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A B S T R:A C T 

This study deals with multiobjective linear and integer linear programming. 

An algorithm for .generating all efficient· extreme points of multiobjective 

linear programs, or a subset of them corresponding to a decision maker . 
specified space of objective weights, is given. The algorithm utilizes, 

with some modifications, earlier results given by various authors.· 

An original algorithm for bicriterion linear programs which requires only 

a series of divisions and comparisons for determination of adjacent effi

cient extreme points is also presented. 

The developed algorithms are used in an application in power systems 

planning where efficient decision alternatives are generated to be pres

ented to the decision makers. -

A branch and bound algorithm which is-based on extension of implicit 

enumeration techniques to multiobjective zero-one linear programming and 

which appears to be computationally quite efficient is also developed. 
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l5ZET 

3u 9a1i§ma ~ok ama91~ dogrusa1 ve tamsay~l~ dogru~a1 program1ama konu1ar~ 

ile i1gi1idir. 

t1k olarak, ~ok ama~l~ dogrusa1 program1ama prob1em1eri i~in biitiin bask~n 

~9 nokta1ar~, ya da karar vericitaraf~ndan be1ir1enen bir ama9 i§levi ag~r-
-

I~klar~ uzay~na kar§i ge1en bask~n u~ nokta1ar a1tkiimesini saptayan bir a1-

goritma veri1mi§tir. Bu a1goritma ~e§it1i ara§t~r~c~lar taraf~ndan evve1ce 

veri1mi§ sonu~lar~n sentezine ve baz~ yeni gozlemlere dayanmaktad~r. 

Bu ~a1i§mada ayr~ca iki amaq1~ dogrusa1 program1ama prob1em1erine yo~e1ik ve 

kom§u bask~n u~ nokta1ar~n bu1unmas~ i~in ya1n~zca bir dizi bo1me ve kar§~

la§t~rma gerektiren yeni bir algoritma ge1i§tiri1mi§tir. 

Ge1i§tiri!en a1goritma1ar, enerji sistem1eri p1an1amas~a1an~nda yap~lan 

bir uygu1amada, 'kararverici1ereyard~m~~ olacak §eki1d~ etkin karar se~e

nek1eri olu§turmak.amac~y1a ku11an~lm~§t~r. 

90k ama~l~ 0-1 dogrusaJ program1ama prob1emleri i~in ise, gereken hesap1ama 

siiresi a~~s~ndan olduk~a etkin goriinen bir dal1and~r~p-s~n~r1ama a1goritmas~ 

ge1i§tiri1mi§tir. 
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INTRODUCTION 

In the decision making environment, tradition requires the adoption of a 

single objective function, although the multiplicity of objectives in many 

situations can readily be recognized. In some cases this is justifiable 

because the various objective's c,an be subsumed under one general objective. 

However, in most real-life systems the several conflicting criteria entering 

into the evaluation of system performance cannot be combined satisfactorily 

to give-a single performance measure.! In complex industrial and economic 

problems, a general agreement on the constituents of good criteria for 

evaluating the performance of the system under consideration is difficult 

to attain. For such problems multiobjective analysis, which makes the 

possible trade-offs between the objectives explicit, could be of great help 

in arriving at the "preferred" solution. 

The term "preferred"is used here because, in multiobjective optimization 

problems, generally,the set of all feasible solutions is only partially 

ordered with ~espect to the objectives and hence a single optimal solution 

cannot be found. Rather a set of efficient (~on-inferior, Pareto-optimal) 

solutions, that is, a set of solutions for which no other solution exists 

which is better than the members of this set with respect to all the 

objectives, are gene'rated. Only thro,ugh the introduction of value judgements 

of the decision maker a complete ordering which is characteristic of single 

objective optimization problems can be achieved and a best solution can be 

identified. 

Consideration of several different criteria 1n an optimization process has 

its origin 'in eco~omics, particularly in the development of utility theory. 

The problem of the formation of 'a single optimality criterion which takes 

into account' all the conflicting elementary criteria was first considered 

by Pareto [44] in bis definition of'maximum ophelimity .or maximum utility! 

I 



"We will say that the members of a collectivity '_enjoy maximum ophelimity 

in a certain position when it is impossible to find a way of moving from 

that position very slightly' in such a manner that the ophelimity enjoyed 

by each of the individuals of that collectivity increases or decreases. 

That is to say, any small displacement in departing from that position 

necessarily has the effect of ,increasing the ophelimity which· certain 

individuals enjoy and decreasing that which others enjoy, of being agreeable 

tO'some and disagre;able to others". 

However Pareto himself had some difficulti~s in stating his definition of 

maximum ophelimity. One criticism has been that if the attained utility 

benefits cannot be decreased , then one could just as well speak of a 

minimum ophelimity. Also it should be noted that Pareto gave only what now 

could be the definition of local Pareto-:-optimality. 

The concept of Pareto-optimality found·its way into operations research 

through the work of Koopmans [39] on the activity analysis of production 

and allocation. Let_ Yn ' n=l, •• ~ ,N denote ~he total net output of the nth 

commodity; letxk, k=l, ... ,K denote the selededamount or level of the kth 

activity where xk ~ 0; and let ank denote the rate of flow per unit time 

of commodity n involved in the unit amount of activity k. One then has: 

y = Ax, with ~:] 
where A is called the ',technology matrix. Among the commodities y , some 

n 
are primary factor~, some final commodities, and some are intermediate 

- commodi ties. A point y in the commodity spacel.S "possible" in a technology 

A if there exists a point x~O in the activity space with y=Ax. 

Koopmans then states: 

,IIA possible point l.n the commodity space is called efficient whenever an 

increase in one of its coordinates (the net output of one good) can be achieved 

only at the cost of a decrease in some other coordinate". 

2 



Let (A) denote the possible point set, a convex polyhedral con~ spanned by 

the technology matrix A. Then, Koopmans states the following theorem: 

THED.R:Eti..1. A necessary and sufficient condition that a possible point ye:(A) 

be efficient is thaty possess a positive normal p to (A) defined by 

T... 0 py= p>O • 
1 

Koopmans interprets the vector p as a vector of prices of the commodities 

in the point y, and then states that a necessary and sufficient condition 

for y to be efficient is that there exists a vector p of prices such that 

no activity in the technology permits a positive profii: and such that the 

profit on all activities carried out at a positive level be zero. 

A'discussion of KooPrnans' paper along with a numerical a1goritlnn for the 

computation of efficient act.ivi ties bas-ed on parameterization over the 

prices was presented by Cfiarnes' and CoopeF [9]. 

A more general approach, the vector maximization problem of mathematical 
I 

progrannning, wa's given by' Kuhn and Tucker [40.]. They defined the vector 

maximum problem as: 

DEfINITION 1. The vector-maxi~ proh1em is to ;find an "X that maximizes 
-, . , .. "- 0 

the vector functionG(x) 'const'rained Ey 'F("*)~O,x~O ;_ that is, to find an 

x satisfying the constraints and sucli_ that G(:X)::G(x~) for no x o 
satisfying the constraints. 

1 
Here, and throughout the text tlie notation used is as follows: 

I 

For x,y Rn 

x > y iff x. ~ y. Vi_d=={1, ••• , n}; = l. l. 

X > Y iff x > y and x ~ y 

x == y iff x'" == y'" ViEI 
l. l. 

x > y iff ~. > y'. , ViEI 
l. 



The authors then restricted Jhemselves to the~so-called proper solutions 

based o~ the usual Kuhn-Tucker constraint qualifications, and gave the 

following theorems. 

THEOREM 2. In order that x be a proper solution of the vector maximum problem, 
o 

it is necessary that there be some V >0 such that x and some u satisfy o 0 0 

conditions (a) and (b) for 

L(x,u) 
T G(x) + u F(x) 

wberecondi tions (a) and (0) are the necessary conditions for L(x, u) to 

have a saddle point at (x ,u ). 
o 0 

(a) LO 
< 0 LoT - 0 0, x = x ~ x= x 0 0 

(0) LO 
~ 0 LoT u = o· u ~ o. u u 0 '0 

Here L 
0 

and L 0 denote the partial derivatives evalu, ated at the particular x u 
point (x , u ). 

o 0 

'THEOREM 3. In order that x be a proper solution of the vector maximum 
o 

problem, it is sufficient that there lie some v >0 such that x and some u 
000 

satisfy the above conditions (a) and (li) and condition (c) for 

L(x,u) vT G(x) + uT F(x) o 

where condition (c) is given by 

(c) oT L(x,u ) & L(x ,u ) + L (x-x) 
000 x 0 

. ·.THEORE~ 4. Let FC.) and Ge.) be concave as well as differentiable for x~o. 

Then, x is' a proper solution of the vector maximum problem if and only o . 
if there is- some v >0 such tnatx and some u g~ve a solution of the 

o 0 o. 
saddle-point problem for 

T T 
L(x,u) = V G(x) + u F(x) o 

4 



Although Kuhn and Tucker-introduced the vector maximum problem as early as 

1951, mu1tiobjective an~lysis did not gain immediate popularity. A different 

approach to mu1tiobjectiveproblems, goal programming, was described by 

Charnes and Cooper [10] about a decade later. The meth~d is based on 

minimization of weighted absolute deviations from target~ for each objective 

specified by the decision maker. 

Along with increased proficiency in optimization techniques the vector 

maximum problem was again approached by various researchers from the general 

vi~wpoint of Kuhn and Tucker. Zadeh [60] suggested that if the objective 

function space is convex, the set of all efficient solutions can be found 

by solving a parametric scalar optimization problem, as implied by the 

Kuhn-Tucker conditions: 

max vT G(x) v>O 
xe:X 

where X ~s the feasible region. 

Equivalence of the vector optimization problein to a parametric sca1ar':/"'

optimization problem was also investigated by Da Cunha and Polak [15] and 

Geoffrion [28]. 'An algorithm for maximiz.ing tw~ obj ecti ve functions via 

parametric linear programming was given-by Geoffrion [27]. 

Another implication of.Kuhn-Tucker conditions is that one of the objectives 

can be taken as the primar.y one, and the others can be treated as constraints. 

In the constraint method developed by Haimes [32] the following problem is 

solved: 

max 
xe:X 

s.t 

g ex) 
r 

vk, k=+r 

where Lk is a parametric lower bound on objective k. Haimes states that 

any solution to the above problem where the mUltipliers related to the 

objectives appearing as constraints are all nonzero .is an efficient solution. 

An advantage of the above constraint method over weighting objectives or 



:he parametric sca1arization method is that, even in the existence of a 

lua1ity gap, all efficient solutions can be gen~rated: whereas in such cases 

)arametric sca1arization fails to generate all efficient solutions. 

[n the last 15 years, the field of mu1tiobjective optimization has been 

:ontinua11y developing. Several different approaches which have been considered 

are categorized as follows by Cohon and Marks [13]. 

i) A priori articulation of preferences and generating a single 

relevant solution. 

ii) Generating efficient solutions and then selecting the preferred 

solution from among these, by subjective evaluation. 

iii) Progressive art~culation of preferences and arriving at the 

preferred solution in an interactive manner. 

Each of these approaches has its advantages and disadvantages. The first 

approach requires the least computational effort in that it generates the 

pref erred solution direct ly. But it places considerable burden on th~e 

decision maker by forcing him to articulate his preferences 1n an information 

void. The formation of the decision maker's preferences and his valuation 

. system depends on th~ realizable levels of achievement of the objectives 

and can neither be expected to be complete nor definite at the start of th~ 
decision process. In the .second approach, which is at the other extreme,the 

decision maker 1.s presented with complete information on the possible levels 

of achievement and the available trade-offs between the objectives. However, 

this information may prove to be "too much". Usually a large ~umber of , . 

'. 

efficient solutions are generated which are difficult to display and which 

could inhibit the ability of the decision maker to perform the final selection 

process. Also' the computational effort associated with generating a large 

number of efficient solutions may be prohibitive. The last appr,oach tries 

to make a compromise by embedding the decision maker within' the solution 

process so' that his implicit valuatfon system directs the process. BVt then 

th~ solutions depend on the accuracy of the local preference that the decision 

maker can indicate and on his complete consistency. Generally, there is no 

guarantee that the preferred solution can be obtained within a finite number 



of interactive cycles. Also a continuing coopeFation between the analyst 

and the decision maker is required. This may be difficult to achieve since 

several decision makers may be involved and they may not be accessibl~ at 

all times. 

These considerations indicate that in any application, problem specific as 

well as decision maker specific aspects will determine the structure of the . 
best suited approach. 

Numerous examples of each of these approaches can be found in the literature. 

Investigation of the functional relationship between the efficient set and 

the weighting vector was carried out by Reid and Vemuri [49], and Reid and

Citron [50]. Beeson and Meisel [4] "presented a computational algorithm for 

obtaining a characteristic set of efficient solutions fmr nonlinear problems 

through an adaptive search procedure. 'Lin [42] suggested the method of 

proper equality constraints, where all but one of the objectives are converted 

into equality constraints and conditions for identifying the proper equality 

constraints are developed. Payne et aP[46] gave an algorithm for bicriteria 

optimization based On treating one of the objectives as a constraint and 

indicated an extension to the case of three objectives., The goal attainment 

method proposed byX Geinbicki and Haimes [25] is quite similar to goal 

programming. Specialized techniques for multiobjective linear programming 

based on the simplex method have been d"eveloped by Yu and Zeleny [59], Evans 

and Steuer [18], Isermann [34], and Ecker and Kou~da [16]. 

Various interactive techniques utilizing preference information of the 

decision maker have been proposed. The Electre method developed by Roy [52] 

is mostly concerned with building outranking (preference) relationships 

from value jUdgements supplied by the decision maker. In the surrogate 

worth trade-off method presented by Haimes and Hall [33], trade-off funct~ons 

between a primary objective and each of the other objectives are developed 

and through the use of surrogate worth functions the preferred solution 

within the indifference region of the decision maker is chosen. A variety 

of interactive techniques which are iterative in nature have been developed. 

In these approaches an efficient 'solution is generated, the decision maker's 

reactions to this solution are tested, the problem is modified accordingly, 

and the process is repeated until the decision maker is satisfied or some 



other temnination cri teiion is effective. The step method or STEM proposed 

by Benayoun et al [6), the algoritlun of Belenson and Kapur ,[ 5l , and the 

. method of Zionts and Wallenius (62) are examples of such approaches. 

In recent years research in mul tiobj ecd.ve integer prograrmning problems has 

also been carried out. Shapiro [53) suggests use of integer programming 

duality theory. Bowman [8 ]has proposed a generalized Tchebycheff norm to 

parametrically generate all efficient solutions. Zionts [63) has worked on 
, 

extending the Zionts-Wallenius method to integer problems. Bitran [7)' has 

proposed a method for multiobjective zero-one integer programming problems 
<l 

based on determining the efficient solutions for the unconstrained problem 

and the directions of preference along which all objectives can "be increased. 

Klein and Hannan [38) have ,worked on an implicit enumeration based algoritlun 

for multiobjective zero-one pxoblems consisting of solving a sequence of 

continually more constrained singleobj ective function problems. 

Apart from theoretical results and algorithms, several applications have 

also been reported in the literature •. Those include a study by Cohon and 

Marks [12) on a water resource development and allocation problem, another 

study by Geoffrion et al[29) in applying an interactive approach to the 

operation of an academic department, an application to forest management 

by Steuer and Schuler [56), a study on formulating macroeconomic policy 

decisions iIi Finland by Wallenius et a1 [58), and a study~in energy planning 

by Zionts and Deshpande [64). Macroeconomic p~licy problems and public 

investment problems such as design 6f water resource systems and urban 

transportati~n systems which are inherently multiobjectivein nature are 

potential areas for other applications. 

Still, there is conti"nuing need and effort. for increasing the computational 

efficiency associated with multiobjective optimization, problems". Increased 

computational efficiency will increase the applicability of multiobjective 

analysis. 

The growing interest in multiobjective optimization and the significant 

advances in this relatively new field, discussed above have provided the 

motivation for this dissertation. After a detailed consideration of the 

8 



state o~ the art, certain ~pecif;ic p~obleIl)shaye been focused on. Through 

modificatiQnl:!. and deye19PIl)en~. 9f. ~:ynthe~e~, f?9l1}e C9Il)Puta.tionall:y efficient 

algorithms have been devised. 

The text of this study is presented in three parts. In part one 

multiobjective linear programming and the specialca~e of bicriterion 

linear programming are considered and new algorithms for generating either 

all or a relevant sub"set of efficient extreme points are given. In part 

two applications in power systems planning are presented. Part three is on 

multiobj~ctive i~teger linea~ programming and ~n algorithm for multiobjective 

zero-one linear programming problems is developed. 



PART ONE: ~1ULTIOBJECTIVE LHIEP.R PROGRAMMItlG 

The multiobjective linear programming (MOLP) problem is formulated as 

max 
xe:X 

where G is a pxn matrix whose rows Gi,i=l, ••• ,p represent the different 

obj ective functions, A is an rnxn matrix and x .and b are nand m vectors 

respectively as in a standard linear programming problem; and maximization 

refers to determination of efficient solutions. This problem is alternatively 

termed the linear vector maximization problem in the literature. 

1.1. LITERATURE SURVEY ON MULTIOBJECTIVE LINEAR PROGRAMMING 

Several approaches to the MOLP problem have been given by various authors. 

Some concentrate on generating all efficient extreme points [16], [18], 

[19]; others also consider generating all efficient solutions which consist 

of the faces of the ,convex polyhedron X [17], [22]; [34], [61]. Some others 

present only a sub$et .of efficient extreme points to the decision maker 

[43], [54],. [55], [57]. Several interactive approache's have been designed 

aiming at generating directly the efficient point which is the decision 

maker's preferred solution [5], [6], [62]. Some autho~s have considered 

the special case of bicriterion linear p~ogramming and given specialized 

algorithms [2].,. [14], [27]. Here, previous results in these areas will be 

reviewed. 

First, let us introduce some notation cornmon for linear problems. Suppose X
o 

is a basic feasible solution with associated basis B. By renumbering 

variables as neces sary, and partitioning A and G wehav.e 

-1 -1 
x B = B b - B N~ Y=B .... ~ 



where the subscript B denotes basic and subscript N denotes nonbasic, C is 

the current reduced'cost matrix and Y is the'current constraint coefficient 

matrix. Furthermore, let C. (Y.) -denote the ith row and Ck '(yk ) denote the 1. 1. 
k th column of C (Y). Also, e will denote a vector of suitable length with 

each component equal to one and the transpose of a matrix or vector is 

denoted by':the superscript T. In the following, it is assumed that the 

convex polyhedron X forming the feasible reg1.9n is bounded. 

1.1.1. GENERATING APPROACHES 

Generating approaches to the MOLP problem are based on several considerations 

from the computational theory of linear programming. The pivot selection 

rules in linear programming are designed to produce sequences of basic 

feasible solutions. Every vertex of X may be described in terms of at least 

one basic. feasible solution so that enumerating basic feasible solutions 

allows one to enumerate vertices of X. Detection of those vertices of X 

which are efficient is accomplished by various efficiency checks which take 

the form of linear programming subproblems. Through further refinements and 

computations detec~ion of efficient faces of X can be accomplished. Here 

a comparative and critical review of the results given by various authors 

will be prese~ted. 

Philip [48] considered the linear vector maximization problem and gave the 

following result for checking the efficiency of an arbitrary feasible point. 

THEOREM 1.1. A point xO'is 

i £1 and A. >a'. >0 such that 
J= J 

efficient if·and only if there exists }.I.>O , 1.= 

}.I.A. = r L G. 
1.1. J J' 

J 

Here I is the index set of active.constraints at xO, including the 

nonnegativity constraints. This theorem corresponds to' the Kuhn-Tucker 

theorem for the general case where linearity is not assumed. Based on this 

theorem, -the following subproblem is to be used for :determining whether 

a given point X
O is efficient: 

11 



T + eTt m1n z = e s 

s~t. Gv-A u + s t = -Ge I 

v~O u~O s:i;,.O t>O = 

Here AI is "the matrix formed by the set of active constraints at xO. And 

choosing a .= 1 tV j, the transformation ).=v+ e has been made. Then, the point 
J 

X
O is efficient i'f and only if . z . =0 in this subproblem. m1n 

Alternatively, Philip stated that Theorem 1.1. implies that X
O is an 

efficient extreme point if and only if there exis·ts ).> 0 such that ).TC~O 

where C is the reduced cost matrix as defined previously. This condition 
" I 

is equivalent to requiring z . = 0 m1n 1n the following subproblem, where z 

gives. the sum of artificial variables. 

m1n z = eTt 

CTv s + T s.t. - t = -C e 

v~O t~O , s>O 

Philip mentioned that once at an efficient point xO, the artificial , 

variables tk are equal to zero and the variables sk are the reduced costs 

for the objective function (v+e)TG x. Consequently he stated that if some 

sk=O, the corresponding x~ could be made basic in the main problem and 

another efficient point could be obtained. He suggested solving this 

subproblem: 

m1n sk 

s. t. 
T T 

-C v + s = C e 

u > 0, s ~ 0 

If the minimum value of sk is zero, then another efficient point 1S obtained 

by makingxk basic. 

Thus, some basic results concerning the efficiency of a given point X
O and 

indications on how to obtain other efficient extreme points once an efficient 

extreme point is found were given by Philip. 
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~eleny [61] considered the MOLP problem in detail and gave two different 

approaches. In the first; he adapted the decomposition of parametric space 

approach originally developed by Gal and Nedoma [23] for multiparametric 

linear programming to a multiobjective linear programming context. Considering 

the multiparametric linear program 

max 
xe:x 

,T 
A Gx, 

the decomposition of. the parametric space A means. identification of a finite 

number of polyhedra A(xk) to be associated with the different extreme points 
k .... U [A( k\f'"lA . A( k). . x of the problem ~n quest~on so that x )I' ] =A. Here' x ~s g~ven 

by A(xk)={A\At(k»O}, where C(k) is the ~educed cost matrix corresponding 

to the solution xk. Defining A={A \ A .~O, E A .~l} Zel:eny· [61] sta~es that' . ~- i ~ 

the set of efficient points can be found by' solving PA for all Ae:A. He gives 

the following results, considering a nondegenerate problem. 

THEOREM 1.2. Maximization of PA for all Ae:A produces a finite cover~ng of A. 

THEOREM 1.3. The set of efficient extreme points is a "connected" set. 

i. e. it is possible to reach any efficient extreme point from any other 

efficient extreme point by passing thro~gh only efficient extreme points. 

These two theorems insure that the decomposition is finite and connected. 

Starting at an efficient point xO
, the goal is to construct all polyhedra 

adjacent to A(xo) which do not have an empty intersection with A. Such 

polyhedra A(x~) correspond to nondominatedor efficient solutions. When 

~[A(xi)nA]=A decomposition ~s complete. The following theorem checks 
1. . 

adjacent polyhedra. 

THEOREM 1.4. Let xO be an efficient basic feasible solution. Let 

1\ ={A \ A't:k~O}. If Hf A(xo)nlnt Afcp th~nvintroducing xk into the basis leads 

to an efficient basic feasible solution. 

That is, iptroducing nonbasic variables x
k

' corresponding to nonredundant 

constraints of A(x ), into the basis leads to efficient solutions. A 
" 0 

constraint is called nonredundant if and only if there exists a vector A 



such that the constraint holds as an equality. However, this is stated only 

as a sufficient but not necessary condition. 

Ze~eny enumerates a number of difficulties associated with this approach. 

Introducing into the basis rlonbasic variables corresponding to redundant 

constraints does not necessarily lead to dominated solutions~ In case of 

degeneracy, the one-to-one correspondence between-an extreme-point xJ and 

A (xj ) ca~ b-e destroyed, which implies that although all efficient extreme 

- points have already been discovered A may no~ be fully decomposed. Also, 

iri- case o( al ternative sol~tions fCilr which A (xi)=A (xj ) although A has been 

fully decomposed, all efficient extreme points may not have been enumera1:ed. 

Also, Zeleny stated that efficient procedures for identifying nonredundant 

constraints were not available. Because of these difficulties, the decomposi

tion approach was considered inefficient and disf~vored-by Zeleny. Instead, 

he developed an alternative approach, which he called the multicriteria 

simplex method. This second approach is based on the following theorem., 

THEOREM I ~ 5 • - . efficient solution if and only if =0 the x ~s an z ~n max 
following LP problem 

T max z = e s 

xe:X 
X =. {(x, s) I xe:X Gx-'s>Gx. , s~O } 

, 
This theorem actually follows from t;he definition of the efficient solution. 

Assuming we are at an efficient extreme solution, to check the efficiency 

of an adja~ent extreme point x j the above LP problem is solved with x=xJ. 

This is rep.eated for an adjacent extreme points and those which are 

efficient are identified. Proceeding in this fashion all efficient extreme 

points will be identified since they form a connected set. 

All convex combinations of efficient extreme points are not necessarily 

-efficient. Thus, the set of all efficient points is not simply defined by 

the set of efficient extreme points. However, the set of all efficient 

points can be given as the-union of efficient faces .of the polyhedron X 

forming the feasible region. 
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Yu and Zeleny [59J consider a face of X defined· as F(I)={x£X!A.x=b. 
~ ~ 

where T£{l, ••• ,m, ••• m+n} and the nonnegativity constraints have been 

incorporated into the matrix A. They focus on those faces F(I) for which I 

is maximal and systematically consider faces of decreasing dimension. They 

remark that the verification procedure to check all possible faces may be 

a prohibitive-job and they develop -some results that reduce the number of 

faces to be considered. To initiate their-procedure, they construct the 

incidence matrix between the set of all efficient extreme points and the 

set of all (n-l) dimensional faces. Using information from this incidence 

matrix and from the solutions of certain linear systems, the set of maximal 

efficient faces of dimension n-l, if any, is determined. The procedure 

continues by considering faces of'dimension n-2 and lower at each step. 

At any step, the fape having the greatest number of incident efficient 

vertices is processed first. ~he system of linear equations 
p 

oL I A.G. = .rI u.A., where I denotes the index set of active constraints; 
~= ~ ~ ~£ ~ ~ . 

L ~. examined for a nontrivial solution wher~ Ai>O, i=l, ••• ,Po If there is 

such a solution, the face considered is efficient, i.e. all points on the 

convex hull of its incident efficient vertices are efficient. Then, 'the 

column corresponding to that face is eliminated from the incidence .matrix. 

Furthermore, any face whose incident efficient vertices is a subset of the 

incident efficient vertices of the newly found face is disregarded as it is 

not maximal, and the corresponding column is also eliminated. At some step, 

the incidence matrix,will become va~uous, i.e. no more columns will remain 

and the procedure stops,_ with all efficient faces being determined. 

Evans and Steuer [18] gave:a revised simplex algori tlun for the enumeration 

of the set of all efficient extreme points. They gave the following 

conditions for checking the efficiency of given solutions. 

THEOREM 1. 6. A point xOe:X ~s efficient if and only if there ~_s a A>O such 

that X
O is optimal for P

A 

max 
xe:X 
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THEOREM 1.7. A basic feasible solution X
O is efficient if and only if 

the~e doesn't exist u~O such that 

where Q = {ilx~. = O} • 
1 

Cu~O Y. u ~ 0 
1 

Intuitively, if Cu < 0 for some u~O, then by raising some combination of 

nonbasic variables to a positive level, we can increase the values of all 

objectives. The condition Y.u<O, iEQ is introduced to be able to detect 
1 - . 

the efficiency of a degenerate basic feasible solution. Even if Cu~O for 

some u~O, if Yiu<O is not satisfied, the basic feasible solution 1S still 

efficient. 

, 
In checking the effici~ncy of an extreme point adjacent to a given efficient 

extreme point the following result is to be used for nondegenerate problems. 

THEOREM 1.8. Let X
O be an efficient extreme point an~ let x. be a nonbasic 

J 
variable in the basic feasible solution ~ssociated·with xo. Then, the adjacent 

extreme point with x. a basic variable is efficient if and only if the 
~ J 

following problem 1S consistent and bounded. 

T max e s 

s.t. Cu - cjw+s=O 

u~O, s~O, w scalar 

where CJ 1S the column of C corresponding to x •• 
J 

However as later shown by Ecker and Kouada [16], the condition g1ven by 

the theorem is not necessary for the efficiency of an adjacent vertex, 

though it is necessary for the efficiency of the edge connecting the two 

adjacent vertices. In general, two extreme·points of X may be efficient 

and. yet the edge connecting these two extreme points may not be efficient, 

as illustrated by the example in [16]. 

Evans and Steuer stated that degeneracy. presents special problems because 

then the number of extreme points adjacent to a given extreme point exceeds 

the number of nonbasic variables. In these circ~mstances" they suggested 
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employing special procedures to insure examination of each adjacent extreme 

point. In another paper [1~, they described ~wo methods that explicitly 

deal with.degeneracy. The first method employs an algorithm of Chernikova 

[11] for generating all edges emanating from a given efficient extreme 

point X
O which is degenerate. Thus, it is insured that all adjacent extreme 

points are c1~ecked. Each of the edges generated by the Chernikova procedure 

Yields a direction u to be tested for efficiency by the condition given in 

the following theorem. 

THEOREM 1.9. Let X
o be an efficient extreme point and let u be a feasible 

direction at xo. Then u is an efficient direction at X
o if and only if 

there doesn't exist a feasible direction u such that Cu2Cu. 

The second method is called the adjacent efficient basis procedure. Here 

a basis is defined to be an efficient basis if and only if z =0 in the LP max 

T max z=e s 

s. t. Cu + s = ,0 

u>O s>O •. 

Here z =0 if and only if there doesn't exist u such that Cu2u. The authors max . 
then state that the set of efficient bases is connected and give a slightly 

different version of the subproblem of Theorem t.8. for identifying adjacent 

efficient bases. 

THEOREM 1.10. Assume we,are at an efficient bas~s. Then an adjacent basis 

obtained by making nonbasic variable x. basic is an efficient basis if and 
J 

only if z =0 ~n the LP 
m.ax 

T max . z = e s 

s.t. Cu-CJw+s = 0 

u>O, s>O, w~O, w scalar 

Another result is that each efficient extreme point has at least one 

efficient basis associated with it. Thus, the procedure terminates when 

all efficient bases are located. 

The "efficient basis" concept of Evans 'and Steuer ~s also used by 

17 



Isermann [34], however with a different terminology. A basic solution is 

said to be "dual feasible" if and only if tnere doesn't exist u~O such 

that Cu~O. Then, by Gale's theorem of the alternative, the system A TC::O, 

A>O has a solution A; and hence the term dual feasible. Theorem 1.6. implies 

that in case of degeneracy at least one of the degenerate efficient basic 

solutions, which represent an extreme point of X in common, is dual feasible. 

Thus determination of all dual feasible basic solutions is adequate for 

determining all efficient extreme points. 

Let N={jlcJ~O} denote the index set of potential pivot columns at a given 

dua~ feasible solution. Those j ¢N are not considered since their 

introduction into basis leads to basic solutions which are not dual feasible. 

d f · d d 1 f . bl 1· 1 d 2 d· . f d Isermann e 1.ne two ua eas1. e so ut1.ons x an x· as a J acent 1. an 

only if they are obtained from one another by a single pivot and each 
- 1 2 x=ax +(l-a)x ,O<a~l 1.S efficient. Then he gave the following theorem 

for identificatior{of adjacent dual feasible basic solutions. 

THEOREM 1.11. Let Xo be a dual feasible basic solution and let P be 

a nonempty subset of N. Consider the LP 

Then 

T 
max e s 

s.t. Cu+s e' 

S > 0 = 

u.> 0 
_1.= 

ViEN-P. 

i) If the LP has an optimal solution, then to each rEP there 

corresponds a dual feasible basic solution which is adjacent to xo. 

ii) Let xl be an adjacent dual feasible basic solution obtained by 

introducing x into basis. Then there exists some pC N With rEP . r 

such that the LP has an optimal solution. 

Next, the following theorem 1.S g1.ven. 

THEOREM 1.12. Let E={xilxi is a dual feasible basic solution}, L={(xi,xj)lxi 

and xJ are adjacent dual feasible basic solutions}.The undirected graph 

G=(E,L) is finite and connected. 
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Thus, this connectedness property and the LP subproblem given 1n Theorem 

r.ll form the basis for the solution procedure consisting of enumeration 

of all dual feasible basic solutions. Further work is needed if the set of 

all efficient points is to be generated. Referring to The~rem 1.11., all 

maximal index sets P have to be identified at each dual feasible basis,by 

·successive1y adju!ting the sign restrictions on the variables u. and checking 
1 • 

all possible combinations of indices. However, when a maximal index set p1 

has been. found, all index combinations· forming a subset of pi can be deleted 

from further consideration, thus rieducing the number of combinations to be 

checked. At the end of the procedure for enumerating all .dua1 feasible 

'bases, j, all associated maximal index sets Bjk will then be available. 

Next the ind~x sets Qjk=pj~ u n j , where n j is the index set of basic 

variables for dual feasible basis j, are constructed. In this procedure the 

same index ~et QJk may be constructed several times and subsets of some 

index. set QJk may have been constructed as well. All such subsets and 

duplications .are eliminated so that finally one has r indeX sets UJ • Now, 

to each index setUJ there corresponds,a face of X.Specifica11y, let 

Ij={ilnicuj}~ that is let r j denote the set of efficient extreme points 

whose basic variable index sets are' subsets of uj, and iet sj be given by 

Then all points x£SJ 

1 
a. x 

1 
, 

" are efficient and the set of all efficient solutions 

has been decomposed :bnto r convex subsets~ 

Gal [22] gave a method for determining the set of all ·efficient solutions. 

based on his earlier works [21], [23] on mu1tiparametric linear programm1ng. 

A set of vectors A1~O are associated with each efficient vertex and later 

by inspection of these sets higher dimensional efficient faces are 

determi~ed. 

The nondegenerate case is'considered first. Similar to that done by 

Isermann, two efficient vertices xi and x j are defined to be efficient 

ne~ghbors if and only if they are adjacent and all x=axi +(l-a)xj , O~a<l, 
are efficient, i.e. the edge connecting the two vertices is efficient. 

Then Gal states that the linear vector maximum problem genera~es a connected 
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t 
undirected graph G(T,f) where the node set T consists of efficient basic 

solutions and an arc exists between two nodes if and only if the corresponding 
,-

basic solutions are efficient neighbors. Next he considers the system of 

linear equations L. 
1 

_;.TC(i)+s =0 

~Te = 1 
(L. ) 

1 . 

where C(i) denotes the reduced cost matrix corresponding to vertex xi, and 

s~ates the following theorem. 

THEOREM 1.12. The vertices xi 'and x j are efficient neighbors if and only· if 

there exists nondegeneratebasic solutions to l. and ·L. such that 
1 J 

i J such that both x and x are .solutions of p;. 

for ;'=.;'*>0 • 

Then Gal g1ves the following linear program for,'.determining whether by 

introducing xk into basis an efficient neighbor to xi is found. 

m1n sk 

s.t. 
T . 

-A C(i)+s = 0 
T 

1 'A e. = 

Gal states that if and only .if the :n}iniII)UID value of $.k is zero and ~k is a 

nonbasic variable, then b:y introducing ~ .into ba~i!?. an efi:.icient neighbor 

1S reached. HO\:lever, this is· only true if the corresponding basic solution 

of the subproblem is nondegenerate. 

Wh~le finding all efficient neighbors to a given vertex, all corresponding 

A's are also determined and assigned to both the present vertex and the 
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" 
efficient neighbor. Finally, each efficient vertex x1 will be assigned 

a fini te set of vectors yi=£)., iI, A i2 , ••• A ik} for which it'is optimal. 
- j j+l j+r 

Gal states that efficient vertices x ,x , ••• x are the extreme points 

of an efficient face if and only if there exists A* which is common to 
i 

all Y , 

maX1m1Ze 

i=j, ••• j+r. Therefore, by collecting together those vertices which 

PA for the, same A*, all efficient faces can be identified. 

Gal also discusses briefly the imp,lications of degeneracy in the MOLP 

problem. Jhe implication of degeneracy is the existence of more than one 
~ 

basis corresponding to the same vertex. Then there would exist subgraphs 

of graph G with each basis being a node of exactly one of these subgraphs. 

Gal then states that it should be sufficient to generate only 'one basis 

for each degenerate vertex, and the difficulties enumerated by Zeleny should 

not arise. 

Another approach for enumerating all efficient extreme points is given by 

Ecker and Kouada [16], which is based on checking the efficiency of edges 

incident to an efficient eX,treme point. They define FJ to be the edge of 

X, the convex polyhedron forming the feasible region, incident to an 

·efficient extreme point x O
, obtained by increasing the single nonbasic 

variable Xj apd adjusting the nonbasic variables to maintain feasibility. 

Then; they give the following theorem: 

THEOREM·I.13. Let XO be a nondegenerate' efficient extreme p_oint. Then FJ 

1S efficient if and only if z =0 ,in the following linear program: max 

T 
max z e s • .' 
s.t. . Cu+s = CJ 

u.::,O, s~O 

This linear program 1S similar to that given by Evans and Steuer in Theorem 

1.10. Here the parameter w 1S taken as one and the efficiency check concerns 

the incident edge and not the adjacent extreme point. Then, considering 

the dual of the linear program above, the authors give another result. 

THEOREM 1.14. Let XO be a nondegenerate efficient extreme point. Then Fj 

1S efficient if and only if s. is nonredundant in the set S given by 
J 
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S={(v,s) T T -C v + s = C e , v~O, s>O } = 

where s . 
. J 

(v,S) E S 

is said to be nonredundant in S if and only if there exists a point 

such that 8.=0. The dual program has minimization of s. over the. 
J J 

set S as its obj ective. 

Again, similarity with results of Zeleny and Gal can be observed. Requiring 

s. to b~ nonredund~nt in S is in effect the same as requiring the corresponding J . 
jth constraint of A(xo) to be nonredundant.Ze1eny was able to give constraint 

nonredundancy only as a sufficient condition, because he considered the 

adjacent extr~me point. However, here consider.ation 'of the efficiency of 

the incident edge allows the ,condition to be stated also as a necessary 

condition. Requiring s. to be nonderundant in S is a1so.equiva1en~ to J. .. 

requiring the minimum value of s. to be zero in the linear subprogram g~ven 
.J 

by Gal which is modified by requiring A>O, instead of A~O. As the system 

of inequalities defining the feasible region of ·:the subprogram is homogenous, 

one can require A~e and through the transformation A=v+e, v>O, the feasible 

region may be transformed to correspond to the set S. Then minimum value 

of s. is z~ro if and only if s. is nonredundant ~n S. 
J J 

Considering degeneracy, Ecker and Kouada give the following result: 

THEOREM 1.15. Let XO be ~ degenerate basic feasible solution. Then Fj , 

jEN
ND 

, is efficient> if and only if Sj isnonredundant in the set SD g~ven by 

T T T -v C-y YD ~ e C, v,y,s~O} 

, 
ND . 

where N ={jIY~O} and Y
D 

~s the matrix consisting of the rows, ~, 

for whichxoB.=O; CND is the matrix of columns CJ . for jENND . and s 
• d ~, ND 
~ndexeas the X.s for jEN • 

J 

of Y 

is 

Again, this result is. derived based on a duality re1ationsh~p. The linear 

progr~ of Theorem 1.13 is augmented by the constraints YDu~O and some 

observations .on its dual indicate the above result. One remark due here 
. d" T T T . d' d . ~s that the con ~t~on -v C-y.Y~e C can be cons~ ere as a requ~rement 

that an associated dual feasible basis, using the terminology of Isermann, 

exists. 
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The procedure given for identifying nonredundant variables s. 1S aga1n 
J 

based on minimizing skover the 'set S or Sn • -However, Ecker and Kouada 

note that a minimization problem for each s. is not usually needed. Any s. 
J J 

which is nonbasic, ·or basic with value zero in any basic feasible· solution 

of S or Sn has a value zero and is obviously nonredundant. Also, if one 

can observe that any s. can be made nonbasic through a single pivot, one 
J 

can conclude nonredundancy of that Sj' A simple condition for labe'ling 'a 

variable s. as redundant also exists. Assume a basic feasible solution of 
J 

S or Sn is at hand. Also assume that sk 1S a basic variable (with a positive 

value) in a given equation and that all the coefficients of _the nonbasic 

variables in that row are nonpositive. Then, sk is ob~iously redundant 

because it cannot be decreased belm~ its c~rrent value in any feasible 

solution of S or Sn' Consequently, through the use of these checks, 

nonredundancy or redundancy of some of the s.'s can be determined without 
J 

solving the associated minimization problems. 

Recently, Ecker, Hegner and Kouada [17] gave an algorithm for describing 

the set of all efficient points as the un10n of maxima~ efficient faces. 

The efficient edges and extreme points are found in the manner described 

by Ecker and Kouada. The procedure for finding higher dimensional faces has 

features similar to both Isermann's and Gal's approach. The authors use 

two characterizations of maximal efficient faces simultaneously. Both a 

maximal index set a and a vector A are associated wi th each maximal efficient 

face. 

With each maximal efficient face incident to a g1ven efficient extreme 

point represented by a simplex tableau T, a maximal index set a is associated 

such that the given face is defined by 

f(T,a) = {xEX x.=O if 
J 

where NT is the set of nonbasic variables associated with the tableau T. 

It should be noted that the characterization given by f(T,a) is similar 

to the characterization g1ven by Qi in Isermann's a~proach. In addition, 

a vectorX~is associated with each maximal efficient face such that f(T,a) 

is the set of optimal solutions for P
A 

with A=A~ • Again, it can be observed' 
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that this feature is similar to Gal's approach. Furthermore, a set I~ whose 

elements correspond to the sUbscripts of the~extreme points found to be 

incident to that face is also constructed.· Finally, the entire efficient 

set is described as the union of maximal. efficient faces each of which is 

given as the convex hull of its efficient extreme points, stored by .the 

19. sets·. 

The main difference from Isermann's or Gal's approach is bnat while in 

those approaches determination of maximal efficient faces forms a seperate 

phase of -the algorithm, h~~e efficient extreme points and maximal efficient 

faces are generated simultaneously. The incomplete knowledge of efficient 

faces is ~sed at each iteration·so as to avoid regeneration of maximal 

:efficieht faces found previously. 

In giving their results, the authors assume nondegeneracy and -to handle 
) 

degeneracy, they adopt the lexicograph~c pivot rule. The efficiency of 

faces is checked by means of the following theorem: . 

THEOREM 1.16. The face f(T,F) 1S efficient if and only if G(F)f~ 

where 

s.=o 
J 

if j e:F } 

Furthermore, the face f(T,F) is maximal efficient if and only if F is a 

maximal index' set. 

This condition is related to the dual of the linear programm1ng su~problem 

given by Isermann in Theorem 1.11. Maximal efficient faces are constructed 

. by finding maximal s~ts F for which G(F)+~. And with each such face a vector 

A=v+e 1S associated. These associated vectors A allow one to check 

whether or not any of the previously encountered maximal efficient faces 1S 

incident to the current efficient extreme point. Such faces are recognized 

by using each previously stored vector A in performing the matrix 

mUltiplications ATe, checking if ATe~O,·and if so identifying those sets 

F for which ATek=o, IV ke:F • 

lfuen a pivot 1S made from an efficient extreme point to another adjacent 
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one along an efficient edge, those maximal efficient faces incident to the 

new efficient extreme point which contain that efficient edge are easily 

identified. If Xj is the entering variable and xk is the leaving variable 

associated with that pivot, in any maximal index set containing j, j is 

simply replaced by k. 

At any efficient extreme point, the index set J T of nonbasic variables that 

lead to adjacent efficient extreme points along an efficient edge, an~ such 

efficient extreme ·points are identified first. Then, a subset of J T, K~, is 

formed by eliminating those indices corresponding to edges that are incident 

to previously encountered efficient extreme points. Because if such edges 

belong to a maximal efficient face, that face would have already been 

constructed. Then, only maximal index sets which form a subset of KO are 

searched. This would lead to computational advantages in determining all 

maximal index sets. 

Thus, by incorporating the dete~in~tion o~ maxi~al efficient faces into 

the iIJain body o~Lthe algorithlI) ~nd throu~h seyer~l considerations,computational 

savings are achieved in comparison to other procedures for determining the 

set of all efficient points. But still, the amount of work needed for 

determination of the entire efficient set over that needed for determining 

simply the s~t of efficient extreme points is enormous. Even if fewer 

combinations of indices are checked in determining maximal-. index sets, and 

duplication of effort is avoided, still a lot of computations are needed. 

The determination of maximal index sets 1S itself quite cumbersome • . 
Furthermore, considerable calculations are required to reduce the combinations 

to be checked. 

As an overview, the var10US efficiency checks proposed by several authors 

can be basically divided into two groups: i) Those which are based on 

multipal?ametric LP(Zeleny [61], Gal [22], Ecker and Kouada [16]) ii)Those 

which use an approach.dual to that employed in multiparametric programming 

(yu and Zeleny [59], Evans and Steuer ·[18], [19], Isermann [34].) 

Co~sidering the generation of efficient extreme points, the porcedures 1n 

the second group require solving a linear progranuning subproblem with a 

different feasible region for each adjacent vertex. In the appr()aches of 

the first group, linear progranuning subproblems .defined on~the same :: 

feasible region aIe to be solved for each adjac~rit vertex. Moreover,it may 

.,', 
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not be necessary to solve all of the subproblems if the checks g1ven by 

Ecker and Kouada are carried out. 

Another difference between the various approaches is in the way they handle 

degeneracy, which removes the one-to-one correspondance between bases and 

,extreme points. In some additional conditions are incorporated (Evans and 

Steuer, [18], Ecker and Kouada [16]); in some others, for each efficient 

extreme point only certain bases which fulfill a specific criterion are 

enumerated (Evans and Steuer [19], Isermann[ 34] , Gal [22]). 

A different generating approach, which aims at generation ofa relevant 

subset of efficient extreme points is given by Steuer [54], ["55]. In his 

"interval criterion weights" method [54], Steu~r eXamines the following 

problem " 

T max w Gx 
xe:X 

we:W = {w!JI..<w.<u. , 
1=]; 1, 

p , 
·}:lw.=l} 
1= 1 

With the specification of intervals on parametric objective weights wi' 

the original gradient cone, whose extreme rays are defined by rows of G, 

is reduced to a subset of itself. Consequently, only a subset of efficient 

extreme points will 'be generated. Steuer states that the problem is 

insolvable in its present form and uses the q extreme rays of the reduced 

gradient cone to define new obj,ectives and considers solution of the, 

resultingmultiobj~ctive problem. However, he does not propose a method 

for computing q and the new objectives other than an exhaustive enumeration, 

of all endpoint possibilities allowed for the weights. All possible endp~int 

combinations are enumerated and each combination is used to weight the 

objectives to obtain one new objective. Steuer also observes that q>p , 

where p is the number of original objectives, and rapidly becomes larger 

than p as p increases. 

Steuer also offers a filtering technique to further reduce the list of 

ca,ndidate solutions before presentation to the decision maker [55]. The 

teChnique operates o'n the principle of discarding those generated solutions 

not sufficientiy "dissimilar" from those already retained. In' this way, . . , 

a rela"tively evenly dispersed collection of a reduced set of efficient 
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extreme points can be presented to the decision maker, facilitating his 

final selection process. 

In the next section, examples of interactive approaches to the mu1tiobjective 

linear programming problem, which generate a single "preferred~' solution, 

are discussed. 

I. 1. 2. INTERACTIVE APPROACHES 

These approaches rely on the progressive definition of the decision maker's 

preferences along with the exploration of the objective space. They assume 

that the decision maker 1S able to give preference information on a local 

level with respect to a particular solution. Some methods require explicit 

information regarding the trade-offs between the attainment levels of 

objectives at each step; others require implicit trade-off information by 

asking the decision "maker "to indicate the acceptability of the current 

achievement level. THe Zionts-Wa11enius method [62] is an example of the 
I 

first category, while the STEM method [6] illustrates the second. Here,these 

two methods will be reviewed briefly. 

Zionts-Wa11enius Method: 

Step 1. Choose.a set of positive weights A. and solve the corresponding 
1 

sca1arized linear programm1ng problem. 

Step 2. From the set of- nonbasic variables, N, select the set of efficient 

variables. That is for each nonbasic variable solve '"-the following prob.1em: 

m1n lck 

s. t. lcj 
~O VjEN, j+k 

eTA = 1 

A ~O 

If the minimum value of lck is negative, the variable xk 1S said to be 

efficient, otherwise it is not efficient •. 
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Step 3.F?r each efficient variable xk ' a set of trade-offs are defined by 

the reduced costs Ck , implying increases in some objectives and reductions 

in others. Present these trade-offs to the decision maker and request him. 

to state· whether the trade-offs are desirable, undesirable or neither. If 

all trade-offs are undesirable stop. The current solution is the preferred 

solution. Otherwise, for each desirable response construct an inequality of 

the form 

where 0 is a sUfficiently small positive number. For each undesirable 

response,. construct an inequality of the form 

and for each response of indifference construct an equality of the form 

Step 4. Find a feasible solution to all previously constructed constraints 

plus the 'following constraints 

i:::l, ••• ,:po 

The resulting set of Ai are the new ,yei~hts. Go to step 1. 

The method ~s convergent since at each interactive cycle the possible choice 

of weights A. is restricted and each trade-off which is attractive to the 
~ 

decision maker increases' his implicit utility function value. However, the 

method requires the decision maker to be consistent. Otherwise~ a feasible 

set of weights may not be found in step 4~ The decision maker's implicit 

utility function may not be prec~se initially and earlier responses might 

unnecessarily constrain the outcome of subsequent iterations. 

The STEM Method: 

Step 1. Solve the problem with respect to each objective function separately. 

Construct a payoff matrix Z.where Z .. gives the value of the ith objective 
~J 

function when the jth objective function is at it"s maximum. 
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Step 2. Let I denote the ideal solution where~I.=max 
J XEX 

interactive cycle, find a solution which is 

minimax sens.e to the ideal soiution I, i. e. solve 

min y 

s.t. y > (I. - C.x)w. -= . J J J 
x Ex.m 
Y > 0 = 

, 

c.X. At. the mth 
J 

nearest in the 

j=l, ••• ,p. 

where xm includes Ax~b, x~O plus any constraints added 1n the previous 

cycles. Here w. give the' relative importance of the distances from the 
J . . 

optima and are chosen such that 

where 

w. = Cl. /I: Cl~ 
1 J i 1 

- ....IIl.1n f.-r-. I 
J J (' ) 

iI:(C .• )2 f. 
J i J1 

cx. = 
J 

f~in I. I 
J J ( ) 
f~1n IE (C .. )2 
J' t 1J 

, 

if I.>o 
J 

where f~l1n 
J, 

is the minimum value in the jth column of the payoff table. 

m'. Step 3. The solution x 1S presented to the decision maker. If all objectives 

are satisfactory, ,the compromise solution has been founci,stop. If none of 

the objectives are deemed satisfactory, stop. The model does not provide 

a solution for the decision maker. If some objectives are satisfactory and 

, others are not, the decision maker must relax a satisfactory obj ective f. 
J 

to allow an improvement of the unsatisfactory objectives in the next 

iterative cycle. He is to define 6f. as the amount of acceptable relaxation. 
. . . J 

Th~n for.the next cycle, the feasible reg10n Xm 1S modified as: 



m C.x> C.x 
J = J 

C.x > C.xm 
1. = 1. 

!Jf. 
J 

i=l, ••• ,'p , 

The weight w. is set to zero, and a return to step 2 follows. 
J 

In this method, the decision maker may feel more comfortable in that he is 

only required to indicate satisfactory levels of objectives rather than 

indicating preferred trade-offs. However, convergence is not guaranteed 

and there is the possibility tha~the procedure t.erminates without providing 

a satisfactory solution to the decision maker. 

In addition to, the generating and interactive approaches, some other approaches 

to the multiobjective linear programming problem which are based on prior 

specification of preferences have been used. One basic approach is asking 

the decision maker to specify weights on each objective and solve the 

problem" with 'the resulting weighted objective function. Another approach 

is goal programming, where the decision maker is asked to specify target 

levels for each objective and the sum of weighted absolute deviations from 

these target levels is,minimized. For'successfu1 application of goal 

programming the decision maker should have a clear notion of targets and 

priorities and'if targets are not specified properly, inferior solutions 

could result. 

Upto here, an overview of available approaches to general mu1tiobjective 

linear programming problem have been provided. In the next section the 

special case of bicriterion or two-objective linear programming problem 1.S 

considered. 

1.1.3. APPROACHES TO BICRITERION LINEAR PROGRAMMING 

Bicriterion linear programm1.ng prop1ems have a simpler structure in 

comparison to multiobjective problems with more than two objectives. 

Specialized algorithms exploiting this simplicity of structure have been 

developed ,for these problems. 



Geoffrion [27] suggested use of parametric linear programming. Since the 

degree of parameterizatiQn is ,one, this approach works quite well for 

bicriterion problems. Here the two objective functions zl and z2 are com~ined 

parametrically to give a single objective function Az l+(1-A)z2. Initially, 

the linear program is solved with A=O. If there is a unique solution, it 

is efficient. If there are alternative optima, these are checked to find the 

initial efficient solution. Then,' through sensitivity analysis, the maximum 

value of A for which the present solution still remains optimal is found. 

The nonbasic variable with current 'objective row entry equal to zero at this 

value of A is then selected as the entering variable and thus a new efficient 

extreme point is found. This procedure ~s repeated until A=l 1S reached. 

Zeleny [61, pp.149-158] observed that efficient ext1;'eme points could be 

selected out of the set of feasible extreme points by, identifying a cutting 

hyperplane in the objective space. Let u=Clx and 

l Id' 2 b ff . ~ . 1· et x an x e the e LC1ent max~mum so ut~ons 

v=C2xfor any XEX, and 

of C1x and C2x respectively. 
1 1 . 2 

Also define u1=Cl x ,v1=C2x and u2=Cl x , 2 . v
2
=C2x. Then the cutt~ng 

hyperplane L, is defined as: 

L={(u,v) 
v2-v1 

v - ( ) u = 
u 2-ul 

The cutting hyperplane is depicted graphically ~n: Figure 1.1., where the 

shaded region represents the objective space. 

Figure 1.1. . The Cutting Hyperplane 



Zeleny didnot pursue an algorithm based on the cutting hyperplane iqea 

because of his reservations on its extension to problems with more than 

two o~jectives. However, this idea forms the conceptual basis for::two 

algori~hms operating in the objective space given by Aneja and Nair [2 ] 

and Cohon,·Church and Sheer [14]., The two algorithms are essentially the 

same and' employ a weighted objective function, the weights of which are 

changed.at each iteration. The first two efficient points are found by 

maximizing the two objectives individually. New solutions are found 

iteratively by moving in a direction normal to the line segment connecting 
" 

two previously found efficient, points in the objective space. Two efficient 

points which give consecutive values, recorded up to the current iteration, 

of one of the obj ectives are chosen. Then, the weights of the obj ective 

function are changed so as to correspond to the slope of the line segment 

connecting. these two points. Given two such points rand s, the new 

objective w~ights 1..1 and 1..2 are calculated as A1=lz2(s)-~~(r)1 and 

1..
2

=== I zl(s)-zl (r) I where zi (s) denotes the value of ith objective at point s. 

Then, using thes~ weights 1..1 and A 2 a' new objective function is formed 

and a new linear programming problem is solved in-the next iteration. 

Aneja and Nair state that their algorithm needs exactly 2k-3 such 

iterations, B;fter;thefirsttwo efficient points'are found, if there are 
, 

k (k>2) efficient extreme points. 

, 

1.2. AN ALGORITHM FOR GENERATING ALL OR A RELEVANT 
SUBSET OF EFFICIENT EXTREME POINTS 

Multiobjective linear programming has considerable co~putati~na1 

-require~ents.Even ~eneratin~ only the e~~icient extre~e point$ requires 

a lot of computational effort. As discu$$ed above, going a step further 

and generating all efficient faces involves much more additional compu

tational burden. Furthermore, the difficulty of meaningful presentation of 

the results to the decision maker is augmented. For practical, rea1~life 

problems, the second approach has -quite limited applicability. Consequent1y,

in this study" the main concern was generation of, effi<;ient ~xtreme points 

or a relevant subset of them corresponding to a decision maker specified 

preference region. 



The algorithm presented here is based on a synthesis of the parametric 

approacn, some concepts of Isermann and the interval criterion weights 

concept of Steuer. Dual feasible bases are enumerated by the algorithm; 

hpwever, the 'subprob~em for checking dual feasibility of adj acent basic 

solutions utilizes the parametric approach. The simple tests described by 

Ecker and Kouada [16] are used in the subproblem to increase computational 

efficiency. To avoid duplication of effort, and hence to increase compu

tational efficiency further, the efficiency checks are carried out 

monotonically with respect to one of the objectives; based on the observation 

of a "monotone connectedness" pvoperty. That is, after finding the initial 

efficient point by maximizing that objective, say objective k, at each dual 

feasible basis only those adjacent'bases with nonincreasing values of 

objective k are checked for dual feasibility.' 

1.2.1. OBSERVATIONS ON THE EFFICIENCY CHECK 

Reviewing briefly, the MOLP problem 1S formulated as 

/ 

max Gx 
xtX 

X={xl~b, 

l 

x~O } 

,where the rows of the p xn matrix'G represent the different objective 

functions. For any basic feasible solution xO, there is an associated 

basis B, a reduced cost matrix C and constraint .coefficient matrix Y, as 

defin~d previously. 

Adopting Isermann's terminology, a basis will be called dual feasible if 
. T . 

and only 1f there exists ),>0 such that ). C>O. Furthermore, two adjacent 

dual feasible bases will be termed ).~adjacent if and only if they are 

alternative solutions of ~). for some A>O. Then, the result given below, 

although not stated explicitly in the way chosen here, is implied by 

Isermann [34]. 

THEOREM 1.17. Let x1 be a dual feasible basic solution and C(i) be the 

corresponding reduced cost matrix. Let xJ be the basic solution obtained 

by introducing nonba~ic variable ~ into the basis and C(j) be its reduced 

cost matrix. Then, xJ is a )."-adjacent dual feasible basic solution if and 



only if . (there exists) 3 A>O such that 

and T k 
A C (i) = 0, 

h Ck. 
w ere aga~n (i) is the column of C(i) corresponding to xk • 

Proof: Assume A>O satisfies the above condition. Then the solution 

represented by ~ is an,a1ternative solution to PA for A=A. A1so,we have 

~TC(j)=ATC(i)~O. Thus, xJ is a A-adjacent dual feasible basic solution. 

Let xJ be a A-adjacent dual feasible basic solution. Then, 3"5:>0 
i 1 X and x-' are alternative solutions ofPA for A=A •. Let Yrk>O 

such that 

be the 

p~vot element when ~ is the entering variable and x
t 

is the leaving 

variable. 

h b ' l' ~ h' l' -TCk 0 ' f' d Af For t e as~c so ut~on x , t e ~nequa ~ty A ('» 1S sat1s 1e. ter 

pivoting, the column 

new solution ~, the 

~ • • ;I, k 
C(j) w111 be g1ven, by, -~(i)/Yrk and for this 

inequality _AT 'Ck(.)/Y ,~O is satisfied. The two 
. -T . k 1 rK-. 

inequalities together 1mply AC(i)=O. 

Next, we g1ve a new result as a consequence of which the check for dual 

feasibility can be limited to certain .adjacent bases. 

, 
THEOREM 1.18. Each dual feasible basis, except the one where objective k 

attains its maximum,'has at least one A-adjacent dual feasible basis 

obtained by introducing into basis a nonbasic variable Xs with Cks<O. 

Proof. If the g1ven basis 1S not optimal with respect to objective k,there 

is at least one j such that Ckj<O. And if the basis is dual feasible 3 A>O 

such that 

o. > 0 
J = 

where N 1S the. index set of nonbasic variables. 

~/. 

V, EN 
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6 6. 
Let s max _J = C

ks j ,Ckj <0 Ckj 

and 
, 

let A be given by 

, 0 s A! Vjtk Ak = A - and = L > 0 k C J J ks' 

obviously A'">O. 

Then 

i) 

ii) 

If Ck·>O J= 

If Ck/O 

because as 

A'Tcj=lcj 0 
then - s C -c- k' 

ks J 

A'TCj=lcj 0 
then s Ckj ---Cks 

o o. 
~ > ,_J_ , we have 
C
ks 

=Ckj -

> = CJ .,>. 0 

0 
O. s Ckj 

> 0 = - --
J Cks 

= 

and by introducing x into the basis a A-adjacent dual feasible 
s 

basic solution is obtained. , 

Thus, for each dual feasible basis, there exists at least one A-adjacent 

dual feasible basis where the value of objective k is higher (if x enters 
s 

the basis at a positive leyel) or remains the same (if x enters the basis 
s 

at zero level). The theorem'implies that one can go from any dual ,feasible 

basis to the dual feasible basis which is optimal with respect to objective 

k, by moving through, a sequence of A-adjacent dual feas'ible bases which 

have nondecreasing values of objective k. That is, there is a "monotone 

connectedness" px;operty associated with the set of dual feasible solutions. 

Here, we define monotone connectedness as the existence of a path, ~onsisting 

of efficient edges, along which the value of objective k is nonincreasing, 

and which connects the dual feasible solution which maximizes objective k to 

any dual feasible solu~ion. Then, starting from a dual feasible basic solution 



max~m1z1ng objective k, at each dual feasible basis, one need consider only 

those A-adjacent dual feasible bases which have nonincreasing values of 

objective k. In other words, 'one needs to check only the nonredundancy of 

the constraints j with C
kj

< O. 

Actually, a sense of direction is being incorporated. Each efficient edge 

is identified ~nly once, along the direction of decrease of a chosen objective. 

In compar1son to the previous approaches where the edges (or the efficient 

extreme points along the edges) are identif~ed in both increasing and 

decreasing. directions, the proposed method which avoids duplication of effort 

will lead to considerable computational efficiency. 

1.2.2. DEVELOPMENT OF THE ALGORITHM 

All dual feasible bases and hence all efficient extreme points are enumerated 

by the algorithm. The mechanics of the algorithm is given by the flow 

diagram in Figure 1.2. 

The first step of the algorithm 'is finding the initial dual feasible basis 

which is an optimal-basis for a chosen objective,say objective k. To find 

this basis,-first objective k is maximized. If there is a unique optimal 

solution, that solution is efficient and dual feasible.Dual feasibility 
, '. 

follows from the fact that Ck.>O.' V., and by tak1ng Ak arbitrarily large 
J . J 

ATC> 0 can be achi~ved. If there are alternative optimal solutions, some 

of these maybe·domin?ted. First, -an efficient basic solution is found by 

checking all alternative optima. If the basic solution is nondegenerate; 

it is dual feasible as implied by Theorem 1.6. In case of degeneracy, we 

cannot be'sure of the dual feasibility of the basis at hand. Then, all bases 

representing the efficient extreme point at hand are checked until a dual 

feasible basis. is determined. 

Next, . all nonbasic variables that lead to. "-adj acent dual feasible bases 

with nondecreasing values of objective k are to be identified. That is, 

nonredundant constraints j of the system CTA~O, A>O,which have positive 

entries in the k th cotumn of this system (Ckj>.O) will be identified. 

Because working with the condition A>O is tedious, we make the transformation 



Choose one of these 
arbitrarily and 
move to it. Store 
others· (by the.· 
indices' of their. 
nonbasic variables) 
to be visited 'later. 

Find initial dual feasible basis 
(which maximizes objective k) 

Check all adjacent/bases with 
nonincreasingvalues of objective 

k for dual feasibility. . 

Yes 

Figure L 2. The Mechanics of the Algorithm 

Move to last 
dual feasible 

basis in 
store 

Yes 

A=v+e, v~O, which is valid due to the homogeneity of the system of 

inequalities. The subproblem used for identifying nonredundant constraints

is similar to that used by Ecker and Kouada [16]. Specifically, the following 

linear programming problem for each q£L where 

L={j£P!Ck.>O} and P={j CjiO} is solved: 
. J , 

min ·s 
q 

s.t. 

v >0 s > 0 = 

17 



In the subproblem those constraintsj for which CJ~O are not included 

since they are obviously redundant, because ,?cj >0 for any A>O. 

The tests described by Ecker and Kouada [16] are used to ,eliminate the need 

for solving_ each subproblem. The procedure followed in determining 3T, the 

set of nonbasic variables' that lead to A-adjacent dual feasible bases with 

nondecreasing values of objective k.can be described by these steps: 

1. Form the sets P and L. Set JT=~. 

2. Find a feasible' solution to the subproblem. 

3. ,For each qe:L such that s q is nonbasic, or· b.asic with value zero 

set JT=JTU{q}, L=L-{q} • If L=~ stop. 

4. For each qe:Lsuch that s is basic, but can be made nonbasic by 
q 

a single pivot, set JT=JTU{q} and kL-{q}. 

5. For each qe:"4 such that s 1S basic with a.positive value, and 
q 

all nonbasic entries in the row in: whJ.ch it is basic are nonpositive, 

set. L=L-{q}, P=P-{q}. (Because the value of s cannot be 
q 

decreased below its current positive value). Delete the 

corresponding cons trairit .. · 

6. If k~ stop. Otherwi~e select qe:L, set L=L-{q} and adjoin the 

objective s to be minimized. 
q 

7. If s has a minimum value of zero, set JT=JTU{q}. Otherwise 
q 

delete the row in which s is basic and go to Step 6. 
q 

Another feature o;f the algorithm is the option of specifying intervals on 

parametric objective weights, wi,as considered first by Steuer [54] in his 

interval criterion weights method. As discussed in Section 1.1.2. Steuer 

considered the problem 

T max w Gx 
xe:X 

wdl={w\ L<w .<u. 
1- 1= 1 
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He stated that the problem is insolvable in this form, and derived an 

equivalent MOLP problem by defining new objectives. The problem is in fact 

solvable in its original form, by simply modifying the feasible region of 

the subprob1~m through the addition of the constraints implied by the intervals 

on objective weights w •• 
1; 

Normalizing, we have 

w· 
1; 

L/ E L 
1; • J 

J' . 
i=l, ... ,p. 

Also, we have h.=v.+1 
1 1; 

t.<w.<u. imply that 
1; 1;- 1; 

and E h.=E v.+l • 
J J j J 

Therefore the constraints 

< = J vj+l 
< u. • = 1; 

Consequently, the subproblem is to be augmented by these constraints. 

Furthermore, any ot~er information given by the decision maker concerning 

th~ objective weights apd which can"be expressed as a linear inequality 

can also be incorporated. For exampie if .. the decision maker states that 

objective i is at least twice as important as objective r, . then the 

constraint w.-2w >0 implies 
1 r= 

or 

v.+l 
__ 1 ___ 2 

Ev.+l 
. J 
J 

v +1 
r 

E v.+l 
J J 

v. - 2v > 1 
1; r= 
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To complete the algorithm a scheme of the order in which dual feasible bases 

will be generated; or'the bookkeeping of the algorithm must be ~pecified. 

The scheme used is similar to that proposed by E~ker and Kouada [16] • 

Throughout the algorithm, two di.fferent sets are formed and stored to keep 

track of dual feasible bases. These are: 

VI The set of dual feasible bases identified, but not yet generated 

V2 . The set of dual feasible bases already generated. 

Bases are stored by the indices of their nonbasic variables. For each basis, 

the nonbasic variable index set is sorted in ascending order to facilitate 

the various basis comparisons taking place throughout the algorithm. Given 

the initial dual feasible basis identified by its nonbasic variable set N, 

the algorithm proceeds as follows: 

2. Determine the set, R, of A-adjacent dual feasible bases with 

nonincreasing values of objective k. 

go to Step 7. 

go to Step 6. 

5. Take last element of R2 , denoted by N and pivot to the associated 

basis. Set Vl=VlU R2-{N} and V2=V2U{N}. Go to Step 2. 

6. Take last element of Rl , ,denoted by N and pivot to the associated 

basis~ Set Vl=Vl-{N} and V2=V2U{N}. Go to Step 2. 

7. If Vl=~ stop. All dual feasible bases haye been enumerated. 

Otherwise take last element of Vi, denoted by N and pivot to the 

associated basis. Set Vl~Vl-{N} and V2=V2 U{N}. Go to Step 2. 

Here, some general comments regarding computational efficiency can be .given. 

In this algorithm, the subproblems to be solved for testing dual feas.ibility 

are defined on the same feasible region in contrast to the approaches of Yu 
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and Zeleny, Evans,'and Steuer and Isermann, where the feasible region changes 

from one subproblem to the other. Thus, the changeover from one subproblem 

to the other requires much less computational effort here, and by using the 

simple tests of Ecker, and Kouada, it may not be even necessary to solve 

explicitly each subproblem. In addition, using the monotone 'connectedness 

property introduces computational advantages in identifying those nonbasic 

variables that lead to A-adjacent dual feasible bases (one needs to consider 

only those x. with Ck.>O); in identifying the corresponding bases, i.e. in 
,J J 

forming the set R, and in identifying and eliminating from R those bases 

which are in VI and V2 • 

1.2.3. THE COMPUTER PROGRAM AND COMPUTATIONAL RESULTS 
, • 

The algorithm has been coded in FORTRAN IV. The computer program enumerates 

all efficient .extreme points, or only those ,efficient extreme points satisfying 

the interval limits on the objective weigh~s, if these are specifie~, and 

outputs a set of representative weights for each efficient extreme point. 

It is composed of a main program and 10 subroutines. The relationships between 

the main program and the various subroutines are as diagrammed in Figure 1.3. 

Figure 1.3. Program Structure 
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The initial dual feasible basis is found in the' MAIN program by-maximizing 

the last objective, objective p, if no intervals on objective weights are 

specified. Otherwi~e a composite objective whi~h is formed by using weights 

satisfying the interval limits is maximized. Here.the tableau form of the 

simplex algorithm, where only the nonbasic entries are stored, is used. 

For each column of the current nonbasic cost and coefficient matrices, C 

and Y the associated nonbasic variable index, and. for each row of Y the 

associated basic variable index are stored to keep track of operations on 

the simplex tableau. All input and bookkeeping of the algorithm is also 

done in the MAIN program. 

If intervals on obj ective. weights are specified, subroutine WEIGHT is called 

once at the start of the MAIN program to form'the inequalities to be added 

to the subproblem for testing dual feasibility. 

Once a new dual feasible basis is selected in the MAIN program, a move to 

that basis is accomplished by the subroutine MOVE. ·If the selected basis 

is an adjacent one a single pivot is carried out. Otherwise, the number 

of pivots needed is equal to the number of nonbasic variables differing 

between the current basis and the basis to which a move is desired. In this 

process, ~ir~t the current nonbasic variable set, I:xN, is compared against 

the nonbasic variable set of the selected basis, INT,to identify a variable 

which is included in IXN but not in INT. Such a variable becomes the 

entering variable. Next, a variable which is included in INT but not in 

IXN, is identified~' If the implied pivot element is nonzero, this variable 

becomes the leaving variable. Otherwise, another variable which is in~luded 

in INT but not in IXN, and for which the implied pivot element is nonzero , . 

1S searched. When such a variable is found, the implied pivot is'carried 

out. This procedure is repeated until IXNand INT are identical, mean1ng 

a move too-the selected basis has been accomplished.· It is to be noted that 

the pivots carried out are not necessarily feasible, but in the end, the 

selected basic which is feasible, is obtained. 

The pivoting operations required ~n the MAIN program and subroutine MOVE 

are carried out by subroutine PIVOT. Subroutine LEAV is used to identify 

the variable to leav the basis. For this purpose, the minimum ratio rule 
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1S used. If column k is the pivot column, i.e. the associated nonbasic 

variable of column k 1S the entering variable, the row, r, for which 

b /y k r r 
m1n b./Y·k 

1 1 Yik> 0 
i 

is determined. Then Yrk gives the pivot element, and the variable which 

is stored as the basic variable of row r is the leaving variable. Given 

the pivot column and pivot row the pivoting operation is performed by 

subroutine PIVOT as follows. The pivot row, r"inc1uding the right hand 

side br , is divided by Yrk and the entering variable is eliminated from 

all other rows including the rows of C. The pivot column is updated to 

contain the entries associated with the leaving variable. That'is, after 

pivoting column k is given'by 

-k 
C 

k = -C /y rk 

where C and Yare the new nonbasic cost and coefficient matrices~ Now, the 

leaving variable becomes the nonbasic variable associated with column k 

and the entering variable becomes the basic variable associated with row r. 

Subroutines LEAV2 and PIVOT2 are used by subroutine EDGE to perform similar 

operations in the subproblem for checking dual feasibility. 

Subroutine EDGE is used to form the set JT, the set of nonbasic variables 

that lead to A-adjacent aual feasible bases with nondecreasing values of ' 

objective p, along the steps given in section 1.2.2. In carrying out steps 

3 and 4 given there, subroutine SCAN is used to update the relevant sets. 

Step 5, 1.e., identifying redundant constraints and deleting them, is 

carried out by subroutine DROP. Also, when an initial basic feasible solution 

to the subproblem is found at the start of subroutine EDGE, the corresponding 

objective weights are outputted to provide a representative weighting vector 

for the current dtial feasible basis of the main problem. 

The initial efficient solution is outputted by ,the MAIN program~ The 

remaningefficient solutions are outputted in subroutine MOVE, after the 

move to them has been accomplished. 
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Double precision arithmetic. is used in the computer program to avoid 

inaccuracies due to roundoffs. Only core memory is used. Currently the 

maximum problem size is limited to 50 variables, 50 constraints and 5 

objectives. 

The flow diagram of the MAIN program and subroutine EDGE are given in 

Figure 1.4. 

Computational results fora sample of randomly generated problems are given 

in Table 1.1. The elements of matrices G and A were generated randomly in 

the interval [0,20], with a 20% density of zero elements for the matrix A. 

The elements of the right hand side vector, b, were generated randomly in 

the interval [0; IOn] for each problem where n is the number of variables. 

Inspection of ~esults indicate that 

i) Computation time 1sstrongly influenced by the number of efficient 

extreme points. (Compare prob.lems 6 and 10) 

ii) Computation time also increases with number of variables and 

constraints. (Compare prob17ms 6 and 8) 

iii) Computation time increases with number of objectives,but not so 

rapidly as in i) and ii). (Compare problems 1 and 11; and problems . , . . . 

2,12 and 20.) 

L1sting of the computer program, definitions of the variables used, data 

input instructions and a sample output are given in Appendix L 

1.3. AN ALGORITHM FOR BICRITERION L1NEAR PROGRAMMING' 

A lot of real life problems can be modelled quite accurately'with two 

Qpj ective functions. A specialized -and computationally more efficient 

algorithm for such problems will be a useful tool of multiobjective decisio~ 

~ making. Thus , another direction of research was investigating the possibility 

·of exploiting the specia,l structure of bicriterion linear programming 

problems. 
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Sclect last element of R as 

thc next basis to be generated 

Add this basis to Y
2 

Form the set R, i.e. for each nonbasic 

variable selected in EDGE,identify the 

resulting Lasis if that variable is intro

duced into basis. Sort the nonbasic 

~ariable indices of the corresponding 

basis 

Eliminate from R those baHcs stored in Vz 

Yes 
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Eliminate from R those bases 

stored in Y1 

'CALL NOVE, Le. move. to the 

chosen basis 

Figure 1.4. i) Flow Diagram of the t~1N Program 
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Table 1.1.. Sample Problem Results 

Problem Problem Size No.of Efficient CPU 
No p m n Extreme Pts. (ms~c) 

1 2 4 6 1 257 

2 2 5 8 3 701 

3 2 6 10 2 572 

4 2 7 12 2 679 

5 2 8 14 3 . 1020. 

6 2 9 16' 9 2804 

7 2 10 18 7 2534 

8 2 ·11 20 9 3441 

9 2 12 22 5 2359 

10 2 13 24 2 1520 

11 3 ·4 6' 1 259 

12 3 5 8 3 736 

13 3 6 10 1 357 

14 3 7 12 2 757 

15 3 8 14 9 3681 

16 3 9 16 7 2523 

17 4 4 6 5 1177 

18 4 5 8 11 2719 

19 5 4 6 2 502 

20 5 5 8 3 825 



:.3.1. OBSERVATIONS ON THE EFFICIENCY CHECK 

:he implications of dual feasibility for bicriterion problems and a simple 

:heck of dual feasibility of adjacent bases which requires only a series of 

livisions and comparisons are presented below. First, it is observed that 

:he nonbasic variable set of any dual feasible basis can be partitioned 

Lnto compo~ent subsets as follows: 

~emma 1.1. Assume a dual feasible basic solution with corresponding reduced 

:ost, matrix C is given. Let N he the index set of nonbasic variables. Then 

~=QJRUSLJT where' 

Q = {jEN Clj<O, C2j >0} 

R~= {jEN 1 Clj>O, C2j <0} 

S = {jEN I, Clj>G, C2 ·>0 ; Clj and C2j 
not both zero} 

J= 

Proof: Given jEN, observe that j either'belongs to one of the sets Q,R,S 

or T or j ED where 'D=q'EN 1 Clj <0, C2j <0 ; Clj and C2j not both zero} • We 

need to show D=~ • 

Assume 3 kED • Then we have 

which contradicts the dual feasibility of the given basis. Therefore D=~. 

Next, we g~ve a necessary and sufficient condition for a g~ven basis to be 

dual feasible. 
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l'HEOREM 1.19. 

?roof. 

i) A given basic solution with qf~ and R+~ is dual feasible if and 

only if D=~ and C1j/C2j~C1k/C2k VjEQ and VkER. 

ii) A given basic solution with either Q=~ or R=~ is dual feasible 

~f and only if D=~. 

i) Observe from proof of Lemma 1.1. That if D+~ the given basis 1S 

not dual feasible. Therefore assume D=~. 

For jEQ : 

if and only if 

For kER 

if and only if 

For SES 

VA >0 • 

For tET 

VA >0 

Therefore AT6~0.(condition for dual feasibility) if and only if 

-). . II.. <: min 
2 1 = j EQ 

and A II.. > max C Ie 
- 2 1 = ktR 1k 2k 

The two inequa1ities.together imply that e1j/c2j~C1k/C2k 

VjEQ and VkER. 
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ii) As in i) nbbve, if D+~, the given basis i~ not dual feasible. 

Assume D=~ and Q=~ • This implies Clj~O VjeN and ~2j~O VjeN 

such that Clj=O. Then, by choosing Al and A2>O, Al of a sufficiently 

iarge magnitude, we can have 

Therefore, the g1ven basis is dual feasible. 

Similar reasoning applies for R=~. 

From the proof of Theorem 1.19 it should be noted that a given basis remains 

dual feasible for any A satisfying 

A IA [max C Ic 
- 2 I e keR lk 2k' 

That is, a given basic solution is the optimal solution for any set of 

objective weights whose ratio is within the above interval. 

The following- theorem provides a simple check for determining A-adjacent 
. . 

dual feasible bases which is used in the bicriterion algorithm. 

THEOREM 1.2b. Given,a dual feasible basic solution, the basic solution 

obtained by introducing x. into basis. is a A-adjacent dual feasible basic 
. - J 

solution if and only if either, 

or 

or. iii) jeT 

min 
qeQ 

max 
= kER 

T 
Proof. As the given basis is dU!l1 ·feasible .3 A>O such that A C.:::.O.Moreover, 

we know that A has to satisfy the. following; 
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Then, by Theorem 1.18, the solution obtained by making x. basic is a 

A-adjacent dual feasible solution if and only if ATCj=O J for some A>O 

satisfying (1). 

Now, for je:S 

(1) 

VA>o, Therefore x. with je:S cannot lead to a A-adjacent 
J 

dual feasible basic solution. 

For je:Q or je:R 

(2) 

Together (1) and (2) imply that the solution obtained by introducing x. 
J 

into the basis is a A-:adjacent dual feasible solution if and only if 

i) For je:Q 

ii) ·For· j e:R 

To show part iii) we observe that ATCj=O Vje:T. 

Now, the bicriterion al~orithm which uses these simple checks; which require 

only a series of divisions and comparisons, for determining A-adjacent dual 

feasible bases can be presented. 

1.3.2. DEVELOPMENT OF THE ALGORITHM 

The bicriterion algorithm is similar to the multiobjective algorithm 

described in section 1.2.2. The main differences are in checking the dual 

feasibility of the initial efficient basic solution, where simply part 

ii) of Theorem 1.19. is used; and in identifying A-adjacent dual feasible 
. , . 

bases where Theorem 1.20. is used. The general structure and the bookkeeping 
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of the bicriterion algorithm is the same as that of the mu1tiobjective 

algorithm. The main steps can be'given as follows; where the various sets 

are as defined in section 1.2.2. for the MOLP algorithm. 

1. ,Find initial dual feasible basis (which maximizes objective 2) 
I 

with corresponding nonbasic variable index set N • 

. 3. Determine the set R using part i) of Theorem 1.20. If R=~ go to 

step 8. 

4. Set R1=R-VZ . If Rl=~ go to step 8. 

, 5. Set R2=R1-V1 • If R2=~ go to step 7. 

6. Take last element of R2 , denoted by N, and pivot to the associated 
, 

basis. Set V1 =V 1 U R2-{N} and V 2=V 2 U {N} . Go to step 3. 

7. Take last element of Rl , denoted by N, and pivot to the associated 

basis. Set Vl =V 1- {N} and V2=V 2 U{N} . Go to step 3. 

8. If Vl=~ stop. All dual~feasible bases have been generated. 

Otherwise, take last element of Vl , denoted by N and pivot to the 

associated ,basis. Set Vl=Vl-{N} and V2=V2 U {N}, Go to step 3. 

Here, initially the second objective is maximized. If there are no alternative 

solutions, one has a dual feasible basis at hand. Otherwise, it is checked 

whether D=~, i.e., if there is ajEN such that C2j =0 and Clj<O. If D~~,then 

x. for some JED is introduced into the basis. The same procedure is repeated 
J 

until the situation D=~ is reached., If D=~, then by Theorem 1.19. part ii) 

one has a dual feasible basis. 

Next, the nonbasic variable(s) 

1.20. and x., JET, if any, are 
J 

x., jEQ satisfying condition i) of Theorem 
J . 

determined. If there are ties for the entering 

variable, one of these, .~, is selected and a pivot is performed where ~ 

enters into the basis, provided that the corresponding basis has not already 
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been generated. The remaining bases are stored to be ge~erated later. When 

nO/.new basis can be -identified, the algoritbm stops. 

It is to be noted that part ii) of Theorem 1.20. is ~ot being used. This 

is due. to the fact that after finding the initial dual feasible basis by 

maximizing the second object'ivq"one needs to consider only those A-adjacent 

dual feasible bases 'where the value of the second objective decreases or 

remains the same. 

The intuitive reasoning behind the algorithm is that gJ.ven an efficient 

point~ in order to move to an adjacent efficien't point, one should move in 

a direction where the rate of decrease ofl:the second objective is a minimum 

while the rate of increase of the first objective is a maximum. 

Assume there are no alternative efficient solutions, J..e. no two efficient 

solutions give the same objective vector; which is the case -if there are 

nO ties for the entering variable. Then, the algorithm starts from the basic 

solution maximizing the second objective and eventually moveS to the basic 

solution maximizing the first objective and stops there. Then, the set of 

all efficient solutions will consist of a set of efficient edges which can 

be obtained as the convex combinations of two adjacent basic solutions 

recorded by the algorithm. 

1.3.3. THE COMPUTER PROGRAM AND COMPUTATIONAL RESULTS 

\ 

The bicriterionalgorithm J.S also coded in FORTRAN IV. Again, either all 

efficient extreme points or only those extreme points satisfying the interval. 

limits on objective weights, if these are specified, are enumerated. The 
. 

c'omputer program consists of a MAIN program and five subroutines which are 

called by the MAIN program. 

, 
The MAIN program is similar to that in the multiobjective computer program 

except for two sections. One is where the dual feasibility of the initial 

efficient solution is checked. The other is in finding the initial efficient 

solution for the case where intervals on objective weights are specified, 

where a composite objective function formed by assigning the second 

objective the maximum possible weight is maximized. Now, there is no need 
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for a separate subroutine, like the subroutine WEIGHT in the multiobjective 

program, ,to form the inequalities implied by' intervals on obj ective weights. 

Simply, in the subroutine EDGE2 the ratio -Cl /C2 ' which gives the lower - q . q 
bound for the obj ective weights ratio A2/Al pe_rtaining to the dual feasible 

basis obtained by introducing into basis the nonbasic variable x , is 
q 

checked for being in the allowable region. 

Subroutine EDGE2 performs the same function as subroutine EDGE of the 

multiobjective program, namely identifying the nonbasic variables that 

lead to A-adjacent dual feasible bases with nondecreasing values of objective 

2. It is however much simpler, the check given by part i) of Theorem 1.20 

is carried out. 
- . 

The subroutines LEAV, PIVOT, MOVE and SORT are the same as for the 

multiobjective computer program. 

computational results for the same sample of randomly generated problems 

with two objectives. are given in Table 1.2. along with the computation 

times with the multiobjective algorithm for comparison purposes. It can 

be observed that the bicriterion algorithm is about 2-2.8 times faster 

than the gen~ral multiobjective algorithm. 

Listing of tne computer program, data input instructions and a sample output 

is given in Appendix II. 

In comparison with the existing algorithms for bicriterion problems, the 

proposed alg?rithm has much lower computational requirements. The number of 

pivots needed is the same as for parametric linear programming as proposed, 

by Geoffrion [27]. However, the computations needed to determine the entering 

variable(s), are much simpler. Here, only a number of divisions and 

comparisons «r where r is.. the number of nonbasic variables). are needed, 
, ( 

whereas the sensitivity analysis for determining the entering variables 

requires more computational effort. 

In comparison with the algorithms of Aneja. and N~ir [2] or Cohon et-al. 

[14], the proposed algorithm is definitely superior. When there are k(k>2) 
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Table I.2.·Samp1e Problem Results 

CPU CPU 
Problem Problem Size No.of· Efficient .. Bicr-tn. . M.Obj • 

No· m n Extreme ·Pts. . (msec) (msec) 

1 4 6 1 95 257 

2 5 8 3 303 701 

3 6 12 2 247 572 

4 7 14 2 292 679 

5 8 16 3 514 1020 

6 9 18 9 1114 2804 

7 10 20 7 931 2534· 

8 11 22 9 1362 3441 

9 12 24 5 909 2359 

10 13 26 2 648 1520 

efficient points, these algorithms need 2k-1 iterations, where the linear 

programming problem is solved with a different objective function at each 

iteration. In,contrast, if there are no alternative efficient solutions 

(which is the more common case) the a1gor!thm proposed here needs only one 

such iteration.and k-l additional pivots. The algorithm goes from the 

maximizing basic solution for one objective to the maximizing basic solution 

for the other, and enumerates all efficient extreme points with about as 

much effort as needed {or the initialization of the algorithms cited above. 
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PART I (,' AN APPLICATION IN POHER SYSTEMS PLANNING 

In recent years, with the emergepc~ of new trends in energy systems 

analysis, the decision making process in electrical power system investments 

has become increas"ing1ymore complex. One of the new trends is the environ

mentalist movement while another is the concern over nuclear technologY.The 

oil embargo of 1973; the sudden increase in energy prices and the threat 

of-future en~rgy shortages have caused these trends to have more significant 

impact on the decision making process. Supply risks. associated with oil 

fired power plants have meant more coal and nuclear plants. These p1ants,in 

turn, give rise to even greater opposition by the' environmentalist and the 

antinuclear groups. 

The reservations voiced by .these groups have already influenced the planning 

and operation of power plants. The p1esbicites in Federal Germany, Austria 

and Sweden are clear evidences of direct public participation in the decision 

making process. Upto recent times, power systems planning was carried out by 

central electricity generating authori~ies. The main concern was economic 

efficiency, subject to certain technical considerations, while environmental 

and social factors were not influential. Today,- this picture is changing 

rapidly with the eme~gence of different interest groups with different and 

conflicting objectives. Consequently; the need for developing and applying 

new planning procedures and mathematical techniques arises. These new 

procedures and techniques will evolve slowly after sufficient experience 

has accuIDulat.ed and' the strengths and limitations of each technique has 

been realized. Here one possible approach that attempts to accommodate 

several objectives in power systems expansion decisions 1S p~esented.The· 

approach is based on gen~rating relevant decision alternatives through 

the use of a multiobjective linear programming model. The efficient solutions 

of the model are grouped based on the clustering of_the objective values 

and the similarity of the decision. implications for the immediate future. 

The model has been applied to the Turkish electrical system. 
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11.1. MODELLING THE POWER SYSTEM EXPANSION PROBLEM 

Modelling of the power system expansion problem is quite a complicated task 

due to the complexity of the system. A variety of power plants with different 

fixed and variable costs, availability factors, capacities, etc. form the 

supply system. The demand, on the other hand, is subject to fluctuations at 

different seasons, months, days and even hours of the day, and wide 

variations due to unforeseen events. Furthermore, the expansion problem 

must be considered in conjunction with the operating program of all power 

plants if suboptimal decisions are to be avoided. 

The uncertainties in various elements and the s~ze and complexity of the 

system make it almost impossible to accommodate all. aspects within a single 

model. Once the need for decomposition is recognized, one has to decide on 

the level at 'which decomposition should be done. A natural approach is to 

first decide on the global expansion strategy,and then to plan a detailed 

project evaluation program.-The aim of this study is to focus on the first 

phase where several objectives are influential. 

The model given below is a modified version of a dynamic linear programming 

model which had. been applied to the electri5al system in Turkey [35], [36], 

[371. In its present simplified form, only three types of power plants are 
.' 

included; coal, hydro, and nuclear. The model extends over five planning 

periods of six years' duration each. All technical and financial aspects 

are expressed as, linear relations. Three obj ectives are considered to have 

deciding influence; namely economics, environmental impact and potential 

damage. E~onomic efficiency has been the traditional planning objective 1n 

public investment problems and will continue to be a determinant in any 

investment decision, be it public or private. Environmental impact combines. 

~everal factors such as land use, chemical, thermal and radioactive pollution. 

Potential damage accounts for the probability of an accident and the extent 

of damage that such an accident would cause. These three objectives which 

are to be minimized are expressed as: 
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5 1 t 
zl- = E ( ) 

t=l l+r 

5 3 
z2 = E E B. Eit 

t=1 i=l 1 

5 3 
z3 = E E Y. Pit 

t=l h1 ~ 

3 
E ct. P . t + ct ~ E.;t . 

. 1 1 ~ 1 .... 
~ 

where P is added new power capacity, E is energy generated; 

(1) 

(2) 

(3) 

ct and " ct are--

unit costs of installed power and energy generation; Band yare enV1ron

mental impact and potential damag~ coefficients; r is discount rate (over 

a period); i is power plant type (i=l for coal, i=2 for hydro and i=3 for 

nuclear), and t is'the time period. Here energy generated is taken as a 

surrogate for env~ronmEmtal impact and power installed as a surrogate for 

potential damage. 

The constraints of the model can be given 1n general form as follows: 

±) Energy Demand~ Demand for electrical energy (ED) must be 

satisfied at all time periods'. 

3 
. E E. > ED 
i=l :t = t 

; \It 

'ii) Power Demand: Power demand (PD) must be satisfied at all time 

periods. 

P •. > PD 
1J = t 

\It 

(4) 

(5) 

where P. g1ves the initial available power.capacity for plant 
10 

~ype i. 

iii) Production Capacity: Amount of energy that can be generated at 

.time t cannot exceed that allowed by the available power capacity 

E. < 
~t= 

f. 
~ 

P .. 
~J 

\It, vi (6) 
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where energy production is lagged by one time period (6 years) 

with respect to the implementation of a new project, and f. denotes 
~ 

the maximum load factor of the'corresponding power plant. 

iv) Build-up Rate: The amount of new capacity added.for each type 

of power plant is limited by the development of technical capacity 

. , Vt, Vi (7) 

where K~ is'the capacity expansion coefficient for corresponding 
~ .. 

type of power plant. Because different, types of technological 

capabilities are involved, each type of power plant is treated 

separately~ 

v) Hydro Limitation. The hydroel~ctficity that can be generated is 

restricted by the hydropotential (HP) developed upto that time~ 

E2t .:: HPt ; t=4,5 (8) 

Hydroelectricity is not restricted for t9, because power capacity 

is .already constrained· by (7) above. 

In developing this model, it was further assumed that for Turkey nuclear 

energy cannot contribute to the supply m~x earlier th~m the sec'ond period 

and eoal reserves ancr/6.r: imports will not create any problems within the 

planning horizon. The first assumption requires minor changes in expressions 

(4) through (8). S~ecifically the variables E3l , E32 and ~3l are deleted 

and·P32 becomes a parameter giving the initial nuclear capacity. In its 

final form, the model has 26 variables and 37 constraints. 

uncertaind.es iIi model elements can be handled through scenar~o and/or 

sensitivity analyses. The planning horizon of 30 years will be adequate. 

'It is not necessary to consider developments too far into the future as 

investment decisions are made every fiscal year. Depending on changes and 

unforeseen events, the analysis may be repeated to update the results.' 
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The mathematical modelling 01; the po~er system expansion problem as a 

mu1tiobJective linear program giVen above is the initial phase of the overall 

solution procedure explained in detail in the next section. 

11.2. SOLUTION PROCEDURE 

It was expressed before that there are three basic approaches to the 

mu1tiobjective decision making process. Reviewing, these are: a priori 

articulation of preferences leading to the formation of a single overall 

objective function; generating efficient solutions and a posteriori artic

ulation of preferences; or progressive articulation of preferences, i.e. 

interactive approaches. In evaluating these approaches for their relevance 

in actual decisions, the characteristics of the decision environment or 

the type of problem at hand carries utmost importance. A decision process 

that is highly successful in a given environment may be totally inadequate 

inranother./Vi~wed from this ,point, the interactive approach seems very 

promising for decisions in a restricted environment where there is a 

well-defined decision maker who is actually able to cooperate.In most 

socioeconomic systems, however, there are several decision makers who may 

even be difficult to identify. In such cases, not only the interactive 

methods, but also a priori specification of preferences may become inopera

tionai. In, view of the complexity of th~ decision environment,nonexistence 

of a unique well-defined decision maker, and the far-reaching consequences 

of the power system lnvestments program, the approach that is considered 
., . . - .-

most appropriate for this particular problem is the generating approach 
\ 

which postpones articulation of preferences to later stages of the decision 

process and prov{des a'sound information base. 

The main 'concern in this study has been to generate relevant decision 

alternatives that are only a few in number. Recognizing that the generating 

approach usually lead's to a large number of alternatives, model dimensions 

were kept as small as possible. Keeping model size small is consistent 

with decisions of a global nature w:here only aggregate quantities are of 

interest, 1n addition to the fact that both the number of efficient 

solutions as well as the computational effort required for each solution 
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are r.educed. Furthermore, it is eas~er to develop and implement ei;ficient 

algorithms for models with small dimensions~ 

The influence !,f uncertainties in model parameters or policy.options were 

analyzed by developing appropriate' scenarios. Sensitivity analyses were 

carried out to determine the significance of environmental impact and 

potential damage coefficients for which absolute values are difficult to 

determine. 

-
The overall solution procedure employed is depicted ~n Figure ILL 

Problem 

, Define objectives and 

construct model 

./ 

Define new Determine efficient 
scenarios " 

solutions 
~ 

, 

Generate relevant and 

representative decision 

alternatives 

Decisions 

Figure 11.1. The Overall Solution Procedure 
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The MOLP algorithm presented in Part l was u~ed ~or the generation of 

efficient solutions. The a1gorith~ generate~ ft. representative set of 

efficient solutions, i.e" efficient extreme points, with quite low compu~ 

tationa1 effort. The efficient solutions oBtained. may then be grouped so 

as to generate relevant decision alternatives representing different 

preferences. The grouping of solutions may be bas'ed,.on the relative magni

tudes of the objective values, or on the clustering in the values of the 

decision variables or on the implied weights associated with the objectives. 

In this study a combination of the first and second methods was used in 

grouping the solutions. 

Another approach was the consideration of only the economics and environ

mental impact objectives and solving the model-for a given scenario as a 

bicriterion problem. 

11.2.1. APPLICATION OF THE MODEL WITH THREE OBJECTIVES 

Four scenarios were developed in order to assess the con_sequences of certain 

policy implications. The scenarios tested were; 

A: Base case 

B: Restricted hydro 

C: Low energy demand 

D: Less restricted nuclear 

The parameters and coefficients of the model for the base case were 

specified so that 

- Energy arid power demands were taken to increase at their 

historical rates; 

Maximum load factors for coal, hydro- and nuclear power plants 

were taken as 0.70, 0.45 and 0.60 respectively; 

- Build-up rate factor was taken as 1.5 for nuclear plants and 2.0 

_for other plants; 

- Initial coal and hydro capaCities were both assumed to be 4.0 Gw. 

- Total nuclear capacity in the second period was assumed to be 

1.0 GW. 
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In determining the objective coefficients; the investment cost was taken as 

the sum of ,power plant, and transmission costs. Similar'model~ usually 
/ 

consider only power plant costs ell ~ In reality, transmIssion costs are -

almost as high as plant costs and rna! vary significantly depending on, the 

distance that the energy is transmitted to. In Turkey, where the hydro 

potential is rather distant from the main load centers, the largest unit 

transmission costs are incurred for hydroelectricity. Lowest transmission 

costs apply for coa~ power plants while nuclear plants would entail costs 

of intermediate value. 

Environmental impact and potential damage aspects are not as easily 

quantified as financial aspects. For these two factors, an ordinal ranking 

was made and sensitivity analyses were carried out on the first two scenarios 

in order to observe the influence of the relative magnitude of the 

coefficients assigned to each type of power plant on the results obtained. 

The ordinal ranking of power plants with respect to these factors and 

financial aspects is given in Table 11.1. from highest to lowest in g01ng 

down the table. 

Table 11.1. Ranking of Power Plants 
,I 

Cost 

Fixed (a.) Variable (a.") 

Nuclear Coal 

Hydro Nuclear 

Coal Hydro 

Environmental 
impact (f3) 

Coal 

Hydro 

,Nuclear 

Potential 
damage (y) 

Hydro 

Nuclear 

Coal 

Environmental impact', as defined here, refers to air pollution caused by 

the burning of coal; land covered by the reservoir of a hydroelectric 

plant; and radioactive emissions from a nuclear power plant.Although these 

indicators imply different dimensions and necessarily entail a certain 

subjective evaluation, the ranking given in Table 11.1. may be representative 
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of the assessment of most analysts. The public in general would also view 

a coal power plant as more objectionable in c9mparison with a hydro project, 

especially when low quality, high sulfur content brown coal is considered. 

Furthermore the land allocated to a coal plant is not insignificant~ Few 

would argue that the radiation (or the excess heat release) of a nuclear 

power plant affects the environment anywhere nearly as much as the chemical 

pollution caused by the burning of fossil fuels. The area required by>the 

nuclear plant is usually much less than a coal or a'hydrop1ant; 

As regards potential damage, the ranking given above may appear 
" counterintuitive. Most people would probably react by asserting that the 

nuclear plant is'more objectionable than the hydro plant in this aspect. 

It should be noted, however, that quite a few dams have failed whereas no 

significant physical damage has so far been caused by a nuclear p1ant.That 

is, the probability of failure of a nuclear plant is lower. In the event 

of a failure, the number of lives that would be affected is of the same , 
order of magnitud~ for either type of plant. 

The steps of the solution strat~gy followed in applying the model to the 

Turkish electrical system are summarized below. 

The BASE CASE scenario was solved for· three different sets of objective 

coefficient (13 and Y) assumptions, which are given below. 

1. Set 
131 =3 

82 2 
"12 

3 
Y3 2 -= ; -= = 

83 83 Y1 Y1 -

- 81 82 3 
Y2 

9 
Y3 3 2. Set =9 -= -

83 '--J 
83 Y1 Y1 

81 82 
4 

YZ 
16 

Y3 
4 3. Set - =16 -= -= = 

83 83 Y1 Y1 

The efficient solutions in the decision space were identical for each of 

these sets, except for one efficient point which was not included in the 

s'olutions for set one. Furthermore, the points where each objective 
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attained its m1n1T1)Utl) were exact1:y the s,ilI'Qe. This led . to the conclusion that 

results were not much sensitive to:thechanges~in the environmental impact 

and potential damage coefficients. 

The RESTRICTED HYDRO scenario was developed next. Observing that in some 

solutions hydrolic energy generation in the fourth period -was as high as 

130Twh, which was thought to be to high, considering the hydrolic potential 

that could be utilized in the fourth period, hydrolic energy gene~a~ion 

in the fourth period was constrained to a maximum of· 100Twh. For this 

scenario solutions with two different sets of objective coeffici6Es a and 

y given below, were obtained. 

1. Set - 2 3 ( =2 

4. Set , 

The first case re~tilted in 29 efficient extreme points and the second in 

30, where 28 of the points we~e identical. This fact supported the 

conclusion that the results are not very sensitive to changes in the 

coefficients of objectives· related to environme~tal imi>act and potential 

damage. From then on; for coefficients a and y, the values given by set 

two above were adopted. . 

The LOW ENERGY DEMAND scenar10 was run next assuming lower rates of increase 

in energy and power demands, i.e. modeling -a slower growth. This run 

resulted in 19 efficient extreme points. 

The LESS RESTRICTED NUCLEAR scenario allowed for higher nuclear energy 

production by increasing the nuclear capacity expansion factor from 1.5 to 

4. O. This scenario r·esulted in 29 efficient extreme points. 

Then, the efficient solutions for each scenario were analyzed and grouped 
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together to form decision alternatives. Considering the,dynamic structure 

of the model, itis not necessary to strictly lay down decisions too far 

into the future. Since _the analysis may be repeated at will, decision 

implications for'the near,:future have much greater impqct than decisio'n 
-implications for later periods. Many of the solutions which imply different 

decisions in the later periods call for similar courses of action 1n the 

first few periods •. Based on thi~ observation, solutions with similar 

objective values and decision implications for the first three periods 

were grouped together fo.rming a few decision al ternati ves. 

The steps of the solution procedure are depicted schematically in Figure 

11.2. 

BASE 
CASE / 

RESTRICTED 

HYDRO 

LOW 

ENERGY 

DEMAND 

* Numbers on'branches represent coef~icients of environmental 
impact and potential damage objectives. 

Figure 11.2. Solution Steps 

LESS 

RESTRICTED 

NUCLEAR 

A summary of solution statistics for the three most significant scenarios, 

B, C and D are given in Table 11.2. Statistics of other results have not 

been included as different 6 and yvalues were used, making direct 
. . 

objective value comparisons meaningless. Furthermore, the base case scenario 

is somewhat unrealistic since-it allows for too high a hydro potential in 

the fourth period. 
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. Table 11.2. Solution Summary Statistics 

4-1 en 
o I=l 

o 
~'rl 
Q).I-J 

Ranges of Objective Values 
I 

. Total Installed Capacity Ranges for the First. 
Three Periods (Gw) 

~~ 
Econ.Cost Environ-
(B 'll' tIP t t1 Hydro Coal Nuclear. 1 10n men a 0 en . 

zoo TL) Impact Damage Period 1 Period 2 Period 3 Period 1 Period 2 Period 3 Period 3 

29 1289-1536 1388-1737 41-137 4-12 4-28 4-33 5-9 7-17.2 11-27'.8 1-2.5 

19 1101-1311 1184-1533 37-133 4-12 4-28 4-33 4.6-7.3 5.8-13.8 8.Z-25 1-2.5 

28 1097-1336 1022-1533 37-156. 4-12 .4~28 4-33 4.2-7.3 4.5-13.8 5.3-25 1-5 



An inspection of the statistics indicates that although the ranges of 

obj ective val~es are not to~ wide? th,e ilI!plicat~ons on the resulting power 

plant mix are significant. Results all the way from no capacity increase 
\ 

to quite high capacity increases for the first three periods can be observed 

for each type of plant. However, grouping of efficient solutions for any 

single scenario does not create significant problems. Detailed results for 

scenarios B, C and D are given l.n Tables 11.3, 11.4 and 11.5 respectively. 

For ~ach scenario, solutions in Group I are evidently associated with least 

economic cost as well as least environmental impact; while those in Group 

IV are associated with least potential damage. In view of the ranking of 

the power plants gl.ven in Table '11.1. these results may seem surprising. 

Summing up fixed and variable costs results in lowest unit total cost for 

hydro and highest for nuclear. Thus, each type of power plant ranks best 

in any given attribute and may be expected to be favored in solutions 

associated with minimal levels of that attribute;' whereas power plants 

ranking poorly with respect to that attr,ibute are disfavored. On closer 

inspection, however, it is qbserved that since total nuclear contribution 

is rather small, the competition is really between hydro and coal. Thus, 

Group I solutions where hydro is favored heavily result also in lowest 

environmental impact as hydro is superior to coal in that respect. 

The investment scheduling implications, for each of the scenarios B,C, D, 

between the four strategies represented by the solution groups can be seen 

in Figures 11.3, 11.4\ and 11.5., where power capacity increases are plotted 

against time. 

The decision maker is also supplied with additional-information in the form 

of representative "objective weights" associated with each solution. This 

additional information is valuable especially for those more familiar with 

the classical approach of assigning weights (A.) to each objective. As an , l. 
example, the set of all efficient extreme solutions for scenario C along 

with representative A values associated with each efficient solution are 

presented in Table 11.6. 

The computation times for the various scenarl.OS with the 1st. set of f3 

and y values are given in Table II. 7. 
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Table 11.3. Summary Statistics for Scenario B Solutions 

4-l C/l 
o r:: o 
I-I·rl 
<1l +J 

~~ 
;::l 0 
Zoo 

( 

Ranges of Objective Values Total Installed 'Capacity Ranges for the First 
Three Periods (Gw) 

Econ.Cost Environ- Hydro Coal Nuclear 
(Billion mental Potent1. , 

TL) Impact Damage .Period 1 Period 2 Period 3 Period 1 Period 2 Period 3 Period 3 

14 1289-1333 1388-1500 91-137 12 25.2-28 25.2-33 5-5.6 7-8.9 11-15.4 .1-2.5 

6 

3 

6 

1409-1427 1581-1642 57-65 11.8-12 11.8-13.5 11.8-13;5 6.6-6.9 11.8-12.7 22.2-24.2 1-2.5 

1439-1463 1630-1657 54-55 

1505-1533 1672-1737 41-48 

II 

9-10.6 
\ 

4-5.6 

9-10.6 9-10.6 7.1-7.4 13.4-14.3 24-25 1-2.5 

4-5.6 4":'5~6 8-916.2-17.2 ~6.6-27.8 1-2.5 
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Table 11.4 •. Summary statistics for Scenario C Solutions 

4-l til 
Ranges of Objective Values Total Installed Capacity Ranges for the First -

Three Periods (Gw) o t:: 
0 

~ • .-I Econ.Cost Environ-<1l .IJ Hydro Coal Nuclear ~~ (Billion mental Fotent1. 
::l 0 TL) Impact Damage zen Period 1 Period 2 Period 3 Period 1 Period 2 Period 3 Period 3 

5 1101-1137 1184-1291 93-133 . 12 28 28':"33 4.6-5.4 5.8-8.2 8.2-13.6 1-2.5 

5 1162-1223 1304-1416 54-81 12 12-21.5 :12-21.5 5.4-6.4 8.2-11.1 13.8-20.5 1-2.5 

5 1243-1259 1436-1463 46-49 ' 8-9.8 ' 8-9.8 8-9.8 6.4-6.5 11.2-11.5 20.8-21.7 1-2.5 

4· 1277-1311 1487-1533 37-41 4-6.4 4-6.4 4-6.4 6.8-7.3 12.4-13.8 23.7-25 1-2.5 
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Table II. 5. Summary Statistics for Scenario D Solutions 

4-l . til 
o I=l 

o 
1-/.,-1 
Q).j.I 

~~ 
::l 0 

:;ziUl 

Ranges of Objective Values 

\ . 

Total Installed Capacity Ranges for the First 
Three Periods (Gw)· 

Econ.Cost Environ- . 
(B 'll' . t 1 P t t1 Hydro Coal Nuclear . ~ ~on men a 0 en • 

TL) Impact ._Damag~ ___ 'p).;!rtpd 1 Period 2 Period. 3 Period 1 Period 2 Period 3 Period 3 

14 1097-1140 1022-1291 93-156 12 28 28-33 4.2-5;4 4.5-8.1 5.~-13.6 1-5 

6 1192-1255 1226~1436 54-77 10.7-12 10.7-15 10.7-15 5.6-6.3 8.9-11 15.5-20.5 1-5 

3 1243-1254 1413-1463 48-49 8.1-9.8 8.1-9.8 8.1-9.8 6.3-6.5 11-11.5 19.5-21.5. 1-5 
\ 

5 1277-1336 1323-1533 37-58 4-6.4 4-'6.4 4-6~4 6.8-7.3 12.4-13;8 21.7-25 1-5 
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Figure 11.3. Power Expansion Alternatives for Scenario B 

75 

3 
. Periods_ 

. 3 
Periods 



35 

35 

30 

25 

20 

15 

10 

5 

1 GROUP I 2. 

1 GROUPIH 2 

35 

30 

25 

3 • 
PerLods 

35 

30 

3 
Periods 

1 GROUP 11 2 

1 GROUP IV 2 

Figure 11.4. Power Expansion Alternatives for Scenario C. 
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Table 11.6. Efficient Solutions and Associated Representative 
Weights A. for Scenario 'C . I 

, l. 

~ Objective Values 
Associated Repre~ Total Installed Capac 

0 sentative Weights .. 'ity at 3rd period(Gw) 
.,-i 
.jJ 

;::l 
~conomic Environm1.Potent1. ..-l A1 A2 A3 

I 

0 Hydro Coal Nuclear 
CI) Cost· Impact Damage 

1 1101 1184 133 .33 .33 .33 33 8.2 

2 1121 1214' 109 .24 .24 .51 33 10.8 

19 1123 1260 105 .40 .04 .56 33 12.3 
-

3 1135 1245 97 .18 .18 .64 28 12.1 -

18 1137 1291 93 .31 .05 .64 28 13.6 

4 1162 1304 81 .14 .14 .73 21.5 13.8 

9. 1176 1350 71 .12 .12 .76 18.6 15.5 

10 1219. 1410 55 .11 .13· .76 - 12 19.3 

5 1223 1390 58 .11 .13 .76 12 19.3 

11 .1223 1436 54 .19 .02 .75 12 20.5 

12 1243 1463 48 .• 19 .02 .75 9.8 21.7 
-

16 ··1244 ·1444 49 ~09 .09 .81 9.2 20.8 

17 1255 1458 46 .04 .10 .85 8 21.5 
-

6 1256 1436 49 .06 .12 .82 8.2 21.5 
, 

7 1259 1439 48 .04 .11 .85 8 21.5 

13 1277 1504 41 .08 .05 .86 6.4 23.7 

1: 1308 1507 38 
\ 

.04 .10 .86 4 23.7 
-

14 1308· 1533 37 '.08 .05 .86 4 25 

8 ·1311 1487 ·,40· . ·.04 .. 11 .• 85 4 23.7 
.. 

3 
Note: L A. may not add up to 1.00 exactly, due to rounding error. 

i=l l. 
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Table II. 7. Computation Ti~es ~or Model Application 

No.o1; e~ficient cpu 
Scenario . . . extremep6ints (sees.) 

A 30 32 

B 29 30 

C 19 23 

D 29 36 

11.2.2. APPLICATION OF THE MODEL WITH TWO OBJECTIVES 

. Bicriterion, or two-objective.ana1ysis offers conceptual ease in that 

efficient solutions can be disp1ayea graphically in a neat manner and the 

trade-off function between the two objectives can be observea. With these 

considerations, the model was solved for scenario D also as a bicriterion 

problem. Here, in addition to the traditional economics objective, the 

environmental impact objective, which has also become more or less classic, 

was taken. 

In this solution, only ftve efficient extreme points were obtained. These 

solutions, along with the.range of'\/~2 ratios for which they remain optimal 

solutions to the "weighted objective'~ prob1.em are given in Table 11.8. 

These efficient solutions can be plotted as points on a graph, where the 

axes represent the two·objectives. The plot of points when joined gives 

the trade-off function between these objectives, which is displayed in 

, Figure 11.6. 

Here, the line segments joining two adjacent points also represent 

efficient solutions. The particular ratio 'A/'A2 for which .t~ese line 

segments are the optimal solutions to a weighted objective problem are 

indicated~ 

. The values taken for the var~ous parameters and coefficients of the 

model are given in Appendix III. 
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Tab1eII.B. Ef~icient Solutions For 
Bicriterion Problem (Scenario D) 

Economic Environmental Range for 
Cost Impact "/"2 

109} 1096 [4. 3.5 ,Co] 

1100. lOBO [2.22, 4.35] 

1113.B 1050.2 11.52, 2.22] 

1113.9 1050 [1.15, 1. 52]· 

1138 1022 [0, 1..15] 

·Economic Cost 

1140 

1130 

1120 

1110 

1100 

1090 

1020 1040 1060 1080 1100 Environmental Imp 

Figure II. 6. Trade-off Function Between Economic Cost and 

" .Environmental Impact 
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J.I .3. EVALUATION OF RE~ULT~ 

Recent developments in environmental concern and issues of social risk have 

changed the nature of power systems expansion decisions. These decisions 

now involve several criteria and different centers of influence,necessitating 

multiobjective analysis • 

• 
The approach taken here is that of generating a few relevant decision 

alternatives from the set of efficient solutions for the medium term, which 

is assumed to be 10 to 15 years. 

The modelling technique and the solution procedure employed in this study 

offers several advantages, especially when the characteristics of the 

decision environment are considered. The linear programming model is a. 

well-known and established technique and most decision'makers are aware of 

its capabilities. The method of generating efficient solutions and decision 

alternatives is quite efficient and calls for neither prior articulation 

of preferences nor an extended cooperation" with the dg.cision makers, which 

are quite difficult to realize in the particular decision environment. 

Uncertainties in certain parameters and policy implications are analyzed by 

developing different scenarios. The influence of hard-to-quantify aspects 

such as environmental impact and social risks are determined through 

sensitivity analysis., 

A sound and reliable information 'base for decisions is produced without 

requiring very precise and sophisticated data. 

The major limitation of this procedure is in model Sl.Ze. The whole 

procedure would become rather impractical if the number of decision 

variables 1S 1n the order of hundred. In such cases, not only would 

computat,iona1. efforts increase, but also displaying the results and 

analysis of decision alternatives would become quite tedious. 
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PART III',' r·1ULTIOBJECTIVE HHEGER LHIEAR PROGRJ\,r'ltllNG 

The multiobjective integer linear programming (MOILP) problem is written as 

- ". 

max Cx 
xe:X 

xiO and integer} 

where C is a pxn matrix whose rows C., i=l, ••• ,p, represent the different 
1. 

objective functions; A is an mxn matrix; and x and bare nand m sized 

vectors respectively. Maximization here refers to the determination of the 

set of all efficient points •. In niultiobjective zero-one linear programming 

(MOZOLP) elements of X are further constrained to take on values of only 

zero or one. 

MOILP problems arise when in problems characterized by mUltiple objectives, 

the decision variables are desired to take on integer values. For example, 

in.the design of an urban transportation system, one could be interested 

in selecting the optimal transportation modes as well as determining ·the 

number of units of each to, be scheduled for a desired service level, with 

the objectives of minimizing travel times, construction costs and operating 

costs. Binary variables are necessary for han~ling yes or no decisions in 
. " . 

several problems; such an area of application for MOZOLP is project selectio~ 

In addition to the traditional objective of maximizing. the··total present 

value, other objectives such as minimizing risk or maximizing market share 

may be under consideration in project selection or capital budgeting problemsl 

It is natural to assume that MOLP solution techniques can be extended to 

handle MOILP problems since integer linear programming is closely related 

to linear programming and most algorithms· for integer linear programming 

use linear ~rogra~ing ~u~routin.es. H~wever, MOILP ~r~ble~s are of a quite 

different nature than MOLP problems. Parametrically optimizing linear 

combinations of the objectives generates some but not necessarily all of the 

efficient solutions. This can be observed from Figure 111.1. 
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Obj~ctive 1, f1 

. Figure 111.1. Parametric Sca1ariza.tien May Net Generate 

all Efficient Integer Se1utiens 

Here, it is assumed that peints 1,2, and 3 give the efficient peints in 

the ebjective space fer a hypethetica1 two. ebjectived integer preb1em.By 

maximizing the linear functien·A 1f 1+A 2f 2 ' A1 ,A2>O, peints 1 and 3 can be 

ebtained as the maximum"se1utiens fer. certain apprepriate/va1ues ef A1 and 

A2 • ~ewever, peint 2 dees net give the maxim~ se1utien ef A1f1+A2f2 fer 

any Al'A 2>O. Thus, a1theugh it is efficient, peint 2 cannet be generated 

by ~arametri~ sca1arizatien, i.e. ~arametrica11y e~timizing linear 

cembinatiens ef the two ebjectives." Furthermere, as the feasible regien ef 

integer peints in an in.teger linear pregram dees .net generally represent a 

cennected graph, the use ef mu1tiebjective simplex metheds-fer identificatien 

ef adjacent ~fficient peints may net yield a cenvergent methed fer the 

search ef all efficient peints; in ether werds, the implied search may net 

1ecate efficient peints in the ~ncennected "portiens ef the integer linear 

pregram lattice. These facts indicate that metheds ef MOLP cannet be simply 

extended to MOILP. This is why MOILP has gained interest enly recently and 
- -

is still net a deve1eped field ef multiebjective eptimizatien. -In the 

fe11ewing sectien a survey ef mu1tiebjective integer-1inea~ pregramming 

metheds is presented. 
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111.1. MULTIOBJECTIVE !NTEGER LtNEAR PRQGRAMMING METHOriS 

, . 
A classification of the approaches to }101LP is given In Table IIi~1. 

Table 111.1. Approaches to MOILP 

Nature of 
Solutions 

Efficient 

Solutions 

A 
Preferred 
Solution' 

Problem Type 

General MOILP 
I zero-one 
b~crJ .. ter1<~n 

MOZOLP 

·General MOILP 

Approach 

Bowman [8]- A parametric method 
A parametric 

Pasternak and Passy[45] Algorithm 

Shapiro' [53] 

Bitran [7] 

Theoretical results 

Search algorithm based 
on preference cone 

Klein and Hannan[38] Sequential 

Zionts [63] 

Lee [41] 

. algorithm based on 
implicit enumeration 

Interactive algorithm 

Integer goal programming 

The first work to appear in this field is on bicriterion zero-one progra~ing 

Pasternak and Passy [45] show that all efficient points are solutions of 

the parametric pr?blem 

max ClX 

s.t. Ax < b 

C x > e 2 = 

x.= 0 or 1 
] 

where e varies from the minimum value of C2x, attained at x which maximizes 

Clx, to t~e maximum value of C
2
x. Some further results are derived under 

the assumption of a strictly quasiconcave utility function so that only- a 

relevant subset of all efficient points .would be generated. The authors 

also give an algorithm which is an extension of the Balas filter method. 
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Shapiro [53) investigates how the re~ult~ o~ integer pro~ramming duali,t:y 

theory can be used for multiqbjective zero,one and mixed inte~er problems. 

He focuses on identification of efficient solutions which can be generated 

through parametric scalarization, i.e. the solutions of ,the following 

parametric LP problem 

max 

s.t. 

ATCx 

xe:dF) 

Ae: int A 

where F={xIAx~b, xj=O or l} and [F) denotes the convex hull of F and 

A is as defined for the MOLP problem. 

Shapiro comments that the difficulty with this apparent reduction to a more 

manageable optimization problem is that [F) is generally impossible to 

characterize in any practical manner. He then states that integer programming 

duality theory can be interpreted as approximating [F] in a neighborhood of 

an optimal integer programming solution. This interpretation would provide 

the insights on how to perform the sensitivity analysis associated - with 

parametric variation of A. 

Shapiro also mentions that integer programming duality theory could be 
, . 

combined with Benders' decomposition method and thus the suggested approach 

could be extended to multiobjective mixed integer programming problems. 

... . 

The discussions of Sh~piro are quite theoretical and the results presented 

are far from complete. The author states that a rigorous research on the 

structure of the family of integer programming dual problems generated as 

A varies is needed. 

Theoretica~~y an 'integer programming dual problem which solves a given 

integer programming problem can al~ays be. constructed by a finite procedure, 

however in practice integer programming dual methods require excessive 

numerical calculations and are not currently being used much. It is to be 
, . 

expected that the computational effort associated with generating the family 

of integer programming dual problems-as A varies will ~e quite enormou·s. 

Therefore this approach does not seem computationally promising. 
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Bowman [8] considers the relationship between the generalized Tchebycheff 

n~rm and efficient solutions for/problems where the feasible region is not 

convex. As ~his is the case in problems where some or all of the decision 

variables are constrained to take on integer values the results apply to 

such problems. 

The motivation for the approach is the geometric ,interpretation of efficient 

poitlts., A point x* is efficient if in the p-dimensional objective space 

Y={ y I y=Cx, xe:X} , the nonnegative orthant with origin at Y*=Cx* contains 

no point~e:Y. Therefore,the smallest hypercube centered at any point .. ... . 

y*+ae, where a>O -and _ e 1.s a vector of appropriate dimensions with each 

component equal to ~ne, containing a point ye:Y is a hypercube that contains 

y* on the boundary. This can be interpreted 'as y* being a point of the " 

objective space that minimizes the Tchebycheff norm,derived from some -

point (in this case y*+ae), where the Tchebycheff norm of, a p dimensional 

vector r is denoted by II r II and, is defined as 

Ilrll= max 
i 

Ir -I 1 

Obviously, Ilrll=a defines the boundary points of the hypercube centered 

at the origin and with sides of length 2a. 

Similarly, the generalized Tchebycheff no':i:m of a p-dimensional vector r is 

defined as' 

= max 
1 

where ~ is a p-dimensional vector. 

(3 -, Iy - I 
1 1, 

Then, using the generalized Tchebycheff norm. Bowman considers the problem 

m1n 
xe:X 

or alternatively-written in a familiar form 
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y. 
1 

= max 
xe:X 

C.x 
1 



~n z 

z > S~ (y .• - ~. C.x) = ~ .. ~ ~ 

xEX 

He then states that X*EX is an efficient solution only if it is a solution 

to Ps for some S>O. The converse is not generally true. A non-efficient 

point which is dominated only by efficient points lying on the boundary 

of the nonnegative orthant with origin at the non-efficient point may still 

. be a solution to PS ' Nevertheless, Bowman shows that if uniform dominance 

is satisfied, i.e. if for every non-efficient ~oint xl there exists an 
. 1 . 

efficient point x* such that Cx >Cx* then all solutions tops are efficient. 

This approach provides a means of generating all efficient points even 

though.a lot of computational e~fort is needed; it is also difficult to 

vary the parameters S. 
1. 

in an orderly way so that solutions representative 

of the entire set of efficient solutions can be obtained. 

It is also noted that the formulation given-by P Scan be considered as 

a parametric goal programming formulation, with the goal being the point 

y , and S representing the weighting of each of the goals. 

Integer goal programming is another "approach to mu1tiobjective integer 

problems, aiming at finding a single compromise solution. Sang Lee [41] 

incorporates three integer programming algorithms, a ctitting~p1ane, a 

branch and bound and a~ implicit enumeration algorithm within the goal 

programming framework' in a quite straightforward manner.· 

An interactive approach to mu1tiobjective integer and mixed-integer problems 

is presented by Zionts [63]. The approach is an extension of the'Zionts

Wa11enius method discussed in section 1.1 .. 2., to incorporate integer 

variables. The basic assumption is that the implicit utility function of 

the decision maker is a linear functiqn of the objectives. Under this 

assumption, it is sufficient' to consider the subset of efficient solutions 

that can be generated through parametric sca1arization. Because then, only 

these solutions are candidates for the decision maker's preferred solution. 
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zionts considers adaptation of the Zionts-Wallenius method within a branch 

and bound framework. Firl?t, the co.rresponding continuousmultiobjective 

~roblem is solved usi~g the Zionts~Wallenius method. If the solu~ion 
satisfies integer constraints, it is the preferredsolu~ion .. Otherwise the 

b.ranch and bound procedure is initiated by branching on an integer variable 

whose value is not integer in the current solution. Each of the newly 

generated solutions is tested and can be excluded from further consideration 

if i) the decision maker prefers an integer solution to it and ii) all 

efficient tradeoffs associated with the solution are viewed negatively or 

with indifference by the decision maker. Otherwise it is placed on the 

list of solutions to be examined further. If a new integer solution which 

is preferred to the best known integer solution is found, it becomes the 

best known integer solution and the previous solution can be dropped from 

the list if condition ii)holds. 

Whenever the objective function weights A. do not satisfy the constraints 
~ . 

constructed from decision maker's responses to tradeoff questions, anew 

set of Ai satisfying these constrain.ts are adopted arid a new objective 

function is formed~'Then, th~ optimal continuous solution fbr that objective 
..... 

function will have to be found,first. Generally branching continues from 

the most preferred newly found solution, or the most preferred solution 

from the 1is·t. If the list is empty,. the preferred solution has been found. 

Zionts also considers a cutting plane approach,however he doesnot find 

this approach promising on the grounds that cutting plane methods do not 

work well ~n practice o. 

The branch and bound approach has not been tested and "its convergence

properties are not known. However it seems to be promising for finding a 

maximum utility solution. 

The next two approaches to be discussed aim at generating all efficient 

solutions for MOZOLP problems and are algorithmically oriented.~Since the 

algorithm presented in this thesis is also in the field of MOZOLP, these 

approaches are discussed in more detail to indicate the state of art in 

this area. 
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Theqretical requlta and an algo.rith~ ~or generating ~ll e~~icient points 

for MOZOLP problelI)s are ~yen h:r Bitran [7]. In this apprQach the relations· 

between the ~aln problem P 

max Cx 

xe:F 

and the aux,i1iary problem p" 

max Cx 

xe:F' .. ' 
F"=b~lx.=O,l} 

J 

/ 

x.=o,l} 
J 

(p) 

where the constraints have been removed, are explored. P'" plays a central 

role in the analysis, based on the fact that every efficient point of P'" 

that is feasible ~n P is an efficient point of P.First, finding all 

efficient points of P" are considered. 

A set of preference directions V ~s defined as 

. ~ . v ={v and 
i' 

v.=O,l 
J 

or -I} 

h ·f '2 1 i ~ h' C 2 C 1 d 1. d· d· P" w ere ~ x =x +v for some v e:v t en x > x an x ~s om~nate ~n • 

The set of points dominated ~n P" in a gi~en direction vi is denoted by 

M(v~) and defined as 

if x.=l 
J 

if i v.=-l 
J 

x.=O,l 
J 

The'sets M(v~) can be determined as the sets of extreme points that solve 

the linear prograrruning problem: 'min{ v~x, O~J.~l}, and U M(vi ) gives the 
i' , 

set of dominated points of P~. 

The·set V is to be 6btainedthrough an implicit enumeration scheme. However, 
n as the number of potential elements o,f V is of the order 3 , some results 

, . 

aiming at reducing the enumeration are given 
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1 A 12 V 1 2. 1 . 
Lemma • ssu~e Y , Y E v.~v., J~J and y.=Q . J . J . 0 J 
subset of variable indices. Then M(y2)C M(yl) " 

As a result, it is only necessary to consider vI in such a case. Thus 

enumeration will start with vectors having as many zero variables as possible. 

The set of efficient points of P~, EF(P~) are obtained by eliminating the. 

dominated points from F;. Although every x£EF(p;)n F is efficient in P , 

a dominated point of p; is not necessarily dominated in P.:In order to 

relate P and p; the following lemma is given. 

Lemma 2. a) If Av1<O 

of P. b) If xtEF(P;) 

i for some i then any x£Fn M(v ) is a dominated point 
1 i but x£EF(P), then x+v tF for all 1 such that x£M(v ). 

I 

An algorithm for generating all efficient points ofP based on these results 

is given as follows. 

1. Through an implicit enumeration scheme, generate the subset of V 

implied by lemm~ 1. 

2. Obtain W M(vi ) and then by eliminating these from F; obtain EF(P~) 
1 . 

3. Obtain EF(p~)nF i.e. points efficient in both P and P~. 

4. Obtain ~ M(vi ) , Il={iIAvi~O} 1.e. the set of dominated points, 
h I l . 

of P~ which if feasible in P will also be dominated in P. 

5. Obtain 8i=M(Vi )+{V
i

} i£I2~{ilitIl}' .1.e. the set of points 

of P~ which dominate the'points ,in M(v1) in the direction v
1

• 

. . 
6. Exclude the points found 1n 4. from M(v

1
). i.e. form 

7. For each i£I
2

, eliminate all .elements of ni dominated ,by the. 

points found in 3. 
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8. For each i£I2? eliminate e1e~ent& o~ Qi infeasible in P. 

9. For each i£I2' determine the set of points of Q. dominated by 
. 1 

points in 6.n F. Let these be denoted by y .• Form the sets 
1 1 

0.=Q.-y. 1 1 1 

10. Form the se,t cj>=.UI 0.'- .U
I 

y .• This Step is necessary because 
1£ 2 1 1£ 2 1 

the sets used upto this point may not be disjoint. 

11. Obtain EF (P)=(EF(P") n F)U cj> 

Summarizing, first points which are efficient 1n both P" and P are obtained. 

Then, if a set of points dominated in P" which will also be dominated in P, 

if feasible, can be identified, these are e1iminated~ Dominated points of 

p .. , dominated by any element of the subset of efficient points of P found 

initially are also discarded. Next, the remaining points are further reduced 

by first checking for feasibility in P and next by verifying if they are 

dominated in the direction vi by a point in F. Points inefficient in P" 

but which are not eliminated in the process are also efficient in P and' 

these are added to the previously found solutions to obtain all efficient 

points. 

computational results' for a set of 30 problems are presented and compared 

with the results of directly applying the definition of efficiency to points 

of F. It is stated'that results indicate the algorithm does better than 

directly applying the 'definition of efficiency when the number of' points 

of F is large compared with 2n which is the number of feasible points of 

P ,i.e. number of feasible points without any constraints. However, all 

of the problems solved are quite small. The maximum problem size is nine 

variables four objectives and four constraints, and the computational 

results are not very encourag1ng • For example, a two objective function, 

four constraint, six variable problem requires about 3 seconds, whereas 

a similar problem with nine variables requires about 60 second for solution 

on Burroughs 6700 computer. 
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The .mixed~inteBer mUltiobjectiye proble~ i~ als.o dis.cussed briefl¥. The 

approach euggeated.is. solying·~ s.eries. of I;lcalarized probleIl}s using Benders' 

partitioning. Some condition~ are given to obtain a local appro~mation to 

A(x)whereA(x) is the set of objective weights, ~ for which the 'current 

solution x remains optimal. 

A branch and bound algorithm for sequentially generating the complete set 

of efficient solutions for MOZOLP problems is proposed by Klein and Hannan 

[38]. The procedure consists of: solving a sequence of continually more 

constrained single objective function problems. 

The concept of applying logical operators such as "and" and "or" to linear 

inequalities is introduced. Let·L., i=l,.~k represent a set of k linear 
. ~ 

equalities and let V stand for "or" and A stand for "and". The statement 

k 
V L . 

. 'I ~ 
~= 

- represents the condition that at least one of the inequalities Li must hold. 

Similarly the statement 

represents. the condition that all·the'inequalities L.must hold 
~ 

simultaneously. 

The general step k ~nthe method ,consists of solving,the problem Pk 

max 

s.t. 

,ex . 1 

Ax < b 

j k-l 1 2 r y E Y ~ {y , y ,.~.y } 

x. = 0,1 
J 

k.:..l 
where y. 1S the set of efficient points accumulated until step k. Let 



yk denote the set 01: ef~i~ient opdtlJa1 sq1utions to P
k

• If P
k 

~a~ a unique 

solution"it is ,the unique e~~icient solutioii~ If 1\ has multiple solutions 

the dominated solutions, are not included inyk ~ The cumulative set of 

efficient points yk th~n Decomes yk .;, yk ..... 1U yk '. ' 

The concepts developed by Roodman [51] for postoptimizing zero-one programs 

are utilized in the general solution procedure. When several related integer 

problems are to be solved through implicit enumeration , computational 

savings can be achieved if these problems are solved using the same 

enumeration tree. The tree'deve10ped during step zero when maximizing the 

first objective, is used for subsequent prob1ems.During solution of any 

problem Pk , . information on the causes 6f fathoming of nodes is stored. 

Subsequent problems use this information to determine which nodes remain 

fathomed for these problems. 

Along the enumeration tree, nodes are fathomed either due to infeasibility, 

feasibility or "insufficiency", where insufficiency means'that the upper 

bound for objective one is 1ess;.than the current lower bound for it. Nodes 

fathomed for infeasibi1ity:remain infeasible for all following problems and 

,need'not be recorded. Nodes fathomed for feasibility are recorded on a list 

of feasible solutions FL, in decreasing values 6f the first objective 

f~nction. A node fathomed for insufficiency cannot yield a solution to the 

current problem, but may give a solutiopto subsequent problems. These· 

nodes are recorded on a list of potential solutions PL. 

, , 

After these pre1iminar~es an outline of the algorithm is given as follows. 

1. Initialization: Solve the problem P 
o 

s.t. Ax < b = 

x. = 0,1 
J 

(p ) 
o 

and determine its set of optimal solutions yo. During solution 
-

create lists FL and PL., 'Set k=l and go to step' 2. , 
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2. Findirig a ~easible f?olutiqn to P k:' FortI) the problem P
k

• US~ 'some 

heuristic to ~ind a ~easible soi~ti~n i to ~k~ One possibilit¥ 

is to searcn through FL~ I~ no ~~a$ible solutlon go to step 5, 

otherwise,go to step 3. 

3. Forming the candidate list: Form the candidate list, i.e.-, the 

list of unfa~homed nod~~ for Pk , which is composed of all nodes 

from FL and PL whose upper bounds on the first objective are 

greater. than elx. Remove the nodes on the candidate list from 

FL and PL. Go to '~tep 4. 

4 .. Solution of Pk • Solve Pk , limiting· the enumeration to nodes on 

the candidate list, and determine the set of efficient opti~al 

solutions Yk . Set Yk=Yk-IU Yk • During solutio? augment lists 

FL and PL. Set k=k+l and go to step 2. 

5. Termination. Stop. All efficient solutions have been obtained. 

The authors also make some comments regarding the finiteness and 

exhaustiveness of the described procedure and the nature of the logical 

constraints. The logical constraints added by each efficient point differ 

only in their right hand side coefficients. This allows treating them as 

P-I constraints with multiple right hand sides. They also show that 1n the 

case of the bicriterion problem the logical constraints collapse to a 

single linear inequality and the problem P
k 

becomes 

s.t. Ax~b 

where yr is an efficient point determined at step k-l. Thus, it is observed 

that the approach of Pasternak and Passy [45] is a special case of this 

approach. 

Some computational results are reported and it is observe'd that the 

computational effo~t and the number of efficient' points increases as the 

number of variables and objectives increase and as the problem becomes 
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less restrictive, i.e. the nu~ber o~ f.ea~ible sQlutions.increase. For 

example a two, Qbjectiye, £qurteen yar~~ble ~qur con~traint problem with 

the right hand sides, heitig set to 50 7. of the sum of the constraint 

coefficients requires about 13 seconds of cpu time whereas a similar 
\ 

problem with four objectives and ten variables requires about 48 seconds. 

Actually, the computation' times are not really amenable to comparison with 

a compiled code, as the program implementing the procedure was written 

in APL, which is interactive,and run on a UNIVAC 1100/89. 

However, the authors comment that the computational results indicate that 

large amounts·of computation time are required and the number of efficient 

points increases a lot as the number of variables_and obj ecti~i~creases. 

Observing that a great number of efficient points make it harder for the 

decision maker to select a ,preferred solution, they~onsider a procedure 

which limits the search for efficient points. The problem P
k 

is modified to 

max 

s.t~ 

r p 
.A

l 
(. V

2
' 

J= ~= 

·x.=O,l 
J 

c.x> C.yJ + d .. ) 
~ = ~ ~J 

where dij>l and int:ger. Setting values for dij different from one limits 

the search for efficient points to points sufficientlY,different, with 

respect to objectiv~s 2 to p, from those already found. 

This limited search approach and. the original approach 'are both biased in 

terms of objective one which determines the order in which efficient points 

are discovered. Furthermore, there is bound to be a lot of backtracking 

and searching for feasible solutions as one moves from one problem to the 

next, which require considerable amounts of computation. Also storage 

requirements are quite high since. a lot of data needs to be stored to keep 

track of the nodes in the lists FL and PL. 

The pa'Pe'r of Klein and Hannan was not available at the initiation of this 
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thesis, when extension of. illlPlicit enuJlJeration techniques to 110Z0LP problems 

was considered. Independentl:y, an iJl)plici t en~II)e;ration Cil~ori thJl) f.or MOZOLP 
, 

problems, which is ,based Qn a di~~erent intep-pretaiion was developed. This 

algorithm, along with the studies carried out to increase its efficiency 

is presented in the next section. 

111.2. AN ALGORITHM FOR MULTIOBJECTIVE ZERO-ONE 
"LI NEAR PROGRAMMI NG 

The algorithm developed for MOZOLP problems ~s based on implicit enumeration. 

Therefore, in order to provide a frame of reference, a review of implicit 

enumeration techniques 1S presented. 

- 111.2.1. REVIEW OF IMPLICIT ENUMERATION 
, 

Implicit enumeration refers to a class of brCinch and bound algorithms 

designed specifically for problems with binary decision variables.Although 

several'-reformulations and refinements ha,'ve been done by various authors, 

the original version of the implicit enumeration algorithm is due to 

Balas [3]. The algorithm examines the nodes of the combinatorial tree by 
, ' 

the application of certain tests to determine whether feasible and improved 

solutions can be found by moving further down from them or not. 

In the implicit enumeration tree each node represents a "partialsolution" 

which is an assignment of binary vaiues to a subset of the decision variables. 

Variables which are not assigned values are called "free'variables". 

A solution formed through an assignment of binary values to all free 

variables is called a "completion" of the partial solution.' A node is 

"fathomed" when none of its" completions require further investigation. 

In Bala's' original description practically all tentative solutions or nodes 

must be stored so that they may be scanned during succeeding it,erations. 

Glover [30] applied the lI'backtrack~ngtl concept t~ implicit enumeration. 

Geoffrion [26] reformulated the Balas ,algorithm by representing the tree 

in vector form, which greatly improved the bookkeeping and computational 
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efficiency of the algo~ith~. In thi~ ~9~ulation, the path Pk from the 

initial node of the tree tQ node k i~ stored ~~ a yector and uniquely 

determines the remaining enUlqeration required. Variable indices appear in 

the vector if they correspona to assigned variables. The order of the 

indices represents the level in the tree. A positive subscript indicates 

that the variable has been assigned the value one, and a negative subscript 

indicates that the variable has been assigned the value zero. When branching 

to xp=l, Pk is simply augmented byp. In backtracking, the rightmost 

pos1t1ve element is changed to a negative element and all negative elements 
, ' 

to the right of it are dropped. The'enumeration is complete when all 

remaining elements are negative. 

Before giving the rules for fathoming and branching, some definitions are 

needed. At any node k, denoted by Nk , let w~ be the index set of assigned 

variables, let Bk and l\ denot~ the index sets of variables assigned the 

values one and zero respectively, and ,let Fk"be the index set of free 

variables. Then, the problem considered at Nk is, 

max .L
F 

c.x. + .LB C. 
JE k J J JE k J 

x.=O,l 
J 

.L
B 

AJ - S 
JE k 

Without loss of generality, it can be assumed that c<O, S1nce any x. with 
- J . 

'c .>0 can be replaced by xO:=l-x., yielding 
J ' , -k J J 

Then, the upper bound z at Nk is given by 

a problem with nonpositive Ct, 
-k 
z =j~BkCj and Zo denotes 

the current lower bound, i.e. the best objective function value so far 

computed. The sum of negative coefficients of free variables in constraint 

i is given by t., 
1 

is defined as 

1.e. t.=.E min{O,a .. }. I k , the infeasibility of Nk 
1 J EFk 1.J 

m ' 
= .E

l 
max {O,;-s ."} 

1= 1 
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and Ik (j) the infeasibility at the s~ccesser node if. x. is assigned the 
J 

value one as 

'm 
;:: • L 1 max {O, -s. + a •• } 

1= 1. 1.J 

Then, the fathoming conditions are 

i) Feasibility, i.e. 

ii) Infeasibility, i.e. 

iii) SUDoptimality, i.e. 

S>O 
= 

-. t .>8. for some 
1. 1.-k 

z <z 
=0 

i=l, .. m 

If a nede is fathomed, backtracking .is done to. the mo'st recently generated 

node. Otherwise, the next variable to be assigned the value of one, x.p ' is 

chosen such that IkCp)= min IkCj) 
j£Fk 

Many tests for reducing the enumeration have been proposed. Here some of 

these test·s are reviewed to. provide the background for the tests utilized 

in the MOZOLP algerithm. 

-k TEST 1. If c.<z -z 
J= 0. 

is due to. Balas [3] • 

then x.=O 
J 

Tests 2:-4 

in any optimal completion of N
k

. This test 

below, are'due to Glover [30] and are performed 

by first computing numbers G andU which give the minimum and maximum number 

of variables that are to equal cine in any optimal completion of Nk . The set 

of constraints 1.S augmented by . . . 

L· a .x. < s 
j~Fk ·.eJ JO 

where a .=-'C. 
oJ J 

and s =zk-z • Then for each constraint i;O, •.. m, the 
0. 0 

variables are reindexed so that the coefficients a .. are in nondecreasing 
1.J 

o.rder. The reindexed coefficients for constraint 

where t<r implies a. C.)<a. C.). The sum of r . 1.,t1.=1.,r·1.· 
of constraint 1., T.Cr), is defined as 

1. 

r . 
T.Cr) = La •. • C.) 

1. j=l 1.,J 1. 
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For each i such that s.-;O, G. is defined by 
~ ~ 

Then G.<G and G is 
1.=== ' 

For each i=O, ... ,m, 

T . (G.) < s, < T. (G. 71) 
~ ~ = ~ ~ ~ 

defined to be G=max G. 

H. is '1. given by 

U,. ;:::,00 
1::.. 

i,s.<O 1. 
1. 

ifT. (g}>s. ' 
~ ~ 

if T. (g)<s. 1. = 1. 

where g is the number of elements in F
k

• Then Ui~U and U is defined to be 

U=min U. 
i 1. 

TEST,2',If G>O, Nk' is fathomed since G<.L
F 

X.<U cannot be satisfied.A1so 
=:Je k J= , 

if G=g, then each of the free variables can be set to one. 

TEST 3. Let T.(G,U)- = min T.(t) 
1. G<t<U 1. 

i=O, .•• ,m 

be the sma1~est sum that can be obtained using at least G but not 

more than U free variables. Assume G<U and a.: is not one of the numbers - = 1.p 
which determines T.(G,U). If T.(G-1, U-1»s.-a.' then x'-=O in any optimal 

1. . • 1. 1. 1.p P 
completion of N~. 

TEST 4. Assume G<u and a ip 1.S one of the nUI~bers that, determines 'Ti (G,U). 

If T. (1.+1, U.+1) >'s .+a. - then x: =1 in any optimal completion of N
k

• 
, 1. 1. Ip P 

Some other tests can be found in Geoffrion [26], Fleischmann [20], Glover 

[30], Glover and Zionts.[31] and Petersen [47]. These tests can reduce 

the enumeration at the expense of added calculation, and so long as the 

extra calculations do not offset the benefits of reduced enumeration,it is 

worthwhile to use them. 

Since there are at most 2n possible combinations of decision variables, 

the finiteness of the algorithm is guaranteed. However computational 

'! 
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efficiency depends strongly on the effectiveness of the applied tests in 

curtailing the enumeration. 

It is accepted that implicit enumeration is a powerful technique {"or single 

objective zero-one problems. The possibi1itie~ of extending the techniq~e 

to mu1tiobjective problems are investigated in this study.It is observeo 

that through a vector interpretation and proper definition ot upper and 

lower bounds, it is possible to extend implicit enumeration to mu1tiobjective 

problems. " 

111.2.2. DEVELOPMENT 9F A MULTIOBJECTIVE IMPLICIT 

ENUMERATION ALGORITHM 

Reviewing briefly, the mu1tiobjective zero-one linear programming problem 

is written as follows 

max 

s.t. 

Cx 

Ax < b 
= 

x.=O or 1 
J 

where the ro~s of the kxn matrix C represent the different objective functions, 

and A is an mxn constralnt coefficient matrix. It is no longer-possible to 

'"keep all C <0 since a variable x. may have a negative coefficient in one ij=' . J . 
objective and a positive one in another.· 

The problem considered at any node Nk of the enumeration tree is: 

max .r CJ x. + .r CJ 

J e:Fk J Je:~ 

s.t. E A
j x. < S 

j E:Fk J 

where CJ and AJ represent the j th columns of C and A respectively. Now, 

one 'can define a s~ight1y different upper bound vector -tc as: 

-k 
Z = . , k Y. = .E. max {O,C .. } 

~ . Je:'lk ~J 
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k where Y. 
~. 

is the k i th ele~ent of the column yect~~ y ~ 

The lower bound 'vector ~ for a feasible node~ N
k

, is dei;ined al? 

Another difference from the single objective case is that instead of a 

single lower bound, now there will be a set of lower bound vectors. These 

vectors give the values of the objectives at feasible solutions whi~h are 

so far undominated and which are the candidates for efficient solutions. ' 

Branching and backtracking can be done as befor~, however the fathoming 

conditions need to be reconsidered. Since the c .. 's are not constrained to 

be nonpositive, continuing down the 

reach another feasible node N. with 
. . k J 

~J ~ ·:Z • This means feasibility. of 

1.J 

tree from a ·feasible node Nk one may 
• k 

a lower bound vector zJ~ or even 

a node is not sufficient for fathoming 

it. However,'the general rule of branch and bound for fathoming a node 

whose upper bound equals its lower bound still applies. The fathoming 

conditions are then 

i) Bound equality, i.e. -k 
Z = Z 

·-k 

:.ii) Infeasibility, i.e. t.>s. for some i=l, ••• ,m 
1. 1. 

iii) Domination,li.e. zk.:s LBJ for some jEL where "&:{O,l, ••• J!.) with J!. 

being the current number of lower bounds and LBJ is the j th 

-lower bound. 

When a new feasible solution is found, its lower bound vector should be 

compared against existing lower bound vectors LBj, jEL. If, the new lower 

bound vector is n?t dominated by any of the existing lower bound vectors, 

it is ,stored as a new lower bound~ And any existing lower bound vectors 

dominated by it are discarded. When no live nodes remain, the enumeration 

is complete and the current lower bound vectors 'give the efficient solutions 

of the MOZOLP problem. 
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A ,rudimentary flow diagrallj ~or a .multiobjectiye implicit enu.meration 

algorithm is given in Fi~ore IIl t 2. Here the conyention o~ branching 

according ~o minimum infeasibilit~ criterion has been ado~ted. However, 

branching from a feasible node is a dIfferent matter. Let the set Fk be 

partitioned into two sets, F~={hFklcj::Ol. and F~={jEFklcj10l. Then 

a feasible node is considered for further branching if F2+~. On the 
2 k -k . k 

other hand, if Fk~~ , then Y =0· and Z =~k and Nk 1S fathomed. If Nk is, 

not fathomed, any variable x.,' 
J 

2 . 
jEF

k 
can.be the branching variable, 

whereas a variable xr ' -rEFf should not 
on it leads to a dominated solution. 

be aonsidered because branching 

The 'steps of the algorithm may be summarized as follows 

STEP 1 

STEP 2 

STEP 3 

STEP 4 

STEP 5 : 

STEP 6 

STEP 7 

Initialization. At N , F ={l, •.• ,nl 
o 0 

Calculating bounds and feasibility 

t=O. Go to Step 2. 

-k j k 
k .. . 

S~O let Z ='~B CJ • Go to Step 
,.' - JE k 

check. Let Z ='~B C +Y . If 
]E k 

5. If t.>s. for any i, go to Step 6. 
1 1 

Otherwise go to Step 3. 

Bounding. If Zk < LBj for some jEL go to Step 6. Otherwise go 

to Step 4. 

Branching. Branch to x'=l, where Ik(p)=~in Ik(j). Go to Step 2. 
p , JEF

k 

Processing Feasible 

If LBj < Zk for any 
R: -k . 2 

and LB =-Z. If Fk=~ 

Node. If Zk < LBJ for any jEL go to Step 6. 

jEL s~t t=t-l and drop LBJ. Then set t=t+l 

go to Step 6. Otherwise branch to xp=l, 
'2 - .\. 
PEF

k
.• Go to Step -2 .. 

Fathoming and Backtracking. Fathom Nk • :1;£ no live node exists 

go to Step 7. Otherwise backtrack to the newest live vertex.Go 

to Step 2. 

Termination. If . t=O, there is no feasible solution~ If i>l 

LBj , j=l, ••• i are the desired efficient solutions. 

As mentioned before, the efficiency of any enumerative algorithm depends 
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k - L - 0 

Fk - (l ..... n) 

Ilk- 4-

Choose Xp such that 

Ik(P) = min Ik(j) 
jc'Fk 

Set ~ = 1 

Fk+l=Fk .- {pJ 

Bk+I=Bk U (pi 

Choos~ ~ such 

that CP!O-(pCT
k

) 

message 
feasible 
"olution 

Figure Il I .2. It",limentary tlultiobjective Implicit Enumeration Algorithm 
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on the ability of it~'test~ to chop <?f:~ a~ ~reat a portion of the enumeration 

tree as po~~ib1e~ The rudi~entary a.1gorith~ $ketched above cannot be . 
expected to be very ef~icient~ Of course, a lot of computational burden is 

inherent in'most mu1tio'Bjective techniques and they cannot compete with 

the computational efficiency, of single objective methods. Here, all tests 

of implicit enumeration developed for concluding infeasibility can be used. 

to advantage,but the fathoming tests involving the, use of upper and lower 

bounds are vector comparisons and it is obv.ious that fewer nodes will be 

fathomed by them. Therefore it was, decided to concentrate on dev,e1oping 

stronger domination tests and also to test the effects of different 

'branchin.gcriteria in order to improve the efficiency of the algorithm. 

111.2.2.1 •. Domination Tests and'A1ternative Branching Criteria 

Some domination tests and branching criteria which depend on the concept 

of "domination margin" were developed and tested. At Nk , the domination, 

margin Dk (j, s) of a free variab1exj , is defined as 

min 
re:L 

s=O,l 

Wh j ,1 -=k • '{-O C } . , . 1.. S h ' b d h ere UB. = Z .+m1.n , .. , 1.. e'., 1.t t e upper oun at t e successor 
1.' 1. 1.J ' . - -

. . . ' d l' 'S· . 1 1 UBJ , 0 ~ { 0 }. h node 1.f x. 1.5 ass1.gne the va ue one. ' 1.m1. ar y . =Z.-max ,C.. 1.S t e _ , ' J - . 1. 1. ,1.J-
upper bound attl'ie' successor node'where Xj is assigned the ya1ue zero.The 

domination margin is a imeasure of closeness t~ being dominated of the 

corresponding partial solution. Thus, we have: 

TEST 1. If Dk (j, 1),=0 for some j e:Fk' then xj=O necessarily in any efficient 

completion of N
k

.;Similar1y, if Dk(j ,0)=0 for _some je:Fk ', then x j =l 

necessarily. If Dk(j ,1)'=0 Vje:Fk , then Nk can be fathomed. 

P,roof: If Dk(j ,1)=0 

feasible completions 

Dk (j,l)=O Vje:Fk then 

(D
k 
(j, 0) =0) , . then for some re:L UBj , 1 (UB~ , 0) ~LBr and all 

of N with x.=l (x:=O) will be dominated. Also if 
k J J 

xj=O Vj e:Fk and Nk is fathomed. 
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ThiEl te~t is. an extension ot. Test 1, due tCl Balas, s.tated in section 

IIL2.1. It can be vie~ed as a :n}eans ~f perforl1)ing the dolJ1ination check 
-

before branching to a s.peci~ic ~ode. The fathoming proces.s can be further 

accelerated if a way of concluding domination not only before branching 

to a dominated node, but higher up the tree can be found. 

Similar to that done in section,III.2.l. before stating tests 2-4, let G 

denote the minimum number of variables that must be set to one in any feasible . ~ 

completion ofNk • Let Hi(r) be defined as 

H. (r) 
1 

r 
r min{O,C. '(')~} 

. 1 1,J 1 J= ~ . 
i=l, •.• ,p 

where the cost coefficients have been reindexed in nonincreasing order and 

C. . (.) 1,J 1 
denotes the j th biggest coefficient, among the free variables, 

of objective 1. Then, 

~ - r 
TEST IL Nk can be fathomed if R==Zk+H(G):sLB for any re:L, where H(G) denotes 

the vector IHl(G), H2(G), •••• ,Hp(G)]T. 

Proof. Let Nq be any feasible completion of Nk , obtained by setting at 

least G variables to one. The upper bound at Nk+l , where any variable Xj 

is set to one is given by 

-k+l -k Z. == z· +{min O,C .. } 
1 1 1J 

i=l, ••• ,p 

If at least G variables have to be set to one, then obviously 

z<1 < Zk + H(G) 

which means ~<LBr and N is dominated. Since any feasible completion of 
q 

Nk isdominatedNk can be fathomed. 

OR = Zk + H(G) can '\be termed' an lIadvancedll upper bound which gives the be"st. 

value that may be attainable for each objective by moving further down from 

~. This test is an extension of Test 2, given in section 111.2.1. Here 

105 



G is computed exp1icitl¥ ~ith re~pect to the c~nstraints and U is considered 
. . 

implicit1¥ and <:>n1¥ with relipect to the ~bject~ye~~ ~uch Q~ the egicienc:y 
\ '. 

of this test derives from the implicit consideration of U. Considering 

explicit calculation of U, let U~. denote the maximum number of variables 
~J 

that can be set to one before the ith component of the advanced upper bound 

vector becomes less than the ith component of LBj, i.e. U. 0 is given by 
~J 

H. (U .. +1) 
~ ~J , 

< LB~ - i< < H. CU .. ) 
= ~ ~,~ ~J 

U •• = co 
~J 

where g is the number of free variables. 

if j -k 
H. (g) < LB. -: Z. 
~ =,~ ~ 

otherwise 

Then U., the maximum number of variables that can be set to one if domination 
J 

with respect to LBJ is avoided, is given by. 

U. = max U .. 
J i' ~J 

Since if H.(U.) ~ LB~ - z~ for anyone i domination is avoided. And U is 
~ J] ~ ~ 

given by 

U= m~n U. = min max U .. 
J 

J j ~ 
~J 

Since the partial solution ~s not to be dominated with respect to any LBj • 

The calculations of the U .. 's 
. ' ~J 

necessitates sequential formation of the 

partial sums H. (P), P=l, •.• U .. +1 
. ~ ~J 

and comparisons with LB~ - ~ ,j=l, ••• ,t 
~ ~ 

for,each partial sum. However, by only implicitly considering U, these 

comparisons are made only once, which obviously involves much less 

computational effort. 

Similar to defining an advanced upper bound, one can define an advanced 

d o 0 • G Co ) 
om~nat~on ma.rg~n Dk J,s as 
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p 
= .min { 1: 

rEL i=l 

s=O,l 

Rj , 1 -Zk . ~ { (1) } where . = . + m~n [H. G- + C .. ], H.(G) 
~ ~ ~ ~ ~ 

R~'O= ~ + min {[H. (G+1) -. C .. ], H.(G)} 
~ ~ ~ ~J ~-

and 

are the advanced 

upper bounds at. the successor nodes where x. is assigned the value one and 
J 

zero respectively. Then we have 

TESTIII.If D~(j,l)=O 
of Nk • 

then X.=o necessarily in any efficient completion 
J 

Proof. If D~(j,l)=O, then for some rEL Rj,i~LBr. Let N be any feasible 
q 

completion of Nk with xj =l. 

consider objective i~. i=l, ••• j>. 

If C .. is one of the· numbers which determine H.(G) 
~ ~ 

.Then zq < Z~ + H. (G) 
i = ~ ~ 

and H. (G) < H. (G-1) + C •• 
~ = ~ ~J 

If C .. is not one of the numbers which determine 
~J 

Then Z9- < zl.'-+min{O,C .. } + H. (G-1) 
~ = ~ ~J ~ 

H. (G) 
~ 

i) if C .• < 0 
~J 

-;;q' -k . 
Z. < z. + c .. + H.(G-1) 
~ = ~ ~J ~ 

and H. (G-1) + C .. < H. (G) 
~ ~J=. ~ 
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ii) if C •• > ° 1J = then -;;<I -=:k 
Z. < Z. + H. (G-l) 
~ = 1· ~ 

But C .. > ° 1J = 
and C .. does not-determine H.(G) implies 

~J 1 

H. (G)=O 
1 

and 
. -;;q'~ -k 

H. (G-1)=0 • Therefore Z •. <Z.=Z.+H. (G) 1 1= 1 1 1 

H. (G) < H. (G-l)+C ..• 
1 = 1 1J 

-;;-q -k . .. . 
Thus Z. < Z.+m1n {[H. (G-l)+C"J , H. (G)} 1 = 1 . 1 1J 1 

and 

and 

N is dominated. Then x.=O necessarily in any efficient completion of Nk . 
q J 

An alternative implementation of Test IlL is to use the two-step domination 

margin D~(j,l). If Ik(j)~O, then setting Xj to one does not lead to a 

feasible solution and at least one other variable must be assigned the value 

one which means G>2. Therefore we have 

TEST IV.lf D~(j ,1)=0 and Ik(j)~O, 
completion of Nk • 

then X.=O necessarily 1n any efficient. 
J 

Similar to Test III,Test IV determines whether a variable has to be assigned 

a value of one 1n all efficient completions of Nk • 

TEST V. If D~(j ,0) = ° 
of N

k
• 

then x.=l necessarily in any efficient completion 
J 

Pro~f. If D~(j ,0)=0" then for some rc:L Rj,O :::LBr. Let N
q 

be any feasible 

completion of Nk with xj=O. Consider objective 1, i:1, ••• p: 

If C •• 
1J 

Then 

is one of the numbers which determine H.(G) 
1 

-;;-q -k . 
Z. < Z. - max{ O,C •. } + H. (G+l) - min {O,C .. J 

1 = 1 ~J 1 1J 

~ ~ Z. < Z. + H.(G+l) - C .. 
1 = 1 1 1J 

and H. (G+l) - C .. < H. (G) 
1 1J = 1 

If C .. is not one of the numbers which determine 
1J 

H. (G) 
1 
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Then ZC} < z~ .,. Ulax {Q,C .. } t H. (G) 
1 = 1 ' 1J l' 

i) if -;;q'-;:k 
then Z, <Z~ +- ll. (G) 

ii) 

and 

if C. >0 
1.j 

But C •• >0 
1.J 

1.= 1. 1.' 

H. (G) 1. < H. (G+1) = 1. - C .• 
1.J 

then z<!.< Z~ - C •• + H. (G) .1. = 1. 1.J 1. 

and C •• 
1.J 

does not determine H.(G) 1. 

H.(G)=O and also 1. H. (G+I)=O. 1. Therefore 

and H.(G+I) - C •• < H.(G), 
. 1. 1.J = 1. 

implies 

and N is doininated. Then x.=l necessarily 1.n any efficient completion 
q J 

of N
k

• 

Tests III .. and V are extensions of Tests 3 and 4 due to Glover. Tests I-V 

can be used to ch~ck for domination either at every node or periodically, 

or at certain selected nodes. The break-even point between computational 

savings due to a smaller tree and ihcreased computations to obtain the 

smaller tree should determine their frequency ~f usage. 

For ~ultiobjective problems a branching criterion other than the minimum 

infeasibility criterion could possibly be more effective. Since one is 

interested in enumerating efficient solutions, one can consider branching 

criteria. based on a domination measure. Also if some of the tests given 

above are to be carried out at each node in an attempt to screen out 

, variables leading to dominated solutions, the domination margin of each 

variable will be at hand and if co~ld be used to advantage.Consequently, 

two different criteria which use the domination lPargin as a basis for 
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selec~ing the branching variable .were formulated and compared with the 

minimum infeasibility criterion.' These.are 

i) Maximum domination margin criterion 

ii) Minimum domination margin criterion. 

The.effec1:s of these brariching criteria and of· the proposed tests on the' 

enumeration tree and the computation time were observed ona sampl~ of 

eight problem types with different numbers of objectives, variables and 

constraints. 

nI.Z.2.2.Experimentation on Branching Criteria and Use of Tests 

. First,' the simple dominatio'n margin Dk (j ,1) of Test I WaS . used in comparing 

the maximum and minimum domination margincrite!ia. It was observed that 

the use of minimum domination margi~ criterion led to the formation of a 

smaller sized enumeration tree. This seems surprising since the general' 

practice in branch and bound techniques is branching to nodes whicl1 have 
. ! 

higher upper bounds associated with them, hoping that many of the nodes with 

small upper bounds will never have to be considered if goodlowet bounds . . 

are fOUlid on the nodes that are branched to. [24, p.12l] _ It seems that this 

idea does not: extend simply when one is dealing with vector bounds. Since 

the bound' comparisons are vector comparisons, tests for fathoming by bounds 

are weaker, and a lot more of the nodes which were not branched to will 

have to be examined, later. Thus, although by branching on a variable with 

minimum domination margin one is moving along a -path which is. more likely 

to lead to dominated solutions, one also has the advantage of recognizing 

and fathoming such partial solutions earlier. On the other hand, by 

branching on a variable with maximum domination margin, usually a longer 

path results and. more time is spent for fathoming the partial solu~ion 

~ven though the possibility of finally reaching a nondominated solution 

is greater. 

2 
Alternatively, the minimum two step domination margin Dk(j,l) was 

considered.forselecting the branching variable. When this change was made, 

it was seen that the total number of iterations, or nodes considered, 
, '. 

decreased. This result also implied that Test IV, which uses the two.,-step 
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domination margin i~ ~ore e~~icient than Te~t ~ which u~es a one~step 

domination ~ar~in. 

'Next, t~e minimum domination margin '(MDM) criterion using D~(j,l) was 

compared against the minimum infeasibility (MI) criterion. It was observed 

that although the number of iterations was generally smaller for the first 

case, the Mlcriterion did better with respect to computation time. This 

shows that· although Test IV and a branching criterion based on it' are 

effective in reducing the enumeration, the extra computational effort 

associated is quite high. Total number of iterations and ~pu time for both 

cases are given in Table III. 2. All computation times reported in this 

study are on UNIVAC 1106. 

Table III. 2. Comparison of MDM and MI Criteria for Branching 

I:! 
OJ Size No.of~ MDM Criterion MI Criterion ..--I 
.0 'Effcnt. 0 
\-I P n m 'Points 

, 
Iterations 

I (msec) I Iterations 
, 

cpu(msec) P-I cpu 

1 '2 7 3 ,5 20 77 22 59 

2 2, 9 6 5 87 427 134 365 

3 2 9 9 5 87 483 132 419 

4 2 10 3 4 131 454 281 520 

5 2 15 10 '5 204 1622 361 1676 

6 2 20 10 8 1502 15128 2581 13496 

7 3 9 6, ' ' 6 93 474 125 342 

8 3 10 3 6 148 760 314 618 

Considering that reduced enumeration, when combined with more powerful 

domination tes'ts could lead to reduced computational time, it was decided 

to introduce tests II, III, and V into the algorithm and observe the 

performan~es of minimum domination margin and minimum·infeasibility'criteria 

in combinati~n with these tests. These tests require a lot of computations 

and their use at every node would be inefficient. After some experimentation, 

it was decided to use these tests only at nodes where at least one sixth 

of the variables have been set to zero and the number-of variables set to 
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zero is greater than or equal to the number of variab1e~ set to one. The 

rationale behind this is, that i~ the nUIlJbeJi of yariab1e~ ~et to zero is 

greater than the number of variaBles set to one and also greater than a 

certain percentage of the total variables, the resulting partial problem 

will be a more constrained one and a greater number of variables will be 

required t? take the value one, i.e. G will be higher. This is turn will 

result in tighter upper bounds, and smaller domination margins, thus making 

the tests more effective. Also by requiring a percentage of the variables 

to be assigned to zero, using these tests too high up the tree, where they 

are bound to be inconclusive is prevented. Whenever D~(j,l) was available, 

it was used for selecting the branching variable. 

It was also investigated whether the advantages of the two criteria, that 

is reduced enumeration and smaller cpu time could be combined beneficially 

by using Test IV only at certain selected nodes where it is expected to be 

more effective and using MDM criterion for branching at these nodes, but 

using MI criterion otherwise. In this implementation Test ,IV and MDM 

criterion were used only'after a new lower bound or a dominated node were 

found and branching to an adjacent node (i.e. a node differing from the 

current node with respect to the assignment of a single variable) was to 

take place. Then the following partial solutions formed will be more likely 

to be dominated, and Test IV and MOM criterion can be used advantageously -

to screen out dominated solutions. When the minimu~ domination margin 

exceeded -2pC , where C is the ar~thmetic mean of the elements of C, av av 
MI criterion was re~umed. When the minimum domination margin exceeds -2pC , av 
on the average more thap two consecutive branches of the enumeration tree 

-
have to be travelled before Test IV be,comes effective and some of the free 

variables can be set to zero, or domination co~cluded. The r~sults of these 

experimentations are given in Table 111.3. again for the same sample of 

problems. 

It was observed that the combi~ed usee.of Tests II, III and V led to decreases 

l.n cputiine and the number of iterations for both the MDM and MI criteria. 

However, MI cri'terion still did generally better with respect to cpu time, 

especially for problems where the number of variables is high. The mixfd use 

of the .criteria did not seem to be advantageous, implying the use of ,Test IV 

even at selected nodes does not increase computational efficiency. 
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Table III. 3 ~ Comparison o~ MD.M, ,11~ and :Mixed Branching Criteria 

.. . .. ~~ t? "Ap.l'li.~B:~i.0~, o~ :.T~~t~,JI, III and V • 
..' 

&j NO-rof 'MDM'Critei"ion .. MI Criterion ,':, ,'MIXED 
.-I Size Effcnt • 
,D 

Iter- CPU 0 
Points Iter- CPU Iter- CPU 1-1 P n m ations P-t (msec) ations, (msec)' at ions , (msec) 

i 

1 2 7 3 5 18 71 19 59 18 74 

2 2 9 6 5 85 360 96 340 76 344 

3 2 9 9 5 85 407 95 413 76 386 
, 

4 2 10 3 4 80 337 114 360 77 331 

5 2 15 10 5 137 1160 134 944 144 1192 
, 

6 2 20 10 8 907 11509 1229 10066 976 11729 

7 3 9 6 6 97 425 74 400 80 418 

8 3 10 3 6 123 570 170 563 119 571 

It was also observed that the number of times Test V was conclusive, 1.e. 

a variable was assigned a definite value of one, was quite a small 

percentage of the times it was used., The results for the MI criterion 

without the use of Test V are given:.in Table 111.4. wher.e slight decreases 

in cpu time 'are observed. 

Table III.~. Results for MI Criterion with Application 

of Tests II and III. 

No.of 
Size, ~Efficient, ,Iter- CPU 

.1' . j 
Points at ions (msec) Problem p , n· m 

1 2 7 3 5 19 50 

2 2 9 6' 5 99 321 

3 2 9 9 5 ·93 384 

4 2 10 3 4 115 354 

5 2 15 10 5 135 889 

6 2 20 10 8 1242 10101 

7 3 9 6 6 97 417 

,8' 3 10 3 6 101 520 
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These experimentation~ indicate that ,mini.1l).um infeasibility criterion is 

superior to ~ini~u~ domin~ti9n ~ar~in criteriqn and Tests ~I and II~ are 
- \ 

stronger than the other tests. Considering larger prob1.eIIls where the number 

of efficient points and therefore the number of lower bound vectors will be 

large, the use of minimum domination margin criterion will involve a greater 

amount of comparisons and computations and thus will be even more time 

consuming. Also it is intuitive that if anyone of Tests I, III, IV and V 

are to be used, it is more advantageous to use the one leading to smaller 

upper bounds. Much of the computational effort associated with these tests 

derives from the comparisons of the upper bound vectors formed for each 

variable with the lower bound vectors. The number of comparisons required 

remai~s .roughly the same between these tests and has a tendency to decrease 

as the upper bounds get smaller, because once an upper bound vector is 

dominated by one lower bound vector, it is not compared· with the others. 

111.2.3. THE FINAL ALGORITHM AND COMPUTATIONAL RESULTS 

On the basis of the experimentations 'with the branching criteria and the 

domination tests, it was decided to use the minimum infeasibility criterion 

for branching and use Tests II and III at selected nodes in the final 

algorithm, where these nodes are selected as described in the preceding 

section. 

The a1gorithm~as coded in FORTRAN and run on UNIVAC 1106. The computer 

program consists of. a main program MAIG,and three subroutines FEAS, BRANF 

and ADVDM. The enumeration .tree is 'structured by the main program, the 

bookkeeping scheme being along the lines given by Geoffrion [26]. However 

to accommodate the definite one assignments, and for avoiding a zero 

assignment to these variables during backtracking, two arrays are utilized. 

The first array indicates the level of the assigned variables on-the current 

path, and the second array indicates whether a variable is assigned and 

if so, the value assigned to it. If a node for which the 1as·t variable 

assigned, x
r

' 'was set to one is fathomed and backtracking to xr=O occurs, 

the previous set of infeasibi1ities I
k

- 1(j) are used for selecting the new 

branching variable. These are a1r~ady available a~d remain the same for the 

new node. All input and output is also coordinated in the main p'rogram. 
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subroutine'FEAS is used to check for feasibiiit~. Through the parameter JF 

specified b~ this f?ubroutine and supplied to the t1)ain pro~ralI!, feasibility 

of the current node,. or infeasibilit~, of all further completions can be 

determined. Also if the condition t.=s., holds for some constraint indicating 
1.' 1. " , 

definite .assignments are needed in order t~ achieve feasibility, the 

constraint number is returned to the main program via the parameter KR so 

that these assignments can be made. 

-
subroutine BRANF selects the branching variable with minimum infeasibility 

and returns the information to the main program through the parameters JB 

and MINF. JB denotes the index of , the branching variable and MINF its 

infeasibility. If MINF is zero a feasibility check 1.S not done after 

branching. 

, Subroutine ADVD!1 carries out Test II and Test III. If Test II is conclusive 

the parameter JD is set to one and control returns to the main program so 

that the current node can be fathomed. If Test II is not conclusive, Test III 

is carried out to determine if any variable'has an advanced domination 

margin of zero. If ~o, the parameter Jl 1.S set to one. If all variables 

have a zero domination margin JBis set to zero, otherwise JB stores the 

index of the variable with minimum domination margin. Upon returning to the 

main program either the current node i,s fathomed (JB=O) or some variables 

are set to zero (Jl=l) or the enumeration continues by branching to XJB • 

The flow diagram of ,the algorithm is given in Figure 111.3. Listings of the 

main program and subrou~ines and the definitions of the parameters used, ' 
-

along with a sample output are given:,in Appendix IV. 

Computational results obtained for 19 types of problems with different 

number of objectives, variables and constraints are given in Table 111.5. 

Here, iterations means the number of nodes or partial solutions generated 

for which feasibility test and upper~nd lower bound comparisons are 

carried out. Number of times ADVDM is called gives the number of nodes for 

which Tests II and III are carried out. The results give the average for 

four problems per problem type. The problem coefficients were generated 

randomly, but not so randomly as to make them too, haphazard and totally 
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Heindcx constraint and 

ubj~c~ive coefficients 

Initialize path information 

NL ~ 0 

(NL is no. of lower bounds) 

r"uHihlt
·0 .. )<!:'------< 

No 

No 

\""';--------~ {, 

No Carry out implied 

definiteassignments\ 

Set all free 

variables to onel---=~ 0 
Yes 

Sct variables with zero 
domination mar~in to zero 

Carry out implied 
definite assignments 
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Yes 

,-

J 

t'iOi:-------I. a 

YeG 

~-----..{a 

feasible 

solution 

Figur~ 111.3. Flow DiaKrsm of Hultiobjcctivc Implicit Enumeration Alp.orithm 
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,Table III. 5. COIl)putationa,1 Resu1 t~ 

No. of· 
Size Effcnt. 

Problem' p n n 'Points 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

./ 

2 10 6 

2 10 8 

2 10 10 

2 11 10 

2 12 10 

2 13 10 

2 14 10 

2 15 10 

3 15 10 

3 15 12 

3 15 14 

3 15 16 

3 15 ,18 

3 -15 20 

3 16 20 

3 17 20 

3 18 20 

3 20 20 

4 20 fO 

3 

5 

3 

3 

5 

6 

5 

8 

7 

23 

13 

9 

15 

15 

28 

17 

20 

26 

62 

No. of time!? 
I ADVDM 

Iterations" is called 

77 

84 

53 

71 

128 

221 

221 

354 

384 

936 

524 

423 

473 

573 

1368 

1135 

2384 

3678 

4073 

1.4 

41 

22 

33 

72 

96 

131 

218 

214 

546 

315 

252 

288 

315 

821 

703 

1344 

2390 

2547 

CPU 
(msec) 

306 

503 

338 

470 

971 

1400 

1885 

3119 

3396 

12814 

6762 

5078 

6413 

7916 

27460 

22526 

59437 

86180 

172024 

unrealistic. The objective function coefficients were generated randomly in 

the interval [-20, 100]. The coefficients of the'first constraint were 

generated randomly in the interval [0,100]. For each of the following 

constraints, the coefficient of each variable was generated by adding a 

random increment in the interval [-30, 30] to its coefficient in the first 

constraint. The right hand sides of the constraints were randomly set to 

'between 40 % and 60 % of the sum of constraint coefficients. 
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The .result~ indicate that 

i) Number of cons.'traints' does not have any systematic effect on 

computation time. 

ii) Computation time increases as the number of objectives and 

variables increase. 

iii) Computation time also increases as the number of efficient points 

increase (Compare problems 10 and 11). 

iv) Generally, number of efficient points increases as the number of 

objectives and variables increase. 

The algorithm appears to be more efficient than the previous algorithms.' 
"-

UNIVAC 1106 is not a particularly fast machine, but still ,a problem with 

three objectives, twenty variables and twenty constraints could be solved 

in about 86 seconds.' The computation times given by Klein and Hannan are 

not really comparable due to their use of APL in ~oding their algorithm. 

However they use UNIVAC 1100/89 and UNIVAC 1100/80 series are between 6.6 

to 34 times faster than UNIVAC 1106. Still, thecomputation,·times reported 

for similar problems are much higher than the times reported here. When 

compared with Bitran's.results, this algorithm seems definitely better. 

As stated-before, a two objective, nine variable, four constraint problem 

required about 60 seconds on Burroughs 6700 whereas with this algorithm 

a two objective ten·variable six constraint problem requires much less than 

a second. Although the architectures of Burroughs and Univac computers are _, 

very different and direct comparisons cannot be made, Burroughs 6700 systems 

are still more powerful than Univac 1106. 
/ 

111.2.4. REMARKS AND EXTENSIONS ON THE ALGORITHM 

The present algorithm and the algorithm of Klein 'and Hannan aim essentially 

at the same thing; generating efficient solutions utilizing implicit enumeratiol 

and in the process'eliminating solutions dominated by the already available 

solutions. The first algorithm accomplishes this by using vectoral upper 

and lower bounds and the second by introduction of a .set of logical 
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constraints within a sequential procedure. The function of the logical 

constraints. and the 10\Ver bC~lUnd yec;:tor~ if? the saIl)e;. the:r also eli~nate 

dominated solutions. The main difference between the algorithms is that the 
• 11 11 d • • • fl.rst uses a one go proce ure al.ded Wl.th dOffil.nation:tests where each 

node of the ertumerationtree is considered pnly once; whereas the second 

uses a sequential procedure where certain nodes have to be examined several 

times. An advantage of the sequential procedure is that solutions which 

are optimal with respect to objective one at any step of the sequential 

procedure are identified as efficient solutions. In the first algorithm 

the efficiency of no solution can be verified until enumeration is complete. 

However, the sequential procedure requires large amounts of storage space 

to keep track of nodes which require further investigation. Furthermore, 

passing from one problem to the next and solving each problem involves a 

lot of scanning and ~ovements from one node to totallY'unrelated nodes which 

necessitate considerable amounts of calculation. 

Another observation is that the screening procedure proposed by Klein and 

Hannan for limiting the search for efficient points can be adopted within 
( 

the framework of the present algorithm. Again, the desired spacing between 

efficient solutions·· can be, specified by means of a minimum variation vector 
. / 

d, so that the objective values of any two efficient solutions d~ffer from 

each other at least by the amounts specified by' the elements of the vector d. 

In this case, a node, Nk , is to be fathomed if for some jEL 

and ~<;LB~ 
3. 1. 

for SOme i, i=l, •.• ,P . 

because then further completions of Nk will not be sufficiently dissimilar 

from LBJ. The second condition is required to guarantee that the lower bound . . 
LBJ does not eliminate an efficient solution which actually dominates LBJ. 

Similarly, ,a feasible node, N
k

, is fathomed if for some jEL 

and for some i, i=l, ••• ,:P •. 

If a feasible node is not fathomed by the above.condition, and a new lower 

bound LBJ!.+l is found, any existing lower bo~nd LBj , j=l, ••• ,J!. ; for which 
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and LB~ ~ ~ for sOIl)e i, .i= 1 , ... ,p 

is to be discarded. 

It is shown in the following theorem that this procedure generates a subset 

of the efficient points of the original problem (which are dispersed at least 

by the specified minimum variation vector d). 

1 - - ~ 
THEOREM 111.1. Let LB; ••• ,LB denote the final set of lower bound vectors 

J. 1 ~ 
obtained by the above procedure. Then .LB , ••• LBare a subset of the 

efficient points of the original problem. 

Proqf. Assume LB
q 

for some l~q~~ represents a dominated point. This is 

only possible if all efficient points dominatingLBq have been eliminated 

by the revised fathoming conditions. 

LBq itself cannot eliminate an efficient point, Y, which dominates 
~ q ~ 

as Z >Y~LB for all nodes Nk along ~ path leading to Y, and Zi< 

never be satisfied fOl;" any i, i=l, ••• ,p. 

LB\ 

LB9- will 
1. 

Also, if any lower bound eliminates an efficient point, it also eliminates 

all point.s dominated by that efficient· point. Thus, if any efficient point 

domina~ing LB
q 

has been eliminated, LBq must have been eliminated as well, 

contradicting that LB
q 

is contain~d in the final list of lower bound vectors • 

. . 
With this procedure a reduced set of efficient points which are as dispersed 

as desired with respect to objective values can be generated. As the elements 

of d get bigger, fathoming will be accelerated and fewer efficient points 

will be generated. Thus, computation. time, which is quite s~nsitive to 

·number of nodes considered and to number of efficient points, will decrease 

considerably. 
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CQNCLUS ION--

As a consequence of this study in the fields of multiobjective linear and 

integer linear prograrnming~ three algorithms. and associated computer cod~a. 

have been developed. An application in power systems expansion modelling, 

involving detailed analysis of vario~s policy implications, has also been 

carried out. 

The MOLP algorithm either generates all efficient extreme points of 

multiobjective linear programs, or a subset of them corresponding to a 

decision maker specified space of objective weights. Earlier results given 

by various authors are synthesized to produce an efficient algorithm 

facili tating the incorporation of preferences of the decision maker into the 

solution process. Through the observation of a monotone-connectedness 

property, the duplication of effort is avoided so that computational 

effi~iency can be increased. 

A new algorithm for bicriterion linear programs which requires only a series 

of divisions and comparisons for determination of adjacent efficient extreme 

poilits, and which is c~mputationally much more efficient with respect to 

existing algorithms ~as been given. 

One possible area of utilization of the bicriterion algorithm, other than 

for-problems with two objectives, is in generation of trade-off functions 

between pairs of objectives; which could be inputs to other techniques of 

multiobjective decision making. One such technique is the Surrogate Worth 
I 

Trade Off Method developed by Haimes and Hall [33]. 

Another possibility is the ext-ens ion of the reasoning behind the bicriterion 

algorithm to nonlinear problems. Starting a~ an efficient point, the 

bicriterion algorithm identifies an efficient direction where the ratio of 

the rate of increase of one objective to the rate of decrease of-the other 

is maximum. A similar procedure could possibly be used in identifying 

efficient directions for nonlinear problems. 
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The major limitation of the computer codes of.these two algorithms is maximum 

problem size. Current1¥ both codes are restricted to problems with 50 

constraints and 50 variables' (excluding slack and artificial variables); 

a1}d the MOLP code allows for. 5 objectives. The programs utilize only core 

memory, and by utilizing disk storage larger sized problems could be solved. 

Double precision,arithmetic is used in the computer programs to avoid 

inaccuracies due to roundoffs which could accumulate and cause problems in 

identification of efficient points.' However, the use of double precision 

arithmetic also limits maximum problem size, as dimension.requirements are 

increased. 

Presently, the computer programs are suitable for educational, research 

and medium sized application problems. The codes are not professional ones 

and through further refinements and by optimizing the coding both the 

maximum problem size and the computational efficiency could be increased. 

The MOZOLP algorithm is based on implicit enumeration which is a powerful 

technique for binary problems. Some domination tests aiming at identifying 

paths of the enumeration tree that lead to dominated solutions as higher 

up the tree as possible were developed and tested. The algorithm appears 

to be computationally more efficient than the previous algorithms for 

mu1tiobjective binary linear programm1~g. 

Presently, the computer program for the MOZOLP algorithm allows for 5 

objectives, 50 const~aints and 70 variables. However, the maximum problem 

size tested was A objectives, 20 constraints and 20 variables as the 

computation time increases considerably as the number of objectives and 

variables increase. For problems with large number of objectives and variables, 

the approach may have limited applicability. 

Further research and experimentation1s needed to tackle large sized binary 

. problems. One possibility is the utilization of the scree~ing procedure 

discussed in section 111.2.4.; either by itself or within the framework 

of an iterative, 'interactive algorithm. One could start with a sufficiently 

big minimum variation vector d, and generate a few efficient points. The 
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decision maker could be a!?ked to evaluate these~ and based on his 

evaluations., the prob1ell) could be )l)odified by constraining the allo\Yab1e 

ranges for the ob~ectives. Continua11:y' choosing smaller values for d and 

constraining the probr~m, th~ decision maker's preferred solution could be 

generated by solving at each, cycle problems having much smaller sized 

enumeration trees. 

Reported examples of applications of mu1tiobjective programming techniques 

to real-world problems, especially for integer cases, seem to be rare. 

A lot of insight can be gained from real-world applications and research 

in this direction would be valuable. Emphasis should be given to meaningful 

presentation of results to 'the decision maker~ so that he can-make educated 

judgements based on insights generated by these approaches. 

It is hoped that the results and algorithms presented in this work will be 

beneficial t.O researchers ~n' the field of mu1tiobjective decision making. 
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APPENDIX 1:_ COMPUTER PROGRAM FOR 
MULTIOBJECTIVE LINEAR PROGRAMMING 

A.I.l. DEFINITION OF VARIABLES USED IN THE PROGRAM 

M 

MM 

N 

NMM 

DEL 

ZZ(.) 

CN (. , .) 

BB( .) 

AN(.,.) 

IXN(J) 

IBE(I) 

IEQ(I) 

NT( .) 

'IRT(I,. ) 

IV2(I, .) 

LOB (I,.) 

Ll 

L2 

CP(. ) 

ZP 

IPHASE 
'I 

• 

Number of objectives 

Number of constraints 

Number of variables 

Number of nonbasic variables in the simplex tableau 

Accuracy limit for comparison with zero 

Objective value array 

Reduced cost matrix 

Right hand side array 

Nonbasic coefficient matrix 

Nonbasic variable associated with Jth column of CN. 

Basic variabl.e associated with Ith row of AN 

Index specifying type of the Ith constraint 

(0 for ~ constraint; 1 for=constraint; 2 for ~ constraint) 

Nonbasic variable array of the basis to which 

a move is desired 

Nonbasic variables of 

feasible basis) . 

Nonbasic variables of 

to be visited later 

Nonbasic variables of 

Nonbasic variables of 

for objective M. 

Number of bases Ln IVI 

Number of bases Ln IV2 

Ith A-adjacent d.f.b~ (dual 

Ith d.f.b. which LS stored 

Ith already generated d. f. b. 

Ith alternative optimal basis. 

Array used for forming phase one objectives, or ,for 

other intermediary purposes 

Phase one objective value 

Index taking value 1 if phase one of simplex algorithm 

is being carried out, 0 otherwise 
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IFLAG 

JT(. ) 

LJ 

L(. ) 

NC 

WL(I) 

WU(I) 

WA(.) 

IW 

MW 

: Index taking ya1ue 0 if a ~ove to an adjacent basis 

.is. to be ~ad~, 1 Qtherwise 

:: 'The set 01; nonbasic ,variables leading to~ .A~adj acent 

d.f.b. with nonincreasing values of objective M 

:. Number of elements of JT , 
The set of nonbasic variables which are candidates for 

being placed in the set JT 

Number of elements of L 

Lower bound for weight of objective-I 

• Upper bound .forweight of objective I 

The initial weighting vector 

Index taking value 1 if there are limits on objective 

weights, 0 otherwise 

Number of > constraints of the subproblem arising from 

limits on objective weights 

ALP(.,.) : . The coefficient matrix of the above constraints 

BP(.) : The right hand side array of these constraints 

MWP:·Number of ~ constraints of the subproblem arising from 

limits on objective weights 

ALN(. , .) 

im(.) 

NR 

MR 

N2 

A( • , • ) 

B( .} 

IBQ(I) 

NlX(J) 

ID(. ) 

The coefficient matrix of these constraints 

The right hand 'side array of these constraints 

Total number of co~straints of the subproblem 

MR = NR-MWP 

Number of artificial variables of the subproblem 

The constraint coefficient matrix of the subproblem 

The right hand side array of the subproblem 

Basic variable associated with the Ith row of A 

Nonbasic variable associated with the Jth column of A 

Array st~ring nonbasic variable indices of the main 

problem in the order in which corresponding constraints 

of the subproblem are formed 
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A.I.2. INPUT INSTRUCT,IQNS 

The inputs to the program consist of tneparameters- M, MM, N, IW and DEL; 

the arrays BB and IEQ;- the matrices AN and- CN;- and if IW has' the value 

one,the arrays WL, WU and WA. 

The parameters M, MM, N, IW and DEL are inputted on a single card according 

to the format (415, F12.8). 

The right hand side array BB is inputted according to the format (lOF8 .4) '. 

The coefficient matrix AN is inputted columnwise and by its nonzero elements. 

First, the number of rows ~n which nonzero erttries appear in each column 

is inputted according to the format (12); then the row indices and the 

coefficient values are inputted according to the format -(8(I2,F8.4)). 

All elements of the cost matrix are inputted rowwise according to the 

'format (lOF8.4). If intervals on objective weights are specified, Le. if 

IW=l, then the corresponding elements of the arrays WL,WU and WA are read 

fo~ each objective and consecutively for all objectives according to the 

format (lOF8.4). 

A.I.3. PROGRAM LISTING AND SAMPLE OUTPUT 

The listing of the main program_and the subroutines and a sample output 

is given below. 
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,.;\Y. <:ODU-=i!, ';L,:[ I~ r,U \,'°i'!i\"LC~, ~)(j LGi:')l'~;\IIJI'" ~) r)IJ,jLL' IVI.:> 

~,::::t f)1- I)!~,I.' 1\1=1- OF VM~.' i·.~ ,=,t qF COI'J5., nEL:::ACC!lRACY 
(tl=H()N;\I\~>IC COS" ~H\TI~IX, 1\1~=rJI')IJrASIC COEFF. r.,I\TnIX, BB=pHS 
!X/\j=t' OJI1!,SIC VAP.. seT, THE=r\A';IC VI\R. OF [QUI\TION 

1E(.)=0 r:OR LE COI-JSTR. ; =1 FUR EQ CONSTH. ; =2 FOR GE CONSTP. 
I MPL T r 1 T DOUBL[ PHr...C I SlOtH A-H, O-Z) . , - , 
Dr~E'jr;rOtJ TEQ(51) ,rn(C)U) ,IVr:CCSO) ,LOH(lO,50) 'IRTC50,50) ,IVl (50'50) 
CO" rv,'.j' J/ GlJL 1 /r~ , nt-" NM~~ , [It"-L , p,B ( 5 n ) , 1\" ( 50 , 100 ) , CtJ( 5 , 100 ) , 7 Z (5 ) , T OF 
CO!·~t"d'!/ r,UL~ /CP ( 100) , Zp, I XII ( 100) , IRE C 50) , I PHASE' I FLAG, T V2 (200,50 ) 
CO'AMI)·r/(;IJL~/L.J'JTC~O) ,NC,t.(50) 'i'lL(5) ".'JIJ(5) ,WA(5), Il:l,M\lI'MWP,~R,ALP( 

*10,5) ,BP(1f) ,AUH10,5) 'BN(10) 
CO~~M()' 1/ G\JL/UrJ~ , 1~2 , A (60' 65) , H ( 60) , I BQ C nO ) , f\J I X (65 ):, 10 (6 n ) 
HEAO(~,qOO) M,~M,N'IW,UEL 

1n FOrHilATCLn:l,F12.H) 
~JRT TE (b, 18En) f1, I-J, ~"'M 

~3 FO~MATC1H1'10X',50LUT1UNS FOH THE MULTtOB~ECTIVE LP-PQOSLEM.,/.11) 
*"I'JITH "11,, Oi1JECTIVt.S ,rI2" \fARIARLES ,'12" CONSTRAINTS,,//,] 
*lX,4':)( '*', » 
f~E/\IJ(r),gOl) (RB (I)' 1=1 'Mr." 

al rOO~ATC10Fn.4) 
!\EI\O('"Q02) (1EI)(1> ,I=l,M',,> 

J2 FORM\T(I~OI?) 
uo gl'1 ,J=1,N 
kE!\[)('),Q03) KP. 
kE!\l)('),Q04) (l,I\IHT,,j) ,K=l,KIU 

10 con,.lollJE -
k E /ilJ{ ') , Q 01 ) ( ( eN ( 1" , ,j) ",..1= 1 , 'I> , 1=1 ,r..., ) 

r:3 FOP M;\1 (1 2 ) 
D4 ~ORMAT(R(!?,FR.4» 

M\'Jn=o . 
i<i\t.J=M 
DO 1 .J=l, 1,1 
I Xfl (....I) =....1 
DO 1 r=1 rfl!j 

1 eN ( I , .:1> =-01( I, J) 
1 \-w=l T~ THERE AHE Llt-n 1 S oN OBJECTIVE \lJEIGYTS; =0 OTHFRWISE 
IF[I~.Eo.o} GO TO 4 
R[;'\[l(r;,qOl) (\oJl.<I) ,\oJUCT} p\'il'dI> ,I=ld·~) 
CA l L 'II:-"GIIT ' - . ,- J. .",. I 

D012!=1,IJ 
12 UJ(M+' ,.J}=O. 

D013 l=lr1J 

,00'3 ~=1'~"'1 
'3 C N ( 1If,+: , ,J) =C N PH 1 , J } +\111\ l I ) :to J ( 1 , ,j ) 

r'~='-·H 1 
Lj K=n 

iH=N 
00 1(1 I=l,rJ1 t.1 
IF(IE1(I).EG.l} GO TO 10 
IF(IEnCI}.EQ.O) GO TO Y 
N1=Nl+1 
AN(I,rll-K}=-l. 
I xt'J (1,11 -K ) =t'Jl 
GO TO 10 

<) IH=Nl+1 
K=I<+l 
I BE ( I ) =i.J1 

/ 

, 



~o ;<", l::l"'''~ 

IF(r~)(I);En.O) GO TO ~O 

l-~l=Nl .. l 
1m: (1'=141 

I corlT I qUE 
iH=Nl-N2 
Nl IS THE t OF ARTIFlr.iI\L VI\R rA(3LES 
IF(Nl.En.o) GO TO 100 
IPHA:"JF=l 
zp=o. 
00 2:1 J=l, N~4r-1 

-; CP (J)::O. 
FO~M PHASE1 OI3JI::CT 1 VE 
uo 30 1=1, ~"'M 
IF(l11r::(U.LE.!J2) GO TO 30 
ZP=ZP-B(1(I) 
00 30 J=1, r I~"'I'" 
CP (J) =CP (J) -IV! ( I, J) 

[1 corn H1UE_ 
r'lI!lIr-nZE PHI\Sr1 OBJECTiVE 

[) KE::O' 
UO 50 J= 1, !H4r.., 
IF (el) (J) • G[. -rWL) GO TO 50 
r-E=J 
GO T) 55 

o COr.JT It IUE 
IFrz,'.GE.-OEL) GO TO 7U 

. \'JR I T E (6 , 80S) 
5 For~MAT(Hi1,40X"TI-IE:RE is flO F[ASIIlLE: SOUJTlor·J OF THE f'lROBLFNi,//) 

STOP . 
,5 CALL LEiW(KE,f<r..HN) 

IF(KMTN~EO.D) WRITE(6,HOS, 
I F <I tJ!-: ( K ~iH n) • L E: • N 2) G () TO 65 
CALL PIVOTCKE,KrvlIN) 
tlf\1~1=;f~M-l 

j'..jl=Nl-l 
IFO<E.EO. (1'1~"r"'+1» GO TO 40 
uO 6tl J=KE, N14t-'1 
IX t'!(.J)=JXt·j(J+l) , 
CP(J)-::CP{J+l) 
uO 5:~ 1=1, r, 

)~ C[\J(I,.J}=CIJ(I,J+l) 
UO 5CJ 1=1, f~M 

)9 AN ( I r ,j) =AN ( I , J+ 1 ) 
:,0 COUTltlUE 

GO T \) L~ ('I 

:) 5 K L = I r3l: ( K ~.'1I tI ) 
CALL PI\fOT(KE,Kr-1IN) 
IX t.! (Kt::) =KL 
GO 1'040 
PH.I\S[1 OBJECT IVE r",HU rll ZED 

70 IF(Nl.E:Q.O) GO TO 100 
Ti-iERE AH[STrLL ARTIFTCIAI.' \fAR. PI BASIS 
K=l 

7g DO' 80 I=K, ··Wl 
IF(H,HIl.GT.OE.L) GO TO 80 
IF(LW(I).LE.tJ2) GO TO BO 



2. lC';(.:.' 'Ut_ 

I~UL.L l~qIJATTON. UROI-' IT 
t'4!JI=Mj·1-1 
IH=f'Il-l 
IF(I.~O.(MM+l» GO TO H4 
uO fU lr=r,"'1f-1 
IH~(I!)=IBE(II+1) 
BBOI )=IH1CII+l) 
DO 83 J=1. ~IMrJ\ 
I\fH I I , J) =Atl ( I 1+1, J) 

,3 CO~1l I qUE 
IFCN1.EO.0) GO TO 100 
K=I 
GO T07q 

~ IF(Nl.EQ.O) GO TO 100 
ELIMIriATE I\RTlrrCIAL 'f/\HIt\BLE 

;5 CA1.L PIVOTCJ,I) 
I~WJl=iJ'V""-1 
tH=Nl-:.l 
IFrJ.rO.(N~M+l» GO Tn A8 
00 116 J.J=J' r'JW1 
I X!I (.J.J) =1 X~I( ~JJ+ 1) 
UO R7 11 =1 ,rv1 

17 CI'J ( I I, J.J) =CN ( ! I , .jJ+ 1) 
UO Pd 1 I=J • r'ti" 

'g AIJ ( 11 • JJ) =AN ( 1 I • JJ+ 1 ) 
1(, COt'ITItllJE 
:0 IF (tH .Eo. 0) GO TO 100 

K=I+l 
GO TO 7g 
AT TH:S POHlT h'L HAVE INlrIAL B.F.S. 

'0 IPHAS~=n 
Jl KE::O 

00 110 J=1;NIv1!·i 
IFCCIPM.J) .GE • ...;()EL) Go TO 110 
KE=J, 
CALL LEAV(KE,I~t·HN) 
IF(K'HtJ.EO.O) GO TO PiU 
KL=I!.~r:(~<~1I'".I) , 
CAlL PIVOT (KE, Kr-iIN). 
I X~'I (f<r ) =KL 
GO TO 1n1 

10 CO"lTl'llJE 
GO'TO 200 , 

50 WRTTE{h.806) M 
16 FORMAT(1H1'50X"OBJECTIVE,,12,. 1S UN~nUNOfn,//) 

STOP 
no IF(IW.E~.O)GO 10 204 

f"'1=t1-1 
GO TO 289 

04 DO 15~O J=l,N~M 
IFCCN(M.J).GE.OlL)GO TV l~on 
CALL LEAV(d;KrUN) 
00 1 ~ 1. 0 1=1 d"" 
J.l.A:::Ci-.J ( I, J) 

I F { (j\" * R 8 ( K ~~ It I) ) ~ G T • 0 • ) GOT () 1 5 0 0 

10 COtJT1'llIE 



CIIFn. t-OR f)IJ{\L F[r,SltPLlT"I 
Cf\I.L r-Dc;E 
IF( 11>F)?Rc)'?Hq';~hn 

10 LA=l 
LA= IN,)r:~ OF ALTEHNATIVE 0p·r. BASIS FOR 0BJ. 1 

DO 202 1=1' N'''P~ 
!? 1 Vr:C ( T ) = I XN ( I ) 

CALL ~Oln (l VEe "J',~f\1) 
DO 20'~ 1=1' NW~ 

)3 L08(L~'1)=IVEC(I' 
'n 00 20(., J=l, t'JW'i 

IF(CiJ(t"l,J).GE.IJLL) ·GO 10 20(, 
Kf~=J 
CALL '-EAV(KE,I~Mrr~) 
J.Frt-nC!<j·1iIN) .GE.IJEL)GO 10 ~O()' 

LA=L/\ ~·1 
00207 1=1' Nr-1/1.1 

)7 Lon (L '\ , I) = I XIJ ( I ) 
LOli (L,\, KE) =H3f: (1(1v1JI'J) 

uO ('ur; l=l,r'JWJ, 
JR 1 vr:-c ( ,. ) =LOfq 1I\, 1 ) 

CAI.I- ')OI~T ( I vEe, In!'-l) 
DO 2(lq I=1,W1i1 

pg LO., (i.\, I) =1'[E[ (1) 
LA"=L,\-l 
DO 21') J =1 , LA~,o: 
[)O 211, I I =1 , tmr-1 
IF(LOIHLA,II>.rW,LOB(l'Il) Go TO 210 

11 emIT I qUE 
LA=LA ... 1 
GO Ttl 206 

~O CO!!TI!IUE 
KL=I i 3r. (Kt·1rtl) 
CAI.L PIVOT(KE,KfUN) 
I X"l (I<r:) =KL 
CAI.L I~[)GE 

IF(IUF.EQ~l)GO TO 270 
:(,6 CO'lTP!lJ[ 

ItIITTI\L EFFICtE'lT VE~TEX r-O:.JlJt1 'I 
~fi9 ~'iHTTj-:(6,ROD) 

ino FOPM·'\T(111,50X, , H1IT11\L EFFICIEIH VERTEX, '11'I~RX'26('*') ,II) 
~·~P.TTE(6'RO?) (IBE(1) ,£3nq) ,I=1,fo.1M) . I 

102 FOr~Mi\T(3X"RASIC VAR1l\l1L[S,,1,2Xr15(,*r),/,(7(, X"J3', ="F10.3 
*, I) ).. ,_ . I 

~'J R I T ~ ! b , no 3 )( I , Z Z ( 1> , T -1 , '.q " . i 
If! 3 F 0 I~ t-1 J.\ T ( I I , :1 X, , () t.>.J E C T I \I t. S, , I , 2 y. , 1 0 ( , *, ) , I , .3 X , , () B J, , 5 ( I 1 ' ,. =, , FlO • ~ 

*2X, ,0""..1,» 
I FLI\G=O 

L2=:t OF COf.U>IITEn EFF. VEt{TI r.ES, L1=:t OF NOT YET cm1PUTEn 

L2=1 
L1=0 
UO 290 K=l'Nil/jr~ 

21)0 IVEC(V)=IXI'J(K) 
CAL L 'jorn ( J 'IE r '-ll~-1M ) 
DO 2'lf') K= l' Nr .. H·' 

2(}S 1 V? (1., K) =1'/[C (1<.) 

i 

. I 

EFF. VERT] 
I 



'I:~') f OPti:\' l//,JnX,,!jO. 01- t.FF,.Cl[':l '!rnrlr[~ T~, Gp[I\T[H TII/\t-J £laO, ,/d, 
*X, ,KiPI IS TER'AIIII\TED,) " ! 

STOP 
,01 C I\U_ [DGE 

DETErr"'l'IE FEI\S I IjLL I\[)JI\CI:NT SET 
LJ=:t. OF EFFICIEtlT EDGES 
LRT=1: IW /\D.JI\CErJT EFF. r:xTR. PTS. 

,11 un=o 
IFfL.J.EO.Ol GO TO 700 . 
DO 3~() II =1 , LJ 
.J=.JT ( q ) 
C 1\ ILL E /\ V ( ,J , K t~ I i J ) 

LRT=L'n 41 
t~ K = J t W ( 1'-: r·' I til 
UO 3;~'1 !=l,Hi""n 

;20 IRT (un, I )=!XtJ{ I) 
IRTCLPT,J)=KK 

SORT IrJf)ICES OF tIlV\S. VI\K. of ExTR. P01"T 
00 33i1 1=1' 1\J[\il!.~ 

130 J V~c ( T ) =1 RT (un, I ) 
C!\LL ~~Oln(!V[C::'fJ~...,r'll 
DO 9'1 1=1, ~!~...,r·,1 

nQ IRT ~U>T, I )=tV[G (I) 
,50 corn l' JlJE 

LR1=U 
FORM THE S~T JRT-IV2 
DO YJ') 1=1' LRT 
UO 37"1' 11=1,L2 
DO 3iJ:1 K=l,NrJ\r~ 
IF<Iln(I,K)·.r,J[.lV2(!I,K»GO TO 370 

SuO COIJT I I jUE 
GO TO 390 

no CO"lT I f JUE 
LR1=UU+l 
00 3.'1'1 K= 1 , I'JW', 

jg 0 Hr; ( L I ~ 1 , K ) = I H T ( I , K ) 
3(.10 CO~!T(tJlJE 

IF(U~1 .EQ.!1) C;~l TO 700 
L~2=j: \5F ELP1Elns' IN IH2~ 

LR?=,1 
Fom .. ~ THE: SET lln-IV1 
IF (Ll) 305, 3:l~' 3<")h 

3C)5 LH2=L' ~ 1 
GO TO t~35 

396. DO 4Y) 1=1' UU 
DO 41;) II =1, Ll 
DO 4U 'j K= 1 , r~r'1'1 
IFn\{T<I,I<).i~F.:-1v1<II,t\» GO TO 410 

'100 corn I1 JUE 
GO TO .1~30 

+lO COtlTI>JUE 
LH?=L'~;~+ 1 
00 ~ L~2'l K=l, NtJ\f,1 

+20 Ifr'!"(U{2,K)=HntI.K) 
430 COt-IT 1'lUE 

IF(Lir~.F.Q.O) GO TO 600 
l'jD'! VE:RTEX SELECTED FI~ui··1 ~2 

. i 



IFCL!!:.r.o.n) (;0 TO Sl)O 
FOIH·1 T:ff:: SET IV'l 

00 5'+1 r=1,Lp.2 
Ll::Ll+1 
OOSqO K=1' nW-1 

~O IV1(L1,K)=lHTCI,.K) 
1[1 CALL '1{)\lE (rlT) 

AT IJrW r:FF. VERTlX NE\'J 1 TEPA.TION STI\KTS 
GO TO 300 
iJEt·! Vr!~TEX SELt:CTELJ r-n ur·1 Rl 

)(1 L2=L2 ~ 1 . 
DO 6 \ '1 K=l rJ'JW~ 
I"IT ( K ) ~ IIn ( un , }'", ) 

.0 IV2(L;~'K)=tJT(I<) 
DO 6:>') 1=1' L1 
DO 62\) 1<=1' "H-1~,r 
·IF(I'lT(K).t-JE.I'/l{I,K)) bO TO 61)0 

:0 COflTltJU[ 
L1=LL-l 
IFfJ. r:().Ll+1> (7C) TO 6QU. 
U06:)"'! IJ=T,U 
00 6:)) f<=l,tJW1 

5(1 1 V, (1 J, ,<: ) = 1 V 1 C J ,)+ 1 , K ) 
GO T''> 6g0 

iO COlnI~JlJE 

)0 CALL '~O\!E (t IT> 
GO TO 300 
I~Eh' Vr:lnEX SEU~CTED FpU:·1 If 1 

)0 IF(Ll.EO.O) GO TO 999g 
L2=L2+1 
IFLAG:-:l 
\·:R I T[ (6, 606) I rL/\G 

]6 FOr.r.1i1T(?X, ;'IFLI\G, ,12) 
DO 71n K=l,NW'1 
j'JT ( K ) ::: I V 1 (L 1 , V. ) 

lO IV2(L~'K)=t!T(lO 
Ll=Ll-l 
CALL iWVEi ~JT) 
I FLlh,-:O 
GO T\) 300 

~9 \vRTT['6,777) 

/' 

77 fOPI""/\T(///,1~3X' ,ALL EFI"ICIE'lT VERTICES HAV[ BEEN Et,JUtl.rRATEq,) 
vdn TE (6, 77q) L2 

79 FOI~M/\T(///,l~3X' ,~JO.EFF1CIErn EXTRr.:~~E fJUI~JTS = , ,13) 
ST0P 
END 



co' . t ~ ). l/ ~) I ll_ ~ / C) ( ::. f) :: ) , I.! 1 , J X' l ( " 0 i I ) , I n E ( ~ ') n ) , I pi 1/\ S r ' I F LAG . 
C O"f"')' II GI JL ') I L. J , ,JT ( 50 ) , "le , t. ( ~) (I ) , i'!L (f) ) ! hi" ( 5 ) r\'} A ( 5) , HI' M \.J , MWP , rv'R , ALP ( 

*10,5) ,I3P(lO) ,/\LiJ(10,5) 'BI~(ln) , 
CO·H-'ll)'1/r,lJl./I/I~I~'!12,A(bO'65) ,11(60) ,Ir~O(6U) ,!-JTX(65) ,10(60)' 
LJ=O - - . 

f~C=O 
IJR=M,I-lo1 __________ 
IH=M 
DO 1 1=1,()5 
00 1 1:=1'00 

1 A ( T , . J \ =-0 • 
DO 3 J=l, t J~~~~ 

3 CPfJ)-:O. 
DO 2 J= 1, IJr~M 
00 2 1=1' ~1 

2 CPfJ)::CP(J)+CtHI,J) 
1F(N!LEO.O)' GO TO 11 
00 4- 1=1, t,IR 
IH=Nl+l-

t.; f\ ( T , II' ) =-1 • 
DO 9 :=1, fJR 
U(T )=!~n(I) 

lIO 91=1 dl 
9 1\<1,·Jl=r"UJ<1,J) 
J DO 1n ,J::l r' 1~!;rA 

1 F ( 0' r J) • c;r • 0 • ) GO TO, IJ 

iJR=I'J!~ l-l 
111=Nl+1 
1\ ( IIR , . 11 ) =-1 • 0 
10 ( Nr{ \ =~J 
B (rJR) =-CP (,I) 
DO 5 1=1 rl"1 

5 A (~JK, T ) =cr-J ( I ,,J) 

1 F ( I:J. EQ.1 ) GO To 7 
IF(CdO",J).LE.-UEL) GO TO 10 

7 i.J(::NCI-1 
L (f IC) :-:J 

lO corJTPllJE , 
AT Td'IS POTNT I\LL EQU,\110:IS \'JITH qEGATTVE HIGHT-HI\NO-s10ES STOREO 

- I'J3=NI~ 
DO ?fl .)=1, ~IMr·1 
IF (Cll r J) • LT. O. ) tjO TO 2 u 
IF CJ::O r:f-FICTEIJT 
DO 3.2 1=1,f.1 
IF(A:3'';(ClHT,J).GT.OELJ GO TO 14 

12 COtITI'.JlJE 
LJ=L.J .. f 
JT (LJ) = . .1 
GO - T\) 2.0 

14 DO 1:)- 1=1,1'1 
IF(Cil!-1,.J).LT.-LJf.L) G() TO 1h 

lS cm IT I !.)tJ[ 
(\S CJ .... O Dor'11NI\ TEn 
GO TO 20 

16 jJH::NH l-l 
1-D ( I'J,{ ) =,J 

IH::Nl+1 



1 t !.! .'.' t . ' 1. 1. ! 'H) '" .l" 

IF (C:J(t1"J) .LE.-UEl.) G() TO 2'1 
iJC::NC+1 
L (t le)::J 
CONTIqlJE' 
t.JRP=:~I~ 

fvlH::N1 
IF(M·/P.[O.OIGO TO 3~O 

00 321) I=l'Mv/P 
IJH=N!{+l 
1',11=1'-111-1 
[3 (IIH ) =BP ( I ) 
lBn (;N) =tH 
DO' 320~J=1' r", 
A (t·!R, J) ::i\LP ( I ,.J ) . 

TillS PI)Ir-n EI)UI\TIOlJS rJI IH pO~;ITIVE RtiS STOHEO.t.IO\IJ i\OD I\HTIFJTII\L V 
I 1~2=N.)+f-1 

DO 2~'j ...1::1, ~ I;~ 
IHX(,])=,) 
CPC.J)-:o. 
IF ( I'U. E Q • 0 1 G () T () 100 
DO 30 ,"1=1, rl3 
IJl::N1Ll 
I At) (....J l =! 11 
!i1=1'l1-IJ3 
[LP,II'IATE !1I\SJC VAR.FPuM pH:t OBJECTIVF.: 
ZP::IJ 
OU 50 1::1, r'13 
ZP:-ZP-B(I) 
uO 50 J::1, t·12 

J CP(J)-:CP(Jl-A(I,J) 
l'lI II H1T ZE PHl OH,JF.:CT IVE 

D I<J:'= 0 
,\lAIN::!). 
UO 70 J=l, tl2 
IFCCiJ(J) .GE.MHII> GO'Tu 70 
M'HN=C:P ( J ) 
KE::J 

o CO!ITI'llJ[ 
IFrKL~NE.(l) GO TO 71. 
rFCZP.GE.-nEL) l10 TO 7':J 
IDr-=l 
r<ETUI~! I 

1. CALL LEI\V2 (KE-, Kt-1HJ> 
IF(liH)(f<rvlI~I).LE.Nl) GO TO 711· 

CALL PIVOT2(KF,I<r-1HJ) 
l'j2::N;~-1 

1~3::rU-1 

1F(KC.Eo. (112+1» GO TO 72 
UO 73 J=I<E, N2 
IH X ( ~J 1 =r'J! X ( J+ 1 ) 
CPC.Jl'::CP(J+l) 
DO 7'.) 1=1, ~m 
A ( 1 •. J 1 =/\ ( I • J+ 1 ) 

'3 cm!T I flUE 
'2 IFn[s.EO.O> GO TO 100 

GO TO 6n 

-" 



~, H (n'l.Ln.(:) <;n "j'O l')U 

THr:I~t: 1\\\[ c;TILL BAsIC /\HTrFTTII\L VI\HIl\tiLES(\'/ITH VALUE ZERO) 
K=1 

<) 00 80 I=K,f'IH 
IF(R(Tl.GT.DELl GO TO "0 
IF(F3')(Il.LE.tlll GO Tn 80 
GO TI) Hl 

(l COln[~jlJE 

11 uO 82 ,J=l, r 12 
IF ( l\W; ( 1\ ( I , J) ) • tiT .DEL 1 GO Tn r.5 

12 COrITI'IUE 
r JlJ! L r~OIJI\ TT 01,1. DROP IT 
1m :-:t-J1·!-1 
I J:3=t 1,-1 
IF<I.r::O.tJR+ll (;O TO w~ 
DO RS II=I;NR 
I !Y) ( IT 1 = I BO ( I T + 1 ) 
13 ( T 1 ) -:B <I 1+1 ) 
uo B~S J=l, 1'12 
1\ ( I I , , J ) =A ( I 1+1 , ,..I 1 

~3 cO'lTI'lUE 
IF(N~.Eo.Ol GO TO 100 

GO Tel 7q 
~lj. :Fft]:S.Eq.o) GO ,TO 100 

f.:L: Ml! 1;\ TE ·,\HT I F 1. T I I\L \I1\fU ,~\13LEs 
e~ CI\I L "I\lOT~ (J, I) 

112::N;~-1 
I'J3=N.5-1 
IF (J.'~(). (1)2+1) l GO TO tis 
Or) E-k> ..1,J=J' N2 
I-H X ( ..1J ) =1 JI X (..1J+ 1 , 
DO Rb lI=l~NR 
1\ ( T I , . JJ ) = A ( 1 I , .. IJ+ 1. ) 

f)() cor,'1 I' !UE ' 
BG IF(N3.En.O) GO TO 100 

1<=1 + J. 
GO Td 7q 

IT' ri II S Pf')I In I'IE itA VE 1\ FE1\SP1LE T I\BLEAlJ. CHEO~ FOR HNJREOUNDAf'!T -VAR I 
lOO SU·'=O. 

00 gO J=l, f\J2 
I~=I!L«J) 
IF(K.GT.M) 'GO TO 90 
~;f\ (K )~1. 

sur,f;=SI IM+\'J,l\ ( K) 
90CO~ITI'IU[ 

uo g2 I=l,~IR 

K= I HI) ( I 1 
IF(K.GT.M) GO TO g2 
\V 1\ ( K l:-:R ( I ) +-1. 
SU~·'=SIItv1+\~A (K) 

92 COtll r ~ rUE 
00 9~ 1=1, " 

95 \'11\ (1) -:\V/\ (I) IS!,It,' 
\"H'r n:{ 6 • 85 n ) (\J/\ ( I ) , 1=1. ' 1-1> 

J!10 FOPM/\T<!I,:10X, ,COHREsr.)Ut·1D::I~G OBJECTIVE \.JEIGHTS ARE:, ,5F6.3) 
Ir(NC.[(~.O) R[nmt~ 



K.:-: T () ( " ) 

CALL ~;(:AI.J( K) • 
IF (NC. EO. 0) H[TUHr-1 

o CO~11 l'IIIE 
00 1211 1=1, rm 
IFfH(~).GT.DEL) GO TO 120 
I F (J Ii ') ( 1) • I. f. • r 1'.'1) 60 T () 12 (). 
IF ( I II') ( I ) • 6T • r~l<) GO TO ·120 
K=" HI) , 1 ) -r-1 
,<=J[)(V) -
C/\U- SCAN (K) 
Ir(Ne.Eo.a> R[TURN 

o CO!ITlfllJE 
SEt IF MIY\,JJ eMI 'BE i'-1AOF: 1'10IJl31\SrC rJITH ol,iE PIVOT 
DO L)Q J=l, N2 
CALL LE(\V2 (J, '~~11 rn 
1F{Kt·"~H.EO:O) (70 TO 1:10 

'KI-\=I n·:! (KMltJ > 

IF(KK.LE.rvH'J) GO TO 130 
IF(KK.GT.HR) GO TO 130 
K=VK-'l 
~~=IO(I() . 
CALL C~Cj\!HK) 

IF C nc • FO'~ () H[TIIHtJ 
;0 COl IT i IIUf. 

Cfd L '1HOP 
rFcNC.Eo.O) RF1URN 

• 

SEU:~C"" OIJE VAfUA8LE FRU r·1 L I\tJn t-1ItI1t-:.I7E 
ltD K=I.(IJCl 

DO lq·~i I=l,NRP
IF(ID(I).EO.K).GO TO 14 6 

L;5 COtH I'lUE 
461-\=T +[y1 , 

. 00 -1~,'l 1=1' NH 
IFCIUri(I).EO.K) ~OTO l51 

50 CO! IT I! ,UE 
.51 ZP=-i, { I ) 

DO ,lof1 J=1,hl2 
.00 CPCJ)=-I\(I,J) 
,61 KE:-:O 

At-H N=-OF.L 
,00 17') J=1,N2 

IFCCi'(,J).GE.ArHIJ> GO TU 170 
MH t'J=r.P (J ) 
IZE=J 

170 corlT I "JUr. 
IF(KC.NE.OJ GO TO 175 
IJO EilTER I NG VI\R 11\(lL[ 
IF(Zi).LT.-DEL) GO TO 1/1 
V I\R I /\nLE HAS r~ HH r.1UMVI\LUE='1 
LJ::LJ~1 

JT C LJ) =L (NC) 
.I..JC=NC-l 

tF(NC.EQ.O) RETURN 
GO TO 105 
V {\IU l\I~LE HA.S ~,nIHMLJM '//\LU[)f) 

171 NC=NC-l 

/ 



: , L ~! I. ~ l I:, ': ' , I ) 

(.1\1.'- !)IVOT~(K[,Kr~IN) 

uIX (I(r.) =KL 
CALL 'lIWP 
rF(NC.EQ.O) RETURN 
GO 11J, 161 
EIJn 

r 

. / 



l..\)'r:··"IJ 1/\~I.'t_,"14Ir"··lrl·':"I·'-" '<-1_, "'\.,J·II .... '\ • ..I'l-£..., ........ t\ .. w... • 

C 0 \ ~ IV J 'JI G I J L ~ / C p ( 1 0 0) , Z P , I X . ; ( 1 0 () ) , pl, F ( !::> CI ) , I PH t\ S r ' I F L 1\ G , T V 2 ( 2 0 0 , 50 ) 
FLI\"=O 1F W)VE IS TO I\DJACF:IH I/EHTF.X ,=1 OT;~ER\'IISr.. 

00 1 1 1=1, r'JMiv1 
DO 2.J J= 1 , ('Jf-1M 
IF(IX tHIIl.EQ.HJT1(JJ») GO TO 1 
COl-n PlUE: 
KE=II 
I F ( I r: I .,\ G • E () • 0 ) GO TO c:; u 0 

<E,TH IJ')tmI\SIC '1I\H, \'JILL BE ENTERING 
00 10 I L= 1 , Niv1i-1 
00 11 J=l, LlM!vi 
I F ( 1: H 1 ( I L ) • E ~ • I X N ( J» GO TO 1 0 

1 CO'IT l'!UE 
KL=1;JT1(IL) 
KMTN=O 
00 13 1=1, m-1 
IF!KL.fJ[.JRE(I) >. GO TO 13 
KH"[N=r: 
IF ( l\:lS (AN (:~r-..1I f'J, ~~E) ) • GT. DLL) -GO TO 502 
GO 10 10 

3 COIIT1'(IJE 
o CO~l1I'llJE 
2 Cr\I.L :lI\/OT(KE,Kt,jHJ) 

IX~J(:<r:)=KL 

1 COtHPJLJE 
GO T09110 

'0 CALL LE!W(I<E,KIHN) 
KL=rlf: (Kr .. '1! In 
CALL ~"IVOT(K[,KHIN) 
IXfl(f.'::l=KL 

,10 \.JH '( TE (£), AO 1> 
)l FORMt'\T(///,55X"NEW EFt-IcrE!IT VE8TEX,,//,53X,24(,*,),///) 

V-iIHTE(h,A02') (lB[(r) ,BR(!) ;I=l,t~M) 
)2 FORM:\T(3X"BASIC VI\RII\11LES,,/,2X,15(,*r),/,(7(, X"J3', =,'F10.3 

*, /) ) 
wRTTr:(6,803) (I'Zl(I) ,T.=l,~'.~) 

)3 F Of1Mi\ T ( / / ,4, X, , OI-1,JECT I 1ft. 5 , , / ,2 X' 10 ( • * , ) , / , 3 X, , ORJ, ,5 ( 11 " =" FlO. 3 I 

*2X. ,iJ'~J,» , . ' ' 
RETUi{ j 

[Nn 



CO'~'~:)'!/,;Ul,)/L,J'JT (~)')) ,IIC,I,{'11J1 '·;.LI.'11 "';')(:)1 ,\'l/i(J}, ~':i"·\·I'I'I'" • ,., ....... 

:t 10 , ~) .r~I) ( 1 f) ) , ALi J( 10', S ) , BI~ Cl q ) 

CO!~r.'I{)~l/GlJLIUI·JRr!J?,1\(60'65' ,1~(60), '[HQ(nO) ,r~1:x(65), 10(60' 
STOKE \J[IG1n [OIJS \'JITH I··J[G. HHS 
I~R='O 
00 20n 1=1'M . 
IF(W0CI).GE.(1.-DEL» bO TO 190 
IHIS=n-l • I\'JU ( I ) 
IFCHW;.GE.-DEL) GO TO 190 
I~R::Nll"l 
00 l<)t) J=l, ~~ 

5 1\ L r I ( ;J [J r.J ) = 1 • 
/\ U-I( r J I~ , 1 ) = 1 • - 1 • I \~ U ( I ) 
HN C N!~ ) =-RHS 
GO 10 200 

n IFCWLCI).LT.DFL) GO Tn 200 
HHS=l. hJL( I)-M 
IF(Hd'j.GE.-I)EL) GO TO 200 
IjH=NH .. l 
DO l e},) ~J=l,tIIi 

5 AU'! <: J'~,.J) =1. 
AU·J( iN'I) =1. I~'JL (I) -1. 
Bi~ ( t~:{ 1 =-RHS r-

o CO'IT I "JIJ[ 
i'JI\'J=N:~ 1-11\ 
I-lO\'! :~TOHE EOi..JS IH TH PoS kHS 
1/.=0 
UO 3 1) 'J 1=1' rJ} 
IF C \,J, J ( I ) • GF.:, ( 1 • -DEL» 1':'0 TO 250 
r~HS="-l. I\'J'J (I) 
IFn~qC;.LT.-I)EL) GO TO ~50 
K=I~+ 1 
DO 24f) J=l,!'.I} 

:0 ALP ( " ,.J ) =-1', 
ALP(K,I)=l./WU(I)-l. 
l3P(K)=RHS 

30 IF(WL(I).LT.DEL) GO Tn 300 
RHS= l . h.JL ( I ) -:.~ 
IF(RHC;,LT.-DEL) GO TO 600 
K=f<+l , 
DO 2t).1 ,J=l,M 

j() {\LP(l(,J)=l. 
ALP(K,I)=l,~l./WL(I) 
8P(K)=RHS 

)f) cQr'n I \ILJE 
j·1iVn =l< 
RETlJ:{~1 

END 



.- J U ' ., J • 'ii '\ 1 'I I , Ill! J \ llJ ':) , ' ! '!) I 1 ; j / 

uO 1 T=lrllC 
lr-CK.r.O.L(I» GO TO 2 
CW'T I~JlJ[ 
HETlJ,{I~ . 

LJ=LJt-l 
JT(LJ)=K 
1.JC=tJC-l 
IF(NC.EO.O) HErlJRr~ 
IF ( I .:0. UJC+ 1 » I~ETIJH"J 
DO 3 rC::I rtJC 
L ( T C ) ::L ( Ie + 1 ) 
RETUI~t'l 
EN!"). 

.', 



CO" r·~,,· !! (,I II. <'! L . .1 , ,J I \:) 'J I " 'l. , 1 . \ ') I) ) , ;; L \ ') I , " , , \ ') I , :: I \ \ ' I J , 1 ,/ .' ,',. ,_, .. ' 

* 1 a , 5) ,111' <10 ) , I\LI J( 1U ,5 ) , Rll! If) ) . 
CO'~M()~I/GUL4/I~r\r!J2,A(6r:)r65\ ,1l«(,O), lRQ«(10) ,N1X(65), 10(60) . . 
IK=l 
DO Lj. T=rK,tlR 
DO 2 J=l rtl2 
IF[I\(l'J).GE.OEL) GO TU 4 
COl IT It 11IF. 
f~O'\·! 1 t·JEGI\ T I Vl 
I F ( I I \ '1 ( J) • L E • ~'Wl) GOT '1 4 
IF(IB'1(I>.GT.r~H) GO Tn 4 
1",=:rH(j (I )-M 
K=T U lit:) 
00 3 .1= 1,!!r: 
IFrK.rO.L(J» sb TO 5 

3 COllTI!IUE 
GO TO 7 

~ corn IijUE 
RETUi{f I 

5 1'~C=I''lC-1 
IF(NC.EO.O> RETURN 
IFrJ.r:::o. (11'=+1» GO TO , 
DO 6 TC=J, IIC 

(, L ( T C) =L ( Ie + 1 > 

UPDA"if:: {-\-',1ATRTX 
7 I·JH=~m-l 

IF (I .EQ. (JJfl+l) > RETURN 
UO B II::I ,~'IR 
IIVHII>=IRO(II+l) 
lH I I ) ::B ( I 1+1) 
00 8 J=l d'J2 
AlT!'J)=A(II+l,J) 

8 CO'ITI"IU[ 
IK=I 
GO TO 1 
ENn 

/ 

\ 



Cl)""f..r!'J'I/:'~.H_ 1/\....i'\..!.lJIJI '/"'~" 1_/" ~\.:_";!1 ,.!.'")1_ \_}l}1 '1' 11"'.,:.)(,. JI '_ , __ 

fl3r (I<rJ;ll'!) =1 X 1\1 (K[) . . 

{l...A=f\.'J (I<r"'HJ,KE) 

JOI~r"!\L17E 
DO 14 J=1,tHAI., 

~ AN (Ki1TI~,J)=/\1\I (Kr'lIl\hJ) /I\A 
8£3 (Ki4!N) =1311 (K1>111'J) //\/\ 
AN(K~TN,KE)=l./A/\ 

::::LII-1TNf\T[ ENTEH!NG VAR. t-Rou OTt~EH [QNS. 
DO 1~) 1=1,rIlM 
1 F (1 • c-Q .1< 1"1 IN) GO Tp 15 
AA=Ai.J(I,KE) 
BB (J ) =BFHI) -AI\*L3!HKM1~·J) 
DO 16 J=1, tJMi;'" 

6 AN ( I , .J) ::I\tH I , J) -AA*At~ C KMJ!-I .. J) 

At~( I ,v.:E)=-l\tHKtJlIN,KE) i'/\A 
5 COT-IT I r'ME 

DO .171=1," 
AA=C;J (I ,KE) 
lZ ( I ) -:ll ( 1> -/\ 1\ *: F1 (Krv1 If'JJ 
00 1(~ j::1, Wilt" 

.8 C j\j ( 1 , . I ) =C r,J( I , J ) -/\ N ( K M 11'1 , J ) * 1\ A 
CN(I,KE)=-I\N(KMIN,KE)*A/\ 

7 CONTI".JlJE 
IFCJj-'HASE.t'IE.1> GO TO 10 
AA=C,?{KE) 
ZP-:ZP-AA*I1R (KfH hI) 
LJO 9 .J=.1., t'r·1M 

q CP(J)=CP(J)-ArJ(KMIN,J)*AA 
CP{K[J=-AN(KMIN,KE)*/\/\ 

LO CO'IlI'llJE 
RETUf~t'l 

END 

.-



\ ... '-' I-I"~ I ',J'II " ''t' .... (_~ '0 ''''~'.' - " .. )'. '. ~ _", r ...... __ , •• 

1 B') ( !('n i~ ) =' II'X ( K £:. ) 
A f\:: A ( IO~ HI , K E ) 
I~Ol1f1t::\L IZE 
nO 1 J=1'N2 . 
A ( K ~ I ' ~ , .J ) = f\ (K ~ ~ I i ~ , J ) / A.'\ 
b(K~IN)=8(KMIN)/AA 
A (1{ fit; I';, KE ) = 1. / f\ A 
ELIMI~~TE ENTFI{ING VARiABLE FRO~ OTHER EQUATIONS 
DO 3 T=l,!-JH 
IF(I.~Q.KMIN)GO TO 3 
AA-::A(T,KE) 
B(I)=~{I)-Af\*R{~MrN) 

DO 2 .J=l, I\l~ 
2 A{I,Jl=A(I,J)-AA*f\{KMIN'J) 
A(T,K~)=~A{KMIN,KE)*Af\ 

3 corn I '~lJE 
AA=Ci.l (KE) 
ZP=Zi)-f\f\*B(Kt~!f\l) . 
uO 4 J= 1 , I·l~ 

4 cpeJ)=cP(J)-A(KMIN'J)*AA 
CP(~E'=-A(KMIN'KE)*AA 
r~ETU:~'J 
E.Nr: 



l)O 5 T=l,[,j!-1 
IF(Ai.J(I,J);LE.J)[L) GO 10 l; 
A A=l-m ( I ) / At J( I , J ) 
IF(AA.GE.A~IN)GO TO 5 
I\t'" T N::'\A 
KMIN::T. 

:; COIH I :JtJE 
RETUI~~l 
[Nil 

( 



1 }f-.' _1. , • II' J ",1.~ '.1 I 

At'" I I'!::'lgqggqg 
KMTN::1 
DO 1 T::l,NR 
rFCA(Y,J).LE.OEL) GO TU 1 
1\1\ -::H ( J ) / A ( '! , J ) 
IFCAA.~E.A~IN) GO TO 1 
M-1T N=!\A 
KMTN=-r 

1 CQ'Hl"JUr:: 
KETUWI 
END 

, 



· ". 

1'; T l'- rn r H::JSTI)IJ OF THt Vr-CTOD 
IJII::r~-, 

lj() 1 r = 1 , tltl 
11=11-1. 
DO 1 ,J=Il,tJ 
IFCIV(I).LE.IV(J» GO 10 1 
1 TF.t~i'::lV ( I ) 
IVCIl'=IV(J) 
1 V (J) =! TEW) 
C or IT I ',!UE 
H[TUi~: I 
EI-.Jn 



0 ~ c 
C \/' CJ c. I' . 
0 \0 cr. 
~ \/', I' 

II II 1\ 

~ :t :t ... ... -0 0 0 >< >< )< 

0 III 0 c ... I' 
0 

'" 0 

0 :t t-
N ... 

II II II 

III III to 
0 0 0 c: 0 0 ,.. 

>< )< 

0 C 
C ~, en III ... 
0 (\; rr. ~ CT c III ... . , 
0 ... c: 

0 c ... I'- ... ... \0 cr. 
I'l 'I'l 

II II " 0 to 
N .., 0' N .., (\ N ... en to .. 0 tr- - .. 0 
0 0 .. 0 a . .. 0 
>< >< .. >< x .. x x .. w ... hi ... 

\>1 ... 0 C ~ ... ~ CJ ~ ... 
I- ... 0 0 0 Q" ... 0 III I'l rY .. III 
cr .. C ~J ... W .. c ... 0 W .. I' 
tJJ .. 0 :> .. 0 :> .. C' 
:> ... c .. .c ... . .. 0 ~ I- .. C I- ... ... 
~ .. C :;' " co '7 * I' 

:7 .. ... - hI ... ... hi ... 
h .. h .. .. h ... ... ... .... rY U· .. I'Y U * U .. II C1 ... ... II C1 .... .. .... .. II lt. ... II lt. .. II 

lt. * :t II' It. * :t II' lL .. 
tL * ... ., I- hi * ... ., I- 101 4 ... 
W * ... CD .:r ... ... CD :r ... ... ... 0 n <I) ~ ... 0 n <I) ~ .. 0 
-' .. >< .. h· ... )< 0- \>, .. >< .. d * hi '7 .. hi '7 ... .. ... ... 0 ~ .. rto "J: * .. I- ... C '0 * 0- .c: ... N 

* ..... * 0 0 W \0 I' W N ... '7 * 0 :> ..... :> en .. .... ... 0 .... 0 ... .. * . 0 \0 I- 0 C\I I- I'l ... .. 0 U "" l) to 
* ... 1.0.1 W 
* .., .., 
* ID CD .. II C II () 

* II II II 

* I'l "l!) 1'1 ,,) .. .0 .., 
~ 0 .., .0 .. ... c:: ... ... c:- o- -... 0 0 0 0 0 0 0 .. X '7 X '7 X .. n n .. 0 n (\1 n ... 0 0 III III ,0 til ~ .. 0 0 11.1 ... :t- hi 0 

* .0 IY . .0 . rY 0 .. O~ CY a. n 

* 0 0 0 ~ I'l 0 I' .. 0 ... U en. u .. ... 
* * * II II 
* II II II 

* N N .. a-. .., 0- .., I' .. 0 ID 0 m c' .. 0 n 0 n 0 

* X X X .. .. 0 I'l ... JIl 0 0 ,l/l .,0 (\1 III ,0 .. hI' "0 0 hI *::J> n hJ· ~ .. J *0 J .oen J*ru 
* m * . 0 m.o . ,n m* . 
* 4: 4 dl 4: ... '" r1' 4:4n' 

* ... .. l/l I ..... l/l I ..... .. rr: * w ... fY.o hi .. 0'* 
c:r .. :> .. c:r .. :> .. 4: .. 
:> .. .... .. '> ... ... .. > ... .. I- *11 " ~ "II .. 
lJ "'11 lJ. .. II 411 0. ... lJ .. " ... .. W ..... -* W *- ..... 
til ...... ., .. , en ...... ., ....., In ...... 
d .. c' IT'- "IT' <: "0 ·rr .. CD c:: .. u 

rt) *0 0 *0 aJ*O 0 *0 rt)*0 
*x * .. X .. *..: 



LINEAR PROGRAMMING 

A.II.I. DEFINITION OF VARIABLES.USED IN THE PROGRAM 

The variables used in the program are defined in the same way as in the 

multiQbjective computer program except·for the variables WL and WU which 
. " 

are here scalar quantities, giving the lower· and upper bounds respectively 

on the second objective. This"is due to the fact that specifying intervals 

on the weight of the second objective also determ~nes the allowable range 

for the weight of the first objective. Furthermore, in such cases, the 

initial weights on the objectives are taken as 1-WU and WU respectively. 

A.II.2. INPUT INSTRUCTIONS 

Data input is again in the same way as in the mu1tiobjective computer 

program, except Jor the first data card. Here the parameters ~, N, DEL, WL 

and. WU are reaa from the first data card according ·to the format (2I5,3F12.8). 

If intervals on objective weights are not to be specified, then values of 

o and I should be inputted respectively for WL and WU. 

A.II.3. PROGRAM LISTING AND SAMPLE OUTPUT 

The listing of the main program arid the subroutines and a sample output 

is given below. 

156 



~**.1.~~**~***·~**·***·*.*t*.**.**********~.*.******~*~**~~*.~~~.~~~. 
:/ (")f- '"'i3J., r~=1 OF V/\!·!., ::,"=:1nF C')tJS., OCt.=t\cctmr,CY 
J=(\Jf')N;3f\SICrOST 1'-1J\THIX, MJ=tJOI'4IlASIC COEFF. MATr.IX, BB=RHS 
<1·.="IO;\l~~I\SIC VAR.. SET,. yLiE=nI\SIC VAR. OF EQUATION 
lE~=O FOR lE CONSTR. : =1 FOR EQ CONSTR. ; =2 FOR GECONSTR. 
IMPLICIT DOUBLE PRECISIONCA-H,O-Z) 
uIM~~SION TEO(50)iNT(5U)'JVEC(50)'IRT(50,50)'IVl(50'50),IV~(200,50 

to ). , 

CO¥fV'J"J/GlJll/t",~t"'hNMM,nt.l'R[H50) ,MH50,100) ,CN(3,lOO) '7Z(3) 
CO!J\~i'J'J/ GUl~/CP ( 100) , Zp, I X?-j{ 100) rI RE (50) , I PHASE' I FLAG 
CO·~tJ:fJ~.I/GlJl~/L.J' JT (50) , \~U, I'll 
1,1=2 ' 
kEAO(~,gOO)MM,NiDEL,Wl'WU 

Foritv'lI. T (2 I 5' 3F 12. B ) 
WRT1E(6'1883)~'MM 
FORM;\T(lH1,10X, ,SOLUTIU!\lS FOR BICRITERIA LP PROBlEM"/'11X"WITH , 

*rI?" VARIABL(S "12,, CO"STRI\INTS"I/,11X,35(,*,» 
KEI\OC::;,gOll (11tH!'> '1=1 'Mfv'd 
FOHIVAT(10F8.4) 
REAU('),g02' (IEQ(l> ,I=l,rlij>~) 
FO~rv'i\T (4012) 
DO 91'1 J=l,N 
HE\C('"g03) KR 

. R E: f\ D ( I:; , q 0 4) (I , AN ( I ,J) , K =1 , K R ) 
CO".11 I '!~E 
R £ 1\ LJ ( "1 ' 9 0 1 ) « C!\J ( 1 , J) , J = 1 , ~ J) , 1 = 1 , r.j) 
FORfVll\Ti 12) 
FO~f\I,;\T(fHI2'F8.4) ). 
DO 1 J=l,N 
I X',! (,J ).=J 
DO 1 T=1.·~ 
eN (J ,J) =-C~J( I, J) 

IF(~L.E~.O.~ANO.WU.EQ.l.) GO TO 4 
M=3 
IW=l 
DO 13 J=l,N . 

• C!'.J( 3 'J) = ( 1. -W!J) icCN (1, J) +\'JiJ:+·Ct'J (2,J) 
1<=0 
[\Jl=N 
00 10 I=1.··'~~ 
IF ( 1 E ') ( I ) • EO. 1) GO TO 10 
IF(I~1(I).EQ.O) GO TO Y 
i-H=N1+1 
AN (I .·f\Jt-K) =-1. 
I Xr-.J LH -K ) =~H 
GO TO 10 
r\l1=Nl+1 
f(=K+ 1 
IBE(Il=Nl 
cot-n I '\]UE 
N2="'1 
hIMM= .J 1 -1< 
NMM= ~ OF NONRASIC VARiABLES 
DO 20 l=l,~M 
IF(JE~(I).rQ.O) 'GO_TO 20 
Nl=Nl+l 
IBE(I)=Nl 

) C 01\11 I ·~UE • 

, I 

I 



·' lP::n. 
;)0 2'> J=1,rl~'1i~ 

(P(.J)::O. 
FOR~ PHASEl O~JECTIVE 

DO 30 I=l,MM 
IF(I8r:(I).LE.N2) GO TO 30 
zP=Zt-)-BB( I ) 
00 30 J=l,tHJ,M 
C p f .J r :: C P ( J ) - A! J ( I , J) 
CO'" I"IUE 
rAJ!\Jl''''tZE PIIASE] 08.JECTIVE 
KE::O 
[j 0 5 I) J = 1 , ~ H~ iv1 
IFf(~(J).GE.-~FL) GO TO 5n 
r<E::.J 
GO 10 55 
CONT I"JUE 
IF(Z?GE.~DEL) GO TO 7U 
\'/ R T1 E ( b , 8 Q S ) 
FORM~T(lHl'40X"THERE IS ~O FEASIRLE SOLUTION OF THE PROBLEM,//) 
STOP 
CALL LEAV(f<E,:<Mlf\J) 
IF{K~TN.E~.O) WRITE(6,HOS) 
IF(I3:::(t<~·Hn).'-'::.!'I2) GO TO &5 
CALL IJIVOT(KE,Kv1IN) 
(~f'J.-·.1= ;,,~r"1-1 

N1=~~ i-1 
IF(K~.EQ.(NMMt1» GO TO 40 
DO 6) J=KE ,·NW!' 

. 1 X'" ( J ) = I Xt~ ( J+ 1 ) 
CP(.J)=CP(J+1) 
DO 5-3 1=1 ,~~ 
CN(I',J)=GN(l:r )+1) 

DO 5~ I=l,fJ1M 
I AN( I',J)=I\:H I ,J+1> 

CONT I~~UE 
GO 'T:) 40 
KL=l:3'=.: (KT\.lI t .J) 

CALL PIVOT(KE,K~IN) 
- I X~'l (-<r::) =KL 

GO 1J 40 
PHnS~l OBJECTIVE MINI~IZEJ 
IFCNf.EQ.O) G8 TO 100' 
lHERE ARE STILL ARTIFrC!r,L VAR. IN BASI~ 
K=l 

}[JO 8"J I =K , ~1M 
IF(B~(l).GT.DEL) GO TO 80 
IF(Idr::(I).LE.~J2) GO Tn 80 
GO lJ 51 
CmJ11',JUE 
DO B2-u=1,N~JjM 

IF(A3S(AN(T,J».GT.CEL) GO TO.55 
cor'JlII'JUE 
NULL, ~QUATTON, OROP~Il -
f"r",=rv.,A-1 
tIl1=Nl-1 
IF(L~Q.(M'Hll)GO TO llJO 



1\ I') ( J T ,J ) = ,'\ r I ( I J .. 1 , .J ) 
e.O:-Il I 'JUE 
IF(Nl.EQ.O) GO TO 100 
K=1 
(,0 10 7CJ 
EL1MI~~TE ARTIFICIAL VARI\BLE 
CAL l L") I Y 0 T ( J, J) 
r~i"I'~=N"~!'''-l 
hil =I'!l-l . 
IF(J.~Q.(N~M+'» GO Tn 88 
LJO eo .JJ=J, Nt<1" 
I X ~H J. J) = I X N ( J.J .. 1 ) 
DO H 7 I 1=1 rrll 
CN(II,.JJ)=CN(TI,JJ+i) 
DO P,~ 11=1'M~1l 
AN ( 1 I , JJ) =J'\N ( 11 , JJ+1 ) 
CON1l1'lUE 
IF(Nl.EQ.O) GO TO 100 
K=I+ 1 
GO 10 7g 
AT THIS POINT WE HAVE INITIAL B.F.S. 
IPHAS:::=o 
KE=O 
DO ] 1:) J=l,Ni'-1'''I 
iF(l~(~'J).GE.-DEL) Go TO 110 
KE=J 
CALL LEAV(KE,K~IN) 
IFCKMTN.EQ.O) GO ~O lSU 
KL= l,~F.: (Ki'-1 PI) 
CALL PIVOT(KE,K~lN) 
1 XIJ (I<r::> =KL 
GO '10 101 

I COI,J1Ir'IUE 
GO 1) 200 
';JRll E (6, 806') ~., 

) FonM~T(lHl'50~"OBJECTlVE,'t2,r ISUNBOONDEO,/I) 
STOI-' 

) IFlI~.EQ.O) GO TQ 202 

GO 1) 2sg 
2 DO 2·j) J=l' NW·~ 

IF(CiJ!2"J)';GE.UE()GO TU2;)3 
IFCCJ(l,Jh'GE.-DELt'GO TO 203 
CALL LE.l\'J (.J,K1·HNl 
KL=IJr::(KMIN) 
CALL ~IVOT(J,~~IN) 
I X'" (.J) =I(L 

,GO 1J 202 
3 cOtn'I'~UE 
HilT'! f\L EFFICIE"JT VERTEX FO: INO 

\ g vJ R 11 t:: ( b , 8 I) 0 ) 
10 FORMAT(II/,50X',INITI~L EFFICIENT VERTEX,,11,4RX,26(,.,),II) 

~'JRTTE(6'[3!)2) (I8E'(I) ,t3R(I) ,I=1,r-1il1) 
)2 FOHlVif\T(3X, ,RASIC VAHIAtiLES, ,1,2X,15(,'t,) ,I. (7(, X, ,J3" =, ,F10.3 

*, I) ) 
ViH 11 C (6, gO ?I) ( I , lZ (l ) , 1=1, :,,) 

) :3 F 0 Q i'I', '\ r (I I , :) -X, , 0 d J E C T I V t. S, , I , 2 X , 1 0 ( -,.:-, ) , I , 3 X , ,OR J, , 3 ( I 1. ., =., F' 1 0 • 3 



FOR~Ar(2X"NBSC VARS"jOI~) 
IFLAG~O' . 
~=t (IF CO\1[:>1 ITEn EFF. V~t-<rI rf:S, L 1 =1- OF NOT YET C()lvlP1JTEr; EFF. VFRTI C 
L2=1 
Ll=O 
DO 2')0 l<=l,N;"'~' 
IVEC(t{)=IXfJ(K) 
CALL SORT(IVEC'NM~) 
00 2 -1-; . K= 1 , Nr..,r~ 
IV?(l,K)=IVEC(K) 
:FICIE~T EOGES wILL RE ~OUND 
IFCL2-100l301,740,740 
Iv R '[ T;:: (6,745 ) 
FORtlIAT{j/,lOX"I~O. OF t--FFrCIEtJT VF.RTICES"'IS GREI\TER THAN 200,,/,10 
*X"HJ~ IS TERMINATED,) 

STOI-' 
CALL [DGE2 
ETE~~I~E FEI\SIBLE ADJAr~NT SET 
J=1 OF EFFICiENT EDGES 
RT=-t O~ ADJ~CENr EFF. EXTR. PTS. 

LRT=a 
IF(LJ.EG.O) GO TO 700 
DO 35') II=l,LJ 
J=Jl ( T I) 
CALL LEAV(J,KMI~) 

LRT=UH+l 
KK=L3E (~~II'J) 
DO 32J I=l,NMi''' 
IRTCLQT,I)=IXN(I) 
I RT (L.·H , J) =KK 

iORT I:-J)1CES OF ·N!3AS. VI\K. nF ExTR. POINT 
00 33') I=l,Nr"1M 

I IV~(U=IRTlLR1'I> 
CALL SORT(IVEC,NMM) 
DO 99 I=l,tl~M 
I RT (un, I ) =.1 VEe ( I ) 
CONlll'!UE 
LR1=0 , 
FOR~ THE'SETIRT-IV2 
00 39rJ I=l,LRT 
DO 371 II=1,L2 
DO 36':\ K=l,NWJi 
IFCJRT(!,K).NE.rV2(II,K»GO TO 370 

) C ONl I ~·jUE 
GO TO 390 

) C or'll I \!UE 
LR1=LJU+l 
DO 381 K=l,NMM 

)'lRT(~ql,K)=IRT(I~K) 

J CON'll'!UE 
IF(LR1.EG.0) GO TO 700 
LR?=O 
FOR~ THE SET IRT-IVl 
IF(l11395,395,396 

5 LR2=LRl 
GO 10 435 

6 DO 430 I=l,LRl 
LJO LH0 lI=1,Ll 
00 400 K=l,NWJ: 



GO 10 430 
C O~ J1 I ~\~lJE. 
L fP:: L " 2.f 1 
lJO L.J 2, r<.=1 ,r'HJ\"~ 
I R T ( L t) 2 , K,> = I R T ( r, K ) 
cOhn I ~~U[ 

IFCLR'.EG.O) GO TO ~OO 
NEw VERTEX SELECTED FRUM R2 
L2=L24-1 
DO' ~ G (1 K = 1 , N ~ \1 
hT(I')=IRTCLR2,K) 
IV?(L:;>,K)=NT(K) 
LR?=LP2-1 
IFCl.K?EG.O) GO TO 590 

'ORM lHE SET IV11 
DO ~4n I=1,LR2. 
Ll=ll+1 
DO ~14 ') K=1' NMif. 

I IVl (Ll,Kl=JRT (1 ,K) 
I CALL v,OVE (NT) 

,1 N~~ FFF. VERTEX NEW ITE~ATI0N ST~RTS 
GO 10 300 
NE~ VERTEX SELECTED FRUM R1 
L2=l241 
00 f: 1 f) K=l, N0'I'J. 
I·; T C t<. ) -= I R T ( L R 1 , K ) 

) 1 V? (l..?, 10 =f'lT po 
GO 65') I=1,L1 
00 62:1 K= 1 , Ni,,':, 
}FCNT(K).NE.I\!l (I,K» tiO TO 6")0 

J COI'IT 1 "!UE 
Ll=Ll-l 
IFCJ.~Q.Ll+!) GO TO 6~U 
DO (:,30 IJ=I,Ll 
DO 631) K=l,NMV. 

o IV1 <lJ,K)=IVl(LJ+l ,K) 
GO 10 690 

o COr-q I i>IU5: ' 
o C ALL ',~OVE PH) 

GO 10 3(10 ' 
NEW VERTEX SE~ECTED FRUM V1 

o IFCll.EQ.a) GO 10'9999 
L2=L2+1 
IFlAG-=l 
DO 71 J 1<=1, NM'·~ 
r-JT C K ,. -= I V 1 (L 1, K ) 

o 1 V 2 ( L::> nO =~n ( l( ) 

Ll=Ll-l 
CALl '."OVE UlT) 
IFLA3-::0 
GO T0 300 

ig WRT1E(o,777) 
'J FO~~~T(///'43X"ALL EF~IC!ENT VtRTICES HAVE REEN ENUMERATED,) 

~RllE(6;770) L2 . 
79 FO?fII,iH(///,Q3X"NO.EFFICIcfH EXTRFPVlE POINTS = ,,13) 

STOP 
END 



1 MPL 1 r: 11 IJ' JUljLt. t-'1{t.1....1'" 1 UN ( 1\-11, v- L , 

C 0 ~W: J '~ I G U L t I fvl , r -'1 "'1 • r J M \1 , n t: L , '1 n ( 5 f) ) , AlH 5 0 , 1 0 0 ) , C I H 3 , 1 0 0 ) , 7 Z ( 3 ) 
CO 1.1 ~1. ) . II G U L"I I C I) ( t I) 0 ) , l" , I X t I ( t 1):1 ) , 1 q r::: ( 5 n) , I PH A 51:-', I r L J\ G 
CO'WIJ U(jIJL3/LJ'.JT (~)O) ,"iU,~:JL 
LJ=O 
A t--1 T N = 1 .• n E + 1 I) 
00 10 J=1,' H"I~ 
IF.( Cot! 2, J) • LT. DEl.) GO lOt 0 
IFCC'J<l,J).GT.-!JEL) GO TO 10 
AA::C: J' 1 , J) IC{'J (2, J 1 

CtJ(3,1>=I\/\ 
'IF(A';.GE./\~HI~) GO TO tU 
I\IvI.T N ='\ 1\ 
CO'H ! "jlJE 
WGHT='MIN/(I\MIN~l.) 
\·JGHT1::1.-t~GHT . 
WRI1E(G,850) WGHT1,WGHT 
FORMAT(II,3I)X"CORRESPUND!NG OBJECTIVE WEIGHTS I\RE :,,5F~.3) 
IF ( ~'JGlH • GT • WLJ. 01{. VJGHT • L. T • \··/L) RETURN 
DO 30 J::l, W",., 
IF(C;J(2,J).LT.l)EI~) GO 1'0 30 
rFCCiJ(l,J).GT.-IJEL) G0 TO 30 
IF(C~(3,J).GT.AMIN+DEL) GO TO 30 
LJ::LJI-l 
JT(LJ)~J 

I COtlT I'IUE 
RETIU! 
Elm 



Illtf>L 1 r: IT D()UI3LE -PHECI SIO!'.) (A-H, O-z 1 
DIr,IE·~Jr;10N' INTl (:i/) 

C f)"~' ')' II (j! It _ 1 / i,~ • t;1\ , r !', "I, , '"11: L , '~q ( ~.1 ) , .\! I ( ') Q , 1!) 0 1 , C! 1 ( ~ , 1 f) 0 ) , 7 Z ( 3 ) 
cor\~rJ:)'I/GLJL? ICP ( 1 /)0) ,21;), I X'!< 10 /) , F~E (50) ,1 PIH\S[, I FLAG· 
'Ll\G=G IF f"OVE. I', TO ,,\nJAU:rH vEHTEX , =1 0.THER\'11 S E 
[)O 1 n =1 , Nt~t", 
DO 2-1,J=1, NW-1 
IFfII.'f<II).EQ.IIH1(JJll GO TO 1 
COIH I ~ IlJE 
KE~II 
IF(IFLAG.FO.O) GO 

:,TI~ >J')I~i3ASIC 'JI\I{, 
uO 11) 1L=1,Ni·1r., 
00 11 J=l,Nt-1i-1 

i ' , 
TO ')UO 

\HLL BE EIHCH HJG 

IF(I,~Ti<IL).[().IXN(J» GO TO 10 ' 
COt!T('IIJE 
KL=I ~Tl (IL' 
Kt-1'! N::') 
DO 1.S 1=1, t,1M 
IF(KL.IJE.rBE(l» GO TO 13 
Kt4'I t'J= T 

IF(Ai3'~(MJ(K~"IH'I\E» .GT·OEL) GO T0 C:;02 
GO TO i[) 

COIHI'IIJE 
CO"Jl t !'IU[ 
CALL ~IVOT{KE,KMIN) 
1 XI! (i"r-:) ::KL 
COIHI'IU[ 
GO TO 900 

J C ,'\ L L !J~ {\ V (1< E , I~ ru N ) 
KL~L3'-: (1<1'-11 ['I) 
CALL nI\lOTCKE,KtUIJ) 
lXII(r(r-:)=KL. 

o ~JH ~ 1 [ r 0 , no 1 ) 

( 

-' 

1 FOI~Mi\T(///,55X',NE~~ EFt-rCrEtH VERTEX,,//,53X,24(,*,),///) 
WRITE(G'8n2)(JH~(I),nRlI)~I=1,MM) 

2 FO~MAT(3X"RASIC VARIAHLES,,/,2X,lS(,.,),/,(7(, X,'~3', ="F10.3) 
*,/) , 

v:R T TE (6, H03 ) ( I , Z2( I ) , 1=1, '1) 
13 For M /\ T ( / / , ~ x, , OBdEC T I \ft.s, , / ,2 X' 1 f) ( , *, ) , I , 3 X , , ORJ, , 3 ( 11 " =" FlO. 3 , 

*2X, ,(n.J,» 
. HF.:Tlli~·l 

EI~() 



If..."IIL-.1.; . .l1 ·IF"HJL1_ ·I-I-·L-'-.L~.~J-V"I"'\''''- "r'" £_0 

C Ol."~,~()~ II Gl JL t It·1 .r ~f1 ,r JMf·" ,nt.L , f3B ( ~) () , All( 50 , 1 fJ 0 ) , CN ( 3 , 1 no) , 7 Z ( 3 ) 
C 0' ~M()' !I i;1 II. ') I C P ('11) f) ) , Z P , I X 'I ( 1. 0 r) , I nF.: ( 5 n ) , I PH I\sr , I FI./\ G 
HW ('~!:l! J) =1 XIJ( r;L) 
{\/\=A;~ (~:r'iItJ' KE) 

lHMI\LI ~E 
DO 14 ,J= 1 , tlt"I·' . 
AN (K:~HJ, J) =AIJ (Kr-1HJ, J) I/\A 
IJB (Kr"1 !'l) =BH (Kt-1 I !~.) I AA 
/\N(K~TN,KE)=l./AA 

_II>1IN!\TE EIJTEHII'IG V/·\t~. t-RO'" ()THER EI)I'JS. 
DO 15 1=1,W" 
IF(I.F.o.Kr'HN) GO TO 1'1 
AA=I\IJ (1 ,KE) 
I:3B (I J -:1313 (I) -{\I\*f3R (Kt-1HI J 
00 It) ,J=l, I 1 Mr·' 
AN ( I, ) =/\1'1 ( 1, J) -/\I\*I\IH KIv1FI' d) 
AN(I,~~El=-n.N(I{MIN,KE)*I\A { 
COtnlrJUE 
(JO 17 I=l,~' 
AA::Ci,J ( I , I{E) 
Z? ( I T-:?? ( I ) -A l.\*t3H (KIv1!1'1l 
00. 1,'} J=l, ('IMr..., 

I CNCl, 1):::Cr·I(I,J)-AN(K:-1TN,J)*.f\A 
CtJ< ! , :~[) =-I\N (1<'-1 ItJ, Kr.) *I\A 

, COtlTI')lJ[ 
IF(II)'-j;\SE.rU::.1J GO TO 10 
Af\=C,J ( \<,[ ) 

ZP=ZIJ-'\j~*BH (K'lIin 
uO 9 1= 1. , !.!~'I'" . 

) CP(J)~CP(J)-A!j{i(MIN,J)*AA 
CP(KE)=-AN(KM!N,KE)*Ai\ 

) COrJTlr!U[ 
RETU:~t ! 
[1m 



SUi-H<:) IT ltJ[ LE 1\ v (J , K ~·H t-I ) 
l!>1;f>LICIT 9()UBLC PRE.CISIOrJ(I\-H,O-Z) /' 
C 0 'V~~), 1/ GUL1 /1·1 , ~~ \1, r'JI\.1;;' , f')t.L , {1B ( 5 n ) , IV!( 50 , 1.00 ) , CI J ( 3 , 1 00 ) , 7 Z ( 3 ) 
1\; q r ~ : ' .• (J l~ ;-1 0 
l<r-ItH·I=') 
DO 5 T = 1 , ~'1., 
1 Fe I\!J ( I, J) • LE. U[L) GO I 0 ~ 
1\1\::11:3 ( I ) / I\!~ (I h-J) 

I F ( 1\1\ • (; r: • A "1 i I ~ ) G l) TO 5 
i\l~rN=,\1\ 
KI·HN=,: 
COfHI'jllE 
HETUR'l· 
EN!I 



sunK·,y II JtlE ~m{ I II v, [·n 
uI','E.J"ilON TV(~IJ) 

I 1 c. T! IE V[CTOH fO BE C;URTrD 
15 T11: 'H"[l'·JS'!' 01 I Of- TIlt", vC:CrOn 

DOl r = 1 , Nt"l 
11=1+1. 
DO 1 . J= 1 I , ~I 
IF(1V{1).LF.1V(J) 
ITF:MP::1\I(I) 
I V ( I) ': I V ( J ) 
I V ( J) -:1 TEt,1!' 
cor!T 1'!LJE 
HETlJ!{:1 . 
ENn 

GO 10 1 



NEW EffiCiENT VERTEX ........ ~ ........•..•••• 
BAS I C V'"R HBlES 

••••••••••••••• 
)OOt '" 17.1171 XO&9 • 1.'!&2 XO'!3 .. e.6B:! X0 3& •. 31.1'!'! X021 '" .72 6 XDs'! '" .06 3 xDl9 • , 1 B I 

)033 .. 22.17" XO&6 7, BI9 X03,! c 2't.6l(; XoOI • 12~129 X002 '" 3 6 ,38 7 xoi s • 9,1 3 2 xoo't • .100;000 

)0('51 .. 1;10,000 XO~2 .. 3.'157 X007 • 13.613 XODB • ~716 X009 '" 28~IOO XOIO '" z B, 100 XO 11 • If; 380 

)012 • "1,9CJI' xop D 61,900 XOl6 " '!.978 X036 .. 16;61'1 X06 3 • .:i6,S30 XO~3 '" 27.022 XOl7 • 9;893 

~Oss .; 19,7b7 X0 0 3 .. e'l,90'l X020 • ,363 XO'l'l .. 23~ 51'1 .XOIS • i6,OOO xoi.o '" .000 X021t '" It;ooo 

xOt2 .. 6.e6b XO~'I " a.ooo X 

O&JEC'tIVES 
•••••••••• 

06JI "-IOBO~219 O~J2 '" .1100.376 OBJ 

CORRESPONDING OBJECTIVE WEIGHTS ARE .311 ;6 8 9 

" 



,. \ ". - . .• ," , .' • 1 .' ~. • i ~ . '\. ", ... ,. ... .. ".,... ',' . . . . .. '.. ',-' 

.AP~ENDIX III~.DATA F9~ ~~~o~9~ER SX~!~M~ EX~ANS10N 
MODEL AS A~~LIED TO TURKEY' 

Dates corresponding to the periods: 

Period 012 

Mid-Period' 
Year -

1977 1983 ° 1989 

Beginning capacities: 

P1 ,0 = 4 GW 

P2 ,0 = 4 GW 

P3,2= 1 GW 

Demand data: 

Energy Demand,EDt (Twh) 
, 

Period Scenarios A,B Scenario$ 

1 30 30 

2 60 50 

3 108 90 

4 170' 150 

5 240 220 

'Power plant data: 

3 4 5 

1995 2001 2007 

Power Demand, 

C',D Scenarios A,B 

6.21 

12.44 

22'.37 

35.25 

49.77 

PDt (Gw) 

Scenarios 

6.21 

10.37 

18.63 

31.13 

45.66 

Initial Cost(a) 
Plant type .O(inTL/w) 

Operating Cost(a~) 
(in TL/kwh) 

Capacity Factor 
f· . 
l. 

Coal 34 

Hydro 40 

Nuclear 65. 

1.0 

0.5 

0.70 

0.45 

0.60 

C,D 



Capacity expansion coefficient/;; , Ki :. 

2.0 for coal and ~ydro,. 

1.5 for nuclear . (restricted) 

4.0 for nuclear (less-restricted) 

Discount .factor: 10 % p.a. 
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/ 

-"-~~,' ••• I ,.'/'. -'.- ...... :,- •• 

APPENDIX IV:_ COMPUTER PROGRAM FOR MULTI OBJECTIVE 
... "0 • '," '. ." \ '1 ;'. - .. ". -,' .. " I 

ZERO~ONE LINEAR PROGRAMMING 

A.IV.1. DEFINITION.OF VARIABLES USED IN THE PROGRAM 

K 

.N 

M 

A(.,.) 

C(.,.) 

S (.) 

T(.) 

DOM(. ) 

UB(. ) 

- KR 

JF 

IFREE 

LZ 

J1 

IW(. ) 

JB 

INF(. ) 

Number of objectives 

Number of variables 

Number of constraints 

Const~aint coefficient matrix 

Cost coefficient matrix 

Array giving the current right hand side entries of 

the constraints 

Array giving the sum of negative coefficients 

of each cpnstraint 

Array giving the re1evant··domination margins of- the 

free variables 

The upper bound array 

Index giving the con~traint number where T(KR)=S(KR), 

if any.- (implying definite assignments.)-

Index taking values in subroutine FEAS; 1 if the current 

node is found to be infeasible ; 2 if feasible and 0 

otherwise 

Number of free (unassigned) variab1e~ 

Number of variables that have- been assigned-the value zero 

Index taking value 1 if definite zero assignments are 

determined in subroutine ADVDM, zero otherwise 

Array specifying if a variable is free (IW(J)=O); 

assigned value zero (IW(J)=10); assigned value one 

(IW(J)=ll); or assigned definitely the value one 

I(IW(J)=12) • 

Index of -the branching variable 

._ Array giving the infeasibilities of the free variables 
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MINF 

LB (., J) 

.• - The II)inill)u~ entrr 9f the above arr~:y 

•. The .:rth1,?~er bound arra:y 

' . 

NL :_ NUII)oer· of low.er bounds 

IND(. ,.) -:: Matrix giving the indices of the variables when 

INC(. , .) 

JD 

LM-

NA 

LBN(I) 

NUB(.) 

IPATH(. ) 

IS(.) 

IQ(J) 

,IX(.,I) ; 

lXA(. ,I) 

KERN 

reordered in ascending order of constraint ~oefficients 

Matrix giving the indices of the variables when reo!dered 

in descending order of ,cost coefficients 

Index taking value 1 if current node is found to be 

dominated in subroutine ADVDM 

Minimum number of variables that must be set to one 

in order to reach a feasible solution 

Total number of alternative solutions, if any 

The lower bound number corresponding to Ith 

a1terna·tive ~olution 

Array giving the relevant advanced upper bound vector 

Array specifying the current enumeration path in the 

order in which variables have been assigned 

Array used for sorting operations 

Index taking value l·if Jth variable has a positive 

I cost coefficient in any objective, 0 otherwise 

The solution vector corresponding to Ith lower bound 

The solution vector corresponding to Ith alternative 

solution. 

I~dex taking value 1 if pranching is done according 

to minimum infeasibility; value 0 if done according 

to minimum domination margin. 

A.IV.2. INPUT -INSTRUCTIONS 

The inputs to the program consist of the parameters K,N and M, the matrices 

C and A and the array S. 

The parameters K, Nand Mare inputted;.on a single card according to the 

format (1018). 
) 

The matrices. C and A are inputted columnwise, respectively, again 

according to the format (1018). The right hand side array S is also 
. . 

inputted according to the same format. 

171 



I 
Since in actual probleIIJs. the cOf?t coeff,icients are II)o~tl:y po~i ti ye, the 

prograIIJ assuIIJe~ pqf?itiye cqst c~e~~i~ientinpPt~. Later, thrqu~h the 
- ~ . .. 

transformation x: = h·~., ~ cas·t 'II)atr.ix c()nsi~ting Basically of negative 
J J 

entries is obtained •. 

A.IV.3. PROGRAM LISTING AND SAMPLE OUTPUT 

The listing of the main program and the subroutines; and a sample output is 

given below. 
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1 NTE.G:::R A, r: , S, T ;110M, 1.)[" SU'1, 
"r "., • , ~ I ) "- 1. J ,'" ; "I J _, ;, ., •..• 

1JI'~E>JSIOI'1 IPATIH70) d Y (7Q,150), IS(70) ,IQ(70) 
CO~MO'1/13HJ1/KR'JF,t",S(')O) ,T(50) ,IFREE,J1 
COMMJ~/BIN2/N'IW(7D)'~(50,70),JB,MINF;INF(70) _ 

-- I' ,.,. ~ ••• 

-. 

cor.1M,JI\J/BHJ3/.K,IJi3(5) ,C(~'70) ,LR(5,150) ,NL,IND(50,70) ,1"JC(5,,70) ,JD,L 
*rlj, "·1 A ,U3N (10) , IXA (70,10) , N'.IB (5) , DOt-1( 70) 
RE~D(S'700) K.NiM 

)0 FO'~MAT(10113) . 
R E ~ lJ( S , 7 00 ) ( (C ( I • J) , 1:: 1 , K .) , J:: 1 , N) 
R E/\o ( I, , 700) ( ( fl. ( I , J) , 1=1 , M ) , J= 1 , N) 
R E 1\ 0 (. 5 , 7 0 0) (S ( I ) , I = i , M ) 
IHP=,'J 16+1 
MAKE TRANSFOR~ATION 1-X 
002 I::l,K 
SU"~=O 
00 1 .J=1, r~ 
I.F(Cq'J).LE.a)GO TO 1. 

. SU'·1=S' H>1+C ( I , J ) 
1 C(T,J)=-C(T,J) 

US ( I ) =Sur-1 
2 CO\IT I:JUE 

UO 4 T =1, r", 
SUM=:) 
DO 3 ·J=1,11 
SU'·1=';\ lM+A (T , J) 

3 A(T,Jr=-A(T,J) 
S(T)=S(I)-SUM 

4 cor-JTp.!UE 
DO 6J=1, r·J 
DO ~ T=1,K 
IF(C(l,J).LE.O)GO TO 5 
IQ(J)=l 
GO TO 6 

5 COI-n I'JUE 
IQ(J)::Q 

6 cO!n I ~,JlJE 
NL=O 
ITEH=8 
IHF=O 
f\JA(W= :) 
JADV=I) 
hIA=O 
so~n 1rmECES IN ASCENDING ORDER OF COEFFICIE-NTS 
00 10 1=1, ~1 
1.)0 8 .1=1,1'1 
IS(J)::A.(I,J) 

11 H-ln ( I "J) =J 
I~N=N-l 
DO 15.JJ=1,t.JN 
I I:::J,J lol . 
DO 15 J=II,N 
IF (IS (JJ) .LE. IS (J» GO TO 15 . 
ITEM[J -: I ND ( 1 , JJ ) 
INn(I,JJ)=TND(I,J) 
I hlr) ( I • J ) = IT Eiv1fJ 
.ITE~"P=IS(J.J) 

I 



sorn TiJ')ECfS IN nESCO!UIN~; ORnER of COSTS 
t..:J. ?.;~ 1=1 ,I~ 

uo 17 J=l, ~l 
ISfJ)~C(I,J) 

7 INr:tI,J)=J 
DO 20.JJ=1,NN 
II=JJ.l 
00' 20J=II,N 
IFCIS(JJ).GE.IS(J» G0 TO 20 
I TEMP-: I IK ( I , J.J) 
11K (I ,JJ) =INC (I ,J) 
HK( I ,J'=ITErv1p 
1 TD·je:: I S ( .),J ) 
IS C J J )' = I S ( J ) 

'IS(J):::ITEr-1p 
) 'CO' IT PllJE 
2 COqTI"IUE 

IN''fT I ,,\LIZE 
lFRf..E::N 
DO 2:i J=1, ~I 

~) 1\'1 ( J) :::0 
LJO 3':5 1=1, r"1 
00 3::; J=l,N 
IF(~(T'J» 30,35,35 

) T(!)=r(I)+A(I,J) 
:> CO'IT P JUE 

GO TJ 56 
FEASllILITY CHECK . 

J CALL I=Ei\S 
ITEH=TTER+l 
IF(JF-l) '4S,400,450 

:) IFCKQ) 50,50,150 
CHOO';':: BRAN.C I qG \j !~R IARLE 

~ IF(NL.E~.O) GO'TO 56 
KBPN=l ; 

1 IF(LZ-NtP)56,52,52 
2 IF(2tLZ-N+IFREE)56'1152'1152 
S CALL 'mI\NF 

GO TO qq. 
? KBPN=') 

CALL '\OVOr·1 
[-JA'lV="JAOV + 1 
IF C J;) .EO.l.Of~ •.. Ji3, EO. 01 JAD,!=JAnV+l . '. 
IFfJul ~)4,S4,I~OO 

+ IF(L~.EQ.IFREE)GO TO s~o 
IF(JB) I~OO,I~OO,60 

) IF(Jl.EO.OlGO TO ~94 
DO 6:; I = 1 , '1 

::; IS(!.>=T(!) 
DO 6y J=lr~1 
1 F C 1 ',~ ( J) ) 64 , 6 1p 6q 

~ IFCOO~(J»66,66,6g 

::> DO 6H I=lr~1 

IF(AtT'J»67~68'68 
7 T(T)=T(I)-ACI,J) 
3 CO~H I 'I' JE 
1 CO'JTI'~lJE 

, 



1 t- I 1"'1} ( J " f I), {IJ , tj U 

1 1 F ern'~ (. J» 7 ~j , 7 'j , qO 
I'tJ(.J)::lO 
IV::I'J+-1 
IPI\Td (IV') =,J 
LZ=Ll+l 
IFREE::IFREL;:-1 
DO 76 1::1,K 
IF(C(I,J).LE.O)GO TO 7b 
UBCl)::UR(I)-C(I,J) 

) co~n I NUE 
) COhlTPJUE 

00 77 "J=1 ,~IL 
00 7 J' 1=1, I{ 
I"'J\I~G=' 113 (I) -Lf3 ( I , J) 
IF{MAQG.GT.O)GO 10 77 

3 COi!1 ['JUE 
GO TJ q·ao 

7 COtHlr'llJE 
IF ( K;~ ) g4 , 9'~ r150 
BR"\NCI~ TO ,.IR=l 

+ IV=I\I+l 
IP..'\Tii(IV)=·IR 
I Ff~EE=1 FHEF:-l 
I ~-J (JJ) =11 
00 1un I=l,K 
IF(C(r'JB).GE.O)GO TO 100 

_ UB C 1> =UB ( I ) +C ( 1 ,JB) 
n CDr'll e'IUE 

DO 11 f) I=l,r", 
S'( T ) =S ( I) -A ( 1 , J(3) 

IFCA(I'JB» 105,110,11 U ' 
5 T(T)=T(I)-AJ1,JB) 
o corn I"JUE . 

I F ( K iN I'~ ) 50 0 , 50 0 , 6 1 0 
2 DO 951=1, ~1 
5 T('{)=1S(!) 

JI\DV=,JADV+1 
" GO TO L~OO 
1 J=1Pi\TH(!V) 

JOC;=O 
I\'J( J ) ::10 
LZ=LL+1 
00' 120 t=1, K 

o UB(I)::UB(I)-C(I,J)' 
DO 12 1 ! = 1 ' M. 

1 S(T)=S(I)+A(I,J) 
CALL FEAS 
ITF:K=TTF:R+l 
IF(JF-1) 122,400,450 

:2 IF(KR1123,123,150 
:3 MHJ=9rJqg991l 

JB=O 
:8 DO li~O J=l, N 

IF(I~(J»135,135,140 
15 IF(J;Jt:(J) .GE.rlII'J)GO TO 140 

1.1\ P,I= I r,IF (J ) 
J8=J 



o I F (r'1l • Jt- ) (, 1 ~ , 6 1;..:' , b 1 ~ 
2 JOS=1 " 

GO 1) qJ)() 

3 IF(NL)616,~16,614 

l~ DO 62'1 ,J=l,h1L 
DO 61:, I=l,K 
MAP G::' 1:1 ( I ) -LB ( I , J) 
IF(M~~G)61~,615,6~O 

5 COrHlhJUE ' 
GO 1 G 111 

o COr-JT UJUE 
b CALL FEAS 

IT~H=TTF.:H+l 
rF(JF-l)45,111,111 
T(Y)=S(I) TN ROW KH I~~LIES DF.:FI~ITE nSSIGNMEMTS 

10 DO 250 J=I' N 
. . I F ( L'U J» 160, 160 , 250 ' 

,0 IF(A('<H,J» 170,25U,1r':l1j 
'0 U~ (J) =12 

l'V=IV~1 
IPA1H(IV)=.1 
rFrH:E=IFREE-l 
DO 171) I=l,K 
IF(C(!'J).GE.:)GO TO 1'5 
US c 1> =U8 ( 1> +C ( I ,.J) 

'5 COI~T I t~UE 
DO 1'1:} 1 = 1 ,M 
S <T ) =S ( I> -1.\ rr; J) 
IF(A(l,J» 176,180'180 

76 T ( T> = T ( n -/\( I ,J ) 
30 COT IT I 'ME, 

GO 10 2 r)O 
W I~~(J)-:lO 

IV=IJ+l 
IPATd (IV) =J' 
IFHEE=IFREE-l 
LZ=LZ +-1 ' 
DO ·1 ':11~ 1=1' K 
rFCCrY,J).LE.O)GO TO l Y4 
Ul3 ( ll=lJB ( I ) -C ( I , J) . 

:}It COrJT PIUC: 
. 00 2lJ'1 1=1 d'" 
IF(A(T,J» 19~'200'200 

95 T(J>=T(I)-!.\(I,J) 
00 cOtHIl\lUE 
:iO cor JTl"lUE 

GO TO 500 ~ 

FEI\SI ',LE CHF.CK !=OR OO~' ANn BJ\CKTRl\CK 
50 DO 3lJ!~ I=t,K 
04 NUn.'~ I) =Uf3 C T ) 

DO 3D,,", ,J=l' N 
IF(i~(J).NE.O)GO 70 30b , 
DO 301:) l=l,K 
IF(~(~JJ).LF.:.U)GO TO 3U5 
I~UB ( I , =t IUB ( I ) -C ( I , J ) 

0.5 cor.JTr-:JUE 
,06 Corn I :'IUE 

IF (NL) 1~~2, 'l52, 4~jl 

. t. ,. 



I"\U-l' 

:it,PG=' !I.m ( I ) -L'l ( ! • J) 

IF (~1"'~G) 320, 31th 315 
o KK=KK~1 . 

GO 10 320 
5 KD=Ku+1 
o CONT I ·~Uf. 

rF(KK.[Q.K) GO TO 350 
I\L Tf::]~"II\TIV[ SOLUTION 

...... 

IF( (K~+KD).EQ.K) GO Tn 375 
00'·11IJ'\TES f\ L.H; 
rF(KLJ.IH-:.O) GO TO 300 
GO TO 4qq 

o CO!ITI'IUE 
tIE\·.! LI)\'J[R 1l0U~JI) 

,2 HIE=I TER 
I-.iL=NL+1 

. 00 3.3:) 1=1 rI< 
,I) LA ( I , 'IL I =NlJl1 ( I ) 

DO 31~1 ,J=l,N 
IF(I~{J)-10) 342.342~341 

·1 IX(JrtILI=O 
- GO TO 340 

~2 1 X (J. qL) =1 
~ 0 C orH I ! ,UE 

GO 1U L~gg 

AN AL TEHNI\TIVE SOLUTIf)N FoR JTH LOtoJER HOUNn 
,0 DO 3SS ,JJ=1, IJ 

IF(!W(JJ)-10)352'352'~~1 
~2 IF(!X r JJ,J).NE.1·)GO TO 353 

GO TO 355 
)1 IF(IX(JJ,JI.tlE.O)GO TO 35~ 

,5 cotn I ",UE 
GO TO L~g9 

33 i'JA=l'li\+1 
LBI~ ( !.J \ ) =J . 
DO 3of) J=l, N 
IF(!~(JI-10) 362.362,3b1 

:'1 IXI\(J,NA)=O 
GO T0 3~0 

:;2 I x 1\ LJ , I~ A I = t 
:'0 CO'JT1'lUE . 

GO TO 4qg -
.JTH U)\~ER f'ount) DOf\lI N 1\ 1 ED 

75 DO 3,~Cl 1=1' K 
gO L!3(!'·J'=iJUfHIl . 

DO 3..:)1 JJ=1 ,t~ 
IFe!j(JJI-IO)3g2,39 2'3Y1 

91 IXeJJ"J)=O· 
GO TO 390 

92 IX(JJ,J)=l 
90 Corn !r--JUE 

CO··~P;'\'~E NE"I Ll3 J WITH I HE FOLLO'{JI~IG LgS FOR DOMINANCE-
W~=NL 
DO If'), JJ=I'IN,J,-l. 
IF(JJ.EN.J) GO TO 4QO 
00 4dC; I=l,K 
MA~6=LH(I,JI-LB(I,JJ) 



L-lJ ,",V ..L.l to ........... _~-

IF(J,J.Eu.IJI.1 GO TO 1~l1f' 
HEPL,vT U1 JJ \'11 TH LB I'JL 
un 4i)(, r=l,K _ 

Bn LB ( I , ,JJ) =LI1( I .rJL) . 
DO 4d7 ,JI=l,IJ 

R7 IX(jr,JJ)=IX(JI,NL) 
BB I'JL =NL-1 
~O IFCNA.EO.o' Go TO 495 

14H::Ni\ 
DO 3qr; ,T=!Jr~'l,-l 

I F I LI\' J{ U .I'IF.: tLkJ) GO To 395 
IF(I.~O.NA) GO 10 394 
U3"! ('1 1 =Ln!~ e tJA ) 
uo 3'p ,JI=l, I'J 

t,J7 I X 1\ LJ T , I ) = T X A ( ,)1 d'l f\ ) 
'?'~ 1~/'.=I-Jj\-l 
,95 cOIn I 'JU[ 
,q~ COtHI~IUE 

:00 [)O L~9~ ~J=l' tJ 
'IF(LJ(J).IIf-.O)GO TO 4Q( 

IF(IQCJ).EO.O)GO TO 4 0 / 

JB=J 
KRPN::'l 
Jor;=n 
GO TO ql~ 

f'17 CO! JT!' lUE 
IF ( JY; ) l~ o'n , I~ 0 I) , 111 
dl\rv, r'~'\CI< I tH? 

fnf") .JB=I,)\THeJV) 
1 [1::1.1 (,JI1) -10 
I Fr~EE::I FREE+ 1 
I\'~ (J[1 ) =0 
IV::IV-l 
IFOll.Eo.O) GO TO 4~O 
DO IHIl l=l,K 
I F ~ C ( T , .18 ) • GE .0 ) GO TO 410 

'UH(I)::UR(Il-C(I,JB) 
+10 C01 ITI'jll[ 

00 q,;~n 1=1' ~-1 
4-2n S(T)::<;e!'>+I\(J,JU) 

431 DO 4:,)'; I::1,K 
1F(C(T'J8).LE.OlGO TO 435 
U!3(I)::U[1(I)+C(I,JB) 

4-35 corn I! jllE 
1~37 DO 47':"\ 1=1,'''' 

IF(A(T'JR») 440,47U,47U 
4-40 T (J) =T ( 1> +/\ (J , dln 
4-70 cmIT PIllE 

IF (1'J .Eo. n.A\Jr). IB.NE. 1} G). TO 999 
I F ( T i ~ -1) " 7 1 , L~ 7;'~ , 4 U 0 • 

4-71 LZ=LZ-l 
GO TO 400 
8R,I\NCH TO ,IH=O 

472 I i~ ( Jil):: 1 0 
LZ=lJ 1-1 
'IV=lV.l.l 
I P 1\ T Ii ( I II) =.m 



l. I \" \ '_ ,. \..II,} I' -T.I'" r 1'-" _ ••• , 

5S T(T).:T(Il-I\(I,JH) 
~O CO!ITI"UF. 

l...,J I~'I" l=l,K 
IF (C ( l' ,m l . L[. 0) (70 TO 46~) 

UB ( I'> -:UIH I 1 -C ( I , In) 
:)~> CO!JTI~JUE 

GO TO 500 
51) 00 57.-; J=l,N 

I F ( 1.1 ( ,J ) l 561) , ~ 6 I) , 575 
[)O IV=IV+l 

1 P 1\ T H ( I V ) =,J 
HJ(Jl::12 
DO 5\:,"1 1.:=1''''1 

65 S(I)=S(Il-A(I,JJ 
lJO 5"~) 1=1' K 
IFCCCT,.j) ."E.0H;() 'TO '1/0 
UB ( I ) ::Ui1 ( I ) +C ( I , J) 

70 corn I1IUE 
75 COllTl'llJE 

I Fr~E[-:,O 
lJO 5df) 1=1' ~I\ 

,no T (I ) =tl 

GO TO 5no 
ENllMi:'U\TIOfJ IS COMPLETt. 

Ir;q .ifn T[ (rH If)~3) I~ dJr M 
if)3 Fon''t.,\qiIH'10>~"SOUJTIUIJS FOH THE MULTIOBJCCTIVE ZERO-ONE PROBLEM. 

*,I,U'<''\~ITH "11,, 011,JECTlilES"T2" VARII\RLES "12,, CONSTRAINT! 
, I 

"', , / I , ~ 1 X , ~O ( , "" ) ) 
IF(f'lL-.ijE.O)GO -TO 1f38S 
\'~'nT[ (6, 18,rv~ l ITL" 

l;31~ FOn~~,\T(II/'11X, , Et,lUMEfJ I-\T 1 ON \'ir,S ((WPU::TED 1N, ,16, '1TEPATIO!',]S, ,11,: 
*HE PI{t)BLEt" HAS I JQ rEASl BLE SOLlJTI ()t-J, ) 

STOP , 
305 ','IIHTF. (6,800) ITEH,NL,rnt. 
JOO FORM;\T('/I/,11X',ENU~I\ER/-\TION \~I\S COr>1PLETED I!'-J ,'16" ITERATTOtJS,,1 

*,l'X,Tl~" fFFyCIENT SOLUTIONS WERE ,FOUND IN"I6" ITEPI\TIONS,) 
uo nOll ,JJ=l,NL 
v:rn n-~ (6 rl1r) 1 ) ( T , UH I, J,J J , 1=1, K) , 

301 F-OfH·I\:IT(/I,lOX,5(,OBJ,,11,, = ,,!7,S'X» 
,,!{'TT:::(b,fHl?) (J,lX<J,J.J) 'J::1,loJ) 

:.>£1;: FOn.M,\T(/,nXr1:l(' X, dr., ,::, ,11» 
IFINA.EO."' GO TO 600 
uo 6~i'1 L=l' NA 
IF ( L3r.j( U • NE .. j.1) GO TO 650 
VilHTE':(6,R02} (.J, IXA(J,L) 'J=l,I'l) 

G50 conTI'IU[ 
600 conTI'llJE 

\'m:r TE (6,80(-') IIAD", JAD\j 
dOC) For~~'li\T(III'10X"I\DVDO~'~i~Ac:, CJ\!.LEO"I4" TP1ES AND DOMINATION \oJAS 

*OI'KVJ'lEn, rI I~" T I lo.1E5. , , 
STOP 
E.N!) 



-
. COt\·~,)·l/iH IJ1 IKR, ,JF, t-1, S (~O) , T (~)n) 
c. ()' 1 r."j' i I 1\ ! II? I I J , I \.J (70') , fl.. ( 50 , 7 () ,2m, tH NF , It JF (7 n ) 
co"~.rI\)·l/dIrrVK,lJiJ(~) ,C('">,7.0) ,LB(S,l50) ,r·JL,IfJn(sO,70) ,ItlC(~),70) ,JD,L 

~ *rllj,IJA,u~rHI0), IXA(70,10) '1~!IIH51 '0()':H701 ,- ;' 
01 nEI.J(j I or·J 1 DT (L) ) , 1'lNn ( !') , 
I..)or,. CHECK cons I DEH I NG r·lI !'J. :t.OF \} f\R. THf\ T MUST 8E 1 FOR FEAS. 
J1=0 
JD=O 
L1v1=0 
DO 50 1=1," 
IF(Srl» 10,50,50 

10 L=O 
SU'·~=il 

UO 40) ,J=1, rJ 
JJ=I;n( 1,J) 
IF(l\J(J,J» 20,20,4U 

2.n sUt"=~;1 It·l+A (T , JJ) 
L=L+l 
IF(SLJ'1-SCI» 25,25,40 

25 IF (U·1-:-L) 30',5;J,!50 
30 LlA=L 

GO 10 50 
11.0 COllTP!LJ[ 
~)O corn I qUE 

LlJ, IS r·1Itnr~lJl~ :+ OF Vf\H~. THf\T ~UST BE 1 FOR FEf\S. 
IF (L'I. Co. rFRCE) Hr:TU'~fJ 
DO 4::) I=1, 1< 
lOT ( I ) =lm ( T ~ 

45 I·JU8. (I) =UB (T ) 
IF(L~.EQ.1)GO TO 81 
1..)0 60 I=1,K 
L=n 
00 5::5 J=1 ~ tl 
JJ=INC(I,J) 
IFCI.J(,JJ» 51,51,55 

51 IF(C{T'JJ»52,~4,54 
52 NUR ( I 1 =Nun ( I ) +C ( I , JJ). 
Slt L=l+1 , 

IF (L-\J·1+1')!')5, 53,60 
53IDT(11=NUB(I) 
55 Cm'JTI>JUE 
60 CO~JT I'IUi: 

1..)0 80 ,J=1, qL 
00 70 l=l,K 
MARG='IUB ( I ) -L[3 ( I , J) 
I F PJjA'~G) 70,70, BO. 

70 CO~lT PJUE 
.JD=i 
RETUj{~J 

DOCO~lTI;ltJE 
81 uO 90 J=1 ,~l 

IF( lloJ !Jf)D5,8c;rCJO 
E1!j DO 8[) 1=1, i< 

NN~(I1=IDT(I)+C(I,J) 
I r- ( N!~I n I ) • t; T • qUl3 ( I ) ) W Iii ( I ) =NUI1 ( I ) 

86 CO~H I \llJE 
I..)O~" ( J ) =q99q99 
1..)0 101 .. JJ=1 rr'-lL, 



L/v .... .1 .L -.l. ,. ... 

I F ( M 1\' > (j 1 n Ii ' q 7 , q 6 
}6 I()')M=T()O',1"'~AHG 

IF ( I tJlf 1-00tH J » 95 ~ 101) , 100 
)7 KK=KI<+l 
)5 COt'IT I l'JlJE 

Dor" ( J 1 = I DO~·, 
IF (DO' H J) • nE. 0 ) GO TO 1 lJO 
IF(KK-K)101'10~'101' 

)1 J1=l' 
GO TU qo 

)2 OO~H,J)=l 
GO TO 90 

10 CO'lTl"llJE 
~o COr'IT I' lUI-: 
H r-1 H'=9'lQQQg 

JB=O 
00 12/) J=l, t,! 
IF ( I \'J ( ,) 1 ) 111) , 110 , 120 

to IF([)U f 1(,J)-'1IIoJ)115,120,120 
l!J IFCDO·H,J) "20r120,116 
l () i-1I ~ I =iYlt·' ( ,J ) 

JB::J 
~n corlTlr,jlJE 

K[TUi{: J 
[I~n 



11·jTE.l1 r f{ A,c:, 
(.0t1MO' J/RI(Jl/KP, 0F, IV!, S (~O) , T (SO) 

C 0~11\.10! J/n Hl2/N , HJ( 70 1 , f\ l :)0 , 7 n) , Jf" . q (~F , T I iF ( 7f) ) 
CIl()Sl~S HRI\!ICI'I![J(j VI\HI/\11LE I\Cl.0R[)1J!;(i To ~!PJ HJFEI\SIBILJ'Ty 
[\oj II-IF::C1ggQ9() . 
DO, 20.J=1, ~I 
1 F ( I \./ ( 0) ) 1 , 1 , 20 

1 DO 1~ I=l,r" 
IFCS(T»2,1~,l~ 

2 IFCACT,Jl)3,15'15 
3 rt-Jf:" (.J) =0-

uO 10 11=1 d-1 
I Tn"p::{1 ( II' J) -s ( ! I ) 
1 F ( nT ~1P ) 10 , 1 0 , I! 

o INF(J'=INF(~)f11LMP 

10 cOr JT} I :lJE. 
IF (un (.Jl _t" HJF ) 11 ,20 , ? LI 

11 ('·Hl'lF=HJF (J) 

JB=J 
GO TO 20' 

15 COtJTI!llJE 
20 conT H!lJE 

RETUI:rl 
[NT) 



s:n~J'lrpJE FE"'::; 
lrJTf:..G'.:I~ S,T . 
CO'·wo' I/'n' 11/K!?'..JF , I~, S (':)0) , T (5n) 
rU1=O 
JF=2 
Uo 30 1=1,M 
IF(S(~) 20,30,30 

?O,.JF=O 
TMS=T(!l-S(!) 
I F (T 1'4 r;) 3 0 , ~ 4 , 22 

22 ,.JF=l 
GO T0 50 

24 KH=I 
30 corlTl:f'JU~ 
50 H[TlJi{tl 

E"ln 



SOLJTT~~S =o~ T~E ~JLrIOBJ!CTlvt ZERO_O~! o~OqLE~ 
~ITrl ~ '3J~CTlVES ,2 VA~IA3LES ~O CO~STRAI~TS 

•••••••••••••••••••••••••••••••••• ** •••••••••••••• 

ENJ~~~ATIO~ ~~S CO~oL~T~J I~ 1~5 ITERl\ytO'JS 

7 ~==ICfF~T SnLJTt~'JS ~!~E FOUND I'J 53 TTE~ATT'~S 

OBJl : 2:1'+ :l3J2 : 260 ,RJ 

X 1=0 X 2=0 X 3=1 X ~=O X 5=1 )( 0=1 X 7=1 X q=1 l( 9=1 )(10=0 )(11=0 )(1 2=1 )( 

OaJl = 236 'SJ2 = 325 ORJ 

X 1=0 )( 2=1 '( 3=1 )( 4=0 X 5=1 X· 0::1 X 7=1 X 1\=0 X CJ=l Xl0=0 )(11=0 )(1 2=1 )( 

OBJ1 = 303 :l6J2 = 275 OBJ 

~ 1=0 )( 2=1 )( 3=0 )( ~=O X 5=1 X 0=1 )( 7=1 X 11=1 X Q=1 )(10:0 X11=0 )(1 2=1 )( 

03Jl = 31'+ 'BJ 2 = 270 OBJ 

X 1=0 )( 2=1 'I 3=1 )( ... :, X 5:0 )( 0:1 X 7:, )( 11:1 . X 9:1 X10:n X11=0 )(1 2:0 )( -

03J1 = 315 "3J 2 = ?5CJ ,BJ 

)( 1=0 X 2:' 'I ~:1 X 4:0 )( 5=1 X 0:1 )( 7:' )( 11:1 :)( q:1 )(10:0 )(11:0 )(1 2=0 )( 

01]J1 : 250 "I~J2 ::; 26~ ::>BJ 

X 1=0 X 2=1 v 3=0 X 4:1 X.5=1 X 0:1 X 7:1 X.II=O 'i 0:0 X10:0 '1'11=0 )(,2=0 )( 

D3J1 = 247 "I9J? : ?BCJ ,BJ 

l( 1:0 X 2=0 )( 3:1 l( ~=1 X 5=1 )( 0:1 )( 7=' X 1\=0 X Cl=O X10:0 )(11=0 )(,2=0 X 

AJVu~~ ~A5 :hLLE~ !) 7 TT "'~S. AN" r)O'AINA Tt 0'1 ·.~AS CO'JCLU~=tl ?3 Tr"'ES. 

CilJ Tl"~ : 10'+0 vtL.Lt5EC~fI')S 
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