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ABSTRACT

This study deals with multiobjective linear and integer linear prog:amming./

~

An algorifhm for generating all efficient extreme points of multiobjective
linear programs, or a subsét of themrcorresponding to a decision maker
specified space of objective weights, is given. The algorithm utilizes,

with some modifications, earlier results given by various authors.’

An original algorithm for bicriterion linear programs'which requires only
a series of dlv1510ns and comparlsons for determination of adjacent effi-

cient extreme p01nts is also presented.

The developed algorithms are used in an application in power systems
planning where efficient decision alternatives are generated to be pres-

ented to the décision makers.

A branch and bound algorithm which is- based on extension of implicit
enumeratlon techniques to multiobjective zero-one linear programming and

which appears to be computatlonally quite efficient is also developed.

~
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UzET

3u ¢aligma ¢ok amagll-dbgrusal ve tamsaylll'doérﬁsal programlama konularz

ile ilgilidir.

1k olaiak(‘gok amacli dogrusal brogramlama problemleri.i¢in biitiin baskin

u¢ noktalari, ya da karar Vericiltéiafindah beliflénénAbir amag i§levi‘a§1r—
liklari uzagina kargi gelen baskin ug noktalar-altkiimesini saptayan bir al-
goritmafve;ilmi§tir{ Bu algoritma cegitli aiagtirlbllar'tarafindan evvelce
Verilmi§ sonuclarin sentezine Vé bazi yeni gézlémlere dayanmaktadir.’

Bu galigﬁada ayrica iki amagli dogrusal programiama problemlerinéAgéhelik’Vé
komsﬁ baskin ug néktalarln bulunmasi ig¢in yalnizca bir dizi bélme ve kérgl—

lastirma gerektireh yeni bir algbritma geligtirilmigtir.

Geligtirilen algoritmalar, enerji sistemleri planlamasi alaninda yapilan
bir uygulamada,'kararIvericile:e,gardlmql olacak §ekildé etkin karar sege-

nekleri OIU§tuimak.amac1yla kdilén11ml§t1r.

gékAamagll 0-1 dqgrusal.programlama problemleri ig¢in ise, gereken hesaplama
siiresi agisindan oldﬁkga etkin goriinen bir dallandlrlp—51h1rlama algoritmasi

geligtirilmigtir.
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INTRODUCTION

In the decision making environment, tradition requires the adoption of a
single objective function, although the multiplicity of objectives in many
situations can readily be recognized. In some cases this is justifiable
because the various obJectives can be subsumed under omne general objective.
However, in most real-life systems the several conflicting criteria entering
into the evaluation of system performance cannot be combined satisfactorily
to give-a single performance measure.: In complex industrial and economic

problems, a general agreement on the constituents of good criteria for

evaluating the performance of the system under consideration is difficult
‘to attain. For such problems multiobjective analysis, which makes the
possible trade-offs between the obJectlves exp11c1t -could be of great help

in arriving at the ' preferred' solution. ' «
. |

The term "preferred"is used here beceuse, in multiobjective optimization
problems, generally,the set of all feasible solutions is only partially
ordered wifh respect to the objectives and hence a single optimal solution
cannot be found. Rather a set of efficient (non-inferior, Pereto—optimal)
-solutions, that is, a set of solutions for which no other solution exists
which is better than the members of this set with respect to all the
objectives,'are generated Only through the introduction of value Judgements
of the dec1310n maker a complete ordering wh1ch~1s characteristic of single

obJective opt1m1zat10n problems can be achieved and a best solution can be

identified.

VConsideration of several different criteria in en optimization process has
its or1g1n 'in economics, particularly in the development of utility theory. .
" The problem of the formation of a 51ng1e 0pt1ma11ty criterion which takes
into aco0unt all the conflicting elementary criteria was first considered

by Pareto [44] in his definition of maximum ophelimity .or maximum utility:



""We will say that the members of a collectivity-enjoy maximum ophelimity
in a certain position when it is impossible to find a way of moving from
that position very slightly in such a manner that the ophelimity enjoyed
by each of the individuals of that collect1v1ty increases or decreases.
That is to say, any small: dlsplacement in departing from that position
necessarlly has the effect of Aincreasing theé ophe11m1ty which: certain
1nd1v1duals enJoy and decreasing that which others enjoy, of belng agreeable
to some and dlsagreeable to others"

‘However Pareto himself hadlsome difficulties in etating his definition of
maximum ophelimity. One criticism has.been:that-if thevatfained utility
.benefits,cannot be decreased , then one could just as well sbeak'of a
minimum ophelimity. Also it should be noted that Pareto gﬁve only what now

could be the definition of local ParetOfohtimality.

The concept of Pareto optlmallty found - its way into operatlons research
through the work of Koopmans [39] on the activity ana1y51s of productlon
and allocatlon.ALet Yoo n:l,...,N denote the total net output of the nth
commodity; let Xp» kfl,...,K denote. the selected ‘amount or 1eve1 of the kth
activity where X 2 0; and let ank denote the rate of flow per un1t time

of commodity n involved in the unit amount of activity k. One then has:

. N1 v o0t Pk
vy = Ax , with A =|. R
N aNl ‘.. .‘. L] aNk

where A is called the :technology matrix. Among the commodities y,» some
are primary factors, some final commodities, and some are intermediate
- commodities. A point y in the commodity space is "possible" in a technology

A if there exists a point x>0 in the activity space with y=Ax.

Koopmans then states:

"A possible point in the commodity space is called efficient whenever an
increase in one of its coordinates (the net output of one good) can be achieved

only at the cost of a decrease in some other coordinate",



Let,(A) denote the possible point set, a convex polyhedral cbng spanned by

the technology matrix A. Then, Koopmans states the following theorem:

THEQRE@;}, A necessary and sufficient condition that a possible point Fe(A)
be efficient is that § possess a positive normal p to (A) defined by

-1

p'As0, p'5=0 p>0 .

-

b

Koopmans interprets the vector p as a vector of prices of the commodities
in the p01nt 9, and then states that a necessary and suff1c1ent condition
for § to be efficient is that there ex1sts a vector p of prices such that
no activity in the technology~perm1ts a pos1t1ve profit and such that the
proflt on all actrv1t1es carried out at a positive level be zero.
A'discussion of Koopmans papér along with a numerlcal algorlthm for the
computatlon of efficient activities based on parameterization over the

-

‘prices was presented by Charnes and Cooper [9].

A.more general approach the vector maximization problem of mathematlcal
programmlng, was given by Kuhn and Tucker [40] . They deflned the vector

maximum problem as:

DEE}N;TIQN_} The vector maximum prohlem.ls to find an ¥ that maximizes
the vector,functlon_G(x) -constrained byNFCx)go, %20 ; that is, to find an
X, satisfying the constraints and such that G(ﬁ)ZG(i?) for no x-

satisfying the constraints.

Here, and throughout the text the notation used is as follows:

‘

For x,y R
>y iff X 295 ’ Viglﬁ{l,...,n};
X >y iff X 2y and x4y 5
X = i REA ¥iel
x,- y 1ff xi yl R €
x>y iff x; >y s Viel



The.authors;then restricted themselves to the. so—called proper solutions .
based 69 the usual Kuhn-Tucker constraint qualifications, and gave the
following theorems, |

" 'THEOREM 2. In order that.xb be a proper solution of the vector maximum problem,
it is necessary that there be some Vo>0 such that X, apd some u_ satisfy
conditions (a) and (b) for

»/L(x,u) = Vz G(x) + uT F(x) -

where conditions (a) and (B) are the necessary conditions for L(x,u) to

have a saddle point at (xo,uo).

(a) 1° 0 L %x=0 " X

x = x 'O 020
® 1220 12 u=o0 u_ 2 0.
R u o o=

o ) ' A . . . .
Here Lx and Lu denote the partial derivatives evaluated at the particular

point (xo, uo).

" "THEOREM 3., In order that X, be a proper solution of the vector maximum
proBlem, it is sufficient that there be some v, >0 'such that X and some u
" satisfy the above conditions (a) and (b) and condltlon (c) for

N -

L(x,u) = 'vz G(x) + ul F(x)
vhere condition (c) is given by

©  Leguy s Legu) + 1Tk L -

" 'THEOREM 4, Let F(.) and G(.) be concave as well as differentiable for x=0.
Then,'x is a proper solution of the vector maximum problem if and only
if there is some vo>0 such that X and some u glve a solution of the

saddle—p01nt problem for

L(x,u) =\V§ G(x) + uTF(x) .



Although Kuhn and Tucker - introduced the ‘vector maximum problem as early as
1951, multiobjective ana1y51s did not gain immediate popularity, A dlfferent
approach to multiobjective problems, goal programming, was described by
Charnes and Cooper [10] about a decade later. The meihqd is based on
minimizationvof weighted absolute deviations from targets for each objective

specified by the decision maker.,

Along with increased proficiency in optimizatién techniques.fhe vector
maximum problem was again aﬁbroachéd by various researchers from the general
viewpoint of Kihn and Tucker. Zadeh [60] suggested that if the.objective
function space is convex, the set of all efficient solutions can be found
by solving a parametric'écalar optimization préblem, as implied by the
Kuhn-Tucker conditions: < ‘

T

max vo G(x) v>0
xeX

where X is the feasible regiom..
Equivalence of the vector optimization probleh to a parametric scalar. 77
optimization problem was also investigated by Da Cunha and Polak [15] and
Geoffrion [28]. An algorithm for maximizing two objective functions via

parametric linear programming was given -by Geoffrion [27].

Another implication of.Kuhn-Tucker conditions is that one of the objectives
can be taken as the primary one, and the others can be treated as comstraints.
In the constraint method developed by Haimes [32] the following problem is

solved:

max g_(x)
xeX r

s.t gk(x) > L vk, kir

k
where Lk is a parametric lower bound on objective k, Haimes states that
any solution to the above problem where the multipliers related to the

objectives appearing as constraints are all nonzero.is an efficient solution.

An advantage of the above constraint method over weighting objectives or



‘he pafametric scalarization method is that, even in the existence of a
luality gap, all efficient solutions can be generatedf'whereas in such cases

varametric scalarization fails to generate all efficient solutions.

[n the last 15 years, the field of'multiobjective optimization has been ]
continually developing, Several different approaches which have been considered

are categorized as follows by Cohon and Marks [13].

i) A priori articulation of preferences and generating a single

relevant solution.

ii) Generating efficient solutions and then selecting the preferred

solution from among these, by subjective evaluation.

iii) Progressive articulation of preferences and arriving at the

preéferred solution in an interactive manner,

Each of these approaches has its advantages and disadvantages. The first
approéch requires the least computational effort in that it generates the
preferred solution directly, But it places considerable burden on the

decision maker by forcing him to articulate his preferences in an information
void, The formation of the decision maker's preferences and his valuation
system depends on the realizable levels of achievement of the objectives

and can neither be expected to be cémﬁlete nor definite at the start of the
decision process. In the .second ap?roach, which is at the othet extreme,the
decision maker is presented with com?lete information on the possible levels
of achievement and the available trade-offs between the objectives. However,
this ipfOrmétion may prove to be "too much". Usually a large number of
éfficient solutions are generated which are difficult to display and which
could inhibit the ability of the decision maker to perform the final selection
process, Also the computational effort associated with generating a large
number of efficient solutions may be prohibitive. The last approach tries

to make a compromise by embedding the decision maker within the solution
process so' that his implicit valuation system directs the process. But then
the solutions depend on the accuracy of the local preference that the decision
-maker caﬁ”indicate and on his complete consistency;Genefally; there is no

guarantee that the preferred solution can be obtained within a finite number



of interactive cycles, Also a continuing cooperation between the analyst
and the decision maker is required., This may be difficult to achieve since
several decision makers may be involved and they may not be accessible at

all times., b

These considerations indicate that in any application, problem specific as
well as decision maker specific aspects will determine the structure of the

best suited approach.

Numerous examples of each of these approaches can be found in the literature.
Investigation ofithe'functional relationship befweenbthe efficient set and
the weighting vector was carried out by Reid and Vemuri [49], and Reid and
Citron [50] . Beeson and Meisel [4];presente& a computatibnai algorithm for
obtaining a characteristic set of efficient solutions for nonlinear problems
throﬁgh an adaptive search pfocedure.'Lin [42] suggesfed the method -of
proper equality constraints, where all but one of the objectives are converted
into equality constraints. and conditions for identifying the proper equality
constralnts are developed. Payne et ali[46] gave an algorithm for bicriteria
optlmlzatlon based on treatlng one of the objectives as a constraint and
indicated an extension to the case of three objectives. The goal attainment
method proposed byy Gemmbicki and Haimes [25] is quite similar to goal
pregramming. Specialized techniques for multiobjective linear programming
based on the simplex method have been developed by Yu and Zeleny [59], Evans
and Steuer [18], Isermann [34], and Ecker and Kouada [16].

Various interactive techniques utilizing preference information of the
decision maker have been proposed. The Electre methodldeveloped by Roy [52]
is mostly concerned with building outranking (preference) relationships

from value judgements supplied by the decision maker. In the surrogate

worth trade—-off method presented by Haimes and Hall [33], trade-off funct%phs'
between a primary objective and. each of the other objectives are developed
and through the use of surrogate worth functions the preferred solution
within the indifference region of the decision maker is chosen. A variety

of interactive techniques‘which are iterative in nature have been developed.
In these,aﬁproaches an efficient=seiution is generated, the decision maker's
reactions-to this solution are fested, the broblem is modified accordingly,

and the process is repeated until the decision maker is satisfied or some




other termination criterion is effective. The step method or. STEM proposed
by Benayoun et al [& , the algorithm of Belenson and Kapur [ﬂ and the"

‘method of Zionts and Wallenius [62] are examples of such approaches.

Iin recent years research in multiobjectiveiinteger programming problems has
also been carried out, Shapiro [53] suggests use of integer programming
duality theory. Bowman [8 1has proposed a generalized Tchebycheff norm to
parametrically generate all effiCient solutions. ‘Zionts [63] has worked on
extending ‘the Zionts-Wallenius method to integer problems. Bitran [7] has.
proposed a method for multiobJective zero—one integer programming problems
baséd on determining the efficient solutions for ‘the unconstrained problem
and the directions of preferénce‘along which all objectives can ‘be increased.
" Klein and Hannan [38] hauelyorkedponvan implicit enumeration based algorithm
_for multiobjective aero—one problemssconsisting of solving a seqUence of

continually more constrained single -objective function problems.

Apart-from theoretical results and algorithms; several applications have

also been reported‘in the literature. Those include a study by Cohon and
Marks [12] on a water resource development and allocation problem another
study by Geoffrion et al [29] in applying an interactive approach to the
operation of an academic department an application to forest management

by Steuer and Schuler [56], a study on formulating macroeconomic policy
dec1sions in Finland by Wallenius et al [58], ‘and a study.in energy planning -
by Zionts and Deshpande t64]; Macroeconomic policy problems and public
investment problems such as design 6f water resource systems and urban
transportation systems which are inherently multiobjective in nature are

potential areas for other applications.

Still, there is continuing need and effOrt for increasing the computational
effic1ency associated Wlth multiobjective optimization problems. Increased-
.computational effic1ency will increase the applicability of multiobjective j-
analysis.

The grOWing interest in multiobJective optimization and the Significant
advances in this relatively new field, discussed above have prOVided the

motivation for this dissertation. After a detailed consideration of the



state of the art, certain specific problems haye been focused on. Through
modifications and development of syntheses, some computationally efficient

algorithms have been devised.

The text of this study is presented in three parts. In part one
multlobJectlve linear programmlng and the Spec1a1 case of blcrlterlon

linear programming are considered and new algorlthms for generatlng either
all or a relevant subset of efficient extreme p01nts are given. In part

two appllcatlons in power systems plannlng are presented. Part three is on
multiobjective integer linear programming and an algorithm for multiobjective

zero-one linear programming problems is developed.

’



PART ONE: MULTIOBJECTIVE LINEAR PROGRAMMING

The mﬁltiobjective linear programming (MOLP) problem is formulated as

max G
xeX x

X={x|ax <b, = x>0}

‘where G is a pxn matrix whose rows G;, i=l,...,p represent the different
objective functions, A is an mxn matrix and x .and b are.n-apd'm vectors
fespectively as in a standard linear programming problem; and maximization
refers to determinationboﬁ efficient solutions. This problem is alternatively

termed the linear vector maximization problem in the literature.

[,1. LITERATURE SURVEY ON MULTIOBJECTIVE LINEAR PROGRAMMING

Several approaches to the MOLP problem have been given by various authors.

- Some concentrate on generating all efficient eXtreme points [16], [18],
[191; others also consider generating all efficient solutions which consist
of the faces of thé‘cdnvex polyhedron X'-[17j, [221, [34], [61]. Some others
preseﬁg only a subset of efficient extreme points to the decision maker
[433, 1541, .[551, [571]. Several interactive approaches have been.designed
aiﬁing at gemerating directly the efficient point which is the decision
maker's preférred solution - [5],[6], [62]. Some authors have cohsidered
the special case of bicriterion linear programming and given Specialiéeﬂ
algorithms {21, (141, [27]. Here, previous results in these areas will be

reviewed,

-

First, let us introduce some notation common for linear problems. Suppose x°
is a basic feasible solution with associated basis B. By renumbering

_ variables as necessary, and partitioning A and G we have
1 c ’ o

S T -1 o
x, =B b - B Nk C=GE N -Gy  ¥=B 1N4

10N



‘where the subscript B denotes basic and subscript N denotes nonbasic, C is
the current reduced’ cost matrix and Y is the ‘current constralnt coefficient
matrlx. Furthermore, let C (Y ) denote the ith row and C (Y ) denote the
k th column of C (Y). Also, e will denote a vector of suitable length with
each component equal to one and the transpose of a matrix or vector is
denoted by:the superscrlpt T, In the f0110w1ng, it 1s assumed that the

convex polyhedron X forming the fea81b1e region is bounded.
I,1,1. GENERATING APPROACHES

Generating approaches to the MOLP problem are based on several considerations
from the computational theory of linear programming. The pivot selection
rules in linear programming are designed to produce sequences of basic
feasible solutionms. Every vertex of X may be described in terms of at least
one basic.feasible solution so that enumerating basic feasible solutions
allows one to enumerate vertices of X. Detection of those vertices of X
which are efficient is accomplished by various efficiency checks which take
the form of linear programming subproblems. Through further refinements and
computations detection of efficient faces of X can be accomplished, Here

a coﬁparative and critical review of the results given by various authors

will be presented.

Philip [48]1 considered the linear vector maximization problem and gave the
following result for checking the efficiency of an arbitrary feasible point.
THEOREM I.l. A point x° is efficient if -and only if there exists u:20 ,

iel and Aj;gﬁ>0 such that

Here I is the index set of active .constraints at x°, including the
nonnegativity constraints. This theorem corresponde to” the Kuhn-Tucker .
theorem for the general case where 11near1ty is not assumed. Based on this
theorem, the follow1ng subproblem is to be used for ‘determining whether

o
a given point x~ is efficient:

11



min z=¢es +et
S.t. ' Gv—AIu +s -t =-Ge
v>0 u>0 s>0 t>0

Here A, is the matrix formed by the set of active constraints at xo.‘And
choosing aj=1 ¥j, the transformation A=vte has been made. Then, the point
o

x~ is efficient if and only if 'zmiﬁ=0 in this subproblem.

Alternatively, Philip stated that Theorem I.l. implies that x° is an
efficient extreme point if and only if there exists A>0 such that ATCép
where C is the reduced cost matrix as defined previously. This condition

is equivalent to requiring zin 0 in the following subproblem, where z

gives. the sum of artificial variables.

. T
min z= et

S.t. CTv - s+ t= —CTe

v20, t0, s0

Philip mentioned that once at an efficient point x°, the artificial

variables t, are equal to zero and the variables s, are the reduced costs

for the obJectlve function (vte) G x. Consequently he stated that if some

sk=0,‘the corresponding X could be made basic in the main problem and

another efficient point could be obtained. He suggested solving this

N

subproblem:

. min s

s.t. ~Cly +

e
v
o o
n
v
o

If the mipnimum value of Sy is zero, then another efficient point is obtained

by making»xk basic.

: . L. . e . . o
Thus, some basic results concérning the efficiency of a given point x and
1nd1cat10ns on how to obtain other efficient extreme points once an efficient

extreme p01nt is found were given by Ph111p.

’
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Zeleny [61] considered the MOLP problem in detail.and gave two different
approaches. In the first, he adapted the decompcsition of parametric space
approach originally developed by Gal and Nedoma [23] for multiparametric
linear programming to a multiobjective linear orogramming context, Considering

the multiparametric linear program

max AT Gx R Aeh (P
xeX , ’ RN

the decomp051t10n of the parametric space A means identification of a finite
number of polyhedra A(x ) to be associated w1th the different extreme points
xk of the problem in questlon S0 that U[A(x MWA] =A. Here A(x ) is given
by A(x )= {kli%(k)>0} where C(k) is the reduced cost matrix corresPondlng

to the solution xk. Defining A—{Alk >0, Z A.=1} Zeleny-[61] states that’
the set of efficient points can be found by solv1ng Py for a11 Ael. He glves
the following results, con51der1ng a nondegenerate problem.

THEOREM I.2. Maximization of Py for all Aeh proouces a finite covering of A.

7

THEOREM I.3. The set of efficient extreme points is a "connected" set.
i,e. it is possible to reach any efficient extreme point from any other

efficient extreme point by passing through only efficient extreme points.

These two theorems insure that the decomoosition is‘finite and connected.
Starting at an efficient point x°, the goal is to construct all polyhedra
adjacent to A(xo) which do not have an empty intersection with A. Such
polyhedra A(xi) correspond to nondomlnated or efficient solutlons. When
U[A(x NAl=A decomposition is complete. The following theorem checks

adJacent polyhedra.

THEOREM I.4. Let x° be an efficient basic feasible solution, Let

Hk={A|X%kf0} If HéWA(x YInt Mo thenvlntroduclng X, into the basis leads

to an efficient basic feasible solution.

That is, introducing nonbasic variables x, , corresponding to nonredundant

k’
constraints of A(xo), into the basis leads to efficient solutions. A

constraint is called nonredundant if and only if there exists a vector A



such that the constraint holds as an equa11ty. However,thls 1s stated only

as a sufficient but not necessary condition.

Zeleny enumerates a number of difficulties associated with this approach.
Introducing into the basis ronbasic variables corresponding to redundant
constraints does not necessarily lead to dominated solutions. In case of

3 and

'degeneracy, the one-to-one corre3pondence between- an extreme point x
A(xJ) can be destroyed, ‘which' implies that although a11 efficient extreme

Jp01nts have already been discovered- A may not be fully decomposed Also,

in- case of alternative solutions for which A(x )—A(xJ) although A has been

folly decomposed, all efficient extreme points may not have been enumerated.

. Also, Zeleny stated that efficient procedures'fOr identifying nonredundant

constraints were not available. Because of these difficulties, the decomposi-

tion approach was considered inefficient aod disfavored\by Zeleny, Instead,
he developed an alternatiﬁe approach, which he called the multicriteria

simplex method. This second approach is based on the following theorem, .

~ THEOREM 1I. 5. % is ‘an efflclent solution if and only if z ax=0‘in_the‘
follow1ng LP problem ’
T
max  z=e’s

xeX

X
I

{(x,8)] xeX Gx-=s28x., s0} .

This theorem actua11§ follows from the definition of the efficient solution.
Assuming we are at an eff1c1ent extreme solution, to check the efflclency
of an- adJacent extreme point xJ the above LP problem- is solved with x—xJ
This is repeated for all adJacent extreme p01nts and those whlch are
efficient-are.identified. Proceeding in this fashion all efficient extreme
points will be identified since they form a connected set. |

All conyex combinations offefficientvektremevpoints are not necessarily
'efficient Thus, the éet of all-efficient points is not simply defined by
the set of efficient extreme p01nts. However, the set of all efficient '

_ points can be. given as the’ union of eff1c1ent faces of the polyhedron X

forming the feasible region.
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Yu and Zeleﬁy [59] consider a face of X defined as F(I)={xsX]Aix=bi iel}
~ where T&{1,...,m,... m+n} and the nonnegativity constraints have been
incorporated into the matrix A. They focus on those faces F(I) for which I
is maximal and systematically consider faces of decreasing dimension.They
vremark that the ver1f1catlon procedure to check all p0851b1e faces may be
a proh1b1t1ve JOb and they develop -some results that reduce the number of
faces to be considered. To initiate their -procedure, they construct the
incidence matrix between the set of all efficient extreme points and the
set of all (n-1) dimensional fates. Using information from this incidence
matrix and from the solutions of certain linear systems, the set of maximal
efficient,faces of dimension n-1, if any, ié_determined. The procedure
continues by considering faces of dimension n-2 and lower at each step.

At any step, the face having the greatest number of incident efficient

vertices is processed first. The system of linear equations

[Seie)

1= .
i.e. examlned for a nontr1v1a1 solution where X >0 i=l,...,P. If there is

1 Aici = -Z u, A , where I denotes the index set of active constraints,

such a solutlon, the face considered is eff1c1ent, i.e. all points on the
convex hull of 1ts incident eff1c1ent vertices are efficient., Then, ‘the
column correSpondlng to that face is e11m1nated from the incidence matrix,
Furthermore, any face whose incident efflClent vertices 1s a subset of the
incident efficient vertices of the newly found face is disregarded as it is
not maximal,‘and'the corresponding column is also eliminated. At some step,
the incidence matrix will become vacuous, i.e.’no more columns will remain

and the procedure stops, with all efficient faces being determined.

Evans and Steuer [18] gave'a revised simplex algorithm for the enumeration
of the set of all efficient extreme points.‘They gave the following -

conditions for checking the efficiency of giveﬁ solutions.

THEOREM I.6. A point x°eX is efficient if and oniy‘if there is a A>0 such

that x° is optimal for P : . :

max AT

Gx'
xeX '

(¢
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THEOREM I.7. A basic feasible solution x° is efficient if and only if
there doesn't exist .u»>0 such that

Cuxgo Y. u<0 “ieQ

where Q.= {ilxg = 0} .

i
Intuitivelyg if Cu < 0 for some u<0, then by raising some combination of
nonbasic variables to a positive level, we can increase the values of all
objectives. The condition Yiu;p, ieQ is introduced to be able to detect

the efficiency of a degenerate basic feasible solution. Even if Cu<0 for
some u>0, if Yiu;p is not satisfied, the basic feasible solution is still

efficient,

" In checking the efficiency of an extreme point adjacent to a given efficient

extreme point the,followihg result is to be used for nondegenerate problems.

S

THEOREM I.8. Let x° be an efficient extreme point and- let X. be a nonbasic
variable in the basic feasible solution associated with x°, Then, the adjacent
extreme point with Xj a basic variable is efficient if and only if the

following problem is consistent and bounded.

S : - T
- . . max e’'s
s.t. Cu - clw+s=0

~

u>0, s>0, w scalar
‘where CJ is the column of C corresponding to X:e

However as later shown by Ecker and Kouada [16], the condition giﬁen by
the theorem is not necesséry for the efficiency of an adjacent vertex,

though it is necessary for the efficiency of the edge connecting the two
radjacent vertices. In general, two extremé'points of X may.be efficient
and yet the edge connecting these two extreme points may not be efficient,

as illustrated by the example in [16].

Evans and Steuer stated that degeﬁeracyApresents special problems because

then the number of extreme points adjacent to a given extreme point exceeds

the number of nonbasic variables. In these circumstances, they suggested

16



employing special procedures to ihsure' examination of each adjacent extreme
point. In another pabeg [19], they described two methods that explicitly
deal with .degeneracy. The first method employs an algoritim of Chernikova
[11) for generating all edges emanating from a given efficient extreme
point x° which is dégenerate. Thus, it is insured that all ddjacent extreme
points are checked., Each of the edges generated by the Chernikova. procedure
Vields a direction u to be tested for efficiency by the condition given in
the following theorem, '

THEOREM 1.9. Let x° be an efficient extreme point and let u be a feasible
direction at x°. Then U is an efficient direction at x° if and only if

there doesn't exist a feasible direction u such that Cu<Cu.

The second method is called the adjacent efficient basis procedure. Here

a basis is defined to be an efficient basis if and only if Z a0 in the LP

T ) .
max z=e's -
s.t. Cu + s=_20

w0  s>0 ..

Here z =0 if and only if there doesn't exist u such that Cugu. The authors
then state that the set of efficient bases is connected and give a slightly
different version of the subproblem of Theorem I.8. for identifying adjacent

efficient bases.
THEOREM I.lO{ Assume we_ are at -an efficient basis. Then an adjacent basis
obtained by making nonbasic variable xj'basic is an efficient basis if and

only if zma#=0 in the LP

T
max -z =1¢e's
s.t. Cu-CJw+é =0

S . u>0, s20, w20, w scalar .
Another result is that each efficient extreme point has at least one
efficient basis associated with it. Thus, the procedure terminates when
all efficient bases are located.

The "efficient basis" concept of Evans and Steuer is also used by
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Isermann [34],7however with a different terminology. A basic solution is
said to be "dual feasible" if and only if there doesn't exist u>0 such

that Cuép.'Then, by Gale's theorem of the alternative, the system ATC;p,

A>0 has a solution X; and hence the term dual feasible, Theorem I.6. implies
that in case of degemeracy at least one of the degenerate efficient basic
solutions, which represent an extreme point of X in common, is dual feasible.
Thus determination of all dual feasible basic solutions is adequate for

determining all efficient extreme points.

Let N={j1C420} denote the index set of potential pivot columns at a given -

dual feasible solution. Those j ¢N are not considered since their
introducfi;n into basis leads to basic solutions which are not dual feasible.
Isermann defined two dual feésible solutions x1 and xz-as adjacent if and
only if they are obtained from one another by a single pivot and each
§¥ax1+(1—a)x2 R Oégéj is efficient. Then he gave the following theorem

for identification” of adjacent dual feasible basic solutionms.

THEOREM I.11. Let x° be a dual feasible basic solution and let P be

 a nonempty subset of N. Consider the LP

max eTs

s.t. Cuts = e -
s >0

0

v fv

=

. i
Then
i) If the LP has an optimal solution, then to each reP there

corresponds a dual feasible basic solution which is adjacent to x°.

ii) Let < be an adjacent dual feasible basic solution obtained by
introducing X into basis, Then there exists some PEN with reP
such that the LP has an optimal solution. '

Next, the following theorem is given,

THEOREM 1,12, Let E#{xllx1 is a dual feasible basic solution}, L={(xl,xJ)|xl
and xJ are adjacent dual feasible basic solutions}.The undirected gréph

G=(E,L) is finite and connected,
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: , ! ‘
Thus, this connectedness property and the LP subproblem given in Theorem

-~ I.11 formvthe basis for the solution procedure consisting of enumeration

of all dual feasible basic solutions. Further work is needed if the set of
all efficient noints is to be generated. Referring to Theorem I.11., all
maximal index sets P have to be identified at each dual feasible basis,by
‘successively adjusting the sign restrictions on the variables u; and checking
all p0551b1e combinations of indices. However, when a- max1ma1 index set P"
vhas been found, all index comblnatlons forming a subset of P can be deleted
from further consideration, thus reducing the number of combinations to be
‘cnecked. At the end of the procedure for enumerating all .dual feasible
~bases, j, all associated maximal index sets BJk will then be available ,
Next the index sets Q kpik y p , where pj is the index set of basic
variables for dual feasible basis j, are constructed In this procedure the
same index set Q Tk may be constructed several times and subsets of some
index.set Q Tk nay have been constructed as we11 All such subsets and.
duplications are eliminated so that flnally one has r index sets Uq. Now,

to each index set\Uj there corresponds a face of X. Specifically, let

Ij {i]DiC:Uj} that is let IJ denote the set of efficient extreme points
whose basic variable index sets are subsets of UJ, and let sJ be given by

=

J {xlx = Z . X0, 0.0 Vite;
. 0 ;2
igId . .

Then all points xeSd are efficient and the set of all efficient solutions

has been decomposed into r convex subsets.’

Gal [22] gave a method for determining the set of all efficient solutions.
based on his'earlier works [21], [23] on multinarametric linear programming.
A set of vectors A{;p are associated with each efficient vertex and later
by inspection of these sets higher dimensional efficient faces are

determined.

The nondegenerate case is considered flrst. Similar to that done by
'Isermann, two efficient vertices xl and xJ are defined to be eff1c1ent
neighbors if and only if they are adJacent and all x=ox +(1—a)x 0<0<1,
are efflclent, i,e. the edge connecting the two vertices is efficient.

Then Gal'states‘that the linear vector maximum problem generates a connected
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undirected graph G(T, F) where the node set T con31sts of efficient ba51c

solutions and an arc ex1sts ‘between two nodes if and only if the correspondlng
basic solutlons are efflclent nelghbors. Next he con31ders the system of

linear equatlons L

ATc(i)+s = 0
;\Te =1 : : (Li)4
A>0 , s20

where C(i) denotes the reduced cost matrix corresponding to vertex x~, and

states the following theorem.

THEOREM I.12. The vertices x* and xJ_are eff1c1ent neighbors if and only if

there exists nondegenerate ba31c solutlons to L and Lj such that

|7 X%, |
: AL L
AN N

with A;=A%>O Land_v1;=ké=0v*such that both X' aﬁd xq are solutions of P

| !
for A=2*>0 .

%
 Then Gcal givestthe following linear program for.determining whether by
intrdducing'vrxk into ‘basis an efficient neighbor to x~ is found.

RN

min - s

k
s.t. -A C(1)+s =.0
A e, =1

A;p s20

Gal states that 1f and® only if the minimum value of sk is zero andAsk is a
nonba51c variable, then by 1ntroduc1ng * lnto ba51s an eff1c1ent nelghbor
is reached. HOWever, this 1s only true if the correspondlng basic solutlon

of the Subproblem is nondegenerate.

While finding all efficient neighbors to a given vertex, all corresponding |

A's are also determined and assigned to both the present vertex and the
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efficient neighbor. Finally, each efficient vertex x" will be assigned
a finite set of vectors Y1={A11, A2 sess A k}  for which it is optimal,

. . . i i+ j+ .
Gal states that efficient vertices xJ, x7 1,... x3"T  are the extreme polnts
of an efficient face if and only if there exists A* which is common to
i . .. . . . L.
all Y, 1=j,...j+r. Therefore, by collecting together those vertices which

maximize P, for the same A*, all efficient faces can be identified.:

Gal also diseusses briefly the implicationS'of degeneracy in the MOLP
problem, The implication of degeneracy is the existence of more than one
ba51s corre5pond1ng to the same vertex. Then there would exist subgraphs
of graph G with each basis being a node of exactly one of these subgraphs,
Gal then states that it should be sufficient to generate only one basis

for each degenerate vertex; and the difficulties enumerated by Zeleny should

not arise,

Another approach for enumerating all efficient extreme pointsbis given by
Ecker and Kouada [16], which 1s based on checking the efficiency of edges
incident to an eff1c1ent extreme polnt. They define FJ to be the edge of
X, the convex polyhedron formlngvthe feasible region, incident to an
‘efficient extreme point x°, obtained by increasing the single nonbasic
varlable xJ and adJustlng the nonbasic varlables to malntaln feasibility,
Theny they give the follow1ng theorem,

S

THEOREM I.13. Let x° be a nondegenerate  efficient extreme point. Then FJ

is efficfent if and only if Z %0 in the following linear program:
T
max z=¢e's
s.t. . Cuts = cl

u>0, 520 ..

This linear program is similar to that given by Evans and Steuer in Theorem
I.10. Here the parameter w is taken as one and the efficiency check concerns
the incident edge and not the adjacent extreme point. Then, considering

the dual of the linear program above, the authors give another result.
THEOREM I.14. Let x be a nondegenerate efficient extreme point. Then FJ

is eff1c1ent if and only if sJ is nonredundant in the set S given by
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s={(v,s) | clv+s=cle, v20, 5201}

where sJ is sa1d to be nonredundant in § if and only if there exists a point
(v,s) €S such that sJ—O The dual program has minimization of sJ over the.

set S as its objective,

Again, 51m11ar1ty with results of Zeleny and Gal can be observed Requlrlng

sj to be nonredundant in S is in effect the same as requlrlng the corresponding
jth constralnt‘of A(x ) to be nonredundant.Zeleny was able to give constraint
nonredundancy only as a sufficient condition, because he considered the
adjacent extréme point. ‘However, here consideration of the efficiency of

the 1nc1dent edge allows the condltlon to be stated also as a necessary
condition. Requiring sJ to be nonderundant in S is also- equlvaleng to -
requiring the minimum value of sJ to be zero in the 11near subprogram given
by Gal whlch is modified by requiring A>0, instead of A>0. As the system

of ;nequalltles defining the feasible region of :the subprogram is homogenous,
one can require A>e and through the transformation A=v+e, v>0, the feasible
region may be tranéformed to correspond to the set S. Then minimum value

of-sj is zero if and only if sj is nonredundant in S.
Considering déegeneracy, Ecker and Kouada give the following result:

THEOREM I.15. Let x° be a degenerate basic feasible solution. Then FJ,

JENND » 1s efficient if and oniy if sj is nonredundant in the set SD given by

sy={(v,y,8) | v TcMss = TP, -.vTC-yTYD < e'C, v,y,520} .

x

ND_ (s 1ol nn
where N —{J]YD;Q} and Y

for which x° =0; ¢ is the matrix of columns ¢l - for jeNND "and s 1is

B.
. i
indexed as the xés for jENND.

D is the matrix consisting of the rows, 1, of Y

Again, this result is derivedvbased on aydualify relationship. The linear
progrqm of Theprem‘1;13 is augmented by the constraints YDu;p and some
observations on its dual indicate the above result, One remark due here
‘is that the condition —VTC—inD;pTC.can’be considered as a requirement
.thaf an éssoéiéted dual feasible.basiS, using the terminology of Isermann,

exists,
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The procedure giQen for identifying nonredundant variables s, is again
based on,minimizing s, over the set S or SD . - However, Eckir and Kouada
note that a minimization problem for each 8 is not usually needed. Any 85
which is nonbasic, or basic with value zero in any basic feasible solution
of S or SD has a value zero and is obviously nonredundant. Also, if one

can observe that any 55 can be made nonbasic through a single pivot, one
can conclude nonredundancy of that Sj’ A>simp1e condition for labeling 'a
variable 8; as redundant also exists, Assume a basic feasible solution of

S or SD is at hand. Also assume that sk is a basic variable (with a positive
value) in a given equation and that all the coefficients of .the nonbasic

variables in that row are nonpositive. Then, s, is obviously redundant

k
because it cannot be decreased below its current value in any feasible
solution of S or Sb. Consequently,’through the\ﬁse of these checks,
nonredundancy or fedundancy of some of the sj's can be détermined without
solving the associated minimization problems. N

! 1
Recently, Ecker, Hegner and Kouada [17] gave an algorithm for describing
the set of all efficient points as the union of maximal efficient faces.
The efficient edges and extreme points are found in the manner described
by Ecker and Kouada. The proceduré for.finding higher dimensional faces has
features similar to both Isermann's and Gal's approach, The authors use
two characterizations of maximal efficiént faces simultanéously.Both a
maximal index set o and a vector \ are associated with each maximal efficient

—

face.

With each maximal efficient face incident to a given efficient extreme

point represented by a simplex tableau T, a maximal index set o is associated
such that the given face is defined by ‘ -

-~

£(T,0) = {xeX | xj=0 if jeNg—a }

where N 1s the set of nonbasic variables assoc1ated with the tableau T.
It should be noted that the characterlzatlon given by £(T, a) is 51m11ar
to the characterization given by Q in Isermann's approach In addition,
a vector‘Alls associated with each max1ma1 efficient face such that £f(T,a)

is the set of 0pt1ma1 solutions for PA with A= =%, Agaln, it can be observed
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that this featufe ig similar to Gal's approach. Furthermore, a set 1¥ whose
elements correspond to the subscripts of the-extreme points found to be
incident to that face is also constructed, Finally, the entire efficient
set is described as the union of maximal_éfficient faces each of which is
given as the convex hull of its efficient extreme points, stored by the

sets Ig.

The maih,difference from Isermann's or Gal's approach is that while in
those approaches determination of maximal efficient faces fOrms a seperate
phase of the algorithm, here efficient extreme points and maximal efficient
~faces are generated éimultanéously. The incomplete khoﬁledge of efficient
faces is used at each iteration-so as to avoid regeneration of maximal
‘efficient faces found previously.

|
In giving their results, the authors assume nondégene:acy and to handle
degeneracy, they adopt the lexicographic pivot rule. The efficiency of

faces is checked by means of the following theorem:

THEOREM 1.16, The face £(T,F) is efficient if and only if G(F)#¢
where

G(F)={(v,s)] ~cluts = CTe; v,s2>0, sj=0 if jeF }.

Furﬁhermore, the face f(T;F) is maximal efficient if and only if F is a
maximal index set, '

This condition is felaﬁed to the dual of the linear programming sﬁbproBlem
given by Isermann in Theorem I.1l. Maximal efficient faces are constructed

. by finding maximal sets F for which G(F)+¢. And with each such face a vector
A=v+e 1is assoclated. These associated vectors A allow one to check
whether or not any of the previdusly encountered maximal efficient faces is
incident to the current efficient extreme point. Such faces are recognized '
by using each prev1ously stored vector A in performlng the matrix
'multlpllcatlons A C, checking if A C2>0, and if so 1dent1fy1ng those sets

F for which A_C =0, ¥ keF .

‘4

When a pivot is made from an efficient extreme point to another adjacent
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one along an efficient edge, those maximal efficient faces incident to the
new efflclent extreme point whlch contain that efficient edge are easily.
identified, If xj is the enterlng variable and Xy is the leaving variable
assoclated with that pivot, in any maximal index set containing j, j 1is
simply replaced by k. |

At any efficient extreme point, the index set J_, of nonbasic variables that

T
lead to adjacent efficient extreme points along an efficient edge, and such

(o}

efficient extreme points are identified first, Then, a subset of J,, K, is

H
formed by eliminating those indices corresponding to edges that arz incident
to previously encountered efficient extreme points. Because if such edées
belong to a maximal efficient face, that face would have already been
constructed, Then, only maximal index sets which form a subset of K® are
searched. This would lead to computational advantages in determining all

maximal index sets.

-

Thus, by incorporating the determination of maximal efficient faces into

the main body ofithe algorithm and through several cohsiderations,computational
savings are achieved in coméarison to other,ﬁrocedures for determining the

set of all efficient ﬁoints. But still, the amount of work needed for
determination of the entire eff1c1ent set over that needed for determining
51mp1y the set of efficient extreme p01nts is enormous. Even 1f fewer
combinations of }ndlces are checked in determining maximal index sets, and
duplication of effort~is avoided, still a lot of computations are needed.

The determination of maxlmal 1ndex sets is itself quite cumbersome.
Furthermore, con31derab1e calculations are requlred to reduce the comblnatlons

to be checked. ' 2 ’ -

As an overview, the various effieiency checks proposed by several authors
can be basically divided into two grouhs: i) Those which are besed on
multiparametric LP(Zeleny [61], Gal [22], Ecker and Kouada [16]) ii)Those
which use an aﬁproach.dual to that employed in multiparametric programming.
(Yu and Zeleny {591, Evans and Steuer [18], [19], Isermann [34].)
Considering the generation of efficient extreme ﬁoints, the porcedures in
the second grouﬁ require solving a lipear ﬁrogramming subﬁroblem with a
different fea51b1e region for each adJacent vertex. In the approaches of

~ the flrst group, linear programming subproblems defined on-the same o

‘ feasible reglon are to be solved for each adjacent vertex. Moreover,it may
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not be necessary to solve all of the subproblems if- the checks given by
Ecker and Kouada are carrled out,

" Another difference between the various annroaches is in-the way.they handle
degeneracy, Wthh removes the one—to—one correspondance between bases and
-extreme points. In some additional condltlons are incorporated (Evans and
Steuer, [18], Ecker and Kouada [16] ); in some others, for each efficient
extreme point only‘certain'bases which'fu1fill a specific criterion are”

enumerated (Evans and Steuer [19], ISermann 1341, Gal‘[22]),

A different generatlng approach which aims at generation of a relevant
subset of efflclent extreme p01nts is glven by Steuer [54], [55]. In his.
"interval criterion weights" method [54], Steuer examines the following
problem - . ‘ o
_nax v wT Gx . v -
xeX :
. ' ' ' P
o o wel = {wlwen, 0 gEgwp=)
With'the'specifiCation’of intervals on parametric objective weights Vs,
the original gradlent cone, whose extreme rays are defined by rows of G,
is reduced to a subset of itself, Consequently, only a subset of eff1c1ent
extreme p01nts w111 be generated Steuer states that the problem is
blnsolvable in its present form and uses the q extreme rays of the reduced
gradlent cone to define new obJectlves and considers solution of the.
o resultlng multlobJectlve problem. However he does not propose a method

‘for computlng q and the new: ObJeCtIVeS other than an exhaustlve enumeratlon

of all endp01nt p0351b111t1es allowed for the welghts. All p0531b1e endp01nt

combinations are enumerated and -each comblnatlon is used to weight the
objectives to obtain one new objective., Steuer also observes that g>p , -
where p is the number of original objectives, and rapidly becomes larger

"than p as p increases.

Steuer also offers a f11ter1ng technique to further reduce the list of .
candldate solutlons before presentatlon to the dec151on ‘maker [55]. The
technlque operates on the pr1nc1p1e of discarding those generated solutions
not sufficiently "dissimilar" from those already retained. In this way,

a relatively evenly dispersed collection of a reduced set of efficient
TreERe _
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extreme points can be presented to the decision maker, facilitating his

final selection process,

In the next section, examples of interactive approaches to the multiobjective
‘linear programming problem, which generate a single "preferred" solution,

are discussed,.
I.1.2. INTERACTIVE APPROACHES

These approaches rely on the progressive definition of the decision maker's
preferences along with the exploration of the objective space. They assume
_that the decision maker is able to give preference information on a local
level with respect to a partlcular solutlon. Some methods require explicit
information regarding the trade—offs between the attalnment levels of
objectives at each step; others requlre implicit trade—off information by
asking the decision’ maker to indicate the acceptablllty of the current
achievement level. The Zionts-Wallenius method [62] 1s an example of the )
firet category, while the STEM method [6] illustrates the second. Here,these

two methods will be reviewed briefly.
Zionts-Wallenius Method:

Step 1. Choose a set of positive weights'li and solve the corresponding

scalarized linear programminé problem, s «

Step 2. From the set of nonbasic variables, N, select the set of efficient

variables. That is for each nonbasic variable solve“the following problem:

min _fhk
s.t. e >0 ¥jeN, jdk
' érA =1 _ )
- | ' 3 ;'0

P Tk . . . . . :
If the minimum value of ACk is nmegative, the variable xX is said to be

~efficient, otherwise it is not efficient,
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Step 3. For each efficient variable x , a set of trade-offs are defined by

k’
the reduced costs Ck, implying increases in some objectives and reductions
'in others, Present these trade-offs to the decision maker and request him.
to state whether the trade?offs are desirable, undesirable or neither. If
all trade-offs are undesirable stop. The current solution is the ﬁreferred
solution, Otherwise, for each desirable resbonse construct an inequality of
the form, A _

Ak < -5
where § is a sufficiently small positive number. For each undesirable

response, construct an inéquality of the form

)Zrck;é

and for each response of indifference construct an equality of the form

oo
ick=0 .

Step 4. Find a feasible solution to all previously constructed constraints

plus the following constraints

()

>
n
[

6 . i=1,on-,$.

v

The resultingvsef of Ai are the new weights. Go to step 1.

~

The method is convergent since at each interactive cycle the possible choice
of weights As is restricted and each trade-off which is attractive to the
decision maker increases his implicit utility function value. However, the

method requires the decision maker to be consistent. Otherwise, a feasible

|
. . . . - . . . : |
set of weights may not be found in step 4, The decision maker's implicit
. ) . |
utility function may not be precise initially and earlier responses might

|

unnecessarily constrain the outcome of subsequent iterations., ‘ .
The STEM Method:

Step 1, Solve the problem with respect to each objective function separately.,

Construct a payoff matrix Z.where Zij gives the value of the ith objective

fuﬁction‘when the jth objective function is at its maximum,
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Step 2, Let f denote the ideal solution where f.=max C.x. At .| the mth

. . . . . . xeX .
interactive cycle, find a solution which is nearest 1n the

minimax sense to the ideal solution f, i.e. solve

min y }

s.t. y ;=(?5’— ij)w5 , j=1,...,p.
x e X@
yz0

where X' includes Ax<pb, x>0 plus any constraints added in the previous
cycles. Here W give the'relative importance of the distances from the

optima and are chosen such that

w, = aj /'? a;
where _ a :
S £, - F, " 1 .
1 ¢ 5 ) if  £.>0
E. YE(C..) J
hi i 3t
a. =X :
3
£ - F, 1 _
J ___J ¢ ) if  E.<0
£ YZ2(C..)? - ]
h 3o ij
R 1 .

-

where f?ln is the minimum value in the jth column of the payoff table.

Step 3. The solution x is presented to the decision maker. If all objectives
are satisfactory,-thé cdﬁprdmise solution has been found,stop. If none of

the objectives are deemed satisfactory, stop. The model does not provide

a sélutidn for the decision maker, If somé objectives are satisfactory and
'others are not,the decision maker must relax a satisfactory objective fj

to allow an imﬁrovement of the unsatisfactory objectives in the next
iterative cycle, He is to define Afj ‘as the amount of accebtable relaxation.
Then for the next cycle, the feasible region X' is modified as:

<



[ ’
v.xm
P Cix 2 Cx" - Af
\ C.,x > C,x" i=l,.0.,P 5  idj

The weight vy is set to zero, and a return to step 2 follows.

In this method, the decision maker may feel more comfortable in that he is
only required to indicate satisfactory levels of objectives rather than
indicating preferred trade-offs. However, convergence is not guaranteed

and there is the possibility that the procedure terminates without providing

a satisfactory solution to the decision maker,

In addition to the generating and interactive approaches, some other approachesk
to the multiobjective 1inear programming problem which are based on prior
specification of preferences have been used. One basic approach is asking
the decision maker to specify weights on each objective and solve the
problemIWith*the resulting weighted objective function. Another approach
is goal programming, where the decision makef is asked to speeify target
levels for each objective and the sum of weighted absolute deviations from
these target ievels is minimized. For-successful application of goal
programming the dec151on maker should have a clear notion of targets and
pr10r1t1es and -if targets are not spec1f1ed properly, inferior solutions

~

could result,

Upto heré, an overview of available approaches to general multiobjective
linear programming problem have been provided, In the next section the
special case of bicriterion or two-objective linear programming problem is

-

considered,

I.1,3, APPROACHES TO BICRITERION LINEAR PROGRAMMING

Bicriterion linear programming problems have a simpler structure in °
comparison to multlobJectlve problems with more than two objectives. -
Spec1allzed algorithms exploltlng this 51mp11c1ty of structure have been

developed for these problems,



Geoffrioﬁ [27] suggested use of parametricliinear programming., Since. the .
degree of parameterizatign is.one, this approach works quite well for )
bicriterion problems, Here the two objective functions zq and z, are combined
parametrically to give a single objective function Azi+(1—k)22. Initially,
the linear program is solved with A=0, If there is a uniqué solution, it

is efficient. If there aré alternative optima, these are checked to find the
initial efficient solution. Then,-through sensitivity analysis, the maximum
value of A for which the present’solution still remains optimal is found.

The nonbasic.variéble with current objective row entry equal to zero at this =
value of A is then selected asvfhe entering variable and thus a new_éfficient
extreme point is found. This procedure is reﬁeated‘until A=l is reached.
Zeleny [61, pp.149-158] observed that efficient-extreme ﬁoints could be
selected out of. the set of feasibie extreme ﬁoints by. identifying a cutting
hyperplane in the objectivé space, Let u=C1x and v=C2x'for any xeX, and

let x1 and x2 be the efficient maximum solutions of Clx and C,yx respectively.

. Al P | a2 a2 .
Also define ul—Clx ’ vleczx and u2—Clx ’ v2—C2x . Thgn the cuttlpg
hyperplane L, is defined as: '
: v.,-V. Vv,V
- o201 . 2 1
I={(u,v) | v - ( Yu=v; = (=) u }.
S uy-uy | u,—uy :

The cutting hyperplane is dépicted gfaphically in. Figure I.lls where. the

shaded region represents the objective space.

A
sz

O ¥
b

Figure‘Igl. ..The Cutting Hypérplane




‘Zelen§ didnot pursue an'algorithm based on the'cutting hyperplane idea
because of hls reservatlons on its extension to problems with more than
two obJectlves. ‘However, this ‘idea forms the conceptual ba51s foritwo
algorlthms 0perat1ng in the obJectlve space glven by AneJa and Nair [2 ]
and Cohon, Church and . Sheer (14) .- The two algorithms are essentlally the
same and employ a welghted objective functlon, the welghts of which are
changed.at each 1terat10n. The first two efflelent p01nts are found by .
maximizing the two objectives'indiVidnallyf New solutions are found
iteratively by moving in a direction normal to'thehline-segment connecting:
two previously found-efficientgpointe inathevobgective space. Two efficient
.éoints which give consecutive'vaides,;reCOrded un to’the'current iteration;
of one of the objectives are chosen. Then, the weights of the objective
function are changed so as to correspond to the slope‘ofvthe line segment
connecting these two points. Given two such points r and s, the new

objective weights Alaand Xz are calculated as A =lzé(s)—aé(r)| and

A _-[z (s)-z (r)l where z, (s) denotes the value of 1th obJectlve at p01nt S.
Then, ‘using these we1ghts,}1 and AZ a’ new. obJectlve functlon is formed
and a new Iinear programming problem is solved in” the next iteration.
Aneja and Nair state that their algorlthm needs exactly 2k-3 such
1terat10ns, after the - flrst two eff1c1ent p01nts are found, if there are

k (k>2) eff1c1ent extreme p01nts.

1.2, AN 'ALGORITHM FOR GENERATING 'ALL OR A RELEVANT
SUBSET OF EFFICIENT EXTREME POINTS

: Mhitiobjeetine linear proéramming has“considerabie~computationalr
-requlrements. Even generatlng only the efficient extreme p01nts requires

a lot of computatlonal effort. As dlscussed above, going a step further
and- generatlng all eff1c1ent faces involves much more add1t10na1 compu-
-tatlonal burden. Furthermore, the d1ff1cu1ty of mean1ngfu1 presentatlon of
the results to the dec151on maker is augmented -For pract1ca1 real-life
problems, the ‘second approach has -quite 11m1ted appllcablllty Consequently,
in this study, the main concern was generation of. eff1c1ent extreme p01nts
or a relevant subset of them correspondlng to a decision maker Spec1f1ed

preference region.



The algorithm presented~hefe is based on a synthesis of the parametric
approach, some concepts of Isermann and the interval criterion weights
concept of Steuer., Dual feasible bases are enumerated by the algorithm;
however, the subproblem for checking dual feasibility of adjacent basic
solutions utilizes the parametric apbfoach. The’simple tests described by
Ecker and Kouada [16] are used in the subproblem to increase computational
efficiency, To avoid dublication of effort, and hence to increase compu—
tational efficiency further, the efficiency checks are carried out
monotonically with respect to one of the objectives; based on the observation
of a "monotone connectedness" pnoperty. That is, after finding the initial
efficient point by maximizing that objective, say objective k, at each dual
feasible basis only ﬁhose adjacent bases with_nonincrEasing'values of

objective k are checked for dual feasibility.
- I.2,1. OBSERVATIONS ON THE EFFICIENCY CHECK
Reviewing briefly, the MOLP problem is formulated as

max  Gx
xeX
X={x|Ax<b, x>0 }
) L. X ) - - . I3
-where the rows of the p x n matrix'G represent the different objective
functions. For any basic feasible solution x°, there is an associated
basis B, a reduced cost matrix C and constraint coefficient matrix Y, as

defined previously,

Adopting Isermann's terminology, a basis will be called dual feasible if
and only if there exists A>0 such that ATC;Q. Furthermore, two adjacent
duai feasible bases will be termed A-adjacent if and only if they are
alternative solutions of Py for some A>0. Then, the result given below,
although not stated exp11c1t1y in the way chosen here, is implied by

Isermann [34].

THEOREM I.17. Let x be a dual feasible basic solutlon and C( ) be the
correspondlng reduced cost matrix. Let xJ be the bas1c solution obtained

by introducing nonbasic variable Xy into the basis and C(j)‘be its reduced

cost matrix, Then, x) is a A-adjacent dual feasible basic solution if and




only if (there exists) 3 A>0 such that

T s 0 T.k

where again C%i> is the column of C(i) corresponding eo Xy .
Proof: Assume A>0 satisfies the above condition. Then the solution
represented by xJ is an alternative solution to PA for A=A, Also,we have
XTC(J) 5) C( )>0 Thus, x J is a A-adjacent dual feasible basic solution,

Let x7 be a A—adjacent dual fea51b1e basic solution. Then, 3A>0 such that
xl and xJ are alternative solutions of PA for A=A, .Let yrk>0 be the

pivot element when % is the entering variable and x, is the leaving

L
variable,

For the basic solution xl, the 1nequa11ty A C% )>0 is satisfied., After

pivoting, the column C( ) will be glven by .%1)/yrk and for this

new solution xJ, the inequality -A ( )/y is satisfied. The two
inequalities together imply A "C%i) 0.

Next, we give a new result as a consequence of which the check for dual

feasibility can be limited to certain adjacent bases.

- THEOREM I.18. Each dual feas1b1e ba31s, except the one where objective k
attains its maximum, has at least one A—adJacent dual feasible basis

obtalned by introducing into basis a nonba31c variable X with Cks<0'

-

Proof, If the given basis is not optimal with respect to objective k,there
is at least one j such that ij<0. And if the basis is dual feasible 3 A>0
such that '

Xt -5, >0 ¥, eN

where N is the index set of nonbasic variables.
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/Gs - max 6
Let C~ = R ; —FJ- -
ks j,ij<0 kj
and let Abe given by
A= C LAl j
k=TT and Al=2, >0 v;:}k

obviously A*>0.

Then

. i Li . Ss j
i) If €, .>0 then A'Ic'=dc) - ¢ . >cl>o0

= . k= - Ck ky = =

S
ii) If ‘C <0 ‘then A'T Cj—kTCj -—2c.=86. -~ é C,.>0
k3 Cks kj k] CkS kj =
GS Sj s 65 -
because as - >+= , we have . ., -+——C .20
S | 3 G K
’ S' . 6
Also "% =6: --2c =0 ,°
A : s Cks ks -

and by introducing X into the basis a A-adjacent dual feasible

basic solution is obtained,

Thus, for each dual feasible basis, there exists at least one A-adjacent
dual feasible basis where the value of objective k is higher (if X enters
the basis at a positive level) or remains the same (if'xs enters the basis

at zero level), The theorem implies that one can go from any dual feasible

basis to the dual feasible basis which is optlmal with respect to objective

k, by moving through. a sequenee of A-adjacent dual‘fea51b1e bases which

have nondecreasing values of objective k, That is, there is a '"monotone

conneetedness" property associated with the set of dual feasible solutions.

Here, we define monotone connectedness as the existence of a path, con51st1ng

of efficient edges, along whlch the value of objective k is nonincreasing,

and which connects the dual feasible solution which maximizes objective k to -

any dual feasible solution, Then, starting from a dual feasible basic solution



maximizing objective k, at each dual feasible basis, one need consider only
those A -—adjacent dual feasible hases which have nonincieasing values of
objective k. In other words, 'one needs to check only the nonredundancy of

the constraints j with C_.<0.

kj
Actually, a sense of direction is being incorporated. Each efficient edge

is identified only once, along the direction of decrease of a chosen objective,
In comparison to the previous approaches where the edges (or the efficient
extreme points along the edges) are identified in both 1ncrea31ng and
decrea31ng dlrectlons, the prOposed method which avoids dupllcatlon of effort

will lead to considerable computational efficiency.
I.2.2, DEVELOPMENT OF THE ALGORITHM

All dual feasible bases and hence all efficient extreme points are enumerated
by the algorithm, The mechanics of the algorithm is given by the flow

diagram in Figure I.2.

The first step of the algorithm is finding the initial dual feasible basis
which is an optimal-basis for a chosen objective,say objective k, To find
this basis,'firsﬁ objective k is magimized..If there is a unique optimal
solution, that solution is efficient and dual feasible.Dual feasibility
follows from the fact that C >0 ¥., and by taking'l arbitrarily large
fC;O can be achieved, If there are ;1ternat1ve optimal solutions, some

of these may be dominated, First, -an efficient basic solution is fpund by
checking all alternative optima. If the basic solution is nondegenerate,
it is dual feasible as implied . by Theorem I.6, In case of degeneracy, we
cannot be ‘sure of the dual feasibility of the basis at hand. Then, all bases
represeﬁting the efficient extreme ﬁoint at hand are checked until a dual

feasible basis.is determined.

Next,.all nonbasic variables that lead to R—adjaeent dual feasible bases
with nondecreasing values of objective k are to be identified. That 1is,
nonredundant constraints j of the system C A>0, A>0,which have p031t1ve
‘entries in the k th column of this system (C >0) will be identified.

Because working with the condition A>0 is tedlous, we make the transformatlon
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Fiﬁd initial dual feasible basis
(which maximizes objective k)

Check all adjacent/baseé with
nonincreasing values of objective
k for dual feasibility.

Choose one of these
arbitrarily and
move to it. Store ;
others (by the . Yes
indices of their.
nonbasic variables)
to be visited ‘'later.|

feasible basis
identified?

Figure 1.2. The Mechanics of the Algorithm

Y

Move to last
dual feasible
basis in

store

A=v+e, v>0, which is valid due to the homogeneity of the system of

inequalities. The subproblem used for identifying nonredundant constraints-

is similar to that used by Ecker and Kouada [16]. Specifically, the followihg

1inear-programming problem for each qelL where

L={j€Plej>0} and ?={j cliol is solved:

N

min s
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In the subproblem those constraints j for which CJSO ‘are not included

since they are obviously redundant because X CJ>0 for any A>O

The tests descrlbed by Ecker and- Kouada [16] are used to e11m1nateijuaneed
for solving each subproblem. The procedure followed in determlnlng JT, the
set of nonbasic variables that’ lead to A-adjacent dual feasible bases with

‘nondecreasing values of:objective k.can be described by thesebstebsi

1. Form the sets ? and L: Set JT=6.

.2._Find a feasible solution to the subbroblem;

3. For each gelL “such that sq is nonba31c, or basic w1th value Zero

set JT=JTu{q}, 'L=L;fq}. If L=0 stop.

4. For each qel such that sq’is basic, but can be made nonbasic by

a single pivot, set JT:JTU{q}'vahd-'L=L~{q}.

5. For each qeL such that sq is basic with a positive value, and
all nonbasic entries in the row 1n which it 1s basic are nonp051t1ve,
set. L_L—{q}, P=P- {q} (Because ‘the value of sq,cannot be -
decreased below its current positive ‘value). Delete the .

 corresponding constraints , R

6. If 1=¢ stop Otherw1se select qeL, set L_L-{q} and ad301n the

obJectlve sq to be minimized.

7. vaaq has a minimum value of zero, set JT_JTU{q} Otherw1se

delete the row in whlch sq is basic and go to Step 6.

Another feature of the algorithm is the option of specdifying intervals on -
parametric objective weights, W, as conéidered first by Steuer [54] in his
‘interval criterion weights method. As discussed in Section I.1.2. Steuer

considered the‘probiem
v ' : : o P ' :
max W Gx - waW:{wIligw.gui s, I w.=1} .

-xeX - F_ i=1. ;
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He stated that the problem is insolvable in this form, and derived an
equivalent MOLP problem by defining new objectives. The problem is in fact

solvable in its original form, by 51mp1y modlfylng the feasible region of

the subproblem through the addition of the constraints 1mp11ed by the intervals '

on objective weights v . Normalizing, we have

W = Ai/ ng i=1,...,P.
J° = '
Also, we have Ai=vi+1 and I Aj=2 v.+l . Therefore the constraints
. 173 o
Eiéyfépi }mply that
;41
: PR A
D N -
3 vJ+1

After some manipulation we have

A
oo
-
i
o]

¢l-u.)v. - E u,v. <
S AR § . 1]

, J+iv :
and

. p .

(1-2)v. - I f.v.>2p R. -1
1771 e 1] = i

i
Consequently, the subproblem is to be augmehted by these constraints.
Furthermore, any other information given by the decisidn maker concerning
the obJectlve welghts and which can- be expressed as a’ 11near 1nequallty
can also be incorporated. For example 1f the decision maker states that
objéctive i is at least twice as important as objective r, then the

constraint w.-2w >0 implies
i = p

- v.+l v +1
-2 20
Zv.+1 -§ v.+l

or
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To complete the algorithm a scheﬁe of the order in which duai feasible bases
will be generated; or“the bookkeeping of the algorithm must be specified.
The scheme used is similar to that broﬁosed{by Ecker and Kouada [16) .
Throughout the algorithm, fwo different sets are formed and stored to keeb

track of dual feasible bases. These are:

V1 : The set of dual feasible bases identified, but not yet generated

_V2 : The set of dual feasible bases alfeady generated.

Bases are stored by the indices of their nonbasic variables. For each basis,
the nonbasic variable index set is sorted in ascending ordér to facilitate
the various basis combarigons taking place throughout the algorithm. Given
the initial dual feasible basis identified by its nonbasic variable set N,

the algorithm proceeds. as follows:
1. Set Vi=¢ , Vo =(N}

2. Determine the set, R, of A-adjacent dual feasible bases with

nonincreasing values_of'oﬁjéctive k.
3. Set R1=R—V24. 1f R1=¢ - gq‘to Step 7.

4. Set R2=R Vl If R,=¢ go to Step 6.
5. Take last element of Ry» denoted by N and pivot to the associlated
- r _ r —V -
basis. Set Vl_Vlu R2.{N}.and Vz_.ZU{N}. Go to.Step 2.

6. Takellast element of Rl,\denoted by N and pivot to the associated
" basis. Set Vl_V {N} and V V2U{N}. Go to Step 2.
7. 1f V1=¢ stoﬁ. All dual feasible bases hayé been enumerated.
~ Otherwise take last element of Vl, denoted by N and pivot to the

associated basis. Set V.=V,~{N} and V =V, U{N}. Go to Steb 2.

1 1 2

Here, some general comments regarding computational efficiency can be given,
In thls algorlthm the subproblems to be solved for testing dual feasibility -
are deflned on the same feasible region in contrast to the approaches of Yu

A\
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and Zeleny, Evans and Steuer andvlsermann where the feasible region changes
from one subproblem to the other. Thus, the changeover from one subproblem
to the other requires much less computat10na1 effort here, and by u31ng the
slmple tests of Ecker. and Kouada, it may not be even necessary - to solve
explicitly each subproblem. In addition, using the monotone ‘connectedneéss
érooerty introduces comoutatiohal advantages in identifying those nonbasic
variables that lead to A-adjacent dual feasible bases (one needs to consider
only those %y with ij>0); in identifying the eorresoonding bases, i.e. in
forming the set R, and in identifying and eliminating from R those bases

which are in Vi and V2.

1.2.3. THE COMPUTER ?ROGRAM_AND COMPUTATIONAL RESULTS

4 - [
The algorithm has been coded in FORTRAN IV. The computer program enumerates
all efficient extreme points.or only those efficient extreme ooints satisfying
"the interval limits on the objective weights, if these are sPec1f1ed, and
outputs a set of representatlve weights for each efficient extreme point.
It is composed of a main program and 10 subroutines. The relationships between

the main program and the various subroutines are as diagrammed in Figure I.3.

v

MAIN
T
[ | S E— E—
WweiciT | | Epee LEAV{ | PIVOT| | MOVE SORT
] 1 ] 1 s
LEAV2| [pIvoT2| |scan | |prop LEAV PIVOT

Figure I.3. ?rogram Structore
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The initial dual feasible basis is found in the'MAIN program by -maximizing
the last objective, objective p, if no intervals on objective weights are
specified..Otherwise a composite objective which is formed by using weights
satisfying the interval limits is maximized. Here the tableau form of the
simplex algorithm, where only the nonbasic entries are stored, is osed.

For each column of the current nonbasic cost and coefficient matrices, C
and Y the associated nonbasic variable index, and for each row of Y the
assoc1ated basic variable 1ndex are stored to keep track of operations on
the 51mp1ex tableau. All 1nput and bookkeeping of the algorithm is also
done in the MAIN program.

If intervals on objective welghts are spec1f1ed subroutine WEIGHT is called
once at the start of the MAIN program to form’ the 1nequa11t1es to be added

to the subproblem for testing dual fea51b111ty

Once a new dual feasible basis is selected in the MAIN program, a move to
that basis is accomplished by the subroutine MOVE. ‘If the selected basis

is an adjacent one a single pivot is carried out. Otherwise, the number

of pivots needed is equal to the number of nonmbasic variables differing -
between the current basis and the basis to which a move is desired. In this
process, first the current nombasic variable set, IXN, is compared against
the nonbasic variable set of the selected" basis, INT, to identify a variable
which is included in IXN but not in INT. Such a variable becomes the
entering variable. Next, a variable which is included in INT but not in
IXN, is identified. If the implied pivot‘element is nonzero, this variable
becomes the 1eav1ng variable. Otherw1se, another varlable which is included
in INT but not in IXN, and for which the 1mp11ed prOt element is nonzero
is searched. When such a variable is found, the implied prOt is carried
out.This procedure is repeated'until IXN and INT are identical, meaning

a move to-the selected basis has been accomplished.*It is to be noted that
the pivotsvcarriedpout are not necessarily feasible, but in the end, the _

selected basic which is feasible, is obtained.
The pivotiﬁg operations required in the MAIN prograf and subroutine MOVE

- are carried out by subroutine PIVOT Subroutine LEAV is used to identify

the varlable to leav the basis. For this purpose, the minimum ratio rule
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is used. If column k is the pivot coluﬁn, i.e. the associated nonbasic
variable of column k is the entering variable, the row, r, for which
br/yrk = mrn bi/yik o Yk ? 0
i .
is determined. Then y K gives the pivot element, and the variable which
is stored as the bas1c variable of row r is the leaving variable. Given
 the prOt colum and plvot row the p1vot1ng operatlon is performed by
subroutlne 'PIVOT as follows. The prOt row, r, including the right hand
51de b 2 is d1v1ded by vy rk and the entering varlable is eliminated from
all other rows 1nc1ud1ng the rows of C. The p1vot colum is updated to
contain the entries associated with the leavlng variable. That is, after
pivoting column k is given by
-k k I S . = _
C =-C /yrk 3 Y= /yrk’ yrk_l/yrk
where C and Y are the new nonbasic cost and coefficient matrices. Now, the
leaving variable becomes the nonbasic variable associated with column k

and the entering variable becomes the basic variable associated with row r.

Subroutlnes LEAVZ and PIVOT2 are used by subroutlne EDGE to perform similar

operatlons in the subproblem for checking dual fea51b111ty

Subroutine EDGE is used to form the set JT; the set of nonbasic variables
that lead to A—adjacent dual feasible bases with. nondecreasing values of -
-objective p, along the steps given in section I1.2.2. 1In carrylng out steps

3 and 4 given there, subroutine SCAN is used to update the relevant sets.
Step 5, i.e., 1dent1fy1ng redundant constralnts and deleting them, is

carried out by subroutlne DROP Also, when an 1n1t1a1 basic feasible solution
to the subproblem is found at the start of subroutlne EDGE, the correspondlng
objective weights are outputted to prov1de a representatlve welghtlng vector

for the current dual feasible basis of the main problem.
The initial efficient solution is outputted by the MAIN program. The

remaning efficient solutions are outputted in subroutine MOVE, after the

move to them has been accomplished.
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Double precision arithmetic is used in the computer program to avoid
inaccuracies due to roundoffs. Only core memory 1s used. Currently the

maximum problem size 1is 11m1ted to 50 variables, 50 constraints and 5
objectives. .

-

The flow diagram of ﬁhe»MAIN program and subroutine EDGE are given in

Figure I.4.

Computational results for a sample of randomly generated problems are given
in Table I.1. The elements of matrices G and A viere generated randomly in
‘the interval t0,20], with a 20 % density of.zero elements'for-the matrix A.
The elements of the right hand side veetor,(b,.mereCgenerated randomlyuin

the interval [0, 10n] for each problem where n is the number of variables.

InSpection~of'resu1ts'indieate-that
i) Computation time 1is strongly 1nfluenced by the number of eff1c1ent

extreme points. (Compare problems 6 and 10)

11) Computat1on time also increases w1th number of varlables and

'constralnts. (Compare problems 6 and 8)

iii) Computatlon time 1ncreases with number of obJectlves but not so

rapidly as in i) and_11). (Compare problems 1 and 113 and problems
2312 and 20.)

LlStlng of the computer program, def1n1t1ons of the variables used, data

input 1nstruct1ons and a sample output are glven in Appendlx I.

7

1.3, an ALGORITHM FOR.BlCRITERION LINEAR PROGRAMMING

A lot of real life problems can be modelled quite accurately with two
obJectlve functlons. A specialized and computatlonally more eff1c1ent
algorlthm for such problems will be a useful tool of multlobJectlve deC151on

maklng Thus, another d1rect10n of research was 1nvest1gat1ng the p0551b111ty'

“of exploiting ‘the Spec1a1 structure of blcrlterlon linear programm1ng

problems.'
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READ DATA ,

Intervals

on objective

CALL WEIGHT, i.e¢. form the
constraints implied by intervals
on objective weights

Form composite objective function

, weights
/
[ ~,] Add slack, surplus and artificial
- variables as needed
Use phase 1 procedure of simplex
algorithm to find initial b.f.s.
Maximize objective p or the
composite objective
Yes dominating

Pivot to the dominating

basic solution

alternative optimal

solution

1s the
dual

Yes

basis

feasible

Check each alternative basis
representing this extreme point
until a dual feasible basis is found

Set L,(# of clements of V,)=1
Set Ll(ﬁ of elements of V1)=0

V

store the basis in V2

Sort nonbasic variable indices and

~d

'

l CALL EDGE

J
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Form the set R, i.e. for each nonbasic
variable selected in EDGE,identify the
resulting basis if that variable is intro-
duced into basis. Sort the nonbasic
"variable indices of the corresponding

basis

/

Eliminate from R those bases stored in V,

Yés

- Yes
Yes
\V No
Sclect last element of R as Select last element of V,
the ncxt basis to be generated as the next basis,to be )
Add this basis to v, " Eliminate from R those bascs generated Add this basis to V,
: stored in V,
/]\ .
]_2'=L2 + 1 » ‘ . ,
L1=L1 -1

STOP

'CALL MOVE, i.e. move to the

chosen basis - N

Figure 1.4, i) Flow Diagram of the MAIN Program

|
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Form the constraints specifving the
feasible Tegion of the subproblem Add

slack, surpius and artificial variables

v

Form the set L, i.e. for each constraint
whose nonredundancy is to be checked,store
‘the index of the corresponding nonbasic

variable of the main problem

v

Set NC = # of elements of L -

Set LI ( ¢ of elements of JT)=0

v

Use phase I procedure of simplex

algorithm to find an initial b.f.s.

v

Calciulate the corresponding objective

weiphts and output them -

@

. LOOP THROUGH FOR ALL NONBASIC VARIABLES
(0f the subproblem)

1

>

No

or surplus
ariable

Determine the index, k, of the corresponding

nonbasic variable of the main problem

""“"“‘f’;“"“"""'“""ﬂ

r
i
{
|
|
1
]
[
|
|
|
{
]
1
|

1

e e e ——— —————m s SEm e e ————1

RETURN

h7

SUBROUTINE
SCAN



___< LOOP THROUGH FOR ALL ROWS >

Basic

No variable of the
row has value
s
No Slack

- or surplus
variable

Determine the index, %k, of the corresponding

nonbasic variable of the main problem

CALL SCAN

———< LOOP THROUGH FOR ALL NONBASIC VARIABLES >

v -

Determine the leaving variable if the

nonbasic variable is to enter the basis

Slack

or surplus
variable

Determine the index, k, of the corresponding

nonbasic variable of the main problem

C
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mm e e emmem e ——— e

%_'<1.'oop THROUGH FOR ALL ROWS D

7All
entries i
the row .are
nonpositive

No

Determine the index, k, of the

corresponding nonbasie variable

af the main problem

No

-

Delete that row

/

S e J

Select last element of L, k, and

minimize the corresponding variable

No,

1 L) = L3 +1

] JT(L) = k

NC = NC-1
Yes
L Ne=0 "RETURN
No .
Y

Figure I.4. ii) Flow Diagram of Subroutine EDGE and subroutines SCAN and DROP
(called by EDGE.) ’

SUBROUTINE
DROP




TéblélI.lr Sample Problem Results

Problem Size

20

Problem No;of,Efficiént J CPU
" "No- - P m n Extreme Pts. . (msec)
1 2 4 6 : 1 257
2 2 5 8 3 701
3 2 6 10 2 572
4 27 12 2 679
5 > 8 3 1020
6 2 9 16 9 2804
7. 2 10 18 7 2534
s 2 m 20 9 3441
9 2 '_12' 22 : '5 2359
10 2 ,\_13_ 2 ¢ 2 1520
113 4 e 1 ..259
12 3 5 8 3 736
13 3 6 10 1 .357_
14 ~;> 3 7 12 2 757
15 3 8 . 14 9 3681
16 3 9 16 7 2523
17 4 46 5 1177
18 4 5 8 11 2719
19 s L6 2 502
5 5 8 3 825




.»3.1. OBSERVATIONS ON THE EFFICIENCY CHECK

‘he imﬁlications of dual feasibility for bicriterion ﬁroblems and a simple
‘heck of ‘dual feasibility of adjacent bases ;hich requires only a series of
livisions and comﬁarisons‘are ﬁreseﬁted below. First, it is observed that
‘he nonbasic variable set of any dual feasible basis can be ﬁartitioned

(nto component subsets as follows:

‘emma I.1l. Assume a dual feasible basic solution with corresponding reduced
:ost.hatrix,C is given. Let N be the index set of nombasic variables. Then
=QJRUSUT where’

- -~

Q = {jen | Cp4<0,  Cy;>0)

R.= {jeN | C1j>o’ C.,.<0}

2]

S = {jeN I’Clj;y’ Czj;p 5 Clj and C2j not both zero}

H
[l

{jeN | C1j=czj=°}

Proof: Given jeN, observe that j either belongs to one of the sets Q,R,S

and C.. not both zero} . We

or T or jeD where D={qu‘C1j§p, Czjép 3 ¢1j 23

need to show D=¢ .

Assume JkeD . Then we have

Tk '
ATCh = klclk + AZCZk < 0- ¥2>0

which contradicts the dual feasiﬁilityrof the given basis. Therefore D=¢.

Next, we give a necessary and sufficient condition for a given basis to be

dual feasible.

!
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'HEOREM I.19.

roof.

i) A given basic solution with Q¢ and R¥¢ is dual feasible if and
only if D=¢ and clj/c

2== 1k/C ¥jeQ and ¥keR.

ii) A given basic solution with either 0=¢ or R=¢ is dual feasible

if and only if D=¢.

i) Observe from proof of Lemma I.1. That if D+¢ the given basis is

not dual feasible. Therefore assume D=¢.

For jeqQ :
L T . .
AT = 240 52,0y 20  if and only if - /)\ ¢, /c
For keR :
ATcK = A.C. 4A.C.. >0 if and only if -\ /A 2C, /C
1“1 n2? . 1/ Cox
For seS :
ATeS>0 w0,
. For teT :
caletF-o0 o wmoso .

Therefore lTegp.,(condition for dual feasibility) if and only if
A /A 2 mnooc /e and -\, /X ax .. Jc

m
jeQ  1i'72; - T 2R Pk

The two inequalities_tpgether imply that Clj/CZj;plk/CZk

¥jeQ and ¥keR.
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ii) As in i) above, if D44, the given basis is not dual feasible.
Assume D=¢ ,and'Q=¢ . This imblies'Clj;p VjeN'and Czj;p ¥jeN
such that C13=0. Then, by choosing A, and X,>0, A, of a sufficiently

large magnitude, we can have

. Alclj + A2C2j >0  ¥jeN

Therefore, the given basis is dual feasible.
Similar reasoning applies for R=¢.

From the proof of Theorem I.19 it should be noted that a given basis remains

dual feasible for any A satisfying

max c /

min .
keR 1k C14/C

gl e Cok » qeq 14’2
That is, a given basic solution is the obtimal solution for any set of

objective weights whose ratio is within the above interval.

The following theorem provides a simple check for determining A-adjacent

dual feasible bases which is used in the bicriterion algorithm.

THEOREM 1I.20. Given‘a dual feasible basic splution, the basic solution
obtained by introducing xj\into basis is a A-adjacent dual feasible basic
solution if and only if either.

. _ min

1) €15/C35 = qeq ©10/C2q

.. ' max -
or i) C)i/Cs = yr Cullm - -

or. iii) jeT

e eio 3 . T
Proof. As the given basis is dual feasible 3 A>0 such that A C>0.Moreover,

we know that X has to satisfy the following:



min . '
keR "1k C1q/

2k = /Al ==qu 1q CZq

(1)
Then, by Theorem I.18, the solution obtained by making %, basic is a
A-adjacent dual feasible solution if and only if ATCJ=0 for some A>0

satisfying (1).

Now, for je$
.ATCJ>0 ¥A>0, Therefore xj with jeS cannot lead to a A-adjacent

dual feasible basic solution.

For jeQ or jeR

A C —)\1C1 +12C =0 if and only 1if ‘—AZ/A1=C1j/CZj _ (2)
Together (1) and (2) imply that the solution obtained by introducing xj

into the basis is a A—adjacent dual feasible solution if and only if

{) For jeq C../C.. = ™% ¢ /¢
1)’ jeQ €4/ 25 = qeq C1¢/C2q

max

. ll)'FO?'JER | C ./Czj‘= KeR ‘plk/CZk

1j

To show part iii) we observe that ATCJ=0 ¥jeT.:

Now, the bicriterion algorithm which uses these simple checks,; which require
only a series of divisions and comparisons, for determining A-adjacent dual

feasible bases can be ﬁresented. - -
I1.3.2. DEVELOPMENT OF THE ALGORITHM

The bicriterion algorithm is similar to the multiobjective algorithm
described in sectlon I.2.2. The main differences are in checklng the dual
feasibility of the initial efficient basic solution, where simply part
ii) of Theorem I.19. is used; and in 1dent1fy1ng A- adJacent dual feasible

" bases where Theorem I.20. is used. The general structure and the bookkeeplng



of the bicriterion algorlthm is the same as that of the multiobjective

algorlthm. The main steps can be given as follows, where the various sets

are as defined in section I.2.2. for the MOLP algorithm.

1.

Find initial dual feasible basis (which maximizes objective 2)

with corresponding nonbasic variable index set N.

»

Set V1=¢; V2={N}~

Determine the set R using part i) of Theorem 1.20. If R=¢ ' go to
step 8. ) V

Set >R1=R—Vé . If Rl=¢ go to step 8.

2_ 1V

Set R =R. - 1f R2=¢‘ go to step 7.

Take last element of R,, denoted by N, and pivot to the associated
basis. Set Vl_V UR, -{N} and V,= U{N} Go to step 3.

Take last element of R;, denoted by N, and pivot to the associated
basis. Set Vy=Vy- {N} and v 7=V, U{N} . Go to step 3.

If V=¢ stoﬁ. A1l dual’feasible bases have been generated.
Otherwise, take last element of Vi, denoted by N and pivot to the

associated basis. Set V =V, ~-{N} and Vz—Vzlj{N} Go to step 3.

1

Here, initially the second objective is maximized. If there are no alternative

solutions, one has a dual feasible basis at hand. Otherwise, it is checked

whether D=¢, i.e., if there is a jeN such that Czj=0' and C

15<0- If D¢, then

Xj for some jeD is introduced into the basis. The same procedure is repeated

until the situation D=¢ is reached.. If D=¢, then by Theorem I.19. ﬁart i1)

one has a dual feasible basis.

Next, the nonbasic variable(s) xj, jeQ satisfying condition i) of Theorem

I1.20. and xj,,jeT, if any, are determined. If there are ties for the entering

variable,

one of these, X is selected and a prOt is performed where X

enters into the basis, provided that the corresponding basis has not already
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been generated. The rema1n1ng bases are stored to be generated later. When
no-new basis can be.rdent1f1ed, the algorlthm stops.

It 1s to be noted that part 11) of Theorem I 20. 1s not being used. This

is due to the fact that after flndlng the 1n1t1a1 dual feasible basis. by
max1m1z1ng the second obJectlvq, one needs to consider only those A—adJacent
dual feasible bases where the value of the second objective decreases or

remains ‘the same.

The 1ntu1t1ve reasonlng behlnd the algorlthm is that given an eff1c1ent
p01nt, in order to move to an adjacent eff1c1ent point, one should move in
a direction where the rate of decrease off:the second objective is a minimum

while the rate of increase of the first objective is a maximum.

Assume there are no alternatlve eff1c1ent solutlons, i.e. no two eff1c1ent
solutlons give the same obJectlve vector, which is the case if there are

no ties for ‘the enterlng varlable. Then, the algorlthm starts from the basic
solutlon maximizing the second obJectlve and eventually moves to the ba51c
’solutlon max1m1z1ng the flrst obJectrve and stops there. Then, the set of
all efficient solutions will consist of a set of efficient edges which can
be obtalned as the convex comblnatlons of two adJacent ba31c solutlons

recorded by the algorithm. . - o

'1.3.3. THE COMPUTER PROGRAM AND COMPUTATIONAL RESULIS -

\

The b1cr1ter10n algorlthm is also coded in FORTRAN IV. Again, either all
efficient extreme points or only those extreme p01nts satlsfylng the 1nterval
11m1ts on obJectlve welghts, if these are spec1f1ed are enumerated. The
. computer program con51sts of a MAIN program and five subroutines which are
called by the MAIN program. '

B
The MAIN program is 51m11ar ‘to that in the multlobJectlve computer program
except for two sectionms. One is where the dual feasibility of the initial
eff1c1ent solution is checked. The other is in finding the 1n1t1a1 efficient
solution for ‘the case where 1ntervals on ObJeCthe welghts are 3pe01f1ed
where a comp031te obJectlve functlon formed by a551gn1ng the second

obJectlve the maxlmum poss1b1e weight is max1mlzed Now, there is no need
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for a separate subroutine, like the subroutine WEIGHT in the multiobjective
program,_to form the inequalities 1mp11ed by intervals on obJectlve weights.
Simply, in the subroutine 'EDGE2 the ratlo C /C2q’ which gives the 1ower
bound for the obJectlve welghts ratio A /Al pertalnlng to the dual feasible
basis obtalned by introducing into basis the nonba31c variable Xq’ is

checked for being in the allowable reglon.

Subroutine EDGE2 pérforms the same function as subroutine EDGE of the
multiobjective brogrém, namely identifying the nonbasic variables that

lead to A-adjacent dual feasible bases with nondecreasing values of objective
2. It is however much simﬁler, thebcheck<given by ﬁart i) of Theorem I.20

is carried out. _

The subroutines LEAV, PIVOT, MOVE and SORT are the same as for the

multiobjective computer program.

Computational results for the same sample of randomly generated problems
with two objectives. are given in Table I.2. along with the computatlon
times with the multlobJectlve algorlthm for comparison purposes. It can
be observed that the bicriterion algorithm is about 2-2.8 times faster

than the general multiobjective algorithm. :

Listing of the computer program, data 1nput 1nstruct10ns and a sample output

1s given in Appendlx II.

‘In comﬁarison with the.existing algorifhms for bicriterion ﬁroblems, the
ﬁfobosed algorithm has much lower coméutationai requirements. The number of
bivots needed is the same as for barametric linear ﬁrogramming as ﬁrobosed,
by Geoffrion [27]. However, the bomﬁutations needed to defermine the entering
variable(s) are much simﬁler. Here, only'a number of divisions and
comparisons (<r where r is the number of nonbasic variables) are needed,
whereas the seﬁsitivity analyéis for deteémining the entering variables

requires more computational effort.

In comparison with the algorithms of Aneja. and Nair [2] or Cohon et al.

' [14], the prpposed algorithm is definitely suﬁerior. When  there are k(k>2)
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Table I.2. Sample Problem Results

CPU CPU

f:oblem froblemusize - No.of.Efficient .Bicrtn. . M.O0bj.
© No m nm . Extreme Pts. (msec) {msec)
1 4 1 95 257
2 5 3 303 701 -
3 6 12 2 247 572 '
A 14 2 292 . 679 '
5 8 16 3 514 1020 -
6 9 18 9 1114 2804
7 10 - 20 7 931 2534
8 11 22 9 1362 3441
9 12 24 5 909 = 2359
10 13 26 2 648 1520

efficient points, these algorithms need 2k-1 iterations, where the linear
programming problem is solved with a different objective function at each
iteration. In contrast, 1f there are mno alternative efficient solutions
(whlch is the more common case) the algorlthm proposed here needs only one
such 1terat10n and k-1 additional p1vots. The algorithm goes from the
maximizing basic solutlon for one objective to the maximizing basic solution
for the other, and enumerates allgefficieht'extreme ﬁoints with about as

much effort as needed for the initialization of the algorithms cited above.
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PART 11, AN APPLICATION IN POWER SYSTEMS PLANNING

In recent years, with the emergence of new trends in energy systems
analysis, the decision making process in electrical power system investments
has become increasingly more complex. One of the mew trends is the environ—
mentalist movement while another is the concern over nuclear technology.The
oil embargo of 1973; thé sudden increase in energy prices and the threat

of - future energy shortages have caused these trends to have more significant
impact on the decision making process. Supply risks. associated w1th oil
fired power plants have meant more coal and nuclear plants. These plants,in
turn, give rise to even greater opposition by/the'environmentalist and the

antinuclear groups.

The reservations voiced by these groups have alreaay influenced the planning
and operation of power plants. The plesbicites in Federal Germany, Austria
and Sweden are clear evidences of direct public participation in the decision
maklng process. Upto recent times, power systems plannlng was carried out by
central electricity generating authorities. The main concern was economic °
efficiency, subject to certain technicalvconsiderations, while environmental
and soc1al factors were not influential. Today,. this p1cture 1s changing
rapldly with the emergence of different interest groups with different and
confllctlng obJectlves. Consequently, the need for developlng and applylng
new planning procedures and mathematical technlques arises. These new
procedures and technlques will evolve slowly after sufficient experience

has accumulated and- the strengths and limitations of each technlque has
been realized. Here one possible approach that attempts to accommodate
several objectives in power systems expansion decisions is presented.The-
approach is based on generating relevant decision alternatives through

the use of a multlobJectlve linear programming model.The efficient solutlons
of the model are grouped based on the clusterlng of _the objective values
and the 51mllar1ty of the decision 1mp11cat10ns for the immediate future.

The model has been applled to the Turkish electrical system.
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I1.1. MODELLING THE POWER SYSTEM EXPANSION PROBLEM

Modelling of the poWer system'expansion problem is quite a complicated task
due to the complexity of the system; A variety of power plants with different
f1xed and variable costs, availability factors, capacities, etc. form the
supply system. The demand, on the other hand, is subject to fluctuations at
different seasons, months, days and even hours of the day, and wide -
variations due to unforeseen events. Furthermore, the expansion problem A
must be considered iniconjunction with the operating program of all power

plants if suboptimal decisions are to be avoided.

The uncertainties in various elements and the size and complexity of the
system make it almost 1mp0351b1e to accommodate all aspects within a single
model. Once the need for decomposition is recognized, one has to decide on
the level at ‘which deconposition should be done. A natural approach is to
firstrdecide on the globaliexpansion strategy,and then to plan a detaited
project evaluation program..The_aim of this study is to focus on the first

phase where several objectives are influential.

The model given below is a modified version of a dynamic linear programming
model which had been app11ed to the electr1ca1 system in Turkey [35], [361,
[37). In its present simplified form, only three types of power plants are
1ncluded, coal, hydro, and nuclear. The model extends over five planning
perlods of six years' duration each. All technical and financial aspects

are expressed as 11near relations. Three objectives are considered to have
deciding influence; namely economics, env1ronmenta1.1mpact and potent1a1
damage. Economic efficiency has been the traditional planning objective in
public investment problems and will continue to be a determinant in any
investment decision, be it public or private. Environmental impact combines .
several factors such as land use, chemical, thermal and radioactive pollution.
Potential damage accounts for the probability of an accident and the extent |
of damage that such an accident would cause. These three objectives which

are to be minimized are expressed as:
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where P is added new power capacity, E 1is energy generated; o

5 1 t 3 -
=3 ( ) T a.P._ + 07 E, . (1)
1 =1 1+r i1 i it i Tit :
5 3 (
=% I B. E. 2)
Z Ty 1t
| S Pv. .. o 3)
zZ =) T Y. . ‘ ; . B ‘
3 el1ian POAE : ,

and o~ are-

unit costs of installed power and energy generation; -8 and y are environ-

mental impact and potential damage coefficients; r is discount rate (over

a period); i is power plant type (i#l for coal, i=2 for hydro and i=3 for

nuclear),

and t is the time period. Here energy generated is taken as a

surrogate for environmental impact and power installed as a surrogate for

potential damage.

The constraints of the model can be given in general form as follows:

i)

‘.

ii)

iii)

Energy Demand: Demand for electrical energy (ED) must be

satisfied at all time periods.

3
L E. >
x E1t ==EDt ¥t

i=1 | -

(4)

we

Power Demand: Power demand (PD) must be satisfied at all time

periods.
t 3
% 2
j=0 1i=1

P..>PD, ; ¥t

1] : t. (5)

where Pio gives the initial available power .capacity for plant'

 type i.

Production Capacity: Amount of energy that can be generated at

_time t cannot exceed that allowed by the available power capacity

t=1 .
by Pi' 3
j=0 *

E. < £

= I ¥t, ¥i

(6)
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v’where energy product1on is lagged by one tlme perlod (6 years)
with respect to ‘the 1mplementat10n of a new prOJect, and f denotes
the max1mum load factor of the’ corre3pond1ng power plant
iv) Bu11d—up Rate: The amount of new capac1ty added for ‘each type
of power plant is 11m1ted by the development of technical capac1ty

P, < K. P. B S 1 31 (D

where K; is'the capacity'expansion coefficient for corresponding
type of power plant Because dlfferent types of technologlcal
'capab111t1es are 1nvolved, each type of power plant is treated

separately

V) Hydro leltatlon. The hydroelectr1c1ty that can be generated is

restrlcted by ‘the hydropotent1a1 (HP) developed upto that time.
E2t __HP | 3 t=4,5 - ®

Hydroelectr1c1ty is not restrlcted for t£3, because power capacity

is already constralned by (7) above.

In developlng thlS model, 1t was further assumed that for Turkey nuclear
‘energy cannot contrlbute to the supply mix ear11er than the second perlod
and eoal reserves and/dr - 1mports will not create any problems w1th1n the
plannlng horlzon. The first assumptlon requlres m1nor changes 1n expressions
(&) through (8) Spec1f1ca11y the variables E31,’ 32 and P31 are deleted
and P32 becomes a parameter giving the initial nuclear capaclty. In its

final form, the model has 26 variables and 37 constralnts.

Uncertainties in model elements can be handled through scenario and/or
sens1t1v1ty analyses. The plannlng horizon 6f 30 years will be adequate.
‘It is not necessary to con51der developments too far into the future as:

investment decisions are made every flscal year. Dependlng on changes and

unforeseen events, the analy51s may be repeated to update the results. -

\
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The mathematical modeiling of the power system expansion problem as a
multlobjectlve linear program giyén aboye is the initial phase of the overall

solution procedure explalned in detail in the next section.

II;2.'30LUTION PROCEDURE

It was expressed before that there are three basic approaches to the
multiobjective dec1s1on making process. Rev1ew1ng, ‘these are: a pr10r1
articulation of preferences 1ead1ng to the formatlon of a 51ng1e overall
objective functlon, generatlng efficient solutlons and a poster10r1 artic-
ulation of preferences, or progressive articulation of preferences, i.e.
‘interactive approaches. In evaluating these approaches for the1r relevance
in actual dec151ons, the characterlstlcs of the déecision env1ronment or

the type of. problem at hand carries utmost 1mportance A decision process
that is hlghly successful in a given environment may be totally inadequate
in another. Vlewed from this p01nt the interactive approach seems very
promlslng for decisions in a restrlcted environment where there is a
well-defined decision maker who is actually able to>cooperate.In most
socioeconomic sjstems,rhowever, there are several decision makers who may
even be dlfflcult to 1dent1fy. In such cases, not only the interactive
methods, but also a pr10r1 spec1f1cat10n of preferences may become 1nopera—
tional. In.view of the complex1ty of the dec151on environment ,nonexistence
of a unlque well-defined dec151on maker, and the far-reaching consequences
of the _power system 1nvestments program, the approach that is considered
most approprlate for this partlcular problem is the generating approach
whlch postpones artlculatlon of preferences to later stages of the decision

process and provides a “sound 1nformat10n base.

The main ‘concern in this study has been to generate relevant decision
alternatives that are only a few in number. Recognizing that the generating4'
approach usually leads to a large number of alternatives, model dimensions
were kept as’ small as pOSSlble. Keeplng model size small is consistent

with deC151ons,of a global nature where only aggregate quantltles are of
1nterest in addition to the fact that both the number of efficient

solutlons as well as the computatlonal effort required for each solutlon
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are reduced. Furthermore, it is easier to deyelop and implement efficient

algorithms for models with small dimensions,

The influence of uncertainties in model parameters or policy optioms were
analyzed by developing appropriate scenarios.Sensitivity analyses were
carried out to determine the significance of environmental impact and

potential damage coefficients for which absolute values are difficult to

determine.

The overall solution procedure employed is depicted in Figure II.1.

Problem

¥

Define objectives and

construct model

-

Define new {- ' 1 Determine efficient
scenarios

solutions )

Generate relevant and

representative decision

alternatives

A 4

" Decisions

Figure II.1. The Overall Solution Procedure
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The MOLP algorithm presented in Part I was uéed for'the generation of
efficient solutions. The algorithm generate§<avreﬁresentative set of
efficient solutions, i.e,, efficient extreme ﬁoints, with quite low combu—
tational effort. The efficient solutions oBtained,may then be grouﬁed S0

as to generate relevant decision alternatives reéresanting different
preferences. The grouﬁing of solutions may be baséd-on the relative magni-
tudes of the objective values, or on the clﬁéterihg in the values of the
dec151on variables or on the 1mp11ed welghts associated with the objectives.
In thls study a combination of the first and second methods was used in |

—

grouping the solutions. ' - |

Another approach was the consideration of only the economics and environ-
mental impact objectives and solving the model-for a given scenario as a

bicriterion problem.

1I1.2.1. APPLICATION OF THE MODEL WITH THREE OBJECTIVES

Four scenarios were developed in order to assess the consequences of certain

pollcy 1mp11catlons. The scenarios. tested were:

A: Base case
B: Reétricted hydro
C: Low energy demand
'D: Less restricted nuclear
The barameters and coefficients of‘the model for the base case were
sbecified so that
—’Eneréy and éower/demands were taken to incréase at their
historical rates;
- Maximum load factors for coal, hydro and nuclear éower ﬁlants
‘ were taken as 0.70, 0.45 and 0.60 resﬁectively;
" - Build—uﬁ rate factor-was,taken as 1.5 for nuclear ﬁlants and 2.0
for other blants; ) :
- TInitial coal and hydro capac1t1es were both assumed to be 4.0 Gw.:
- Total nuclear capac1ty in the second perlod was assumed to be
1.0 Gw.
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In determining the objective éoefficients; the inyestment cost was taken as
the sum of power plant and transmission costs. Slm1lar models usually
cons1der only power plant costs [1l}. In reality, transmission costs are -
almost as high as plant costs and may vary significantly depending on. the
distance that the energy is transmitted to. In Turkey, where the hydro
potentlal is rather distant from the main load centers, the largest unit
transmission costs are incurred for hydroelectr1c1ty. Lowest transmission

costs apply for coal power plants while nuclear plants would entail costs

of intermediate value.

Environmental impact and potential damage aspects are not as easily
quantified as financial aspects. For these two factors, an ‘ordinal ranking
was made and sensitivity analyses were carried out on ‘the first two scenarios
in order to observe the influence of the relative magnltude of the
coeff1c1ents assigned to each type of power plant on the results obtalned
The ordinal ranklng of power plants w1th respect to these factors and
financial aspects is given in Table II.1. from hlghest to lowest in going.

down the table.

N

Table II.l. - Ranking of Power Plants

P R - .. .

Cost : Environmental Potential
" Fixed (@) Variable (a”) impact (8) - damage (y)
Nuclear Coal " Coal Hydro
Hydro Nuclear Hydro Nuclear
Coal Hydro ‘Nuclear - Coal

Environmental impact’ as defined here, refers to air pollution caused by
the burning of coal; land covered by the reserv01r of a hydroelectrlc
plant, and radloactlve emissions from a nuclear power plant Although these
indicators 1mp1y different dlmen81ons and necessarlly enta11 a certaln

subJectlve evaluation, the ranking given in Table II.l. may ‘be representatlve



of the assessment of most analysts. The public in general would also view

a coal power plant as more objectionable in comparlsOn with a hydro project,
espec1ally when low quality, high sulfur content brown coal is considered.
Furthermore the land allocated to a coal plant is not 1n51gn1f1cant Few
would argue that the radiation (or the excess heat release) of a nuclear
power plant affects the environment anywhere nearly as much as the chemical
pollutlon caused by the burning of fossil fuels. The area required by: the
nuclear plant is usually much less than a coal or a hydroplant.

As regards potentlal damage, the ranklng given above may appear
counterintultive. Most people would probably react by asserting that the
nuclear plant is more objectionable than the hydro plant in this aspect.
1t should be noted, however, that qulte a few dams have failed whereas no
significant physical damage has so far been caused by a nuclear plant.That
is, the probability of failure of a nuclear plantiis lower. In the event
of a failure, the number of lives that wonld be affected 1is of the same

order of magnitude for either type of plant.

The steps of the solution strategy followed in applying the model to the

Turkish electrical system are summarized below.

The BASE CASE scenario was solved for. three different sets of objective

coefficient (B and y) assumptions, which are given below.

~

B B Y q Y

1. Set FEL\ =3 2_9 3 2 _ 3 3 -9
) B B Y Y

2. Set ’B—l =9 '8_2 =3 s —-—2— = 9 —2 = 3
B TN 3 Yy Yy
B B Y Y

3. Set — =16 24 3 2.16 2 -4 /

By B3 AC] 61

The efficient solutlons in the dec131on 5pace were identical for each of
these sets, except for one efficient p01nt which was not included in the

solutlons for set one. Furthermore, the points where each objective
! . .

6 7 . . -




attained its minimum were'exactly the same. This-led to the conclusion that,
.results were not much sensitive to the changes_in the envlronmental 1mpact

and potentlal damage coeff1c1ents.

The RESTRICTED HYDRO scenario was deveioned next Observing thet in seme
solutions hydr011c energy generatlon in the fourth perlod was as hlgh as
130Twh, which was thought to be to hlgh, cons1der1ng the hydrollc potent1a1
that could be utilized in the fourth perlod,‘hydrollc energy generation

in the feurth period was constrained to a maximum df'lOO”TWh For this

rscenarlo solutlons w1th two different sets of obJectlve coeff1c1entss and

Y g1ven below, were obtalned

' B 8 Yy Y
1. Set -—B—-1-=3 2 _, i _2:3_/ _3._ ~2
- 73 ‘V‘B3 ' 51 Yy
. o By . By , _Y‘ Y
4. Set —]1:]_..2 '8—2—1 1 3 _2=1.2 _537;.1.1
By 3 Y Yy

S

The f1rst case resulted in 29 eff1c1ent extreme p01nts and the second in
30, where 28 of the. p01nts were 1dent1ca1 This fact supported the _
conclus1on that" the results are not very sensitive to changes in the
coeff1c1ents of objectives- related to env1ronmental impact and potent1a1
damage. From then on, for coeff1c1ents. B and <y, the values given by set

two above were adopted. -

The LOW ENERGY DEMAND ‘scenario was run next assuming lower rates of increase
in energy ‘and power demands, i. e. modellng -a slower growth. Thls run

resulted in 19 efficient extreme points.

The LESS RESTRICTED NUCLEAR scenario allowed for higher nuclear energyv
production by increasing’the nuclear capacity expénsion factor from 1.5 to
4.0. This scenario resulted in 29 efficient extreme points.’

A -0

Then, the efficient solutions'for each scenario were analyzed and grouped
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together to form decision alternatives. Considering the dynamic structure
of the model, it is not necessary to strlctly lay down decisions too far
into the future. Slnce the ana1y51s may be repeated at will, decision
1mp11cat10ns for~the near. -future have much greater 1mpact than decision
1mp11cat10ns for later per1ods. Many of the solutions which 1mp1y different
decisions in the later periods call for similar courses of action in the -
first few perlods. Based on this ohservation, solutions with similar
objective values and decision 1mp11cat10ns for the first three perlods

were grouped together forming a few decision alternatives.

The steps of the solution procedure are depicted échematically in Figure
I1.2. ‘

- | ‘
S1:3:90 0 1:1.1:1.2
BASE © Wi:p.q | KESTRICTED Lo LESS
‘ " CASE . - HYDRO ~| ENERGY “| RESTRICTED
' DEMAND | NUCLEAR

.1:4:16

* Numbers on branches represent coefficients of enviromnmental
impact and potential damage objectives.

Figure II.2. Solution Steps

A summary of solution etatistics for the three most significant scenarios,
B, C and D are given in Table II.2, Statistics of other results have not
been included as d1fferent B and y values were used, making direct
obJectlve value comparisons meanlngless. Furthermore, the base case scenario
is somewhat unreallstlc since it allows for too high a hydro potent1a1 in =

the fourth perlod
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"’ Table II.2. Solution Summary Statistics

Ranges of Objective Values

Total Installed Capécit}; Ranges for the First .

4.2-7.3 4.5-13.8 5.3-25

zg; e %: Three Periods (Gw)
b ol : .

o R : ;

3 o o Econ.Cost Environ-— ‘ _

° §a (Billion mental _ Potentl. - Hy@ro _ _ Coal Nuglear '
© = 0 TL)  Impact Damage Period 1 Period 2 Period 3 Period 1 Period 2 Period 3 Period 3
B 29 1289-1536 1388~-1737 41—1_37 4-12 4-28 4-33 5-9 - 7-17.2 11-27.8 1-2.5
c 19 1101-1311 1184-1533 37-133  4-12  4-28 4-33  4.6-7.3 5.8-13.8 8.7-25  1-2.5
.D . 28 1097-1336 1022-1533 37-156 . 4-12 4-28 4-33 1-5




An inspection of the statlstlcs indicates that although the ranges of
obJectlve values are not too w1de, the impllcatlons on - the resulting power
plant mix are s1gn1f1cant Results all the way from no capac1ty increase

to quite h1gh capaC1ty increases for the first three perlods can be observed
for each type of plant. However, grouping of efficient solufions for any
single scenario does not create significant problems. Detailed results for

scenarios B, C and D are given in Tables II.3, II.4 and II.5 respectively.

For each scenario, solutions in Group I are ev1dent1y associated with least
economic cost as well as least env1ronmenta1 impact; while those in Group
IV are associated w1th least potent1a1 damage. In view of the ranklng of
the power plants given in Table IT.L these results may seem surprising.
Summing up fixed and variable costs results in lowest unit total cost for
hydro and highest for nuclear. Thus, each type of power plant ranks best
in any given attribute and may be expected to be favored in solutions
associlated with minimal levels of that atrribute; whereas power’plants
ranking poorly with respect to that attribute are disfavored. On closer
inspection, howeper, it is observed that since total nuclear contribution
4s rather small, the eompetition is really between HYdro and coal. Thns,'
Group I solutions where hydroiis favored heavily result also in lowest

environmental impact as hydro is superior to coal in that respect.

The investment scﬁeduling implications, for each of the scenarios B,C, D,
between the four strategies represented by the solutlon groups can be seen
in Figures II.3, II. 4; and II.5., where power capac1ty 1ncreases are plotted

against time.

Therdecision maker is also supplied with additional-information in the form
of'representative "objective weights" associated with each solution. This
additional 1nformat10n is valuable espec1a11y for those more familiar with
the classical approach of assigning weights _(Ai) to each obJectlve. As an
example, the set of all efficient extreme solutions for scenarioAC,along
with representative A values associated with each efficient solution are

presented in Table II.6.

The computation times for the various scenarios with the lst. set of B

and Yy values are given in Table II.7.
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Table II.3. Summary Statistics for Scenario B Solutions

Ranges of Objective Values

. Total Installed Capac1ty Ranges for the F1rst

Three Periods (Gw)

o

. o

o o g

= oo

g 25 Econ.Cost Environ- Hydro ~ Coal Nuclear
o 5'3 '(Billion .mental Potentl.

O Z w TL) Impact Damage .Period 1 Period 2 Period 3 Period 1 Period 2 Period 3 Period 3
I 14 1289-1333 1388;1500 91-137 12 25.2—28 25.2—33 5=5.6 7-8.9 11-15.4 .1-2.5
II 6 1409-1427 1581-1642 57-65 11.8-12 11.8—13.5 11.8;13;5 6.6-6.9 11.8-12.7 22.2-24.2 | 1-2.5
11T 3 1439-1463 1630-1657 54=55 9-10.6- 9-10;6 9-10.6 7.1-7.4 13.4-14.3  24-=25 1-2.5
y ‘ .

v 6  1505-1533 1672-1737 41-48 4-5.6 4=5.6 4-5.6  8-9 16.2-17.2 26.6-27.8 1-2.5




Table II.4.. Summary Statistics for Scenario C Solutions

N

€L

v ‘Ranges of Objective Values - Total Installed Capacity Ranges for the First -
. Ut o0 . A . .
2 o & . Three Periods (Gw)
Y oed ; A )
R v u Econ.Cost Environ- ; .
3 23 (Billion mental Potentl. Hydro ' Coal : ‘ Nuclear
& é 3 TL) . Impact Damage . s '
i ' P : '8 Period 1 Period 2 Period 3 Period 1 Period 2 Period 3 Period 3
I 5 1101-1137 1184-1291 93-133 . 12 28 28233 4.6-5.4 5.8-8.2 8.2-13.6 1-2.5
11 ‘5 1162-1223 1304—1.410 54-81 ’ 12 12-21.5 '12-21.5 5.4-6.4 8.2-11.1 13.8-20.5 1-2.5
, ‘ . .
I1I 5 1243-1259 1436-1463 46-49 8-9.8 « 8-9.8 . 8-9.8 f_'6.>4-6.5 11.2-11,5 20.8-21.7 1-2.5

v 4. 1277-1311 1487-1533 37;41v C4-6.4 b-6.4 4-6.4 6.8-7.3 12.4-13.8 23.7-25 1-2.5 .




Table II.5. Stimrnéry Statistics for_»Sc'eﬁa_rio D Solutions

R

Ranges of Objective Valdes ‘Total Installed Capac:1ty Ranges. for the First

YL

g ué"‘cg Three Periods (Gw)
g‘ Eg’ ‘Econ.Cost E';r‘l';firon— : S B — S : ' “
go; Eg ' (Billion mental Potentl. Hydro - : — Coal ~Nueclear .
' -~ TL) Impact Damage Period 1 Period 2 Period 3 Period 1 Period 2 Period 3 Period 3
I 14 1097-1140 1022-1291 93-156 12 28 28-33  4.2-5.4 4.5-8.1 5.3-13.6 1-5
II 6 - 1192-1255 1226-1436 54-77  10.7-12  10.7-15 10.7-15 5.6-6.3 8.9-11  15.5-20.5 1-5
ITT 3 1243-1254 1413-1463 48-49  8.1-9.8  8.1-9.8 8.1-9.8 6.3-6.5 11-11.5 19.5-21.5 1-5

IV 5 1277-1336 1323-1533 37-58 - 4-6.4  4=6.4  4=6.4 6.8-7.3 12.4-13.8 21.7-25 15
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Figure II.3. Power Expansion Alternatives for Scenario B
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Figure II.4. Power Expanéion Alternatives for Scenario C.
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Figure II1.5. Power Expansion Alternatives For Scenario D
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Table II.6. Efficient Solutions and Associated Representative

Weights Ai for Scenario C

78

. e Associated Reﬁre*' Total Installed CapacH
=] . . . .
S Objective Values sentative Weights . | ity at 3rd period(Gw)
=V T . : . ) v
12 . . .
0 {—~Economic Environml.Potentl. A A A !
1&8 13 cost - Impact Damage 1 . 2 3 | Hydro Coal Nuclear
1{ 1101 1184 133 .33 .33 .33 | 33 8.2 2.5
2 | 1121 1214 109 24 .24 .51 | 33 10.8 2.5
1l19] 1123 1260 105 40 .04 .56 | 33 12.3 1.0
3| 1135 1245 97 .18 .18 .64 | 28 12.1 - 2.5
18| 1137 1291 93 .31 .05 .64 | 28 13.6 1.0
4| 1162 1304 - 81 | .14.. .14 .73 | 21,5 13.8 2.5
| 1176 1350 71 120 .12 .76 | 18.6 15.5 2.5
II{10, 1219 1410 - 55 11 .13 .76 |12 19.3 2.5
|5 | 1223 1390 58 A1 .13 .76 | 12 19.3 2.5
11 . 1223 1436 5 | .19 .02 .75 | 12 20.5 1.0
12| 1243 1463 48 .19 .02 .75 9.8 21.7 1.0
16] - 1244 1444 49 .09 .09 .81 | 9.2 20.8 2.5
[1I|17] 1255 1458 46 | - .04 .10 .85 8 21.5 2.5
6| 1256 1436 49 | .06 .12 .82 8.2 21.5 2.5
7| 1259 1439 48 .06 .11 .85 8 21.5 2.5
13 1277 1504 41 .08 .05 .86 6.4 23.7 1.0
ity 1308 1507 . 38 .04 .10 .86 23.7 - 2.5
14 1308 - 1533 37 .08 .05 .86 25 1.0
8| -1311 1487 S .40. |...04 .11 .85 23,7 2.5
3 - - ’ ~ »
Note: .Zlki may not add up to 1.00 exactly, due to rounding error.
l= : .



Table II.7. Computation Times for Model Application

e N>°-.0f efficient 'iceu

Scenario . extreme points ~ {(secs.)
A 30 32
B 29 30
C. 19 23
D 29 - - 36

II.2.2.'A?PLICATION OF THE MODEL WITH TWO OBJECTIVES

~Bicriterion, or two-objective‘analysis offers conceﬁtual case in that
efficient solutions can be displayed graﬁhically in a neat manner and the
trade-off function between the two objectives can be observed. With these
con51derat10ns, the model was solved for scenario D also as a bicriterion
problem. Here, in addition to the traditional ‘economics obJectlve, the
environmental 1mpact obJectlve, which has also become more or less classic,

was taken.

In this solution, only five efficient extreme points were obtained. These
solutions, along with the.range of?lllz ratios for which they remain optimal

solutions to the "weighted objective" problem are given in'Téble 11.8.

These efficient solutions can be blotted‘as boints on a gréﬁh,'where the -
axes reﬁresent the two-objectives. The ﬁlot of ﬁoints when joined gives
.the trade-off function between these objectives, which is disﬁlayed in
. Figure II.6. '

-—

~

Here, the line segments JOlnlng two adJacent p01nts also represent
efficient solutlons. The partlcular ratio A /A for which these line
segments are the 0pt1ma1 solutions to a welghted obJectlve problem are.

-

1nd1cated
. The values taken for the various perameters and ebefficientsvof the
model are given in Appendix III. )

T~
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- Table I1.8. 'Efficient Solutions For . v
- : Bic;iterion Problem (Scenario D)

Economic ’ Eﬁvironﬁentdl\ Range for
Cost TImpact N Alllz

1097 1096 [4.35,8)
1100. - 1080 - [2.22, 4.35]

1113.8 1050.2  {1.52, 2.22]
1113.9 ‘ 1050 {1.15, 1.523-
1138 - 1022 [0, 1.15]

‘Economic Cost

T

1140

1130 |

1120 | A, /a.=
120 3 A, /A,=1.15

1110 -/ : 11/Aé=2;22
1100 - AI/A2=4.3$
1090 ]

; . . — i ;
'1020 - 1040 1060 1080 1100

—

“Environmental Imp

Figure II.6. Trade-off Function Bétwaen Economic Cost and

N " Environmental Impact
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I1+0, EVALUATION OF RESULTS

Recent develonments in environmental concern and issues of social risk have
changed the nature of power systems exnansion decisions. These decisions
now involve several criteria and different centers of influence,necessitating
multiobjective analysis. |

v
The approach taken here is that of generating a few relevant dec151on
alternatlves from the set of eff1c1ent solutions for the medlum term, whlch

is assumed to be 10 -to 15 years.

The modelling technique and the solution orocedure emnloyed in this study
offers several advantages, esnecially when the characteristics of the
decision environment are considered. The linear nrogramming model is a
well-known and established technique and most decision'ﬁakers are aware of
its canabilities. ThevmethOd of generating efficient solutions and decision
alternatives is quite efficient and calls for neither prior articulation

of preferences nor an extended cooperatlon with the decision makers, which
are quite d1ff1cu1t to realize in the_partlcular decision environment.
Uncertainties in certain parameters and policy imnlications are analyzed by
deneloning different scanarios. The influence of hard-to—quantify aspects
such as' environmental 1mpact and social rlsks are determined through

sensitivity ana1y31sa

A sound and rellable 1nformat10n base for dec151ons is produced without

requlrlng very prec1se and sophlstlcated data.

The major limitation of this nrocedure is in model size. The whole

nrocednre would become rather imnractical if the number of decision
- variables is in the order of hundred. In such cases, not only would
computatlonal efforts increase, but also dlsplaylng the results and

analysis of declslon alternatives would become quite tedlous.
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PART 111, -MULTIOBJECTIVE INTEGER LINEAR PROGRAMMING

The multiobjective integer linear programming (MOILP) problem is written as
max' Cx
xeX -

= {x|Ax<b, x50 and integer}

where C is a pxn matrix whose rows C, 5 i=1,...,p, represent the different
objective functlons, A is an mxn matrix; and x and b are n and m sized
vectors reSpectlvely. Maximization here refers to the determlnatlon of the
set of all efficient p01nts. In multiobjective zero-one llnear programmlng
(MOZOLP) elements of X are further constrained to take on values of only

zero or omne.

MOILP problems arise when in problems characterized by multiple objectives,
the decision variables are desired to take on integer values. For example,
in. the de31gn of an urban transportatlon system, one could be interested

in selectlng the optlmal transportation modes as well as determining ‘the
number of units of each to beischeduled for a desired service level, with
the objectives of minimizing travel times, construction costs and operating

costs. Blnary variables are necessary for handling yes or no decisions in

several problems, such an area of appllcatlon for MOZOLP is prOJect select1on

‘In addition to the traditional objective of maximizing the“total present

value, other objectives such as minimizing risk or maximizing market share

may be under consideration in.project selection or capital budgeting problem§

It is natural to assume that MOLP solution technlques can be extended to
handle MOILP problems since integer linear programming 1s closely related
to linear programmlng and most algorithms for 1nteger llnear programming
use 11near programming subroutlnes. However, MOILP problems are of a qulte

dlfferent nature than MOLP problems. Parametrlcally optimizing linear

\
combinations of the objectives generates some but not necessarily all of the

efficient solutions. This can be observed from Figure IlI.l,
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>
Objective 1, f1

- Figure III.1l. Parametric Scalarization May Not Generate

all Efficient Integer Solutions

Here, it is assumed that points 1,2, and 3 give rheveffieient points in
the objective space for a hypothetical two objectived integer problem.By
maximizing the linear function-A f +A, f A SA >0, points 1 and 3 can be

1717272

obtalned as the maximum solutions for certaln apprOprlate values of Al and

AZ' However, point 2 does not give the maximum solution of k1f1+A2f2 for
any A1,12>0 Thus, although it is efficient, p01nt 2 cannot be generated

by parametrlc scalarlzatlon, i.e. parametrlcally 0pt1m121ng linear

» comblnatlons of the two objectives." Furthermore, as the feasible reglon of
1nteger p01nts in an integer linear program does mot generally represent a
connected graph the use of multlobJectlve s1mp1ex methods for 1dent1f1cat10n
of adjacent efficient p01nts may not y1e1d a convergent method for the
search of all eff1c1ent pointsj in other words, the 1mp11ed search may not
1ocate eff1c1ent p01nts in the unconnected portions of the integer linear
program lattice. These facts 1nd1cate that methods of MOLP cannot be 51mp1y
extended to MOILP Thls is why MOILP has gained 1nterest only recently and
is still not a developed f1e1d of multlobJectlve opt1mlzat10n. In the
follow1ng section a survey of multiobjective integer ‘linear programmlng

methods is presented
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III.1. MULTIOBJECTIVE INTEGER LINEAR PROGRAMMING METHODS
A classification'of'thé aﬁﬁroaches to MOILf is given in Table III.1.

Table III.1. Approaches to MOILP

Nature of )
Solutions Problem Type - A Approach
General MOILP Bowman [8)- A parametric method
' b§%¥$E8¥1an Pasternak and Passy[éS] Algf;i%ﬁﬁrlc
Efficient
Solutions ' _ Shapiro-[53] Theoretical results -
MOZOLP " Bitran [7] Search algorithm based
. on preference cone
Klein and Hannen[38] Sequential
"algorithm based on
implicit enumeration
A ~ Zionts [63] ‘Interactive algorithm
Preferred - -General MOILP o :
Solution : ~ Lee [41] Integer goal programming

The first work to appear in this field is on bicriterion zero-one programming
Pasternak and Passy [45] show that all efficient p01nts are solutions of
the parametrlc problem -

-

max C.X

1
s.t. Ax <b
C, % 20
x.= 0 or 1
J

where © varies from the minimum value of sz, attained at x which maximizes

Clx,yto the maximum value of C.x. Some further results are derived under

2
the assumption of a strictly quasiconcave utility function so that only a
relevant subset of all efficient points would be generated. The authors

also give an algorithm which is an extension of the Balas filter method.
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Shapiro [53] inyestigates how the results of integer programming duality
theory can be used for multiobjectiye zerovone and mixed integer problems.
He focuses on identification of efficient solutions which can be generated
through parametric scalarization, i.e. the solutions of the following
parametric LP problem

max ATCx

s.t. xec[F]

- Ae int A

where F—{xle<b x =0 or 1} and'[F] denotes the convex hull of ¥ and
A is as defined for the MOLP problem.

Shaplro comments that the d1ff1culty with thlS apparent reduction to a more
manageable optlmlzatlon problem is that [F] is generally 1mp0531b1e to
characterize in any pract1ca1 manner. He then states that 1nteger programming
duallty theory can be interpreted as approximating [F] in a neighborhood of
an optimal integer programming solution. This interpretation would provide
the insights on how to perform the sensitivity analysis associated - with

parametric variation of A.

Shapiro also mentions that integer programming duality theory could be
combined with Benders' deCompositioo method and thus the suggested approachk
could be extended to'moltiobjective mixed integer programming problems.

The discussions of Shapiro are quite theoretical and the resolts preaented
are far from complete. The author states that a rlgorous research on the -
structure of the family of 1nteger programming dual problems generated as

A varies is needed.

Theoreticaltly an integer programmingvdual problem which solves a given
integer programming problem can always be.constructed by a finite procedure,
hOWeverkin practice integer'programming dual methods require excessive
numerlcal calculations and are not currently belng used much. It is to be<
expected that the computat10nal effort assoclated with generating the famlly
of integer programmlng dual problems as A varles will be quite enormous.

Therefore this approach does not seem computatlonally promlslng.
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Bowman (8] considers the relatlonshlp between the generalized Tchebycheff
norm and eff1c1ent solutlons for problems where the fe391b1e reglon is not:
convex. As thlS is the case in problems where some or all of the dec1s1on
varlables are constralned to take on 1nteger values the results apply to

such problems.

,The mot1vatlon for the approach 1s the geometrlc 1nterpretat10n of eff1c1ent
p01nts..A p01nt x* ‘is efficient if in the p—dlmen51onal objective space
Y—{yly_Cx, xeX} , the nonnegatlve orthant with origin at y* Cx* contains
no point ~ yeY. Therefore, the smallest hypercube centered at any p01nt
y*+ae, where a>0. and e 1is a vector of appropriate dimensions with each
component equal to one, containing a p01nt er is a hypercube that contains
‘y* on the boundary ThlS can be 1nterpreted as y* belng a p01nt of the |
obJectlve space that mlnlmlzes the Tchebycheff norm derlved from some

p01nt (in thlS case y*+ae), where the Tchebycheff norm of: a p d1mens1ona1

vector r is denoted by || || and is deflned as
Hrll= max x] _
S 1 A
Obv1ously, ll |l—a deflnes the boundary p01nts of the hypercube centered

at the or1g1n and with sides of length 2a.j:_»

Similarly, the generalized Tchebycheff norm of a p—dimenéional vector r 1is
defined as - ' -

Alelly = e s byl e

i
where B is a p-dimensional vector.
Then, using the generalized Tchebycheff norm. Bowman considers: the problem

min [lex - ¥l - y. = max C,x (?'j
xeX . B 2 oxex B

or alternatively written in a familiar form
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e,t, 'z ;,ng . v.qix)

ge then states that x*¢X is an efficient soiution only if it is a solutioh
to Pg for some g>0. The converse is not generally true. A non-efficient
p01nt which is dominated only by efficient points 1y1ng on the boundary

of the nonnegative orthant with or1g1n ‘at the non-efficient p01nt may still
“be a solution to PB' Nevertheless, Bowman shows that if unlform dominance

1

is satlsfled i.e. if for every non-efficient point x there exists an

eff1c1ent p01nt x* such that Cx1>Cx* then all solutions to. PB are eff1c1ent.
This approach provides a means of generating all efficient points even
though a lot of computational effort is needed; it is also difficult to
vary the parameters Bs in an orderly way so that solutions representative

of the entire set of efficient solutions can be obtained.

It is also noted that the formulation given-by PB.can be considered as
a parametric goal programming formulation, with the goal being the point

y , and g representing the weighting of each of the goals.

Integer‘goal érogrammingﬁis enother‘ahbroach to multiobjective integer
problems, a1m1ng at f1nd1ng a 31ng1e compromise solution. Sang Lee [41]
incorporates three 1nteger programmlng algorlthms, a cuttlng—plane, a

branch and bound and an 1mp11c1t_enumerat10n algorithm within the goal

programming framework in a quite straightforward mannmer.-

An 1nteract1ve approach to multlobJectlve integer and mlxed—lnteger problems
is presented by Zionts [63]. The approach is an extension of the Zionts-—
Wallenius method discussed in section‘I;le., to incoreorate integer
variables. The basic aSSumrtion is that the imﬁlicit utility function of
the dec151on maker is a linear function of the obJectlves. Under this
assumptlon, it is sufficient to consider the subset of eff1c1ent solutions
that canlbe generated through parametrlc scalarization: Because then, only

these solutions are candidates for the decision maker's preferred solution.
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Zionts considers adaptation of the Zionts-Wallenius method within a branch
~ and bound framework First, the correspondlng continuous multiobjective
problem is solved u51ng the Zlonts—Wallenlus method. If the solution
satisfies integer constraints, it is the preferred solutlon. Otherwise the
branch and bound procedure is initiated by branching on an integer variable
whose value is not integer in the current solution. Each of the newly
generated solutions is tested and can be excluded from further consideration
if i) the dec151on maker prefers an 1nteger solutlon to it and ii) all
efficient tradeoffs assoc1ated w1th the solution are viewed negatively or
with indifference by the decision qaker. Otherwise it is placed on the

list of solutions to be examined further. If a new integer solution which
is preferred to the best known 1nteger solutlon is found, it becomes the
best known integer solution and the previous solution can be dropped from

the list if condition 11) ‘holds.

Whenever the objective function weights Xi do not satisfy the constraints
constructed from decision maker's responses to tradeoff questions, a new

set of Ai satisfying these constraints are adopted and a new objective
function is formed. Then, the optimal continuous solution for that objective
function w111 have to be found.first. Generally branchlng continues from

the most preferred newly found solutlon, or the most preferred solution
from the list. If the list is empty,‘the preferred solution has been found.
Zionts also cons1ders ‘a cutting plane approach howaver he doesnot f1nd

this approach promlslng on the grounds that cutting plane methods do not

work well in practlce.

.
+

The branch and bound approach has not been tested and its _convergence-
propertles are not known. However 1t seems to be promlslng for finding a

maximum utility solution.

The next two approaches to be discussed aim at generating all,efficient
solutlons for MOZOLP problems and are algorithmically oriented.-Since the
algorlthm presented in this thesis is also in the field of MOZOEP these |
approaches are discussed in more detail to indicate the state of art in

1

this area..
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Theoret1ca1 results and an algorlthm for generating all efficient points
for MOZOLP problems are glyen by Bitran [7]. In this approach the relations"
between the main problem P _ ..

max Cx

e

. XeF
F={x|Ax<b, %;=0,1} (P)

and the auxiliary ﬁroblem P’

max Cx

xeF” i :

F’={),{|Xj=0,l} : . . (P/)
where the constraints have been removed, are explored. P’ plays a central
role in the analysis, based on the fact that every efficient point of P~
that is feasible in P is an efficient p01nt of P. First, flndlng all

efficient p01nts of P° are considered.
A set of preference directions V is defined as
v =lv' | vt > 0 and v;=0,1 or -1}

2 1 1

where if x%=x"+v" for some v eV then Cx?

_>_Cx1 and x~ is dominated in P”.
The set of p01nts domlnated in P* in a given direction v' is denoted by
>M(v ) and defined as

~

M(vl);{x]xj=0. if -v}:l 3 xj=1 if vi=-1 X

The ' sets M(v ) can be determined as the sets. of extreme p01nts that solve
the linear programming problem. min{vi X, O_xJ<1} and U M(v*) gives the

~

set of dominated points of P”.
‘The -set V is to be obtained through an implicit enumeration scheme. However.

as the number of potential elements of V is of the order 3", some results

aiming at reducing the enumeration are given
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‘ 1 .2 2, S
Lemma 1. Assume v, v gV v%;vj ’ J&Jo and y}:Q JeJO ,Wwhere Jo is a
subset of variable indices. Then M(y2)C M(yD). '

- s, s ' . 1. ‘
As a result, it is only necessary to consider v~ in such a case. Thus

enumeration will start with vectors having as many zero variables as possible.

The set of efficient points of P“, EF(P’) are obtained by eliminating the .
domlnated p01nts from F”. Although every xcEF(P*)NF is efficient in P

a domlnated point of P’ is not necessarily dOmlnated in P .In order to

relate P and P“ the following lemma is given.

Lemma 2. a) If Avi <0 for some 1 then any xeF(]M(v ) is a dominated p01nt

of P. b) If xéEF(P’) but xeEF(P), then x+v &F for all i such that st(v ).

An algorithm for generating all efficient points of P based on these results

is given as follows.

1. Through an implicit enumeration scheme, generate the subset of V

implied by lemma 1.
2. Obfain' % M(v%)Aand then by eliminating these from F” obtain EF(P”)
-~ 3. Obtain EF(?’)rlF i.e. points efficient in both P and P”.

4. Obtain 'UI M(vl), Il={i|Avlsp} i.e. the set of dominated points‘
o tely R ' ) )
of P” which if feasible in P will also be dominated in P.

5. Obtain A. _M(v )+{v } 1812_{1|1¢I 1, 1 e. the set of p01nts

of P» whlch dominate the p01nts in M(v ) in the direction v'.
6. Exclude the points found in 4. from M(v'). i.e. form
iy, - .
Q; = M(v) - U M) iel, .

7. For each ieIZ, eliminate all elements of 2 dominated by the .

points found in 3.
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8. For each iEIZ?.eliminate elements of Q; infeasible in P.

9. For each 1512, determlne the set of p01nts of Q; domlnated by
p01nts in A, ﬂ F. Let these be denoted by g Form the sets
@l—Ql Yy oo

10. Form the set ¢_ Y5 This step is necessary because

the sets used upto this point may mnot be disjoint.
11. Obtain EF(P)=(EF(P*)N F)U ¢

Summarizing, first points which are etficient in both P” and P are obtained.
Then, if a'set of points dominated in f’ which will also be dominated in P,
if feasible, can be ideéntified, these are eliminated. Dominated points of
P-, dominated by any element of the subset of efficiept points of P found
initially are also discarded. Next, the remaining points are further reduced
by first checking for’feasibility in P and next by verifying'if they are
dominated in the direction. vt by a p01nt in F. Points inefficient in P*

but which are not eliminated in the process are also efficient in P and-
these are added to the prev1ously found solutions to obtain all efficient

p01pts.

Computat10na1 results for a set of 30 problems are presented and compared
with the results of directly applylng the definition of efficiency to p01nts
of F. It is stated 'that results 1nd1cate the algorithm does better than
directly applylng the definition of efficiency when the number of p01nts

of F 1is large compared with 2 which is the number of fea51ble p01nts of

P y 1. e. number of feasible p01nts without any constraints. However, all .
of the problems solved are quite small. The maximum problem size is nine
variables four objectives and four constraints, and the computational ,
results are not very enc0uraging . For example, a two objective function,
four constralnt, six variable problem requlres about 3 seconds, whereas

a similar problem with nine varlables requlres about 60 second for solution
'on Burroughs 6700 computer. o : oo
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The mixed-integer multiobjectiye proble@ is also disgcussed briefly. The _
, approach suggested is solylng a- serles of scalarlzed problems uslng Benders'
partltlonlng. Some condltlons are glven to obtaln a 1oca1 approx1matlon to

AR where ‘A(x) is the set of objective: welghtslﬁ for which the current

solution x remains optimal.

A branch and bound algorithm for sequentlally generatlng the complete set
of eff1c1ent solutlons for MOZOLP problems is proposed by Klein and Hannan
(387. The procedure con51sts of solv1ng a sequence of contlnually more

constrained single objective function problems.

The concept of applying logical operators such as "and" and "or" to linear
inequalities is introduced. Let - L _~i;1,,;k_represent a set of k linear

equa11t1es and let V stand for ' .or and A stand for "and". The statement

K i
v L =LVL,V ... VL
i=1 T

" represents the condition that at least one of the inequalities L, must hold.

" 6imilarly the statement

T o
lflL. = LlALZA_"' ALk,

represents_the condition' that ellftheﬂinequalities Liimust»hold'

simultaneously.

The general step k-in'the'mechodncohsiSts of solving the problem P

shy C4¥p Cyx 2 Cyyi+D) @)
j k-1 1 .2

yJ‘ e Y = {y , Y» .. .A'.yl'}

Xj = 0,1

where ka¥ is the set of efficient points accumuiated until step k. Let
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¥° denote the set of efficient optimal solutions to P, - 1f P has a unique
solutlon, 1t is -the unlque efficient solutlon. if Pk has multlple solutions
the domlnated solutlons are ‘not included 1n,Yk . The cumulative set of
efficient points Yk then Becomes Yk k 1LJ Yk . |

The concepts developed by Roodman [51] for postoptimizing zero-one programs
are utilized in the generel solution procedure. When several related integer
problems are to be solved through:implicit enumeration.,tcomputational
savings‘can be achieved if these problemS'are solved using the same
enumeration tree. The tree developed durlng step zero when maximizing the
first objective, is used for subsequent problems Durlng solution of any
problem Pk,‘lnformatlon on the causes of fathoming of nodes is stored.

Subsequent problems use this information to determine which nodes remain

fathomed for these problems.

Along the enumeration tree, nodes are fathomed either due to infeasibility,
feasibility or'"insufficiency",'where.insufficiency means that the upper
bound for objective one is lessithan the current lower bound for it. Nodes
fathomed for infeasibility :remain infeasible for all following problems and
~need not be recorded. Nodes fathomed for feasibility are recorded on a list
of. feasible solutions FL, in decreasing values of the first objective
function. A node fathomed for 1nsuff1c1ency cannot y1e1d a solution to the
current problem, but may g1ve a solution to subsequent problems. These
nodes are recorded om a list of potentlal solutions PL.

Y

After these preliminaries an outline of the algorithm is given as follows.

1. Initialization: Solve the problem Po

max Clx
s.t. Ax <b 3 ' (P)
R Xj = 0,1

and determine its set of optimal solutions Y°. During solution

 create lists FL. and PLQ'Set,k=1 and go to step’ 2.
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2. Finding a feasible solution to Pk: Form the problem Pk'

heuristic to find a feésible solution x to Pk, One poséibility

Use some

is to search through FL. If no feasible solution go to step 5,
~otherwise.go to step 3.

3. Forming the candidate list: Form the candidate list, i.e., the
list of unfathomed nodes for P which is composed of all nodes
from FL and PL whose upper bounds on the first objective are

greater than Ci; . Remove the nodes on the candidate list from
FL and PL. Go to step 4.

- 4, Solution of Pk . Solve Pk’ 1imiting;the enumeration to nodes on
the candidate list, and determine the set of efficient optimal
solutioos i# . Set kaYk 1U Y. vDuring solutiop augﬁeot'lists

FL and PL. Set k=k+l and go to step 2.

5. Termination. Stop. All efficient solutions have been obtained.

The authors also make some comments regarding the finiteness and
exhaustiveness of the described procedure and the nature of the logical
constraints. The logical constraints added by each efficient point differ
onl& in their right hand side coefficients. This allows treating them as
P-1 constralnts with multlple rlght hand sides. They also show that in the
case of the bicriterion problem the 1og1ca1 constraints collapse to a

single linear inequality and the problem Pk becomes

r

sz ; Czy +1
where y is an efficient p01nt determlned at step k-1. Thus, it is observed
' that the approach of Pasternak and Passy [45] is a spec1al case of thlS

approach.

Some computational results are reported and it is observed that the
computational effort and the number of efficient points increases as the

number of variables and objectives increase and as the problem becomes
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less restrictive, i. e. the number of fea31b1e solutlons 1ncrease. For
example a two. obJectlye, fourteen yarlable four constraint problem with

the right hand sides being set to 50 7 of the sum of the/constralnt
coefficients requires about 13 seconds of cpu time whereas a similar
problem with four objectives and ten variables requires about 48 seconds.
Actually, the computatlon times are not really amenable to comparlson with
a complled code, as the program 1mp1ement1ng the procedure was written

in APL, which i1s interactive,and run on a UNIVAC 1100/89.

However, the authors comment that the computational results indicate that
large amounts of computation time are required and the number of efficient
points increases a lot as the number of variables and objectives increases.
Observing that a greet number of efficient points make it harder for the
decision maker to select a preferred solutlon, they consider a procedure
which limits the search for efficient points. The problem Pk is modified to

max C.x

LoV coxscyd+d (®.)
jh GYy 6x 20y ij’ k
xj = O,l ;

where d, J>l and 1nteger. Settlng values for d, i dlfferent from one 11m1ts
the search for eff1c1ent p01nts to p01nts suff1c1ent1y different, with

respect to obJectlves 2 to p, from those already found.

‘This limited seerch approach and. the original approach"are both biased in
terms of -objective one which determiues the'orderlin which efficient points
are discovered. Furthermore, there is bound to be a lot of backtracking

and searching for feasible solutions as one moues from one problem to the
next, whlch requlre considerable amounts of computatlon. Also storage
requirements are quite high since. a lot of data needs to be stored to keep

track of the nodes in the lists FL and PL.J

The paper of Klein and Hannan was not available at the initiation of this
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thesis, when extension of 1mp11c1t enumeratlon technlques to MOZOLP problems
was considered. Independently, an 1mp11c1t enumeratlon algorlthm for MOZOLP
problems, Whlch is based on a dlfferent lnterpretatlen was developed This
algorithm, along with the studies carried out to increase its efficiency

is presented in the next section.

111, 2 AN ALGORITHM FOR MULTIOBJECTIVE ZERO-ONE
LINEAR PROGRAMMING . 7

The algorithm developed for MOZOLP problems is based on implicit enumeration.
Therefore, in order to provide a frame of reference, a review of implicit

enumeration techniques is presented.

- III.2.1. REVIEW OF IMPLICITAENUMERATION
- ".

Implicit enumeration refers to a class of hranch'and bound algorithms

designed specifically for nroblems with binary decision variables.Although
several‘reformulations and refinements have been done by various authors,
the original version of the imnlicit enumeration algorithm is due to

Balas [3] The algorithm examines the nodes of the combinatorial tree by
the appllcatlon of certain tests to determlne whether feasible and improved

solutions can be found by moving further down from them or not.

In the imnlicit enumeration tree each node reoresents a "oartial solution"
which is an assignment of binary values to a subset of the decision variables.
Variables which are not assigned'vaiues are called "free variables".

. A solution formed through an assignment of binary values to all free
variables is called a "comoletion" of the nartial solution. A node is

"fathomed" when none of its completions require further investigatiom.

In Balas' original descrintion oractically all tentative solutioms or nodes
must be stored so that they may be scanned durlng succeedlng iterations.
Glover [30] applled the "backtracklng concept tQ 1mp11c1t enumeration.
Geoffrlon [26] reformulated the Balas, algorlthm by representlng the tree

in vector form, which greatly 1mproved the bookkeeplng and computational
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efficiencyyof the algorithm. In this formulation, the path P, from the
jnitial node of the tree to node k is stored- as a yvector and unlquely
determines the remaining enumeratlon requ1red Varlable indices appear in

the vector if they correspond to 3331gned varlables. The order of the

indices represents the level in the tree. A pos1t1ve subscrlpt indicates

that the variable has been a531gned the value one, and a negative subscript
indicates that the variable has been a551gned the value zero. When branching’
to %, =1, Pk is'simply augmented by p. In backtracking, the rightmost
p031t1ve element is changed to a negatlve element and all negatlve elements
to the right of it are dropped The enumeratlon is complete when all

remalnlng elements are negatlve.

Before giving the'rules for fathoming and branching, some definitions are

needed. At any node k, denoted by Nk’ let wk be the index set of assigned .

variables, let Bk and Hk'denote the index sets of variables assigned the
values one and zero respectively, and let Fk'be the index set of free ‘

variables. Then, the problem considered at Nk is

Without loss of generality, it can be assumed that c<0, since any % with

CJ>0 can be replaced by xJ 1—xj 5 yielding a problem with nonpositive ci

Then, the upper bound Ek at N is'given by zk=.2 c. and z_ denotes
k JEBk i o

the current lower bound, i.e. the best objective function value so far
computed. The sum of negative coefficients of free variables in constraint

i is given by tes i.e. .ti=j§F min{O,eij}; Ik’ the infeasibility of Ny
is defined as ' k

I, = Zl max {0,- si}
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andrIk(j) the infeesibility at the successor node iflxj_is assigned the

value one as

Ik(J)‘= 21 max {0, si.+‘aij}»'

Then, the fathoming conditions are

i) Feasibility, i.e. 520 -
ii) Infeasibility, i'e',fti>si for some i=1,..m
iii) Suboptimality, i.e. R k'Ekzzo

If a node is fathomed, backtraeking is done to the most recently generated
node. OtherW1se, the next variable to be a351gned the value of one, Xps is

P
chosen such that T (p) min I (J)

: JeFk

Many tests for reduc1ng the enumeration have been proposed Here some of
these tests are reviewed to prov1de the background for the tests utlllzed

in the MOZOLP algorltbm. '

TEST 1. If cJ€ZOJEk ”thenbxjéo in any ontimal completion of Nk; This test
is due to Balas 3. Tests 2-4 below, are due to~G16ver [30] and are performed
by flrst computlng numbers G and U whlch g1ve the minimum and maximum number

of varlables that are to equal one in any optimal completlon of Nk' The set

of constralnts is augmented by

where aoj=?t. .and’ $,52 "2 Then for each constraint i=0,...m, the
variables are reindexed so that the coefficients. alj are in nondecreasing.

order. The reindexed coefficients for constraint i are denoted by a,

i,e(i)

where t<r- 1mp11es a; r)” ‘The sum of r smallest coeff1c1ents

t(1)—'1,
of constralnt i, T. (r), is deflned as

E (r) Jﬁ 21 ,J(l) > Ti(o)=0'
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For each i such that 5;<0, G, is defined by

Then G. <G and G is defined to be G=max Gi
i, 51<0

For each~i=0,...,m, 'Qi is given by
Ti(Ui)§§i<Ti(Ui+1) '.Lf?T:.L(g)>s:.L
U =6 o if Ti(g)éfi

where g is the number of elements in F

k* Then Ui;y and U is defined to‘be

U=min U. .
i 1
TEST 2. 1If G>0 Nk is- fathomed since G<. ZF xJ<U cannot be satisfied.Also
=jeFy

if G—g, then each of the free variables can be set to one.:

TEST 3. Let T.(G,U) = min T.(t) i=0,...,m
1 - 1
G<t<U

be the smallest sum that can 1 be obtained using at least G but not
more than U free varlables. Assume G<U and a.ﬁ is not one of the numbers
‘which determlnes T (G U) If T. (G—l U- 1)>s. aib then x'=0 in any optimal

p

completion of Nk

~

TEST 4. Assume’qép andaiﬁ is one of the numbers that determines T (G u).
. U > - .- . =
1f Il(L+1, .+1)>sl+alp then xp =1 in any optlmal completlon of Nk_

Some ofher tests can be found in Geoffrion [26], Fleischmann [20], Glover
[30], Glover and Zionts [31] and fete;sen [47]. These tests. can reduce

the enumeration at the exbense of added calculation,and so long as the
extra calculations do net offset the benefits of reduced enumeration,it is

worthwhile to use them.

Since there are at most 2" possible combinations of decision variables,
the finiteness of the algorithm is guaranteed. However computational

5y
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efficiency depends strongly on the effectiveness of the abplied tests in

curtailing the enumeration.

It 1is acceﬁted that'imblicit ehumeration id a ﬁowerfﬁl technique for single
objective zero-one ﬁroblems. The ﬁossibilities of extending the technique
to multiobjective problems are investigated in this study.It is observed
that through a vectorAinterﬁretation,and ﬁroﬁer definition of upper and
lower bounds, it is ﬁossible‘to extend imﬁlicit'enumeration to multiobjective
problems.. R B |
I11.2.2. DEVELOPMENT OF A MULTIOBJECTIVE IMPLICIT
ENUMERATION ALGORITHM |

Reviewing briefly, the multiobjective zero-one linear programming problem

is written as follows

where the rows of the kxn matrix C represent ‘the dlfferent obJectlve functions,
and A is an mxn constralnt coeff1c1ent matrix. It is no longer- p0551b1e to
’keep all C. 355 <0, 81nce a variable xJ may have a negatlve coefficient in ome
obJectlve and a p031t1ve one in another..

.

The problem considered at any node N, of the enumeration tree is:

k

max B> ¢l x, + b cJ
jeFre JEBk

JEFk

where ¢ and AJ reﬁreSent the j th columns of C and A respectlvely Now,

one can define a s}ightiy different upper bound vector 2¥ ast

B jJk .. k- ' 0 c

;o 100



where Y?{ is the i th element of the column yector Yk,

The lowet bound vector Ek‘ for a feasible node, Nk’ is defined as

A SN )

—

J EBk

Another difference from the single objective case is that instead of a
single'lower bound, now there will be a set of lower bound vectors. These
vectors give the values of the objectives at feasible solutions which are
so far undominated and which are the candidates for efficient solutioms.

. V / . .
Branching and backtracking can be done as before, however the fathoming
conditions need to be reconsidered. Since the Cij's are not constrained to
be nonpositive, continuing down the tree from a feasible node Nk one may
reach another feasible node N, with a 1ower bound vector ZJiL; or even
ZJ ZtZF . This means fea51b111ty of a node is not sufficient for fathoming
it. However, the general rule of branch and bound for fathoming a node
whose upper bound equals its lower bound still applles. The fathoming
conditions are then -
ri) Bound equality, i.e. Z =

Z
—k

7ii) Infeasibility, i.e. ti>si’ for some i=1,...,m

where ' T min {0,a..}
3 - 1J

1j€k
111) Domlnatlon,\l e. Zk< LBJ for some j€L where 1={0, 1;}..£) with '3
V being the current number of lower bounds and LBJ is the j th

‘lower bound.

.When a new fea51b1e ‘solution is found, its lower bound vector should be
| compared against existing lower bound vectors LBJ, jeL. If the new lower
bound vector is not dominated by any of the existing lower bound vectors,
it is .stored as a new lower bound. And any existing lower bound vectors

dominated by it are discarded. When no live nodes remain, the enumeration

is complete and the current 1ower bound vectors give the efficient solutionms

of the MOZOLP problem.
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A rudimentary flow diagram for a multiohjective impiicit enumeration
algorithm is given in Figure II1,2. Here the conyention of Branching

7 according to minimum infeesibility-criterion has beeh adopted. However,

branching from a feasible node is a different matter. Let the set F, be

partitioned into two sets, Fi;{jeFk[ngo}, and F ={jeF chfo} Then

a feasible node is considered for further branchlng if _ k%¢ On the

other hand, if Fk ¢ » then Y*-0  and Zkegk and N, is fathomed. If N, is,

not fathomed, any variable‘xJ,‘ JeFi can.be the branching Qariable,

whereas a variable Xps xeFl should not be eon81dered because branchlng
on it leads to a dominated solution.

The steps ‘of the algorlthm may be summarized as follows

STEP 1 : Tnitialization. At N_, F ={1,...,n} Z%== ¢=0. Go to Step 2.

Calculatlng bounds and fea51b111ty check. Let Zk ) CJ+Yk . If

STEP 2 I
k JEBy

. k
Otherwise go to Step 3.

$>0 let Z JZB CJ. Go to Step 5. If t. $>8; for any i, go to Step 6.

'STEP 3 : Bounding. If Z©

to Step 4.

< 1B  for some jeL go to-Step 6. Otherwise go

STEP 4 : Branchlng. Branch to xp_l, where Ik(p)—mln 1 (J) Go to Step 2.

K < LBJ for any jel go to Step 6.

If LBJ< ZF for any jeL set” &=2-1 and drop LBJ Then set 2=2+1
and LBz k.. If F =¢ go to Step 6. Otherwise branch to xP_

STEP 5 Proce581ng Feasible Node. If Z

PEFi_. Go to Step 2.,

STEP 6 : Fathoming and Backtracklng Fathom Nk' If no live node exists
go to Step 7. Otherwise backtrack to the newest live vertex Go

to Step 2.

STEP'7‘:.Termination. If 2=0, there is mno feasible solution, If &>1

LBJ,kj=l,..;£ are the desired efficient solutions.

As mentioned before, the efficiency of ahy enumetative algorithm depends
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k=2t =
" ,....,n)
Bk- ¢

< =14
for somc

Z*<Lpdfor

some j<t

- ‘ Choose XP such

No - -
Pl .
that C iO (pCTk) Backtrack to

node j, k=j

Choose XP suﬁh that . _ —N _ e

\

s L) = min I (D)
. chk

Set HxP =1
ForFe- {r}
Brer=B U 1P}

Print message
No feasible
solution

Print efficient
solutions
LBJ,
j=ly000, 0.

Figure I11.2, Rudimentary Multiobjective Implicit Enumeration Algorithm
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on the ab111ty of 1ts tests to chop off as great a portlon of the enumeratlon
tree as possible. The rudlmentary algorlthm sketched above. cannot be
expected ‘to be very efficient. Of course, a lot of computatlonal burden. is
inherent in most. multiobBjective techniques and they cannot compete with
- the computat10na1 efficiency of 31ng1e objective methods. Here, all tests
of 1mp11c1t enumeration developed for concludlng 1nfea51b111ty can be used
to advantage but the fathomlng tests 1nvolv1ng the use. of upper and lower o
bounds are vector comparlsons and it is obv1ous that fewer nodes will be
fathomed by them. Therefore it was dec1ded to concentrate on developing
- stronger domination tests and also to test the effects of different

-branching criteria in order to improve the eff1c1ency of thepalgorlthm.
111.2.2.1. Domination Tests and Alternative Branching Criteria

Some domination tests and hrahching criteria which depend on the concept
'of "domination margin" were developed and tested. At N, ., the domination .
margin Dk(j,s)_of a free variable,xj'is defined as ' '

)

| o . P o

'pDk(j,s) = min { I max {0 UBJ’ ~1BS} + 5.}

. i jro .
reL 1=1

’s=0,1 5jr=1- if UBd*S-1B", 0 otherwise.
js1 -k |
Where UB = Z. +m1n{0 C..}, i.el 1t is the upper bound at the successor
node if X5 is: a851gned the value one. Slmllarly UBJ’O;Ek—max{o C; .} is the
upper bound at the Successor node- where xJ is a551gned the value zero The

domination margln is a measure of closeness to being dominated of the

_correspondlng partlal solutlon. Thus, we have:

TEST 1. If Dk(j,1)=0 for some jeFy, thendxj=0 necessarily in ahy efficient

completion of N, . Similarly, if‘Dk(j,0)=0 for some jeF,, then Xj=1

k’ _
necessarily. lf.Dk(j,l);O ngFk, then N, can be fathomed.

Proof If D (J 1) =0 (Dk(J,O) =0), .then for some relL. UBj’l(UB‘j’O)<LBr and all

fea31ble completlons of N w1th xJ_l (xJ—O) will be domlnated Also if

k
k(J,l)%O_’VJEFk then_xj_O VJEFk and Nk is fathomed.
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" This test is an extension of Test 1, due to Balas, stated in section -
.111.2.1.—It can be vieved as a means of performing the domination check
before branching to a éﬁecific node. The fathoming- ﬁrocess can be further
accelerated if a way of concludlng domlnatlon not only before branchlng

to a domlnated node, but higher up the tree can be found.

Similar to that done in sectiom III.2.1. before stating tests 2-4, let G

denote the minimum number of variables that must be set to one in any feasible
completion of,Nk.'Let Hi(r) be defined as

Hi(r) = .
]

I MR

L min{0, C1 J(l)} s i=1""’P

where the cost coefficients have been reindexed in nonincreasing order and
C"j(') denotes the j th biggest coeff1c1ent, among the free variables,
, .

of obJectlve i. Then,

TEST 1L Nk can be fathomed if R-Z k+H(G)<LB for any rel, where H(G) denotes

"the vector IHl(G), HZ(G)"""HP(G)]

Proof. Let N. be any feasible cbmpletion of Nk,.obtained by setting at
least G varlables to one. The upper bound at Nk 1° where any variable xj
1s set to one is given by ’ '
e L I S,
: Zi+ = Zi f{mln O’Cij} : | 1=1,...,P
If at least G variables have to be set to one, then obviously

73 . 7 4 H(G)

’

which means .iquBr and N is dominated. Since any feasible completion of

.Nk’is dominated-Nk can be fathomed. \
R = 2% + H(G) can be termed an "advanced" upper bound which gives the best.
value that may be‘éttainable for each objective by moving further down from

Nk. This test is an extension of Test 2, given in section III.2.1. Here
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G is’ computed exp11c1t1y w1th respect to the constralnts and U is considered
Jmpllcltly and only with respect to the objectiyes. Much of the efficiency
of this test derives from the 1mp11c1t consideration of U. Considering
explicit'calculation of U, let U‘j denote the maximum number of variables
that can be set to one before the 1th component of the advanced upper bound

ector becomes less than the ith component of LBJ, i.e. Uij is glven by

‘ ik . | i =k
Hi(Uij+;) §=LBi Zi é Hi(Uij) if Hi(g) ;:Lgi-, Zi

U.. = o otherwise
1]

where g is the number of free variables.

Then U., the maximum number of varlables that can be set to one if domination

with respect to LBJ is avoided, 1s given by -

- U, = max U.. ' .
.o i :
1 N

Since if 'Hi(ui) ¥ LB% - E? for any one i domination is avoided. And U is

given by

Il

U = min U. = min max Ui

! ~

Since the partial solution is not to be dominated with respect to any 183,

-

The calculations of the u. i3 's nece351tates sequentlal formation of the
part1a1 sums H. (P), P—l,...U J+1 and comparlsons with LBJ - EE si=1se0 058
for each part1a1 sum. However, by only implicitly con51der1ng U, these
comparlsons are made only once, which obviously involves much less

computational effort.

Similar t0'defining an advanced upper bound, one can define an advanced

domination margin D (j,s) as
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G,. .. i
D (3,8) = min { T max{0, RJ
rel  i=1 1

‘- ’

’»8 _ T

s=0,1 ajr=1 if‘RJ’S=LBr,. 0 otherwise

j’]-__k i -
where Ri = Zi f min {[Hi(G 1) + Cij]’ Hi(G)} and
| Rj’0= E% 4+ min {[H,(G+1) - C..}, H (G)} © are tﬁe advanced
1. i i Ui i

-upper bounds at the successor nodes where X, is assigned the value one and

zero respectively. Then we have
TESTIII.If Di(j,l):O then,xj=0 ‘necessarily in ény-éfficient comﬁletion
of Nk'

Proof. If Di(j,l):O, then for some Tel Rq’lgLBr. Let Nq be any‘feasible'

completion of Ny with xj=1;

Consider objective i} i=1l,...p.

!

1f Ciiis one of the. numbers which determine Hi(G)
i

| .Theg Z; <2, + B, (6) . and Hi(g) ;Hi(G 1) + cij

If Ci' is not one of the mumbers which determine Hi(G)

74 7K, . .
Then Z. §=Zi+mln{0’cij} + Hi(G D)

1
1) if c..<0 = 73« 'Zk +C.. + H.(G-1)
: ij=- . i=1 iy " i
and Hi(q—;) + Cij§=.Hi(G) )

-
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seaN = . - -
11) 1f C.. > O _g . . (G-
) ij 29 then Z; 5 Z; + H.(6-1)

.But C.. ' 0 v . ' ) i ' impli
o i3 > and ClJ éoes pot determine Hi(G) implies
Hi(G)=O and H.(G-1)=0 . Therefore Zi<Z.;E¥+H.(G) and
1 ’ =1 1 1 : »

B (6) < B (G-1)4C .

74 =k .

Thus i é=Zi+m1n'{[Hi(G—1)+Cij] , Hi(G)} which implies 7?;33’15LBr and

Nq is dominated. Then‘xj=0A necessarily in any efficient completion of Nk'

An alternative implementation of Test IILis to use the two—step domination
. n2,. . . .

margin Dk(J,l). If Ik(3)+0, then setting xj to one does not lead to a

feasible solution and at least one other variable must be assigned the value

one which means G>2. Therefore we have N

TEST IV.If Di(j,l):O and Ik(j)+0, then xj=0 necessarily in any efficient .

completion of N, -

Similar to Test III,Test IV. determines whether a variable has to be assigned

a value of one in all efficient completions of Nk'

. . . . '
TEST v. If Dg(j,O) = 0 then Xj=1 necessarily in any efficient completion
of Nk'

r

Proof. 1If Dg(j,0)=d, then for some rel RJ’OﬁLB . LetiNq be any feasible

completion of N

. With kj=0; Consider objective i, i=1,...p :

-

if Cij is oné of the numbers which determine Hi(G)

'—q _k _ - ) . = . - : ’ 7
Then 7 ?i < Z; — max{ O’Cij} + Hi(G+1) min {O,Cij}
73 < N + H.(G+1) - C,. and H.(G+l) — C.. < H.(G)
1= "1 1 _ 1] i ij="1

1f C.. is not one of the numbers which determine Hi(G)
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. -zq ~k _ N
Then i s Zi : max b{o?ci.} + Hi(_(;)

D) if C.< 0 then 7§ 7% + . (0)

and ’ H_i(G) < Hi(G+1) - Cij
ii) if C,.>0 then Z9°<ZX -c.. + H,(CQ)
ij =" ij i

But ‘Cij>0 and Cij does not determine Hi(G) implies

Hi(G)=0' and also Hi(G+1)=0.‘ Therefére

o = - 4 -k

zi < Zi - Cij = Zi + Hi(G+1) - Cij
d .(G+1) - C.. . (G).
an. -Hl(G 1) C1J §=H1(G)

Thus Eg é=2§ + min{{[Hi(G+1) - Cij]"'Hi(G)}‘ which implies Eg ;=RJ’O§_LBr

and Nq - is dominated. Then ij=1 necessarily in any efficient completion
of N, .
k

Tests IIL.and V are extensions of Tests 3 and 4 due to Glover. Tests I—V
can be used to check for domination either at every node or perlodlcally,
or at certain selected nodes. The break—even p01nt between computatlonal
savings due to a smaller tree and increased computations.to obtain the

smaller tree should determine their frequency of usage.

For @ultiobjective ﬁroblems a branching criterion other than the minimum
infeasibility criterion could tossibly be more effective. Since one is
interested in enumerating efficient solutions, one can consider branching
criteria based on a domination measure. Also if some of the tests given A
above are to be carried out at each node in an attemﬁt to screen out

" variables 1eading to dominated solutions, the domination mafgin of each
variable will be at hand and 1f c0u1d be used to advantage Consequently,

two dlfferent cr1ter1a which use the domination margin as a basis for .-
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selectlng the branchlng variable were formulated and compared with the

mlnlmum 1nfea51b111ty criterion. These are

i) Maximum domination margin criterion

ii) Minimum domination margin criteriom.

The effects of these‘branching criteria and of -the prOposed tests on’the'
enumeration tree and the computatlon time were observed on a sample of

eight problem types Wlth different numbers of objectives, varlables and

constraints.

111.2.2.2. Exnerimentation on Branching Criteria and Use of Tests

First, the simole domination margin D (j,l) of Test I wasuused'in comparing
the max1mum and minimum dom1nat1on margin’ cr1terla. It was observed that

the use of mlnlmum dOmlnatlon marg1n crlterlon 1ed to the formatlon of a
smaller 51zed enumeration tree. This. seems surprlslng since the general
practlce in branch and. bound technlques is branchlng to nodes wh1ch have
"higher upper bounds assoc1ated w1th them, hoplng that many of the nodes with
small upper ‘bounds will never have to be con51dered if good 1ower bounds

are found on the nodes that are branched to. [24, p.121]. It seems that this
idea does not extend 51mp1y when one 1s deallng with vector bounds. Since.
the bound comparlsons are vector comparlsons, tests for fathoming by bounds
~are weaker, and a lot’ more of the nodes whlch were  not branched. to will.

have to be exam1ned later. Thus,-although by branchlng on a varlable with -
m1n1mum domlnatlon margin one is mov1ng along a path which is more 11ke1y

to lead to. d0m1nated solutions, one also has the advantage of recognlzlng_
and fathomlng such part1a1 solutlons _earlier. On the other hand, by
‘branchlng on a varlable with max1mum domlnatlon margln, usually a 1onger
path results and more time is spent for fathomlng the partlal solutlon

even though the p0351b111ty of finally reachlng a nondomlnated solutlon

is greater.

_-Alternatlvely, the minimum . two step domlnatlon margin D (J,l) was ‘
considered. for selecting ‘the branching varlable. When thlS change was made,
it was seen that the total number of 1terat10ns, or nodes c0ns1dered

decreased This result also 1mpl:ed that Test IV, Whlch uses the two~ step
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" domination margid is more efficient than Test I which uses a one-step

domination margin.

‘Next, the mlnlmum domination margin -(MDM) criterion using D (3,1) was
compared against the minimum infeasibility (MI) criterion. It was observed
that although the number of iterations was generally smaller for rhe first
case; rhe MI criterion did better with resoect to comoutation time. This
shows that-although Test IV and a branching criterion based on it are

- effective in reducing the _enumeration, the extra computational effort
associated is quite high. Total nuiber of iterations and cpu time for both
cases are given in Table III.2. All computatlon times reported in thlS
study are on UNIVAC 1106.

Table III.2. Comparison of MDM and MI Criteria for Branching

—

§ © Size . :No.ofi . MDM Criter{on , : M1 Crirerion

S o “Effent. — '

P 'Points ' Tterations ' cpu (msec)' Iterations’ cpu(msec) '
1 2 7 3 5 20 77 22 59

2 2 6 5 87 427 134 365

3 2 9 9 5 87 483 132 419

4 2 10 3 4 131 - 454 281 520

5 2 15 10 5 204 1622 361 1676

6 2 20 10 8 1502 15128 2581 . 13496

7 3 9 6 6 T 93 474 125 - 342
8 3 10 5 148 760 314 618

Con31der1ng that reduced enumeration, when combined with more powerful
domination tests could lead to reduced computat10na1 time, it was decided

to 1ntroduce tests II, III, and V into the algorithm and observe the
performances of minimum domlnatlon margln and minimum- 1nfea51b111ty criteria
\Vln comblnat;on w1th these tests. These tests require a lot of computatlons
and thelr use at every node would be inefficient. After some experimentationm,
it was dec1ded.to use these tests only at nodes where at least one elxth '

of the variables have been set to zero and the number- of variables set to
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zero is greater than or equal to the number of variables set to one. The
rationale behind this is that if the numbex of variables set to zero is
greater than the number of varlables set to ome and also greater than a
certaln percentage of the total variables, the resultlng partial problem
w111 be a more constrained one and a greater number of variables will be
required to take the value one, i.e. G will be higher. Thls is turn will
result in tighter upper bounds, and smaller domlnatlon margins, thus making
the tests more effectlve. Also by requ1r1ng a percentage of the variables
to be assigned to zero, using these tests too high up the tree, where they
are bound to be inconclusive is prevented Whenever Dk(J,l) was available,
it was used for selectlng the branchlng variable.

It was also investigated whether the advantages of the two criteria, that
is reduced enumeration and smaller cpu time could be combined beneficially
by using Test IV only at certain selected nodes where it is expected to be
more effective and using MDM criterion for branching at these nodes, but
using MI criterion otherwise. In this implementation Test.IV and MDM
criterion were used only after a new lower bound or a dominated node were
found and branching to an adJacent node (i.e. a node differing from the
current node with respect to the ass1gnment of a single variable) was to
take place. Then the following part1a1 solutions formed will be more likely
to be domlnated and Test IV and MDM crlterlon can be used advantageously .
to screen out domlnated solutlons. When the minimum domination margin
“exceeded 2pC v’ where C. v is the arlthmet1c mean of the elements of C,

MI criterion was regumed. When the minimum domination margin exceeds -2pC av’
on the average more than two consecutive branches of the enumeration tree
have to be travelled before Test IV becomes effective and some of the free
varlables can be set to zero, or domination concluded. The results of these
experlmentatlons are g1ven in Table III.3. again for the same sample of

problems.

It was'observed.thatbthe combined use:of Tests II,,lII and V led to decreases
in cpu time and the number of iterations for both the MDM and MI criteria.
However, MI'criterion still did generally better with respect to cpu time,
especially_forpproblems where thefnumber of variables is high. The mixéd use
of the crlteria'did not‘seem to be advantageous; implying the use of Test IV
even at selected nodes does not increase computational efficiency.

\
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Table I1II,3, Comparlson of MDM, MI and Mixed Branchlng Criteria _
’ _ Wlth Appllcatlon of ‘Tests II, III and V.

: . No.of MDM Criterion = MI Ciiterion ~ . MIXED
2 _ Size . Effcnt. ' - : —

E . P n HLJPOintSJV§t§Zns V(zzgé)jztizgs,i(mgzg)‘ itzz;s,(gzgc) B
12 3 5 18 71 19 59 18 74
2 2 6 5 85 360 96 340 76 - 344
3 2 9 5 85 407 95 413 - 76 386
4 2 10 3 4 80 337 114 360 77 331
5 2 15 10 5 137 1160 134 944 144 1192
6 2 20 10 8 907 11509 1229 10066 976 11729
7 3 9 6 6 97 425 - 74 400 80 418
8 3 10 3 6 123 570 170 563 119 571

It was also observed that the number of times Test V was conclusive, i.e.
a variable was assigned a definite value of one, was quite a small

~ percentage of the times it was used. The results for the MI criterion
w1thout the use of Test V are given'in Table III 4. where slight decreases

in cpu time ‘are observed.

Table III.4. Results for MI Criterion with Application
- of Tests II and I1I.

! , No.of . _ o .
v Size. .. ;Efficient . Iter-. cPU
Problem p - 'n- m Points  atioms (msec)
1 2 7 3 5 19 50
2 2 9 6 5 99 321 |
3 2 9 9 5 .93 384 | |
45 2 10 3 4 15 354 - |
5 2 15 10 5 135 889
S 2 20 .10 8 1242 10101 | J
7 3 9 6 6 97 417 | ]
gl 3 100 6 100 520 |




These experimentations indicate that minimum infeasibility criterion is
superlor to minimum domination margin crlterlon and Tests II and III are
stronger than the other tests, Con51der1ng 1arger problems where the number
of efficient p01nts and therefore the number of lower bound vectors will be
large, the use of minimum domination margin criterion will involve a greater
amount of comparisbns'and comﬁutetions and thus will be even more time

- consuming. Also it is intuitive that if any ome ef Tests I, III, IV and V
are to be used, it is more advantageous to use the one leading to smaller
uﬁper bounds. Much of the comﬁutational effort associated with these tests
derives from the c0mbarisons of the upber bound vectors formed for each
variable with the lower bound vectors. The number of comparisons required
remains roughly the same between these tests and. has a tendency to decrease
as the upper bounds get ‘smaller, because once an upper bound vector is

dominated by one lower bound vector, it is not’combared»with the others.
I111.2.3. THE FINAL‘ALGORITHM AND COMPUTATIONAL RESULTS

On the basis of the experimentations with the branching criteria and the
domination tests, it was decided to use the minimum infeasibility eriterion
for branching and use Tests II and III at selected nodes in the final
algorithm, where these nodes are selected as described in the preceding

section.

The algorithm was coded in FORTRAN and run on UNIVAC 1106. The computer

. program consists of. a ma1n program MAIG, and three subroutlnes FEAS, BRANF
and ADVDM. The enumeration tree is structured by the main program, the
bookkeeping scheme being along the lines given by Geoffrion [26] . However

to accommodate the definite one assignments, and for avoiding a zero
assignment to these variables during backtracking, two arrays are utiiized;A
The first array indicates the level of the assigned variables on-the current
bath, and the second array indicateé whether a variable is assigned and

if so, the value assigned to it. If a node for which the last variable
assigned xr,"was set to one is fathomed and backtracking to X =0 occurs,
the previous set of infeasibilities Ik 1(J) are used for selectlng the new
branching variable. These are already available and remain the same for the

new node. All input and output is also coordinated in the main program.
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Subroutine’FEAS is used to check for feasibility. Through the parameter JF
specified by this subroutine and supplied to the main program, feasibility

of the current node,'or infeasibility of allhfbrther completions can be
determined. Also if the condition ti=s. holds for some constraint, indicating
definite a551gnments are needed 1n order to achieve fea51b111ty, the

" constraint numbetr is returned to the main program via the parameter KR so

that these assignments can be made.

Subroutine ERANF selects,the‘branching variable with minimum infeasibility
and returns the information to the main program through the parameters JB
and MINF. JB denotes the index of the‘branching'variable and MINF its
infeasibility. If MINF is zero a fea51b111ty check is not done after
branching. ’ —_
,Subroutine ADVDM carries out Test II and Test TII. If Test IT is conclusive
the parameter JD is set to one and control returns to the mainlprogram SO’
that the current node can be fathomed. If Test II is not conclusive, Test III
isvcarried out to determine if any variable-has an advanced domination
margin of zero. If so, the parameter J1l is set to one. If all variables

have a zero domination margin JB is set to zero, otherwise JB stores the
index of the variable with minimum domination margin. Upon returning to the
main program either the current node is fathomed (JB=0) or some variables

are set to zero (Jl=1) or the enumeration continues by branching to kJB .

The flow diagram of the algorithm is given in Figure III.3. Llstings of the
main program and subroutlnes and the definitions of the parameters used,

along with a sample output are glven in Appendlx Iv.

Computational results obtained for 19 types of problems with different

number of objectives, variables and constraints are given in Table III.S5.
Here, iterations means the number of nodes or partial solutions generated

for which feasibility test and'upper’and lower bound comparisons are

carried out. Number of t1mes ADVDM is called glves the number of nodes for
which Tests II and III are carrled out. The results give the average for

four problems per problem type The problem coeff1c1ents were generated

randomly, but not so randomly as to make them too haphazard and totally
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Reindex constraint and

vbjective coefficients

\b,

lnitialize path information

v

NL =0

(NI is no. of lower bounds)

CALL BRANF

KBRN=0

e

{/

CALL FEAS o

feasible

.0 =0

infeasible

Carry out implied . .
definite assignments™

Nodc
qﬁalifius for
applying dominatiéu

tests

free variable
must be set
« to one

Set all free
variables to.one = ()

Set variables with zero
domination margin to zero

Carry out implied

116

definite assignments



i

Br -
anch to XJB

1

Yes

Drop 1y
NL = N1-1

s there X
free such
that Cpi0°

Branch to XP=1

No feasible

Efficient

solution

s

solution

\

STOP

’

Figure 111.3, Flow Diagram of Multiobjective Implicit Enumeration Algorithm

.
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‘Table TII,5. Computational Results

) No. of. \ ) - No.of times
' . Size - IEffqnt, . ‘ , ADVDM , CPU
Problem p n . n Points. B Iterations = is .called = (msec)
1 2 10 3 7 14 306
2 2 10 5 84 41 503 )
3 2 10 .10 '3 53 22 : 338
4 2 11 10 3 71 33 470
5 2 12 10 5 128 72 971
6 2 13 10 6 221 96 1400
7 2 14 10 5 " 221 131 1885
8 2 15 10 8 354 218 3119
9 3 15 10 7 384 214 3396
10 3 15 12 23 936 546 12814
11 3 .15 14 13 524 315 6762
12 3 15 16 - 9. 423 252 5078
13 3 15 18 15 473 288 6413
14 3 ‘15 20 15 573 315 7916
15 3 16 20 _ 28 1368 - 821 27460
16 3 .17 20 17 1135 703 22526
17 -3 18 20 - 20 2384 1344 59437
18 3 20 20 - 26 3678 2390 86180
19 4 20 20 62 4073 2547 . 172024
y

unrealistic. The objective function coefficients were generated randomly inA
the interval [-20, 100]. The coefficients of the first constfaint were
generated randomly in the interval [0,100]. For each of the following
constraints, the coefficient of each variable was generated by adding a
random increment in the interval [-30, 30]  to its coefficient in the first
constraint. The right hand éides of the constraints were randomly set to

‘between 40 7 and 60 % of the sum of constraint coefficients.

-
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The results indicate that

i) Number of constreints-does not have any systematic effect on

computation time.

ii) Computation time increases as the number of objectives and

variables increase.

111) Computatlon timé also increases as the number of ef€1c1ent points

‘increase (Compare problems 10 and 11).

iv) Generally, number of efficient points increases as the number of

objectives and variables increase.

The algorithm/appears to be more efficient than the previous algorithms.‘
UNIVAC 1106 is not a,particularly fast machine, but still a problem with
three objectives, twenty variables and twenty constraints could be solved

in about 86 seconds. The computation times given by Klein and Hannan are
not really comparable due to theirruse.oszPL in eoding their algorithm.
‘However they use UNIVAC 1100/89 end»UNIVAC 1100/80 series are between 6.6

to 34 times faster than UNIVAC 1106. Still, the computatlon times reported
for similar problems are much higher than the times reported here. When
compared with Bitran's .results, this algorithm seems def1n1te1y better.

As stated before, a two objective, nine variable, four constraint problem
required about 60 seconds on Burroughs 6700 whereas with this algorithm

a two objective ten-variable six constraint problem requires much less than
a second. Although the architeetures of Burroughs and Univac compurers are .
very different and direct compérisons cannot be made, Burroughs 6700 systems

are still more powerfui.than Univac 1106.
. /
ITI.2.4, REMARKS AND EXTENSIONS ON THE ALGORITHM

The present algorlthm and the algorithm of Klein’ and Hannan aim essentially

at the same thlng, generating efficient solutions utilizing 1mp11c1t enumeratior
and in the process e11m1nat1ng solutlons dominated by the already avallable
solutions. The first algorithm accompllshes this by using vectoral upper

and lower bounds and the second by introduction of a set of logical
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constraints within a sequential procedure, The function of the logical
constraints and the lower bound vectors is the same;. they also eliminate
dominated solutions. The main difference betﬁeen the algorithms is that the
first uses a "one go" procedure aided with domination:tests where each

node of the enumeration tree is considered only once; whereas the second
uses a sequential procedure where certain nodes have to be examined several
times. An advantage of the sequential brocedure is that solutions which

are optimal with res?ect to objective one at any step of rhe sequential

procedure are identified as efficient solutions. In the first algorithm

the efficiency of no solution can be verified until enumeration is complete.

However, the sequential brocedure requires large amounts of storage space

to keeﬁ track of nodes which require further investigation. Furthermore,
paseing from cne problem to the next and solving each problem involves a

lot of scanning and movements from one node to to;alIy‘unrelated nodes which

necessitate cpnsiderable amounts of calculation.

Another observatiom is that the screening procedure ﬁroﬁosed by Klein and
Hannan for limiting the search for efficient p01nts can be adopted within-
the framework of the. present algorlthm. Again, the des1red spacing between
efficient solutlons-cen be sPec1f1ed by means of a minimum variation vector
d, so that the objective values of any two efficient solutions’differ from

each other at least by the amounts specified by the elements of the vector d.

In this case; a node, Nk,‘is to be fathomed if for some jeL

EkaBJm and flicéLB:il for some i, i=1,...,P.

because then further completions of Nkvwill not be sufficiently dissimilar
from LBJ. The second condition is required to guarantee that the lower bound

LBJ does not eliminate an efficient solutlon whicth actually domlnates LBJ

K’ is fathomed if for some jeL _

Similarly, .a feasible node, N

Zk< LBl4d  and Zk<LBi for some 1i,. i=l,...,P.°
- 1

If a fea51b1e node is not fathomed by the above .condition, and a new lower
2+1

bound LB is found, any ex1st1ng lower bound LBJ J=1,...,2 3 for which

120



. +1 4 . ‘ .
1LBY < B***4d  and LB__J.L < 1,13,?’"1 for some i, 4=1,...,p

is to be discarded.

It is shown in the follow1ng theorem that this procedure generates a subset

of the efficient p01nts of the original problem (which are dispersed at least

by the specified minimum variation vector d).

, i , ‘ ‘ ,
THEOREM I1I.1. Let LBj...,LBz denote the final set of lower bound vectors ~

obtained by the above procedure. Then LBl,...LB% ‘are a subset of the

efficient p01nts of the original problem.

Proof. Assume 18? for some 1<q<f represents a dominated point. This is
only possible if all efficient points dominating LBY have been eliminated

by the revised fathoming conditions.

1B? itself cammot e11m1nate an efficient polnt Y, wh1ch dominates LBq ,
-k

as Z >Y>LBq for all nodes Nk along a path 1ead1ng to Y, and 2k< LBq will

never be satisfied for any i, 1—1,...,p.

Also, if any lower bound eliminates an eff1c1ent p01nt, it also el1m1nates
all points dominated by that efficient p01nt Thus, if any eff1c1ent point
domlnaplng LBq has been eliminated, 1BY must have been eliminated as well,
contradicting that 1B? is contained in the final list of lower bound vectors.
Wlth this procedure a reduced set of efficient p01nts which are as dlspersed
as de51red with respect to obJectlve values can be generated. As the elements
of d get bigger, fathoming will be accelerated and fewer efficient p01nts
will be generated. Thus, computation,time,'which is quite sensitive to
‘number of nodes considered and to number of. efficient points, will decrease

considerably.
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CONCLUSION.

As a consequence of this study in the fields of multiobjective linear and
integer linear prOgramming, three algorithms and associated computer codesj
have been developed An appllcatlon in power systems expan31on modelllng,

involving detailed ana1y51s of various pollcy 1mp11cat10ns, has also been

carried out.

The -MOLP algorlthm either generates a11 eff1c1ent extreme p01nts of
multlobJectlve 11near programs, or a subset of them correspondlng to aA
dec151on ‘maker specified space of obJectlve weights. Earlier results given
by various authors are synthe31zed to produce an efficient algorlthm
fac111tat1ng the. 1ncorporat10n of preferences of the dec151on maker 1nto the
solution process. Through the observation of a ‘monotone’ connectedness
property, the duplication of effort is av01ded 50 that computatlonal

eff1c1ency can- be 1ncreased

A new algorlthm for b1cr1ter10n linear programs whlch requlres only a serles_
of d1v131ons and comparlsons for determlnatlon of adjacent eff1c1ent extreme'
p01nts, and which is computatlonally much more eff1C1ent with respect to
existing algorlthms has been given. . ’

One possible,area:of utilization of the bicriterion algorithm,'other than
'for;problems mith two objectives, is inAgeneration of trade-off functions
. betweenvpairs of objectives; which could be inputs to other techniques of
mu}tiobjective deCision making. One such technique is the‘Surrogate Worth

Trade Off Method developed by Haimes and Hall [33].

Another p0331b111ty is the exten51on of the reasoning behlnd the blcrlterlon
algorlthm to nonlinear problems. Starting at an efficient p01nt the : '
b1cr1ter10n algorithm identifies an eff1c1ent dlrectlon where the ratio of
the rate ‘of increase of one objective to the rate of decrease of the other
is maxlmum. A similar procedure could p0551b1y be used in 1dent1fy1ng

efflclent directions .for nonlinear problems.
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The major limitation of the computer codes of these two algorithms is maximum
problem size. Currently both codes are restrlcted to problems with 50
constralnts and 50 varlables (excludlng slack and artificial varlables),

and the MOLP code allows for 5 obJectlves. The programs utilize only core
‘memory, and by utilizing disk storage larger sized problems could be solved.
Double precisiontarithmetic is used in the computer programs to avoid

_ inaccuracies due to roundoffs which could accumulate and cause problems in
identification of efficient p01nts. However, the use of double precision

™~

arlthmetlc also limits max1mum problem 31ze, as d1men31on requlrements are

increased.

Presently, the computer programs are suitable for educational, research
and medium sized app11catlon problems. The codes are not professional ones
and through further reflnements and by optlmlzlng the codlng both the

maximum problem 81ze and the computational eff1c1ency could be increased. -

The MOZOLP algorithm is based on 1mp11c1t enumeratlon which is a powerful
technique for binary problems. Some domination tests aiming at 1dent1fy1ng
paths of the enumeration tree that lead to dominated solutioms as hlgher
up the tree as p0531b1e were developed and tested The algorithm appears
to be computatlonally more eff1c1ent than the previous algorithms for

multiobjectiveé binary linear programming.

Presently, ‘the computer program for the MOZOLP algorlthm allows for 5
objectives, 50 constra1nts and 70 variables. However, the max1mum problem

size tested was 4 objectives, 20 constraints and 20 varlables as the
computation time increases'considerably as the number of objectives and
variables increase. For problems with large number of" obJectlves and varlables,

the approach may have limited appllcablllty

Further research and experimentation-is needed to tackle large sized binary.
'problems. One poss1b111ty is the utilization of the screenlng procedure
discussed in sectlon III 2.4.3 either by itself or within the framework
of an 1terat1ve, 1nteract1ve algorithm. One could start with a sufficiently

big minimum variation vector d, and generate a few efficient p01nts. The
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decision maker could be asked to eyaluate thesej and based on his
evaluations, the problem could be modlfled by constralnlng the allowable
ranges for the obJectlves. Contlnually ch0031ng smaller yalues for d and
constra1n1ng the problem, the decision maker's preferred solution could be
generated by solv1ng at each cycle problems having much smaller sized

enumeratlon tr ees.

Reported examples of appllcatlons of multlobJectlve programming technlques
to real-world problems, especially for 1nteger cases, seem to be rare.

A lot of 1n51ght can be gained from real-world appllcatlons and research

in this direction would be valuable. Empha51s should be given to meaningful
presentation of results to ‘the decision maker, so that he can make educated

judgements based on insights generated by these approaches.

It is hoped that the results and algorithms presented in this work will be

beneficial to researchers in' the field of multiobjective decision making.
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APPENDIX I COMPUTER PROGRAM FOR

MULTIOBJECTIVE LINEAR PROGRAMMING

A.I.1. DEFINITION OF VARIABLES USED IN THE fROGRAM

IRT(I,.)

Iv1i(1,.)

1v2(1,.)

LOB (I,.) :

L1
12
cp(.)

7P
IPHASE

¢ Number of constraints

: Number of nonbasic variables in the simplex tableau

! Number of objectives
: Number of variables

: Accuracy limit for comparison with zero

: Objective value array

: Reduced cost matrix

: Right hand side array

: Nonmbasic coefficient matriﬁ

: Nonbasic variable associated with Jth column of CNE
¢ Basic varlable a53001ated with Ith row of AN

: Index spec1fy1ng type of the Ith constraint

(0 for < comstraint; 1 for—constralnt, 2 for ;=constraint)-

: Nonbasic variable array of the basis to which

a move is desired

:,Nonba51c varlables of Ith R—adJacent d.f.b.(dual

fea31ble ba51s)

: Nonbasic varlables of Ith d.f.b. which is stored

A

to be visited later

: Nombasic variables of Ith already generated d.f.b.

Nonbasic variables of Ith alternative optimal basis.

for objective M.

: Number of bases in IVl
: Number of bases in IV2

: Array used for forming phase one objectives, or .for

other intermediary purposes

: Phase one obJectlve value

: Index taking value 1 1f phase one of 51mp1ex algorlthm

is being carried out, O otherwise
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IFLAG

JT(.)

L(.)

NC
WL(I)
wu(I)
WA(C.)
IV

MW

ALP(.,.)
BP(.)
MWP

AIN(.,.)
BN(.)
MR

MR

N2
AC.,.)
B(.)
18Q(1)
N1X(JT)
ID(.)

oe Y] . 3 e e o .

"The coefficient matrix of the above constraints

-

Index taking value O if a move to an adjacent basis

‘is to be made, 1 otherwise

.‘The set of nonbasic yariables leading to, Aradjacent

d.f.b. with nonincreasing values of objectiﬁé M
Number of elements of JT

The set of nonbasic variables whlcﬂ.are candidates for
being placed in the set JT

Number of elements of L

Lower bound for weight of objective I

.Upper bound for weight of objective I

. The initial weighting vector

Index taking value 1 if there are limits on objective
weights, 0 otherwise - _

Number of > constraints of the subﬁroblem arising from
limits on objective weights |

.

The right hand side array of these constraints

-Number of < constraints of the subproblem arising from

limits on objective weights

The coefficient matrix of these comstraints -
The riéhtvhand'side array of these constraints
Total number of conétraints of the subﬁroblem

MR = NR-MWP ' ,

Number of artificial variables of the subéroblem
The constraint coefficient matrix of the éubﬁroblem
The right hand side'arféy of the subﬁroblem

Basic variable associated with the Ith row of A
Nonbasié variable asséciated with the Jth column of A
Array storing nombasic variable indices of the main

problem in the order in which correspondlng constralnts

of the subproblem are formed

133



A.1.2. INPUT INSTRUCTIONS

The -inputs to the-program consist\of the parameters M, MM, N, IW and DEL;
‘the arrays BB and IEQ§ the_matrices AN and CNj and if IW has' the value
‘one. the arrays WL, WU and WA. ' A A

The parameters M, MM, N, IV and DEL are 1nputted on a 51ng1e card accordlng :

to the format (415 F12. 8)

The right hand side array BB is inoutted according.to'the format (10F8.4).
The coefficient matrix AN is inoutted'columnWise and by its nonzero elements.
First,‘the number of rows in which nonzero entries aopear in each column

is inoutted according to the format (I2); then the row indices an& the

coefficieht_véloes are inputted,accoraing~to the fOrmat-(S(IZ,F8.4)).'

All elemeﬁtsbof‘the'cost matrix are inoutted rowwise according to the
‘format (10F8.4). If intervals on objective weights are soecified; i.e. if
IW—l then ‘the correspondlng elements of the arrays WL, WU and WA are read
for each obJectlve and consecutlvely for a11 obJectlves accordlng to: the
format»(lOFS 4). ‘

A.I.3. PROGRAM LISTING AND SAMPLE OUTPUT

The 115t1ng of the main program and the subrOutlnes and a sample output

is glven below.
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vead e Tt Iyl Lo Y VT T AT L E Sy DU LU?.“H”\AII‘HSN D OOiIsJretivt o
tzg OF 0By N=F OF VAR, * =t 0F CONS,, DEL=ACCURACY

CN=NONSALTC COST MATRIX,» ALzNOLFASIC COEFF, MATRIX, BB=RHS

IXW=MOUINASTIC VAR, SCT, 1BE=nASIC VAR, OF LQUATION -

1EO=0 FOR LE CONSTR. i =1 FUR EQ CONSTR,. i =2 FOR GE cONSTP-
IMPLTZIT DouBLE pRECISLOpn(A-H,0-2)

DIME 5T0N TFO(%Q)rNT(RU),IVFC(SO)rLOB(lo,so),IRT(Sopsn)'IV1(50'60
COMMu )/ GULL /M Mg MM, DEL , B ISN) , ANI(S0,100), CM(5¢100)9r7Z(5) 1 1DF
cowwo”/GUL°/CP(100)vZP'IXH(IDO)pIPE(So)-IPHASEvIFLAGrTV2(200.50)
COMMOI/GULA/ZLr IT(50) P NCyt (50) r WL (S) s U (5) s WA(S) s T e Myte MWP ¢ MRy ALP.
x10¢5) BPI1M) 2 ALL(10,5)BN(10)

COMMO I/ GULI/HR e N2 1 A(60 65)0B(60)rIHG(ﬁU),NIX(GS),ID(eq)
READ(5,300) MMM erIU'UEL
N FORMAT(LISIF12.8) ‘

WRTTE(6+1883) ey MM :

33 FORMAT(1H1¢10Xr 1 SOLUTTUNG FOR THF MULTIOBJCCTIVE LP -PRrOBLEMrp /211
*p r\’_’ITL‘l reTley OBJECTIVES ,912,» VARIARLES vrI20y CONSTRAINTSy e/ /0
*1XeUS0rky)) ) ' e

READ(5»901) (RB(I)rI=17MM) !

11 FOPMAT(10FA.4) :

READ(5,902) (IEQ(I)»I=1,My)
12 FORMATI(401I?) L
DO 911 Jz=1+N
READ(R™,Q03)Y KR )
READ (S, 904) (1o ANCTrJ) oK 1.KR)
10 CONTIIVE
READ(R»301) ({(CN(Trd)rd= 1. D eIlzlM)
03 FORMAT(12)
14 FORMAT(8(I?FA.4))
MWP=0 -
MW:M
DO 1 =11
IXtth=g
DO .1 I=1:W
1 CN(Ie. D ==CN(I )
1Ww=1 TF THERE ARE LIMI!S oN OPJECTIVE HFIGHTS =0 OTHFRWISE
IF(14.EQ.0) GO TO 4
kLAn( uQOJ)(WL(I)rWU(T’vuA(I)v-_lrM)
CAtL EIGHT
o2 .Jl‘er
12 CH(M+ 9 1) =0,
DOI3 =1
D013 T=1.M
153 CN(M+1r J)ZCN(+10 J) +WALT) 4 CHT e )
M=tM+1 '
4 K=o
11=N
00 10 1= J'MM -
IF(IEN(I).EQ.,1) GO TO 190 N
IF(IEN(I).EQ.O) GO TO Y
N1=N1+1
AN(I»r1-K)=-1,.
IXN (1 -K)=N1
GO TO 10
9 [1=N1+l
K=W+1 -
IBE(1)=H1



[ A R

IF(Ie (1) EN.0) 60 TO 20

'|\4]_;:Nl +1

IBE(IY=K1

COMTINUE

Nl Nl"N?

M1 IS THE # OF ARTIFICLAL VARTIABLES
IF(N1,EQ.0) GO TO 100

CIPHASE=1

(5208

(s}

0

5

ZP=0.

DO 25 Jz=1 MMM

CP(J)=0.

FORM PHASEL ORJ!CTIVF

PO 30 I=1,MM

IF(IBE(D) LE.i2) GO To 3
ZP=ZF-BBR(1)

DO 30 J=1i.t1MHY

CP(JI=CP () =AM (I J) N _ . -
COMTINUE. - ;

MINIMIZE PHASEL ORJECTIVE

KE=0" :

DO 50 J=1.5MM

IF(CP (). GE.=DEL) GO TU g4

KE=J v ’

GO TJ 55

COMT IIUE

1F(22,.6E,.~-DEL) GO TO 7V

WRITE(6.80%5)

FORMAT (1M1 r40%Xr» THERE 1S 110 FFASIRLt SOLUTION OF THE r"ROBLF"” /7))

‘STOP

CALL LEAV(KE,KMIN)

IF(KMIN.EQ.N) WRITE(G805)

IF(TBE(KMI) JLELN2) GO TO 65
CALL PIVOT(KE, KMIN)

MMMZ M=~ 1

N1=N1-1

IF(KE.EQ. (MMM+1)) GO TU 4o

DO 60 J=KE » NMt ‘
IXMC = TXMIJ+1)

CP(J)=CP(J+1)

DO 53 I=1 oM

CN(I:J)—CN(IvJ+l)

DO 59 I=1,MM

AN J)=ANCT » J+1)

COMTINUE- :

GO TO 4n

KL=T3E (KMIM)

CAlLL PIVOT(KE KMIN) -

IXM(KT) =KL

GO TO 4p ' '
PHASE1 OBJECTIVE MINIMIZED
IF(NL.EQ.0) GO TO 100 ~ :
THERE ARE- STILl ARTIFICIAI YAR. IM BASIS
K=1 : ' '
DO- BU_I:K.MM

IF(B3(I),GT.DEL) GO TO 8¢
IF(I3F (1) . LE.H12) GO TO 80



g
HE
g

N
1T

ARV I T N

WULL FQUATTON. DROP IT
MM=Mi-1

[H1=N1-1 -

1F(I.FQ, (MM+1)) GO TO By .
DO 83 I1=1+'MM
IBF(IT)=IBE(II+1)
BBII=BB(II+1)

DO 83 J=1,MMM

ANCITI JY=AM(ITI+1d)

COMTINUE

IF (N1, FQ o) GO TO 100

K=1 '

GO TO 7Q

iF(N1.EQ.0) GO 70 100
ELIMINATE ARTIFICIAL VARIAB[E
CALL PIYyOT(JeT)

MM Zi M- 1

H1=N1-1 ,

IF(J.FQ, (NMM+1)) GO To 8g
DO B8O JJ=Jr NMHM .

IXI G ZIXM DU+

DO 87 I1=1'M

CHCIE, JJ)=CN(TTIrJJ+1)

DO A3 II=1eMM
ARCTL»JUI=AN(TIT v JU+1)
COMTINUE _

1F(N1.EQ.0) GO TO 100
K=T+1 N

G0 TO 79

AT THTS POTMT WE HAVE 1N1rIAl B.F.S.
IPHASE=Q ‘ '
KE=0

DO 110 J=1rNMH

IF(CH'P'J).GE.—DFL) GO To 110

KE=dJ . . : :

CALL IEAV(VE VHIH)

IF(KAIN,EQ.0) GO TO 15U

KL=I:3F (KMIH) )

CAlL L 2TVOT (KEeKMTN).

IYHHURE ) =KL

60 TO 1nl
COMTINUE

60" TO 200 .
WRITE(6,806) M )
FOPMAT(1H1'50\I'DRJECTlVE,iT?" IS UNROUMDED, /)
STOP B
IF(Iu.EQ.G)GO TO 204

=M1

GO TO 289 ST

DO 1510 J=1,NHm
IF(CHN{M,J)GE.DLL)IGO TY 1500

CALLL 1LEAV (JrKMIN)

DO 1510 1=1M

AA=CN(TI,»J) :
IFCCAAXBB (KMIMN) ) 26T 0.7G60 TN 1500
COMNTI'NIE



CHFECH FOR DUALL FEASIOTLLTY
CALL FDGE '
1F(1nf)?89'080.)hn
LA= Imnrx OF ALTERNATIVE OpT. BASIS FOR OpJd. 1
DO 202 1=1¢NM" - '
12 JVEC(IT)=IXN(T)
CALL SORT (IVEC »HMM)
DO 2073 1=1 KM
13 LOB(LA»T)ZIVEC(T)
n DO 20A J=1HM™ : -
IF(CHI(M,J).GE.DLL) GO 10 »20n
Ki.=d
CAlLLL 1LEAV(KEKMIN) A
LE (BR(KMIN) sGEDEL)GO 10 206"
LAZLAL ’ . :
DO 207 I=1rNMM
17 LORLA» T)=TXH(T)
LOBILAYKE)ZIBFL (KMIN)
PO 207 T=1 bl C )
18 IVEC(T)IZLOB(LANY) :
CALL SORT(IVECrMM)
DO 209 T=1 P NMH
ng LONCi. AP TY=IVEC (1)
LAY=L -1
DO 2110 I=ifl AV
DO 211 TII=1 MM
IF(LOB(LA,IT), N[,LOB(I'Il)) Go TO ?10
11 conTIivuE
LA=LA=] :
60 TO 206 o , ’ |
10 CONTINIUE ‘ . . o
KL=I3M (KMTH) ' k
CAL.L DIVOT(KE KIMIN)
IXM K =KL : . o
CALL TDGE ) \
IF (TDF.EQ1)60 TO 270 , . N (
06 CONTINUL ' R
INITTAL. EFFICTIENT VERTEv ro;un - -
KO LRTITE(6H.800) ' }
N0 FORMAT(///¢50¥% e INITIAL EFFICIENT VERTEX, !//0!;8Xv26(v*')'//) » [
WRITE(6,802) (IBE(1)»BBLIY, I=1,MM)
N2 FoRMAT(zx..BAFIL VARIAHL[ 10 /02X 150k )0 /0 (7 (0 X,vdsv.v:.rF10.3
*r /7)) .
WRITE(6e803) (102Z(1) 1 T1=1,01) . t[
03 rO”MAT(//'%Xu,”UJECTIVFS.-/v?Vrlo(v*r)'/r5Xr.oBJ.'5(I1r.‘:'oFlo,a
*2X ¢ 1039} ) _ ' - .,i
IFLAG=0 . Co- o
L2zt OF COMPUTED IFF. VERTICES, L1=? OF NOT YET COMPUTED EFF. VERT]
Le=1 )
L1=0
-~ DO 290 K=1rNMH
A0 IVEC () =1XM(K)
CALLL SORT(TVEC r1IMM) _ L ‘
DO 297 K=1 f NHM :
A5 V2 (1, K)I=TVEC (k) : |



o B AR RS AT, U B Ry CrE D VERTIAES 1S GREATER THAN 200450/ 01

¥X o RUTT 1S TERMINATED, )
STOP
01 CALL FDGE . '
DETERMI“E FEASIBLE ADJUACENT SET
Lg=t OF EFFICIENT EDGES
LRT=% UF ADJACENT EFF, EXTR, PTS,.
11 LRT=C :
IF(LJ.EQ.0) 60 TO 700
DO 359 TI=1rlLJ
J=JT(71) :
CALL TEAV(JrKHIID
LRT=ILT41 '
CRK=THO(KMTH)
D0 320 Y1 bMi
20 IRT(LOT,TISTIXN(T)
IRT(LRT »J)=KK

SORT INNICES OF MBAS. VAR, oF EYTR, POIHNT

DO 330 T=1 KM
130 JVEC(T)=IRT(LRTY)
CALL SORT(TIVEC 1iMM)
DO 99 Iz=1,MMM '
0q JRT LT, T)=TVEC(I)
50 COMTIHUE
LtR1=0 .
FORM THE GFT TRT-IV?
DO 329 I=1+LRT
DO 372 11=1.L2
DO 350 Kz1rNMM
IF(IRT(IFKILHNEL1V2(ITI+K)) GO TO 370
b0 CONTINUE
GO TO 390
70 COMT I UE
LRI=LN1I+1
L0 33N K=1 e NMM
00 TRTILZL,K)ZIRT (LK)
300 COMT (MIUE
1F(LRY.EQ,N) GV TO 700
LRp=* JF ELEMENTS IN IR22
FORM THE SET IRT=IV1
IF(L1)395,395+396
05 LR2=L21L :
G0 TO 435
96 . D0 4359 I=1+LR1 .
DO 4in I1=1.L1
DOty K=1r N4
IFCIRT(IPK) eidE1VI(TIIWR)) GO TO 410
100 COMTI'IUE ' :
GO TO 430
10 COMTINUE
LRP=LO24]
DO-420 K=1rNMH
20 IRTALN2)K)ZIRT(IeK)
130 . COMTIMIUE
IF(LRP.FQ,.0) GO TO 609
HEY VERTEY, SELECTED FRUM n2




iF(LIP.FEQ.NY GO T0 190
FORM THE SET IV11
DO 541 I1=1.LR2
Li=kl+1 /
DO 540 K=1rHMM
0 IVIULL P KY=TRT (T 1K)
0 CALLL "OVE (')
AT HFW TFF, VERTEX NEW LTgp
60 10 300 . TERATION STARTS
HEY VFRTEY SELECTED FRUM Rpi1 '
10 L2=l2+] '
DO 610 K=1 M4t - _ »
MT(K)=IRT(LLR1 /1K) : p
0 1V2(L29K)=NT(K)
DO 651 I=1:1.1
DO 62') K=1 MM
1FINT(K) JNE.IV1(T+K)) VO TO 650
0 COMTIMUL
Li=L -1
IF(Y.Q,L1+1) 50 TO eau
DO 631 TJ=TrL1

\

DO 639 K=1rHM" ‘
301V (11O =TV 410K : .
GO T 69n .

N COMTINIUE ,
0 CALL MOVE (HT)
GO TO 300
HWEW VIERTEX SELECTED Fpuy ul
0 IF(LL,.EQ.0) GO 7O 9999
- L2= L?+1
) IFI AG=
‘ \.‘RTTL'F)rf)DE‘:)Irl ;\(7
16 FORMAT(2X 1t IFLAGY 1 12)
DO 710 K=1rNMM
NT(K)=ZIVi(L1,K) S :
0 JV2(L2yK)=MT(K) . ‘ . P
Li=ti-1 : .
CALLLL "MOVENMT) .
IFI.AG=0 . . . - ) ~
GO TU 3n0 . -
S WRITZIGr777)
7 FOPMAT(///.us 1 ALL EF' TEUT v C
LT (o ICTEY ERTI ES HAVE BEEN ENUNFRATED.)
19 FOPMAT(/// 43Xr (MOGEFFLCIENT EXTREME POINTS = ¢013)
STnpR ‘ '
END



V]

- O

L6

cCOMYYVI/GUH.2 2002020 \),/n,1> :(10’)11”5'—()0)'1!)'”\5(' 1IFLAG
c01M>l/GUL3/LJ.JT(Ho)'HC LSOy el (5 ).wn(q),wA(u)'vaMu.MWPr"R ALP
*10¢5),BP(10), ALIHI(10,5) 1 B1y(10)

CO*MUI/GUL”/NR Ha:A(bﬁvhS)pH(nO),IHO(ﬁU),”Tx(é ),ID(60)

LJ=0 v

HC=0 ' ' '
PR=Mi{ =M - ) . -
N1l=M ' . -
DO 1 1I=Z1.65

U0 1 T=1:60

A(Te V0,

DO 3 J=1eHIMM

chPtJ1=0,

DO 2 J=1 MM

DO 2 T=1M
CPREJ)I=CP(J)+CH{ L)
IF(NR . EQ,0) GO TO 11

DO 4 1=1,MR -
H1I=NL+1 - i

ATl )==1.

DO 9 1=1.HR

BOTI=3H(T)

PO 9 =1 eM

AT D ZALN(TI Yy )

DO 1 J=1¢TIMMY
iFCP Y)Y ,G5,0.060 TO 19
jR=ND Y

i1=Mi+1

A(HR 1Y ==1,0

IDINRYZY

BRI ==CP (.})

DO 5 1=1.M

ARy T)I=CHIT ) ~
1F(I4.EQ.1)G0 TO 7
1F(Ci(Myd) e LE.—DEL) Gn To 10
NC=NC 1
L(nC)=Jd
CONTINUE
AT Tdi1S POTNT AlL tQUﬁ|IOIS WITH WrGATIVE RIGHT—HAND SIDES STORED
S R3m=NR : .

DO 20 J=1 MMM

1IF(CP ), LT,.0.060 TO 2U

I1F CJ=0 FFFICTEHT

DO 12 1I=1.,M . : )

IF(A3S(CH(T»J}).GTLDELL) GO TO 1y

COMT [HUE '

Ld=L.Js1

JT (L =4

GO TV 20

DO 15 - I=1,M :

IF(CHII,J)LT«—DEL) GO TO 16

COMTINVE .

AS CJ>0 DOMINATED

GO TO 2n

WR=NR+1

ID(N{\-J

N1=N1+1



- 48 } 0 R

1F(C1(MrJ).LL.~HFL) Gn TO 29 o -
HC=NC+1 ‘ : / -
L(HC)=d ‘ -
CONTINUE
MRR=HR _ o
MR=M1 , ' ‘ - |
IF(MJP.EQ.0IGO TO 350 ' : )
DO 320 Iz=1rMkpP
HR=NR+1
N1=N1¢l :
BUIR)=BP(T) . o -
1B0GIR)Y =N s
DO 320 U=1+M
AMRY D =ALP (T J).
TH;SNPOANT EQUATIONS WTIH pOSITIVE RHS STORED.nOW ADD ARTIFITIAL VA!
N 3+
DO 25 J=1,M2 .
HIXtY= '
; CP(J) =0
IF(MS.EQ.0) GO YO 100
DO 30 Jz=1.M3
F1TNL L1 '
) 1Btz
til=nM1-l3
LLIMI”ATF nRASIC VAR, FPUM nHt NBUECTIVE
ZP=
uu;bo I=1.M3
ZP=ZP-B (1)
DO 50 J=1,M2
) CRPIDI=CP(J)=ALTI d).
MINMIMIZE PHL OBUECTIVE
) KE=0

IF(CH(J).GE AMIID GO TY. 7q
AMTNZCP ()
KE=dJ
Y COMTINIE, v
IFIKIL..KNE,. Q) GO TO 71
IF(ZP.GE,-PELY 6O TO 75 .
I1DF=) '
RETURY
L.CALL LEAV2 (KEsKMIN) . ]
IFCIBN(KMIM JLELNT1) GO 'TO 7 ' ’ o . |
CALLL PIVOTZ2(KEKMTIN) : B ‘
p2z=MN2—-1 ‘
WN3I=M3-1 ‘ : .
IF(KELEQ. (112+41)) GO To 72
PO 73 J=KFErN2
FIY O ENIY(J+1)
CP(J)F=CP (J+1) ' .
DO 73 I=1 MR : ‘ , (
|
\

AMINZO, R . S
DO 70 Jz1.t12 ' | o | /

ACT P JVSACTrJ+)

COMT THUE. o

1IF(MN3.EQ.0) 6O TO 100 o ' ' |
GO TO 60 : , ' (

I WY



O 110 o .G 00 G v 170 ’ .
;H?Rp ARE STILL BAJIC ARTTFTTIAL VARTABLES (WITH VALUE ZERO)
9 pO BN I=K,MR
IF(BIT),6T.DEL) GO TO #y
1IF(I81(1) ,LE,H1) GO To gp
GO Tu 81
0 COMTLHIVE
1 DO B2 Jzi.li2
IFAUSIA(T e )Y COT L DELY GO TO nbs
2 COMTINUE )
HULL COQUATTON. UROP IT
JiR=Mi-1
I3z -1
IF(TI.SG.HR+1) GO TO 84
DO B3 T1=1+MNR
IBMCITI=IBOCIT+)
BIT1)=B(I1+1)
PO B3 Jz=1.M2
ATy D =A(TITI+1 )
13 CONTINUE
1IF(N3 . EQ.0) GO TO 100
=T
GO TO 79 -
a ZEFRS.EQ.0) GO TO 100
ELTMItATE ARTIFITIAL V“RIABIF"
85 CAl L ‘IVOT“(JrI)
({? [\J("“
HN3=NG-1
IF(J.EQ.(1P+1)) 6O TO 88
DO 806G Ju=Jr N2
RIX(J D) =NIX (JJ+D)
DO 86 Tiz1eNR
A(TI e )=ACTIT edd+t)
86 COMTINUE ' ‘
BG 1F(N3.EQ.0) GO TO 100 | - | .
=141 4 \ o o .
© 60 TO 79 : :
T THIS PAINT WE HAVt A FFAquLL TABLFAU CHECK FoR NOMREDUNDAMT-VARI
ng U=, o
00 9 Jz=1..M2
Kh=t1X£0d) :
IF(K.GT ., M) "GO TO 90
WA(K) =1,
SUMZSUIM+WA (K)
Q0 -COMNTIMUE
DO 92 Iz=1,"R
K=IBa(1)
1IF(K.5T.M) GO TO 92
WACK)=B (1) +1. -
SUM=SHIMeWA (K)
92 COMTINUE |
DO 9% I=1.™ . .
95 WACI)=WA(T) /SN o | -
WRTTEI6+850) (WACT) e IZ1PM) - '
h0 popM\T(//.KnX.-LopRESPUHDTNG NBJECTIVE wEIGHTs ARE 2o.bF6 3)
IF (NC. [_q 0) RF'\URN



CALL GCAN(KY !
IF(NC.EQ.0) RETURM

) COMTINMUE
DO 120 Iz=ieHR
1F(B(1) ,GT.DEL) GO TO 12q
IF(IBN(I) ,LE.MYW) GO TO 12p
IFCIBN(CT) 6T MR) GO TO 120
K= THH’I)—M
K=TD(V) :

. CALL SCAM(K)
IF (NC,EG.0) RETURN

6 CONTINUE

SEF IF AMY WJ CAN BE MADF. NOMBASIC WITH OME PIVOT

D0 130 J=1eN2 - o .
CALL LEAV2(Je1tMIN) S
IF(KMTHL,EQYN) GO TO 13V
KK=IBN(KMIH) o
IF (KK, LE.MW). GO TO 130
1IF (KK, GT,MR) GO TO 130
K=K ¥~ : co
K=ID (1)
CALL SCAM(K)
CIF(NCLEQ.N) - RETURN -
30 COMIT L1 IUE S
CHl L NROP
LtFINC, . 0) RETURN
SELLECT ONE VARIABLE FPUM L Ann NIHIMI?E
Lo K=t () v
DO L5 I=1 » NRR :
IF (IDCD) L EN.K) . 6O TO 146
LS COMTI'WE - :
UG WK=T+M )
DO 150 T=1eNR L
IFCIBA(T) LEQ.K) GO TO 153 .
50 COMTINWE ‘ I .
51 zP==i3(1).
DO 161 U= 1!N2
60 CP(J)==A(TrJ)
61 KE=0
AMIN=-DFL
00 170 Jz=1eN2
IF (CP(J) . GEL.ANTII ‘GO TU 170
AMTNZCP (J)
KE=J .
70 CONTINUE _
IF(KL.NEL0) GO TO 175
NO ENTERING VARIABLE
IF(Z?.LT.-DEL) GO TO 171
VARIARLE HAS ”IHIMUM AVALYE=N
LJd=bJd+l
JT LY=L (NG)
. NC=NC-1 o
"1IF(NC.EQ.0) RETURN .
GO0 T0 105 ‘ '
VARIABLE HAS MINTMUM VALUE>0
71 HC NC 1 «



CCALL PIVOT2 (KL KMIN)
HIXKE) =KL

CALL “R0OP ,
IF(NC,EQ,0) RETURN
GO TU 161 V
EHD



I A T B A T

covvos/ UL“/CP(IOO)'ZP'IA (1@0),1ur(5n),1PHAgr IFLAbr1V2(200,50)
FLAG=0 1F MOVE IS5 TO AHJACFNY VERTEX »21 OTHERWISK, .
DO 1 TIz=1,NMM -
DO 2JJ=1 »HNMM _ .
IFCIXNITYCEQLINTI(UJY) g0 TO 1
CONTINUE . : o
KE=T1T ‘
IF(IFI.AG,EN.0)Y GO TO sUg
(E, TH HAMIBASIC YAR, WILL BE ENTERING
DO 10 IL=1,NMH
DO 11 J=1 MMM ‘ :
IFCINTI(IL) LEQLIXN(J)) GO TO 10
1 COM'TIWE
KL=14T1(IL)
KMTN=g
DO 13 I=1,MM :
IF (KL, HELIRE(I)) GO TO 13
KMIN=T
IF (A3S (AN (1{MIN PKE) ) (GTo D{&) Gn 70 502
GO 10 1n’
CONTINUE : ‘ : A _
COMTINUE o :
CALL DIVOT(KE KMIN) : i
IXM(LT) =KL
COMTINUE
60 TO 900
0 CALL LEAV(KE,KMIN)
KL=IS (KMIN) .
CALL PIVOT(KE/KMIN) -
IXM{AS) =KL
0 WRTITE(6,801) .
11 FORMAT(///155%r ¢ NEW EFFICTENT VERTEX0 s //953%X,2Uexe) v // /)
WRITE(6,802) (IBE(I) /BRIL),I=1,MM)
12 FORMAT(3X,¢BASIC VARI/\HLE‘Sv 0/ 2X'15(v*v)r/!(7(' Xprd3er, =,9F10,3)
*'/)) ’ _

(R

N D

-

hRLTC(67803)(I'ZZ(I)'IzlpM) )
13 FOQMAT(//,zx,.OHgECTlvtS.,/.2xo10(.*y)v/.3x.,oRJ.'5(Ijv, =¢*F10,3
*2Xr 103 ) ) ) ' :
RETUR §
CND



V1

AV AR AT L IR A TR ARV IR TR TR AW i N B AV i\7U1rﬁl(H;'wU(br.wn(a)'zw'“w'Mnuv
*1005) o BPOIN) p ALII1075) ' By (10)

COMMON/GULE /IR 1 H2 AN (6Q Y 65\vH(@O)-IRG(6U)'NTX(65)rTD(60)
STORE WEIGHT EQiS WITH HEG, RHS

WR=0

DO 200 1=1'M
IF(WJ(I).GE.(t.-DFL)) GO 10 190
HHS=M- l./HU(I)

IF(RHS.GE,~-DEL) GO TO 19p
NR::Niul ‘

DO 145 J=1M

ALMGHR Y =1

ALM(HR T Z1a=1./WULT)

BN (MNIR) ==RHS . ' S o

G0 TO 200 ' : )
IF(WL(I)LLT.DFL) GO T 204

RHSZ=L1, /WL (1)~M ' )

IF(RI5.6E.=DEL) 60 TO 20g

FHRENR LT :

DO 197 J=1M : ,

ALM (e ) =1, : _ .
ALMGHRy 1) =1 /WL (1) ~1. L - B :
BN ==RHS ’
COMT IMUE
MUZNR ¢4 _
HO¥ STORE EQNS WITH POS R4S

k=0

DO 3019 I= 1vM :
IF(WI(IVY.6FE. (1.=DEL)) YO 7O 250
RHS:A—l./wU(I) o
IF(RHS.LT.-DEL) GO TO 259

K=iK+1

DO 240 Jz=1:M

ALP (K J)z=1,

ALP (K, 1) =1 /00T -1,

BP (K) =RHS :
LF(WL(I).LT DEL) GO Tn 30n
=L, /WL (1)Y=
IF(RHQ.LT.—DEL) 60 TO 309
K=K+ I

00 2067 J=iM
ALP (K, Jd) =1

ALP (K pT)=1e=1.79L(T)
BP (K) =RHS '
CONTINUE

WP =K

RETUR?

END

v r

DT



DO 1 T=1e1C
IF(R.EQ,L(I))
COMT IMUE
RETURY

L LJd=bIdel
JT(LUY=K
NC=NC=-1

R B A AN A P T

Go 70 2

IF(NC,EQ.0) REFURN
IF(I1.7Q.(1C+1)) RETURM

DO 3 TCIIINC
§ L(TCI=L(IC+1)
RETURN
END.

‘s



AR AL L SR S B L SRS SR S S AL VR B A B R A Y VTR I B B B L S

*10,5),HP(1n)'ALH(10v))'Hu(10)
CO”MOH/GULH/NhrHZoA(bn'65\'H(GO).TRQ(GO).NTX(eﬁ)oID‘GO)
IK=1 : -

DO 4 T=IKHR

DO 2 J=1eti2

IF(ALT ) ,GE, DEL)Y GO TU y
CONTINUFE -
RO 1 MNEGATIVE oo
IFCIBN(T) ,LE.M¥) GO Tn 4
IF(IBN(I)GT.MR) GO To 4
K=IBO(I)=-M

K=TD (1) ’

DO 3 .1=1.ti0 '

IF(K. IR, L(J)) 60 TO 5

COMTINUE

GO TO 7

COMT LHUE

RETUR? / -
NC=NC-1 o

[F(NC.EQ.0) RFETURN

IF(J.EQ. (1I6+1)) GO TO 7

DO 6 TC=JyNC ' :

L(TC)=L (IC+1) ,

UPDATE A=MATRTX

NR=MNiR-1 ,

IF(I.EQ, (1iP+1)) RETURN

DO 8 TI=I/NR

IBA(I ) =IBO(IT+1) :
B(ID)=B(I1I1+1) ' N
DO 8 J=1,t12

ACTIy D=A(TTI+1¢J)

COMTINUE

1K=1

50 TO 1

END



IBE (KATM) ZTXN (KE) - )
AAZA CKMIN P KE)

IORMALIZE

¢

TLIMTNATE ENTERING VAR, FRow OTHER FQNS

6

DO 14 J=1,HMM

AN CKIATI » J) SAN (KMIN» J) /AN

BB (KMTN)=BRIKMIN) /AN
ANCKATNGKE)Y=1./AN

DO 15 I=1.MM )
IF(I.€Q.KMIN) G0 TO 15
AA=AN(1/KE)
BB(I)=BR(I)-AA*BB(KMIN)

DO 15 J=1,NMM )
ANCI e JY=ANCT » J) ~AARAN (KMT 50 )
ANCT P ME)Z=AN(KMIN/KE) +AA
COMTINUE

DO 17 I=1.M

AA=CHH(IKE)

Z2Z (1) =ZZ (1) =AN*3B3 (KMIN)

DO 13 J=1,NMM

CN{Tr ) =CHITrJ)=ANTKMTNY j)*AA
CN{TrKE)==AN(KMINIKE) *AA
CONT INUE

IF(IPHASE.MEL1) GO TO 10
AA=CL(KE)

ZP=ZP=AAX[IB (KMIN)

DO © J=1¢MM

CP(J)=CP (J)~ALIIKMING J) *AA
CPIKE)==AN(KMIN/KE) AN
COMTINUE

RETURN

END

M ) T B RSL L DARER L A I

LS SLE I B Vo § 4
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THNKHATN) =T (KE)

AA=A (KM KE)
NORMAL I 2E

DO 1 J=1.N2 _
ACKMTIgr ) =A (KT e J) /AN

T B (KMIN)=B(KMIN) /AA

A(KMI*IPKE)=1./AA

ELIMINATE ENTFRING VARlAB][ FpOM OTHER EQUAT]QNS
DO 3 1=1.4R

IF (1.FQ.KMIN) 60 TO 3

AAZA(T+KE)

CB(T) =T ~AAXB(KMIN)

DO 2 J=1eW2 ,
ACTrDIZA(TIrJ)=AAXAKMIN, )

AT PKE)==A (KMTN Y KE) xAA

CONT INUE :
AA=Ci? (KE) ' BN
ZP=ZP-AA¥B(KMIN)

O 4 J=1.M2 ’
CRIVIZCPR(J)~=A(KMINIJ) XAA
CPRIKEYZ-A(KMIMIKE) *AA

RETURM!

END '



«

KMTN=A

DO 5 T=1ri4M
IF(ANCT D) GLEDEL) GO 10 g
AASBIIT) /AT J) ’
IF(AALGE . AMIN)GO TO 5 (
AMTNZAA '
KMIN=T.

COMTINUE

RETURM

END



AMINZ1999999

KMTNzZ ‘

DO 1 T=1.NR ;
IF(A(T»J) LE,DFLY GO TU 3
AA=BOT) /A(T e d)
IF(AA,GE.AYMIN) GO TO 1
AMTN=AA ‘

KMTMNZ=T

CONTIMUE

RE TURMN

END -



:“::;r:_!1 NINENSTON OF THE yirCTOR
DO 1 T=1,HH
I1I=1+1
?2(iVJ=111N
(IY.LE.IV(
ITEMP:IV(I).I ey eeton
IVIIY=Iv(J)
IV(J)ZITEMD
CONTIMUE -
RETUR:
END
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. APPENDIX II: COMPUTER PROGRAM FOR BICRITERION
LINEAR PROGRAMMING |

A.I1I.1. DEFINITION OF VARIABLES\USEDIIN THE fROGRAM

The variables used in the progréﬁ are defined in the same way as in the
Vmultiquective comﬁuter érogram exceﬁt'for-the'variableg WL and WU which
are here scalar quantities, giving fhe lower and upﬁer bounds resbectively
on the second objective. This'is due to the fact that sﬁecifying intervals
on the weight of the second objective also determines the allowable range
for the.weight of the first objective. Furthermore, ih'SucH cases, the

initial weights on the objectives are taken as 1-WU and WU respectively.

A.II.2. INPUT INSTRUCTIONS

Data input is again in the same way as in the multiobjective compuger

pngram, except for the first data caid. Here the éarameters MM, N, DEL, WL
and WU are read from the first data card according to the format (2I5,3F12.8).
If intervals on objective weights are mot to be sﬁecified,'then values of

0 and 1 should be inputted respectively for WL and WU.
A.TT1.3. bROGRAM>LISTING AND SAMPLE OUTfUT

Thevlisting of the main program and the subroutines and a sample output

is given below.
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LA A S U R S A R RO R F AL A L E A S AT SR LSS ST L E S L 2P ER S 2 8P XN ISP BT X P
=4 Ok "By, Nzt OF VARLY ezt nF CONS., DELZACCURACY
IZNON3ASIC COST MATRIX, AN=MOWRASIC COEFF, MATRIX, BB=RHS
(h:NONRASIC VAR. SET. THE=RASIC VAR, OF . EQUATIQON

1EA=Q FOR LE CONSTR, : =3 FOR EQ@ CONSTR, ; =2 FOR GE.(CONSTR.
IMPLICIT DOUBLE PRECISION(A-H,0-Z)

?Ivt4<10N TEQ(50) 'NT(5U), TVEC(50) IRT (500500, IV1(50¢50) ¢ IV? (20050
'

COMMON/GULL/M oMMy NMM, DEL BB (50) » AN(50,100) +CN (391000 ¢ 7Z (3)
comwoJ/GULo/cp(an).zplew(loo),IRE(SD).IPHASE.IFLAG
COMMON/GUL3/LJr JT (50) ¢ WU, bl

M=2_

REAU(R:QOO)MM.N;DEL,WL:WU

FORMAT(215+3F12,.8)

WRTTEZ(601883)NrMM

FORMAT(1H1+10Xr »SOLUTTIUNS FOR BICRITERIA LP PPOBLEMvr/rllxpoWITH '
*90120r VARTABLES ¢¢1I2¢y CONSTRAINTSe#/ /0 r11%r35(rky))
REAC(50901) (BB(I)rI=1rMM)

FORMAT(10F8.4) '

READ(59r302) (TEQ(I) »Iz=1ypu)

FORMAT(4012)

DO 911 J=1rN

READ(59903) KR .

CREAD(59904) (TvAN(TrJ) 1K=y KR)

COMTIMUE ’

READ{(S»301) ((CN(I2J)rJ=14:1)pIz1eM)

FOQMATiI?)

FOONAT(R(IZvF% 4))

DO 1 J=1.H

IXMt =y

DO 1 T=1+%

CNCIs JY==CN(TJ) . ' _ ‘
IF(WL,EQ.0..AND.WU,EQ,1,) 6O TO 4 = , -

M=3 | ‘ . . ,
Iw=1 ' :

UO 13 J 1'M
. CN(3vJ)-(1.-WU)*CN(le’+WU*CN(2:J)
- K=0.

wNi= N

PO 13 I=1,MM . -

IF(IEY(1) ,EQ.1) GO TO 10

IF(IE2(1) .EQ,0) 6O TO Y

WN1=N1+1

AN(IrN1-K)=-1,

IXMON1-K) =Nl

G0 70 10

MNI=N1+1

{=ZK+1 :

IBE(IY=NT - o : -
CONTINUE

N2=N1

NMM= 1=K

NMMZ + OF NONRASIC VARLABLES -

po 20 1=1,MM )

IF(IERNT) ,ET, 0) ;TO 20

N1=N1+1 -

IBE(1)=01 o _

CONT INUE : ' .




PN,

20 25 J= 1 MM
LP(JY=0.,

FORNM PHASE1 ORUECTIVE

DO 30 I=1.MM

IFIBS(1),LE,M2) GO TO 3g
ZP=7r-388(1) :

DO 30 J=1.M¥M
CP(J)-CP(J)—AH(Ivd)

CCMTIMUE.

m]H14IZF PHASE] OBJFCTIVE

KE=0

UO 50 J=1 "My

IFIC2(J) . GE.-NFLY GO TY gj

KE=J '

GO 10 55

COnTINUE

IF(ZP,GE.=DEL) 6O TO 7V
“RTTE(56+805)
FORMAT(1H1 40X , THERE 1S 40 FFASI“LE SOLUTION OF THE PROBLFM,//)
STOP

CALL {EAV(XE,KMIN) -
IF(KATN,ER.0) WRITE(6+805)
IF(I3T(KMIM) LLE L N2) GO TO 65
CALL “IVOT(KEKVIN)

NMM T A~ -1

N1=Ni=1

IF (KE,EQ. (MMM+1)) GO TU 40

D0 63 J=KE»NM™
TIXNLDYZIXNOI+T)

CP(J)=CP(J+1)

D0 53 I=z1 oM
CCN(Te J)=CN(Iy J+1)
DO 53 I=1,MM _
ANCT /) =AN(TI e J+1)
CONTINUE
GO T3 ug .
KL=I3T(KMIN)
CALL PIVOT(KE K¥4IN)
CIXN(E) =KL
50 12 49
PHASZ1 OBJECTIVE MINIMIZEND -
IF(NLLEQ.D) GO TO 100! o :
THERE ARE STILL ARTIFICIAL VAR IN BASIS
K=1. ~
DO 82 1=K ,MM ,
IF(B3(I1).6T.DEL) GO T0 8¢
IF(135(1).,LE.,"N2) GO T0 89
60 19 81
CONT [WUE
00 82 Jz1NMM ‘
1F (A3S(AN(T»J)) ,GT.DEL) GO TO .85
CONT INUE » :
NULL. FQUATTON, DROP,IT
MM=NA=1 . '
N1z=Nl -1
IF(1.5Q. (M1+1))UO TO 190 ‘ -



]

D

]

ANUI e J)ZANTI T 1y J)
COMTINUE
IF(N1,EQ.Q) GO TO 100
K=1
GO 10 7@
ELTMINATE ARTIFICIAL VARTABLE
CALL »IvoT(JdeT)
MM ZNMM—1
Niz=M1-1
IF(J.¥Q, (NMM+1)) GO To ag
DO 8o JJ=JrNM"
IXNCJ) ZIXN(JI+1)
DO 87 TIziM
CNIITYJII=CNITT v JU+1)
CO 83 I1=1,MM
ANCIT, JU)2ANCTT P JU+1)
CONTINUE
"IF(N1,EQ.Q) GO TO 100
K=T41
GO 10 79
AT THTIS POTNT WE HAVE lHITIAL B.F.S.
IPHASE=
KE=0 N
DO 119 J=1rNM4
IF(CNM, D). GF.—DFL) GO TO 110
KE=J
CALL LEAV (KEsKVMIN)
IF (KATNJLEQ.D) GO TO 15U
KL=13F (KMTM)
CALL PIVOT(KE  KMIN)
IXH(KE) =KL
50 10 101
CONT IMUE
GO T> 200 .-+ . -
WRITE(6+806) -

-

STOP
[FL1v.EQ.0) GO TO 202
=~ L -

GO 19 °89

DO 293 J=1 N4

IF(Ciit2¢J)6GE,. VEL)IGO TU 2n3
IF(CN(L,J)GE,~DEL) GO To 203
CALL LEAY (JeKMIN) ,
KL=13= (KMIMN) »
CALL "IVOT(JrKMIN)
I XN JY=KL
~G0 TO 292
 COMT I1UE
MITIAL EFFTCIENT VERTEX FO!NO
 WRITE(6H9800)

 FORMAT(///950%X 0 INITIAL ErFICIENT VERTFXcv//pq%X'26('*v)v//)

WRITE(6,802) (IBE(T) B3RLT),I=L,Mu)

’ FORNAT(SX:!BASIF VARIAILES ¢/, 2X115('*0)v/v(7(v

*v/)) :
WRITh(b 803)(Te2Z(1) e 1=1,0)

‘ FOQM\T(//'WXvvOSJLCTIVtSv'/'ZY'lﬂ(v*')'/'3X"ORJ"3(Il'y =evrF10. SJ

FOWM\T(lleSOXvrOBJECTIVt,r12'1 1S UNROUNDED, /)

Xerd3r, =¢9F10, 3)
{

J
|



rORTBATLZXy P NBSL VARSY »90173)

IFLAG=0

=t OF COMPUTED EFF VEHTIrts. L1=t OF NOT YET CoMPUTERn EFF. VFRTICE

L2=1

L1=0

DO 290 K=1rNMn
IVEC{K) =TI XM (K)

CALL SORT(IVECenMM)
DO 235, K=1»NMM

1V2 (1, K)=IVEC(K)

FICIENT EDGES WILL RE FOuwD

IF(L2-100)301,740,740
WRITZ (60745)

FORMAT(//,10XrsNO. OF EFFTCIENT VERTICES 1S GREATER THAN 200,,/,10

#Xr PRUN IS TERMINATED, )
STOF

CALLL EDGE2

ETERMIME FEASIBLE ADJUACENT
J=¢ COF EFFICIEMT EDGES

RT=t OF ADJACENT EFF. EXTR,

LRT=] .
IF(LJ.EQ.0) GO TO 700
DO 357 II=1l,LJ
J=JT1 (1)
CALL LEAY (JrKMIN)
LRTSLRT+1]
KK=135 (KMIM)
DO 320 I=1¢NMM
CIRTULRT P I)ZIXNID)
IRT (LT »J)=KK
ORT INDJICES OF NBAS. VAR,
DO 339 I=tieNMM
IVEC(T)=IRT(LRT 1)
CALL SORT(IVECrNMM)
DO 99 I=1,MMM
IRTILRT,I)ZIVEC(T)
- CONTIMUE
LR1=0
FORM THE SET IRr—Ivz
U0 390 I=1!LRT :
00 377 11=1:L2
DO 367 K=1rNM¥
IF (TRT(TeK) JNE.IV2(TI, K))
- CONTINUE
G0 TO 390
- COMTINUE
LR1ZLR1+1
DO 387 K=1¢NMM
CIRTUILRLPK)SIRT (T 9K)
 CONTINUE _
IF(LR1.EQ.0) 60O TO 700
LR2=0
FORM THE SET IRT-IV1
IF(111395,395+396
- LR2=LR1
GO ‘10 435
DO 430 I=1+¢LR3
po H1on 11=1.L1
DO UYL K=1rNMM

SET

PTS.

oF ExTR. POINT

G0 70 370



G0 10 430
COMI InNUE
L !?")"n ‘)"’4 1
O 20 K= 1nvw
IRT(LR2,K)ZIRT(IwK)
CONT INUE .
IF (LR?.EB,0) GO TO 600
MEW VERTEX SELECTED FRUM p»o
L2=t2+1 .
0O 500 Kz1rMMM ) - : )
NTI(¥IZIRT(LR21K) . :
1V2(L2¢yK)=MNT (%)
LR2=LR2-1 o
1F(Lh° £Q.0) GO T0 59n
ORM THE SET IV11
DO %4n I=1+LR2
Li=t 131
DO 549 K:erMM
} IV v KIZIRT (T ¢K)
)} CALL YOVE(NT) ' .
\T NEwW FFF., VERTEX NEW ITESATION STARTS
60 10 300 ’
HNE™ VERTEYX SELECTFD FRUM pl :
) Lezt2+1 . .
U0 €10 K=1sNMM. : :
ETRIZIRT(LR1 fK)
) 1V2(L2K)=NT (K)
Lo €659 1=1.L1
DO 620 K= N
JIF(NMT(K)Y NE, IVJ(IrK)) ©Q TO 6%0
) COMTINUE
Li=ti-1
IF(1.Q,L1+1) GO TO pnU
- DO €390 1J4=T,L1%
DO. 639 K=1NMM
1} IVI(L.3rK)=IVI(IJ+19K)
G0 10 5690
COMTINUE -
0 CALL *OVE(UT)
GO T0 300
NEY VERTEX SELECTED FRUM y1
) IF(L1,EQ.D) 60 10 9999 _ S
L2=t2+1 _ , y ‘ ‘ ' o
IFLAST] ' : )
DO 711 K=1» NN"
NT(KY=Ivi(L1sK)
) - 1V2 (L2 KY=NMT (%)
Li=t1-1 , '
CALL “MOVEMIT)
IFLASZO
GO TO 330
) WRITZ(69777)
7 FORNAT(///ru3Yo'ALL EFFICTENT VERTICES HAVE BEEN ENUMERATED:!) -
WRITE(H,770) L2 -
) FORMAT(///143%r ¢+NO. FFFICIrNT FXTRFME POINTS = 1013)
- ST0OP
- END

N?



AVH A=l et IV PR L YR VINL AT U™

COMMIN/GUILL/M e MM MMy DR, 383 (509) , AN(50, 100),CN(3,100)¢72(3)
COMMII/GULD/CPLN0) 9 2P Ixt1(1017) , 117(50) , IPHASE» IFLAG
LO”MJJ/bUL3/LJ rJT(H0) v, wl '

LJ=0 .

AMTNZ1.0E+10 : - -

DO 10 J=1,11M4 ‘

IF(CHI2,J)LT.DEL) GO 10 10

IF(CI(1,3)GT.~DEL) GO TQ 10

AA=CIIL,J)/CH(2,d)

CN(3r ))=AA

IF (AA.GEJ.AMIN) GO TO U

AMINZAA

CONT INUE

WOHT=IMTN/ (AMIN=1,)

WEHT L =1 ,-WAHT

HRITL.(()OBSO) YWOHT1 e WGHT

FORMAT (// 30X+ r CORRESPUNDING 0BJECTIVE WETGHTS ARE !v,5F6 3)
IF (W5HT ,GT.WULOR,WEHT LT, yl) RETURN
DO 33 J=1.NMM

IF(CH(2,J).LT.DEL) GO 1O 30
IF(CI(Lsd) 6T, ~DEL) GO T 39
IF(CN(3,J).GT, AM1N+DFI’ G0 TO 3p
Ld=bdel

JT L=y

COMTIIE

RETURY

END



L5 miedt DML TRELISIUN(A-R,U=-2)

DIMEASION- TNT1(50)

COMMYI/GULL /M P e 1M, DR, 3 (54) , ARG, 10nv.F!(%,100).72(3)
COVN)I/GUl“/CP(lDO)o7P'1xv(100),1QE(50),IPHASEvIFLAG
LAG=G IF MOVE I5 TO ADJACENT VERTEX s=1 OTHERyISE

DO 1 TI=1.NMM

DO 24 =1 ,NMM
IFCTANHITN «EQ.INTL (JJY)
COMTINUE

KE=I1

1F(IFLAG.FO.0) 60 TO sUg

Ty TH OHNINBASIC yAR, WILL
D0 17 Ti.=1NMM

DO 11 J=1,NMM
IFCINTL(IL) JEQCIXNCU))
COMT L' IUE

KL=I 4TI

KMTN=") '

DO 15 I=1."M

IF(KL HELIBE(I)) GO To
KMTM=T
IF(ABH(AN(KMIN'KE)) GT.
GO TD 10

3 COHTIUE

)

b

!

.

U

)

> FODM'\'Y (3X9 e BASIC \/ARIAHLE“I r/p2Xv15(v*')r/r (7(! Xy>vd3"

COMT IMUE

CALL »IVOT(KE K4IN)
IXF KR Y KL

CONTI"UE

G0 TO 9n0

CALL Y EAV(XE“MIN)
KL=I3% (KMIN)

CALL PIVOT(KE fKHTH)
IXH (LK) =KL .
WRTIE6,.801)

GN TO 1 7

’

BE ENTERING

Go TO 10 -

13 \ s

*DEL) GO 7O 502

WRITE(6,802) (IBE(T),BRUT), I=1,MM)

*r/))
WRITE(G1803) (10 77(I)vI

1)

3 FORMAT(//13Xs yOBJECTIVES, /12X 10('*1)'/73\(v'oﬁdy l3(11"

*2X 0 r()3de))
TRETUR"
END

3 FO"M‘T(///v‘ibX' vNEa‘J EFFICIENT VERTEXv v//v‘S'SXv?‘\‘(o*v)'///)

=v1F10.3)

=y rF10.3»



COMMOTI/GUL /Mt M, DEL BB (50 ) o AN(S0, 100) 7 CN(30100)972(3)

COM””'/Gdl°/cp(100).ZP'Ix1(10n).INF(rn),IPuAsr,IFIAG
LBF GOATI) DX (KED ,
AAZAN(KTH P KE)

IRMAL[7E '

DO 14 Jz1eHMH _

ANCKATH, JIZAN(KMIN J) ZAA

BB (KMTN) =BB(KMIN) /AN

ANIKATN,KEY=1,/AA

JIMINATE ENTERIMG VAR. FROY OTHER EQNS,

DO 15 I=1,M4

IF(I1.FQ.KMIN) GO TO 15

AAZANCT L, KE)

BB(I)=ZBB(I)=AA*BB(KMIN) -

DO 1o J=1,MMHM

ANCI o D ZA(T e J) =AAXAN(KMY e ) :
ANTT e “E) o= AN(KMIN KE ) %/AA ’ ' . .
COMTIIUE . : : :

DO 17 I=1eM

AA=CH(I KEY o
Z7Z (17227 (1) ~AA*3B (KMIM)
DO . 15 J=1 . NMM

CNUIr D=CHOTrJY=ANCKMTN, Jy % AA
CHUT o) ==AN (KM N KF ) % N\A

T COMNTINE
IF(IPHASE  MNELY) GO TO 10
ANZC (KE) , '
ZP=2P =\ a*xBB (KNI
DO 9 =1 ,1MM

) CPUUI=CP (J)=AHTKMIN, J) ¥ AN
CP(KENZ=AN (KMIN/KE) A

) CONTInUE ,
RETUR"!

. END



SUBRIDITINE LEAV (JeKMIM) -
IMPLICTT DOUBLE PRECISION(A=H,O0- 7) » ~
C01“JI/GU11/M-M1vNMf “tL,pH(Sn)'AH(SO.lno)rCH(3'100)r7Z(3)
AMTINZY L 010+10

KMTMNZ

DO 5 v=1.,MM
IFOACT U)W LELDEL)Y GO 10 g
AA=B3(TY /AN(T 2 ) S
IF (AAGE,AMINIGO TO 5
AMTNZ AN : ’ ' : A
KMIN=T ' B

- CONTIME
RETUR'|-
END



DIMEISION TV (S0)

I 1< THE VCTOR TO BE SURTFD g
1S THT DIMENSTON OF THE yeCTOn
I N

DO 1 T=1 o NY

1I=1+1

DO 1 =i1+M
IF(IVII)LLFELIV(JY) GO 10 1
ITEMP=IV(I) '

IVID) =Iv(iy)

IV =ITEMP

CONTI E

RETUR!Y

EMD

v



BASIC VARIABLES
Ssaspsevetrgrgtay

»00¢ =

¥033
*o0Cs
x0y2
Y0585

xDe2

17087}
229374
130+000
Fl!?DD
19787

[ XX:-Y ]

ORJECTIVES

*Vs0%n0tiy

0Byl = =1080s219

x05¢9
%056
%042
xn13
%003

%014

0BUz = 11004376

1,452
7,819
3,457
61,900
B4, 904

8,000

-~ CORRESPONDING OBJUECTIVE WEIGHYS ARE

X043
X034
Xoo7

X016

X020

oBJ

"NEW EFFIclgNT VERYVEX

wsese®00%00 0000005000,

84683
24,616
13,612

4,978

0363

X035
Xo03
Xp08
Xp3é

Xo44

31.144

12,129

P W31

X021
Xpp2
X0p®

X06d

XB15

.689

726
36v357

284100

. 364530

ib-obU

xDg4
X025
X030
X0e3

X040

063
94332
284100
274022

+ 00D

x019

Xoo4

Xotl

X017

xo24

~ e181
106,000
4,380
9,893

4,000



APPENDIX III;.DATA FOR THE ﬁoweR SYSTEMS EXPANSION
‘ MODEL AS APPLIED TO TURKEY-

Dates corresponding to the periods:

Period

Mid-Period = 1977 1983 1989

Year ~

: 0 1 o 2

Beginning capacities:

-~

P, =4GW -

1,0
Py o= 4 CH
By = 1 GW

Demand data:

Energ§ Demand,ED, (Twh)

3

4 5

1995 2001 2007

Power Demand, PDt(Gw)

Perioé Scenarios A,B - Scenarios'CQD Scenarios A,B Scenarios C,D
1 30 30 6.21 _ 6.21
2 60 | 50 12. 44 10.37
3 108 90 22.37 | 18.63
4 170° 150 35.25 31.13
5 49.77  45.66

240 220

‘Power ﬁlént data:

" Initial Cost(a) .

Operéting Cost(a”)

Capacity Factor

Plant type “(in-TL/w) (in TL/kwh) _ £

Coal 34 1.0 0.70
Hydro 40 - 0.45
Nuciear - 65. 0.5 0.60




\

Capacity expansion coefficients, K;:.

2.0 for coal and hydro,
1.5 for nuclear (restricted)

4.0 for nuclear (less-restricted)

piscount factor: 10 7 p.é._

169 -
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APPENDIX IV COMPUTER PROGRAM FOR MULTIOBJECTIVE
ZERO-ONE LINEAR PROGRAMMING

A.IV.1, DEFINITION OF VARIABLES USED IN THE fROGRAM

K ¢ Number of objectives

N : Number of variables
M : Number of COnstrainﬁs
AC.,.) : Constfaint coefficieﬁt matrix
- C(es.) : Cost coefficient matrix
$(.) : Array giving the current right hand side entries of

the constraints
T(.) ' : Array giving the sum of negative coefficients
of each cp@straint V ‘
DOM(.) : Array giving the relevant--domination margins of. the
h free variables
UB(.) ¢ The ubﬁer bound array ‘
"KR - | : Index giving the comstraint number where T(KR)=S(KR),
’ if any.;(imblying definite assignments.) -
JF  _ : Index taking values in subroutine FEAS; 1 if the current

node is found to be infeasible j 2 if feasible and 0

~

: - otherwise

IFREE : Number_of free (unassigned) variables

Lz : Number of variables that have'béen assigned"the value zero

J1 : Index taking value 1 if def1n1te zero asSignments are

. determlned in subroutine ADVDM, zero otherwise

IW(.) : Array spec1fy;ng if a variable is free (IW(I3)=0);

» - assigned value zero (IW(J)=10); assigned value one
(IW(J)=11); or assigned definitely the value one
(IW(I)=12).

JB " : Index of -the branching variable -

INF(.) : Array giving the infeasibilities of the free variables

170 -



MINF i The minimum entry of the aboye array
LB(., J) : The Jth lower bound>array
‘NL “ :. Number'pf lower bounds
INb(.,.)‘j: Matrix giving the indices of the variables when

. reordered in ascending order of constraint coefficients
INC(.,.)

: Matrix giving the indices of the variables when reordered
in descending order of\cés; coefficients
o : Index taking value 1 if current node is found to be
dominated in subroutine ADVDM -
M- ! Minimum number of variables that must be set to one
in order to reach a feasible solutibn
 ﬁA : Total number of alternative solutions; if any
LBN(I) : The lower bound number correspondlng to Ith
alternative solution - ' ‘ '
NUB(.) : Array giving the relevant advanced uﬁper Bound vector
IPATH(.) ¢ Array sbeéifying the current enumeration path in the
order in which variables have been assigned .
IS(.) ¢ Array used for sortlng operatlons
iQ(J) i‘Index taking value 1- if Jth variable has a p051t1ve
v / éosﬁ coefficient in any obJectlve 0 otherwise
IX(.,I): : The solution ‘vector correspondlng to Ith lower bound
IXA(};I) : The solution vector correspondlng to Ith altermative
‘ - solution o .
'KBRN : Index taking value 1 if branching is done aécording o

to minimum infeasibility; value 0 if done according

to minimum domination margin.

A.IV.2. INPUT INSTRUCTIONS

S

The inputs to the program consist of the parameters K,N and M, the matrices

C and A and the array S.

The ﬁarameters K, N andbM are inﬁutteduon a single card according to the

format (10I8).

4
7/

‘Thé'm;trices C and A aré inpufted columwise, respégtively, again
according to the format (10I8). The right hand side array S is also.
inﬁptted according to the same format.

171




*» * ’ p ) - - . ’ . . . /
Since in actual problems the cost coefficients are mostly positiye, the
program assumes positiye cost coefficient inputs. Later, through the
" transformation x37= 1¢xj, a cost matrix consisting basically of negative

entries is obtained. -

A.IV.3. PROGRAM LISTING AND SAMPLE OUTPUT

The listing of the main program and the subroutines; and a sample output is

given below.

-172




~ « l A B | S LA ¥ d -y s e A AR B AN B

lNTL’-S"-R Ar !:.'T DOM UR'SU’ ~ : -
DIMEASION IPATH(70),1¥t7g0, 150).15(70).10(70)
COMMOMN/BINI/KR Y JF+MyS(90),T(50), IFREE,J1
COMMIN/BINZ2/Ny IN(?U):A(50,7O).J51MINF INF(70)
COMMON/BINB /K UB(S) yC(2y70) »LB(5,150) yNLyIND(50,70) ¢ IMC(5'70) JDrL
M MACLBN(L0) s IXA(70, 10’-NHB(5)rDOM(70)
RE’\D(‘-v700) Ko NrM
J0 FORMATI(1018) -
READ(S»700) ((CLIvJ)»I=LyK)yr J=1'N)
RE‘.AU()'700)((A(I J)'I L,M)o J:l'N) ‘
READC(S,700) (S(I)pI=1¢M) ’
NIP=N/6+1
MAKE TRANSFOR”ATION 1-X
DO2 Iz=1,K
T SyUM=0
DO 1 =1,
CIF(C{Tr ) LLELDIGO TO 1
SUMZSHMHC (T 0 )
1 C(Ted)==C(Trd)
us(1)=Sum : .
2 CONTIUE . x 1
DO 4 T1=1+M :
suyM=9) o
DO 3 J=10i
SUASSUMEA (T 0 J)
3 A(T Y DV==A(TrJ)
S(T)=S(1)-SUM
4 CONMTIMUE
‘DO 6 J=1.H
DO 5 1=1+K
IF(C(Tr)) JLE. n)GO T0 5
10{J)=1
G0 T0 6
S CONTItUE
I10(J}=0
CONTINUE
NL=0
* 1TERZ)
NIF=0
NADV=)
JADV=N
NAZO
SORT TNDECFS IN ASCENDING ORDER OF COEFFICIENTS
DO 10 I=1.M
po 8 J=1eN
IS(JI=A(T»J)
g IND(I Jd)=J
NN=N-=-1 ’
DO 15)J=1MN
II=JdJerls o -
DO 15 J=171'N ' ’ 7
IF(1IS(JU) LE, Ib(d)) GO To 15-
S ITEMPZIND(I»JJ)
INDCI,JIY=TIND (I J)
IND(T yJ)=TTEMP
ITEMPZIS(JY)

jo))



SORT THOECFES IN DESCENUINv ORNER OF C(_)STS

Ll 22 I=1."
U0 17 J=1.M
IS(J)=C(T1.J)
INC(Id)=d
DO 20 Ju= 1vNN

0 S -NNIS

IV s

A

!

DO 20 J=II/N
IF(I5(JJ).GE,IS(J)) GN T0 20
ITEMP=INCA(T rJJ)
INC(I+JJ)=INC(T ¢ )
INC(L+J)=ITEMP

ITEMPZIS (1))

IS(JNI=ZIS (D)
1S(J)=ITEWP
CONTIMUE

CONTIUE

INTYTIALIZE

I1FREEZ=N

DO 25 J=i M

Iw(J)=0

DO 35 I=1eM

DO 35 J=1.M
IF(ALT»J)) 30,3535
T(T)=TLDY+A(TI»J)
CONIT (MUE

G0 TI bs
FEASISILITY CHECK
CALLL FEAS
ITER=TTER+1
IF(JF-1) 45,400,450

CIF{KR)Y 500500150

CHNOSE BRANCING VARIARLE
IF(NL.EQ.D) GO TO 56
KBRNz=1

IF{(LZ=-NIP)56:52:52 :
IF(2+¥1.72~ N+IFRECE)S60 115301159
CALLL BRANF
GO TO 9y
KBPNZH 3
CALL \DvD4
NADV=MADV+1

IF(JD.EQ.1.0R,JB,EQ, O)JADJ JADV+1_-

IF(JD)Y 54,549,409
IF(Li4.EQ.IFREEIGO TO 550
IF(JB) 40040060
IF(Ji.EQ.N)GO TO o4

DO 65 I=1M

IS(L)=T(1)
IF(IN(J) )l rpueo9
IF(DOM(U)Y)I6H166169

+
5 DO 68 Iz1eM

IF(ATT+J))6716B168
TUDSTUD=ACL )
CONTIMUE

COMTINUE



4 Y3177 AT ) FUOrY 2700
YV IFDS1 )Y 75075080
) IN(d)‘lO :
IV=1Iv+l
IPATA(IV) =y
LZ=LZ2+1
IFREE=IFREE~1
DO 76 I=1.K
CIF(C(T¢d)LLEL.OIGO To 76
UB(II=UB(I)=C(I,J)
53 COMTINUE
) CONTINUE
po 77 J=1,ML
DO 73 1=1.X
MARG=IB(T)=LBI(T, J)
IF{MARG,GT.0)GO TO 77
3 CONTINUE
GO TI 430
7 CONTIMUE
IF(KR)Y94 94,150
BRANCH TO JB=)
4+ IV=IV+1 ,
IPATIH(IV)=IR
IFREL=IFREE~-]
IWiJ3r=11
DO 10Nn 1=1+K -
IF(C(T+JB).GE.D)GO TO 1lgg
UB(I) =UB(TI)+C (I JB)
n CONTLMUE
DO 119 I=1eM
ST)I=S(1)=A(TI,Ji3)
~ IF(A(T»JB)) 105,110,110
) T(I)‘T(I)-A(I JB)
0 CONTINUE
IF(KBRN)S500+5000610
> DO 95 I=1.M
5 T(T)=1S(I)
JADV=JADV+1
GO TO uno
1 J=TPATH(IV)
JDS=0
IW(J)=10
LZ=LZ2+1 .
DO 120 1=1+K
0 UB(1)=UB(I)=C(I,J) "
DO 121 1=1 M ‘
1 SITISS{D)+A(TI e D)
CALL FEAS
ITER=TTER+1 ‘
IF(JF=-1) 122,400,450
2 IF(KR)123,123¢150
3 MINZ9999999
JB=0
3 DO 140 J=1eN
IF(IA(J))135:1359140
5 IF(THF(J) JGE.MINYGO TO 140
MIN=INF (J)
JB=J



A AL InlaerDio LY
JDs=1 ' -
G0 T7 450 \
IF(NL)YB16+616161Y4
DO 620 J=1eNL

DO 615 I=1'K
MARG=Z3(1)=-LB(1I )
1F(MARG)61R:615;620
CONT INUE '

GO 179 111

CONT INUE

CALL FEAS

ITERZTTER+]

IF(JF=-1)4501119111
TII)I=S(I) TN ROW KR IM“LICS DFFINITE ASSIGNMEMTS

DO 250 J=1'N
CIFCINCY)Y) 160,160,250

IF(A(CR,J)) 170,250,100
IW(Jdi=12

IVZIV+l

IPATH(IV) =)
IFREE=IFREE-1

DO 1795 I=1+¢K
IF(ClTy ) ,GE,DIGD TO 175
UB(I):UB(I)+C(I&J)

CONT INUE .

D0 139 1=1/M

G(T)=S(T)=ACTHJ)

6
30

)0

3

}5
10
0

IF(A(T+.J)) 17621802180
TCIIZT(D=A(TI )
CONTINUE .

GO TU 250

Iw(J)=10

Iv=Iv+l

IPATA(IV) =S

IFREE=ZIFREE~-1

CLz=Lzer . o | ]

DO ‘191 I=1rK

IF(C(T+J) ,LE.O0)GO TO 194
uB 1 y=Us(I)=C(I.J) .
CONTIUE

DO 200 Iz=1eM

IF(ALT»J)) 195¢200¢200
TITI=T(D) =A(IrJ)
CONTINUE

COMTINUE

GO TO 500 ' ~

.G
1

15
16

FEASIMLE CHECK FOR DOM AND BACKTRACK
DO 30& I=1K .
NURI(I)=UBI(T)

DO 30h J=1¢N

IF(IW(J) . HEL.0)GO TO 3006
DO 305 T=1'K
IF(C(T»J),LE.D)GO TO 3US
HURCIY=HUBIT)I=C(I»d)
COMTINUE )
COMTINUE

IF (NLYGGB2, 4520451



A R

UO 3297 1=1+K
NGB - LQ(TvJ)
1F(M\”b) 32093109315

KK=Ki +1 '

GO 10O 320

KD=K+1

CONT INUE

IF(KK,EQ.K) GO TO 350
ALTER-IATIVE SOLUTION

IF ((KK+KD) EQ.K) 60 T0 375

DOMIHNATES A L.B.
IF (KD HF,0) GO TO 300
GO TO 499

"COMTIME

HEY LIOWER BOUNID.

NIE=ZITER

NL=NL+1

DO 33) I=1+:K

LB(OI 2 )=nUB(T)
DO 3%1 J=1+N

IFCIWGg)=10) %42!342:341

1X(Jetl)=0

GO TOU 3ug

IX(Jrtly=1
COMTIHUE

. GO TV 499
AN ALTERNATIVE SOLUTION FoR JTH LOWER BOUND

51
0

75
R0

)1

)2

10

DO 3Hb5 JJd=1+Hl

IF (16 (JJ)=10) 352,352,351
IF(IX(JJr IV HEL.1160 TO 353

60 TO 355

IF (1X(JJrd) JHE.0)GO TO 353

COMT INUE
60 TO 499
MNA=NATL
LBNHAY =Y -

DO 300 J=1N

IF(I4(J)=10) 362'362.xbl

IXA(J,NAYZ=O
GO TU 340
IXA(GJeNA)Y =1
CONTINWE
GO TO 499

JTH LOWER ROUND DOMINATED

DO 330 Iz=1:K- ;
LB« ) =NUB(I) -
DO 3313 JJ=1N

1F(IV(JJ)—10)392-392:391

IX(JJrJ)_
GO TO 390 .
IX(JJeddz=y
COHT INUE

CCOMPARE NE" LB J WITH

NAN=NL

DO 495 JJ=MNeJr—-1
IF(JJ.EQR.J) GO TO 4aQ
DO. 435 I=1K
MARGZIB (I, D =LB(I,JJ)

IHE FOLLOWING L8RS FOR DOMIMANCE

-



IF(JILEQ ) GO TO uan
RECLACE LB JJ WITH LB WL
U0 Usn TZ1eK -
.6 LB(Iy. Jd)"l_n(lvNL)
DO 447 J1=1H
BT IX(JIvJdJ)=IX(JI P NL)
88 ML=NL-1
ag 1F{NA.EQ.QY GO TO 495
WBNA
DO 395 T=1Br1r—-1
IFILB T WNE,UJ) GO TO 395
IF(I.EQ.HA) GO 10 304
LBMOTYZLRIOHA)
DO 3237 JI=1+N
07 IXA(ST»II=TXA(JLeNIAN)
an ATNA=1
Q5 COMTINUE
Q5 COMTINUE
a0 po b9 Jz1e N .
SIF(TIWD) JHEL0)YG0 TO yat
IF(IO(S) JEQ.0)GO TO yat
JB=J
KBRN=A
-JDG=EN0
‘ O TO 9y
b7 COUT I UE
IF(JIS) anne10Ne 11l
| BACK IOACKING :
$NN OB IATHTV)
IB=1.0U53)-10
IFREFZIFREE+]
IW(JBY=0
S IV=1V-1
IF(IB.EQ.0) GO TO 430
DO 4#in 1z=1+K
IF(C(T+»JB).GE,0)GO TO 4ig
'UH(I)—UH(I\—C(Ide)
+10  CONTInUL
DO #20n 1z1+M
b2N S(T)=9 (1)+A(1fun)
GO T 437
30 D0 B35 Iz1eK
IF(C(TyJR).LE.OGO TO 435
UB(I)—UB(I)+C(IrdB)
135 COMTIHUE
137 DO 470 I=1+eM
IF(A(T+UB)Y) 440 870,47V
b0 TOII=ZTCO) AT e JID)
+70 COMTINUE
IF(IV.EQ.0.AND. 8. NE 17 Gy TO 999
IF(T3=1) u71,472,400 ° '
;71 LZ=LZ-1
GO TO 40p
BRAMCH TO (IB=0
172 IW(JiBy=10
LZ=l/Z+)
Iv=1v+l
COIPATH(IVI=JUR



535 TUTY=2TLT)=A(TJB)
50 COUTINVE -
L0 oy 1Z10K
IF(C{TrJB) .LEL0)GO TO 45y
UB(I)=UB(IY=C(I,J8)
55 CONTIHVE : o
GO TO 500 - o -
50 DO 575 J=1+N .
IF(II()ISHN:5609575
6O IVvZIVel '
IPATHIIV) =)
iwlJd)=12
DO 5065 T=1M
65 SIT)=s5(I)=A(I,J}
. DO B I=iK
1IF(CUTrJ),BE.NMIGN TO 510
UB(II=UB(T)+C (I v )
70 CONTINE '
75 CONTINUE
IFREC=0
DO B3N T=1M
30 T(I)=n ) :
GO TO 500 - -
ENUMERATION IS COMPLETE
109 JRTTC (6 18R3) HKeMeM -
183 FORMAT(LHLr10Y f SOLUTTIOVRS FOR THE MULTIOBJECTIVE ZERO-ONE PRQBLEN
#0/r 11Xy WITH s e Ilrr ORJECTIVES ,»12¢rr VARIABLES 912, CONSTRAINT
%y 07/ v 1%e50 (eke)) . S
iF(ML.HE.N)GO TO 1885
wRTITE(G,1884) ITER 0 "
334 FOPMAT(///'11XrrFHUMEW“TION WAS COMPL?TFD TN,,Ieo,ITEPATIONSyp//u
*HE PROBLEM HAS 10 FEASIBLE SOLUTINONY)
STOP ‘
A5 WRTTE (680N ITERYNLPNTE
300 FOPMAT(///» 11 % t ENUMERATION WAS COMPLETED IN ,r16rr ITERATTIONSe ,»/
%9 11X 78,y FFFICIENT SOLUTTONS WERF FOUND INHI617 ITERATIONS))
bO 600 JJd=1 ML ’
ERITE(6,801) (TLB(IpJdI) e 1=1, K)
SﬁlrFOPV\T(// 10Xe5(eOBUr1ll,, = yOI7pRX))
WRITE(6,802) (Je 1X(Jed ) r =11
SN FOPMAT(/28%e150r  XerIZr,=e0I1))
IFINALEQ.N) GO TO 600
DO 657 L=1NA :
IF(L3AL)Y ,NELKJ) GO TO 65n-
CWRTTE(6,802) (Jr IXA LI L) rg=1+H)
50 COHTINUE
500 CONTIWUE :
WRITE(6»806) HADVJADV .
NG FORMAT(///010%r » ADYDOM WAS CALLED, I, TIMES AND DOMINATION wAS
FONCLUDEDy » Tlher TIMES. )
S sTOP
END



AOPEIIZBING /KR JF M 50900, T(50)
COMMOTI/BTII2 /M T (T0) o ALSY,70) , I, MTNF , HF(70) :
CO™MOM/STITR/KoUBS) ,CU9,70) Ln(s.JSO).NL,IND(50,70),IHC(,,70),Jn,
*M'UA LBHNC10) » IXA(70,10! vy 13 (5) DO (T70) -
DI“E‘J I0oH I()T(H),HNH(R) T
JD 0. .
LM=0
DO 50 I=1.M 7
IF(SCT)) 10+50050
10 L=0
- syMEn
DO 40 J=1,H
JJZTIHN(T ) .
CIF(IV(J) ) 20020040 . . , :
20 SUMSSHIMEA (T JJ) : -
S - I : ) :
| IF(SUM=S (1)) 25925140
25 IF(LM=L) 30,5050
30 LM=L
GO TO 5S¢
wp CONTI'WE
B0 COMTIVMIE . - : ,
LM IS MINIMUM £ OF VARS, THAT MUST BE 1 FOR FEAS,
IF (LA EQ. IFREE)RETURN
DO 45 I=1.K , ,
1IDT(IY=UB(T)
Ly NURIIDY=UB(T)
IF(LA.EQ.1)G0 TO 81
UO 60 I:HK
L=n .
DO 535 J=1,M
CJJTINCHTe )
IF(IA(IY)) 5151955
51 IF(CETrJJ))IS2,54,54
52 NURCII=NUB(II+C(IrJJ)
o L=bl+l
IF(L—- 1M+1)%5'%3.60
53 1DT(1 =nUB(T)
55 CONMNTINUE : -
A CONTINUE ’
DO 80 J=1.ML
DO 70 I=1yK
MARG='IUB(T)-LB(I J)
IF(MANG) 70,7080
70 CONMTINUE
Jh=1
RETUR:
80 COMTINUE
81 00 90 J=1.M
IF(IN(J))B85,85090
RL DO 8o 1=1.K
NNR(IYZIDT(I)+C (X o)
IF(NNTI(T) L6T. NUB(I))NM“(I)-NUB(I) ) ' .
B6 COMTIUE ‘
DOM (J)=999999
DO 109 JJ=1+NL,



MARGZNB (1) =LB (T dd)

IF{MADGYAS,07,94
INDMMZTDOM+MARG
IF{I0NM~- DOM(J))95.100 109

CKK=KK+1

CONTINUE

DOM(JY=IDOM .
IF(DOA(Y)MEL0IGO TO 1Y
IF(KK=-KY1010102¢101"
Ji=V

GO TY 90

poMt Y=y

G0 TO 9p

COMT I IUE

COMT I IUE

AIM=3179999

Ji3=0

DO 129 Jz=1.H
IF(IWGJ1)110,1200120
IF(DOM( -1 115,120,120
IF(DOM(N 1200120, 116
.iI’l:LVWH( J)

Jii=d

CONTINUE

RETURY

END



CINTEGFR ALS

COMMON/BTI /KR dFoM'z("O),T(V)n) ‘ ‘
COMMOI/RTIM2/Ny TW(TO) v ALS0,70) pJi5e tIRF, THF (70)

CHOSLIS BRANCHTING vARIﬁ“LE ACCORDUEG TO MIN THFEASTIBILTTY

MINFzA9q900
DO 20 J=1,M
IF(IH(J))1r1020

0O 15 I=1.M
1IF(S(T)1)2 rl‘)vl")

IF(AET»J})3r15215
IMFLUY=0-

PO 10 Ii=1M
ITEMPZA(ITPJ)=S(TT)
IFCITIrMP)Y1021004
INFUYZINF(J)Y+ ITEMP
CONTINUFE

IFCINME (DY -MINF)11+20r2U
MIMF=TNF (J)

JB=d

GO TO 20

COMTINUE

COMTIMUE

RETURN N

END '



SUARIITINE FEAS
1 ITEGTR &, T
CO™NMO /3T |1/KD.JF MvS(“’O),T(Jn)

- RR=0

JiF=2
DO 30 I=1.,M

CIF(S(T)) 20030030
JF=0.
S TMS=T(1)-S(1)

IF(TMS) 30024,22
JF=1 ‘
60 TO 51

KR=T .

conT TMURE

RETULRM

END



SOLJTIONS SOR THE MJLTIOBJECTive ZERD.ON:Z 0R0slgy
AlTA 2 23)SCTIVES 12 VARIAILES 10 CONSTRAINTS

.ct;t‘t‘ttttgqitt"tt"t#ttU'tt‘tt*#*ttt‘tyctt“*l‘
‘/
. |
ENJUMZIATION 4AS COwALeTZ)y IN 145 ITERAT{ONS

7 SSFICTENT SOLJTINNS wIRE FQUND 1IN 53 tTERATIOS

o8Jy = - 234 n3Jp = 280’ 284
X 1=0 X 220 ¥ 3=1 X 420 X g=1' X 6zl x 731 . X

-

ogdy = 236 . 9M8Ja =’ 325 © 0BJ
X 1=0 X 2=1 X 3=1 X 4=p0 X gz X.bﬁl_ X 721 X

08J1 = 303 . 08Jd2 = 275 98J

X 1=0 X 231 X 3=0 X %20 X g={ X 6z1 x 731 X

03J1 = 314 28Jp = 270 9BY

X 1=0 X 221 ¥ 3=1 X 421 X gzg X 5z1 x 7=1 X

03Jdy = 315 03J2 = . 59  9BJ

X 1z0 X 2=1 ¥y x=1 X 430 X =t X 5=z1 x 7=1 X

09Jd1 = 255 ads 3 oYy aBJ
X 1=z0 X 2=1 .Y 3=0 .X %=1 X s={ X 5=1 X 7=1 X,

23J1 = 247 A8dy = 289 280

s

X 120 x 229 x 3=1 X 4=1 . X sz X 5=1 x 77t X

AJVDIM 4AS SALLED 57 TIMES ANn nOUINATIOV 4AS CONCLUD:D

CAJ TyvZ = 1040  VILLTISECAnNS

R=p

azg

Rzqp

9=1 X10=p

9=1 X10=zq
az=1 X10=p
9=1 X10=n

9:1 X10=0

a=Q .Xlo:q

.

n:n_ i10:b

23 T{MES,

x11=0
x11=0

yl1=0

“x11=0

Xx1i=0

Yiiz0

x11=0

X12=1

Xq2=1

Xy2=1

X12=0

X12=0

X12=0

X12=0
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