) (3.26b)
y = ¢' x(t) | (3.27)

@

with a cost functional
F 2 [T Tay?(t) + u?(t)|dt (3.28)

To simplify the results, the above system is assumed to
be in control canonical form, and will be put into dia-

gonal form through use of the similarity transformation.

N
P
ot
g
It
|=
IN
—
o+
o
+
=
(¥~d
o
(-+
N

(3.29a)
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z(o) = T7'x(0) (:3.29b)

y =¢'T z(t) (3.30)

T-!'b and T is the Vandermonde

where A = TT'A T, h

matrix associated with the companion matrix A. With the

change of variables the cost functional takes the fol-
lTowing form

J7 laz' (8)Tre ¢'T z(t) + y*(t)]dt  (3.31)

ro [

Since ¢' = [1,0,...,0], the weighting matrix T'c ¢'T

reduces to an nxn matrix with elements all equal unity,

[m
il
-
o
)
=
D
]

1 for all 1,]

The discrete system matrices are obtained using

the equations (2.9), (2.10) and (2.12) of Chapter 2 as

o =efT D=y howhere y=at(ed T
A+ )T
6 S e( ! J) -]
= q N 51 = . .
-~ - J ¥i,J
M=aq(s. -y E) A™'h (3.32)

Po= T+ Qh'A™(S-yp E-E y+TE)A" h (3.33)
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Taking limits as T goes to infinity, and since

cigenvalues of the system are all negative real and dis-
AT

tinct from each other it is observed that e— = 0.
Thus:
=0 ; D = - An

—00 — —C0 — ——

N . 1

Q. =49 S where S = -

AL HA
1
1 1 .

mijlm = q — for 3 = 1; 1 = 1,2,...,n

where mijlwrepresents the i,j'th element of M matrix

evaluated for T large.

-~

tF= (1 +qh'L h)T + Constant

0

where

1., = Vi3

- As a consequence of the presence of T in th. expression
for ¥ _, the terms that modify ¢ and Q in equations (2.24)
and (2.30) of chapter 2 tend to zero as T goes to infi-

nity, and therefore,

1l
o
-
~
I
1o

Finally, from the Riccati equation (2.34b)



gim P(T) =T = Q
T..yuu

(3.34a)
e (T) < A, (0.} (3.34b)

Equation (3.34b) shows that all possible normalized opti=-

mal cost curves lie between zero and A tQ_ 1 where Mmax

max
denotes the maximum eigenvalue of é matrix when T is
large.

The same type of argument maybe used to extend
the Tast result to include the case of multiple negative

,real eignevalues. In this case the system is transfor-

med to its Jordan canonical form and the matrix exponen-
tial has terms of the form tvehit where v is integer re-
lated to the multiplicity of the i'th root. But, since
the system under consideration has only negative real

eigenvalues, that is
A. <0 for all i; i = 1,2,...,n-Vv

and, since the decaying exponential is the dominant fac-
tor for large t, it follows that & = 0. The final re-
sult reduces again to equation (3.16), where the elements

of Q. are rational functions of the eigenvalues of the

system matrix A.
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GENERAL BEHAVIOR OF THE ASYMPTOTE OF THE OPTIMAL COST

In order to generalize the result of the pre-
vious section, consider a single state system, i.e.,
a system where the index i takes only the zero value.

Then the cost functional of equation (2.11) reduces to

oo

= ] ¢ ¥ L
Jo = > (x5'Q x5 * 2x,'Mus + u 'R u (3.35)

o)
where the terminal cost matrix has been set equal to

zero. The weighting matrices are computed directly from
their defining integrals (2.12b) through (2.12d) evaluated
between to and te. Since, te - t, is the interval of
definition of the system and is equal to a single samp-
ling period T, and since at the same time the terminal
cost - in this case P] - is zero, then from equation

(2.33)

(3.36)

and if this value of optimal control is substituted into
equation (2.8) the optimal discrete-time system is ob-

tained as

=i+]

e

In equation (2.34) ¢ - D R™'M' was defined as 6, thus
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(3.37)

Equation (3.18) is substituted into the cost functional

of equation (3.17) to yield

‘then,
J =1y vy (3.38)
0 2 =0 = =0
Now if the terminal time tf is made infinite, then
gimd. =L x ' s (3.39)
0 2 S0 = 0 :
tf+w

Fquation (3.39) describes the general form of the asymp-
totic behavior of the optimal cost for large T. In the
special case in which the eigenvalues of the system are
negative real, T ~is approximately equal to ém, since

ﬁ'l is inversely proportional to T and M attains a con-
stant value., This implies that optimal control is a

step function whose magnitude is also inversely propor-
tional to T. This can be observed from equation-(3.18)

where the feedback gain is,
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G =~ RN (3.40)

Hence at the 1imit the gain of controller becomés zero,
and the optimal cost, evaluated directly from equation

(2.7b) ofr u = 0, is given by

1. e At . At
Jo = 7 %o Of e-=" C Q C' e~" dt Xg
=Llxig «x (3.41)
2 20 2 Zo .

It is obvious from the above derivations that if
the plant matrix has any zero eigenvalue, i.e., A is
singular, then the integrals involving matrix exponentials
can not be expressed in terms of A”!.,

Furthermore, as can be deduced from the results
of the derivation for the asymptotic behavior
of the first order system, the matrix ¢ apparently does
not go to zero for large T, and the optimal cost does
not approach a constant value, but is approaches infinity
as a function of T. For this reason it is necessary

to establish a second approach for the asymptotic be-

havjok of plants with zero eigenvalues,

ASYMPTOTIC BEHAVIOR OF THE MULTIPLE INPUT MULTIPLE OUT-
PUT SYSTEMS FOR LARGE T

a) A system with zero eigenvalues of multiplicity n:
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Consider the n'th order system in its Jordan

canonical form:

Camny
P
g
]
[—
[
—
|3
{—
IN
—~~
A
+
_.'
I
—
(Reo)
|e=
L
P
N

t
= A x(t) * H u(t) (3.42a)

i}
|
]
I
——
o
g

z(o) (3.42b)

3= T IOl 2(t) + u(B)R w(t)]dt (3.43)

where
[0 1 0]
001 ...0
A= L = T'C QL' with elements 1
: L=T'CQC
o
0

ﬁs stated in the previous section- -the optimal cost as T

goes to infinity is given by

£im J = 0 T,

X
T-—boo

%o

| —

It was established that I' is at least positive semide-

finite; this implies that

> M RN ¥1

FfoR

Let the matrix Q, be given by
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t A't

9, = oF et L el

at (3.44)

where the elements of the matrix exponential of At are

0 when i > §
Y.a(t) ‘s
I ! when i < (3.45a)
(J-1):
and the elements of its transpose are

»

. 0 when i < j
Ppl.a(t) = C .
1] t1 J . .
s when i > J
(1-3)-
= vyq(t) (3.45b)

The inegrand of equation for Q0 (3.21) is a positive semi-
definite matrix with its i,j'th element given by
i3 L (i+d)=(vem)

Integrand Q(i,j) = =& z &wl (3.46)
: v=1 u=1 "(i=v)i(j-n):

,This:expression for the (i,j)th element of go matrix is

derived as follows:

(i,h)th element of the matrix that result from
the multiplication of three matrices A, B and C is given

by
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Result (i,h) = (i,h)th element of A B C

m r
NERALLF "k kn

where A, B and C are (nxm), (mxr) and (rxp) dimensional
matrices respectively.
If this formula isfapp1ied to the problem under

consideration, the result will be of the form

Result = X z Pi. 2 (/I
v=1 y=1 VoV THd
IR T AP (3.47)

v=1 u=1]

But, on the other hand,

L i-v
vi a8t for i > v
(i-v).
so v can take at most the value equal to i whenever the

¥ value is nonzero as indicated by equation (3.45a). In

the same manner

A ti'u
(j-n):

] for j >

uJ
that is; p can take at most the value of j as indicated

by equation (3.45b) whenever the ¢ value is nonzero.

Then,



53

T L i*d-v-u
(t)dt = /7 £ I 8, -
i 0o wv=1 p=1 (i=v)!(j=u)!

Interchanging the operations of summation and integration,

the above equation becomes

T i J T pi+d-v-u
S Q; .(t)dt = I L R J dt
o v=l u=1 " o (i-v)!(J-u)!
If the required integration is performed, then
. i J T(1'+J'-v-u+1)
Qo .(T) = Z z g’vu . . ()
1, v=1 u=1 (1=v)i(J=u):(i+j=v=u+1)
and i, = 1,2,...5 1 (3.48)

In a manner éxactly analogous to the procedure above the

(i,j)th elements oflﬂ and é matrices can be found. These terms

are required for the eya]uation of the asymptotic beha-

vior of I matrix. In this case however, in each of the

matrices M and ﬁ the integral of eﬁf'-is involved.
Hence,
: [ s
T 0 for i>j
Fovgg(tddt = 0 g ‘ .
Y for 1 < J (3.49a)
. L(J=1)1(3-i+1)
and
-
L . 0 for i < j
é y 13(t) dt MEREY
| for i > j (3.49b)

(i=3) (i-j+1):
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Recalling that M matrix is of the form M = M, - H where

matrix M] matrix is given by

T T
M, = ﬁ vyi(t) L [ﬁ _uiij(s)ds]dt (3.50)

or

i J t(i+j'v'“+1)
IE Ry, — dt
= (i=v){J-u) i (j-v-u+l)

0

Interchanging the operations of summation and integration, -
and, performing the integration yields
T(i+j-v-u+2)

My, (M) =
i,J v

o1
—
0 ™G

2
p=1l VM (i) P (Gmu) (Jepu ) (F+f-ve-u+2)

[ e
<. e
1] il
— —

“ -
N n
w -

- -
>3 =

(3.51)

Following the same procedure for the(i,j)th element of

L3 matrix, the following expression is obtained:

i Ji T(i+j'V'“+3)
B]. .(T) = % X
1,3 v=l u=1  (i=v)i(J~u): (i-v+1)(j-u+1)(i+j-v-u+3)
and
1,5 = 1,25...,0 (3.52)

Ry matrix will be used in the evaluation of i matrix
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defined by
- : T t ) t .
R=t'" s {[r ed'Sdas] L [s efS ds] dt H+ TR
- T o ) o
R= H'RH + TR (3.58)

In each of the above matrices éo’ M; and Ry, the highest
power is 2n-~1 and occurs when i = j = n and v =u = 1.
This largest power appears in the lowest diagonal ele-
ments of those matrices since all other terms ;re poly~-
nomials of Tower degree in T, the trace Q, is also a
polynomial of degree (2n-1) while the trace of M E‘IM'
is a polynomial of degree at most 2n-1 or less. Since

T iE positive semidefinite matrix, it follows that the

trace of the difference
f(T) = trace Q, - trace(M R™'M')

1sﬁnonnegat1ye for all T. The resulting po1ynom1a17in T
mugt be at most of degree 2n-1, and, furthermore, the
coefficient of the highest power present must be posi-
tive. If this were not the case, then, for very large

T it would be possible for the polynomial to attain nega-
tive values, thus leading to a contradiction to the as-
sumption of semidefiniteness. Since the highest eigen- -
value must be given by a polynomial of the same degree

with the trace; it follows that



56

2n-1

Amax{QO} = q(q2n~1T +..t+ao) > A {T'} (3.54)

max == -

_Evaldation of the go matrix for v =u =1 and i = jJ = n
yields
0, (T) L (3.55)
T) = & .
, %n,n T T(n=1)1)2(2n-1)

a$ the (n,n)th element of this matrix.

It is further required to post multiply M,
by H in order to obtain the M matrix and premultiply Ry
by H' and post multiply by H to obtain the é matrix

where the (i,j)th element of M matrix is,

n {i=],2,...,n ‘
Mi,J(T) = k§1 m]'ikhkj and j=1 ’2’...’r (3.56)
If ﬁhe above multiplication is carried out each element
of ihe~ﬂ métrix can still be expressed as a polynomial
in f. Recalling that the elements of M, matrix were also

a polynomial in T and H is a matrix of constants and thg

highest power of T appears when v =y = 1, then

M (f) = % rid (3.57)
LI TGy (G- L(1%9) 5 '

and elements of M matrix can be obtained from:
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n T1'+k
M, (T) = ¢ & . h, .
1, k=1 T (1) i (k=T) (k) g K9
where T3 1,200
i=1.2,...,n ' (3.58)
Power of T 1s maximum when k = n, hence
. T'i+n

M (i-1)1(n-1) In(i+n)

In;%his apprpkimation it is assumed that the térms having
smé11er powe?s of T can be negTected. since only the asymp-~
,;giic behaviér of the M matrix is required when T is :
1;rge. Cogfficients of T terms become smaller as v and
U are increased so approximation holds always true. |

| Similarly, the (i,j)th element of 51 matrix can
be approximated, using the approximated form of equation

(3.52)

T1’+j+1
P=1)0(3=-1)i.3(i+j+1)

Ry (T) = ey (

=1, «..sn
and

J=1, «..sn (3.60)
,and_é is obtained as follows if the required multipli-

cations are carried out

Ry .(T) = T L h'a v h BILimsgL
i, S,z ik Tka "2 ARASTIRM A wi EKN1K
=1 2 RMA KURUMY:
KUTUPHANES)
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n n Tk+2.+]
= z Y h,o:h, .2
k=1 2=1 KR enyi(e-1) thoa(kere1)

when k = £ = n, then

- - (2n+1)
. . = 4 . .
Ri,i(T) = Zpbpihp; [(n-1)']%n2(2n+1)

(3.61)

It is obvious from the above expression that the inverse

of the E matrix is of the form
R = g roient) (3.62)

where the elements of g matrix are given by

%47 h . h_.
By = 11 _ni nj i, = 1,250 (3.63)
b n2[(n-1)!]2%(2n+1)

13

A1l of the above approximations are made to obtain a
simple approximate form for matrix.gé'fﬂ' when T is

large.
Using equations (3.55), (3.59) and (3.61) the’

(i,j)th element of_ﬂéf{ﬂ' is obtained as

- r r
-1Mm! ‘= -l 1
MM 7 ) G E) Mk Pl My
r r . i=1,2,...,5n
= I X m.,m.,P". where
k=1 2=1 1k JL k2 521,25 .50
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r r T'I+n
= I I fyqhgy :
R=1 2=1 (jrl)!(nwl);n(1+n)
(j+n) N
2qqh L el (3.64)

N (5=1)1(n=1)'n(i+n)

Since only the Towest diagonal element of the M E"ﬂ'

matrix is required; that is i = j = n, then

4n

-- rroa T -(2n+1)
MR M' (T)= I I &,h_h Bt T
(
ey 1(2n-1) o
D E] 211hnkhn Be (3.65)

k=1

[(n-1)!]"4n"

If these last results are substitued into equation

(2.30), then

E*(T) < Trace{ls} =

1
[(n=1):]2(2n-1)

2
r r 2]1 hnk h

. op oz A nk nj Brs 2n-1 (3.66)
k=1 j=1 [(n-1)!]%4n*

which clearly shows that the asymptotic behavior of the
normalized optimal cost £*%(T) of equation (3.3) is de-

termined by the (2n-1)st power of sampling period T for
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systems with n'th order eigenvalue at the origin,

b) A system with both negative and zero eigen-

values

Up to now investigation was made when the
systems eigenvalues are all zero.
In general; a stable system contains both nega-
tive real and zero eigenvalues. In such cases the A
matrix will contain two blocks one associated with zero
eigeﬁvalues of multiplicity v and the other associated
with the negative real eigenvalues if the states are

arranged suitably. That is,

Ay Il 0 where Ajq is a (vxv) matrix
A = .____.{___
- 0 _4y and A,, is a (n-v) by (n-v)
matrix

In the previous sections it was found that [ _
matrix determines the asymptotic behavior of the optimal
cost. On the other hand T, matrix requires the evaluation of
.6. M, ﬁ matrices for large T. But each of these matrices
involves exp At ipn their defining integrals.

| Elements of exponential At can be found as given

below

{

exp At = exp :il—4~——:— t
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i,j'th element of exp A,

11 0 1>
I LR S AL T
(3-1): B

and i,J = 1,2,...,v.

w%g(t) = i,j'th element of exp Azzt =
J otherwise
0 otherwise

As obyvious from the expression for the i,j'th element of
exp Ay,t matrix, for large T exp A,,t becomes a null
matrix. Then it is only the A, part that determines

~ the asymptote. If é, M and E are partitioned as A were,

then
S ALY R I FLAT Y B KSR L S AT
- = -l M1 . -1t
To1if22] |Q211%22 | ~[(MBT*M')pq | (MRTIM')p,

It is then f]] that determines the asymptotic behavior -

of Ex(T)

= - ."1
Ty = Oy - URTTMT) g
Since this part corresponds to the zero eigenvalue of mul-
tiplicity v the result will be the same as the result

of the previous section with the appropriate change of
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dimensions as given below

X

2 r r B . .
£5(T) < { i -z aighh, — yr2v-]
[(v-1)!]2(2v-1) k=1 j=1 [(v-1)']"%4v"
(3.67)
and
L h : h
= 11 vV Ts = 1325000,

B3
V2 (v=1) 2 (2v+1)
PLANTS WITH COMPLEX EIGENVALUES

In the previous sections, all the n'th order
plants that were considered could be decomposed into
.n=-first order systems in cascade using only real coef-
ficients. For this reason, their asymptotic behavior
was essentially a generalization of that of the scalar
one. The introduction of complex conjugate roots, how-
ever changes the behdvior. Since loss of controllability
is possible, it is the sampling periods for which the
system is not controllable that are of interest rather .
than the asymptotic behavior. |

" The following theorem on the preservation of

controllability in the presence of sampling is due to
Kalman, Ho and Narendra (4). |

THEOREM:

Let the continuous time-invariant system be com-

pleté]y controllable. Then the time invariant discrete
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time system is completely controllable if:

Im (i g(A) = Aj(A)Y # %? . (3.68)
whenever
Re =(a;(A) = Aj(A)} = O

Therefore sampling ' period T should not be

equal to Tk’ where

=i, n-sl,x2,. (3.69)
w

and
W, = Im [Ak] (3.70)



64

CHAPTER 4

OVERALL PACKAGE PROGRAM

~ In the subsequent paragraphs some salient features
of the digital computer simulation for the application of
the theory developed in the previous chapters are dis-
cussed. _ .
' The existing algorithm can hand}e up to tenth
order systems and by a simple modification of the dimen-
sioning statements it can be made to handle higher order
systems, the only limitation being the size of the sto-
rage of the digital computer. :
The computer programs are written in FORTRAN IV
language and has been tested on the UNIVAC-1106. \
For a given sét of input data, i.e., matrices

. B, C, Q, R and F, the corresponding matrices ¢, D,

L B -

3

Q, M and R of the discrete time optimization problem are
coméuted. | “
There are various error tolerances within the
program, which determine the accuracy of the final re-~
_sults. The only one need be specified as an input data
is for the computation 9f the roots of an n'th order |

polynomial. Others are specified with the DATA declara-



tion and if necessary they can be changed easily. Com-
putation of the matrices ¢, D, é, M and é requires the
sampling period T be known, beforehand. If the sampling
period is specified apriori as an input data, computa-
tion of sampling interval is skipped. Otherwise, re-
sults of Chapter 3 are used to compute the sampling
period. For the givén or computed value of T it is pos-
sible to obtain the above matrices. Availability of
these matrices permits the iterative solution of the
Riccati Equation. Although the Riccati equatioh is non-
linear in nature a direct iterative algorithm can be
used successfully, because the coefficient ‘matrices are
constant. The program can handle both infinite-time

and finite time regulator problems. In the former case
Riccati Equation is solved until a steady-state is
reached. On the other hand, for the latter case the se-
quence of {P.}; i = N,N-1,...,1,0 are obtained as a so-
lution of the Riccati Difference Equation (R.D.E.). These
solutions are then used to evaluate the matrix of feed-
back gains and thus control vectors and the results are
printed out at each iteration.

Finally, the closed loop system matrix and then
states are computed within the time interval of interest
and are plotted to illustrate the behavior of states as
a function of time.

The simplified flow chart of the algorithm is

given below:
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The program comprises mainly fwo parts. The
first one is the MAIN program itself and exercises over-
all control of the program: The DATA read in and then by
means of various CALL statements the necessary computa-
tidns shown in the flow-chart are performed.

‘The second part consists of the following SUB-
ROUTINES:

1. SUBROUTINE STABIL 2. SUBROUTINE EIGEN

3. SUBROUTINE INTBSR 4. SUBROUTINE DISCO

5. SUBROUTINE EVOINT 6. SUBROUTINE SIMFOR

7. SUBROUTINE PICATI 8. SUBROUTINE INVERS

9. SUBROUTINE CONTR 10. SUBROUTINE OBSERV

11.  SUBROUTINE RANKT 12. SUBROUTINE SAMPLE

13. SUBROUTINE DEFNIT 14. SUBROUTINE MULTIQ

15. SUBROUTINE SIFIR 16. SUBROUTINE TRANS -
17. SUBROUTINE LOADM 18. SUBROUTINE SUBTRT

19. . SUBROUTINE DEVRET 20. SUBROUTINE CIZERO

21. ~ SUBROUTINE TOPLA
" Among these SUBROUTINEs, MULTIQ, SIFIR, TRANS,
LOAbM, SUBTRT, DEVRET, CIZERO, TOPLA are self exp1an§-
tori, but others\need be explained.
1. éUBROUTINE STABIL
Stability of both continuous and discrete
systems are tested by‘this subroutine.
Investigation of stability for cdntinuous (dis-
crete) systems is through the calculation of the eigen-

values of the matrix A(2). A condition for stability
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requires that the absolute values of all the eigenvalues
of the system matrix A(g) be Tess than zero (1ess‘thén
one) i.e.,

For continuous systems:
CAs{A}] <0 for all i: i =1,2,...,n
For discrete systems:

[a;ied] <1 for all i: i =1,2,...,n

Subroutine STABIL calls the subroutine EIGEN for;the
computation of the eigenvalues of the systemAmatrix.
Parameters of SUBROUTINE STABTL are:

A1, N. and JDORC
Al is the nxn matrix which determines the stability of
“the systen.

N is the order of the system.
JDORC specifies whether the stability is inQestigated

for discrete or continuous systems. If JDORC is set to

~ one stability is checked for discrete systems, if two

for continuous systems.
2. SUBROUTINE EIGEN
This subroutine first evaluates the coeffi-
cients of the characteristic polynomial of the giVen

matrix Al. That is

FA) =AM - P}A"" - sz“'z - ... =P
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Pi's are computed for all i, i = 1,2,...,n.

The algorithm used is due to Frame (11). Using
these coefficients then, root finding routine ROOTCP is
used to obtain the roots of the characteristic polynomial.

Parametets of SUBROUTINE EIGEN are as follows.
AT,N,A,XR,KMAX,EPS,Jddd

where Al is nxn matrix whose eigenvalues will be found.

N is the dimesion of the Al matrix (Equivalently
the order of the system) . |
. A is a complex array which contains the coef-
ficients of the characteristic polynomial.
" XR is the array of the roots of the characteris-
tiéjpo]ynomigﬂ. It is also complex.
“ KMAX “is the maximum number of iterations during
the solution of the i'th root. ;
EPS specified "error tolerance" for the i'th root,
i.e., the absolute value of the difference between the
- exact value of the root and the calculated one should
be less than or equal to EPS using the maximum number

of iterations KMAX.

Finally, JJJ is used to skip the WRITE statements
if set equal to one.
With subroutine EIGEN it is possible to obtain

real eigenvalues, complex conjugate eigenvales, and the
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zero eigen&alues of multiplicity v(NU).

3. SUBROUTINE INTBSR (Integration by Simpson Rule)

Subroutine INTBSR is used to calculate the
matriceslé, M and é given by equations (2.12b), (2.12c)
and (2.12d) respectively. Each of these matrices invol-
ves matrix exponentials in their integrands. Integrals
of these matrices can be expressed in terms of the in-
verse of the system matrix A. But in the case that A
is singular, i.e., if one or more eigenvalues of A are
zero, than inverse of A does not exist. Hence, the pro-
posed method does not have practical importance. In-
stead, somewhat indirect but more satisfactory approach
is chosen for the evaluation of the integrals at hand.
Sinéé integrands of the three integrals are functions
of time. it 15 possible to find on a digital computer
then, points satisfy1ng these functions for a given point
on th time ax;s. Then these points are used to extra-
pola;e the funétion of the integrand with a simple func-
tion so that the area under this new curve be easily ob-
tained. For the problem at hand the parabola is used as
an extrapolating function. This.is the so called Simpson

Rule (15) and expressed mathematically és
I(f) = s = 272 [¢(a) + 4F(22) + £(b)] (4.1)
‘ 6 2

where I(f) is the integral of the function f and (b-a)
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is the interval of integration.

The rule however for the estimation of the in-
tegral [ = f‘b f(t)dt will usually not produce sufficient- -
1y accurateaestimatés especially when the interval is
reasonably large. Therefore, the given interval is sub-
divided into N smaller intervals and then the above rule

’ is applied to these intervals. That is

Nty ts
I(F) = I £ f(t)dt= I(g) =L/ ' P,  (t)dt
=1ty . tis
, (4.2)

Interval of integr&tion is the sampling period
for equations (2.12b) through (2.12d). Subdividing this
period into N intervalg requires the selection of appro-
priéte step size. It is suggestéd (16) that it wi11~bg
sat%sfactory to Choose a step size as one tenth of the
‘minimum time constant available in the‘system. Because
of the forms of the integrands powers of expdnentia]

terms could be at most 2x . Thus, as a step size one

X"

twenty-fifth of a minimum time constant isrchosen. For

this case the Simpson formula changes as

o . - ‘ -~ N

§_N=E—‘f_°+fN+§f.+4§ (4.3)
If the equation (4.3) is applied to perform the

integrations given by equations (2.12b), (2.12c) and
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(2.12d),‘the functions of fi's become matrix functions
“of time. For each time poiht the entire matrix is eva-
Juated by means of subroutine DISCO and finally the abovel
formula has been agplied to get the required qitrices. §”bf o

routine INTBSR calls the followind subroutines durina the course o
computation. - o

They are respectively,
a. SUBROUTINE EVOINT (Evaluates integrand)
b. SUBROUTINE TOPLA

c. SUBROUTINE LOADM
d. SUBROUTINE SIFIR

e. SUBROUTINE MULTIQ
f. SUBROUTINE SIMFOR
Parameters of SUBROUTINE INTBSR "are

T =~ sampliﬁg period -~

3';; R matrix (Dimension rxr)
;K?; r dimension of R matrix
Q - Q matrix

Al - system matrix

A}

KONTRL: When set to one 6 matrix,v when 2 M

S . -matrix and finally when 3 R matrix is found.

SUBROUTINE DISCO:

This subroutine is used to evaluate the matrices
AT
al

;
s D= s eRt.pogt
[s]

o =

There are many algorithms for the evaluation of these
matrices but 1nﬁsubroutine DISCO the method of Liou (10)
in which the exp AT is approximated by the truncated



74

Taylor series is used. Number of terms in the series
is increased starting from 10 until the elements of @
(thus D) matrix becomes sufficiently accurate.

Except for the discretization of continuous sys-
tem the subroutine DISCO is referenced by subroutine ,’
INTBSR via subroutine EVOINT. Therefore, following coh-

trol is essential to avoid unnecessary computations

o: CONTINUE

Return with éﬁT

lCompute'
' Integ, (A)

:
| Return with [ eRtat

0

Yes At

B dt

—

T
"Return with D = [ e
0

Output

|

_RETURN



. found by subrout1ne RICATI.

'ﬁ“ffﬁ])75 »

Parameters of‘subroutine DISCO.
A1 (nxn) system matrix.
:Bb (nxm) input matrix
o N:n
Mem
E T‘:sampling period

NW: function of NW showndin,the floﬁchart above:

SUBROUTINE EVOINT

Subrout1ne EVOINT is referenced only by SUBRQU-

TINE INTBSE and 'is used to evaluate the integrand for

a g1ven p01nt Required 1nformat1on is supplied to sub-

:routine EVOINT by subroutine DISCO.

SUBROUTINE SIMFOR

App11es the S1mpson formu]a to the p01nts found L

~only. by subrout1ne INTBSR.

SUBROUTINE INVERS: |

inVerts tﬁe given squafeumatfgi and finds’afsb £

” method with “the maximum vaot strategy

SUBROUTINE”RICATI

So]ution to the R1ccati difference equatlon 1s

.

by subroutine EVOINT as adapted to matrices. Reierenced  ,_;9‘ 

“the determinant using- Gauss- -Jordan complete e11m1nat1onkgyfﬁ »
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Calculation of the coefficients of Riccati .

. equation a]so takes place in this subroutine. Subroutine
Riccati checks first whether the final cost matrix 15
zero. If so, the Riccati equation is so]ved until a
steédy state solution is obtained. Iterat1on stops when »
the least squre error between the results of two conse-
.cutive‘iteratibn is less than the specified error tole- \

" rance. Otherwise, continue un;i] this limit is reached.

If final cost matrix is not zero subroutine
Riccati so1vgs iteratively backwara in time the nonlinear
Riccati difference equation, and sequence of solution

‘matrices is obtained associated with the finite time

rggulator problem, |
: Then, matrix of feedback ga1ns, control vectors,
and state vectors are calculated and printed out at

each iteration. In the case of finite time regulator

problem, feedback gain matrices are time varying.

-

R, ¥, Q, ¢ and D matrices along with the final
time IFT and final cost matrix S should be supplied to

'v7~;5ubrqutine Riccati.
| SUBROUTINE CONTR

Is used to check whether the system under consi=-

deration is controllable. Cond1t1on for complete cnn~  
trollability requires that A pair of constant matrices

|A,B| with F (nxn) and G(nxr) is of rank n, that is




~The above augmented matrix is of dimension~(ﬁxnr):fjv‘,

SUBROUTINE CONTR
‘ 'Reférences 3 more subrodtines, subroutine INVERSS
subroutine.RANKT and subrout{ne DEVRET.
SUBROUTINE OBSERY

Is used to test if the system is obseryable
through searching the rank of the matrix pair"f

4
1

[C Al

where ﬁ (mxn) and F (nxn) dimensional, that is

Rank [C A C'

The augmented matrix is obviously (nxnm) dimensional.

'SUBROUTINE RANKT

Tests the rank of an (nxm)'matrix‘applying Géuss?i’L?
elimination method. After elimination, number of non-

zero rows (columns) gives the rank.

- - SUBROUTINE DEFNIT

With the application of Sylvester's expansion
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theorem, subroutine DEFNIT checks whether the (nxn)
square matrix positive definite, positive semidefinite

or neither.

SUBROUTINE MULTIQ - Multiplies two matrices. -

SUBROUTINE SIFIR - Sets initially a]] the e1ements

of the given matrix to zero. . ~

SUBROUTINE TRANS - Transposes the given matrix.‘

SUBROUTINE LOADM - Transfers the constants of

one matrix into another.

S

SUBROUTINE SUBTRT - Subtracts one matrix from.
the other.

SUBROUTINE DEVRET - Constants of one matrix

is transferréd to the other with subscript,~i.e‘,~£i;r S ??ﬁff.

SUBROUTINE CIZERO - Checks if the given matrix

is a null matrix.

~ SUBROUTINE TOPLA - Adds two matrices.
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CHAPTER 5

CONCLUSTONS

This study covers the design of the optimum
ek.sampledjdata regulators for linear, iime_invariant, com-‘
pletely observable and controllable plants through'thé‘
use of the discrete minimum principle. The ferm sampTed~‘
data describes the sampling operation betﬁeen the plant
and the controller, where the states have been sampled
with a fixed rate and then transformed into a piece-wise
constant form.by means of a data hold process. The use

of a pieve-wise constant inputs and the minimization ofﬁl'
quadrhtic cosfjfunctiona1 which has been considered as

a performance measure, resu]t in a sub-optimal control

4

Vrscheme. )

Since, the performance of the system is affected
by samb]ing, more emphasis has been given to the effects
of samp]ihg on the system‘s behaviorrand as consequence‘
‘fd1fferent costs have been observed for different samp11ng

‘1nterva1s. In addition analytical express1ons have been

'_der1ved for the behav1or of- norma11zed cost as a funct1on

of samp]ing period T

This s tudy covers also the development of a com- ~



80

puter algorithm for the selection of sampling-interval

T which gives the best system performance and for the
complete design of the sampled data regulator using this
sampling~-interval.

The design of the regulator starts with the
evaluation of the eigenvalues of the continuous system
matrix A. If the eigenvalues are all real, then it 1is
multiplicity of non-negative roots that determines the
behavior of the system's performance as a function of
sampling period T. In the case of the existence of
complex conjugate eigenvalues the location of the ima=-
ginary part of the complex roots determibes the sequenCé/
of critical values of T for which the discrete system
may not be controllable. These values of samp]ing-i'
interval are given as

T © Lt =n—-L _ andn = +1, +2,...

'wk, Im(ak)

If the statement of problem specifies the sampling
period or a nafrow range for it, then the optima’ system
assoéiated with the given sampling rate can be designed
if ahd only if the given sampling-interval is less than
the smallest period for which the system may not be con-

trollable, i.e.,

Te (O’Tkmin)



81

If the specified value of T is in between the
two successive Tk's which are widely spaced from each
other, then an optimal design is feasible though sel-
dom praCtica1. If T is very near any of the values of
Tk, then further investigation is made to establish con-
trollability. If for Tk the system is not controllable, -
then an optimal design is not possible.

If the sampling period is not specified or if
its range is large, then maximum value of T is deter-

mined , i.e.,

The best range for T is then

T e (0, aTmax) ;
To estab]ish the incne;se of the optimal cost with in-
creaging T}Jthree values of o has been chosen (a = .5,
.f5§:.9) in tge computer algorithm and the normalized
cost associated with each T, haé beeﬁ determined. Then
on the basis of this information and on the basié of
trade-off between increasing the sampling period and de-
creasing the cost, a good choice of T has been madel

It should also be noted that the stability of the dis-
crete system ha§ been taken into account for the choice

of sampling period T.



ﬁ‘more, in this study, the effects of chang1ng samp11ng

7 va]ues as a performance cr1ter1a to study the effects

1f the A matrix has on?y real roots, then the
opt1ma1 cost curve behaves asymptot1ca11y as TZV 1',
where v is the highest multiplicity of zero roots.
Then, based on the information got from the normalized
optimal cost a good choice of T has been made.

| OnCeﬁfthe value of sampling beriod is selected,

the computer algorithm is then determines numerically
the comp1ete opt1ma1 design, so that the whole design
procedure has been computerized.. The on]y data should
be given are, the A, B, C, Q, F and R matrices to get
the optimal squtibn.¥Which is optimal feed-back gain
matrix.

As the foregoing discussion implies the sampled-
data regulator with a fixed rate sampling constitutes
a sub-optimal control law. A formulation with sampliﬁg
timés which are constféingd or dependent on states, con-
stitutes a better approximation to the continuous timertfr_;ffiﬂp

control problem. and is open to further study. Further-~, o

period has been qust1f1ed by cqns1der1ng the behavior
of norma1ized cost Since, the locations of thé eigen-
va1ues of discrete system changes w1th sampling period

it 13 also possible to use the 10cat1ons of the eigen-

of sampling period.
In addtion, utilization of a digital'dbmpUter,

in a control system requires the sampled signal be quan-
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tized, because the Timited bit capacity of such an equip?'
ment does not allow whole signal levels to be represented;ﬂ”
It is plausible then to study the effects of quantiza- ‘”’;
tion on the system's performance in addition to the effeEts;. 
of sampling. e

A1so, throughout the devé]opment of computer
programs‘it has been assumed that the states of the conéi;i:’
trolled piant are available for measurement. Frquently’ié;f;
in practical sjtuatibns, this will not be the case, én&f7u 
some aftifice to get around this problem is réquired.r_;kﬁ
In this case, the addition of a state estimator will ;7
improve the flexibility of the already Jeve10ped programs,
but the effects of the errors that are introduced durihg,i
state estimation on the performance of‘samp1ed-data‘

regulator is another area of research. -~
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ARPENDIX A
Consider the homogenous system equation
0 ,
x(t) = A x(t) (A.1)

where A is the (nxn) system matrix, and x is the (nx1)
stgte vector. If ¢(t,t;) is the transistion matrix of
equation (B-1), then for arbitrary initial state Xi®
5(ti) at some time t, we may write:

_A_(t"t-l)

x;(t) = e X

- g(t'ti)-&'{ (A.Z)
This is the solution of the equation of free motion. If

we consider also that the control exists, i.e.,
X(t) = A x(t) + B u(t).  (A.3)

whe?e B is (nxr)vgain’matrix;,and u is (rxl) pontroi
Vedtor, the solution to,the above system is given as"’;i
A(t-t,) t . : .
xi(t) = e Vxow s eBETE u(tyar (A.4)
t
i

If a piecewise constant control input is assumed, that
is:

u;(t) = uy for ty <t <t (A.5)
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Then with use of the STM

¢ .
ﬁi(t) = g(t"ti)_&j + [ Q_(t,ti)_ﬁ_uidt

ty
finally,
ii(t) = g(t’tf)ii + g(t’ti)ﬁi (A.6) -
where
t - .
D(t,ty) = Je(t,t;)B dt
t
i

Transpose of 51(t) is given .as
Xi'(t) Xy ' (taty) +ouy D (t,ty) (A7)

If equations (A.6) and (A.7) are substituted into the
expression for performance index J (Equation (2.7b)) and
since it is assumed that the control interval,1s_gjy1dgﬁj;,lw4”

N eéUal parts

J SRR [X:'0' (t,t,)+ N'D' t,t.)]coc' e fto)x
= {ci 2012 () DL, T TR (ba )X
= i= t T |
1 :

+ u;'D'(t,t4)C Q C'D(tuty)uy + ui'R uy} dt
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Each of the above quantities is scalar, additionally Q:

is a symmetric matrix, then

2,-'_0_'(t,t,~)£g C'(t.t, )X.i = %;'9(t,t4)C QC'D(t,ty)y;

—

finally
N-1 ti+]
3= I xi'JS ' (t,t4)C Q C'_(t.ty)dt x;
i=0 ti
ti+]
+ 2x1-' J gl(t,t.i)c Q _C_'_D_(t,t.i)dt U.i
t.
1
ti+l ‘
+ouy i [R + D'(t,t;)C Q €'D(t,t;)] dt u; (A.8)
) i |

For simplicity in the appearance of the above equation

the following matrices are defined.

- t,+1
Q= 71 a(t,t;)C Q C'e(tsty)dt (A.92)

t - ‘

i

oty |

Mo S 9'(t,t;)CQC D(t,t;)dt - (A.9b)
- ts

i
- ti+1
R= /" [R+D'(t,t;)C Q C'D(t,t;)]dt (A.9c)

Consequently, equation (B-8) reduces to:

N-1

B R R - (A.10)
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APPENDIX B.I

Consider the following optimal control law equa-

tion
(U ko= {RTIM' + RTID'PL I+ DRTIDIPL TG DXy

(B,1.1)

Let us take the second term inside the parantehsis, and

successively apply the following operations.

5. (P [ P1H)15+D]}1D Pi

6. [R+D

___J”D]"DP 1

This' final form of the step 1 has some superorwty over

(it /
its initidl form. Since the former requires five matrix

multiplications and three matr%x inversions, while the
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latter four multiplications and one inversion,

If now the second term inside the paranthesis

is replaced by its equivalent:
Uu.% = - {R-IMI++_[R <+ D'P'i'l‘-lDl-lD'P"l*‘]e} X.i (B.I-Z)

is obtained.

B.II. MATRIX INVERSION LEMMA:

Consider the (nxn) square matrikx partitioned

as follows

=22

11
A e
[

1
Ao

Now, assuming that the inverse of A exists, i.e., A is
non-singular; we define the following equality

B = A"

where B is partiticned as A, i.e.,

Bi1 | Byy

—— ¢

Ba1 i B2

=)
1]

If Gaus-Jordan elimination procedure is applied to A
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matrix to find its inverse, then:

- I a=1
Ay Al L0 LAy Ajp gA”iQ -
—— 4w N Om— s e - ! . -i . o o—
Ry Rpp | 01 Al B 121
IV-pyr Ajp Ajp g Ay A3LO
T TAeTal ettt e
Y182 327 2111 "221 Z11 4 =
L1 -4y, M1 Bip | Ay Ay L0
=== = 1T
0 j I | -E Ar1 Ayq i F
where

finally,

| - -1 . -1 -1 -1 -1 -1
B Bio| (L1 B 28y Ay Bip B Ay Ay gy Ay g £
Bori Byl |01 SF AL AT R T T
211222 |== | AR -

R o
since By, =F "+ F =By = Arp = By Ay Ay

The ﬁ'] = B can obviously be rewritten in a different

form by simply reordering the subscripts

1. e
Biyp % Ayp - Ay Bpp Ay
- o -l -1
B ¢ [ﬂ11 " A2 By 522]
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If now ‘these two values of g]] is equated, the following

useful form for matrix inversion is obtained.

LI T L I -1, -1 -1
Ay = Aip By A21] Ay + A Ay [ﬂzz - A By Am] Aoy By
Instead if we had -Ay, for A;,, then all the terms mul-
tiplied by A;, will change its sign.

N PR TS IS B 1,
[An + Mg Ay ﬁ21] T ok [ﬂzz * Ay Ay -12] Az A

This result may be applied now to equation (2.33a) of
Chapter 2. (2.33a) is repeated here for. convenience,

- 1 So 1 -1
Py = 0Py [L+DRTD'E ] @ (B.II.1)

1 ——

+
J—2

The result of the above derivation is applied to the

matrix [I + Dﬁ"D'Pi+]] using the following definitions

Ajp 7 1
Ao =D
App = R
App * DR

Consequently,

[L + DR7ID'P4,4]7"

1"t - I'lD[R + D'P,

el Z Li+1

I7p]=ip'p, 417
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If this equivalent form is replaced into equation (B.II.T)

then,

Py = 8'Pyq{1 = D[R+ D'Py 4D]7!D'P3 4} 8 + T

=_e_' {P

Piy1 = PyqD[R + D'P; 4D)7D'Pi 4} 8 + T

P.
-1

(B.11.2)

is‘obtained.
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APPENDIX C

Consider equation (2.33) of Chapter 2 which
states that the boundary condition of RNE. is equal to
S. This boundary condition is very simply derived.

Reference to the performance index (2.11) shows that
Ixystysul)] = = xN 'Sxy for all u(.),

and accordingly, the minimum value of this performance

index with respect to u(.) is also % 5N;§ EN,_that is,

1 '
(AN, ty] = 5 xy'S xy

On the other hand J* is given by equation (2.34)
as

for%j = N.

XN Pnxy T XN'S Xy
Since both Py and S are symmetric, and x, is arbitrary,
then, | |

- ———
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B
The scalar Riccati difference equation, equation

( ) can be rewritten as,
dz L 2 d2
Pit T PPay - (B v ) P

Since all products commute.

-y =0 (D.1)

Equation (D.1) is a nonlinear first order dif-

ference equation that can be transformed to a second

order linear one by the following change of variables:

A

The resulting equation is,

2
V,i[v_i_-| - (‘1 + 62 + Y d—r:')v.i

To obtain the nontrivial solution, let V4

'

obtain the characteristic equation

2
9252 - (1 + 02 + v 3 )5+ 1 =0
- . r

A ETON

(D.2)
0 (D.3)

- Si. anq
(D.4)



96

The two roots are

+la
H _1_._ e

R

2

where
: d
1 + 6% + 2

o = co'sh"1
2| 0]

The general solution can be written as

V. = ——]-——!- (C1eia 4 Cze_'ia)

le]’

Application of the boundary condition 'Ry = 0, yields
finally that

=110 -(ele"")e(““")“- (1-1e]e®)e~(N-T)a1 (p 5)

v'i le"l
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103
104

106

'105
109
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110

220

7i ‘ 1nz

:lS*AYZANI(l)nMAIN

7 ‘f:ldﬂr(

DO IS Im),N : ;
READ(5,13) (A1 (1, 2y Js1,N) = f; j

S D0 19 I=i,N
'*:READ«S.!S}(C(x u».a:;,m:

CREAB(5,13) (Q(K, L) JL=l M)

2 REAB(5;13) (RiT, JIydsl, IRY
0D 5L Isi Mo
CREAD(S 131 AF(14d)yds1, M)
CREAD (5 13)(x¢11.xm1.N)
WRITE(6,103)

CWRITE(6,4105)
S 1) ) o B
D0 108 KSpaN , . !

o WRITE(é4107)
107

O MRITE(é,110)

BRIt
o DO BIO0 ImpM

CIMPLICET REAL*B(AnH o~zx - L e e s
CQMPLEX COoP,EIGE C
DIMENSTON STATE(SB),CONTIBO).TIME(SB) ‘

DIMENSTON A1(10,100,B(10,10),C(10,10),a(tasln) R(JU.-
110),CTR(4G,10), Dumvtxu.xo).@HATtlu 101 yRHAT(10,10) -
lEM(lO 10), CQCTR(!D 10)V,PHI(10,10), Dtxo lo)»Dxtln 10)

,ssla,ia:.xsln; chu 10; .

COMMON TIP1 RyQHAT EM,RHAT

coﬁMnN103C/T IRy JdW,B PHx 0,01

COMMON/EIDC/AL 4N
'CQMMON/EJC/EPS.KMAX.COP(Il)'EISE(lﬂ).JJJ

COMMON/STAZ JDC ‘

I

- COMMON/CWO/CQCTR KN

|
COMMON/ICFR/S,, Xy IFT ‘
COMMON/ZOMAR/XK(10,10),U0PT(10,10)
READ(5y100)KMAX, EPS ‘ o ‘ , , '
FORMAT(I4,E1041) T : : , C 4
READCBnl)N:IR MaIFT ‘ - . 4
FORMAT(H]S) i
WRITE(E)I0LINVIRIMYIFT '
FORMATi’l‘pZIX,’N ='.Iaxzzx.'IRaG.IS/zzx,aﬂ m’.13IZZX.'FT='.13)

po 18 Kﬂ‘pN .
'Rﬁaﬁzsfla)catx L},Lwi IR)

DO 21 K=) .M

DO 22 1R1,IR _

FORMAT(ZZX,‘CONTINUOUS svsren MATRIX A,tf,» &
DO 104 TI=1,N -
WRITE(6,263€A;(ioJ)pJ=; N)

FORNAT‘///QZZK,‘CONTINUQUS INPUT MATRIX B,'//)
‘WR!TE(é,ZB)(B(K LYy Lﬁl IR)

FoRﬁATx/f/.zzx,acoNTINuous GUTPUT MATR:x g,n//,
-po 198 lﬂlgN

waxr&ce.zn»cccx J) Jﬂj H)

WRITE(6,4109)

FORMAT(///.ZZX.GSTATE WELGHTING MATR]K Q,!I/) L WO
DO 210 KElyM ec R e
‘WR!TE(6;ZG)(QtK L).wa Ml o o - :

_FoRﬁAT(///.zzx.eCONTRoL WE}GHTING MATRIX RY® /7Y

PO 220 1=1,IR - RIS
‘WRIT£(6QZD)(R(ltJ}oJFlplﬁi S L
WRITE(64111) - E R B
FORMAT(///.ZZX.QFINAL CQST MATRIK F,'//) i

WRITE(6|ZD)(F(!pd!|J=IgM) :
FORﬂAT(///,zzx *GIVEN IN!TIAL couo:r;ous a//,




61
Y
63
64
65
Y
67
‘68
69
78
71
72
73
74
75
76
77
78
79
80
81
¥
83
84
es
86
87
‘88
89
]
91
‘92
%3
94
95
96
97
‘o8
89
oo
01

g2

03
04

06
07
n8a
a9
10

12
13
14
JE
16
17
18

19

20
21

13

i

20
an
10
50

7

27

NRITE(6,20) (X(I)2Im1yN)
FORMAT(IDFB.0)

Jdd=2

JDC=2

CALL STABIL (%88}

Ju=4

CALL SAMPLE(S88)

CALL DISCo

CALL CONTR(SBByPHI DN, IR)
CALL OBSERV(SBB8,PHI,C,yNM)
CALL LOADMIAL,DUMY,NyN)
CALL LOADMIPHI yAY  NyN)
NNNLY:

JDC=1

CALL STABIL(%88)

CALL LOADM(DUMYA1,N,N)
JJIE]

CALL EIGEN

CALL MULTIQ(C,Q)0UMY,NyM, M)
CALL TRANS(C)CTRyNyHM)

CALL MULTIQ(OUMYCTRyCACTR)NIM,N)
DO 5 151,23

KN= I

CALL INTBSR

GO TO(4,6,8)]

WRITE(6,430)

DO 25 K=1,N

WRITE(6,20) (QHAT(K, L) L=l yN)
GO To &

HRITE(6,40)

PO 35 K=1,N
WRITFtprDl(EM(K L)sk=1,41IR)
Go To &

WRITE(6,450)

DO A5 K=1,1R

WRITE(6,20) (RHATIK L) oL=1, IR}

CONTINUE

FORMAT(ZZX:IPSEI? 6)
FORMAT(?14///22X+*DISCRETE QHAT MATRIX 15,°//)
FORMAT(///22X,"DISCRETE M MATRIX 1S,7//)
FORMATU///22X,*DISCRETE RHMHAT MATRIX xs,ﬂ//)
CALL MULTIRLC,FoDUMY N,M, M)

CALL MULTIQ(DUMY.CTR.S NyMyN)

CALL RICATI1555,565,575)

DO 27J%1,N

DO L71%1yFT

STATE(LI=XK(Jy 1)

CONT(IISUOPTI(Jy 1)

TIMELTI=T#T

CALL GRAPHH4 (54,89, IFT,TIME,STATE)

IF{JeGT.IR) GO TO 27

CALL GRAPHH4(5e98a,IFT,TIME,CONT)

CONTINUE

Go To é8

wR!TF(6,2>

FORMAT(//10X,* INVERS OF RHAT HMATRIX DOES NOT EXISTe?)
G0 TO 88

WRITE(E,3)

FORMAT(//10X,* INVERS OF TP MATRIX DOES NOT EXIST.*)
G0 To 88

WRITE(6,7)



122 7 FQRMAT‘(//J,QXMlNVERS OF G2 MATRIX DQES NOT EXIST-U
23 B8  STOP
24 END

s il
L e
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1 30
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SUBROUTINE STABIL(S)
IMPLICIT REAL#B(A=H,0=Z)
COMPLEX COP4EIGE '
COMMON/STA/JDORC
COMMON/ZEIDC/AL,N
COMMON/ETC/EPSYKMAX,COPLLL),EIGE(10),ddd
PIMENSION A1(10,10),E1GV(1n)
CALL EIGEN

GO TO (4,4) JDORC

PO 1 JR1,N
EIGV(J)=CABS(EIGE (J))
IFIEIGVIJ)eGTala) GO TO 2
CONTINUE '
WRITE(643)

3 FORMATI///21X,*DISCRETE SYSTEM 1§ STABLEsABSOLUTE VALUES*/

122Xy*0F ALL THE ROOTS ARE LESS THAN ONEe?/7)
RETURN |
WRITE(6,5)

S FORMAT{///21X,*DISCRETE SYSTEM IS UNSTABLEeseA ROOT GREATER® /

10

122X+ “THAN ONE IN ABSOLUTE VALUE IS DETECTED.t/,)
RETURN ) '

DG ? 114N

TFIREALIEIGE(])) eGToaba) GOTO 9

CONTINUE

WRITE(6,8)

FORMAT(///22X,"GIVEN CONTINIG - 3 ,
e » "G CONTINIOUS SYSTEM IS STABLE.*//)
WRITE(E,10) -

FORMAT(///22X,4GIVEN ;
Aol /22X, CONTINIDUS SYSTEM IS UNSTABLEw¢//)
END




[‘-_AgT‘"‘ I . B T
ﬁISwAYzAml‘l).SUB?

| SUBROUTINE EIGEN
2 IMPLICIT REAL*B(A=H,0=2)
3 COMMON/ZEIDC/AL )N
4 COMMON/ETC/EPS KMAX,A(11) 3 XRE10) 4 JJJ
5 DIMENSION AL(10,10),B(10,10),C(10,10),P(10),CcOEFF(1Y)
& COMPLEX A,XR
7 Do ! I=1N
8 DO} JElyN
9 1 B(lyJ)=AL(1,4)
10 DO 20M=1) 4N
1 P(M)=D.0
12 FM=M
13 DO 21 1=1,N
14 21 PIMI=P(M)+B(1,1)
18 P(MI=P (M) /FH
16 DO 3 I=isN
7 3 BIIy11=BL] 1) =P (M)
18 CALL MULTIQ(AL)ByCyN,yN,N)
19 ‘ DD 6 K=l,N
.20 DO 6 LF1sN
21 6 BIKyLIBCIKL)
22 20 CONTINUE
23 KK=N
24 DO 4 J=14N
.25 IHl=]lm] : ‘
26 IF(OABS(P{M=IM1))eLT.EPS)GO TO 25
27 GO TD 24
'28 25 KK=KK=]
29 4 CONTINUE
30 24 PO 401=1,kK
31 . JEKK=T+1
32 #0 A(J)ﬂCMPLX(nP(!).O 0)
‘33 ' KPIsKK*]
34 A(KP1)=CHMPLX(140,0,0)
35 DO 31 I=1,KP]
36 ‘31 COEFFlil=REAk(A(X))
37 CALL ROOTCP(A,KKyEPS, KMAX XRy1Qy$2)
38 NUSNmKK.
39 IFINU)43,43,42
4o 42 Do 41 J=s1,NU
By JJEKK :
M2 4y XR(JJ)S(0,0,0.0)
43 43 IF(JIJeEQ,)) GO TO 32
4 H WRITELG,10D)
'45 100 FDRMAT(///ZZX *THE INPUT AND OUTPUT FOR SUBROUTINE EJGEN+//)
M6 WRITE(6,10))INLEPS, KMAX
47 101 FORMAT(22X,*N =¢,13/22X,*EPS =4 ) IPE1S+6/22X,  KlaX=",13)
48 WRITE(E,ID7ICALITad) g dlaN) ]l N)
49 107 FORMAT(///22X,*INPUT MATRIX® //(zzx.xpazls.b),
50 WRITE(6,103)1(14COEFF(1),15),KP1)
51 103 FQRMAT(/!/?ZX.'COEFFICIENTS OF CHARACTERISTIC POLYNgMIAL
52 19%7722X, " 1* 10K, *COEFFII)*/ (19K, 14,5X31PEL704))
53 GO T0. 30
54 2 WRITE(6,105)18 . : ‘
55 105 FORMAT{///22X,*ERROR RETURNasesMAXIMUM NUMBER OF ITERATIONS?/
56 122X, "EXCEEPED DURING THE SOLUTION FOR*,14,° TH ROGT.?)
57 GO0 TO 32
58 a0 WRITE(6,106) L1 XR(I),1r1,1Q) ,
59 IFINUSGTeDIWRITE LW IO LI XRET) pI5KK+14N)

60 106 FORMAT(///22%,¢R0O0TS OF CHARACTERISTIC PO YNOMIAL,*//22K,



b1
62
63
64
65
66
67

109

12122 16X,2XRY
WRITE(6,109)
FORMAT(//22X

110 FORMAT(///22

32

VIP2E1706))
RETURN '
END

L1 /7(19%,14,1P2E1746))

Ny

v *MULTIPLICITY 0OF ZERD ROOTS ISyNU=¢
Ky*2ERO ROOTSa*//22%,% 1%, 16K, 4kR(1y*

113)
/Ll9x, 14,
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SUBROUTINE MULTIQ(AL,B,C,N1, N2yN3)
IMPLICIT REAL®B(A=H, o«Z)
DIMENSTON ALCID, 1D 1B010,101,C(10,10)
Poll 181,NY
Doll K=1 N3
CtIyK)=0,
DRIY J=1,N2

11 CCI.KJFCGI KI+ALUI,J)eB{J,K)
RETURN
END

aom\aom:*wm'—

L
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17

40

41

42
<4

50

72

73

SUBROUTINE INTBSR

INPLICIT REAL#8(A~H,0~2)

COMPLEX CQP4E]GE

DIMENSION EIGV(I0)EXPOL(10,30) VINT(1Ds30!,DUMY (10,10,
IVINTAMTID,100,TRUID,10),FTIL1D,10), FTINLID1Q) ,FU(1D,10),
19BAR(}10, 1n) EM{10,10),RBAR(10, 1az.R(10,za).A;(;n,ln; S,BRUI0, 1IN,
JFONK(10,10)

COMMON TIPl,R,QBAR,EM,RBAR
COMMON/EIDC/ALN

COMMON/EIC/ZEPS KMAXsCOPLIIIZEIGE(CIO),yJJJ
COMMDN/DIC/ T IRy JW 4B, EXPO,DB,DI
COMMON/CHT/FONKyMH
COMMON/CRQ/FU,KANTRYL,

DO 1 JR)WN

EIGVIJ)=CABS(EIGE(J))

DEIGENZEIGV (1)

Do ? K#2sN

DEIGENSAMAXI(DEIGEN,EIGY (K} )
Hele/(DEIGEN®2041

NIT=IFIX(TIRL/H)

HeTIPI/FLOATINIT)

HOV2=H/ 24

IF{KONTRL=2)4,6,48

CALL SIFIR(QBAR,N,N)

Go To 1O

CALL SIFIR(EM,N,IR)

60 To 10

CALL SIFIR(RBAR,N,N)

T=HOV?2 .

CALL EVDINT

CALL LOADMEFONK VINTAM N,MH)
NITHLIeNTT=] ‘

DO 5 I1=1,NITMI

TeH#]

CALL EVOINT

CALL LOADM(FONK,EXPOL N, MH)
IF(KONTRL=2)4D,41,42

CALL TOPLA(GBARJEXPOL,NyN)

GO TO 24

CALL TOPLALEM, EXPO!.N XR)

GO Tn 24

CALL TOPLA(RﬁAR ExPoz m N)

T=T+HOV2

cALL EVOINT

CALL LOADMIFONK, VINT,N,MH)
1F(KONTRL=2150,51,50

CALL TOPLA(VINTAM,VINT NyN)

G0 T0 6

CALL TOPLAI(VINTAM,VINT,N,IR)

QNTINUE

T:ﬂq

CALL EVODINT

CALL LOADM(FONKFTIyNyMH)

T=TIP}

CALL EVOINT

CALL LOADMIFONK,FTIN,NyMH)

GO TO(72,73,74)KONTRL

CALL SIMFOR(H,FTI FTIN,VINTANH,QBAR,N,N) .
GO Tn 68

CALL SIMFOR(HFTIFTINyVINTAMaEM Ny [R)
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62
63
&4
65
66
&7
L8
69
70
71

74

68

GO TQ 68

calL
CALL
CALL
CALL
pe 3
po 3

TRC(I,

CALL

SIMFOR(H FTT,FTIN,V
] N !
TRANS(B.BTR,N.IR)’ HITATREAR Ny )
MULTIQ(BTR,RBAR,D

ILTIQ(E UMY, IRy N,yN)
MULTIQ(DUMY,B RéAR R Ny TR
T=1. IR y By 1 IRyNyIR)
JE], IR
JI=TIPI*R(I,4)
TOPLA(RBARQTR.IR.IR)

RETURN

END
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13
25

15

14

S1S«AYZANLI(1)5UB5

SUBROUTINE EVOINT

IMPLICIT REAL%B(A=H,0=7)

COMMON/CWO/FU,KONTRL, ;
COMMON/EIDC/AL 4N ‘
COMMON/DIC/Tr IR JWIBLEXPO,DBHDI] :
COMMON/CWI/EVFU,MH .
DIMENSION AL(1D,10),B(10,10),EXPOC10,10),0B8(10,10),01(10,10)
DIMENSION EVFU(10,10),EXPOTRI1D210),DUMY(10,10),Fut10,10)
IFLKONTRL=2)12,13,14

JE=2

GO TO 25
Ju=l
caLL pISCo

IF(KONTRLW2EQe3)CALL LOADM(DIZEXPD,NN)
CALL TRANS(EXPO,EXPOTR,NsN)

CALL MULTIQ(EXPOTR,FU,DUMY NyN,N)
IFIKONTRLL.ERe2) GO TO 15

CALL MULTIA(DUMY EXPO,EVFU,NyN,N)
Go T0 9

CALL MULTIO(DUMY,DB,EVFU,NyNyIR)
6o To 9

Jw=3

Go To 25

MH=N

IF(KONTRL,EQs2)MH=TR

RETURN

END
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1 SUBROUTINE DISCO

2 IMPLICIT REAL*8(A=H,0-7)
3 INTEGER POWER :
4 DIMENSION D(10,10),5T(10,10),A1(10,10),B(10,10),P51(10,10) .
5 REALINTEGA(10,10),NORMA(10) !
6 COMMON/EIDC/AL,N ;
7 COMMON/DIC/TaMaNW,ByPSIsDy INTEGA !
8 DATA EP1/1sD=20/
9 DO 1 1= 1,N ;
A0 NORHACL) = 0#0
11 PO I J= §,N :
12 ST(!Q\J!=Al(;QJ’*T "
13 NORMA(I) =NORMA(I)+ABS(ST(]44)) T
14 ) PSILI,J)=ST(1,J)
15 ANORM&NORMA (1)
16 PO 2 K& 2,N
17 2 ANORM=AMAX] (ANDRM ,NORMA (K))
18 POWER=1D . ,
19 IF(POWERCLE«IFIX(ANORM) )POWER=POWER+*ANORM
20 14  po 7 I= 2,POWER
21, APOWR=FPONER=1+2 i
22 PO 5 JF 1,N ,
23 DO 3 K= 1,N !
24 3 INTEGA(J,K) = PSI(J,K)/APOWR
25 5 INTEGA(J,J)=INTEGA(J,J)+140
26 7 CALL MULTIQ(ST,INTEGA,PSI4N,N,N)
27 PO 12 J= 1N :
28 12 PSI(J,J)=PSIJ,Jd)+1.0 i
29 EFS=ANOGRM/ (POWER+2) E
an IX=POWER+|
31 UPP=ANORMu* | X
32 po 4 J= 1 ,POWER
33 APON=PONER=J+2
34 4 UPP=UPP/APOW :
35 UPP=SUPF/(1=EPS) |
36 PO B8 K= 1,N ;
37 po B L= I'N i
38 IF(DABS(PST(KyL))4LEJEP1)GO TO 8 :
39 1F(DABS(UPP)sGE+DABS(PST(K,L)*1eE~5)) GO 7O 4 §
40 8 CONTINUE
1 60 T0 25
42 6 POWER=POWER+1D ,
43 GO TO 14 |
44 25 IF(NW.EQ,2) GO TO 28
45 DO 9 J= 1,N
Hé DG 9 K& 1,N
47 9 INTEGA(J, K)=T#INTEGA(J,K)
48 IFINW.EGs3) GO TO 28 _
49 CALL MULTIQUINTEGA,B,yDyN,yN,M) ;
50 CIF{NWJNE.4) GO TO 28 ‘ i
51 24 WRITE(6438) ]
52 36 FORMAT(#14///20X,*THE INPUT AND DUTPUT FOR SUBROUTINE DIscO*//)
53 WRITE(6,21) d
54 21 FORMAT(///21X4*THE A MATRIXs*//)
55 PO 10 Is ,N
56 10 WRITE(6220)01A1CTd) 4d=1,N) _
57 o WRITE(6,11) i
58 11 FORMAT(//7/721%,*THE B MATRIXe"//) ,

89 DO 22 1= §,4H i
{bn 22 NRITE(6,20) (Bl ,3J)dml M) :
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WRITE(6y16)

16 FORMAT(///21X,*THE DISCRETE SYSTEM MATRIX PH1s¢//)

DO 17 1 = {,N

WRITE(6,20)(PSI{14Jd)ydm],N)

WRITE(S,19)

19 FQRMAT(///ZJX,QTHE DISCRETE INPUT MATRIX pef//z)

DO 23 1 = 1,N

WRITE(6,20)(D(]1ad)yd=l M)

20 FORMAT(22X%31P3E1746)

WRITE(6426)EPS)ANORM,PORER
26 FORMAT(///22X%,*EPS

1¢POWER= , 14)
RETURN
END

=1y IPE15e6/22X,* ANORM=" y 1 PE15,6/22X,



HESIS®*AYZANLI())sSUB7
B T ~ SUBROUTINE SIFIR(SI,N3,N4)

IMPLICIT REAL*B(A=H,0~7)
DIMENSION S1(10,10)
Do 15 I=1,N3
DG 15 J=1,N4

15 S1(1,J)=0,0
RETURN
END

DNV DWN
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SUBROUTINE TOPLA(QWE M3,M4) :

IMPLICIT REAL#B(A=H,0~7)
DIMENSION Q(10,10),E(10,10)
Do 4 Kel M3
DO 4 L=1,M4

4 QUK LIEQIKILI+E(K, L)
RETURN
END
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1 SUBROUTINE SIMFOR(HoAI9ATLAT2,A134M5,M6) E
2 IMPLICIT REAL*B(AmH,0»7) j
3 DIMENSION ATCI0,10),AT1010, 10),A12(10,10),A13(10,10) i
4 PO 7 I=1,4n5 :
5 DO 7 J=1,Mb f
6 7 Ax3(1,4)=(H/ﬁ.)*(A!(!.d)+AIl(I,J)*H.*AIZ(1od)*z.wAlstl.J)) ;
7 RETURN |
] END i
]

]

|

*l

|

f

|

' |

i

£
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SIS*AYZAN1(1)a5UB1D
| ‘ SUBROUTINE TRANS(AyATyNIsN2)

2 IMPLICIT REAL*B(A=H,0-7)

3 DIMENSTON A(10,10),AT(10,10)
4 DO 15 I= 1,N])

5 DO 15 J=1,M2

6 156 AT(J]) = A(l,J)

7 RETURN

B END

FsS AYZANI+SUBL1,eSUBLIZ,,SUBL3,eSUBLIH,45UBLI5,aSUBL6,aSUBL/»eSUBLB.SUBLY
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SUBROUTINE LOADMIDULL,OPM M1 M2)
IMPLICIT REAL#B(A=H,0~2)
DIMENSTONDULL(10,10),0PM(10,10)
DG 8 I®l,M}

DO 8 J=1,M2

OPMIET ) spULLETyJ)

RETURN

END

O
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SUBROUTINE RICATI(S,5+5)

IMPLICIT REAL*B(AmH,0~Z)

DIMENSTON
DIMENSION
DIMENSION
PDIMENSION
DIMENSION
DIMENSTON
DIMENSTUN
DIMENSION

RHAT(10,10),QHAT(10,10),EM(10.10),RINV(10,10)
EMT(10,100,DUMY(10,10),n(10,10),0RM(10, 10).PH1(1D.1D)
TETHA(ID,10U),RMT(10,10),GAMA(]D, 10).DTR(lDulDl
TETATRE10,10),5(10,10),P(10, 10.103.Px(1u.1a).TP¢10 ;n
XKE10410) X 010) 2 XX810,1),61(10,10),62(10,10),63(10410|
GH4(10,1D),G(10,10,10),0(10, 1).u1(1n 1) ,u0PT(10,10)
DI(10,11,D2(10,1),R(10,10),A1010010),B(10,10),D1010,1]
RIM(10,10),XKT(1410),C08T(},1)

CONMON/DXC/TnIRiJWogvpﬁlqbtnl
COMMON/EIDC/ZAL 4N
COMMON/ICFR/S X2 IFT

COMMON /0MAR/ XK, UQPT
CALL LQADM(RHATQRINV!IR iR}

CALL INVERS($69,RINV,DET,IR,LED)

LEO=]
G0 To 21}
RETURN 1

CALL TRANSIEM)EMT N, IR)

CALL MULTIQUIRINVAEMTyDUMY, IRy IRyN)
CALEL MULTIR(R,DUMY,DRM,N, IRyN)
CALL SUBTRT(PHI,DRM,TETHA,N,N)
CALL MULTIQ(EM,DUMY ,RMT 4Ny IRyN)
CALL SUBTRT(QHAT RMT,GAMA,N,N)
CALL TRANS(DsDTRyNyIR)

CALL TRANS(TETHARTETATR,N,N)

M=lFT+1

cALL CIZERO(N,S,KS) |
IF(KS.EQan*%2) GO TO 1 !

JANE=m1

DO 2 I=1,N
DO 2 J=1,N

PUIyJdaMI=5(14d)

L=t
sMel+1

DO 4 I=14N
DO 4 JslaN

PKOTyJISP (I ,d,K)

co To 12
JANE=1]

CALL LOADM(SPKyN,N)

CONTIHUE

CALL MULTIQ(PTRsPKyDUMY, IR, NyN)

CALL MULTIQ(DUMY,D,TP4IRyN,IR)

CALL TOPLA(TP RHAT,IR,IR) @
CALL IMVERS(S792TP2DETH»IRLED)

60 To 31
RETURN 2

CALL MULTIQ(TP+DTR DUMY IRy IRyN)
CALL MULTIQ(DUMY PK, TPy IRyN N}
CALL MULTIQ(D,TP,DUMY,N,IR,N)
CALL MULTIQ(PK,DUMY, TP NyN,N)
CALL SUBTRT(FPK,TP,DUMY NN}

CALL MULTIQUDUMY,TETHA, TP NyNyN)
CALL MULTIQ(TETATR,TP,DUMY NyN,N)
IF(JANE)17418,18

CALL TOPLA(DUMY,GAMA,N,yN)

CALL SUBTRT(DUMY,PK, Gl 4NN}
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62
63
&4
65
66
67
&8
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
‘8h
87
Y|
89
90
g1
92
23
24
95
96
97
98
99
00
01
p2
03
04
0s
06
a7
ne
09
10
11
12
13
i4
15
16
17
18
19
20
21

Ié

17

19

22

23

Rt

40

24

20

25

89
41
42
26

an

CALL LOADM(DUMY, PK:N:N)

DO 16 I=1,N
DO L6 J=1,N
Gl(l.J)=Gl(1,J)*GL(I.J)
IF(GLII,sJ)eGE1aE=B) GO TO 12
GO TO 19

KrK=1

DO 3 Isl4N

DO 3J=14N

PUTad KISDUMY (T J)+GAMA(T,J)
Lel+1

IF(L+LE.M) GO TO 15

PRINT OUT P MATRIX

WRITE(64,5)

122X "EQUATION P MATRICES AREy*//)
DG &6 1=)4m

JUsl=]

WRITE(SGW7)Jds

DO & J=l,N

WRITE(6,8) (P (JydKyI)ydK=1,4N)

GO TO 23

PRINT #,¢ STEADY STATE SOLUTION OF RICCAT] MATRIX EQUATION.’

DO 22 ;:1,N
WRITE(648)(PKII4J)pds1,N)

I MATRIX,t7/)

8 FORMAT(22X%X,1P3EL17.8)
COMPUTE TIME VARYING FFEDBACK GAIN MATRICES,cONTROoLE STATE VECT

K=
PG 10 Is1,N
XKCLy 1) =X(1) .
PRINT #,? INITIAL STATES *
BRITE(69B)(XK(JaK)rd=lyN)
K=K+
DO 20 I=},N
XXCLad)=X( 1)
IFCJANE) 24,25,25
CONTINUE
DO 20 J=1,N
PKETaJTeP (] yudyK)
IF(KeNES2) GO TO 42
CALL MULTIRIDTR PKyDUMY,JR,NyN)
“CALL MULTIQ(DUMY 1D9G2,1R,N,IR)
CALL MULTIQ(DUMY, TETHA,GA,IRaN,N)
CALL TOPLA{GZ,RHAT,IR,IR)
CALL INVERS(SS? 2G2,DET, IR LEO)
GO To #H}
RETURN 3
CALL MULTIRIG2,G3,G64,RyIR, N)
CALL TOPLA(RIM,GH,IR,N)
cALL LOADM(RIM,GI‘IR N)
KsK=})
IFOJANE)26427,27
DO 30 I=1,IR
PO 30 J=i,N
G(lad, K)=Gl(i.d)
PRINT OUT"FEEDBACK GAIN MATRIX G."
JA=Km]
WRITE(6,9)JArJA

9 FORMAT(///22X%4"AT THE SAMPLING TIME? 42X, *FEED BACK

5 FORMAT(#17,22X,*SOLUTION OF MATRIX RICCATI DIFFERENCE?/

7 FORMAT{///22K,?AT THE SAMPL ING INSTANT? »1302X,°P(*y12,°%)

GAIN

i
(



|22
123
24
|28
L26
(27
.28
29
130
31
32
133
34
i35
38
37
.38
‘39
.40
41
42
43
LE]
45
46
47
48
49
‘50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
&b
&7
68
69

11

27

a9

43

47
44

40

13

50

16/22X, P MATRIX G(* 413,74

DO i1 I=s1,IR IBRean
WRITE(E4B) (G Ty JeK)ad

60 To 39 [ ] |‘=13N)
JASK=1

JF(KsNE2)60 TO 39

PRINT @,¢ STEADY STATE FEEDBACK GAIN MATRIX,*

po 28 lI=1,IR
WR;;Elé.sl(Gl(laJ}.4=l,N)
COMPUTE *CONTROL VECTOR U.®
CONTINUE o
MM=1
CALL MULTIQUGE s XX Uy RyNyMM)
DO 40 I=1,IR '
UIGT 1) ==ul1,1)
ggﬁ;tz,x>=—U(1.1>

NT OUT “CONTROL VECTOR U
gs;;ﬁ(éplz)JA.JA )
: AT(/7722%X,*AT THE SAMPLING

ING TIME?

1#/22X,* CONTROL VECTOR UOPT(‘.IZ;')E)
WRITE(6,8) (UOPT(I,K)y1=1,]1R)
COMPUTE *STATE VECTOR X!
CALL MULTIQ(D,UL,D1,N

- , 1Ny IRy MM)
CALL MU \
K=Kf1” LTIQ(PHI s XX 4D2,NyN,HM)
DO 50 I=],N
X(11=D2(1,1)+D1(1,1)
XKCT,Ki=X (1)
PRINT OUT *STATE VEC :
KtilsK=1 2 4
ARITE(6,14)JA KM

p 1392X2tQPTIMUM

149 FORMAT(///22%,*A
/22X, *AT THE SAMPLING TIME®,I3s2X+*NEXT STATE X(°¢

35

1,12,%) COMPUTED AS*//)
WR!TE(@:S)(XK(J:K)'J=1,N)
IF(KeNESIFT+1)G0 TO 60

COMPUTE COST
IFCJANE)HI, 44,44
DO A7 1=1,N /
DO 47 J=1,N
PKIT,J)=P(],dy1)
CALL MULTIQ(PK,XK,DUM
CALL TRANS (KK KKToNun)
CALL MULTIQUXKT)DUMY,COST MM yN,MH)

RIN . '
PRINT#y ¢ OPTIMUM SOLUTION IS OBTAINED WITH THE FOLLOWING

ggégaté,zs) COST(141)
RETUQ;(//,ZZX,'COST=9,612-5)
END

cosT
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SUBROUTINE INVERS({S,A,DETERyN,JALE)
IMPLICIT REAL®*B(AmH,0~7)

DIMENSION IROW(10),JCOL(10),JORD(I0),Y(10)sA(1N,10),A2(10,10)
DATA EPS/1aD=20/ ]
DO 2 J=1l,N i
DO 5 K=1,N

AZUJ,K)=A(J,4K)

DETER=1

DO’BK:i’N

KMI=ZKm) )
PIVOT=0. ) |
DOlil=le

DOLLJEY 4N

IF{KsEQs1) GO TO 9

DO 8 ISCAN=L1,KM]

DO B JSCAN=],KMI

IFtI.EQeIROW(ISCAN)) GO TO 11
IF{JaEReJCOAL{JSCAN)) GO TO 11

CONTINUE

IF(DABS(A(I,4))sLE+DABS(PIVOT)) GD ToO 11
PIVOT=A(],d)

IROWIK) =]

JCOL(K)=J

CONTINUE

IF(DABS(PIVOT)»GT-EPS) GO TO 13

RETURN 1

IROHK=IROW(K)

JCOLK=JCOL (K)

DETER=DETER*PIVOT

DO 14 J=1,N

AUIROWK,J)=A(IROWK,J)/PIVOT !
A{IROWK,JCOLK)=1a/PIVOTY

Do 18 I=1.N

ATJCK=A(],JCOLK)

IF(T.EQ.IRO®K) GO TO 8

A{T1+JCOLK)==ATJCK/PIVOT ;
DO 17 J=1,N |
IFCJeNEeJCOLK) AL]yJ)=A(T4J)=AlJCK*A(TROWK Y S} §
CONTINUE ’

DO 20 I=1,N

IROWI=TROW(])

JCOLI=JCOL(T) .
JORD(IROW] Y=JCOLI i
INTCH=O

NMISN=]

PO 22 I=1,NM1

IP1=]+1

DO 22 J=I1P1,N

IFCJORDEJ)aGELJORD(I)) GO TO 22

JTEMP=JORD ()

JORD(JY=JORD(])

JORO(1)SJTEMP y

INTCH=INTCH+]

CONTINUE

IFCINTCH/2*2aNE«INTCH) DETER=-DETER

PO 28 J=1,H

Do 27 Isf,N

IROWI=TROW(T)

JCOoLI=Jco (1)

Y(JCOLI)=A(IROWI 4 J)
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68
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an

150

199

200
201

a1
84

Do 28 I=1,N

A(TsJ)=Y (1)

DO 30 Isl,N

DO 29 J=1,N ¥
IRCWJI=TROW ()

JCOLJ=JCOL (J)

YCIROWJI)=A(1,dCOLY)

PO 30 J=1,N

AGTyJ)EY ()

IF(JALE.EQel) GO TO 84

WRITE(6,150) -
FORMAT(?14,10X,  THE INPUT & OUTPUT FOR SUBROLUTINE INVERS,*///)
WRITE (6,151 )N, EPS o |
FORMATUIOX !N = ‘.x‘!/lDX,’EPSF ”plpglzﬂﬂ’
WRITE(6,199)

FORMAT (10X +*GIVEN MATRIX 1S, *//)

DO 4 I=laN

BRITE(6,200) (A201 4J) ydmlyN) .
FORMAT(?0¢ 46X, 1P1DE1204) |
WRITE(6,201)DETER

FORMAT(?0?45K,* DETER= #,F12e6//10X,¢THE INVERSE MATRIXe¢//)
DO 83 K=],N

WRITE(6,200) (ALK L) yL=1yN)

RETURN

END .
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SUBROUTINE SUBTRT(A,B,CyM,N)
IMPLICIT REAL*#8{A=H,0~7)
DIMENSION A(LID,10),B(10,10),C(10,10)
DO 1 I=1,M
DO 1 J=14N
1 Cllyd)=A(T4d)=B(T,J)
RETURN
END
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1 SUBROUTINE CONTRUS)PH] DNy IR)
2 IMPLICIT REAL*#B(A=H,0mZ)
3 DIMENSION PHI(10,10),D(10,50),PHK(10,10,10),0C110,10,10)
4 Dxmemsxom PHOIO10)4,0P¢10,10),GCONCI0,10),8CT(1Nn,310)
5 DATA EFS/1.D=20/
b CALL DEVRET(PHIsPHK NyM;1)
7 CALL POPHI(FHI yPHK N, KENT)
8 DG 2N K=1,KENT

9 KP1sK+]
10 PO 25 I=i,N
11 DO 25 J=1,N
12 25 PHUI,J)=PHK (I ,J,K)
13 CALL MULTIA(PH,D,0P N, N, IR)
14 CALL DEVRET(CGP,QC,N,JR,KP1)
15 20 CGNTINUE
16 CALL DEVRET(D RQCoN» IR, 1)
17 o 16 K=1,
18 10WA~(K-I)*IR*1
19 JERSEY=K» [R
20 Do 30 I=Q,N
21 M=0
22 DO 30 J=1oWA,JERSEY
23 MeM+]
24 30 QCON(T,Jd)=0C(T,MyK)
25 15 CONTINUE
26 NIR=N®IR
27 IF(NIRsGT4N) GO TO 35
28 JALE==]
29 CALL INVERS(57,Q0CON,DEOCM N4JALE)
3o IF(DABSIDENCM)2GT4EPS) GO TO 8
31 Go 70 7
32 35 CALL TRANS(GCON,QCT,N,NIR)
33 CALL RANKT(QCT4NsNIR, IRANK)
34 IF(N=IRANK) 78,7
'35 8 WRITE(6,5)
36 S FOGRMAT(///22X,*SYSTEM IS COMPLETELY CONTROLLABLE.*)
37 GO TO ©
38 7 WRITE(&,6)
139 6 FOURMAT(///22K,*#SYSTEM IS UNCONTROLLABLE«*/7)
40 RETURN 1
41 9 RETURN

42 END
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SUBROUTINE GEVRET(B,P,N1,N2,K)
IMPLICIT REAL#8(A=H,0~7)
DIMENSION P(10,10,10),B(10,10)
PO 10 I=1,Nl

DU 10 J=),N2

PLLaJdyK)=R(1,44)

RETURN

END
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SUBROUTINE RANKT(AsNyNIR,IRANK)
IMPLICIT REAL*B(A=H,0~7)
DIMENSION A(10,10),1P(10)

DATA EPS/1.D=20/

DO 20 J=l,N

NS |

PIVOT =0

PO . 1D 1=1,MIR

IF(JaEQe1) GG TO 5

DO 25 JSCAN=1,JM]
IF(IZEQeIPIJUSCAN)) GO TO 1D
CONTINUE
IF(DABS(A(I,J))eLEDABS(PIVOT)) GO ToO 10
PIVOT=A(1,d)

[ptdr=1

IF(DABS(PIVOT)«GT4EPS) GO TO 15
CONTINUE

IF(DABS(PIVOT)LE«EPS) GO TO 20
DO 30 K=1,N

ALIPIJY»K)I=ACIP(J) ,K)/PLIVOT

DO 20 1=1,NIR

Alde=A(1,4)

IF(ILEReIP(J)) GO TO 20

DO 35 K=1,N

ALT K)ISA(TyKI+ATJ*ALIP () 4K)
CONTINUE

IRANK=0

DO 40 I=1,NIR

DO 45 J=1,N
IF(DABS(A(l,J))eGT4EPS) GO TO6
CONTINUE

GO TO 40

JRANK=TRANK*}

CONTINUE

RETURN

END
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1 SUBROUTINE OBSERV(S,PHI,CyN,M)
2 IMPLICIT REAL*8(A=H,0=2)
3 DIMENSION PHI(10y30),CNCI0,10),PHKI10,10,10),Q0BS(10,104+10)
4 DIMENSION QO(10,10),R0T(10,10),PH(10, lD).PHT(ID 19)
5 DIMEN IoN DUMY(10,11)
- & DATA EFS/)1eD=20/
7 CALL DEVRET(PHIPHK N,N,1)
8 CALL POPHI(PHI PHK H,,KENT)
9 CALL DEVRET(C,Q0BS,N,M,1)
10 DO 20 K=1,KENT
11 KP1sK+1
12 DO 25 I=1,N
13 DO 25 J=1,N
14 25 PHILaJISPHK(],Jd,K)
15 CALL TRANS(PH,PHT N, N)
16 CALL MULTIR(PHTCoDUMY  NyN,yM)
17 CALL DEVRET(DUMY 1Q0BS,NyMuKP))
18 20 CONTINUE
19 PO 15 K=1,M
20 IOWAS (Kml )M+l
21 JERSEY®K*M
22 PO A0 I=1,N
23 M=0 :
24 PO 30 J=10WA,JERSEY
.25 M=M+]
26 30 Q0(1,u)=Q0RS{I,MyK)
27 15 CONTINUE
28 NBM=NM
29 IFINBMeGT,N) GO TO 35
30 JALE=w]
3 CALL INVERS(57,Q0,DEOM,NyJALE)
-32 IF(DABS(DEOM) 4GT«EPS) GO TO 8
33 Go TO 7
34 35 CALL TRANS(QO,Q0T,N,NBM)
35 CALL RANKT(QOT,NyNBM, IRANK)
36 IF(N=JRANK)7,8,7
37 B WRITE(641)
s ] FORMAT{//22X,*SYSTEM |5 COMPLETELY OBSERVABLE.?)
39 Go To 9
40 7 WRITE(6,2)
4y 2 FORMAT(//22Xy*"SYSTEW IS UNOBSERVABLE?///)
42 RETURN |}
43 9 RETURN

HA END

=
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SUBROUTINE POPHI(PHI  PHKsNsKENT)
IMPLICIT REAL*B8{A=H, On?)
DIMENSTON PHI (10, 10).PHK(10 10,10),PH{10,10) UPllu:LQ)
CALL LOADMIPHI PHyNyN)

KENT=N=1

po 10 K= 2 4KENT

cALL MULTIG(PHI PHyOPyNyN, 1)

CALL DEVReT(OP PHK N, N K)

CALL LOADM(OF,PH, N;N)

10 10 CONTINUE

11 RE TURN

12 END

Y:S AYZANI-SUBZD,-SUBZI,.SUBZZ
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i SUBROUTINE DEFNIT(S,N,B)

2 DIMENSION A(10,10),B(10,10),D0RF(10)

3 DATA EPS/1sE=6/

4 0o 15 K=1,N

5 LEO==~]

) DO 20 I=1,K

7 DO 20 J=1,K

8 20 A3 J)SB(] )

9 CALL INVERS(S2,A\DET,K,LED)

10 DOQF (K)=DET

11 15 CONTINUE »

12 KONT=0

13 KQUNT=O

14 PO 1 KSLaN

15 IF(DABS(DOAF(K)II=EPS)3,5,5

16 & KOUNT=KOUNT*1

17 IFIDOQF(K)Y)2,3,4

18 4 KONTSKONT#+}

19 1 CONTINUE

20 IFIKONT=KQUNT)Y&sT7 46 ‘
21 2 PRINT ,¢ INTRODUCER MATRIX 1S NOT POSITIVE (SeMI) DEFINITH
22 10 RETURN )
23 3 G0 TO 2

24 6 PRINT #,¢ INTRODUCED MATRIX IS POSITIVE SgM]
25 GO To 8

26 7 IF(KONTSEQeN)IGD TO 9

27 PRINT #,¢ DEFINJITEMNESS OF INTRODUCED MATRIX
28 G0 To 10

29 9 PRINT #,¢ INTRODUCED MATRIX 1S POSITIVE DEFINJTE,.'’
30 B RETURN

31  END

DEFINITE.

1S NoT DETERMIN
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SUBROUTINE CIZERO(N,S,KSN)
IMPLICIT REAL®B8(AmH,0=2)
DIMENSION S{10,10)

DATA EPS/)1sD=20/

KSN=0

DO 1 I=1,N

PO 1 J=14N
IF(DABS(S(I,J))elE-EPS)KSN=KSN#*I
CONTINUE

RETURN

END
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1§
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
a0
31
.32

33

34
35
36
37
3B
39
40
H1
42
43
w4
45
Hé
47
48
49
5N
51
52
53
54
565
56
57
58
?59
60

SUBROUTINE SAMPLE(S)
IMPLICIT REAL*B(AmH,0~2)
COMPLEX COP,EIG
COMMON/EIDC/AL,N
COMMON/ZEIC/EPS KMAX,COP(11),E1G (10) yJJJ Ny
COMMON TIP),R,QHATEM,RHAT
COMMQN/DIC/T’IRQ\JW!B!PHI)DQDl
COMMON/CHO/QX KN
DIMENSION QHAT(10,10),EM(10,10),RHAT(10,10),A1(10,10)
1, at:n.no; PHIC10,10),D010,10),01(10,10),8X(1n,10),
uav(10> CEvtxu),DUMvtxm.zn),RINV(;D.lQ),EMT(zn 10),RM
1(10,10),QMR(1D,10),AE(3),CTR(3)
Judd=1
DO 1 I=1aN
IF(AIMAGIEIG(TI))aLT+EPS) GO TO }
G0 TO 2
1 CONTINUE
DO 3 I=l,N
3 EVIII=REALIEIG(I))
AEV=EV(1)
DO 4 K=2,N
4 AEVEAMAX1(AEV,EVIK) )
T=le/{IK*AEV)
G0 To 8
DO 6 151N
CEV(I)=AIMAGIEIG(]))
CE=CEV(L)
DO 7 KE2sN
7 CE=AMAXT(CE,CEV(K)) ;
PI=3554/113,
TMAX=pPl/CE
: DO 12 I=1,N
12 EVII)=CABSIEIG(L))
EVM=EV(1)
po 13 I=2,N
13 EVMSAMAXL (EVM,EV(]))
Tele/{25+4EVHM)
XT=THAX/T
IT=THAX/T
IFCUXTSIT)aEQeNa) T=0L89%T
60 TD @
IF(NU,NE.O}) GO TO B
ALPHA=0.25
CALL LOADM(AL DUMY, N,N)
DO 2 J=1,3
T:ALPHA&T
TIPl=T
KN=1
CALL INTBSR
16 CALL LOADMIGHAT AL 4N,N)
JJdd=1
CALL EIGEN
DG 11 I=g,N
11 EVII)=CABSIEIG(I))
AEV=EVI])
DO 10 I=2,N
10 AEVEAMAXL (AEV,EV(I))
AELJ)=AEY
9 ALPHAZALPHA+D .S
CALL LOADM(DUMY,AL1,N,N)

Ll V]

v



51 G0 TO0 17

62 8  ALPHA=0.25

b3 PO 22 K=1,3

b4 T=ALPHAST

65 TIPImT

b6 DO 33 KN=1,3

67 33 CALL INTBSR

b8 CALL LOADMIRHAT,RINV,1R,IR)

59 JALE=] .
70 CALL INVERS(S15,RINV,DET4NyJALE)
71 G0 To 28

72 15 RETURNI

73 28 CALL TRANS(EM)EMT N, IR) ‘

74 CALL MULTIQ(EM)RINV,DUMY Ny IR, IR)
75 CALL MULTIQ(DUMYEMT4RMyNyIRyN)
76 CALL SUBTRT(QHATRM,QMR,NyN)

77 IFIReNEs1) GO TO 19

78 CALL LOADM(AL,DUMY,N,N)

79 19 CALL LOADM(GQMR,AL,NyN)

BO JJd= ]

B1 CALL EIGEN . .
B2 DD 14 I=1,N

B3 14 EVUI)=CABS(ELIG(]))

B4 DE=EV(I)

BS DO 18 J=2,N

B 18  DE=AMAXI(DE,EV(J))

B7 AELK)=DE

B8 22  ALFA=ALFA+D5

B9 CALL LOADM(DUMY, AL, NyN)

70 17 WRITE(6,25) (AE(J) 4J=1,3)

P1 25  FORMAT(//22X,*NORMALIZED COST V*,(22X,612,5))
72 ALFA=0425

73 T=T/1.25

P4 DO 30 I=1,3

75 TeT*ALFA

Pé CTRUTI=AE(I)/T

p7 30  ALFA=ALFA+0.5

P8 IF(CTR(L) 4GT«CTR(2)) IMs2

79 IF(CTRIIM) 9+GToCTR(3)) IM=3

10 T=AELIM)/CTRUIM)

21 WRITE(6,39)T

p2 39 FORMAT(///22X,*OPTIMUM SAMPLING PERIODIT =",G12,5)
23 TIPl=T

D4 RETURN

35 END



