VOT IC OF MAKES I MITTALS STUDIOS

Market Parket (1997)

A SURVEY

of

ASSEMBLY LINE BALANCING ALGORITHMS

and.

A PROPOSED ALGORITHM

Ъy

Alpaslan KARAYALÇIN B.Sc. in I.E. St.MARY'S UNIVERSITY OF SAN ANTONIO, 1978

Submitted to the Faculty of the School of Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Science in Industrial Engineering

> BOĞAZÎÇÎ UNIVERSITY 1981

This thesis Submitted by Alpaslan KARAYALÇIN, to the Industrial Engineering Department of BOĞAZİÇİ University in partial fulfillment of the requirements for Degree of Master of Science is approved:

Yük.Müh.Çetin EVRANUZ (Thesis Advisor)

Doç.Dr.Selçuk ERDEN

(14) and

Dr.Ceyhan UYAR

ACKNOWLEDGMENTS

·i -

1

This study was conducted under the Supervision of Çetin EVRANUZ to whom I wish to express my sincere thanks for his valuable and close guidance. I should also give my thanks to the Faculty of Industrial Engineering Department for their contribution to my graduate study in Industrial Engineering.

A B S T R A C T

In this thesis, Assembly Line Balancing (ALB) Process is studied in detail including the problem and available Algorithms. Basic concepts and measure of effectiveness of the line-balancing process were defined. The exact model was presented by using Mixed-Integer Programming.

A comprehensive literature survey is presented with the addition of proposed algorithm which is developed in this thesis. Among the algorithms covered in this literature survey; i) Kilbridge and Wester Algorithm, ii) Ranked Positional Weight Algorithm, iii) COMSOAL and, iv) Largest Candidate Rule. Following these two of the commonly used computerized techniques of HOFFMANN and ARCUS are also discussed. Then Stochastic Line Balancing is studied and described by using BRENNECKE's Algorithm. Finally Cost-Oriented Approach and a Preference Order Dynamic Programming for Stochastic ALB are discussed. Flow charts for three of the algorithms and computer programs in FORTRAN IV are written and run for sample problems.

The basic contribution of this thesis is the Proposed Algorithm which was developed during this research. Algorithm offers manual technique to achieve balances with reasonable level of efficiency by savings in computation time.

The Proposed Algorithm is also applied to a real case taken from ÖZKÖSEOGLU Manufacturing Company which makes Industrial Furnaces, in order to compare its performance against the most commanly used computerized technique of ARCUS.

It was observed that for this size of problem, the Proposed Algorithm performed equally efficient, without using any computer time.

ÖZET

Bu tezde, Montaj Hatlarının Dengelenmesi problemi yapısı ve mevcut algoritmalarla birlikte ayrıntılı olarak incelenmiştir. Hat Dengeleme prosesinin temel kavramları ve etkinlik ölçüsü tanımlanmıştır. Tam Model, Karma-Tamsayılı Programlama kullanılarak ortaya konmuştur.

Bu tezde sunulan, Algoritma Teklifi ile birlikte, etraflı bir literatür taraması yapılarak verilmiştir. Bu literatür incelemesinde başlıca i) Kilbridge ve Wester Algoritması, ii) R.P.W. pozisyon ağırlıklarına göre sıralama algoritması, iii) COMSOAL ve iv) LCR-Büyük Aday kuralı ve bunları takiben en yaygın olarak kullanılan kompüterize teknikler olarak Hoffman ve Arcus Algoritmaları tartışılmıştır. Bundan sonra, SLB, Stokastik Hat Dengelemesi incelenmiş ve özellikle BREENNECKE Algoritması kullanılarak açıklamalar yapılmıştır. Daha sonra da COA-Maliyete Dayalı Yaklaşım ve Stokastik Montaj Hattı Dengelemesi için tercihli sıraya göre dinamik programlama açıklanmıştır. Üç algoritma için akış diagramları ve Fortran IV diliyle kompüter programları yapılmış ve örnek problemler için çalıştırılmıştır.

Bu tezin, temel katkısı ise, araştırma sırasında geliştirilen PA-Teklif Algoritmadan oluşmaktadır. Bu teklif algoritma, dengelemeyi, makul bir verim oranı ve hesaplama zamanında önemli tasarrufla veren bir manuel teknik oluşturmaktadır.

Teklif Algoritma, Endüstriel Fırınlar imalatcısı olan ÖZKÖSEOĞLU İmalat Anonim Şirketi'nden alınan bir gerçek probleme uygulanarak, performansı, çok yaygın olarak kullanılan ve kompüterize bir teknik olan ARCUS Algoritması ile karşılaştırılmıştır.

Çalışmada, bu çaptaki problemler için, teklif edilen algoritmanın herhangi bir kompüter zamanına ihtiyaç göstermeksizin, Arcus Algoritması kadar etkili olduğu saptanmıştır.

LIST OF TABLES

-			Page
TABLE	II.1.	A Numerical Example	8
. •			
TABLE	III.1.	Data for the Desk Lamp	12
TABLE	III.2.	Tabular form of Precedence Diagram	14
TABLE	III.3.	Tabular form of Precedence Diagram after the First Station	16
TABLE	111.4.	Tabular form of the Solution for Desk Lamp by Kilbridge and Wester	17
TABLE	III.5.	Precedence Matrix for Razor	20
TABLE	111.6.	Positional Weights in Decreasing Order	20
TABLE	III.7.	Solution Achieved for Razor by Ranked P.W	21
TABLE	III.8.	Data for the Pencil Sharpener	24
TABLE	111.9.	Solution to the Problem with Lists of COMSOAL	2 5
TABLE	111.10.	Data of the Precedence Diagram in Fig.III.6	31
TABLE	III.11.	Dàta for the example problem	47
TABLE	III.12.	Example	51
TABLE	III.13.	Computation Results for the illustrative Example	52
TABLE	111.14.	Data for the Example	55
TABLE	III.15.	Solution to the Problem	56
TABLE	IV.1.	Parts List for ELM-50 SIFTING MACHINE	61
TABLE	IV.2.	List of Subassemblies	62
TABLE	IV.3.	Solutions Generated by ARCUS' Technique .	63
TABLE	IV.4.	Solution by Proposed Algorithm	64

LIST OF FIGURES

			Page
FIGURE	III.1.	Precedence Diagram for the Desk Lamp	13
FIGURE	111.2.	Precedence Diagram with Work Stations drawn on it	18
FIGURE	III.3.	Precedence Diagram of Razor	19
FIGURE	III.4.	Flow Diagram for R.P.W. Technique	22
FIGURE	111.5.	Flow Chart for HOFFMANN'S Technique	29
FIGURE	III.6.	Precedence Diagram for the Example of HOFFMANN'S TECHNIQUE	31
FIGURE	III.7.	Flow Diagram for Random Generation of Solutions	33
FIGURE	III.8.	Flow Chart for Two Parameter ALB Model	36
FIGURE	III.9.	Relationship of Labor Cost Versus Incompletion Cost	38
FIGURE	III.10.	Flow Chart of the Technique	41
FIGURE	III.11.	Precedence Diagram	46.
FIGURE	III.12.	Precedence Diagram for the Example Problem	55
FIGURE	III.13.	Flow Chart of the Proposed Algorithm	57
FIGURE	IV.1.	ELM-50 SIFTING and LOOSENING MACHINE PARTS	60
FIGURE	IV.2.	Precedence Diagram for ELM 50	62

TABLE OF CONTENTS

	•		•	•		•							Page
ACKNOWLE	EDGEME	ENTS	• • • •	• • • •	• • • •	• • • •	• • • •	•••	• • • •	• • •	• • • •	••••	i
ABSTRACT	ſ		••••	••••		• • •	• • • •	• • • •	• • • •	•••		• • •	ii
ÖZET			• • • •	• • • •		• • • •	• • • •	• • •	•••,•	•••	• • • •	• • •	iii
LIST OF	TABLE	S	• • • •	• • • •	• • • •			• • • •	••••	• • •	• • • • •	• • •	iv
LIST OF	FIGUE	RES	• • • •	••••	••••••	••.•.	• • • •	• • • •	• • • •	• • •	• • • •	•••	v
TABLE OF	F CONJ	CENTS	• • • •	••••	•••	•••	• • • •	••••	• • • •	•••	••••	•••	vi
CHAPTER	I.	INTRODU	CTIO	N	• • • •	•••	• • • •	•••	• • • •	• • •	••••	•••	1
•	•	I.1.					ing						. 2
		I.2.	Diff Prob			-	aches			-			2
CHAPTER	II.	DEFINIT LINE BA											4
	•	II.1.	Prob	lem	Defi	init	ion	• • •		• • •		••••	5
	•	II.2.											6
		II.3.	The	Mixe	d-Ir	nteg	er P	rog	rammi	ing 1	Mode	1.	8
CHAPTER	III.	MOST CC METHODS											11
	- -	III.1.					ssem ithm	-			• • • •		11
	•		III.	1.1.	Kil	bri	dge	and	Wes	ter	Met	hod	12
		•	III.	1.2.	Rar	iked	Pos	iti	onal	We	ight	:s.	19
	•	· · · · · ·	· .	1.3.	· · · · ·			• • •	• • • •	••.•	••••	• • • •	. 24
	ж. •	•				-	t Ca			-			26
•			III.	1.5.	Bal	-	er P ing	. –					26
•	1. 		III.	1.6.			m fo tion				ons	• • •	32

		Ī	Page
		III.2. Stochastic Assembly Line-Balancing Algorithms	34
		III.2.1. Two Parameter Assembly Line Balancing Model- D.BRENNECKF	34
• •		III.2.2. A Cost Oriented Approach to Stochastic ALB	38
		III.2.3. A Preference Order Dynamic Program for SALB	47
•	•	III.3. The Proposed Algorithm for Assembly Line Balancing	54
CHAPTER	IV.	ASSEMBLY LINE BALANCING PROBLEM AT ÖZKÖSEOĞLU ISI SANAYÎÎ VE TÎCARET A.Ş	58
		IV.1. Description of the Problem	58
		IV.2. Required Data Versus Obtained Data .	58
		IV.3. Solution by using ARCUS' Technique .	63
	·	IV.4. Solution by using Proposed Algorithm	1 64
•	•	IV.5. Solution by using Kilbridge and Wester Tecnnique	65
		IV.6. Solution by using Ranked Positional Weights	66
	÷ .	IV.7'. Solution by using COMSOAL	66
•	· ·	IV.8. Proposed Algorithm versus ARCUS', R.P.W., Kilbridge and Wester and	67
СИХРТЕР	V	COMSOAL	
ORAT LEK	с У в	REFERENCES	
		APPENDIX I. TERMINOLOGY IN ASSEMBLY LINE BALANCING	
		APPENDIX II. FORTRAN IV LISTING AND THE OUTPUT OF HOFFMANN'S ALGORITHM	80
		APPENDIX III. FORTRAN IV LISTING AND THE OUTPUT OF ARCUS' ALGORITHM	88
· · ·		APPENDIX IV. SOLUTION TO THE CASE STUDY BY USING ARCUS' ALGORITHM	93

- vii -

CHAPTER I INTRODUCTION

Frederick W.Taylor and others have indicated a division of labor, that is another group of specialists largely mechanical and industrial engineers, were required to develop a science of planning for manufacturing just as the necessity of development in science of design, earlier.

The manufacturing problems had developed to such an extent that the ordinary mechanic could no langer cope with all the combinations of art and science necessary to deliver the goods on time. As the machines became more complex and production schedules became larger and more rigid, it was impossible to continue under the conventional approach of mechanic. This conventional approach is being modified since the industrial revolution by techniques such as sequencing, inventory control techniques, assembly line balancing techniques etc.

In this thes is assembly line balancing techniques are being studied.

Since early 1950's assembly lines are tackled in order to achieve better balances. Some have tackled them as queueing systems, some others seeked for an exact solution by making use of mathematical programming. Simulation was also an alternative tool. But, as in all complex production problems most successive algorithms are heuristic approaches.

I.1. The Line-Balancing Problem

Balance refers to the equality of capacity or output of each of the successive operations (stations) in the sequence of a line. If they are all equal, perfect balance is achieved and smooth flow is expected. If they are unequal, the maximum possible output for the line as a whole will be dictated by the slowest operation in the sequence. This slow or bottleneck operation restricts the flow of parts on the line in the same way that a half-closed valve restricts the flow of water, even though the pipes in the system might be capable of carrying twice as much water.

To achieve balance to the best of an ability, there is a need to know the performance times for the smallest possible whole units of activity, such as tightening a bolt or making a solder joint, and the knowledge of the flexibility in the sequence of these tasks or activities. There are certain limitations on the sequence of the tasks. This sequence flexibility is important in order to specify groups of tasks making up operation or station for a line that achieves the best balance.

I.2. Different Approaches to Line-Balancing Problem

Waiting line theory has not been a fruitful approach in the balance problem, even though it gives useful insights into how a line functions. Actually, it could be seen that, there is a work-time distribution to deal with, and the balance

- 2 -

problem is a stochastic one. However, most of the work on line-balancing, has simplified the basic problem and assumed that the service times were constant values and that there is always work available at each stage; that is, they have worked out solutions for the deterministic case.

In this thesis firstly in chapter II. the definition and the exact formulation of the Assembly-line-Balancing Problem is given, by means of an example. Following this chapter, literature survey is presented with the addition of proposed algorithm which is developed in this thesis. Among the algorithms covered in this literature survey;

i) Kilbridge and Wester Algorithm,

ii) Ranked Positional Weight Algorithm,

iii) COMSOAL and

iv) Largest Condidate Rule are the oldest ones. Following these are two of the commonly used computerized techniques of HOFFMAN and ARCUS. Then stochastic line balancing is studied and described by using BRENNECKE's Algorithm. Finally chapter is closed by describing Cost-Oriented Approach and a Preference Order Dynamic Program for Stochastic Assembly line-Balancing.

Before the discussion of results in conclusion chapter the proposed algorithm is tested against the most commonly used technique of ARCUS' on the case study at ÖZKÖSEOĞLU ISI SANAYİİ ve TİCARET A.Ş. who manufactures Industrial Furnaces, Burners, etc. The line for ELM-50 Flour Sifting and Loosening Machine has been studied and balanced.

- 3 -

CHAPTER II DEFINITION AND FORMULATION OF THE ASSEMBLY LINE BALANCING PROBLEM

When we speak of continuous systems, we normally think of manufacturing system that are organized and physically laid int by product. Whatever is being processed moves through a sequence of operations at rates that approach continuous movement, and thus the name arises. Continuous movement is, if course, a relative term to distinguish the character of such systems from batch processing where, by contrast, movement is intermittent.

Ine managerial decision to organise the work on a product or line basis is significant one. If we are to organise for rentinuous flow, the following requirements should be met.

i) Volume adequate for reasonable equipment utilization, ii) Reasonably stable product demand,

ii) Product standardization.

iv) Part interchangeability,

v) Continuous supply of material.

I=:h of these requirements needs to be qualified. The concept If an adequate volume presumes an economic analysis to I=:ermine the breakeven volume between line organization and I=:ternatives. Reasonably good equipment utilization is

associated with high volume. Stable demand is required in terms of a minimum sum that would at least cover the special tooling cost for a line. Thus stable demand is associated with product standardization. Engineering changes in product designs can be accomodated by production lines, but they cannot be too frequent. We must have our economical sum to cover the cost of redoing and relayout that design changes may require. Part interchangeability is required so that no special reworking or refitting of parts is needed during assembly. If parts are not interchangeable at assembly, the flow of work is distrupted because of in balance. Finally, where we have the high-volume standardized product situation described by the foregoing requirements, continuous supply of material is crucial. The lack of supply of a simple part or item of raw material can force the entire process to be stopped, and the resulting downtime costs can be very large.

II.1. Problem Definition

Assembly lines are characterized by the movement of the workpiece from one work station to the next. The individual tasks required to complete the product are divided and assigned to the work stations so that each station performs the same operation on every unit of product.

An assembly line balancing problem consists of assigning the individual tasks to the work stations, without violating the precedence relations, in such a way that some appropriate measure of line performance is optimized. The most commonly used measure of line performance is balance delay. In next section, while the formulation of problem is given, balance delay is defined as well.

- 5

II.2. Problem Formulation

At this stage it is possible to formulate assembly line balancing problem in mathematical terms. Let,

6 -

C. - cycle time,
t_i - the duration of ith work element,
d - balance delay,
J - the total sum of work elements,

N - number of work stations.

Firstly, the balance delay in general is;

 $d = N.C - \sum_{i=1}^{J} t_i$ N integer.

The objective function is then defined as, minimization of the balance delay, d. From the above expression the objective function reduces to minimizing the product

N.C

Assuming that the sequence of the operations does not influence their duration).

Therefore assembly line balancing problem could be stated as either one of the following,

- i) Minimize the number of work stations for a given cycle time, or
- ii) For a given number of work stations, minimize the cycle time.

As, it is the case in most optimizations, there are restrictions in balancing problem. The balancing restrictions in general are; i) The cycle time has to be larger than the duration of the largest work element:

$$t_{i_{max}} \leq C$$

ii) The work content of any single station has to be smaller than the cycle time:

$$\sum_{i=1}^{\Sigma} t_i \cdot x_{ij} \leq C \qquad j = 1, 2, \dots N.$$

Where,

iii) Each work element is to be assigned only once:

N $\Sigma x_{ij} = 1$ i = 1, 2, ..., J.j=1

iv) Technological restrictions referring to the sequence of the operations can be formulated as a precedence matrix and must not be violated.

The assembly line balancing problem has received considerable attention in the past several years, and, as a result, there are a great many solution procedures. The procedures may be classified generally as either exact methods that quarantee an optimal solution, or heuristic methods that may yield only approximately optimal solution. The exact methods are usually mathematical programming formulations. Many types of heuristic methods have been proposed, ranging from simple procedures easily performed by hand to complex algorithms that require a computer for problem solutions. Some of these methods are reviewed in the next chapter.

II.3. The Mixed-Integer Programming Model

The model will be discussed by means of a numerical example, which is given in Table II.1.

Let us assume that in this example the required cycle time is C = 10.

Work	Element	Durat	tion Dire	ct Predecessors
	1	6	- <u></u>	
	2	2		1
	3	5		1
	4	7		1
· · ·	5	1		1
	6	. 2		2
	7	• 3		3,4,5
	8	6		6
	9	5		7
. 1	.0	5		8
.]	.1	- 4	•	.9,10

TABLE II.1. A Numerical Example

The minimum number of work stations is being asked. Since we do not know whether the $N_{min} = 5$ is sufficient or not (considering the existing constraints) the model is formulated for seven work stations (A-G). Writing A_i for the duration of work element i if assigned to station A, the following constraints are obtained:

- 8 -

i) Capacity constraints. $A_1 + A_2 + A_3 + \dots + A_{11} \triangleq 10$ $B_1 + B_2 + B_3 + \dots + B_{11} \triangleq 10$ \dots $G_1 + G_2 + G_3 + \dots + G_{11} \triangleq 10$

ii) Each work element is to be assigned only once:

 $A_{1} + B_{1} + C_{1} + \dots + G_{1} = 6$ $A_{2} + B_{2} + C_{2} + \dots + G_{2} = 2$ $\dots + \dots + G_{11} = 4$ $A_{11} + B_{11} + C_{11} + \dots + G_{11} = 4$

iii) Indivisibility of the work elements:

9

iv) Precedence Constraints: (91 constraints)

The objective function is; -

minimize $Z = 1 F_{11} + 3 G_{11}$

with 186 constraints (154 integer variables) mentioned above.

The objective function contains the sixth and seventh work station, ones that have been added to the minimal number of work stations (Fand G). These two work stations are weighted with increasing cost factors. For this case the theoretical minimum has been reached with following solution;

> station A: work elements 1,2,6 station B: work elements 5,8 station C: work elements 3,10 station D: work elements 4,7 station E: work elements 9,11

CHAPTER III MOST COMMONLY USED ASSEMBLY LINE BALANCING METHODS SINCE 1950's

In this chapter Assembly Line Balancing Methods will be discussed under two categories such as, Deterministic and Stochastic Algorithms, followed by the proposed algorithm in last section.

III.1. Deterministic Assembly Line Balancing Algorithms

Since 1954 many papers and books have been published reporting the development of new techniques for balancing line production systems. Perhaps the best known among these are those rely on heuristic procedures. Four of these are;

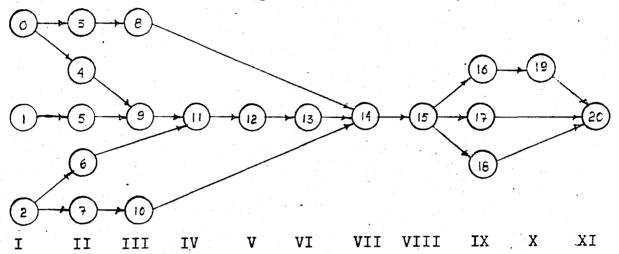
i) Kilbridge and Wester Method(11)

- ii) Ranked Positional Weights(19)
- iii) The Largest Candidate Rule(19)
 - iv) COMSOAL(1).

These heuristic procedures will be described in some detail in following sections. In sections III.1.5 and III.1.6 following computerized algorithms are briefly described by means of an hypothetical example; i) Line Balancing with "Precedence Matrix" - T.R.HOFFMANN(3,5).
ii) Random Generation of Solutions - ARCUS(1)

III.1.1. Kilbridge and Wester Method.

This simple, one of the earliest, heuristic method of flowline balancing is best described by means of an example. Assume an assembly of desk lamp with 21 parts as data given below at Table III.1.


TABLE III.1. Data for the Desk Lamp

Elements	Element T	imes(min)	Precedence(must	follow)
0	6			
1	5		-	
2	8			
3	9		0	•
4	5	1	0,1	
5	4		1	
6	5		2	
7	6		2	
8	• 10		3	•
9	5		4,5	•
10	10		7	
11	2		9,6	10 - 20 - 10 - 10 - 10
12.	5		11	•
13	4		12	•
14	12		13,8,10	
15	10		14	•
16	5		15	
17	15		15	· ·
18	10	• • • •	15	•
19	5		16	•
20	6		17,18,19	

- 12 ·

From Table III.1. the precedence diagram could be drawn as in Figure III.1.

Figure III.1. Precedence Diagram for the Desklamp.

Roman figures above the Figure III.1. are column numbers, which will be needed for transferability later on. Elements appearing in column I can be started immediately, those in column II can begin after one or more in column I have been completed, and so on. The data show in this diagram can now be represented in useful tabular form.

Column (c) in Table III.2. describes the lateral transferability of elements among columns. For example, element 6 can be performed in column III as well as in Column II without violating precedence constraints. Suppose that the cycle time is 36 minutes to balance the assembly line.

Column (a)	Element (b)	Transferability (c)	Element dur. (d)	Dur.of Col. (e)	Cumulative Dur. (f)
·	0		6		
I	1		5	•	
	2		8	19	19
	3	III-V(with 8)	9		
	4		5		
II	5		4		
•	6	III	5		
	7	III-VI(with 10)	6	29	48
•	8	IV-VI	10		
III	. 9		5		
	10	Ιν-νι	6	21	69
IV	· 11		2	2	71
v	12		5	5	76
VI	13		4	4	80
VII	14		12	12	92
VIII	15		10	10	102
н н н	16		5	:	•
IX	17	X .	15		
	18	X	10	30	132
• • X • • •	19		5	5	137
ХI	20		6	6	143

TABLE III.2. Tabular Form of Precedence Diagram.

- 14 -

Procedure:

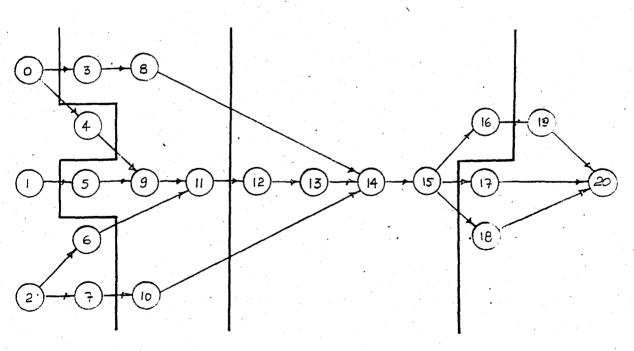
- 1. Is there a duration in column f equal to the cycle time of 36? No.
- Select the largest duration in column f less than 36, i.e. 19 for column I.
- 3. Subtract 19 from 36; 17.
- 4. Does one or more of the elements in the next column (II) equal to 17? No.
- 5. Select the smallest duration from column f which is larger than 36, i.e. 48 for columns I and II.
- 6. Can one or more of the elements in column I and II be transferred beyond column II so as to reduce the duration to 36? No, but element 3 (with 8) plus 6 can be
- 7. Select next largest duration from column f, i.e. 69 for columns I, II and III.
- 8. Can one or more of the elements in columns I,II and III be transferred beyond column III so as to reduce the duration to 36? No, the nearest is elements 3,8,7 and 10 which would give a duration of 38 which is too large.
- 9. Will an improved allocation of elements for station I be obtained by considering a larger duration from column f? No.
- 10. Adopt the best allocation found previously, i.e. step (4) which gave a work station time of 35 by column I plus elements 4,6 and 7.
- Rewrite the table and calculate new figures for column f. (Table III.3).
- 12. Follow the same procedure for next stations from the new tables. Final result is given in Table III.4.

- 15 -

e e di	L T I	st Station			· · · ·
Column (a)	Element (b)	Transferability (c)	Element dur. (d)	Dur.of Col. (e)	Cumulative Dur. (f)
	0		6	•	
I	1.		5		· · · · · ·
•	2		8		
					Station
	4		5		I
II	6		5		
	7		6		(35)
· .	3	IV-V(with 8)	9		
III	9	•	5		
	5		4		·
	10	IV-VI	6	24	24
IV	• 8	V-VII	10		· · · · · · · · · · · · · · · · · · ·
	11		2	12	36
V :	12		5	5	41
VI	13	•	4	4	4 5
VII	14		12	12	57
VIII	15		10	10	67
	•	• • •	•		
• •	16		5		
IX	17	X	15		
	18	X	10	30	97
X	19		5	. 5	102
XI	20		6	6	108
		•	· ·		· · ·

TABLE III.3. Tabular form of Precedence Diagram after the First Station

Elements	Station Work Content (sec)	
0		
1 ·		
	an an an an Araban ann an Araban an Araban an Araban an Araban an Araban an Araban an Araban an Araban an Arab Araban an Araban	(35)
, 3		
11 · · · · · · · · · · · · · · · · · ·	(36)	
16	(36)	
17		
18		
19	•	
20	(36)	
	1 2 4 6 7 3 9 5 10 8 11 12 13 14 15 16 17 18 19	


TABLE III.4. Tabular form of the Solution for Desk Lamp by Kilbridge & Wester The balancing loss for this solution is;

100.((N.T_c -
$$\sum_{i=1}^{n} T_{E_i}$$
)/N.T_c) = 0.7 %

where $T_c - cycle$ time

- T_{E_i} = element time
- N = number of stations.

Figure III.2. Precedence Diagram with Work Stations drawn on it.

Station I

Station II

Station III

Station IV

- 18 -

III.1.2. Ranked Positional Weights

This procedure was developed by Helgeson and Birnie(19) of the General Electric Company of the U.S.A. in the late 1950's. It is a rapid but approximate method, which has been shown to provide acceptably good solutions more quickly than many of the alternative methods. It is capable of dealing with precedence constraints. This technique will be demonstrated by means of an assembly of razor with 11 parts. Precedence diagram is given in Figure III.3.

Figure III.3. Precedence Diagram of Razor

0 2 8 10 6 5

7

The following table is called the Precedence Matrix where the element number and time is given in first two columns. The middle of the table shows the precedences. For example, element 0 is immediately followed by element 2, which in turn is followed by 5, which is followed by 6 and 7 and so on. A simple mark indicates the elements which follow immediately and crosses indicate elements which follow because of their relationship with other elements. The final column of the table gives the positional weight for each task, which is defined as following; summing the elements own standard time and the standard times for all following elements. For insinstance for element 0;

p.w. = element 0 (..32)
+ element 2 (.20)
+ element 5 (.23)
+ element 6 (.20)

+ element 7 (.05)
+ element 8 (.32)
+ element 9 (.10)
+ element 10(.32) = 1.72

The positional weight is therefore a mesaure of the size of an element. Then we rewrite Table III.5 in order of decreasing p.w. in Table III.6.

Element Number	Element Time	0	1	2	3	4	5	6	7	8	9	10	Positional Weights.
0	. 32	÷.		1	1		+ .	+	+	+	+	+	1.72
1	.10			1	1		+	+	+	+	+	+	1.65
2	.20						1	+	+	+	+	+	1.40
3	.05					1				+	+	+	. 87
4	. 10									1	+	+	. 82
5	.23							1	1	+	+	+	1.20
6	.20	•	e							1	+	+	.92
7	.05										1	+	. 45
8	• 32									•	1	+	.72
9	. 10				•	•		•	-			1	. 40
10	. 30												. 30

TABLE III.5. Precedence Matrix for Razor

TABLE III.6. Positional Weights in Decreasing Order

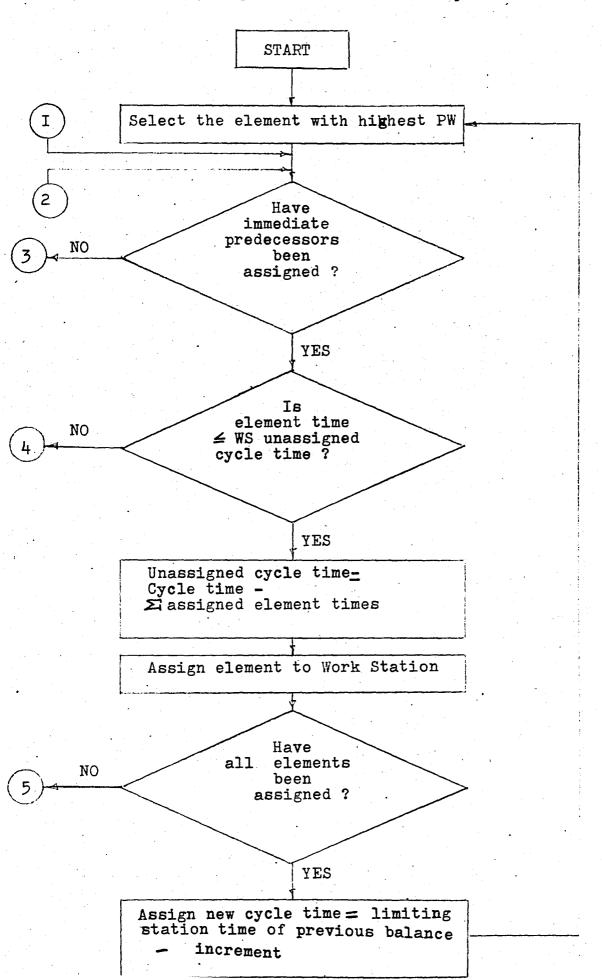
Element Number	0	1	2	5	6	3	4	в 1	7	9	10
Element Time	.32	.10	.20	23	.20	.05	.10	. 32	.05	.10	. 30
Positional Weight	1.72	1.65	1.40	1.20	.92	. 87	. 82	. 72	.45	. 40	. 30
Immediate Predecessors	-	-	0.1	2	5	1	3	4.6	5 .	7.8	9.

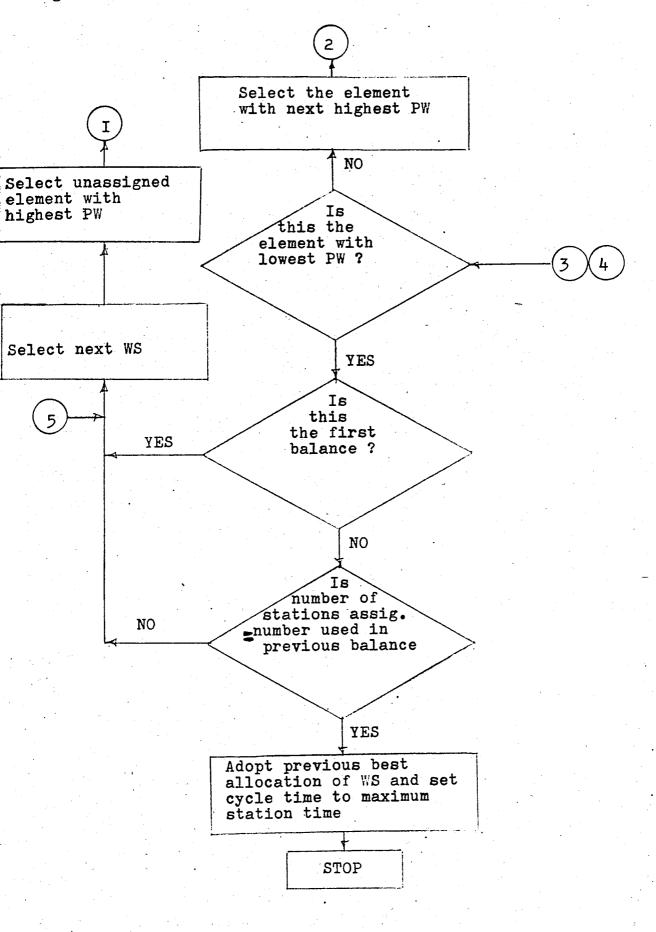
It is required to design an assembly line with the minimum number of stations to provide a cycle time of .55 hours. Using the Table III.6., elements are allocated to work station in order of decreasing P.W. and without violating the precedence constraints. Element 0 with highest p.w. of 1.72 is allocated first to station I. This is acceptable because .

- 20 -

element 0, has no immediate predecessor and furthermore its element time is less than the space time available in station. I. element 1 is next to be allocated since it has the next highest P.W. Everytime we assign one of the elements to stations we rearrange Table III.6 by dismissing that element and apply the same rule for assignments and so on.

Solution for this simple hyphotetical example problem is given in Table III.7.


Work	Element	Positional	Station Work
Station	Number	Weight	Content
I	0	1.72	. 32
	1	1.65	. 42
	3	.87	(. 47)
II	2	1.40	.20
	4	.82	.30
	5	1.20	(.53)
III	6	.92	.20
	8	.72	(.52)
IV	7	. 45	.32
	9	. 40	.37
	10	. 30	(.47)


TABLE III.7. Solution Achieved for Razor by Ranked P.W.

This solution yields a balancing loss of;

10.4 %

It is not difficult to criticise this simple Assembly line Balancing procedure or to suggest improvements. Mansoor(13) has developed and improved R.P.W. technique involving a 'backtracking' procedure which appears to provide better results in certain conditions. Flow diagram for Line Balancing for a given cycle time using R.P.W. method is given in Figure III.4. Figure III.4.Flow Diagram for R.P.W. Technique.

III.1.3. COMSOAL

COMSOAL(1), an acronym for a Computer Method of Sequencing Operations for Assembly Lines, is a method of balancing large complex machine-paced assembly lines. It combines four powerful and versatile tools; a high speed digital computer, sampling concepts, the Monte Carlo technique, and simulation. In order to explain this algorithm assume the assembly of an pencil sharpener, given in Table III.8.

TABLE III.8. Data. For the Pencil Sharpener

Element Number	0	1	2	3	4	5	6	7 .	8	9	10
Number of İmmediate Predecessors		• —	2	1	1	1	1	1	2	2	1

Procedure:

- Construct a list of (COMSOAL LIST A) total number of immediate predecessors of elements.
- 2. Compile the list B of elements with no immediate predecessors. This list is called Partition List B.

element number	0	1
number of immediate		
predecessors	-	-

3. Place, in List C, tasks which have times no greater than time left available at station being worked. List C is called Fit List of COMSOAL.

4. Select, randomly, one element from Fit List.

5. Eliminate selected element (0) from both list B and C.

- 6. Update list A by scanning followers of task (0) and deduct 1 from total number of preceding tasks (Redo List) predecessors of 2 becomes 1, etc.
- 7. Redo list B by transferring from List A all tasks with no predecessors.
- 8. Transfer from List B to C those tasks which fit the remaining time to be assigned.

9. Select from fit list another task for station I.

Repeat the same until station I is full and continue station by station. Following table gives the solution for C=.55.

TABLE III.9. Solution to the problem with Lists of COMSOAL

•			· · · · · · · · · · · · · · · · · · ·
List A	List B Li	st C	assigned elements
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1	0 1	t(0) = .32
4 1 : : 10 1			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	t(0) = .32 t(1) = .10 .42
10 1			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 3	3	t(0) = .32 t(1) = .10 station t(3) = .05 I .47
: : 10 1	•		
• •			
: 7 - 9 1 10 1	7	7	t(7) = .05
· · · · · · · · · · · · · · · · · · ·			HANES

POĞAZICI ÜNIVERSITESİ KÜTÜPHANESI

Stations become as following: Station I - elements 0 1 3 with total S.W.C. of 0.47 Station II - elements 2 5 4 with total S.W.C. of 0.53 Station III - elements 6 8 with total S.W.C. of 0.52 Station IV - elements 7 9 10 with total S.W.C. of 0.45

this solution yields a balancing loss of; 10.4 %.

III.1.4. Largest Candidate Rule

This simplest of the algorithms work as following: Allocate elements to stations beginning with the first station by scheduling from those elements that are feasible (precedence constraints) in descending order of size. For the same example problem Largest Candidate Rule yields the same solution as Ranked Positional Weight but it is quicker.

III.1.5. Computer Program for Line Balancign With Precedence Matrix (T.R.HOFFMAN)(3)(5)

In this section the computer program for line-balancing with precedence matrix will be discussed. The flow diagram is presented in Figure III.5. This program is written for the UNIVAC system at Bosphorus University in FORTRAN IV.

Description of the technique:

The precedence matrix to be used by this method is constructed in the following manner;

- i) Construct a table with task numbers as the top row and left side column. Term row numbers as (i) and column numbers as (j).
- ii) If the element of row (i) immediately precedes the element of column (j), a 1 is placed as (ij) entry.

iii) All other entries are zero.

To use this matrix in generating all the feasible permutations, the following steps are used;

- i) Sum each column and term the total a "code number"
 c_i(i=1,2,...,n). Place this row at the bottom of the matrix.
- ii) Label the diagonal of the matrix with any arbitrary letter or a large number (the program uses 16000).

Balance is obtained by inspecting the code number, C_i , for zeros. Zero as a code number indicates that job may be assigned to station K, because it has no precedence. The scheme for generating the feasible combination and balancing the line station by station is as follows:

- i) Search left to right in the Code Number for zero.
- ii) Select the element which heads the column in which the zero is located.
- iii) Subtract the element's time from cycletime remaining.
- iv) If the result is positive, go to step (v). If it is negative go to (vi)
 - v) Subtract from the Code Number the row corresponding to the element selected and use this result as a new Code Number. Go to step (vi).
- vi) Go to step (i) and start search one element to the right of the one just selected and repeat steps (i-vi). Until all the columns have been examined, then goto step (vii).
- vii) Subtract the remaining cycle time (the slack time) from the slack time of the previous combination generated.
- viii) If zero or negative, go to step (ix). If positive, then this set of elements just generated becomes the new combination for this station. Go to step (x).
 - ix) Go back one Code Number, C_i, and go back to step (i), starting one element to the right of the element which has been selected from that Code Number. Repeat this procedure until the last column of the first Code Number has been tested; the result is that the last combination generated by step (viii) is the one having the maximum elemental time for this station.

- 28 -

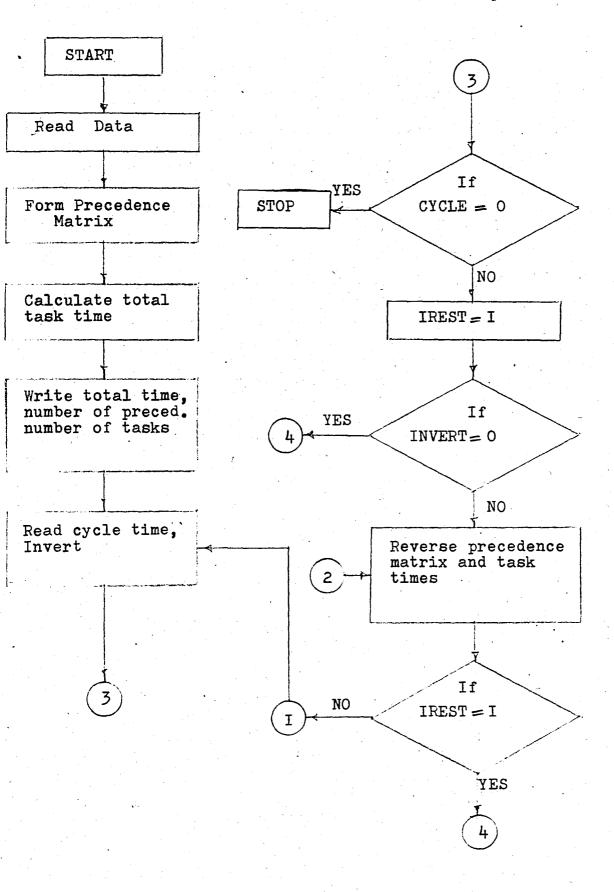
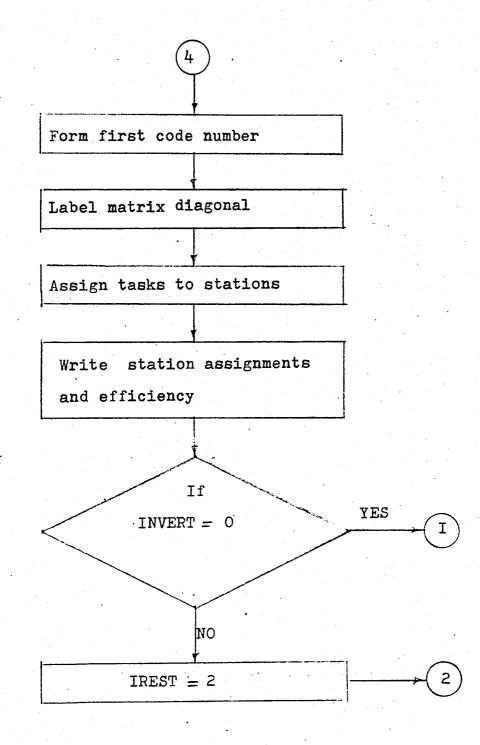



Figure III.5. Flow Chart for HOFFMANN'S Technique

- x) Replace the first Code Number with the last Code Number corresponding to the previous result. (This eliminates from further consideration of the elements already selected).
- xi) Repeat the previous steps until all the elements have been assigned. (Code Number C, is entirely negative).

It is easily seen that this precedence matrix method is very mechanical and because of this, it is easily suited as a computer technique, known as HOFFMANN'S TECHNIQUE.

The computer listing and the output for the following example is given in Appendix A.

Figure III.6. Precedence Diagram for the Example of HOFFMANN's TECHNIQUE

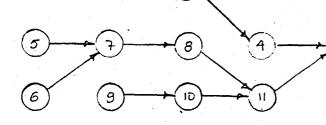


TABLE III.10- Data of the Precedence Diagram Given in Fig. III.6.

	Task	•	Times(mins.)	
	M0 1		0.062	-
	M0 2		0.065	
2	M0 3		0.227	
	M0 4		0.236	
	M0 5	· · · · · · · · · · · · · · · · · · ·	0.088	
	M0 6		0.125	
	M0 7	•	0.063	
	M0 8		0.057	
•	M0 9	•	0.119	
e de la composition de la comp	M10	•	0.118	
	M11		0.082	
	M12		0.319	,
	M13		0.288	
	M14		0.181	
	M15		0.201	
· · · · · ·	M16		0.231	·

III.1.6. Program for Random Generation of Solutions - ARCUS(1)

This one of the most commonly used technique generates random feasible solutions and selects the one with minimum number of work stations.

Description of the technique:

For a given cycle time this method finds the minimum number of work stations (possible) in the following manner:

- i) Select a task i. (Randomly)
- ii) Check the precedence for this task i.a) If task cannot be assigned goto (i)b) If task can be assigned goto (iii)
- iii) Add task i's elemental time to Station Work Content.
 a) If S.W.C. > Cycle time, proceed to (iv)
 b) If S.W.C.
 b) Cycle time, assign task i to the station and proceed to (v).
 - iv) Assign task i to next station and calculate the idle time (slack time)

.v) Adjust the precedence matrix for the assignment of task i.

vi) Repeat steps (i-v) until all the tasks are assigned.

Using the same example problem as in last section, the FORTRAN IV Listing and the output of the run is presented in Appendix B.

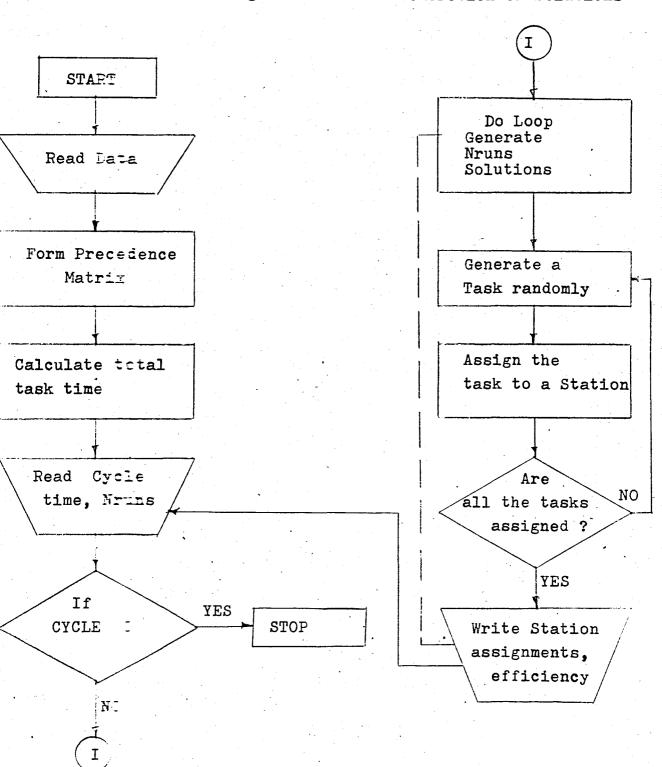


Figure III.7. Flow Diagram for Random Generation of Solutions

- 33 -

III.2. Stochactic Assembly Line-Balancing Algorithms

It was noted, in the introduction, that the task times are in fact represented by some distribution, instead of as constant values. The stochastic nature of the work station times has some interesting implications for the design of line systems and for line-balancing.

34

III.2.1. <u>Two Parameter Assembly Line Balancing Model-</u> D.BRENNECKE(2)

Theoretical foundation of the Two Parameter Model of Brennecke is three of the theorems in statistics, which deal with the distributions of sums and differences;

 i) Given the distribution of a variable x and the distribution of another variable y, the expected value of the variable x + y is;

E(x+y) = E(x) + E(y)

ii) The variance of x+y is;

 $\sigma_{x+y}^2 = \sigma_x^2 + \sigma_y^2$

iii) If the distributions of x and y are normal, the distribution of the sum or difference (x±y) is also normal.

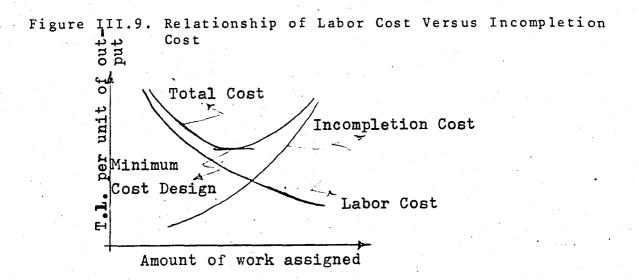
Brennecke also uses two assumptions;

- i) The task times are assumed to be independent of each other when they are combined.
- ii) The task time distributions are sufficiently normal that the station time distributions may be considered normal.

Procedure:

The mean time for the station is the summation of the mean times of the elements and the standard deviation is the square-root of the summation of the variances of those elements that make up the stations. Suppose Brennecke's Model will.be used to solve for 0.10 probability (Ten Percent) to exceed the cycle time. Then;

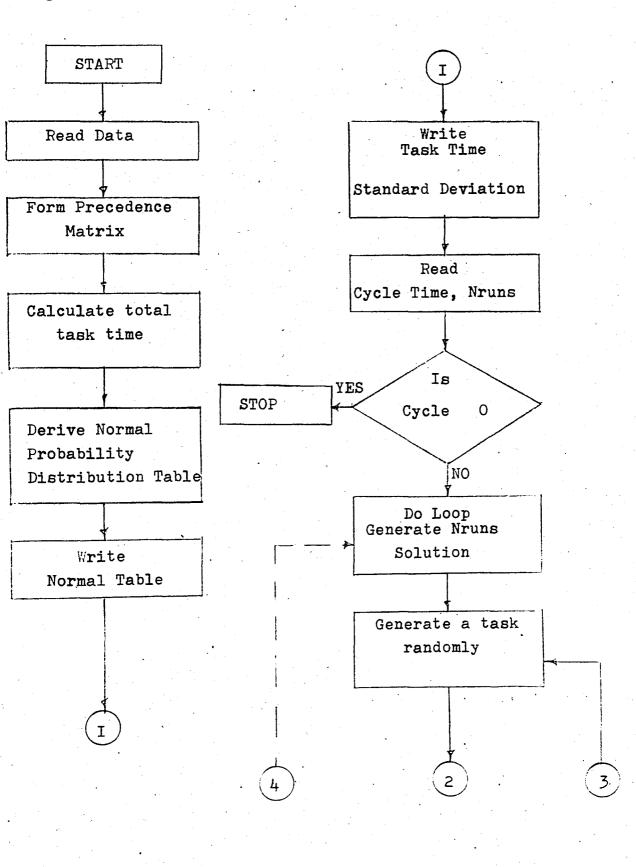
- i) Select the controlling station which is the station with the highest time, equal to the station mean time plus one standard deviation.
- ii) The standard deviation for the distribution of time values for this station is multiplied by the normal deviate corresponding to the 0.10 tail of the normal curve. This is the limiting value since it is known that the probability of actual time values exceeding cycle time cannot be less than 0.10.
- iii) Compute z, the number of standard deviations, between the mean time values of the other stations and the cycle time.


 $z = \frac{\text{station time (j)} - \text{cycle time}}{\text{standard deviation (j)}}$

- iv) Obtain the corresponding probability values for each z from the table of Standardized Normal Distribution Function.
- v) The figure that is obtained by summing these probabili .ties gives the probability that the actual operation time
 will exceed the cycle time.
- vi) Steps iii-v is repeated until designed 0.10 probability is obtained.

The optimal solution will be that solution which utilizes the least number of work stations. If there is a tie, the one with the smallest cycle time is selected. The flow chart is given in Figure III.8.

III.2.2. A Cost Oriented Approach to Stochactic ALB


This heuristic approach is designed to reduce expected labor and incompletion costs. Labor cost is defined as; operating costs affected by line balancing are the cost of manning the line and the incompletion cost is; the cost arising from tasks.not being finished as units move down the line. These two costs are inversely related. The more work we assign to workers the fewer workers needed. As a result of this incompletion cost increases. Figure III.9. shows how these costs vary per unit of output with the amount of work assigned to the worker.

Now the sum of these costs will be minimized.

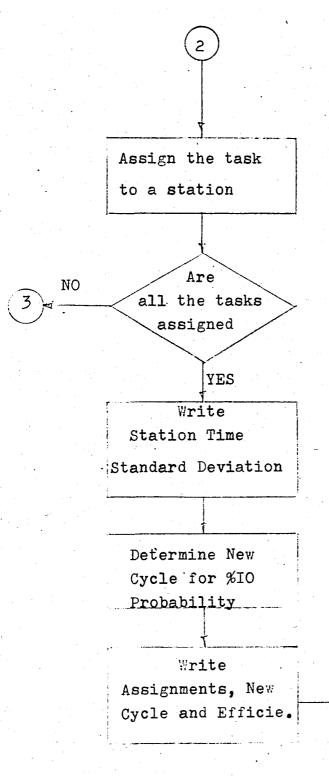

- 36

Figure III.8. Flow Chart for Two Parameter ALB Model

- 37 -

Figure.III.8. Cont.

2

For line Balancing with stochastic task times several techniques have been developed. Ignall is one of them, stated, to group the tasks into work stations so that the sum of the expected task times does not exceed some specified percentage of the cycle time, for instance % 90. Moodie and Young, and Brennecke also developed techniques.

But the techniques they developed leaves two critical questions unanswered.

 Up to what percent of the cycle time should work stations be packed?

ii) Should this percentage be the same for all stations?

By consideration of Labour and incompletion costs these questions could be answered profitably.

In order to present the proposed approach as clearly as possible Kottas and Lau have used certain simplifying assumptions.

Assumptions:

- i) Only restrictions while assigning tasks are cycle time and precedence relationships.
- ii) Each line worker is paid the same wage regardless of his assignments.
- iii) A task can only begin if all its predecessors have been completed.

iv) Each task time K is independent of each other and defined

- 39 -

by M_{K} and σ_{K} .

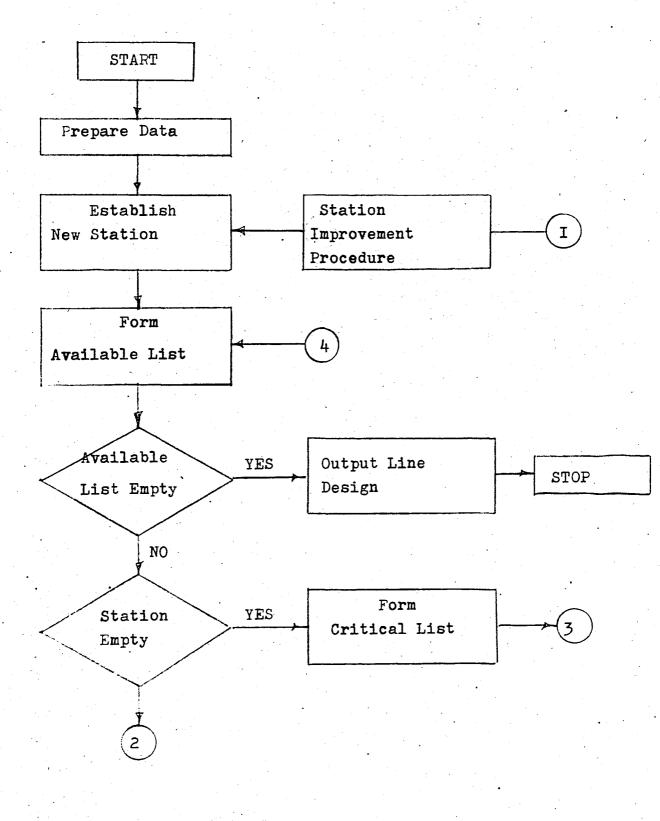
v) All unfinished tasks are completed off the line for a cost of I_K . I_K is not a function of what fraction of the task K was completed on the line.

vi) Appropriate estimate of \mathbf{r}_k is used; \mathbf{s}_k

$$s_{k} = \begin{bmatrix} n \\ \Sigma \\ i=1 \end{bmatrix} (t_{ik} - \mu_{k})^{2} / (n-1) \end{bmatrix}^{1/2}$$

where

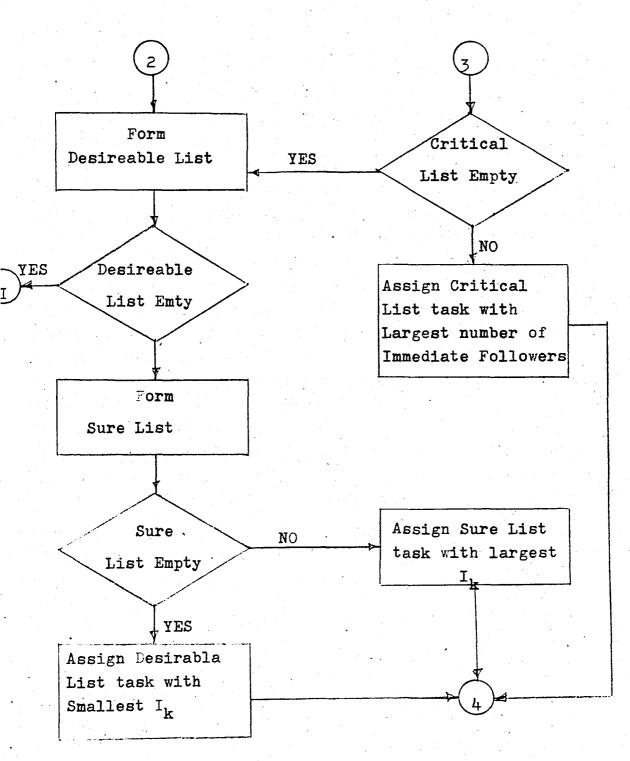
n- is the number of cycles of task k which where timed t_i - is the time for ith one of these cycles.


Starting from the input end, it decides which task should be performed first in a station, which tasks should follow and in what order, and when the station should be closed and a new one begin. It first determines the available tasks for assignment. Then it identifies which of these tasks are marginally desirable to perform next and from this group selects the one to be added on the basis of expected incomplete costs. A station is closed when there are no desirable tasks available.

Preliminary step in this technique is gathering the data as shown (STEP 1)*

- i) cycle time,
- ii) labour rate,

*STEPS are shown in Flow Chart. See Figure III.10.


Figure III.10. Flow Chart of the Technique.

- 41 -

- 42 -

Figure III.IO. Cont.

iii) for each task;

- a) μ_ι,
- b) σ_ν,
- c) estimated cost to complete off the line,
- d) immediate predecessors,
- e) number of immediate followers.

Following step will be the forming of Available List (Step 3) It selects the tasks with no unassigned, immediate predecessors. This list is updated everytime a task is assigned. If we reached the (step 4) - YES the line design is completed.

For our purposes, a task is considered marginally desirable when its anticipated labour savings in the specific position under consideration is equal to or exceeds its expected incompletion cost (step 6) is then forming the desirable list from available list by using the definition of marginality.

The labour savings L_k ; is determined by how much the labour cost of performing task k in our unestablished station will be reduced by performing it in the already existing station.

The incompletion cost expected as a result of assigning task k next in the station under consideration is the cost I_k stemming from not completing task k in the line multiplied by the probability p_k of not doing so within the cycle time C. I_k is determined by both the cost I_k' of completing task k itself off the line and the cost of finishing all its precedence related followers. For instance

$$I_{1} = \sum_{k=1}^{11} I'_{k} = \$ 3.05$$
$$I_{11} = I'_{11} = \$.20$$

as seen in Table III.11.

Calculation of P_k is easy after all the assumption mentioned in the beginning. Note that task k cannot be completed until all the tasks in s_k , the set of task k and the tasks performed before it in the station, have been completed. As the distribution of the time needed to complete all the tasks in s_k is normally distributed with mean $\sum_{\substack{\mu_i \ i \le s_k}} \mu_i$ and standard deviation ($\sum_{\substack{\sigma_i \ \sigma_i}} \frac{1/2}{1}$ $i \le s_k$

it follows that

$$P_{k} = 1 - F(z_{k})$$

where $F(z_k)$ is the cumulative density function of normal distributed z_k with $\mu = 0$ and $\sigma = 1$ and

$$z_{k} = (C - \sum_{i \neq s_{k}} \mu_{i}) / (\sum_{i \neq s_{k}} \sigma_{i}^{2})^{1/2}$$

From our definition of marginality, the only tasks that will be placed on desirable list are those whose;

$$L_k \geq P_k \cdot L_k$$

we could state this in terms of z_k by using (1)

$$F(z_k) \geq 1 - L_k / I_k$$

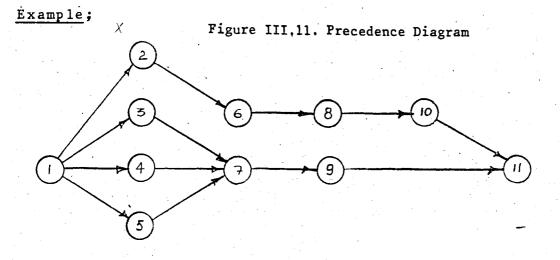
thus

 $L_k \stackrel{>}{=} P_k$. I_k is equivalent to $z_k \stackrel{>}{=} z_k^*$ where z_k^* is the value below which the outcomes of a normally distributed random variable with $\mu=0$ and $\sigma=1$ have $1-L_k/I_k$ probability of occurring. In the case of task 1 in table I, $z_1^* = 1.29$. Since 1.29 is the value below which a normally distributed random variable with mean, 0, and standard deviation, 1, has a

(2)

(1)

 $1-L_1/I_1 = 1-0.3/3.05 = .9017$ probability of occuring.


Before going on to consider which one of the marginally desirable tasks to assign next to a station, it is important to understand the purpose of the concept of marginal desirability. It has two basic functions. First, it removes from consideration for assignment next to the current station those tasks which would move the line towards higher operating costs. Thus it eliminates those tasks which have higher expected incompletion costs than anticipated labour savings, and accepts all others for the desirable list.

Now let us move to the third part of the flow chart. Which one of the marginally desirable tasks to assign? The choice is made on the basis of their P_k and I_k with the goal to minimize the total expected incompleted cost of the station. If there is still a tie then we look at the immediate followers.

Part of the station can be filled by tasks with virtual certainty of completion. This set of tasks are included in sure list (Step 8). $P_k < 0.005$ or equivalently whose $z_k^{>2.575}$.

Once however, the station has been filled to the point where none of the desirable list candidates can be assigned without risking incompletion (the sure list is empty, $p_k \ge 0.005$ and $z_k \le 2.575$) tasks are added on the basis of lowest I_k until there are no more marginally desirable tasks available. (Step 9 - YES, step 11).

These is one more infrequent occurrance to discuss. It could conceivably happen that one or more of the available list tasks would not be marginally desirable to assign to an empty station. Such tasks comprise the ciritical list (STEP 5 - YES STEP 13, STEP 14-NO). Since any critical list task can never be made more desirable than by performing it first in some station, it must be assigned to an empty station.

Step 1 is summarised in Table III.11 Cycle time is 20 minutes.

To clarify the use of table III.11 let us examine in more detail the development of the first station.

Task 1 is determined to be the only task on available list (step 3).

(Step 4) No. (Step 5) Yes. Form critical list (available list tasks whose $z_{\nu} < z_{\nu}^{*}$) Hence critical list is empty.

(Step 14) Yes. Form desirable list (Available list tasks whose $z_k \ge z_k^*$) Hence task 1 is in this List.

(Step 7) No. Form sure list. (desirable list tasks whose $z_1 > 2.575$) Hence task 1 is in this list.

(Step 9) No. (Step 10) assign the sure list task with largest I_k .

- 46 -

Hence it is assigned to station 1 by (step 10) with the assignment of task 1 procedure returns to step 3, to begin another cycle.

	<u>Sta.I</u>	<u>Sta.II</u>	Sta.III	<u>Sta.IV</u>	<u>Sta.V</u>	Sta.VI
	1.5	2,6,8	3,10	4	7,9	· .
Total sta	• • • • • • • • • • • • • • • • • • •				÷ .	
time	16	20	18	18	16	6

TABLE III.11. Data for the example problem. L_k is based on labor rate of \$3.00/hour Cycle time C is 20 minutes.

Task	k min/unit	σ² k	# of imme. pred.	imme. followers	L k \$/unit	I k \$/unit	I _k \$/unit	Z* k	
1	12	2.4	0	2,3,4,5	0.60	0.30	3.05	1.29	
2	4	0.8	1	6	0.20	0.10	1.15	1.36	
3	.8	2.0	1	7	0.40	0.25	1.90	0.80	
4	18	10.0	1	7	0.90	0.70	2.80	0.46	
5	4	0.8	1	7	0.20	0.15	1.70	1.19	
6	. 4	0.8	1	8	0.20	0.15	2.10	1.31	
7	6	1.2	3	9	0.30	0.20	1.40	0.79	
8	12	2.4	Ì	10	0.60	0.40	1.80	0.43	
9	10	2.0	1	11	0.50	0.30	1.00	0.00	
10	10	2.0	1	11	0.50	0.30	1.00	0.00	
11	6	3.6	2	-	0.30	0.20	0.40	67	

III.2.3. A Preference Order Dynamic Program For SALB(10)

In this technique task times are again stochastic times. It is wanted to assign the tasks to a minimum number of stations, given the cycle time. Dynamic programming Approach is used.

- 47 -

Problem Formulation:

Assume that t_i , task times, are independently distributed random variables with respective F_i , distribution functions. Let C be the cycle time A_n - be the collection of tasks assisnged to station n, τ_n - station work content at station n, it is a random variable and

$$\tau_n = \sum_{i \in A_n} t_i.$$

In the formulation we also have,

$$P(\tau_n \leq c) \geq \alpha$$

for all n, where α is the given lower bound

$$0 < \alpha \leq 1$$

The definition of feasible set is followed from Held and Karp's Dyanmic Programming Model.

Feasible set is subset of tasks

S $= (1,2,\ldots,J)$ in which there exists no pair (i,j) such that

- i) i **f** s ii) j (s and,
- iii) i precedes j.

A feasible set will be considered as a state in this Dynamic Programming approach.

The tasks without any predecessors are placed in stage 1 and are considered "marked". An "immediate follower" of a state S is defined as a task which is an immediate successor of at least one of the tasks in S. In stage say k, for State S, the unmarked immediate followers of S constructs the list called F(S). For each H = F(S). $H \cup S$ is a state in stage k+1.

When all states in stage k have been considered, each task in F(S), for all S in stage k is marked and the process is repeated for stage k + 1.

When all tasks are marked the construction is done.

When talking about Preference Order Dynamic Program, let T(S) be the optimal return function.

 $T(S) = (n(G_r))$

- n = minimum number of stations needed to accommodate all tasks
 in S
- G_r distribution function for r, the sum of the task times of tasks assigned to the last station.

Assume a task e(S), where S-e is a feasible set. We let $T(S-e) = (m,G_e)$

m = minimum number of stations needed for S - e

then we define,

 $\nabla(T(S-e), e) = (m, G_{s+e}) \quad \text{if } G_{s}^{-1}(\alpha) \leq c,$ $= (m+1, F_e) \quad \text{otherwise.}$

What this means is as simple as this; place task e in the last station for S - e if its inclusion does not result in a violation of the probability constraint on the station work content, otherwise create a new station to include e. Let I be the set of all positive Integers and g be the set of all distribution functions defined on R^+ and

$$\varepsilon = \{(n,G) \mid n \in I, G \in \mathcal{O}\}$$

A preference ordering operator \perp is a mapping from $\varepsilon \times \varepsilon \times \ldots \times \varepsilon$ to ε with

$$(n_{i}^{*}, G_{i}^{*}) = - \{(n_{1}, G_{1}), (n_{2}, G_{2}), \dots, (n_{q}, G_{q})\}$$

The operator \bot chooses the i th doublet (n_i^*, G_i^*) using the following criterian

$$G_{r_{i}+t}^{-1}(\alpha) \leq G_{r_{i}+t}^{-1}(\alpha)$$
 for all $i \in K$
and any $F_{t}\in g$

then the optimal return fucntion recursively,

$$I(s) = \frac{1}{e \cdot S} \{ \nabla (T(s-e), e) \}$$

S-e feasible

Then for normal variates criterion (1) reduces to;

i* th triplet is selected if $M_i^* \leq M_i$ and $V_i^* \leq V_i$ for all i(K

when $M_i^* \leq M_i$ and $V_i^* > V_i$ inequality (1) becomes

$$Z_{\alpha} \leq (M_i - M_i^*) / (V_i^{1/2} - V_i^{1/2})$$
 for all $i \in K$

where $M_i = \mu_{r_i}$ and $V_i = \sigma_{r_i}^2$ in $T(S) = (n, \mu_r, \sigma_r^2)$

 z_{α} is the 100 α th percentile of the standardized normal distribution.

(1)

Task i	Direct	predecessor	^µ i	σ_{i}^{2}
1			6	1.2
2		• 1 • • • •	2	0.4
3		1	4	1.0
4	•	1	9	5.0
5		1	2	0.4
6		2	2	0.4
7		3,4,5	3	0.6
. 8		6	- 6	1.2
9		7	5	1.0
10	•	8	5	1.0
11		9,10	3	1.8

TABLE III- 12. Example

In this illustrative example task times are assumed to be independent normal variates, the cycle time C is set at 10 and the precedence relations are identical to those given in Jackson's well-known example*. The data are shown in Table III.12. states generated and Listed in Table III.13.

If we require that each station there be at least a 90 % chance of completing the work on each unit, then the problem is equivalent to Kottas and Lau's^{**} with z_{0.90}=1.282. Procedure yields several optimal solutions, one is;

1,5:4:2,3,6:7,9:8:10:11

* JACKSON, J.R. "A computing Procedure for a Line Balancing Problem" Management Science, Vol.2, No.3, 1956.

**KOTTAS, J.F. and LAU, H.S. - Chapter V.

Stage	Marked Tasks		State S		Unmarked Immediate Followers F (S)	Optimal Decision e	Optimal Return T(S)
. 1	1	1		1	2,3,4,5	1	1,6,1.2
2	2,3,4,5			1,2	6	2	1,8,1.6
• • •		•		1,3		3	2,4,1
	and and a second second second second second second second second second second second second second second se			1,4		4	2,9,5
· · · · ·		•		1,5		5	1,8,1.6
				1,2,3	6	3	2,4,1
				1,2,4	6	4	2,9,5
	2			1,2,5	6	2,5	2,2,0.4
				1,3,4	1997 - 1997 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	3	3,4,1
				1,3,5		3	2,4,1
•	·			1,4,5	_	. 4	2,9,5
				1,2,3,4	6	3	3,4,1
	· · · ·			1,2,3,5	6	2,3,5	2,6,1.4
				L,2,4,5	6	2,5	3,2,0.4
	•			L,3,4,5	7	3	3,4,1
				2,3,4,5	6,7	2,3,5	3,6,1.4
3	6,7			1,2,6	. 8	6	2,2,0.4
				1,2,3,6	8	3,6	2,6,1.4
	• • •	· .		1,2,4,6	- 8	6	3,2,0.4
				1,2,5,6	8 8	5,6	2,4,0.8
	· ·			2,3,4,6		3,6	3,6,1.4
				2,3,5,6	8	3,5,6	2,8,1.8
	· · · · ·			2,4,5,6	8	5,6	3,4,0.8
	en en en en en en en en en en en en en e			3,4,5,7	9	. 7	3,7,1.6
			1,2,1	3,4,5,6	8	3,5,6	3,8,1.8
		•		3,4,5,7	9.	2	4,2,0.4
	t			4,5,6,7	8,9	7	4,3,0.6
4	8,9			1,2,6,8	10	8	2,8,1.6
			1,2	2,3,6,8	10	3	3,4,1
				2,4,6,8	10	8	3,8,1.6
•	:		1,	2,5,6,8	10	5	3,2,0.4
· · · ·		•		3,4,6,8	10	3	4,4,1
			1,2,	3,5,6,8	10	. 8	3,6,1.2
				4,5,6,8	10	5	4,2,0.4
			1,3,	4,5,7,9		9	4,5,1
	•			4,5,6,8	10	8	4,6,1.2
				4,5,7,9	• • •	2,9	4,7,1.4
			1,2,3,4,		10	7	5,3,0.6
			1,2,3,4,			9	4,8,1.6
		1,	2,3,4,5,		10	- 8	5,6,1.2
				,6,8,10		10	3,5,1
•				,6,8,10		3	4,4,1
			1,2,4	,6,8,10	•	10	4,5,1

TABLE III.13. Computation Results for the Illustrative Example

52 -

Stage	Marked Tasks	State S	Unmarked Immediate Followers F (S)	Optimal Decision e	Optimal Return T (S)
		1,2,5,6,8,10	· · · · · · · · · · · · · · · · · · ·	5,10	3,7,1 4
		1,2,3,4,6,8,10		• 3	5,4,1
		1,2,3,5,6,8,10	. x	3	4,4,1
		1,2,4,5,6,8,10		5,10	4,7,1.4
		1,2,3,4,5,6,8,10		3	5,4,1
		1,2,3,4,5,6,7,8,10		7	5,7,1.6
		1,2,3,4,5,6,7,8,9,10	11	9,10	6,5,1
	· .	1,2,3,4,5,6,7,8,9,10,11	an an the second second second second second second second second second second second second second second se	11	7,3,1.8

TABLE III.13. Continued.

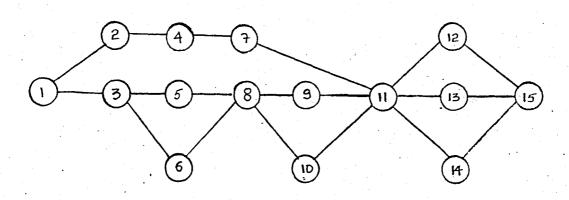
III.3. The Proposed Algorithm for Assembly Line Balancing

Let t_{max} be the largest task time in the precedence diagram. As usual, C is the cycle time. First part of the procedure is about comparing the C against the t_{max} . As known from previous chapters C $\geq t_i$ for all i. Next the check is made for following inequalities.

> 1. $t_{max} \leq C \leq 2$. t_{max} 2. $t_{max} \leq C \leq 3$. t_{max} 3. $t_{max} \leq C \leq 4$. t_{max}

If first one is satisfied then first entry to any station will be the largest candidate available and following entries will be smallest candidates. If second inequality is satisfied then the first two entires to any station will be the largest candidate and followed by the smallest candidates. Then the general form is;

(n) $t_{max} \leq C \leq (n+1)$ t_{max} for n = 1, 2, 3, ...


which ever value of n satisfies the inequality, proceed as following; .

- i) First n entries to any station will be the largest candidates available,
- ii) Following entries will be the smallest candididates till the idle time is minimized for that station with the available candidates.

Example:

Suppose we are given an assembly line with 15 tasks with deterministic task times. Also we supplied with the precedence relations. Cycle time is given as 18 minutes.

Figure III.12. Precedence Diagram for the Example Problem

C = 18 t_{max} = 9 from table III.14

 $2.t_{max} \leq C \leq 3.t_{max}$ n = 2

TABLE III.14. Data for the Example

Tasks	•	Times		Predeccesors
1		5		-
2		7 ,		1
3		8		1
4		2	·	2
. 5		3	· · · ·	3
6	•	ý ý		3
	•	5		4,5
8 9		ر ل		5,6
10		5		8
11		· 7		7,9,10
12		7		11
13		3		11
14		2	••••	11
15		8	and the second second second second second second second second second second second second second second second	12,13,14

The proposed algorithm yields a Balance loss of 10 % with the following solution;

Station		Elements	· · · · · · · · · · · · · · · · · · ·		s.w.C.
I		1,3,5	<u> </u>		16
II	• 2	2,6,4			18
III		7,8,9			15
IV		10,11,13,14			17
V		12,15		1	15

TABLE III.15. Solution to the Problem

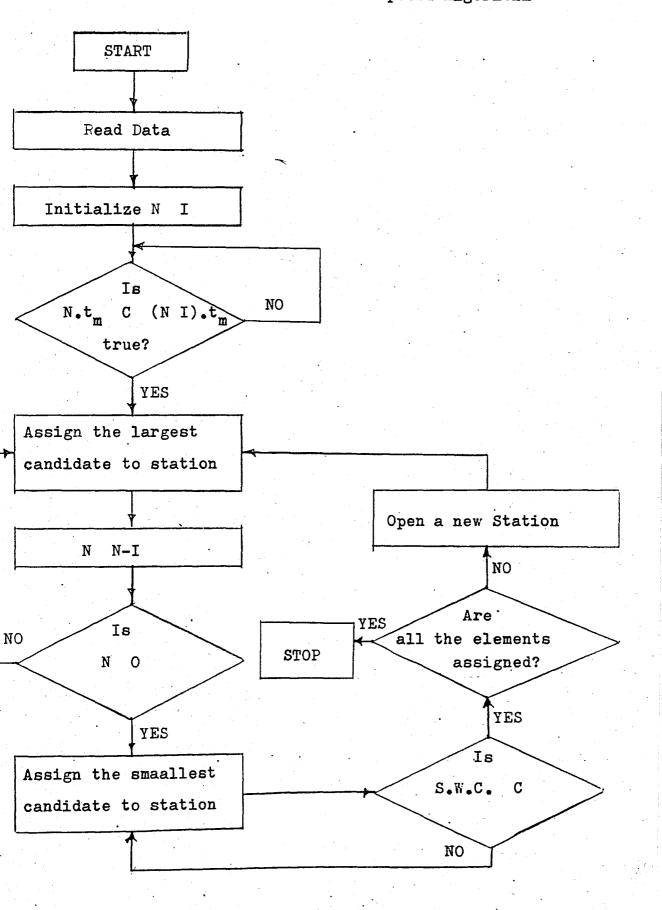


Figure III.13. Flow Chart of the Proposed Algorithm

CHAPTER IV

ASSEMBLY LINE BALANCING PROBLEM AT OZKOSEOĞLU ISI SANAYII VETICARET A.Ş.

Özköseoğlu Isı Sanayii ve Ticaret A.Ş. as a member of Özköseoğlu group of companies, has been established in 1962 and highly participated Turkish Industrial Development up to date. Holding the licences of worlds well known companies, Özköseoğlu Isı Sanayii ve Ticaret A.Ş. manufactures and supplies all kinds of Industrial furnaces, burners, painting and drying systems, lime kilns, petrochemical plants, cement plants and complete automatic bread factories and has a good name on heat technology. During the last years she has extended her services to the international plane.

IV.1. Description of the Problem

Inside the Özköseoğlu Plant at Yenibosna there is an assemly line in order to assemble the 34 parts of ELM 50 Flour Sifting and Lossening Machine. The parts list of ELM 50 is given in table IV.1. And ports are shown in Figure IV.1.

IV.2. Required Data Versus Obtained Data

Before going into the data obtained from Özköseoğlu A.Ş.,

once more, information required for line balancing needs to be pointed out in order to achieve a good balance. It is first necessary to obtain certain data from various sources whether it is assembly or fabrication. The following minimum information is necessary in any case:

- i) Production Volume
- ii) List of operations and their sequence
- iii) Times required to complete each operation as well as the elemental time values

The production volume should be determined by the sales or marketing group. The list of operations and their sequence should be established prior to considering the line-balancing problem; (by Research and Development Department together with Planning Department) otherwise the problem becomes excessively complex.

The following data has been obtained as described above plus the help of foreman of the ELM-50 Department and from observations in the factory.

List of subassemblies and precedence diagram of these subassemblies are given in table IV.2 and figure IV.1 respectively.

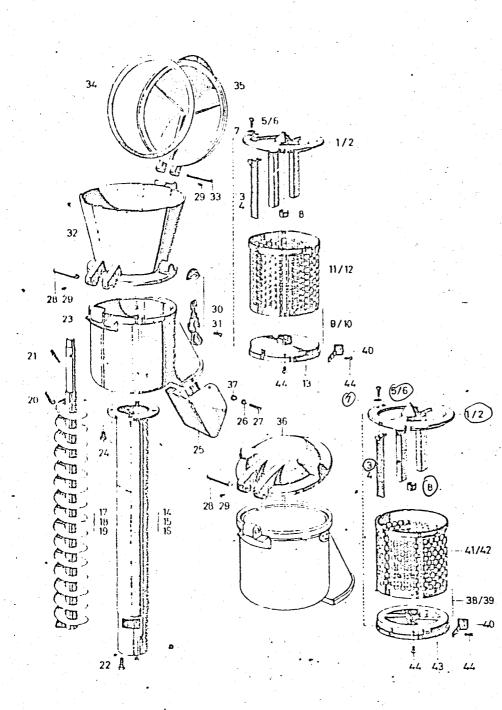
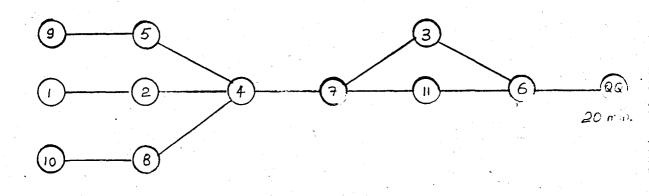


Figure 1. ELM-50 SIFTING and LOOSENING MACHINE

Part	No	Part Name	Note
1	· · · · ·	3-prong	Steel
3		Screw-on prong	Steel
5		Inside Hexagonal Screw	M5x10
6		Inside Hexagonal Screw	M5x10
7	No. 42	Spring-Washer	5
8		Ball bearing	SKF 6203-2RS
9		Grating Drum Steel	Grating Steel
			Drum base-alu.
10		Grating drum, stainless	Grating drum, Base
			alu., Grating cylinder
11		Grating cylinder with	Steel
• •		reinforcement	الم الم الم الم الم الم الم الم الم الم
12		Grating cylinder with	V2A
		reinforcement	
13		Drum-base	
20		Socket groved pin	8Øq 32
21		Cylindrical pin	$10\dot{\phi}x50$
22		Inside Hexagonal Screw	M8x25
23		Sifting drum housing	
24		Inside hexagonal screw	M10x20
25		Delivery chute	
26		Washer	6
27		Round-headed screw	M6 x 2 0
28		Bolt	12Øx82
29		Threaded pin	M6x10
30		Fastening device complete	Brass
31		Oval-headed countersunk screw	M5x10
32		Top feed-hopper	
-33		Bolt	10Øx100
34		Jointing	2x306/282 Ø
5 C		Lid	
35		Lid	
36			
37		Nut Sifting drum, steel	Sifting drum base-alu
38			
40	•	Scraper Sifting cylinder with reinfor.	V2A
42		Drum-base	
43			M5x10
44		Round-headed screw	


TABLE IV.1. Parts List for ELM-50 SIFTING MACHINE

- 61 -

Subassembly Number	Times (min)	Part Numbers
S.Ass.1.	15	1,3,5,6
S.Ass.2.	22	38,40,42,43,44
S.Ass.3.	12	25,26,27,37
S.Ass.4.	14	28,29,36
S.Ass.5.	17	7,8,9,10
S.Ass.6.	12	30,31
S.Ass.7.	14	32,23
S.Ass.8.	6	24,22
S.Ass.9.	15	- 11,12,13
S.Ass.10.	11	20,21
S.Ass.11	14	33,34,35

TABLE IV.2. List of Subassemblies

Figure IV.2. Precedence Diagram for ELM 50

Since the yearly demand for this ELM-50 FLOUR SIFTING and LOOSENING MACHINE is given as 2000 units from the Marketing Department, we need to produce one every hour for 255 working days in a year.

255 . 8 = 2040 units/year.

Then the cycle time for this assembly line balancing problem is dictated as 60 minutes by the demand. In the following sections this line will be balanced by using five of the algorithms mentioned in chapter III. IV.3. Solution by Using ARCUS' Technique

The solution by this most commonly used technique is summarized in table IV.3. These results will be discussed with the results of next section at the end of this chapter.

Table IV.3. Solutions Generated by Arcus' Technique

Sequence Number 1 Cycle Time 60.000

Statien Number				•		Station Time	Slack
1	10	1	2	8	. *	54.000	6.000
2	9	5	4	7		60.000	.000
3	11	3	[`] 6	12		58.000	2.000

Total Slack Time = 8.000

Efficiency = 95.35 percent

Sequence Number 2 Cycle Time 60.000

1 2 3	 0 1 9	-	0 10 4	0 0 7 12	54.000 54.000 60.000 58.000	6.000 6.000 .000 2.000
4	3	· 11	0	12	50.000	2.000

Total Slack Time = 14.000

Efficiency = 91.86 percent

IV.4. Solution by Using Proposed Algorithm

The t in this problem is 22 minutes from table IV.2 and the cycle time is 60 minutes. Then the check is made for n;

for n=2, n.t $\leq C \leq (n+1)$. t is

satisfied. Then it follows,

- i) First (n=2) entries to any station will be the largest candidate available;
- ii) Following entries will be the smallest candidates till the idle time is minimized for the station under consideration with the available candidates.

Solution by using these is given in Table IV.4.

n .	Available Tasks	Largest/Smallest	Assigned	S.W.C.
	(Feasible Tasks)	Task	Task	(Cumulative)
1	9,1,10	t(1), t(9)	t(1) =15	15
2	9,2,10	t(2)	t(2) =22	37
3	9,10	t(10)	t(10)=11	48
4	9,8	t(8)	t(8) =6	54
5	9	t(9)	t(9) =15	69
	69 > 60 ION NUMBER 1 = 1,2,10,	8 with S.W.C. 5	4	
1	9	t(9)	t(9) =15	. 15
2	5	t(5)	t(5) =17	32
3	4	t(4)	t(4) =14	46
4	7	t(7)	t(7) =14	60
	$60 \ge 60$ ION NUMBER 2 = 9,5,4,7	with S.W.C. 60		

TABLE IV.4. Solution by Proposed Algorithm

n Available Tasks (Feasible Tasks)	Largest/Smallest Task	Assigned Task	S.W.C. (Cumulative)
1 3,11	t(11)	t(11)=14	14
2 3	t(3)	t(3)=12	26
3 6	t(6)	t(6)=12	38
4 Q.Q.	t(Q.Q.)	t(Q.Q.)=2	0 58
STOP ALL THE ELEMENTS ARE	ASSIGNED.		
STATION NUMBER $3 = 11, 3, 6$	Q.Q with S.W.C	. 58	
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·
The above solution yie	elds a balance e	fficiency o	f; 95.5 %.
		a da anti- a composito de la composito de la composito de la composito de la composito de la composito de la composito de a composito de la composito de la composito de la composito de la composito de la composito de la composito de la	
			· · · · · · ·
IV.5. Solution by Usin	ng Kilbridge and	Wester Tec	hnique
	en en en en en en en en en en en en en e		
The solution by this	Kilbridge and We	ster techni	que, which
was explained in deta:	il in section II	I.1.1., is	summarized in
following manner;			
	• •		
Station number	1	2	3
Elements 、	1,9,10,5	2,8,4,7	11,3,6,QQ
Station Work Content	58	56	5 8
		· · · · · · · · · · · · · · · · · · ·	
Above solution yields	an erriclency o	1 93.33 %.	

IV.6. Solution by Using Ranked Positional Weights

The Assembly line of ELM-50 Sifting Machine of Özköseoğlu Isı Sanayi A.Ş. was also tackled by using Rawked Positional Weights. Allocation of tasks to stations are;

Station Number		2	3	4
Elements	1,9,2	5,10,8,4	7,11,3,6	QQ
Station Work Content	52	48	52	20

Which yields a balancing efficiency of 71.67 %.

IV.7. Solution by Using COMSOAL Technique

An alternative solution was generated for the problem in hand by making use of COMSOAL technique. This approach gave the same efficiency and solution as Ranked Positional Weights approach.

Station Number	1	2	3	4
Elements	1,2,9	5,10,8,4	7,11,3,6	QQ
Station Work Content	52	48	5 2	20

Balance Efficiency = 71.67 %

IV.8. Proposed Algorithm Versus ARCUS', R.P.W., Kilbridge and Wester and COMSOAL

The Arcus' technique together with KIlbridge and Wester technique gave a balancing efficiency of 95.35 %, while COMSOAL and R.P.W was giving the same efficiency of 71.67 %. The Proposed algorithm has proved its better performance against R.P.W. and COMSOAL by achieving the same efficiency with ARCUS' and K ξ W's algorithms. On the other hand the Proposed Algorithm has shown its quickness while achieving this efficiency compared with two of these better performed techniques, namely Arcus' and K ξ W' techniques.

	The Proposed Algorithm	Kilbridge and Wester	Arcus	R.P.W.	COMSOAL
•	95.35	95.35	95.35	71.67	71.67

CHAPTER V CONCLUSIONS

68

In the introduction of this thesis line-balancing problem was introduced with different approaches as, simulation, queueing theory, etc., and it was pointed out that these approaches were only able to give insight to the structure of the problem. Then in following chapter basic concepts and measure of effectiveness of the line-balancing process were defined. The exact model was presented by using Mixed-Integer Programming. At the end of the chapter, the difficulties of finding a solution to such a formulation was mentioned. Chapter III was solely devoted to a comprehensive literature survey of Assembly-Line-Bàlancing Techniques. Starting from the simplest and the earliest algorithms, the most mechanized and computerized algorithms are covered and reviewed by means of hypothetical examples. Flow charts for three of the algorithms and computer programs in FORTRAN IV are written and run for sample problems, which are given in Appendix as scheduling tools. Thus one of the objectives have been achieved by giving quick references to the readers and practitioners of production planning and control function in industry. Using the content of chapters II and III. one can evaluate and select the most appropriate algorithm to his problem.

The basic contribution of this thesis is the Proposed Algorithm which was developed during this research. This Proposed Algorithm offors manual technique to achieve balances with reasonable level of efficiency by savings in computation time. This way practitioners can tackle large scale balancing problems with a minimum amount of theoretical background.

The Proposed Algorithm is also applied to a real case taken from a manufacturing company which makes Industrial Furnaces, in order to compare its performance against the most commonly used techniques as ARCUS', Kilbridge and Wester, Ranked Positional Weights and COMSOAL techniques. This case study was taken from the assembly line of ELM-50 Flour Sifting and Loosening Machine at ÖZKÖSEDĞLU ISI SANAYİİ ve TİCARET A.Ş. Detailed explanation of the problem was covered in Chapter IV. It was observed that for this size of problem, the Proposed Algorithm performed equally efficient, with ARCUS' and kŞW's techniques which also gave the best efficiency anong the rast of the techniques. Finally, the study and analytical discussion of existing line-balancing algorithms and the development of the Proposed Algorithm is giving the structure of this topic for the future researchers.

REFERENCES

- 1- ARCUS, A.L., "COMSOAL-A Computer Method of Sequencing Operations for Assembly Lines" <u>International Journal of</u> Production Research, 4, 4 (1966).
- 2- BRENNECKE, D., "Two Parameter Assembly Line Balancing Model", <u>Models and Analysis for Production Management</u>, M.P. Hottenstein, Ed., International Textbook Co., Scranton Pens., 1968.
- 3- CARSON, BOLZ, AND YOUNG, "Production Handbook", The Ronald Press Company, New York, 1972.
- 4- CONRAD, R., "Setting the Pace", <u>Medical Research Council</u>, APU-232-55, London: Applied Psychology Research Unit, 1955.
- 5- GUTJAHR, A.L. AND NEMHAUSER, G.L., "An Algorithm for the Line Balancing Problem", <u>Management Science</u>, Vol.11, No 2, 1964.
- 6- HELD, M. AND KARP, R.M., "A Dynamic Programming Approach to Sequencing Problems", J.Soc.Indust.Appl.Math., 10, 1962.
- 7- HOTTENSTEIN, M.P., "<u>A Review of Assembly Line Balancing</u>", International Textbook Co., Screnton, Pennsylvania, 1968.

- 8- HUNT, G.C., "Segmential Arrays of Waiting Lines", <u>Operations</u> <u>Research</u>, 4, 1956.
- 9- JACKSON, J.R., "A Computing Procedure for a Line Balancing Problem", <u>Management Science</u>, Vol.2, No 3, 1956.
- 10- KAO, P.C., "A Preference Order Dynamic Program for Stochastic Assembly Line Balancing", <u>Management Science</u>, Vol. 22, No 10, June 1976.
- 11- KILBRIDGE, M.D. and WESTER, L., "A Heuristic Method of Assembly Line Balancing", Journal of Industrial Engineering, XII, 4 (1961).
- 12- KOTTAS, F.J. and LAU, H.S., "A Cost-Oriented Approach t. Stochastic Line Balancing", <u>AIIE Transactions</u>, Vol.5, No 2, 1973.
- 13- MASTOR, A.A., "An Experimental Investigation an Comparative Evlauation of Production Line Balancing Techniques", <u>Mana-</u> gement Science, Vol.16, No 11, July, 1970.
- 14- MIZE, J.H., WHITE, C.R. and BROOKS, G.H., "<u>Operations Plann-</u> <u>ing and Control</u>", Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1971.
- 15- REEVE, N.R. and THOMAS, W.H., "Balancing Stochastic Assembly Lines", AIIE Transactions, Sept. 1973.
- 16- SPHICAS, G.P., SILVERMAN, F.N.: "Deterministic Equivalents for Stochastic Assembly Line Balancing", <u>AIIE Transac-</u> tions, Vol.8, Dec., 1975.
- 17- TAYLOR, B.W., "Addressing the Production Balancing Problem" Virginia Polytechnic Int. and State University, Blocksburg, Va 24061.

- 18- THOMOPOULOS, N.T., "Mixed Model Line Balancing with Smoothed Station Assignments", <u>Management Science</u>, Vol. 16, No 9, May, 1970.
- 19- WILD, R., "<u>Mass-Production Management</u>", Management Center, University of Bradford, Wiley, 1971.
- 20- ZIMMERMANN, H.J. and SOVEREIGN, M.G., "<u>Quantitative Models</u> for Production Management", Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1974.

- 73 -

TERMINOLOGY IN ASSEMBLY LINE BALANCING

-A-

Assembly Bill of Materials; a Bill of Materials formatted to show all of the components required in an assembly operation.

Assembly Line; a sequence of operations with a common cycle time through which a unit of product is assembled. The arrangement of machines, equipments material and workers which permits the work in process to progress sequentially from one operation to another until the product (or product component) has been assembled.

- B -

Balance; the degree to which the station times of each operation in an assembly line approach the cycle time.

Batch Manufacturing; used in similar-process industries. Products manufactured are kept in different lots as they pass through the process. They are placed in these lots or batches, according to size, type, colour, issue, thickness, etc. Exactly right number, or at least a certain minimum of each must be made.

- <u>C</u>-

Christmas Tree; a graphic product structure chart showing how the assembly is made up of subassemblies, the subassemblies made up of lower level components, etc. Critical Path; the sequence of jobs or activities, in a Network Analysis project, such that the total duration of the project is equal to the sum of the durations of individual jobs in the sequence. There is no time delay or slack in an activity along the critical path.

Cycle; the complete sequence of activities, operations and machines or process times required to complete one segment, unit, or batch of work.

Delay (Balance Delay); the idle time of one or more operations in a series due to imperfect balancing.

- D-

- E - 1

Element time; the time to perform a given element. May refer to the observed, average, selected, normal or standard time.

- F -

Final Assembly; the highest or "zero level" assembled product. Frequently used as a name for the manufacturing department where the product is assembled.

Flow Line; the path along which men or material travel in progressing through the plant.

-G-

GANTT Chart; a graphic representation on a time scale of the current relationship between actual and planned performance. Heuristics; general method used to solve problems which defy solution by standard techniques. Examples are: "Sequencing" and "Line-balancing" problems. Literally heuristics means "serving to find out and encouraging further investigation." Techniques lead to solutions by trying "commonsense" rules and procedures rather than rigorous optimality criteria.

Idle Time; time which has been scheduled, when operators or machines are not producing because of lack of material, tooling etc. Part of process where one member is waiting for another member to complete his task.

-I- -

Intermittent Production; a production system in which jobs pass through functional departments in lots.

Job Shop; an intermittent type manufacturing plant. the term job shop is frequently used to indicate a make-to-order plant but this is not correct usage.

- J -

`-L-

Line-balancing; a technique for determining the product mix that can be run down an assembly line at the planned line rate. For example, if an automative assembly line happened to be scheduled one day with nothing but convertibles, some workers would be standing idle while others would not be able to keep pace with the line. This is an attempt to make the work time at each station as close to the cycle time for the product as possible.

- H -

Loads; this is the amount of scheduled work ahead of a manufacturing facility, usually expressed in terms of hours of work.

- 76

-M-

Manufacturing Bill of Materials; the bill of materials organized into a form that is useful to the manufacturing departments. An engineering bill, for example, might show a simple parts list of all of the components that make up a particular assembly, where the manufacturing bill of materials might be shown in indented form so that the levels of components can easily be identified.

Manufacturing Cycle; the amount of time that is required from the penetration of a manufacturing order to the completion of the order.

Master Parts List; the authoritative parts list from which all other format variations and copies are derived.

Mechanization; the act of process of using power-driven machinery to perform specific operations or functions usually with the intent or improving productivity and/or quality on the work performed.

-N-

Network Analysis; a technique of analysis useful in planning a project that consists of showing the sequence of activities, and their interrelationship within a network of activities making up a project. By computing the cumulative time for each part or path through the network, from the starting event to terminal event, the extent or cost of the Critical Path is determined. Operation List; history or progress through the cycle of operations list of operations sequences, much like route sheet.

- P -

Parts List; a listing of all the parts that go into a product usually in Product Summary format. A tabulation of all the parts included in any unit to be manufactured.

PERT; (Program Evaluation and Review Technique) this is a project planning technique like the Critical Path Method but more sophisticated since it involves obtaining a pessimistic, most likely, and optimistic time for each activity from which the most likely completion time for the project along the critical path is computed.

Predetermined Time System; a organized body of information procedures and techniques employed in the study and evaluation of manual work elements. The system is expressed in terms of the motions used, their general and specific nature, the conditions under which they occur, and their previously determined performance times.

Production Cycle; the lead time to produce a product.

Production Rates; the quantity of production usually expressed in units, hours, or some other broad measure.

Productivity; 1. the ratio of output to total inputs.

2. the ratio of actual production to standard production applicable to either an individual worker or a group of workers. QUEUE; a sequence of elements, one waiting behind the other. In other words, a waiting line.

Queueing Theory; the mathematical theory relating the way in which elements arrive into a queue and are serviced. Deals with the problem of providing adequate service facilities to handle an arriving stream of things, or people, requiring service of some kind.

- S -

Safety factor; a constant which is multiplied by the standard deviation of forecast during the lead time and which is chosen to provide a particular level of service and total safety stock.

Scheduling; deciding the precise use of manufacturing facilities at each instant of time.

Sequencing; determining the order in which a manufacturing facility is to process a number of different jobs in order to achieve certain objectives.

Slack time; the amount of time between the scheduled due date for a job and the estimated completion date. If the job is to be completed ahead of schedule, it is said to have slack time; otherwise, negative slack time.

Standart time; a unit time value for the accomplishment of a work task as determined by the proper application of appropriate work measurement techniques. Generally established by applying appropriate allowance to normal time.

-Q-

Subassembly; an assembly which is used at a higher level to make up another assembly.

Wait Time; (Dead time) the time that a job spends waiting to be moved or waiting to be worked on in the shop.

-w-

Workplace; (Work station), a specific area, usually in a fixed, defined location, used for the performance of a work task including auxiliary area for machinery and materials.

APPENDIX - II FORTRAN IV LISTING AND THE OUTPUT OF HOFFMANN'S ALGORITHM

A-<u>I</u>/ 123456789012 (79) HOFFMANN'S FEFEEEEFE TTTTTTTTTTT UÜ UU DDDDDDDDDD TTTTTTTTTTT UU DDDDDDDDDDD EEEEEEEEEEE UU UÜ UU DD DD ĒΕ TT TT UU UU EΕ DD DD ĒĒ TT. UU DD DD UU TT UŰ EEEEEEE UU DD DD TT UU UÚ EEEEEEE DD DD TT UÜ UÚ DD DD EE ΈE TT UU ŬŬ DD DD EE. TT UUU UUU DD DD FEEEEEEEEEE TT UUUUUUUUUUUU DDDDDDDDDDDDD EEEEEEEEEEEE UUUUUUUU TT DDDDDDDDDDD BU1106 TURKIYE KOMPUTER MERKEZI -- ISTANBUL VER. 33R3/BU7-1 SITE UNIVAC 1106 -- BOGAZICT UNIVERSITEST PART NUMBER * 00 RUNID * ETUD INPUT DEVICE * CR2 OUTPUT DEVICE * PR2 USER ID * PRINTED AT: 12:04:15 MAY 02,1980 CREATED AT: 12:00:01 MAY 02,1980 FILE NAME * PRADOUETUD 123456789012 JARUNIE ETUDI114-14-214, HESABI AFT IN IS FTN 7R1-1 05/02/80-12:00 DIMENSION MATRIX(16,16), KODE(15,16), JOBS(30), STIME(50), 1 . 10CLEM(14), MELEM(14), ETIME(16), MAME(10) 2. WRITE(6,501) 3. 501 FORMAT (1H1) 4. 301 L0=15 5. MO = 0ó. 7. 14O= −0 3. READ (5:13) NAME 13 FORMAT (10A4) 9. 302 WRITE (6,1002) NAME 10. 1002 FORMAT(10,,)ASSEMBLY LINE BALANCE FOR,,5X,10A4,//) 11. $00\ 200\ N=1,\ 16$ 12. DO 200 M = 1, 1613. 1 200 MATRIX(M, N) = 02 14. D0 105 K = 1.30.215. READ (545 JOBS(K), JOBS(K+1) IF (JOBS(K+1)) 105,10,105 10. 17. 1 105 MO=MO+2 13. 5 FORMAT (213) 19. 10 TETIME = 0. 20. $D0 \ 106 \ K = 1.16$ 21. READ (5.280) ETIME (K) -22. 12 FORMAT (F5.3,4X,12) 23. IF (ETIME(K)) 106,1,106 24. 106 NO = NO+125. 00 92 I=1/M0/2 26. 1 IF. (JOBS(I)) 819218 27. $B \parallel = JOBS(I+1)$ 28. L=J085(I) 29. 30. MATRIX(L,N) = 1492 CONTINUE 31. DO 9 H=1.10 32. 33. 9 TETIME = TETIME + ETIME(N) MO = MO/234. WRITE (6,111) TETIMER NO, MO 35. 111 EORMAT(, ,, TOTAL ELEMENT TIME =, F8, 3, 3X, NUMBER OF ELEMENTS IS, 3ö. 37. I I4/3X/36HNUMBER OF PRECEDENCE RESTRICTIONS IS 15) 38. 45 MSUM=0 IREST = 1

39.

 ± 0

ISLACK = 0

A-I/2 (80) READ (5,12) CTIME, INVERT 41. 42. IF(CTIME) 300,97,300 43. 300 00 201 H=1+L0 44. 00 201 M=1/10 1 45 201 KODE (N,M) =0 2 46. LOA1 =LO-1 47. 00 204 N=1,LOX1 STIME(N) = 0.NELEM(N) =0 48. 1 50. 204 NCLEM(N) = 0 1 51. IF (INVERT) 209,210,209 209 MI = (MO-1)/252. 53. NZ = 210 = 10 - 154. $NO_1 = NO + 1$ 55. 56. D0 206 I = 1,NI D0 207 J = NZ, ND 1 57. 58. MS = MATRIX(I,J)2 59. $NO_{1J} = 101 - J$ 22 60. MO1I = MO1 - I2 MATRIX(I,J) = MATRIX(NO1J,NO1I)61. 207 MATRIX(NO1J,NO1I) = MS 2 62. ND = ND-11 63. 206 NZ = NZ+164. 1 DO 213 I = 1, NI 65. ETS = ETIME(I)1 66. 1011 = 101 - 167. 1 ETIME(I) = ETIME(NO1I)68. 1 $213 \text{ ETIME}(NO_{11}) = \text{ETS}$ 69. 1 70. GO TO (210,45), TREST 71. 210 D0 6 L =1,110 72. DO 7 N=1+NO 1 73. 7 MSUM = MSUM + MATRIX(N,L) 2 74. 1 KODE(1,L) = MSUM75. 6 MSUM = 01 NOP = 176. 77. DO 4 11=1, NO 4 MATRIX(N,N) = 1600078. 1 79. 11 WRITE (6,41) CTIME 80. 41 FORMAT (11,133X), ASSEMBLY LINE BALANCE, /5X, STATION, 20X, 117HCYCLE TIME NUMBER, F7,4,21X,5HSLACK/5X,8H NUMBER 63X,4HTIME//) 81. 82. 33 STIME(1) = CTIMESTIME(LO) = CTIME 83. $I \equiv 1$ 84. 85. 1=1 18 00 14 J=N/NO. 86. (KODE(1,J))14,16,14 IF 87. 1 88, 16 IF (STIME(I)-ETIME(J)) 14,17,17 1 17 00 20 K=1,NO 1 89. 20 KODE(I+1,K) = KODE(I,K)-MATRIX(J,K) 2 90. NELEM(I)=J 1 91. STIME(I+1)=STIME(I)=ETIME(J) 1 92. I = I + 11 93. 14 CONTINUE 94. 1 IF (I-1) 96,31,15 95. 15 IF (STIME (LO)-STIME (I))21,22,23 96. 97. -23 DO 24 J=1,NO 24 KODE(L0,J) = KODE(I,J)98. 1 99. STIME (LO) = STIME (T) $L_{1} = L_{0-1}$ 100. É. D0 25 K= 1, L0X1 101. a a substantia da la construcción de la construcción de la construcción de la construcción de la construcción d La construcción de la construcción de la construcción de la construcción de la construcción de la construcción d

		4-I/3
1 102. 103. 104.	25 NCLEM(K) = NELEM(K) 21 NELEM(I) = 0 22 I = I-1	(01)
105. 106. 107.	N = NELEM(I) + 1 GO TO 18 31 IF (STIME(LO)-CTIME) 26,99,97	
103. 109. 110. 111.	26 D0 28 J = 1,10 28 KODE(1,J) = KODE(L0,J) IF(INVERT) 211,212,211 211 D0 214 K= 1,14	
1 112. 1 113. 1 114. 115.	IF (NCLEM(K)) 208+214+208 208 NCLEM(K) = NO1-NCLEM(K) 214 CONTINUE 212 WRITE (6+30) NOP+(NCLEM(K)+K=1+14)+STIME(L0)	
116. 117. 118.	30 FORMAT(I10,I10,13I4,F8.4) MOP = MOP + 1 TSLACK = TSLACK + STIME(LO)	•
119. 120. 121. 122.	GO TO 33 96 WRITE (6,110) STIME(LO) 110 FORMAT (, ,,,ERROR, I IS MINUS,STIME,,F6.4) 97 STOP	
123, 124, 125, 125,	99 EFF = (1.0-(TSLACK/TETIME))*100.0 WRITE (6.3) TSLACK, EFF 3 FORMAT (1H /5X.23HTOTAL SLACK TIME NUMBER F7.4.24 118HEFFICIENCY NUMBER F6.2.9H PER CENT//)	X,
127. 123. 129. 130. 131.	$\begin{array}{r} \text{D0 2 H=1,H0} \\ \text{2 MATRIX(H,N) = 0} \\ \text{IF (INVERT) 215,45,215} \\ \text{215 IREST = 2} \\ \text{G0 T0 209} \end{array}$	
132. END FTH 472 IBANK ΔΧΟΤ MAP28R2 72R1U1 05		
ADDRESS LIMITS STARTING ADDRESS	001000 033057 13360 IBANK WORDS DECIMAL 040000 044357 2288 DBANK WORDS DECIMAL 032130	
	ENT 5441115 001000 033057 040000 044357	
TABLES/SYS72 F2FARR F2ACTIVS	ENT 5 MAIN5 001000 033057 040000 044357 5(1) 001000 001177 5(1) 001200 002114 5(1) 002115 002131 $5(2)$ 040000 040002 5(3) 002132 002146	
F2TABX F2RTRN5 F2FCA	(5) 002147 002147 (2) 040003 040314 (2) 040315 040315 (2) 040315 040315 (0) 040316 040322	
F2FRT F2CDCD\$ F2OUT FDASC\$/SYS73R1Q8		•
F2INP F2NMLT F2NFMT	5(1) 005347 007524 5(1) 007525 012315 5(1) 012316 012644	

•						又-二/
F2SAR	5(1)	012645 0	13002			(82
F2FMT	5(1) .	013003 0		an an an an an an an an an an an an an a	· · · ·	
C ² ERR	5(1)	015126 0				
C2DSDF	ъ(<u>1</u>)	016563 0		n na star a star star star star star star s	·	
C2ANS1	5(1)	017541 0				
C2SSDF	\$(1)	024107 0		-		
F ² CLOSE PMD&CUM(COMMONBLOCK)	\$(1)	<u> </u>)26457	5(0)		040435 040436
MOEROS(COMMONISLOCK)		and the second second second second second second second second second second second second second second second		na An an an an an	040437	040438
F2C011		1		s (2)		042164
				3 (034)	MOELOS	a second
		•		(036)	PMDsCO	
F2SCT ERU\$/SYS73R1				5(2)	042105	042436
FURCOMS/FORFT	te .			:(2)	042437	042444
CERUS			•		UTCTU	076777
F2EXIT	· · · · · ·	-		5(2)	042445	042500
F2FIM	5(<u>1</u>)	026460 0	32127		•	
F2IHIT				· · · (0)	042501	
				_⊉ (2)		042564
NAMES	Ъ(1)	032130 0	133057	(0) (4)		044004
				2(4) 2(6)	044005	
						044207
				3(010) 3(012)		044355 044357
					0	011000.

814 - C

SYS&*RLIBS. LEVEL 73R1 END MAP ASSEMBLY LINE BALANCE FOR KARAYALCIII ALPASLAN

ſ

TOTAL ELEMENT TIME = 2.462 NUMBER OF ELEMENTS IS 16

A-4/5 (83)

NUMBER OF PRECEDENCE RESTRICTIONS IS 15

		AS	SSEMBLY LINE BA	LANCE				A	-II/6 (84)
•	STATION NUMBER	CYCL	LE TIME NUMBER	•9010	SLA TIME				
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11 10 9 8	0 0 0 0 3 7 6 0 L 0 0 0		0 0 0 0000 0 0 0180 0 0 02230 IENCY NUMBER 90				
• • • • • • • • • • • • • • • • • • •		E NUMBER •2410			ILNC FILOBOLK 90	•21 PLR CENT			
•	FTN ERR ON UNIT-5 ERR MODE ERR-TYPE: ERROR ADDRESS: 031 ER EABT ^{\$} ABORT PROGRAM INITIATED I	03 ERR-CODE 650 BDI: 000 ADR: 042137 BD	0004	END-OF-FILE					
1	X 000000 <u>0</u> 42165	000000 927964 000000 944039	000000 027065 000000 044124 -	000000 032313	000000 040333 400000 000000	020001 000040		00000 00000	·
	A 400000 00000 175402 030447 000220 777714	020001 900040 900000 900000 462200 900000	000000 000007 000000 000021	000000 000000		000000 000000	000000 000012 000000 000000	000001 000000	
•	R 000010 000000 ERR\$ TYPE 03 CODE USER DID ER ÉRR\$•	005000 000000 001755 00000 00 CUNT 12	00000 000000		777 7 77 777776 000000 000000 005			000001 004311 000000 042165	
))	X 000000 042165	000000 027064 000000 044630	000000 027065 000000 044124	000000 00000 000000 032313	400000 000000		000000 044646 000000 0 0000 7	000000 044634 000000 000000	
	A 400000 000000 175402 030447 000220 777714	0 ² 0001 000040 000000 000000 462200 000000	000000 000007 000000 000021	000000 000000 000000 000000				143000 000000 000001 000000	
)	R 000010 000000 RUNSTREAM ANALYSIS	001750 000000	777777 777776 000000 000000	777777 777776 000000 000000		77777 777776 000000 000000		000001 004311 000000 042165	

RUNID: ETUD ACCT: 114-14-214 PROJECT: HESABI ETUD ABORT TOTAL: 00:00:43.568 TIME: CBSUPS: 000002041 CPU: 00:00:11.097 I/0: 00:00:21.516 · CC/ER: 00:00:10.954 WAIT: 00:00:00.050 SUAS USED: SUAS USED: 58.28TL SUAS REMAINING: ABOVE CHARGE CALCULATED AT FOLLOWING RATES -0.00TL 1 CHSUP = 0.021L I CARD READ = 0.05TL 1 CARD PUNCHED = 0.40TL 1 PAGE PRINTED - = 1.50TL 1 TAPE 1/0 MINUTE = 1.50TL 7 IMAGES READ: 169 PAGES: 12:00:01 MAY 02,1980 FIN: 12:02:15 MAY 02,1980 **START:**

A-11/4

(85)

APPENDIX - III Fortran IV LISTING AND THE OUTPUT OF ARCUS' ALGORTHM

	780-42-720					
					789012345678901234	578901234567890**SEO NO. 0
	AAAAAAA AAAAAAA		CCCCCCCC	000000000 LL 0000000000000000	E	FEEFEEEE A.I./A
4 T	AA AA	AA LL AA LL	CC CC CC CC	00 LL 00 00 LL	Ē	(84
	ΑΑ ΑΑΑΑΑΑΑΑΑ	AA LL	CC CC CC	00 00 LL	EE	CHEFEE, And Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andr
	ΛΑΑΑΑΑΑΑ	IAAA LL	CC	00 00 LL	FE	EFFE
	AA AA	AA AA LL	CC CC CC	00 00 LL 00 LL		
•	ΑΑ • ΛΑ	AA LL AA LLLLLLLLLLL	00 00000000000000000000000000000000000		ELLLLLLL EE	I ^{n F} FREEE
	* * * UNIVAC 1196	BOGAZICI UNIVERSITESI	CCCCCCCC KOMPUTER MERKEZI		LLLLLLLL EE R3/8U7 SITE *	
	RUNID * ALCOLE	USER I) *	PART NUMBER	00 İNPUT DEVIC	E * CP2	CITPUT DEVICE * PR2
	FILE NAME * PRA	.000ALCOLE CREA	TED AT: 11:38:09	JUL 01,1980	PPINTED AT:	11:55:04 JUL 01,1980
						5678901234567890**SE ⁰ NO• 0
	ARUNIE ALCOLEIII-15- AFTNIIS	216, ALB, 10, 100				
	FTN 7R1-1 07/01/80-11					
		DIMENSION MATRIX(16,16),1 ISLAK(50),NPREC1(16),NPREC				
	3. 1 4. 9901	D0 9901 I=1+30 J085(I)=0				
	5. 1 ó.	DO 9902 I=1,50 STATIM(I)=0.0	· · · · · · · · · · · · · · · · · · ·			
•	7	SLAK(I)=0.0 D0'9902 J=1,14				■ A 17 10 10 10 10 10 10 10 10 10 10 10 10 10
		NUNIT(I,J)=0 XI=0.123456				構成 - Leon Alexandro Control Control Control Control Alexandro 素質 - Leon Control Cont
		-10 A 11 - 1				
	12. 13.	NCOONTE1 NO=0				
н 	14. 15. 913	NU=0 READ(5,913) NAME FORMAT(10A4)				
	16, 302 17, 1002	WRITE(6,1002) NAME FORMAT(; ,,,ASSEMBLY LINE	BALANCING FOR ,,	x,10A4,//)		
	18 19•	D0 200 M=1+16 TIME(M)=0.0				
	1 1 20.	NPREC1(M)=0 NPREC2(M)=0				
•	1	DO 200 M-1. 16 THE LAND	an an an an an an an an an an an an an a			
	2 20, 200 24,	MATRIX(M,N)=0 D0 105 K=1,30,2 READ(5,5) JOBS(K),JOBS(K+				
· ·	1 20.	1F(JUBS(K+1))105+10+105	-1)			
	28.5	FURMAT(213)				
	29. 10 1. 30.	D0 92 1=1,M0,2 IF(J085(I)) 8,92,8 (= 1085(I+1)				
	<u> </u>					
ч. — с.	1 32. 1 33. 1 34. 92	N=JOBS(I) MATRIX(N)L)=1 CONTINUE				
		CONTINUE DO 113 K=1,16				
an an an an an an an an an an an an an a	1 36. 1 37.	READ(5,912) TIME(K) IF(TIME(K))113,1,113				
	11 3 39. 912	NO=NO+1 FORMAT(F5.3)		t - Jose prese t		
	40 - <u>-</u> <u></u> 11	FORMAT(F5.3) NTASK=MO	1		1. All I and a start and a start of the star	

		41.		BTASK=NO							A II/2
		42.		D0 98 J=1 N TETIME=0.0	ITASK						(88)
•	1	44.		D0 5054 I=1		an Shi a sa sa sa sa sa sa sa sa sa sa sa sa s	Hanna I. Han		States		
	2 1	45. 46.		TETIME=TIME NPREC1(J)=0					ilian.		
	1 	47. 48.		D0 98 I=1,N NPREC1(J)=M	ATRIX(I,J)						
		49. 50.		READ(5,23) FORMAT(F5.3	(3X+13)				alfort. Tex		
		51. 52.	24	IF(CYCLE) 2 M=0	94,25,24						
		53. 54.		10=0 KBEFOR=100		and a second second second second second second second second second second second second second second second			ă. ă		
•		55. 56.		ICOUNT=1 SMALL=0.0	, suis productions anna 11 - Mariana Anna 11 - Mariana	n an an Anna An Anna Anna Anna Anna Ann		는 아이지가 많이 있었다. 2011년 1월 1일 - 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 2011년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 199			
		57. 58.	· · · ·	DO 1001 1X= DO 95 J=1.N					ale ale	 An discussion An discussion An discussion An discussion An discussion 	
	2	59.		NPREC2(J)=N							
	n an an an an an an an an an an an an an	50. 51.		M=0 STATIM(I)=0	•0		and a second sec				
		62. 63.		K=1 WRITE(6,46)					1		
	i astronom i stronom i stron	64. 65.		FORMAT(, ,, WRITE(6,26)	CYCLE				- India		
	1 1	50. 57.		FORMAT(, ,, 14X75HSLACK,					•F54	3+20×+71	ISTATION,
	1	68. 69.		NO=0 XII=XI* .23	,		The set of the set of		, ettinitation	15-2 19-2 19-19-19-19-19-19-19-19-19-19-19-19-19-1	
		70. 71.		IXJ=XII*100 XIJ=IXJ			No. 2004 No.		5 10 10 10 10 10 10 10 10 10 10 10 10 10		
		72. 73.		XI=(XII-XIJ IXI=XI+100.		n marina da la composición de la composición de la composición de la composición de la composición de la compos A servición de la composición de la composición de la composición de la composición de la composición de la comp	2010 - 10 2010 -		•		
•		74. 75.		XIK=XI-(XI-	•						
		76.		NUMA=0 D0 2031 I=1			a di Santa da Santa				
	2	77. 78.		IF (NPREC2(I)) 2031,203						r Aller and Aller Aller and Aller and Aller
¢.	2 2	79. 80.		IF (NUMA-20) NUMA=NUMA+1		2031		4. 			
	2	81. 82.	2031	NLIST (NUMA) CONTINUE	=I						
		83. 84.	n ille i terretariata Internationale estatutiones Internationale estatutiones	ANUM=NUMA NUMB=(XKK +A	NUM) +1.0			n an an an an an an an an an an an an an		•	
		85. 86.		HRAND=NLIST					74 1		
2	1	87. 88.		WRITE (6,202 FORMAT (, ,,	1) MRAND	5) 			1	. *.** • • •	
	1 1 1	89. 90.		SO TO 25 IF (NRAND-NT				a lagejs cari			
		91. 92.		IF (NPREC2(M STATIM(K)=S IF (STATIM(K)	17.45.033.4.7.1						o de calendaria da secto de composicio de composicio de composicio de composicio de composicio de composicio de En observação de composicio de composicio de composicio de composicio de composicio de composicio de composicio
		93. 94.		- ** * 31 01 101 101 10)-CYCLE) 27	121120					
		95.	1999년 1997년 1997년 1997년 - 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 19 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 199	NUNIT (K M) =	NRAND	alo e estradore otieno.					
•				SLAK(K)=CYC G0 T0 29							
	1	99.	- Million Distant	-STATIM(K)=S SLAK(K)=CYC	LE-STATIM()	()					
		100. 101.		К=К+1 \$ТАТІМ(К)=Т	IME (NRAND)-						
									and an angle San ang esta angle San ang esta ang esta ang esta ang esta ang San ang esta ang	and a second second second second second second second second second second second second second second second Second second second second second second second second second second second second second second second second Second second second second second second second second second second second second second second second second	

			A.D.A
	1 102. 1 103.	SLAK(K)=CYCLE-STATIM(K) M=1	C89
	1 104.	NUNIT (K,M)=HRAND	
	1 105. 1 106.	29 NPREC2(NRAND) = -1 $D0 91 J = 1 NTASK$	요리 이렇게 꾀끗이 끊어졌다. 영화 방송 이렇게 많이 많이 많이 많이 많이 많이 많이 많이 많이 많이 많이 많이 많이
	2 2 107. 107.	91 NPREC2(J)=NPREC2(J)=MATRIX(NRAN)	
	1 108.	10=N0+1	
	109. 110.	IF (NO-NTASK) 13,31,13 31 NCOUNTENCOUNT+1	이 가지는 것 같아. 이 밖에 가볼 것 같아. 봐야 봐야 봐야 못했다. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
•	· · · · · · · · · · · · · · · · · · ·	00 93 I=1,K	
	2 112. 113.	93 WRITE(6,36) I, (NUNIT(I,M), M=1,14) 36 FORMAT(2110,1314,F10.3,F9.3)	
	1 114.	TSLACK=0.0	
•	1 115. 2 116.	UO 5055 I=1+K 5055 TSLACK=SLAK(I)+TSLACK	입니다. 김 사람이 나 밖에 나를 가지 않는 것이 없는 것이 있는 것이 같이 나는 것이 없다. 나는 것이 같이 않는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 이렇게 많은 것이 없는 것이 않은 것이 없는 것이 없 않이 않이 않이 않이 않이 않이 않이 않이 않이 않이 않이 않이 않이
	117.	EFF=(1.0-(TSLACK/TETIME))*100./ /RITE(6,5053) TSLACK/EFF	그는 같은 그 동물이 물고 못한 물고 말한 것을 하는 것
	1 118. 1 119. 5	5053 FORMAT (1H // 5X, 18HTOTAL SLACK T	IME = .F6.3,24X,13HEFFICIENCY =
	1 120. 1 121.	1F0.2.9H PER CENT,//)	nen en la companya de la companya de la companya de la companya de la companya de la companya de la companya d La companya de la companya de la companya de la companya de la companya de la companya de la companya de la comp La companya de la companya de la companya de la companya de la companya de la companya de la companya de la comp
	$\frac{1}{2}$ 122.	DO 1009 I=1,K DO 1009 J=1,14	사회 정말한 이 것 같은 이 가족이 가족한 이렇게 가지 않는 것이다. 이 이 이 이 이 이 이 이 이 이 이 이 이 있는 것이 있는 것이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이
		009 NUNIT(I,J)=0	
	1 124 . 1 125 .	LOO1 CONTINUE WRITE(5,500)	에 있는 것 같은 것 같은 것이 있는 것 같은 것 같은 것이 있는 것이 있다. 2011년 - 1월 2011년 국내 전문을 통하는 동안 등 동안 한 것이 있는 것이 있다.
• • •	126.	500 FORMAT(,1,)	n la seu a dan ang santa se s a y artuti ke sati ang kabanan dan sa Santa sa sa sa sa sa sa sa sa sa sa sa sa sa
	127 . 128.	GO TO 22 25 STύρ	- 이렇게 가지 않는 것을 가려져 있는 것을 가지 않는 것을 가지 않는다.
	129.		
	END FTN 417 IBANK	1410 DBANK	이 같은 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 같은 것이 같은 것이 같은 것을 알려야 한 것이 있는 것이 같은 것이 없다.
	ΔXQT MAP28R2 72R1U1 07/	(01/90.11	na franciska se se se se se se se se se se se se se
			실험 날짜의 것은 홍지가를 날 훌륭한 형태가 물건을 받았다.
· · ·	ADDRESS-LIMITS	001000 032770 13305 IBANK WORDS	FC IMAL
		040000 045366 2807 DBANK WORDS 1	
	STARTING ADDRESS	032130	
	· 아무리 이번 유민이 있는 것이 있지 않는 이번 정말 수 있다. 	사이가 가지 않는 것 같은 것이 있는 것이 있는 것이 가지 않는 것이 있는 것이 있는 것이 있는 것이 있다. 같은 것이 같은 것은 것이 있는 것이 같은 것이 같은 것이 있는 것이 있는 것이 있는 것이 같이 있다.	이 가지 사람이 있는 것 같은 것을 하는 것을 가장하는 것 같은 것 같은 것이 있는 것이 있다. 가지 않는 것 같은 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 가지 않는 것이 같은 것은 것은 것은 것은 것은 것은 것은 것은 것은 것은 것은 것은 것은
			사실 한 것이 많다. 물건을 통하여 가지 않는다.
	SEGME	NT \$MAIN5' 001000 032770	040000 045366
	TABLES/SYS72	\$(1) 001000 001177	이가 가지 않는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 이 이가 같은 것이 있는 것이 하는 말을 하는 것을 것이 없다. 이가 말을 하는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 한
	F2FARR F2ACTIV5	\$(1) 001200 002114 \$(1) 002115 002131 \$(2)	
			040000 040002
	F2TABX	5(5) 002147 002147	00007 000310
	F2RTRN5	\$(2) \$(2)	040003 040314 040315 040315 040315
	F2FCA F2FRT		040316 040322
	F2CDCD5	274 - 1955 - 1997 - 199	
	F20UT	5(1) 002150 005151	
	FDASC\$/SYS73R108 F2INP	\$(1) 005152 005346 \$(1) 005347 007524	
	F2NMLT	\$(1) 007525 012315	표 (2019년 1월 1997년 1월 199
	F2NFMT	\$(1) 012316 012644	
	F2SAR	5(1) 012645 013002	
	F2FMT	\$(1) 013003-015125	

C2DSDF C2ANSI	5(1) -5(1)	016563 017540 017541 024106			
C2SSDF F2CLOSE PMD\$COM(COMMONBLOCK)	5(1) 5(1)	024107 026425 026426 026457		0433 040435 0436 040436.	
MOEROS(COMMONBLOCK) F2CON			041 €(2) 040	0437 040442 0443 042164	
F2SCT			\$(036) PM	ROS SCOM	
ERU\$/SYS73R1 FORCOM\$/FORFTN	land and a star Hard to a star Total Star Hard to a star		i i john nili shara kulu da	2165 042436 24 37 042444	
CERUS F2EXIT				2445 042500	
F2FIM F2INIT	5(1)	026460 032127		2501 042501	이는 이가 영화가 참가 관계를 같이
NAMES	5 (1)	032130 032770	\$(0) 042	2502 042564 2565 045036 5037 045246	
			5(010) 045	5247 045247 5250 045361	
SYS\$*RLIB5. LEVEL 73R1			\$(012) 04:	5362 045366	
END MAP ASSEMBLY LINE BALANCING	FOR	KARAYALCIN AL	PASLAN	un de Helse de Labora. Notario en labora	일양 · 영지에 전망
이 화려로 한 것들이 가는 것을 들는 것으로 있었다.				그는 그는 것 같아?	
SEQUENCE NUMBER 1 STATION NUMBER		CYCLE TIME	•901		STATION TIME
STATION NUMBER 1 9 5		3 10 6 7	0 0 0	0 0 0	ПМЕ •867
STATION NUMBER 1 9 5 2 8 11 3 14	4 12 15 16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	ГТМЕ .867 .694 .901
STATION NUMBER 1 9 5 2 8 11 3 14 TOTAL SLACK TIME =	4 12 15 16 •241	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0	0 0 0 0 0 0	ГТМЕ .867 .694 .901
STATION NUMBER 1 9 5 2 8 11 3 13 14 TOTAL SLACK TIME =	4 12 15 16 •2"1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 0 0 EFFICIENC	0 0 0 0 0 0	FTME .867 .694 .901 PER CENT
STATION NUMBER 1 9 5 2 8 11 3 14 TOTAL SLACK TIME =	4 12 15 16 •2"1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 0 0 EFFICIENC	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ГТМЕ .867 .694 .901
STATION NUMBER 1 9 5 2 8 11 3 13 14 TOTAL SLACK TIME = SEQUENCE NUMBER 2 STATION NUMBER 1 0 0 2 6 9	4 12 15 16 .241	3 10 6 7 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 EFFICIENC .901	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TIME .867 .694 .901 PER CENT STATION TIME
STATION NUMBER 1 9 5 2 8 11 3 13 14 TOTAL SLACK TIME = SEQUENCE NUMBER 2 STATION NUMBER	4 12 15 16 .241	3 10 6 7 0 0 0 0 0 0 0 0 CYCLE TIME 0 0 0 0 1 7 8 2	0 0 0 0 0 0 0 0 0 EFFICIENC .901	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	FIME .867 .694 .901 PER CENT STATION TIME .867 .697
STATION NUMBER 1 9 5 2 8 11 3 13 14 TOTAL SLACK TIME = SEQUENCE NUMBER 2 STATION NUMBER 1 0 0 2 6 9 3 11 4 13 14 TOTAL SLACK TIME =	4 12 15 16 .241 0 0 5 10 4 12 15 16 .275	3 10 6 7 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 7 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ΓΤΜΕ .867 .694 .901 PER CENT STATION TIME .867 .697 .864 .901 PER CENT
STATION NUMBER 1 9 5 2 8 11 3 13 14 TOTAL SLACK TIME = SEQUENCE NUMBER 2 STATION NUMBER 1 0 0 2 6 9 3 11 4 13 14 TOTAL SLACK TIME =	$\begin{array}{c} 4 & 12 \\ 15 & 16 \\ \cdot 2^{2} 1 \\ \end{array}$ $\begin{array}{c} 0 & 0 \\ 5 & 10 \\ 4 & 12 \\ 15 & 16 \\ \cdot 275 \\ \end{array}$	3 10 6 7 0 1 7 8 2 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 EFFICIENC .901 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	FIME .867 .694 .901 PER CENT STATION TIME .867 .697 .864 .901 PER CENT
STATION NUMBER 1 9 5 2 8 11 3 13 14 TOTAL SLACK TIME = SEQUENCE NUMBER 2 STATION NUMBER 1 0 0 2 6 9 3 11 4 13 14 TOTAL SLACK TIME = SEQUENCE NUMBER 3 STATION	$\begin{array}{c} 4 & 12 \\ 15 & 16 \\ \cdot 2^{4}1 \\ \end{array}$	3 10 6 7 0 1 7 8 2 0 0 0 0 1 7 8 2 0	0 0 0 0 0 0 EFFICIENC .901 0 0 0 0 0 0 0 0 0 0 0 0 EFFICIENC .901	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ΓΤΜΕ .867 .901 PER CENT STATION TIME .867 .697 .864 .901
STATION NUMBER 1 9 5 2 8 11 3 13 14 TOTAL SLACK TIME = SEQUENCE NUMBER 2 STATION NUMBER 1 0 0 2 6 9 3 11 4 13 14 TOTAL SLACK TIME = SEQUENCE NUMBER 3 STATION NUMBER	$\begin{array}{c} 4 & 12 \\ 15 & 16 \\ \cdot 241 \\ \cdot \\ 0 & 0 \\ 5 & 10 \\ 4 & 12 \\ 15 & 16 \\ \cdot 275 \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ $	3 10 6 7 0 0 0 0 0 0 0 0 CYCLE TIME 0 0 0 0 1 7 8 2 0	0 0 0 0 0 0 EFFICIENC .901 0 0 0 0 0 0 0 0 0 0 0 0 EFFICIENC .901	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ГТМЕ .867 .694 .901 PER CENT STATION TIME .867 .697 .864 .901 PER CENT STATION TIME
STATION NUMBER 1 9 5 2 8 11 3 13 14 TOTAL SLACK TIME = SEQUENCE NUMBER 2 STATION NUMBER 1 0 0 2 6 9 3 11 4 13 14 TOTAL SLACK TIME = SEQUENCE NUMBER 3 STATION	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 10 6 7 0 0 0 0 0 0 0 0 CYCLE TIME 0 0 0 0 1 7 8 2 0 0 0 0 1 7 8 2 0 1 7 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 EFFICIENC .901 0 0 0 0 0 0 0 0 0 0 0 0 EFFICIENC .901 0 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TIME .867 .694 .901 PER CENT STATION TIME .867 .697 .864 .901 PER CENT STATION TIME .867 .867 .864 .901

APPENDIX - IV

SOLUTION TO THE CASE STUDY BY USING ARCUS' ALGORITH'

	$123456789_{012}3$	NO• 05	, `
	AAAAAAAA LL CCCCCCC 00000000 LL EEEEEEEEEE AAAAAAAAAA LL CCCCCCCC 000000000 LL EEEEEEEEEEE	A-11/1)
	AA AA LL CC CC 00 LL EE	11	
	AA AA LL CC CC 00 00 LL EE AA AA LL CC 00 00 LL EE	(92)	· ·
	AAAAAAAAAAA LL CC 00 00 LL EEEEEEEE AAAAAAAAAAA LL CC 00 00 LL EEEEEEEE	•	
	AA LL CC 00 LL EE)
	AA LL CC CC 00 LL EE)
	AAAALLLLLLLLLLLCCCCCCCCC000000000LLLLLLLLLLLEEEEEEEEEEAAAALLLLLLLLLLLLCCCCCCCC00000000LLLLLLLLLLLLEEEEEEEEEEE		
)	* * * UNIVAC 1106 BOGAZICI UNIVERSITESI KOMPUTER MERKEZI ISTANBUL VER. 33R3/BU9-7 SITE * BU1106 TURKIYE	* *	$(\mathbf{y}) = (\mathbf{y})$
	RUNID * ALCOLE USER ID * PART NUMBER * 00 INPUT DEVICE * CR2 OUTPUT DEVICE * PR2		`
3	FILE NAME * PRA000ALCOLE CREATED AT: 14:33:00 JUL 14,1981 PRINTED AT: 15:48:24 JUL 14,198		1
))	123456789012	NO• 05)
	ΔFTN, IS	• • •	
	FTN 8R1 *07/14/81-14:33 1. DIMENSION MATRIX(12,12),TIME(12),NUNIT(50,14),STATIM(50))
	<pre>2. DIMENSION SLAK(50),NPREC1(12),NPREC2(12),JOBS(30) 3. DIMENSION NAME(10),NLIST(20)</pre>		
	1 $5 \cdot 9901 J_{0}B_{S}(I) = 0$		
	6. DO 9902 I=1,50		
	1 7. STATIM(I)=0.0 1 8. SLAK(I)=0.0		
	1 9. DO 9902 J=1.14 2 10. $9902 \text{ NUNIT}(I,J)=0$		
	11. XI=0.123456 12. NCOUNT=1		
	13. MO=0		•) • (* - • •
	14. NO=0 15. READ(5,913) NAME		
	16. 913 FORMAT(10A4) 17. 302 WRITE(6,1002) NAME)
-	18. 1002 FORMAT(, ,, ASSEMBLY LINE BALANCING FOR ,, 5X, 10A4,//)		·····)
	19. DO 200 M=1.12 1 20. TIME(M).=0.0		,
	1 21. NPREC1(M)=0 1 22. NPREC2(M)=0).
	1 22. NPREC2(M)=0 1 23. DO 200 N=1,12 2 24. 200 MATRIX(M,N)=0	1	
	25. DO 105 K=1+23+2	• • • • • • • • • • • • • • • • • • •)
	1 26. READ(5,5) JOBS(K), JOBS(K+1) 27. IF(JOBS(K+1))105,10,105	4.	•
-	28. 105 MO=MO+2 29. 5 FORMAT(213)		i
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.)
	32. 8 L=JOBS(I+1)		
	33. N=JOBS(I) 34. MATRIX(N+L)=1)
	1 35. 92 CONTINUE 36. DO 113 K=1,12		N 1997
	1 37. READ(5,912) TIME(K) 1 38. IF(TIME(K))113,1,113		in Italia Santa Santa Santa
	1 39. 113 NO=NO+1		· · · · · · · · · · · · · · · · · · ·
	40. 912 FORMAT(F6.3)		

	•	지수가 집에 있는 것이 아니는 것이 같이 있는 것이 가지 않는 것을 알았다. 이 가지 않는 것이 많은 것이 같이 나라.	
-		에는 사람들에게 가지 않는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 같은 것이 같은 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 같은 것이 같은 것이 있는 것이 같은 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것	
		이 같은 것은 것은 것은 것은 것을 가지 않는 것을 알려요. 이 가지 않는 것은 것은 것은 것은 것을 알려요. 이 가슴이 가지 않는 것은 것을 가지 않는 것을 가지 않는 것을 가지 않는 것을 가지 않 같은 것은 것은 것은 것은 것은 것은 것은 것은 것은 것은 것은 것은 것은	XIVI
		이 방법을 하는 것이 같아요. 이 것이 같아요. 이 가지 않는 것이 많은 것이 같아요. 이 물건이 물건이 많다. 이 물건이 많다. 이 물건이 많다. 이 물건이 많다. 이 물건이 많다. 이 물건이 많다.	17-11/2
•	41.	1 NTASK=NO	A-11/2 (93)
•	42.	BTASK=NO	
•	43. 44.	DO 98 J=1+NTASK TETIME=0.0	•
1	44.	$DO 5054 I=1 \cdot NTASK$	•
2	46	5054 TETIME=TIME(I)+TETIME	
1	47.	NPREC1(J)=0	
1	48.	DO 98 I=1 NTASK	
2	49. 50.	98 NPREC1(J)=MATRIX(I,J)+NPREC1(J) 22 READ(5,23) CYCLE,NRUNS	
1	51.	23 FORMAT(F6.3/3X/I2)	
	52.	IF(CYCLE) 24,25,24	
•	53.	24 M=0	
	54.	·10=0	
	55.	KBEFOR=100	
	56. 57.	NCOUNT=1 SMALL=0.0	
	58.	DO 1001 + X = 1 + NRUNS	
1	59.	41 DO 95 J=1, NTASK	
2	60.	95 NPREC2(J)=UPREC1(J)	
1	61.	M=0	
1	62.	STATIM(I)=0.0	
1	63. 64.	K=1 WRITE(6,46) NCOUNT	
1	65	46 FORMAT(, ,, SEQUENCE NUMBER ,, I3)	
1	ό ό.	WRITE(6,26) CYCLE	
1	67.		,7HSTATIO
1	68. 69.	14X,5HSLACK,/,6X,6HNUMBER,64X,4HTIME,/) NO=0	
1	70.	13 XII=XI* •23	
1	71.	IXJ=XII*100.	
1	72.		
1			
	73.	XI=(XII-XIJ/100.)*100.	
1	73. 74.	XI=(XII-XIJ/100.)*100. IXI=XI*100.	
1 1 1	73.	XI=(XII-XIJ/100.)*100.	
1 1 1 1	73. 74. 75. 76. 77.	XI=(XII-XIJ/100.)*100. IXI=XI*100. XIK=IXI XKK=XI-(XI-XIK/100.) NUMA=0	
1 1 1 1 1	73. 74. 75. 76. 77. 78.	XI=(XII-XIJ/100.)*100. IXI=XI*100. XIK=IXI XKK=XI-(XI-XIK/100.) NUMA=0 DO 2031 I=1.NTASK	
1 1 1 1 2	73. 74. 75. 76. 77. 78. 79.	XI=(XII-XIJ/100.)*100. IXI=XI*100. XIK=IXI XKK=XI-(XI-XIK/100.) NUMA=0 DO 2031 I=1.NTASK IF(NPREC2(I)) 2031,2032,2031	
1 1 1 1 2 2	73. 74. 75. 76. 77. 78.	XI=(XII-XIJ/100.)*100. IXI=XI*100. XIK=IXI XKK=XI-(XI-XIK/100.) NUMA=0 DO 2031 I=1.NTASK	
1 1 1 1 2 2 2 2 2	73. 74. 75. 76. 77. 78. 79. 80. 81. 82.	<pre>XI=(XII-XIJ/100.)*100. IXI=XI*100. XIK=IXI XKK=XI-(XI-XIK/100.) NUMA=0 DO 2031 I=1.NTASK IF(NPREC2(I)) 2031.2032.2031 2032 IF(NUMA-20) 5061.2031.2031 5061 NUMA=NUMA+1 NLIST(NUMA)=I</pre>	
1 1 1 1 2 2 2 2 2 2	73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83.	<pre>XI=(XII-XIJ/100.)*100. IXI=XI*100. XIK=IXI XKK=XI-(XI-XIK/100.) NUMA=0 D0 2031 I=1,NTASK IF(NPREC2(I)) 2031,2032,2031 2032 IF(NUMA-20) 5061,2031,2031 5061 NUMA=NUMA+1 NLIST(NUMA)=I 2031 CONTINUE</pre>	
1 1 1 1 2 2 2 2 2	73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84.	<pre>XI=(XII-XIJ/100.)*100. IXI=XI*100. XIK=IXI XKK=XI-(XI-XIK/100.) NUMA=0 D0 2031 I=1,NTASK IF(NPREC2(I)) 2031,2032,2031 2032 IF(NUMA-20) 5061,2031,2031 5061 NUMA=NUMA+1 NLIST(NUMA)=I 2031 CONTINUE ANUM=NUMA</pre>	
1 1 1 1 2 2 2 2 2 2	73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85.	<pre>XI=(XII-XIJ/100.)*100. IXI=XI*100. XIK=IXI XKK=XI-(XI-XIK/100.) NUMA=0 D0 2031 I=1.NTASK IF(NPREC2(I)) 2031,2032,2031 2032 IF(NUMA-20) 5061,2031,2031 5061 NUMA=NUMA+1 NLIST(NUMA)=I 2031 CONTINUE ANUM=NUMA NUMB=(XKK*ANUM)+1.0</pre>	
1 1 1 1 2 2 2 2 2 2	73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84.	<pre>XI=(XII-XIJ/100.)*100. IXI=XI*100. XIK=IXI XKK=XI-(XI-XIK/100.) NUMA=0 D0 2031 I=1,NTASK IF(NPREC2(I)) 2031,2032,2031 2032 IF(NUMA-20) 5061,2031,2031 5061 NUMA=NUMA+1 NLIST(NUMA)=I 2031 CONTINUE ANUM=NUMA</pre>	
1 1 1 1 2 2 2 2 2 2 1 1 1 1	73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88.	<pre>XI=(XII-XIJ/100.)*100. IXI=XI*100. XIK=IXI XKK=XI-(XI-XIK/100.) NUMA=0 D0 2031 I=1.NTASK IF(NPREC2(I)) 2031,2032,2031 2032 IF(NUMA-20) 5061,2031,2031 5061 NUMA=NUMA+1 NLIST(NUMA)=I 2031 CONTINUE ANUM=NUMA NUMB=(XKK*ANUM)+1.0 NRAND=NLIST(NUMB) IF(XI) 2022,2022,45 2022 wRITE(6,2021) NRAND</pre>	
1 1 1 1 2 2 2 2 2 2 1 1 1 1	73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89.	<pre>XI=(XII-XIJ/100.)*100. IXI=XI*100. XIK=IXI XKK=XI-(XI-XIK/100.) NUMA=0 D0 2031 I=1.NTASK IF(NPREC2(I)) 2031,2032,2031 2032 IF(NUMA-20) 5061,2031,2031 5061 NUMA=NUMA+1 NLIST(NUMA)=I 2031 CONTINUE ANUM=NUMA NUMB=(XKK*ANUM)+1.0 NRAND=NLIST(NUMB) IF(XI) 2022,2022,45 2022 wRITE(6,2021) NRAND 2021 FORMAT(, ,, NRAND,,I5)</pre>	
1 1 1 1 2 2 2 2 2 2 1 1 1 1	73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 85. 86. 87. 88. 89. 90.	<pre>XI=(XII-XIJ/100.)*100. IXI=XI*100. XIK=IXI XKK=XI-(XI-XIK/100.) NUMA=0 D0 2031 I=1.NTASK IF(NPREC2(I)) 2031,2032,2031 2032 IF(NUMA-20) 5061,2031,2031 5061 NUMA=NUMA+1 NLIST(NUMA)=I 2031 CONTINUE ANUM=NUMA NUMB=(XKK*ANUM)+1.0 NRAND=NLIST(NUMB) IF(XI) 2022,2022,45 2022 wRITE(6,2021) NRAND 2021 FORMAT(, ,, NRAND,,I5) G0 T0 25</pre>	
1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 1 1	73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91.	<pre>XI=(XII-XIJ/100.)*100. IXI=XI*100. XIK=IXI XKK=XI-(XI-XIK/100.) NUMA=0 D0 2031 I=1.NTASK IF(NPREC2(I)) 2031,2032,2031 2032 IF(NUMA-20) 5061,2031,2031 5061 NUMA=NUMA+1 NLIST(NUMA)=I 2031 CONTINUE ANUM=NUMA NUMB=(XKK*ANUM)+1.0 NRAND=NLIST(NUMB) IF(XI) 2022,2022,45 2022 wRITE(6,2021) NRAND 2021 FORMAT(, ,, NRAND,,I5) G0 T0 25 45 IF(NRAND-NTASK) 12,12,13</pre>	
1 1 1 1 2 2 2 2 2 2 1 1 1 1	73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 85. 86. 87. 88. 89. 90.	<pre>XI=(XII-XIJ/100.)*100. IXI=XI*100. XIK=IXI XKK=XI-(XI-XIK/100.) NUMA=0 D0 2031 I=1,NTASK IF(NPREC2(I)) 2031,2032,2031 2032 IF(NUMA-20) 5061,2031,2031 5061 NUMA=NUMA+1 NLIST(NUMA)=I 2031 CONTINUE ANUM=NUMA NUMB=(XKK*ANUM)+1.0 NRAND=NLIST(NUMB) IF(XI) 2022,2022,45 2022 wRITE(6,2021) NRAND 2021 FORMAT(, ,, NRAND,,I5) G0 T0 25 45 IF(NRAND=NTASK) 12,12,13 12 IF(NPREC2(NRAND)) 13,14,13</pre>	
1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1	73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91. 92. 93. 94.	<pre>XI=(XII-XIJ/100.)*100. IXI=XI*100. XIK=IXI XKK=XI-(XI-XIK/100.) NUMA=0 D0 2031 I=1.NTASK IF(NPREC2(I)) 2031,2032,2031 2032 IF(NUMA-20) 5061,2031,2031 5061 NUMA=NUMA+1 NLIST(NUMA)=I 2031 CONTINUE ANUM=NUMA NUMB=(XKK*ANUM)+1.0 NRAND=NLIST(NUMB) IF(XI) 2022,2022,45 2022 wRITE(6,2021) NRAND 2021 FORMAT(, ,, NRAND,,I5) G0 T0 25 45 IF(NRAND-NTASK) 12,12,13</pre>	
1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1	73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91. 92. 93. 94. 95.	<pre>XI=(XII-XIJ/100.)*100. IXI=XI*100. XIK=IXI XKK=XI-(XI-XIK/100.) NUMA=0 DO 2031 I=1,NTASK IF(NPREC2(I)) 2031,2032,2031 2032 IF(NUMA-20) 5061,2031,2031 5061 NUMA=NUMA+1 NLIST(NUMA)=I 2031 CONTINUE ANUM=NUMA NUMB=(XKK*ANUM)+1.0 NRAND=NLIST(NUMB) IF(XI) 2022,2022,45 2022 wRITE(6,2021) NRAND 2021 FORMAT(, ,, NRAND,I5) GO TO 25 45 IF(NRAND=NTASK) 12,12,13 12 IF(NPREC2(NRAND)) 13,14,13 14 STATIM(K)=STATIM(K)+TIME(NRAND) IF(STATIM(K)=CYCLE) 27,27,28 27 M=M+1</pre>	
1 1 1 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1	73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 85. 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96.	<pre>XI=(XII-XIJ/100.)*100. IXI=XI*100. XIK=IXI XKK=XI-(XI-XIK/100.) NUMA=0 D0 2031 I=1,NTASK IF(NPREC2(I)) 2031,2032,2031 2032 IF(NUMA=20) 5061,2031,2031 5061 NUMA=NUMA+1 NLIST(NUMA)=I 2031 CONTINUE ANUM=NUMA NUMB=(XKK*ANUM)*1.0 NRAND=NLIST(NUMB) IF(XI) 2022,2022,45 2022 wRITE(6,2021) NRAND 2021 FORMAT(, ,, NRAND,,I5) G0 TO 25 45 IF(HRAND=NTASK) 12,12,13 12 IF(NPREC2(NRAND)) 13,14,13 14 STATIM(K)=STATIM(K)+TIME(NRAND) IF(STATIM(K)=CYCLE) 27,27,28 27 M=M+1 NUNIT(K,M)=NRAND</pre>	
1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1	73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96. 97.	<pre>XI=(XII-XIJ/100.)*100. IXI=XI*100. XIK=IXI XKK=XI-(XI-XIK/100.) NUMA=0 D0 2031 I=1.NTASK IF(NPREC2(I)) 2031,2032,2031 2032 IF(NUMA-20) 5061,2031,2031 5061 NUMA=NUMA+1 NLIST(NUMA)=I 2031 CONTINUE ANUM=NUMA NUMB=(XKK*ANUM)+1.0 NRAND=NLIST(NUMB) IF(XI) 2022,2022,45 2022 wRITE(6,2021) NRAND 2021 FORMAT(, ,, NRAND, I5) G0 T0 25 45 IF(NRAND=NTASK) 12,12,13 12 IF(NPREC2(NRAND)) 13,14,13 14 STATIM(K)=STATIM(K)+TIME(NRAND) IF(STATIM(K)=CYCLE) 27,27,28 27 M=M+1 NUNIT(K,M)=NRAND SLAK(K)=CYCLE-STATIM(K)</pre>	
1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 85. 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96.	<pre>XI=(XII-XIJ/100.)*100. IXI=XI*100. XIK=IXI XKK=XI-(XI-XIK/100.) NUMA=0 D0 2031 I=1.NTASK IF(NPREC2(I)) 2031,2032,2031 2032 IF(NUMA-20) 5061,2031,2031 5061 NUMA=NUMA+1 NLIST(NUMA)=I 2031 CONTINUE ANUM=NUMA NUMB=(XKK*ANUM)+1.0 NRAND=NLIST(NUMB) IF(XI) 2022,2022,45 2022 wRITE(6,2021) NRAND IF(XI) 2022,2022,45 2022 wRITE(6,2021) NRAND 2021 FORMAT(, ,, NRAND,,I5) G0 T0 25 45 IF(NRAND=NTASK) 12,12,13 12 IF(NPREC2(NRAND)) 13,14,13 14 STATIM(K)=STATIM(K)+TIME(NRAND) IF(STATIM(K)=CYCLE) 27,27,28 27 M=M+1 NUNIT(K,M)=NRAND SLAK(K)=CYCLE-STATIM(K) G0 T0 29</pre>	
1 1 1 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1	73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96. 97. 98.	<pre>XI=(XII-XIJ/100.)*100. IXI=XI*100. XIK=IXI XKK=XI-(XI-XIK/100.) NUMA=0 D0 2031 I=1.NTASK IF(NPREC2(I)) 2031,2032,2031 2032 IF(NUMA-20) 5061,2031,2031 5061 NUMA=NUMA+1 NLIST(NUMA)=I 2031 CONTINUE ANUM=NUMA NUMB=(XKK*ANUM)+1.0 NRAND=NLIST(NUMB) IF(XI) 2022,2022,45 2022 wRITE(6,2021) NRAND 2021 FORMAT(, ,, NRAND, I5) G0 T0 25 45 IF(NRAND=NTASK) 12,12,13 12 IF(NPREC2(NRAND)) 13,14,13 14 STATIM(K)=STATIM(K)+TIME(NRAND) IF(STATIM(K)=CYCLE) 27,27,28 27 M=M+1 NUNIT(K,M)=NRAND SLAK(K)=CYCLE-STATIM(K)</pre>	

A-11/2/ (94)

1 101. K=K+1			•			(94).
1 102. STATIM(K)=T 1 103. SLAK(K)=CYC	IME(NRAND) LE-STATIM(K)	•				• • •
1 105. $SEAR(R) = CTC1 104. M=1$					•	
1 105. NUNIT(K,M)=					•	· · · · · · ·
1 106. 29 NPREC2(NRAN 1 107. DO 91 J=1,N						
	PREC2(J)-MATRIX(NF	RAND, J)			•	
1 109. NO=NO+1						
1 110. IF (NO-NTASK 1 111. 31 NCOUNT=NCOU						•
1 112. DO 93 I=1.K		•				
	I,(NUNIT(I,M),M=1 ,13I4,F10.3,F9.3)	L,14),STA1	TIM(I),SLAK(I)	•		
1 115. TSLACK=0.0	101 FIU. 011 2407	•			•	
1 116. DO 5055 I=1						
2 117. 5055 TSLACK=SLAK 1 118. EFF=(1.0-(T	(I)+TSLACK SLACK/TETIME))*10()		•		
	3) TSLACK, EFF	J •				
1 120. 5053 FORMAT(1H,	1,5x,18HTOTAL SLAC	K TIME =	,F6.3,24X,13HEF	FICIENCY	=	
1 121. 1F6.2.9H PER 1 122. D0 1009 I=1						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
3 124. 1009 NUNIT(I,J)=	0				•	
1 125. 1001 CONTINUE 126. WRITE(6,500)					
127. 500 FORMAT(,1,)						
128. GO TO 22						
129. 25 STOP 130. END				•		
	na na shekara na shekara na shekara Mari			tan an ta		
E _N D FT _N 417 IBA _N K 1287 DBA _N K Axqt						
MAP 30R1 S74T11 07/14/81 14:33:39						
				· · · · · · · · · · · · · · · · · · ·		
ADDRESS LIMITS 001000 002026	535 IBANK WOR	DS DECIMA			•	
040000 045513	2892 DBANK WOR	RDS DECIMA	AL .		•	
STARTING ADDRESS 001166				· · · · · · · · · · · ·		
				· · · ·	· · · · ·	
SEGMENT SMAINS	001000 002026		045513		•	
M\$PKT\$ F2RTRN\$		\$(2) \$(2)	040000 040011		NOV 78 AUG 77	17:09:58 16:22:24
F_{2}^{2} FORFTN $\mathfrak{F}(1)$	001000 001013	5(2)	040014 040016		JAN 78	11:01:29
5 (3)	001014 001027	•			•	• •
\$(5) F2TABX	001030 001030	\$(2)	040017 040330	26	JUN 75	13:29:39
F2TABA F2FCA		\$(0)	040331 040335		JAN 75	07:43:40
FURCOM\$/FORFTN		\$(2)	040336 040343		JUL 75	12:16:44
F2CLOSE \$(1) CERU\$	001031 001062	\$(0)	040344 040346		APR 81 APR 81	22:00:30 11:56:55
PMDSCOM (COMMONBLOCK)			040347 040347			
MOERO\$(COMMONBLOCK)		+ 1 ~)	040350 040353	· · · · · · · · · · · · · · · · · · ·		0010010
F2CON		\$(2) \$(034)	040354 042230 MOER0\$	16	APR 81	22:00:44

		001000	001000						
ABX				\$(2)	040017 040330	· · .	26	JUN 75	13:29:39
CA	· · ·		مەرىپ	\$(0)	040331 040335	•	03 .	JAN 75	07:43:40
COMS/FORFTN				\$(2)	040336 040343	ана на При страната и страната и страната и страната и страната и страната и страната и страната и страната и странат При страната и страната и страната и страната и страната и страната и страната и страната и страната и страната	23	JUL 75	12:16:44
LOSE	\$(1)	001031	001062	\$(0)	040344 040346	·	16 /	PR 81	22:00:30
US Contractions	•						08 /	NPR 81	11:56:55
SCOM (COMMONBLOCK)			e e l'estre de la seconda de la seconda de la seconda de la seconda de la seconda de la seconda de la seconda d		040347 040347				
ROS(COMMONBLOCK)	· · ·	•			040350 040353		¹	• • •	in an an an an an an an an an an an an an
ON				\$(2)	040354 042230	•	16 4	PR 81	22:00:44
			· · ·	\$(034)	MOEROS				
				\$(036)	PMDSCOM			*	

	na ya ya kata				م مور والمور و مراجع مار و المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراج	· · · · · · · · · · · · · · · · · · ·
					A	-)V/4
F2FRT MEMINTERFACE F2SCT F2INIT F2COCD\$	5(1)	001063 001165	\$(2) \$(2) \$(2))42231 042272)42273 042320)42321 042622)42623 043002)43003 043050	27 JUL 78 20 NOV 78 20 NOV 78 16 APR 81 19 DEC 74	(35) ¹ 12:58:44 17:10:37 17:06:44 22:02:10 14:35:02
ERUS/SYS74R1 F2EXIT F2IOENT NAMES	\$(1)	001166 002026	\$(2) (\$(0) (\$(4) (\$(6) (043051 043104 043105 045162 045163 045505 045506 045506 045507 045513	20 DEC 78 16 APR 81 04 MAY 78 14 JUL 81	17:30:56 22:01:01 15:34:26 14:33:37
CONMON DANKE DEFENSE			# *			
COMMON BANKS REFEREN		02 0400001				
SYS\$*RLIB\$. LEVEL	TIME: 14.793	STORAGE: 18853 KARAYALCIN AL	/4/040777/0 Paslan	74777		
SEQUENCE NUMBER STATION NUMBER		CYCLE TIME	60.000		STATION SLACK TIME	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 4 7	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	54.0006.00060.000.00058.0002.000	
TOTAL SLACK TIME	= 8.000		EFFICIEN	CY = 95.35 PER	CENT	
SEQUENCE NUMBER STATION NUMBER	2	CYCLE TIME	60.000		STATION SLACK TIME	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 4 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	54.0006.00054.0006.00060.000.00058.0002.000	
TOTAL SLACK TIME	E =14.000		EFFICIEN	CY = 91.86 PER	RCENT	
SEQUENCE NUMBER STATION NUMBER	3	CYCLE TIME	60.000		STATION SLACK TIME	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} 0 & 0 & 0 \\ 10 & 8 & 2 \\ 5 & 4 & 7 \\ 11 & 6 & 12 \end{array}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	54.0006.00054.0006.00060.000.00058.0002.000	
TOTAL SLACK TIME	E =14.000		EFFICIEN	CY = 91.86 PER	RCENT	
SEQUENCE NUMBER STATION	. 4	CYCLE TIME	60.000		STATION SLACK	

STATION NUMBER

•

•

in an Maria Sinta Sinta Matana Matana Matana Matana Matana

TIME

·

A-1V/5 (96)

		د. نمای و مرکز از ش								· · ·	•	•••	-	
			 1				· · · · · · · · · · · · · · · · · · ·	4 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12		· ·		• • • • • •	A	- 1V/5
					• • • •		1000 - 100 1000 - 100 1000 - 100			-	х 	•		(96)
1 2 3	0 0 9 1	0 0 10 0	0	0	0	0	0 0	0 0	0 0	0	0 0	0	54.000 41.000	6.000 19.000
4	9 1 2 5 7 11	8 4 3 6	0 0	0	0	0	0.0	0	0	0	0 0	0	59.000 52.000	1.000 8.000
	.2 0	0 0	0	0	0	0	0	0	0	0	0	0	20.000	40.000
TOTAL SLACK TI	ME =74.	.000				•		EFFI	CIENC	Y =	56.	98 P	ER CENT	
SEQUENCE NUMBER	5					· · ·					•			
STATION NUMBER				CYCLE	TIM	E	60.	000	an tan Ma	•			STATION TIME	SLACK
1 2 3 1	0 0 9 1	0 0 2 0	0	0	0	0	0	0	0	• 0 0	0	0 0	54.000 52.000	6,000 8,000
3 4	0 5 7 11	2 0 8 4 3 6	0	0	0 0	0	0	0	0	0	0	0	48.000	12.000
	2 0	0 0	0	0	0	0	0	0	0	Õ	0	0	20.000	40.000
TOTAL SLACK TI	ME =74.	000	•			•		EFFI	CIENC	Y =	56.	98 P	ER CENT	
SEQUENCE NUMBER	6	· ·	•											
STATION				CYCLE	TIM	IE	60.	000		•			STATION TIME	SLACK
1	0 0 1 2	0 0 10 0	0	0	0 0	0 0	0 0	0	0	0	0 0	0 0	54.000 48.000	6.000 12.000
2 3 4	9 5 7 11	10 0 8 4 3 6	0	0	0 0 0	0	0	0	0	0	0	0	52.000 52.000	8.000 8.000
	2 0	0 0	0	0	0	0	0	0	Ö	0	Ō	0	20.000	40.000
TOTAL SLACK TI	ME =74.	000						EFFI	CIENC	Y =	56.	98 P	ER CENT	• • • • • • • • • • • • • • • • • • •
SEQUENCE NUMBER	7		• • •											
STATION NUMBER		•		CYCLE	TIM	IE	60.	000				•	STATION TIME	SLACK
1 2	0 0 1 2	0 0 10 0	0	0 0	0	0 0	0 0	0 0	0	0	0 0	0 0	54.000 48.000	6.000 12.000
2 3 4	1 2 9 8 7 3	5 4 11 6	0	0	0 0 0	0 0	0 0	0	0	0	0	0	52.000 52.000	8.000
5 1	2 0	0 0	0 0	0	Ũ	0	0	0	0	Ŭ,	Õ	Ŭ.	20.000	40.000
TOTAL SLACK TI	ME =74	000	· · · ·	• • • • •	•			EFFI	CIENC	Y =	56.	98 P	ER CENT	
SEQUENCE NUMBER	8		. •		•		•			•				•
STATION NUMBER				CYCLE	TIM	E	60 .	000			•		STATION TIME	SLACK
1 2 3	0 0 9 1 2· 5	0 0 10 8	0 0	0	0	0	0 0	0	0	0	0	0 0	54.000 47.000	6.000 13.000
2 3 4	9 1 2 5 7 3	4 0 11 6	0	0	0	0	0 .0 .0	0	0	0.	0	0 0	53.000 52.000	7.000
	2 0	0 0	0	0	0	0	0	0	0	0	0	0	20,000	40.000
TOTAL SLACK TI	ME =74.	000		· · · · ·		•	*	EFFI	IENC	Y, =	56.	98 P	ER CENT	

SEQUENCE NUMBER STATION CYCLE TIME 60.000 STATION SLACK NUMBER TIME 6.000 Ó 54.000 Ö 5 - 1 48.000 12.000 . , .9 52.000 8.000 52.000 8.000 20.000 D 40.000 TOTAL SLACK TIME =74.000 EFFICIENCY = 56.98 PER CENT SEQUENCE NUMBER STATION CYCLE TIME 60.000 STATION SLACK NUMBER TIME 54.000 6.000 47.000 13.000

A 11/6

(97)

autini Malielle

-71

المرجم والمتعطي والمروج والمحاصر والمرجم والمستحد المستحد المستحد المحتم والمحالي والمحتر والمستحد والمحاص والم

3 0. 53.000 7.000 52.000 8.000 20.000 40.000 TOTAL SLACK TIME =74.000 EFFICIENCY = 56.98 PER CENT

FTN ERR ON UNIT-5 ATTEMPTED TO READ PAST AN END-OF-FILE ERR MODE FRR-TYPF: 03 ERR-CODE: 00 ERROR ADDRESS: 006434 BDI: 500025 ABORT ADR: 042134 BDI:200005 ER EABTS 000000 003076 000000 000017 777700 045372 000004 001426 000000 003075 000000 042241 000000 046117 000000 n46073 n0n000 046061 · 000000 042321 000000 046055 400000 000000 020001 0n1766 000000 000007 000000 000000 000000 000004 777777 775011 400000 000000 000000 017176 020001 001766 000000 000007 000000 000000 000000 000002 Α 000000 000025 000000 001431 000000 000264 000000 400264 000000 000016 000000 045514 000000 000012 00000 000001 000000 000000 000000 000000 000000 000000 000000 000204 777777 777776 777777 777776 777777 777776 000000 000003 00000 000000 R 000000 000012 000000 045513 000000 000002 000000 0n0000 00000 042321 000000 000001 000000 000061 00000 00000 REENT ADR: 041202 BDI: 200005 ERR\$ TYPE 03 CODE 00 CONT 12 USER EXECUTED ER FRRS. 000000 003075 000000 046055 000000 042241 00000 046061 000000 046117 000000 046073 Х 020001 001766 000000 042321 400000 000000 00000 00007 00000 000000 777777 775n11 020001 001766000000 000007 000000 000000 000000 017176 000000 000004 400000 000000 000000 000002 Α 000000 001431 000000 000264 000000 045514 000000 400264 000000 000012 000000 000025 000000 000016 n0n000 0n0001 000000 000000 000000 000000 000000 000204 777777 777776 777777 777776 777777 777776 00000 000000 00000 000003 000000 000000 R 00000n 000012 000000 045513 000000 000002 000000 000000 000000 000001 000000 000061 000000 000000 n0n000 042321 RUNSTREAM ANALYSIS TERMINATED

RUNID: ALCOLE ACCT: 111-15-216 PROJECT: ALB ALCOLE ABORT 000001154 TIME: TOTAL: 00:00:27.616 CBSUPS: I/o: 00:00:09.971 CPU 00:00:06.462 CC/ER: 00:00:11.183 WAIT: 00:00:00.000 137.44TL SUAS REMAINING: SUAS USED: 0.00TL ABOVE CHARGE CALCULATED AT FOLLOWING RATES -1 CBSUP = 0.08TL 1 CARD READ = 0.10TL 1 CARD PUNCHED = 0.60TL 1 PAGE PRINTED = 4.00 TL1 TAPE I/O MINUTE 1 DISK I/O MINUTE = 6.00TL = 6.00TL 1 TERMINAL MINUTE = 5.00TL IMAGES READ: 160 PAGES: 8 START: 14:33:00 JUL 14,1981 FIN: 14:34:34 JUL 14,1981

ſ

(

(

C

100