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ABSTRACT

In this thesis, solution procedures for multiobjective
linear network' problems and bicriteria fixed charge network -

problems are presented,

A labéiingvalgorithm for.mulﬁiobjective linear network
simplex method is developed by incorporating a method of

multiobjective LP and extended to the case with lower and

upper bounds on the arc flows.

“

A branch -and bound algorithm is given for the bicriteria

fixed charge problem in order to generate the efficient extreme

points,



DZET .

Bu tezde; ¢ok amagla dogruégl serim probleﬁieri ve iki
amagli degigmez maliyetli serim problemleri igin ¢oziim ydn-
témléri anerilmektedi;.

Gok amagli dqgrusél serim;probleﬁlerinin baskin ug
‘noktalarini serim simpleks,ySntgmi kullanarak¢buIAnrbir al-
goritmévverilﬁigtir. Ayni ;lgofitmé ayrit lizerinde alt ve iist

sinirlar oldugu -durum igin de genigletilmigtir,

1ki amagli degigmez maliyetli problemlerin baskin ug

noktalarinin bulunmasi igin bir dallandirma sinirlandirma al-

.

goritmasi Onerilmektedir.
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CHAPTER 1
INTRODUCTION

: Most of the decision making prqblems‘éré mul;iple
'6bjective in natéré, In some of the‘deéision pfoblemslan
important objective can Be selected as thé'sipgle objective
to be optimized! hbwevér in most cases.therebmay be more than
one conflicting and noncommensurablé objectives, Espechﬂly,‘
~in public decision méging‘problemé, the decision maker has to
make the best decision basedvon the genéral duties and
objectives. The models developed by using a single objective
__cén be optimized by the powerful techniques of‘optimizatidn,
but may fall short of expréssing the real decision problem.
When the other objectives thch are as important 'as the
6bjéctive considered are incorpo:atéd, a mofe'éxpressive
model of-thé déci;ion prdblem may-be-forﬁulatéd but ig
requires somewhat different solution teéhniques than the

traditional ones.

During the last decade, mathematicians, operations
researchers, and researchers in related fields have contributed

extensively to research in multiple objective optimization.

The solution to a multiobjective optimization problem,

N



.generally, is not a single point but a set of efficient e

L

-

points, The set of-efficient>points is defined‘as'the_setgof

points where an 1mprovement in one of the obJectlves can only

be gained at the expense of at least one of the other obJec-

tlves. ’ ' - , B //
o : : // :

The methods developed for finding the preferred
solution fall into two classes: (i) finding the efficient
sblution set and then selecting the preferred solution
according to the preferences of the»deéisibd maker, (ii) taking

the preferences of the decision maker into account through

the use of an interactive procedure.

TheAmethods whiéh‘haVe.béep‘developed fof mulpiobjec—
tive Analygis havevfound;applications mostiy in strategical
'plgnning;probiems such‘as‘sectoral economy planning,,ene:gy
.pldﬂning, water resources planning, pipeline network planning,

facility location planning and firm planning[S,ZL].

Ny

hetwork probiéms fofﬁ a class.of the most established
probiems of operations research, Maxiﬁum flow, ﬁinimum cost
fiow and the shdrtest path problems are amohg'the best known
network problems. There may.be more complex decision probleﬁéA
which'mayArequife simultaneous considerafion of méxhﬁzation
of flow wi;ﬂ miniﬁization of one or more measuresfof,cost as
multiéie objectives, Tﬁese thrée network pfoblems can be
“formulated as L?ibrébléms,'bg; there'are'more efficient

~aigorithmé for solving such problems'tﬁan the general simplex

.



method[3]. These algorithms have been developed based on the
'speicial structure of the network problems Une such algorithm

is the network simplex algorithm,

In this thesis, solution procedures for generating the
set of efficient extreme points for the multiobjective linear
network problems and multiobjective fixed charge network

problems are_analyzed. Throughbut the thesis, the enumeration

i

of only the efficient extreme points is attempted.

. In chapter 2, avsurvéy‘of'multiobjectiVe optimization;
especially, multiobjective linear programming in.sqme detail
is made, soﬁe major'netwofk problems are sta£e§ and reports
oflreséérch and applications on multiobjéctive‘network
 problems are reviewed. Then some possible application§ of
the models tackled in the third- and fourth;chapters are

proposed.

In chapter 3, a labeiing'aigorithm‘for mﬁltiobjective
linear network flow‘pfoblémﬁ is giVén. This algorithﬁ'is a
modified iabeling algorithm ofvnetwork\simplex method which
includes the efficiency check éroceduré and the concepﬁ of
monotone connectedness properity of the set of efficient
extreme points developed reqently[lﬂ, In order to inéorporaﬁé
the maximum fiow objeétive, che;algoritﬁm is_extended to

handle the upper and lower bounds on the drc flows,

In chapter 4, a branch and bound algorithm is given to



handle the bicriteria fixed charge network probleﬁ,.The
algorithm is based on the branch and bound algorithm for the
fixed éharge.problem developed in[27]. The algoriﬁhmrfinds
the set of effigient extreme points when the fixed chafgé

- objective and the 1iﬁé§r objective aré‘handled/as'Seéarate
objectives, It‘is'possible to extend this solution procedure

- to. the case with more than two objectives.,



CHAPTER 11
-LITERATURE'SURVEY

11,1, MULTIPLE OBJECIIVE OPTIMIZATION

II.1,1. INTRODUCTION

In the 1i;éfature; generélly! the mditiple criteria
optimizafibn problem has been formulated as a Qector’maximif
" zation préblem and all of the effiéiency check procedure§ are
given with ;especf to the’ma*imization‘prob}em. Alﬁbough the
problems considered in this thesis are minimization problems,
to be‘consisﬁent'wiﬁh the'liﬁerature, the éurvey will be

developed on the maximization problem.

The general multiobjective decision making problem may

.

~be formulated as follows:

, Maximize F(x)
(II.lolql) s.t. ‘ n . ' .
x e X ={xe R"; G(x) < 0}
F(x) is an f%-vector of objectives and G(x) is also a vector

valued function of dimension m.

Methods involving multiplé objective decision making
" problems rénge,from finding the "best" (i.e the most preferred)

solution by using the known utility function of the decision



maker, to finding the.set of ail efficient solutions wi:hdut
having a priori preference weights of the décigion-maker.-
There .are methods in Betwéen theseﬁ;xtrémeé beihg closer to
vonevend such as brogressive determination of the preferenceé
of the decision maker By interacti&é methdds[Bé] and

- generating a relevant subéet of effjcient solutions corres-

ponding to the preference interval specified by the decisiqn

maker[19,28]+

However, in this thesis the_methodé of fiﬁding.the set
of all efficieht extreme éoints wi;hout having a[prioiif
preferences of the decision-maker will be examined. Therefore,
the solu;ion to- the multidbjebtive optimization proBlem is
defined to be the set of'éfficign; points., The ;fffgieﬁt
solution is defined as foliqws:

Definition II.1.1. The vector x2 ¢ X is efficient‘if there

‘exists no x € X such that F(x) i‘F(xo)*.

~

Two basic approaches have been developed for t&f
Asolution‘of the problem stated above. One 'is the parametric
aﬁproach by which, if the objective space is convex, the set

of all efficient, solutions cén‘be found by solving the

*  The convention ehployed using inequalities is as below:
Let x=(Xy1,+...,%p) and y=(y1,...,y,) then

i) x=y if and only if Xj=yj for ail j=1,...,n.
~ii) x2y if and only if xj2yj for all j=1,...,n ,
iii) xiy‘if‘and only if Xi2Yj for all'j=1,;..,n and x#y. .-

'



parametric optimization problem[ 6].

Max AT’F(X)

(11,1.1.2) °°F
: : x € X
A > 0

" The other apﬁroach is the constraint'approach where
onekof the objectives is taken as a primary objectiye and the
~§thers are added iﬂfo tﬁé constrainﬁiset to bevsatisfied'a;
the values which have been specified[lﬁ]. The~cdnstraint
‘épproach'probiem is formulated as: 

Mag fl(x)

(11.1.1.3) °-°¢

x € X

N . | fj(X) z_aj j‘=2,ou'.’2:

IWhérejthe ;ight'hand side aj‘wiil_be changed parametricélly.
Here the sélutions to the>prob1em with all ponéero lagrange
variables assdciated with qons;faintsvcprresﬁonding to. the
objectives are éffiéient. The constraint approach haé an
advantage over the parametric approach in generatiﬁg the
efﬁicient solution set even when the objective space 1is
nonconvex, where the parametrié‘apprdach fails to generété

all of the efficilent points.

IT.1.2, MULTIOBJECTIVE LINEAR PROGRAMMING

‘A multiobjective linear programming (MOLP) problem is-

formulated as follows




(II1.1.2.1). Max

- where CT is an _row vector of dimension n being the

coéffiéients ofiith @bjeétive‘fgﬁction. A is an amxn macrix

- of the caefficieﬁcé'of the coﬁstraints, b is an m-vector of

phé_right,hand sides and x is an n;veqtor of the deci;idn

~ variables. Since the. generation of all'efficiént-extremé

points is'aimed in this thesis;>only the generating approaches

relaﬁed with the efficient ektrgme pointé will be surveyed.'
The methods for generating the efficient extremé ppints

of a MOLP'problem are-based on the theofy‘of linear programming, -

the simplex method and the parametric linear programming.

! A

‘'The set of efficient extreme points is a gohnected'éét\
,that.ié, there is ;ither only one point in the set or théré-‘
is path of adjacént efficient extreme points between any ﬁwo~‘
points in the set. Therefore, it is possiblé»to enﬁmerate all

efficient extreme points by starting at an efficient extreme

point and going through only the pfficient extreme points.

The methods reported in the literature differ in the
efficiency check procedures and in the enumerating paths
through the,efficient vertices‘of the cqnvek polyhedron.

Several authors have prbposed procedurés for the.efficiency



check and enumeration of thé éffigient extreme points., A
comparative survey of these procedures idcluding the .
géneration of the non extreme efficient points is given ia
‘Klzlltan[lg] Here, some of thése procedures will be briefly

.mentloned and two of them will be d1scussed in more detall,

The Eirgt effiéiency'chéck subproﬁlems.aré proposed by
Philip[24].'He giveS’tWO different Lf subproblems to éheck.
"the efficiency of-a glven point. He also indicates how tﬁ
find anotherveff1c1ent extreme polnt once aﬁ initial efficient
p01nt is found. Steuer and_Evans[ll] glve a revised simplex
method for MOLP" problems. Ecker and Kouada[s ] give a method
for finding all ef1c1ent extreme p01nts by determination of
the efficiency qf an edge 1nc1dent to an e£f1c1ent é#treme

point.

Zeleny[31] gives an efficiencj check subproblem. The
basic feasible solution x© is efficient if and only if. the

“

maximum objective value of the subproblem below is zero.

Max 'eTs

(I1.1.2.2) s.t

x e X={(x, s)lx e X, Cx=s>Cx%,5>0}

Since by .the definition of efficiency there can not be x ¢ X

such that Cx > cx°,

Starting at an efficient extreme point, this

sdbproblem ig solved for all adjacent extreme points which




‘are not db&ioﬁsly dominated and the adjaﬁent efficient
extreme points are determined. Then going to one éf them
thch is not explored al:eady'and performing the efficienqy
check procedure forvall adjacent extreme pointé to ﬁhat
extreme point and repeating thisvbrocéss all efficient

extreme points are enumerated.

Isermann |17] states the equivalence of muitiobjective
linear programming problem (II.1,2,1) and.the_linéar

multiparametric problem below.

Max ATCx
. s‘t
o x e X
A >0

Théoreﬁ: I1,1.2.1. x® is an efficient point for the
muitiobjective linear préblem (I1.1.2.1) if and only if there
exists a A > 0 such that x° is'én optima1 éo1ution for th;
“mgltiparametric'iinéaf problem:(II.1.2.3). Isermann gives

the foilowing adjacency‘definition for the efficient

»

extreme points.

Definitdon: II1.1.2.1., Let x' and x" be efficient basic solutions.

x"and x" are said to be adjacent if and bnly if,

(i)  x' and x" have (m-1) basic variables in common (i.e they

are adjacent vertices) and



(ii) each x = ax' + (L-a)x", 0 o< 1is efficien;.'

Furthermore, he gives the definition of dual

feasibility as follows:

Definition: II.1.2,2. An efficient basic feasible solution x'

is said to be dual feasible if and ohly if the system

has no solution, where R is the reduced cost matrix associated

with the basic solution x'.

Dugl fedsibility 6f.a basic feasible solution is a
sufficient condition forrtﬁé efficiency of a basic feasiblé
solution of the multiobjective linear pfogramming.problem.rlt
'is also necessary for the efficiency of a nondegener;té basic
feasible solution. A degenerate basic feasible -solution may
be efficient without being dualyfeasible; b%t.at least dqe of
the degenefat; efficient basic solutions which gepreseﬁt thé
same e#treme point in the convex polyhedron is dual feasiBle,
Thus, in order to obtain al} efficient extreme pdints

determination of all dual feasible bases is adequate. Isermann

gives the following definition of the solution:graphs.

Definition: II.1.2.3., Let E be the set of the dual feasible

- bases and L = {(x",x?) x" and x) are adjacent dual
" feasible basic solutions}. The undirected graph G = (E,L) is

the solution graph.



He gngs the>proqf that-the solution graph G is finite
and connected. Based on this fact he gives an algorithm to
enuhefate all dual feasible bases. Klziltan[l9].gives an
élgonitﬁmvté enumerate all efficient_extereme pqints w@ich is
ba;ed on the dual feasibility concept{ The'monbtone
conﬁectedness broperity'which is 'stated in the foliowxng
theorem provides an efficient procedufe for enumerating all
dﬁal feasib;e baéeé ;hrough a path of efficienﬁ edges along-

which the value of a specific objective is nonincreasing.

"Theorem: II.1.2.2. Each dual feasible basié, exéépt the one.
where, objective k attains its maximﬁm, has at least one
adjacent dual feasible-basis.obtained 5y introdﬁcing a non-
basic variabievis with the associated reduéed cost coefficient

of the k ;h objective is stfictly less -than zero.

‘Kiziltan gives the following LP subproblem for the

efficiency check.

Min s
(II.1.2.4) s, t .
RIT v 4+ s = RJ? e’y ¥ j e P

v>0,3s>0

where RJ is the j th column of the reduced cost matrix, and
P = {j/RI # 0}, If the minimum of sq is zero then entering xq

will lead to an efficient basic solution,

Stérting at the dual feasible basis where the k th

objective 18 at its maximum it is only required for the non-



basic variable xq such that quvl 0 is ﬁo be éhecked whgthér
they lead to an efficient basis or not. Employing some

additional tests eliminates the need for solving the sub-

problem for each x_such that R, > 0.
v q - qk -
II.2. SOME MAJOR NETWORK PROBLEMS

I1.2.1. INTRODUCTION

The theory on networks is closely related with the
gmaph.thébry.and the same terminology is used. The following

‘definitions are employed both.in'gfaph'thebry and networks.

A graph G(N,E,9) is a collection of nodes denoted by

the .set' N and edges denoted by the set E. ¢ is the incidence

telationshipé bétween the nodes and the edges. If the links

have directions then the graph is called as a directed graph. -

A chain is a sequence of links cdnnectfng~aﬁy two
nodes, when thé di:ectionAalong,Aﬁhe Chain“iS'Specified,
then it is called a path, If the initiél and terminal hddés
of a-cﬁain is the same fhen.it is,called_as a cycle, |
similarly if the ihitiallana terﬁiﬁal'hodés;of‘a path is the

same then it is called a circuit.

A graph is said to be connected if there is at least.
one chain connecting every pair of nodes., A trée is a

connected graph with ao cycles. A spanning tree of a graph

. G is a subgraph of G which forms a tree including every node




of G. If there is an one ended arc outward from a node of a
spanning tree then it is called as rooted spanning tree. The

one ended are is called a root,

A network is a graph which has weights associated with
the arcs. A source in a network is a node with all of its
arcs are directed outwards .and a sink 1is a node with all of

its arcs are directed 1in.

"The theory oﬁ networks can be’applieafto a wide range
of érébléms from diverée areas such as electrical networks;
cbmmunication systems, transportation systems, information
theory énd data'strﬁctures, project_planhing and bfoduétibn-
scheduling.bIhe problems which have the special érOperities
of the’network structure, not necessarily repfesenting a
ﬁhysical ngtwork, can be formulated as network models. For
_sﬁéh problems, special algorithms which are more efficienf
than the general methodé have been developed by éxpioiting

the network s;ructufe.

Three main network éroblems are shortest path,‘maximum
flow and the minimum cost flow problems;,Theée problems will
be reviewed bfigfly in the following segtions; By using
logarithmic transformation the network problems with
mhltiplicative objective function can be formﬁléted as shoftéét
patﬁ‘proﬁlems. That simplé transformatioﬁ technique employed
‘in chaéte: 4, Maximum flow and minimum cost flow objectives

can be handled in the same multiobjective minimization



formulation., The solution procedure proposed in chapter 3
has been derived from a solution method for the minimum

cost flowAnetwork problenm,

I1.2.2. THE SHORTEST PATH PROBLEM

Given a directed network with the distances assigned
on the arcs, the problem is to find the minimum distance path

from one specific node to another,

The shortest path from a node to another node (gr‘all~
qthgg nodes wbich:aré determinedrjointfy) can be found'when
the network has no négétivé cycles, One"bf the most efficient
shoftest_path algorithm for networkg with positive arqs.is
Dijkstré's.algoriéhm with O(mz)‘computatiéns and comparisons,

where m is the number of nodes[20].

II.Z;B. THE MAXIMUM FLOW PROBLEM

Given a directed network with arc capacities,”the:
prdblem is to-maximizé ;he.flow from a'sodrce to a sink. The
concept and algorithm is due to Ford and Fulkerson[13]. They
give the theorem of max-flow min-cut stating the maximum flow
fthrqugh a capacitated nétwork from the source to the_éink is
equai to the capacity of the minimalfcut;_Thé constructive
- proof éf the theorem leads. to the'maximuﬁ flow=algorithm[12].
Ford and Fulkersoﬁ's max-flow'algorithm is the Eirstilabeling

algorithm in the field. .




The maximum flow problem may‘be,formulated_as follows:

max v
S. t.
v, if i=l

m N m ' 14 . .

LT T T 0 i er

J ' | =v , if i=m

0 < xX,, <u,.
- 13 = 1]

The max-flow problem canvbejgeneraliéed to a multi-
sOurce‘muitifsink problem by adding a pair éf'nodes~being:the_
super source and the supef sink and.arCS connecting the super
sourcé to thevédurces and the sinks to the super sink as in

figure II.1,

. Figure II,1

If there are capacitated nodes in the network, they
can be handled by creating two vertices instead of the
capacitated node, which are connected by an arc with the

capacity of the node, as in Figures II.2.a and II.2.b.

Figure II.2,a. . ' Figure II.2.b,



I1.2.4. THE MINIMUM COST FLOW PROBLEM

4

Given a directed network with unit shipping costs on
the arcs, the problem is to find the flow vector, composed of
arc flows, which satisfies the supply and demand contraints and

minimizes the cost.

The well known transportation and transshipment problems
are minimum cost flow problems. The most general of such

problems is the minimum cost circulation problem.

I1.2.4,1, The Transportation Problem ..

The problem is to find thé ninimum cqst.floﬁ in a
Bipartite graph, where the two kinds of'nodes arelotigins and
vdestinations; There can be arcs only frbm origins to
destinations, The problem canfbe formulated és,fmlléws:

-

‘min 53 c‘i," xi.
' ) (an) . J J

(I1.2.4.1) s.t _ n |
m : : .
=] o '

x, > 0.

In order to have a feasible solution to the problem
"above the total demand mus::be equal to‘;he t@tal supply, that

is



m n
pX s, = L di
i==] j=1 -

If the total supply exceeds the total demand or vice versa
a dummy destination or a dummy source must be added with the

difference as its demand or supply.

The problem may be solved by the efficient transport-—

ation algorithm rather than the general simplex method.

11.2.4,2, The Transshipment Problem

If there are nodes which are neither supply nodes or
demand nodes in the nétwprk,_then the pfoblem is the trans-‘
shipment>problem. The traﬁéshipment problem can be converted
into a transpofta;ion problem and solved by the transportation
algorithm or by the netﬁork simplex'method-of_linear
progfamming[3 ]. | |

~

I1,2,4.3, The Minimum Cost Flow Problem

If it is possible to send the flow through the other
sources and sinks, that is if there can be transshipment
from a source or a sink, then the problem is a minimum cost

flowvbrobiem and can be‘fprmulated as follows:



(II.2.4.2) L os.t.

Z X.. - Z X o_bi » 'i_l;o.lo~.|n
x.,., >0, ¥ (ij)

Nodes with b, > 0 are called source nodes, with by <0

sinks and with b, = 0 are transshipment nodes.

" If there are upper and lower bounds on the arc flows
the nonnegativity constraints are replaced by the bound
constraints such as x., > 2.. and x.,, < u,.,, where %£.. and

, » 20T = Tij S R ij

'uij‘are the lower and the upper bounds on the flow of arc

(i, ).

The minimum cost network flow problem 'can be solved
by the network simplek method which will be described and.

used in the next chapter.

~

The probléms stated above’can be reformulated as a
minimuﬁ circulation problem by adding a return flow from the
sink té the sources. This formulation is the most general of.
thé network fléw problems and ééh be used in multiple

objective network programming.

The'out-of—kilter'algorithm requires this formulation.
This algorithm is an another éffitient network flow algorithm

vwhicp is due to Fulkerson[10].




IT.3. LITERATURE SURVEY ON MULTIOBJECTIVE NETWORK PROBLEMS

In literature, there are very few papers dealing with
‘developing efficient methods for multiobjéétive network

analysis, however, in the field of application, multiobjective

methods are required.

In this section, six papérs will be surveyed. Twa of
them are proposing methods for biéfiterion tfansportation
pfoblemé; oné is an ad#ptétion of a methoa'developed'for
general multiobjective linear progfammingvprpblems to the
transportation problem; the other one proposes multiobjective
shortest. path algorithms and the remaining two report models
and solutions for real life multiobjective transshipment and

shortest path problems.

" Aneja and Nair[1] gi;é an algoritﬂﬁ for bicriterion
trénséo;tation prqblem which finds'the efficient extnéme
points in the‘objective space, Sincg the objective space is

"convex it is possible‘to find the set of the efficient
extreme foints by parametric.search in the objective space.
Thé algorithm starts with finding the minimum of both
objectives,“and generates other efficiént extreme points in
the ijeCtive épace by repeatedly solving the tfansportation'
problem which minimizes a positively weighted average of the

objeétiﬁleunctidns. Choosing two points r and s in the ]

objective space from previously stored pairs of efficient

extreme points, new weigths for the weighted objective



function‘are>céléulated as a{r,s) = | ; - z;| and.aér’s) =
[zi —_zil whemazzldenotes the value of the ith objective at

‘these weights either generates a new efficient extreme point

in the objective space or ends up at one of these points. -

1f weighted minimization results the point eiﬁher r.or
s a new efficient extreme point is not generated but thé pair
(r,s) is.excluded from furthef consideration. If a new
efficient exﬁremerpoint’k is éenerated the two pairs'(r3k>>
~and (k,s) are added to the set of'paifs_of.efficient point to
be considered. Since the set of efficient extreme points is
finite thé'algorithm terminates in finite number offxefa;hn$.
.-It is reported that the algorithm terminates exactly at 2k-3
iﬁeratidns, if there are k (k>2):effiCient extreme points in
the quective space. A thirdvobjective of minimizing the
maximum time . is incprporéted by an outer ioop using the

bicriterion algorithm,

Srinivasan and Thompson[26] give another ‘parametric
bicriterion algorithm for finding cost verses average time
trade—off curve for multimodal transportation problem. They

point r. Minimization of weighted objective funétion with
state the problem as follows:
|



Min

(11.3.1)_ © s.t,

ik *ijk
*1jk 2 0

where cijk is the unit cost of transportation, t. the time

ijk

of shipping and xijk the amount of shipment from origin -i to
destination j with mode k. The right hand sides s, and dj are

respectively the supply at. i and demand at j.

In this formulation the average shipment time is

expressed as weighted average by the shipments x... as below:

1jk

- t,., ¥X.. [ I s..
1,3,k 1Jk ijk ;1

N

‘Since I $; is constant they use the second objective function
in the formulation. They solve the bicriteria linear
transportation problem by an parametric algorithm they have

developed.

Ihuente[30] gives twé algorithms for the multicriteria
Qhortest path brobieﬁé. The first methqd is a dynamic
prégramming;appfoaﬁh for gcyclic networks. When there exists
an f%-vector of lengths associated with eadh arc -the pfoblem

is to find the efficient paths from the source to the sink,



. The nodes are renumbered such that i < j if there is arc
- (i,j). Since the network is assumed to be acyclic this can be

done. Thus, dynamic programming equations are given as:

£, =0
£, =eff (f5 + dy;l  i=2,...,n
Yoga

d,, = o if (j,i) ¢ A

Using operatbrA"eff", he means all the efficien@ paths to
node i from node 1 is stored. The'node; have labels L(i) with
2+2 entries which denote each efficient path from node 1 to
each node i, The first andvthé second ehtries indicate the
preceding node and the numﬁér of thé efficienﬁ path coming
from the previous’node_respectivélyrand the ;emaining L
entries ﬁave the values of the & criteria of the efficient
path_specifiea by'the label.

Y

The second approach proposed by Thuente uses interval
criterion weights concept which is due to Steuer. He obtains

2-1 combinations of lower and upper bounds of the weight
2‘ .
interval such that I w
b k

weighted shortest path for each feasible combination of the

= 1. It is proposed to find the

‘weights.

These concepts about two proposed algorithms are given

very briefly and are.not developed into cqmpletg algorithms.




Isermahh[lB] constructs a multiobjective transportation
problemrin-order to enumerate‘alliefficient solutions of a
lingar muitiple objective transportation problem based on.the
‘pyevious results he has repofteéuin[ 17]for efficiency check

and enumeration of the efficlent solutions which are reviewed

in the first section of this chapter.

Moore, Taylor and Lee[23] néport‘a mﬁltiobjective
trénsshipment mo&el which is éolved by.gaaivprogramming. The
‘problem has two parties involved, onevis the management'with
the objective of cost minimization, the other is tﬁe labor
union with a set of objectives such as shipping trafficvf:om
a sﬁecific plant to aISpeéific warehause - to be minimized; or
maximum of 50 pérceﬁt.of total supply will be transshipped
through's?ecific warehauses;-The probiem ié formulaﬁed,into.
a goal prégramming model. The objective of weighte& deviations is
6ptimized and‘paramet:ic analysis performed'on ﬁhe weights,

The solution procedure is general and does not use the

- special structure of the transshipment problems.

Egberg, Cohon and ReVelle[g ] report an initial Qork
on'a'mgltiobjeétivé anélysis on the location planning of gas
pipeline system from--offshore plétform-to an onshore plat-—
form. The ﬁain objectives of thé sjstem stem from the high
_éost and potential environmental impact cauéed.-They report
that nﬁ explicitly multiple objéctive models have been

adressed to gas pipeline network system as a whole. Environmental
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agencies have developed policies to minimize the number of
pipelines and to confine them to a few specific pipeline

- corridors., The préblem defined'as a-shqrtest pdth problem
.’with hqltiplé objectives but formulated as an LP problem. Two
reasons have been repoited for the LP formﬁlaﬁion. The first
is the difficulty of the pdét—optimality analysis in shortest
path problemé,vsecond is the intention‘to inélude the netwbrk
~gathering and processing’facilities'intorthe-model. The
parametric objective weighingzmeghodfis*ﬁsédfto handle the'.
miﬁimizétion the corridor length, wetlands agéa,-forrested

area and developed area in the corridor.

et ANIVERGHTESH KUTUPHANES!



| CHAPTER 111 - |
MULTIOBJECTIVE LINEAR NETWORK FLOW PROBLEMS

II1.1, INTRODUCTION

An important.sﬁbciaés'dffmultiobjeétive network problems
.are multiobjective linear network flow problems. The cost of
'sending_the flow from some supply nodeé to .some demand nodes
1is, generally,ialliﬁear function of the flow. Someother linear
measures, for instance, an environmental cost measure, or the
>cosg of deterioration of the flpw as indicatéd'in[l,g] ~can
be incofporatea. Sometimes,»maximization or minimizat%éq of
flow on some arcs is ‘required. Oﬁe other rélevant probleh
can be fo maximize the flow through the nefwork.simulgéﬁeousiy

with the minimization of the other cost objectives.

These type_df‘probieﬁs can be formulated as follows:

r 1 "_
cC.. X. .
ij ij
Min .
© (III.1.1) et x
tot ' ij ij
s.t. o
n n .
.2 *X.,. = Z,'xki - bi-’ i=1,2,...,1
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WF have & linear objectives to be minimized, where
c?j' ﬁk;l,...,ﬂ} is the unit shipping cost due to objective
k on the arc (i,j);'The constraints of the problem are the
-flow‘conservatipn eduations of the network, The difference
between the tétal flow into and out of a node ié euni to Bi
{i=l,...,m}. The right hand side of the constraints, bi’ is
equal to the supply generatéd.at node i. If the node i is a
source node bi > 0, If node 1 1is an‘intermgdiate node bi =0
aﬂd if it is a sink then Si < 0. The total supﬁly is equal to
the total demand, that is ? b. = 0, ,

L i==]

The problem éosedAabove is a MOLP problem and it caﬁ be -
soived by one of the methods developed ﬁor MOLP problems. -
Although.the‘iinear nefwork flow problems can be solved by
the simplex method, a network‘simélex method has been developed
by éxploiting the special structure of the network pfoblems
" which 1is more éff;cient'tha@ the.other approachés[ls].
Also, in thé mulgiobjectivellinegrvnetwork problems a ne;work'
simplex method prdvides an efficient procedure for finding

the efficient extreme points.

II.2., REVIEW OF THE NETWORK SIMPLEX HMETHOD

The: coefficient matrix of the constraint set of
(I11.1.1) is the node-arc incidence matrix of the network.
The coefficient matrix does not have full rank. If we select

an (m-1) by (ﬁ—l) submatrix we form a nonsingular matrix. There



are m nodes with flow constraints and the rank of the
coefficient matrix is (m-1). Since the simplex method
requires a full rank constraint matrix, an artificial

variable corresponding to a node should be .added to form a

matrix of rank m.

Every basis for the minimal cost network flow problem
corresponds to a roted spanning tree, and'every rooted
spanning tree is lower triangular; thus every basis is

triangular,

A matrix is totally unimodular if the determinant of
every square submatrix formed from it has value -1, O or +1,
In the network problem any column of the coefficient matrix

corresponding to arc (i,j) contains exactly two nonzero

‘eleménts a‘"l" in row i aund 5_"71" in rdw j..Thé coefficient
‘matrix of a network fiow problem is totally unimodular. Thus
‘the basis matrix B is’unimo&ulaf>whichbimplies that B~! is an
integer matrix, fgr‘afbitra;y integer right hand side b,

every basic soluﬁion formed as (XB,XN) = (B-l'b,>0) is
‘integer. Proofévcan be obtgined from Bazara gnd Jarvis[3 ] and
,Garfinkel and Nemﬁausér[14]f The triangulérity of the basis
métrixtpermité an efficient de;ermination-of the dual variables

and the values of the basic variables directly on the network

‘
-

- through a labeling procedure. .

If lower and upper bounds are present on the arcs an

élgorithmrfor the bounded network can be used. In this case



the arcs at either their upper or lower bouunds are. considered

nonbasic,

A Labeling algorithm for the network Simplex dethod
with lower and upper bounds. is reported in| 3]. It is stated

as follows:

Initialization Step

Start with an initial feasible basis, and set the basic

variables to their required values.

Main Steps

1) Compute the dual variables W i=l,...,m set wm=0.
Comppte WiyS going from the root to the other nodes

through the basic arcs.

2) For each nonba51clarc compute zij - cij = wi-wj-cij.
If 25 T ©ij < 0 for all nonbasiclvariables at their
lower bound and zij;- i3 > 0 for all nonbasic

variables at their upper bound. Stop, the present

basis is optimal.

If for a nonbasic variable X353 at its lower bound

z - ¢;;> 0, or if for a nonbasic variable at its upper
iT | ont A

ij

bound the reducad cogt 6oefficient is less than zero, then

such an arc is a candidate fqr an entefing arc.

3) Entering one arc forms only one cycle wifh the
spanning tree associated with the present pasis.

Through a labeling process determine the leaving

arc as the first one which will go to its either



ﬁ)-Perfofm the fLow’change by backtracking through
the labeis on the cjclgvfokmed in step 3.4‘

5) If the entering variable’goes from its lower bound
to its upper bound or Qice versa, Thé leaQing
variable énd the engering variable afe'the sﬁmé,
and'the~basis’is preserved returﬁ to stép 2.
Otherwise, remove~thé leéviﬁg vgriablg from the
basis'and'adfvﬁhe‘entefing Variab1e>to the‘basis.

Return to Step 1..

‘I1I,3. THE MULTIOBJECTIVE NETWORK SIMPLEX METHOD

i

|
bound and éiéomdetefmine the maximum flow change Ax.
For finding all efficient extreme points of a multi- |
objective linear network problem network simplex:frame can be 1
. . . N - i

|

used instead of standard simplex format.

The basic ﬁddificatighs of the single bbjective
algorithm are:
1) An ﬁxl‘métfix of:dual'va:iables w? are. calculated
2) An 2xn matrix of the reduced costs Qfe calCulated.°>
3) An effiéiency check sqbproblem is'embedQed |
4) The calculation of the‘valués of the basic arcs,

.

for‘any given basis, is added.

The fourth modification performs the generation of a
required basic solution solution which.may require several

piroting operations in the simplex tableau format through a



labeling and backtracking process. This convenience is due to

the network structure of the problem.

Since the set of efficient basic solutions is connected,
starting at an efficient basic solution all of the efficient
extreme solutions of the convex polyhedron defined by the

flow conservation conservation constraints can be enumerated.

.III.3.1. FINDING AN INITIAL EFFICIENT BASIC SOLUTION

Although there are o;hgr.ways of finding an initial
efficient basic feasible solution, a method which can be used
is to find the basic solution whichminimizeé any one of the
queétives, say the first ;bjective. If there is no alternative .
solution to the optimal basic solution to the first objective
that solution is an effiqient’solufion. Otherwise, alternative
optimal bases are enumerated until a dual feasible basis 1is

found. RN

The method described above for finding an initial
efficient basic solution is analogous to Phase I of the

single objective simplex method.

III.4. A LABELING ALGORITHM FOR THE MULTIOBJECTIVE NETWORK
 SIMPLEX METHOD ‘

"IITI.4.1. DEVELOPMENT OF THE ALGORITHM

The algorithm is developed for enumeration of all

efficient extreme points of a linear multiobjective network



flow prqblem. The efficiency check and the concept of mondtoge
connectedness is épplied from K1211taﬁ[19]. Since'the problem
is a vector minimization problem here, the LP subproblem for
the efficiency check is changed as: |

min s
ef

)

VT\ +_s = —-eR

v.2 0, 8 20

>
where sef is the slack associated with the nonbasic arc (e,f)
and R is the reduced cost matrix.

I1I1.,4.2. THE ALGORITHM

Initial Sﬁep

" Start with an efficient basic solution J; which minimizes

the 1lst objective.

N

Form the set of generated efficient basic solutions
'N*' {Jl} _ : .

Form the set of efficient basic solutions to be
generated M <« @

Form the set J! as the set of nonbasic arcs.

1
Set k « 1

Main Steps

1)'Set w: =0, a =‘1,.,.,2,.2 = the number of objectives

a

. has been computed;'h? has not been computed’
1 o

- If w
S . e ' a _ a _ |a
“and arc (i,j) 1is a basic arc, then set wj w, cij'



a g
- If-wi has been computed, w? has not been computed

and arc (j,1i) is a basic arc, then set w2 = w?-+ c?..
- ] 1]

- Repeat Step 1 until-all w? 's have been computed.

2) For each arc e J!

compute

k pute

a a a . a a
Z.. =™ C.. - wW. - W - C., . ’ a=1'-00;2

1] 1] 1 1 1]

t
. -

3) i) Apply the prelimenary check to each (e,f) € Jk

If there exist an arc (eyf) € J! such that (z-c)(eﬂn

k

< 0, then J is a dominated basis,’where~(z—c)(e’£)
= ef ’ .

is the reduced cost column of the nonbasic arc (e,f)

and J_ . is the new basis which will be obtained by

introducing the arc (e,f) & J, into the basis.

k
ii)‘Form Bk as the set of remaining nonbasic arcs.
o : N S S .
Form the sets Pk=+ {(1,3) zij cij < 0, (i,3) ¢ Bk}

EV < ¢, If Pk = @) go to step 10, otherwise continue, -

4) Choose an arc (e,f) € P, - and apply the efficiency

k
check by solving the LP-subproblem:

Min ]

where R is the reduced cost matrix associated with the arcs

€ Bk’

Make the following observations .during the solution of

the subproblem



1) If any sij associated with (i,j) ¢ Pk is nonbasic

in any simplex tableau or basic at zero level update the sets
ag EV « EV +7{(i?j)} and Pk_+ Py - {(i,i)}
ii1) If all coefficients 6f.the corrésponding row‘to a

_basic 815 ((i,3) € P) arc qonpositivé update Pk as Pk*;Pk--
{(i,5)}

iii) If the optimal value of Sof is zero EV < EV +

{(e,£)} and P~ P - {(e,£)}

1f Pk # @ repeat step 4. Otherwise continue.

5) If EV = ¢ ga to Step 8. Otherwise choose (e,fj € EV,

set s = f, t = e and L(s) = (+t,®) -

6- a) If noae i'hés a labéi, node 'j has no.labél and
are (i,j) is baéic, set L(j))’ ( i,Aj).whefe Aj = 41,

b) If ﬁode i has a label, node j has no label and arc
(j,1) is basic'set L{(j) = (fi,Aj), where 4f=?in{Ai, xji},vif»

~

xji <.Ai set gg,h) = (j,1)«

c) Repeat step 6 until node t is labeled.

7) Leaving arc is (g,h) and entering arc is (e,f).

Set EV <« EV - {(e,f)}, and Jef « Jk’-'{(g,h)} + {(e,f)}.
If Jef EAN go to Stép'S. cherwise set M Rl f Jef and go to
Step 5.

8) If J € N (1 e the last b881s which has been ob-

ef
talned by entering (e f) is explored before) go to step 10.

Otherwise continue.



9) Set A = At' If the first entry of L(t) is i, then
add A to X Otherwigse, if the first entry,iﬁ L(t) is -i,
subtract A from L Backtrack to node i and repeat the

process until node t is reached in the backtracking process.

Update the sets M « ¥ - Je and N « N + Je

f £°

Set k « k + 1 and Jk < Jef’ go to step 1,

10) If M = ¢ stop. N is equal to the set of all
efficient bases. Otherwise, select a basis J € M and obtain
that basic solution through a labeling and backtracking

k
and N « N + Jk. go to step 1.

process., Set k « k + 1, J <+« J, Update.the sets M « M - Jk

III.4.3. EXAMPLE PROBLEM

To illustrate the algorithm the example problem below .

is solved.

Figure III.4.1




Given the network in Fig.II.4.,1 and the cost matrix

¥120 *13 %24 %35  Xgy X34 X35
~
1 2 5 4 1 3 1
C = 2 4 2 2 2 1 3
0 -1 0 0 -1 0 0
o

“find all the efficient extreme points.
The solhtiqn procedure:
Initial Step

"The initial efficient basic solution is

maximizing the first objective,

Eigure'III.4;2

k « 1 |
Jk«+ {(1,3),(2’4)9(314))(3’5)}
N« 3 = (1(1,3),(2,4),(3,4), (3,5}

3« {(1,2),(2,5),(3.2),(4,5)}

45 5
2 0
1 0
0 0

obtained by



Step 1) w; =
a a a
W3 T W5t gy
W1=
3
a a . a
W1 T W3t ey,
W1=
| 1
I S ‘
4 Y37 Vs
o
4
a a a
Wz = w4~+ V24
W1=
2

Step 2) for each (ij)

(1,2 _ | 5

(z-¢

(Z"'C)(2~’5) = 4

.(ch)(A.S) = |2

- 37 -

2
0 ’ We = 0
2 _
1 ’ Wa = 3

1
-2, w2=2
2
3 N w2= 4

Ji célculate;

-4 -2 =
-0-0
__—_
-0 -4
-0 - 2 =
-0 -0
-3-1
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Step 3) , | : ‘ - ‘ T
1) There is no nonbasic arc (e,f) such that
(sz)(e"f) <0

‘ i-i) Bl =_'{(1’2),(2.5)’(3'2).(4’5)}

Step 4)

| .. 1 1
For each (e,f) ¢ Pk = {(i,j) | zij - cij <0, (i,j)e

ABk} ’ Pk'— Bk perform the efficiency check through the

8ubpr061em.

Initial basic feasible solution to the subproblem.

1 2 V3 S12 S5 Sy 45"
81, 0 -1 -1 1 -1 o 0 2
vy 1 -2 0 0 -1 0 0 1
84, 0 -9 1 0 -3 1 0 8
8, 0 -7 0 0 -4. 0 1 7

Table III.4.1

Observations on the tableau:

1) s is nonbasic therefore entering Xy will lead to

25

‘an efficient basic solution.

2)'312 and 345 can not be less-thad'Z and 7 respectivély

because all of the coefficients of the corresponding rows are
noﬁpositive. Thus entering klz'or X5 will not lead to
efficient bases.

4

Only S35 remains to be checked by solfing the subproblmm'
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which minimizes S35+ It becomes nonbasic at the first
iteration therefore x32 will lead to an efficient basic

gsolution,

Form the set EV the set of nonbasic variables which

" lead to efficient bases

EV = {'(2)5);(3‘:2)}

Pk =

Step 5)

(e,£) = (2,5), s =5, t =2, L(5) = (+2,w)

Step 6)
| (3,5) basic 3 has'no‘label L(3) = (-5,4),(g,h) = (3,5)
(3,4) > L(4) = (+3,4)

(2,4)-4 L(2) = (=4,2),(g,h) = (2,4)

Step 7) |
Ty = ((1,3),(2,4),(3,6),(3,5)) + (2,5} - ((2,0)}
= 1(1,3),(3,4),(3,5),(2,5)}

£ N, M« M+ I . ={[(1,3),(3,4),(3,5),(2,5)]}

Ja5° 25
EV « EV - {(2,5)} = {(3,2)}
Step 5)_(e,f) = (3,2) , s =2, t =3, L(2) = (+3,%)
Step 6) (2,4) basic 4 has no label L(4) = (+2,%)

(3,4) + L(3) = (-4,6),(g,h) = (3,4)



- 40 -

Step 7) Ty = {(1,3) , (2,4) , (3,5) , (3,2)} , 3., ¢ N

32
Moe M+ T = {[(1,3),(3,4),(3,5),2,5],[(1,3, 2,4,

(3;5).(3\.2)]}

| EV « @

Step 5 EV = f go to step 8

Step 8) (e,f) = (3,2) , Iy, ¢ N -

A - A2 é 6

Step 9) L(3) = (=4,6) > x5, > xy, 0= 6 = 0

L(4) = (2,2) > x,, « x,, + 6 =8

L(2) = (3,2) + x4, « x5, + 6 = 6

Figure II.4.2.' The new efficient basic solution adjacent.to Jj.

Moo M-I, ={[(1,3),03,4),(3,5),(2,5]}

32

N« N +J,, = 10(1,3),(2,4),(3,8),(3,5],[(1,3),(2,4),(3,5),

3
3,

k< k+1=2,1J <«1J go to step 1.

2 32 ?
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Step 1)
WS = () . WS = . ws = 0
1 -2 3
1 2 3
1 2 3
Wy T 0, Wy =l vy =1
wz = -5, wi = -1, WZ =1
- . )
Step 2) . F -
(Z-C)(l'z)"' 4 , (2- C) (2 5. -1 , v(z‘..c)?(3,s4)= 3 R
| -7 S i
1

Step 3)-
| ‘ i) There is no nonbasic arc (e,f) such that (Z-C)(e’f)ip
11) B = {(1,3), (2 5), (3 4) (4,5)1}

Po= ((2,5),04,5)) .

Step 4)
Vi Y2 V3 P12 %25 ®34 0 P45
v | O ) -13 1 90 -3 -4 0. 2172
s12| O -16 0 1 -4 =6 0 13
v |- 1 -3 .0 0 -1 -1 0 2
s;s] 0 0 <10 0 0 -4 -3 1 | w1

Table III 4.2,
In1t1a1 basic fea51b1e solution to the subproblem.
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‘Observations on the initial basic feasible solution

1) Sy is nonbasic therefore entering x

95 will lead

to an efficient basic solution.

2) A1l of the coefficients of the row associated with

- . .« . ) 4 ’ - . .
S,5 18 nonpositive and S4s > 11, therefore, enterlng‘x45 will

not lead to an efficient basis.,

EV = [(2,5)),
Pk = Q..
Step 5) (e,f) = (2,5) , s =5, ¢t é‘Z; L(S) = (+2,®)

Step 6) (g h) = (3,5)

Step 7) I, = ((1,3),(2,4),(3,2),(2,5)} , J,5 ¢ N

MM+ I, = ([C1,3),(3,4),(3,5),(2,5)],[(1,3), (2,4,

(3,2),(2,5)]}

BV « EV - {(2,5)} =0
‘Step 5) EV = § , é; técstep‘B
Step 8) (e,f) = (2,5) , J,s ¢ N
. Step 9) A <« At‘= 4

Through the floﬁ'change process. the following basic

solution is obtained.
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'Figure III.4.3, New efficient basic solution
adjacent to.Jz.

a5 = 1[(143),(3,4),(3,5),(2,5]}
Noe N+ 3, = ([(1,3),(2,4),(3,8),(3,9],[(1,3),(2,6,(3,5),

(3,2)],[(1,3),(2,4),(3,2),(2,5)]}

M+« M-1J

K<k +1 =3

‘J3 “« Jy5 » 8O tO steﬁ 1.

Step l)’w? , a =1,2,3 , i=l,,..,5 are calculated

’ 1 ; 3 4
. . "1 . -1 —1~.
. . 3 .
(Z"C) (4’5)= _1
0
Step 3)
. (4,5) : . . 4
i) (z-C) < 0, therefore, J45 is domlnate by the.

present basis.

1) By = ((1,2),(3,4),(3,5))
P =90

Step  4) Pk = ¢ i.e there is no arc (e,f) e.B3 such that

' z:f. - C:f < 0, then go to step 10.°
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Step 10)
k « k + 1 =4
Select the last element of M

J4 - {(1.3)o(2’5).(3o4)s(3t5)}

Figure II1I.4.4., The selected efficient basis frgonm
. the set M to which a move will be done.

x =11 , x =2, x,, =8

13 25

x35=l&-2=2

34

=9

4

go to stép 1.

M+« M - 3,

N« N+J

‘Performing steps 1 to 4, the set EV = {(1,2),(3,2)} is

obtained.
Performing steps 5 to 7 for (i,j) € EV

Jl2-= {(1,3),(2,5),(3,4),(1,2)} , J12.¢ N

Jap ={(1,3),(2,5),(3,4),(3,2)}, J;, ¢ N
are obtained and the set M is ﬁpdated..At steps 8 and 9 the

arc (3,2) is eritered, The efficient basic solution is obtained.
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32 N f N + J32 s
k «+k + 1 =5, J5-+ J32 , and return to step 1,

The following updates- are made M + M --J

Performing steps 1 to 4 on the basis Js“it is detected

“that EV = § and at step 10 k is updated as k « 6, a basis ¢ M

is selected as Jeg = {(1,3),(2,5),(3,4),(1,2)} and the corre-
A éponding'basic feasible solution is obtained. The sets M and

N are updated, and returned to step 1.

Performing steps 1 to 4 on the basis Jé the set -

EV = {(2,4),(3,2)) is obtained.
?erforming steps 5-7 fof‘(i.j) ¢ EV

J,, = 1(1,3),(1,2), (2 5)-(2 0}, I, ZN
MMt = ([, 3),(1,2),(2,5), (2, 4)]} and

=9, 5),(3,4), (3,20} , 3y € N

3 32

éré bbtained.
Step 8) (e,f) = (3,2)
J32-;'N‘. i.e J32 {d M, EV= EV - {(3,2)}

Select (e,f) e EV, (e,£) « (2,4),

" perform labeling and flow ;hangé‘proqess

Flgure 1I11.4,5. The new ‘efficient basic fea51b1e solutlon
adJacent to J6 S .
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-

M*’aM"' J24

N +‘N + J24
kK« k +1 =7
I ¢ 35, ~1(1,3),(152),(2,5), (2, 4)

go to step 1

Performing steps 1 to 4 on the basis Jj the set

EV = {(3,4)} is obtained

Pg;forming stepS'5,6,7, J3A = {(1,3),(1,2),(2,5),(3,4)} is

e N, go to step 10,

:obtalned, J34

Step 10)
M=29
The set N is the set of all efficient basic

solutions.

‘IfI.S. A LABELING ALGORITHM FOR THE MULTIOBJECTIVE NETWORK
SIMPLEX METHOD WITH LOWER AND UPPER BOUNDS

III.Srl..DEVELORMENT OF THE ALGORITHM

In this.séction, the multiobjective network simplex
algorithm will be extended'to the case with lower and upper
bounds. When tﬂere exists bounds on the arc flows the
efficiency check subproblem is hodified as follows:

Min : Sef

" s.t. .
: VT(Z—C)(i’j) + 555 —eT(Z'C)(l’J) » ¥ (i,j)-¢ LB

-vT(Z—C)(b’d) + s = eT(Z-C)(b'd?

o , ¥ (b,d)-c UB

v>0,s20




. i
where (2-C)*J is the reduced cost column associated with arc
(i,3), LB and UB are thg'set of nonbasic arcs at their lower
and upper bounds respectively such that introducing any one

.Vill not yield in decrease in the 1st objective.

Also the labeling routine is extended acéordingly. For
‘the sake of completeness the steps which are identical with
the previous algorithm will be répeated here,

II1.5.2. THE ALGORITHM WITH BOUNDS

Initial Step

Start with an efficient basic solution Jl which minimizes

the lst objective

Hefe, an efficient ﬁasic solutioﬁ»is identified both
by its basic arcs and also with its nonbasic'arcs,indicating
‘whether these afes are their ‘upper or lower bounds. Form the
set of generated efficient basic soluffons N <« {Jl}.Form the get'
of efficient_basic sqlﬁtibns to be generafed M « §. Form the

1
set  J

L 2s the set of nonbasic arcs.

Set k « 1 -

Main Steps

1) Set wi =0, a =1l,.40,%, & = the number of objeccivesb

—-If-w? has been combuted, w? has not been computed

. . . . a a _ a
and arc (i, j) is a basic arc, then set.wj =w, cij‘

- If w2 has been computed, w? has not been computed and

’ Tre sy s S - a _, a ., .a
~arc (j,1i) is a basic arc, then set wj W, cij”
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Repeat step 1 until all'w? s have been computed.

'2) For each nonbasic arc compute.

a - a a a a
zij cij Wy wj v cij o a lyvaa,y?

3) Apply the prelimenary check to each (e,f) ¢ J;
4

i-a) If there exists .an arc (e,f) ¢ Ji and X, ¢

lef , wherevlef is the lower bound on arF (e,£), such that
(Z—C)(e’f)'i 0, then Jef is a dominated afc'(e,f),:and Jef_is
the new basis thcH will be obtained‘by introducing (e, £f) iﬁﬁo
-the basis,

i-b) If there exists (e,f) ¢ J; and xef'= u

ef’
Where.uef is‘the upper bound on arc (e,f), such ‘that '

is dominated,

- (eof)'-
(z-c) " . > 0, then J .

ii) Form Bk as the set of remaining nonbasic arcs.

Form the sets:

1 1

; 1 ,
i,i - i =2.. coo= el >
Pk +,{(I’J) zij | cij < 0 if xij 213 » OT zlJ ciy

if Xip T Uy (i,3) e Jé} and

EV « @

If P =0 go to step 10,

4) Choose an arc (e,f) ¢ Pk and apply the efficiency

‘check by solving the LP subproblem.
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min s
ef

S.t,

vI(z-cy (B d) s;p = me (2=0) B v i) e L

T, . b,d) . T ‘ .
-v (Z‘C)( d) + Spa = e‘(Z-C)‘b’é) s ¥ (byd) ¢ UB
v>0,s>20
where LB = {(i,3) lﬁxij = lij and (i,j) € Bk} and
UB =-{(i,j) | Kip = Uy and‘(i,j) e-Bk}i

‘Make the following observations during the solution of

the subproblem,

i) If.any'sij associated with (i,j) € Pk is nonbasic

in any simplex tableau'af basic at zero level update the sets
EV « EV + {(i,j)} and P« B = {(i,i)}
ii) If all coefficients of the corresponding row to a

basic sij ((i,3) e P are nonpositive update P, as P, « P, -

k k k k
{(i,3)}
iii) If (e,f) ¢ Pk make one iteration on the tableau
if s, = 0 update EV <« EV + {(e,£)} and P, « P, - {(e,£)}

make observations (i) and (ii) - -
- If-Pk 4 @ repeat step 4. Otherwise continue

5) If EV = @ go to Step 8. Otherwise choose (e,f) ¢EV

ef ef

- If X . =u set s = e , t = ¢ ; (gyh) = (e,f)
set L(g) = (-t, X ¢ - zef)
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S ox e =2 o set s =f ,t=c, (g,h) = (e,f)

. set L(s) = (+ -
, ( ) ( ?. UEf xef)

6) The labeling procesé

a) if node i has a label, node j has no label arc

(i,j) is basic, set L(j) = (+i, A,) where A. = min {A. u,. -
. | it T T i’ Uiy
'*ii} » 1f ugp T oXyyS Ay set (g,h) = (i,;])

- b) if node i has a»label.\nodé ] hés no .label arc (i, 1)

is basic, set L(j) = (-i A.) wh = @min . -
_ ot ’ ] ‘ ’ J) ere AJ min {4, JT jS}.

{

c) Repeat'step 6 until node t is labeled.

7)‘Leaving arc is <g,h)$and'enﬁering arc is (e, f).

Set EV'= EV - {(e,f)} and J_  « J, = {(g,0)} + {(e,£)}.
~and adjust the.upper and lower bound indicators acéordiﬁglyf

 ;£ Jefve N go'to_Step 5. Otherwise set M + M + Jef and go to

step 5.
8) If_Jef e N go to step 10. Otherwise continue.

9) Execute the flow change process:
Set A = Ag’ if the first entry of L(t) is +i then add

A to xiﬁi otherwise, if the first eantry in L(t) is ~-i
subtract  from X Backtract to node i and repeat the

process until node t is reached in the backtracking process.

Update the sets M + M - J and N « N + J Set k « k+
. T . ef ef

i_and‘Jk < Jef , go to Step ‘1.




_5‘1_

10) If M = ¢ Stop..N is the set of .all efficient bases.
Otherwise, select a basis J é M and obtain that basicl
solution thrbugﬁ a labeling‘and‘backtracking proﬁess Set
k+« k +1, Jk « J, Update the sets M +« M —'Jk and N « N .+ Jk
go to step 1. | | |
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CHAPTER 1V

A SOLUTION PROCEDURE FOR MULTIOBJECTIVE PROBLEMS WITH A
~ COMBINATION OF ADDITIVE AND A SPECIAL TYPE OF
MULTIPLICATIVE OBJECTIVES |

IV.1. INfRobUCTION

When a problem is given to maximize the reliaﬂilify
_ and minimize a linear costéfunction siﬁultanéousl&, the reli;
ability'fuﬁction can be fotﬁul#ted as a ﬁype'of multiplicative
function. HP?}j.kThe Qariables yij.are,zero—one vériables. Tﬁe
~working ppdbability Pij of the component‘(i;j).is independent
of the others'. This multiplicativé'function is transformed'
iﬁto an additive functioﬁ by a'éimple ldgarithmic transforma-
.'tion Z;in(Pij)yig. Using such transférmation the mosﬁ reli-
éﬁle patﬁ problem can ge formulated and solvéd as a éhortest‘

path probiem@ﬂj.

Given a network, the problem is stated as to send a
flow Qh&cb satisfies the flow conservatiop constraints, and
simulfaneously‘m#ximizing the reliébility of sending the
required émount of flow a#d minimizing the associatéd cost.

The problem can be formulated as follows:




max . . Pi-Yij

min .Y%. C:: X

s.t
(1v.1.1) o n |
v B T - = * v e 4
jil_Xij kgl in ;bl , for 1—.1,...,n
» for V (i,j)

X.. >0 . ‘
1] —
yl ={1 , 1f Xij>0
10

, otherwise

Transforming_thévmultiplicative objective to be

maximized into Z—ln(pij)yij results the following-objectives

[ ) .
Lo - 1n
\ i)] i) Vi
mln L .
oLl x..
i, T i

~subject to the same constraint set in the above formulation.

One can observe that the sum of a single additive ob- -

jective function and a single multiplicative function'rESUIts

in a fixed charge objective function.
The problem above is stated as.a bicriteria problem.

In fact, there can be more than one multiplicative and addi-

tive objectives. For simplicity in statement and.less compu-




tational work, the algorithm and its related example in sec-
tions 4 and 5 respectively of this chapter will be given only

for the bicriteria case.

. The ¢osts associated Qith the arcs ig a/network can be
handled as fixedkchargos. The other fixed char#os, aside from
the reliability méasufe,-can be the constructionvcosts, set
Qp times or distances related witﬁ the args'of the nethrk.
When the fixed charggs afe noncommensurable with the cost'oﬁ

flow a multiobjective fixed charge problem can be formulated.

Since we are dealing with vector comparisons in the
multiobjective -case, the soiupion of the fixed charge problem
~is not necessarily going to be the solution of the fixed
fchérge' problém, however, it will prer useful to investigate
the solution procedures proposed for the fixed charge problem.

IV.Z. THE FIXED. CHARGE PROBLEM

IV.2,1., GENERAL PROPERTIES JOF THE FIXED CHARGE PROBLEM

The fixed charge problem may be formulated as follows:

Min r c.x, + ¥ d:y.
. . j
3 SR ?
S. t'
(Iv.2.1) a ) »
I a..x, = bi i=1,2,...,m
j= i

y; = 0 oy =g 0 iThi2ye.isn
: i




The problem stated above requires the minimization of a
concave function over a convex polyhedron defined by

X = {x]Za,.x, < b,
. ULy =

y i=1,2,...,m}, The concavity of the

objective function has been proven in[7])

Since the global minimum of a concave function over a

convex polyhedron is at one or more of the extreme points of

the;cohvex'polyhedron, the optimum of the fixed charge problem .

is attained at an extreme point of the convéx;polyhedron

~defined by the constraints. Hirsch and Dantzig have‘showﬁ

that this is true for the fixed'chagge-problem; It is also

showqf that for a nondegenerate ﬁfoblem with all equality

constraints and all positive fixed charges, all extreme points’

are local minima,

The fixed charge problem can also. be formulated as a

mixed integer linear programming problem:

.

. n
Min L c.x, + d.y
i=1 ] J° 3
o : s.t.

(1V.2.2). , Ax = b
Ixj -iji _<_0 Y j=1.....n
y; o= (0,1) i, 3 = lye..,m
x >0

14

 where Mj“is an upper bound on X4

There are several .approximate and exact algorithms for




solution of the fixed cHarge problem,

AN

Utilization of the fact that the optimal solution to
:he fixed charge problem is at an extreme pﬁiﬁt of tﬂe con;ex
polyheron of the constraints fésulté inn some'approkiméfe
‘solution procedures by means of some heuristics or
approximations. Bélinski[Z 1, Cooper and Dyebes[ 7],
Steinbgrg[27] havg developed heuristic algorithms for the

fixed charge problem,

The exact solution procedures are mixed integer
solution, vertex ranking solution proposed by Hurty[24] and

improved by'McKeown[zz]’and,Tahé[29] and .branch and bound

algorithms proposed by Bod[ 4] and Steinberg[Z?].
IV.2.2. EXACT SOLUTION PROCEDURES

Y

Exact solution procedufes for the fixedvcharge problem
require'partial or implicit enumeration of the vertices of
the cénvex polyhedron. Thﬁs they gequire muéh'mbré computation
;ime thaﬁ the approximate algorithms. An appropriate mixed
integer algo?ithm may be used to solve theAfixed cﬁarge
problem when formulated as a.mixed integer problem. Algorichms
" specially designed for the fixed charge problem may generally¢
be more efficién:. In this section two such algdrithms will

be reviewed.

Mdrty[24] proposes a vertex ranking algorithm for the




fixed charge problem. The algorithm is based.on ranking the
’vertices of the polyhedron in qondecreasing order according
to the linear Objective function values and then addang the
‘fixea charges to determine the optimal solution. Murty's pro-

‘

cedure is based on two facts.

First: Let S1s SpsevesSy be the‘k vertices of the
convex'polyhedron of the constraints rank in the nondecreasing
order of their linear objective function yalues then the next
vertex'in the rank is adjacent to one of the k previous |
verticesm-Secondly'the ranking procedure can be bounded.
Suppose some vertex;sr is eetermined in the rank the next
vertex r+1'to be rankedkshbuld be such that Z_ 41D, 22,70,

where Zr and Zr+l are the liﬁear objective_values to the
vertices'r‘and r+1erespectiveiy; D, is the fixed charge value
of the vertex r and D is a lower bound on the fixed charge.
 ‘Thus when a vertex k+1 with Zk+1+D >Zk+Dk is reached the
ranking érocedure stops, because vertices with the llnear
obJectlve value greater than or equal to Zk w111 yield greater
objective value to the fixed charge problem than the k th
vertex in the rank. The optimal soluticn can.be obtained from
the set of the vertices which were ranked so far. As Aurty
reports the eff1c1ency of the aloorlthm improves with the
nearness of Do to the greatest 1ower bound of the fixed charge
component of‘the objective functlon. As a numerical example,

he solves a fixed charge transportation problem and determines

D by summing the smallest 2 fixed charges where & is the
o .




.number of destinations, since there éhould be at least &
"positive vagiébles to satisfy the demands. In general,bin a

- problem with m constraints,'it is requiréa to sum the smallest
m-Q fixed charges where v is the highgst degree of degenaracy

of the problem.

-Degeneracy causes difficulty in ranking vertices,
therefore if a degenerate basic. solution is encountered it
is required to determine all the bases which represent the

same extreme point,

McKeown improves Murty's algorithm by finding a better
1§wer'bouhd D . He generates a set covering proﬁlem from the’
fixed charge problem with the fixed charge objective function,
and~solvgs'thé set éovering problém’by relaxing the

integrality of the variables as 0 <y; < 1.

YcKeown has shown that the aminimum of the relaxed
version of the set covering problem is a lower bound on the

fixed charges of .the fixed charge problem.

Steinberg[27] pfoposes an exact branch and bound
algorithm for the fixed charge pfoblem. The algorithm‘finds

the global optimum solution without having to enumerate all

basic feasible solutions. The algorithm generates an enumeration

tree by branching at each node assigning the'Variable'xj >0
or x. = 0. In otherwords at each node one more comstraint

either x. > 0 or x. = 0 is added to the primary convex
J ‘ J




i polyhédron of the fi#ed charge prablem; A path will be
terminated when there are.ﬁ additional x, > 0 constraiats or
. _ | o j
(n-m) additional X, = 0 constraints are imposed on the
1n1t1a1 constraints set, or no fe351b1e solution exists when
the’current addltlonal constraiats are lmposed Termlnat}ng
'the paths when one of the three conditions stated above
occurs will lead to enumeration of all extreme points of  the
convex polyhédron. Thus a bounding'proéedure to reduce the
number of vertices enumerated is employed.(Th¢;31gorithm
 starts with an upper bound. A good uppé; bound is proposed
.sﬁch as an heuris;ic objective value. The paﬁﬁ is fathomed
~when a lower bound computgd is greater than the presént upper

bound and whenever a path is terminated with a unique basic

feasible solution if the corresponding value of the objective‘v

»function‘is less than the current upper bound it replaces‘the
- present ‘upper bound whénvthere is no live vertices the
present upper -bound and the correspondlng solutlon is the
optimal solution, The computatlon of the lower bound at each
node requires solution of én LP problem each time with one
more constraint added to the pfesent constraint set when

going down the tree. .

’The maximum level of degeneracy of the problem must
be determined in order to find the lower bound on the fixed
chafgés, Before'starting'the,soiutioh n linear programmipg

pfoblems are solved as below.
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“(Iv.2.3)
k. in Basis
] .

The number of solutions with zero optimum value determines
the maximum level of degeneracy.

.

IV,3, BICRITERIA FIXED CHKRGE NETWORK PROBLEM

A bicriterion fixed charge problem mey be formulated

as follows

. 1
- I ci. xih
ij 11
Min B
p)
| i iy Y
(Iv.3.1) . - N _ -
| » i N s. t, n n
X Y - z X, =« = b .f’l....,m
5=1 1] . k=1 ki i
xij ;0 V (liJ)
. 1 xi > 0
71 :

we have two objectives, cij is the unit shipping cost on ehe

‘efe'(i,j)vahd d.. is the fixed charge associated with the
ij R

'presence of the arc (1,3) It is aimed to find the efficient

‘extreme p01nts of the convex polyhedron deflned by the flow
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conservation constraints. In the liﬁerature, there is no

known procedure ﬁor solving such aprdﬂém. In fhe next section,
a branch and bound algorithm for solving the fixed‘charge
problem/which is due to’Steinberg[27] will be exténded go two
objectives, Enumeration of éli efficient basic Qolutiopé of

the fixed charge problem is poasible by using the bicriteriqﬁ

branch and bound algorithm for the fixed charge problem,

Since we are dealing with fixed charge network problem,
at each vertex of the branch and bound algorithm the LP

subproblem can be solved by network simplex method.

IV.4., A BRANCH AND BOUND ALGORITHW FOR BICRITERIA FIXED
' CHARGE NETWORK PROBLEM
Initilization
"Step 1)
Start at a live vertex O and set the initial upper

bound vector UB® = (8) and set q=0. Go to Step 3.

Branching

-Step 2)

. If no live vertices go to Step 7, otherwise select a
live vertex (Depth first branchlng rule is applled) Branch

to'x.j = 0 and go to Step 4.
i _ ]

Separation
Steﬁ 3)
Select an unassigned arc (i,j) with the maximup dij and

branch to X.. > 0.
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Boun&ing
Step 4)
Compute the vector of lower bounds Zk. The first

oo -k .
component z; i1s the lower bound on the linear - obJectlve which

can be found by solvxng the LP problem,

Qk = mi '
z, nin cx
Ax = b _
“X,.-> 1 . for (i,j) e k
. lj ) o » ] S’].
: . k
x.. =0 for (i,j) e S,
ij A :
X > O

x is an extreme p01nt of Ax = b

-

-

N . .
S1 ls the set of ares (1,]) whlch must be p031t1ve at’ vertex
_k and S; is the set of arcs (l.J) whlch must be zero at

vertex k.

If- the .LP problem has no feasible soLution fathom, and

'gorto‘Step.Z.

The'second'component of ;k whiehveorreepqnds to the

‘fixed charge objective can be caleulated_as follows:

-
R

:?Let sé = {(1.3)1(1,3) ¢ S Sg}‘

:P = {(i,j)](i,i) can be in the ba51s at zero level}

Uaky
Q =pn .(SZ s3)_

=

SrERORH®

= the number elements in'sl

= the number of elements in Q
= the set of last m—NT - Ng arcs

=

w
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Then ‘
} 'ég _ .2. ziJ + .Z. ' kle
(1,7) e s (i,j) e s,
'Fathoming
'Stép 5

a) If one of the following holds fathom
i) If there arc M constraints of the form l-'xi.>0"
ii) If there are n-m constraints of the form "xij=0"

s e e ’ - . . k
iii) If dij = 0 for all (i,3) € S3

k

Set 7~ « Zk and go to step 2,

k > UBP for some P fathom and go to step 2,

otherwiseycompute Zk' the first component of 7K is ZT - gT

and the -second component is the sum of dij with xij > 0 in the

,AIf Zk = Zk faﬁhom'and go

b) If z

. . : . k
.optimal solution corresponding to z;

‘to step 2, Otherwise go to step 6.

“

Step 6)
1f Zk.; UBP for any p go to step 3, otherwise set
q.% q + 1 and UBY « Zk and store corresponding solution x4, if

ugP >Zk for any p < q, drop UBp. and condense the set,

q « q - 1 go to Step 3.

Termination
Step 7)
If q = 0 no feasible solution,
‘If q 2 1,FUBP, b - 1,000 and the corresponding

solutions are the efficient extreme solut;ons.




IV,4.1, FINDING AN INITIAL BASIC'FEAéIBLE SOLUTION FOR THE LP
SUBPROBLEMS FOR COMPUIING THE LOWER BOUNDS
In the branch_and bound algérithm at each node one
more_constraint of the form xij é 0 or'xij >.0 is a@ded. Thus
~initial basic feasible solution is required fof the LP sub-
-problem for the computation of ghe lowerﬁbouhd on phe”lihear
objective. The folloﬁing LP problemvis>solved to obtain an

initial basic feasible solution if an additional constraint

xij = 0 is imposed at node k.
min - X,,.
1]
S.t,
'AxA=_b

x >0

with the additional constraints on variables xij > 0 for the
variables made basic and'xij =0 for those variables which
are assigned to zero. Also, X must be an extreme point of

the polyhedroh Ax = b,

When the optimal objective value for this problem is
zero, either xij is removed from the basis or it 1is basic at

zero level, Otherwise, there is no feasible solution.

‘However, when xij is not basic in the previous basis

then the present basis remains feasible when the additional

constraint xij = (0 is added.:

If an additional constraint xij-> 0 is imposed at

node k then an LP subproblem with the same constraint set as
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the above problem but with the objective function as

maximize xij'must be solved

If there'is‘an basic feasible solution with a’poéitivé
.objective value at any stage then it is not ne;essary to
éptimize sincé an initial basic feasible solution is obtained,
If the éptimum objective function value is zero then there

is no feasible solution.

If the variable xij is basic in the present basic
feasible solution that solution is still basic feasible when

the additional ‘constraint xij > 0 is added.

IV.4.2. THE SOLUTION PROCEDURE FOR THE RESTRICTED LP
' SUBPROBLEM . -

It may be required, at any node k of the branch and

" bound algorithm, to solve the following LP subproblem:

-
Y

min cx
s. t, '
Ax = b
.. k
x.. > 0 for (i,j) ¢ S1
1]
. : .. k
x.. =0 , for (1,j) € 82
ij] : =

'x is an extreme point of Ax = b

x> 0

>
=

The regular pivoting operations of the simplex method
:are performed until a stage where_theré are only the candidate

entering variables whose corresponding leaving variables are




elements of S?.'At this stage‘the current vaiueiof-the
;bjeCtive function 21 has’beén obtained, but there may be

an extreﬁe point‘which has a better.objective function Qalue
‘but nét adjacent tovthe pfesent basis., In order to'dgtermine

if there is a better 6bjective value the following check;'

procedure is employed.

~ For each (i,j) ¢ Sk or not basic in the present basis

2

gsolve the following problem

max X..
_ ij
S.t. ‘
Ax = b
+ =
cX Sl Zl
X35 7 %2 T %

and

(SR

X..
1]

x is an extreme point to Ax = b

where %.. is the current value of Xsio initially zero.

3
At each step the minimum increase in i3 is taken and
if at any stage s; * 0, the procedure is terminated and a new

extreme point 1is obtained. The regular simplex iterations can

start at this basis.
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IV.4.3, COMPUTING THE LOWER BOUNDS

ﬁhen proceeding{down the.treé it is not‘alﬁays required
to solve the LP subproblem in drder.to check whether the lower
bound at dode k excégd§ the .one of the present upper bounds
(i.e UuBP S). Any 6ne of the following cases may occu; at node
k. |

i)_If‘xij > Q is the additional copstraint ard xij is

N

already basic in the present basis.g%

the lower bound vector is the same as the objective function

‘the first component of

value of the present basis, The second'compoqent gs can be

calculated as follows:

= 13 + ij
RRCH PRy

4

k - % d,. 5 d,
2 .. ~ k
(1,{) € s,

ii) If x .,
1 *i
:not:basic in the present basis compute 5;

of the lower bound vector.‘Set.gkuas the same as the

1
‘objective value of the present basis;»If this Zk

> 0 is the additional constraint and xij is

the second component

“

> UBP for
some p:fathomg and go to step 2, Otherwise, solve the LP

subproblem.‘

iii) If X.. = 0 is the additional constraint and xij
is .basic in the present basis.apply the same procedure of .the

step 4‘of.thé algorithm. -
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iv) If xij; 0 is‘ghe additional constraint_ahd it is
not basic in‘the present basis the first compbnent of the
-lower bound vector is the same as the objective function
value of the present basic solution. The second componenﬁ

needs to be computed as in i) above.

IV.5. EXAMPLE PROBLEM

To illustrate the branch and bound -algorithm the

_examﬁlé problem belov is solved.

- Figure 1IV,1

d., = —100 x %0 (P..) is substituted
ij ; i3’

(1,2; (1,3) (2,4 (2,5) (3,2) (3,8) (33 (4,5)
c - [ 1 2 5 5 13 12 }

[ 3,04 - 2,02 12.78 4,08 8,33  18.63 24.86 5.12

(=9
13

Given the network in Fig.III.Z2, the unit‘cost vgctor c, and

‘the fixed charge vector d the problem is to find the set of
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all efficient extreme points, -

The- solution procedure

X4 > 0 is the additional constraint

Zy57Cyg = -1 .

' ~ = optimal
2397C3y = =3
2457 C4s = 74

Figure 1IV,2,

1

z) = 34

Z; = 24.86 + (408 + 3.04 + 2.02) = 34

1

z1 54 ‘ ‘ |

z% = 2,02 + 12.78 + 18.63 + 24.86 = 58.29

gal o (54 a0 o 0

usl = (g ,9) » U8’ 2 Zb, Drop UBS

k = 2

(x35 > 0), Xq4 > 0 are’addltlonal constraints,

x34 1s basgic.
zp =56
gg = 24.86 + 18.63 + (3.04 + 2.02) = 48.55
?i ~ 54
z§;= 58.29
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(x

35 > 0, Xap > 0) and X,, > 0 are additional constraints

is basic,

= 54

N

N

=~ 24.86 + 18.63 + 12.78 + (2.02) = 58,29

= 54

R

N

= 58,29

WKW W WE W

N
U

23,.fathom.

( > 0,

X4 > 0) and x = 0 are additional

X35 24 )

cdnstraints,x?4 is basic in the present basis,

To make X904 nonbaSic solve

min _ xza

A [%2]
N o=

‘x]._j % 0 (i,]) ¢
xij_.= 0 (i,j)‘e S

X is an extreme point.

c = 1 » enter (2,5) -+
.= —.1

c -0

Figure IV.3




Now, solve the LP min  cx

Ax = b

*ij 7 0 (i,j) ¢ s

(SR

xij =0 (i,j)) ¢ S

‘X 1s an extreme point,

z -'c =3 -4 -] = =2

N

N -

12 12

Zogy T Co4 < 4 2 -5 =1 o X9, should remain'nonbasic}
23y c32 =1 -4 -1 = f4

245 T C45 T 72 7 0 - 2= -4

? = cx = 56
Zy = 24.86 + 18.63 + (3.04 + 2.02) = 48.55

2? = 56

2= 2.02 + 4.08 + 18.63 + 24,86 = 49.59

‘ | : _1 56 |
74 3/; UBP for any p - UBZ « 7' = (4959
k =5
(x35 > 0, X, > 0, Xo4 = 0) and Xgy 2 0 are additional

" constraints.

32 is not basic in the present basis.

= 24.86 + 18.63 + 8.33 + (2.02) = 53.83

> 49,59 , silnce gi > 56 fathom.
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(x35 21, xj4 2 1 n'X24 = 0) and X4y =0 are

additional constraints
'rw§32“i§W99§“§§qic + no change in ﬁhé lower bounds

k =7

'x§4 >0, x24'= 0 , Xy > 0) and §> > 0 are

t > 0, 45

X35

‘additional constraints.

: In order to _maké X5 basic Xqg is has to leave, therefore,
fathom. : - ‘

- X

SN

k = 8
(x35 >0, Xg, > Q v Xy, = 0, x5, = 0) and X5 = 0
are additional constraints.
i45'is not basic in the present basis.
8 56 _8 56
2 = Gg,s50 » T = (o, 59
k =9
(x35 >0, Xap > 0,, Xo4 = o, X3, =0 , X, = 0) an@
25 > 0 are additional constraints. '
X,6 is basic in the present basis;
g?'='56 »
29 = 24.86 + 18.63 + 4,08 + (2.02) = 49.59
9 56 : '
' (9. 59)
29 = :/:9, fathom.
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kK = 10

(

; x35 > 0

’ x34”> o, x24 =0, 332 =0, x = 0) and

Xp5 ™ 0 are additional coastraints.

Xyg is basic in the present basis.

Solve phe LP problem to minimize Xy0 in order to make

it nonbasic.;

24 = Sp4 T 1

5 TV, T W3 TV T 0, Wy =l 24

2

‘Infeasible, fathom, infact there are 4 constraints

‘of the form x.. = 0.
1]

-k = 11

(k35 > 1) and x = O,areAthe additional constraints

34

present basis :.

Figure IV.4

is basic make it nonbasic by solving LP to minimize




- 74 -

2,y T Cpu =0+ 1= 0=1>enter (2,4)

4 = min {8,»,2} = 2

Figure IV.5

X34 —6 ’ ws ==W3 ="W1='0 ’ w4 =-W2 = ~1 ,'A‘232"" C32 =’1

enter (3.2) A = min {Q,G}A

Figure IV.6

Initial feasible basis is‘obtained, solve LP to minimize

cxX,

215 = Cq9 =3 -0-1=2> enter (1,2), & = min {6,11} =6
Zy5 " czs_ 0 0 4 b

235 = Cag =1+ 5 - 3 =3

Lz, = ¢, ==5=0~2-=-7

45 ~ 45
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cx = 72 - 12 = 60

;4‘ ~f" Aﬁ{§>

Figure IV,7

z -.C

25 "1 -0 -4 =-3

D Zas = Cy,y =0 -1=-1==2

z T Cgy T 0 .4 -3=1

z - c45 % fé.“O f 2 = ~§

Z = 60

z. = 24.86 + (4.08 + 3,04 + 2.02) = 34
60
20 = G, p)

3 60

11 e
7~ 7 UBP for‘any p , UB = (49, 9)
usP % z for any p < q.
ko= 12
(x35 > 0, 034 = 0) apd Xo4 > 0 are additional

constraints, .

x24 >0 is basic in the present solution
z12 ' 60 N

212 2 24,86 + 12.78 + (3.04 + 2.02) = 42.7°
12 _ 60 '

- (42.7)

le»,>fathom,




k = 13
| (x35 >0 , X3, = 0) and Xo4 =0 are additional

constraints. ' :

X904 is basic, in order to make it non basic;solve LP

to minimize x.,.
: , 24

Wg = W, o= Wy T Wy = o, W, = -1, z = Q»+ 1 -0=1

34 ~ ©34

..

should enter but -x = 0 is an additional constraint,

*34 34
"fathom because of infesibility,
Kk = 14

*35

The present basis is; Xqg is basic.

= 0 is the only additional constraint,

Figure IV.8

Solve LP to minimize x

*35°
Wy = o, Wy T Wy S w, T W, =1 |
= 1 > enter (2,5) » A = {4,5,°} =4
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Figure IV.9

. . . \ . . . . .
In order to find the lower bound z, minimize ck.

1
24y T c3é =3-4-1=22
Za, " ¢y =3 1 -3=1- éncer (3,4)
Zy5 T Cgg 7 3 -0 -’1 =2 -
Z,5 T Cug = -1 -0 -2 = f3
' cx = 60
224 - 524=— 4=0~5=-1
Zgy = Cypy = 3 -4 -1==2
z3s-c35='3-0-1='2
z4s—c45=’0—0-2=-2
Figure IV,10
2l% = (5.12 + 4.08 + 3.04 + 2.02) = 14.26
i 214 = 60 - '
'2%4 = 3,04 + 2.02 + 18.63 +.4.08 = 27.77
Zla:i uBP for any P b_
us3 > 2% drop uB’ "‘DBB <G,
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k = 15
(x35 = () and Xqp > 0 are additional constraints,
Xy is 'basic in the present basis.
L5 '
i
Z15
=2
215
1
15
1 .
_15
Z .

= 60
= 18,63 + (4.08 + 3.04 + 2,02) = 27,77
= 60

= 27,77

15
VA

Z

’ fachopg'

(x35 = 0) and X3, = 0 are additional constraints
X4 is basic in the present‘basisvwhen it is 'made

nonbasic the following basis is obtained.

Figure 1IV.,1l1

;16 ~ 68

336'+ 14,26

. 68 .16 ' 4 _ ,68
216 = (21;92) , Z b4 UBP for any p , UB | (21’92)

usP § 7'° for any p < q
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k = 17

'~(x35 =0 , X, = 0) are additional constraints,

X904 is basic in the present basis,

17 (68 =17 68

2 = Grga) 0 20 = (51,99

217 o= 4}7 , fathom.

k =18

¢ 24 .

x35 = = 0) and x = Ovate‘additional

34
“constralnts. . '

X5 basic, solve LP to minimize Xo4 in order to make

it nonbasic.,

X4 is entgrlng-varlable but Xa4 = 0 then fathom

‘becausé of infeasibility.




s
"

)

\\0 Z_(SG : ),'z—_ 56

W

S
/‘
-

. ‘ *9970 k :35
(300736 50) VB =(Cg 00) G
.gio - 9
, _-(22))7:(3%7),~ % 50
0 ug=(89.) f @ 2=(377),
' “\427 = /60
L N\E, - 2H{z1m)
o) AN~
1855)) % 950) [+
5Coso) ()
+ ’ |
a,\\o
ROR
)
A %
N

- Figure IV.12, The sblution tree for the example

problem.'

27.77)
Drop UB® and set U83=(
+ .

60
2177)

68 = _(68
11..26), =(21.92_)

ug's (58 )

V21.82

_08_
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IV.6, SOME ADDITIONAL CONSIDERATIONS

Some additional considerations on the branch and-

bound algorithm can be listed as follows:

1. THE BRANCHING RULE
The depth first‘branching rule is'seiec;ed in the
algorithm, This fuie'éfovides a more efficient use of the
préséﬁt basis than‘tﬁe Eréath firsg brancﬁingArule. The
breadth first rule may geﬁéréte more and diverse upper bounds
and incfease,the probabilify of fathﬁming in ﬁhé»gubsequent

vertices, Therefdre, initially ;alculating the upper bound

" for the first two branches provides two different  upper bounds

for the following vertices when'the depth first rule is:
 ‘applied,

2. A PROCEDURE FOR CALCULATION OF THE LOWER BOUND ON
THE FIXED CHARGES :

.

The method proposéd'by<McKeown[22] can be employed at

each vertex by solving the following LP problem:

min I d.. vy..
(i, M
(IV.6.1) | |
o E 6. . uy Vis 2By
(izj) °1,(i,5) Yij =4
»

0 <vy..

<1
1] — -
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where

The minimum value of this problem gives the lower bound
on the fixed charge function. Since the feésibility
requirement is added then tighter lower bounds than the method

used in the algorithm can be found.

3. ALTERNATIVE EFFICIENT"SOLUTIONS

The fathoming condit:i:o'n’"z-k =2z a1lows to find only

one éfficient sblution with the same objeétiQe values, If it

is required to generate the alternative effidieﬁt solutions
it requires more compuﬁationél time. When the example in the
préviogs section is solved without this fathoming rule the
solucidn'pree‘in figure‘IV.iB is obtained. The ﬁumber,of
vertices in the branch and Bound_tfee‘increasg from 18 to 42
'and in'fact;‘thefé is no,glterhafivé efficiéﬁ; solu;ions.

4. A DIFFERENT SOLUTION' PROCEDURE FOR SOLVING THE

RESTRICTED LP SUBPROBLEM | )

The network simﬁlex meﬁhod with lower and upper bounds
can be used. Since the solupions to the network problem are-
integer we can set lower value 1 for each variable which
appears as xij > 0 in the'Branch and bound process. If-the
“only caﬁdidatg entering.vériéples require any xij which is
as;igned‘as xii >.0, it is allowed to be nonbasic at it is

‘IOWef bound and the lowér bound'may be calculated. But this




lower bound is looser than the one which’ may be found by_thev;
method described in section IV, Also there will be additional
storage requirements and difficulties associated with finding

an initial basic feasible solution at each vertex k.




Figure Iv.13,

The solution tree fof‘the example problem when the alternatlve_ ’

efficient solutions are not ignored,




CHAPTER_V
SUMMARY AND EXTENSIONS

In this thesis, solution procedures for multiobjective
netwo;k'problems with linear objectives and fixed charge

objectives are developéd.

For the mul;iobjective lineér network problems the
. network simplex algorifhm ig. extended into a multiobjectiver
',algofithm which includes an efficiency check procedure.-This
algorithm is also exﬁended to an algorithm with lower and

upper- bounds. Only the efficient extreme points are generated

by using the labeling algorithm for the multiobjective linear

network problems., The algorithm can be extended in order to

generate the efficient edges and faces of the convex

‘polyhedron.

A’braqch.ah& bound algorithm is given for finding the
efficieht extreme points to the bicriteria fixed chafge
problem. It seems that in the general case where all fixed 
chafges are greater than zgfo, the seﬁ of efficient pointsv

will consist only of extreme points. A point on an edge or

face will include fixed chargés of all variables at & positive

'iével and will be dominated with respect to the fixed charge

objective by any one of the extreme points of the face. Then



theseitreme point of the face with the minimum value of the
first objective .will dominate all interidr“points; Only if
"the value of the first objective remains constant over the
,facé and the fixed chérges associated with variables which
are not common in the bases rebresenting the extreme points:
-OE;thg,face are zero, the points on the face.wiii be
efficient, It would be worthwhile to develop_a’formal proof

and to extend the algorithm to incorporate this consideration,

Y In the branch’aﬁd bouﬁd procedure ;hé computational
testing musprbé done. Different branching ruleg'may be
appliéd,rthé efficiency of the breadth first rule may be
checkéd._A better method;forrdetérmiﬁatidﬁ of the‘maximum
level of degeneracy may be employed. Also improvements Qn the
compuqatiqnvof the lower bounds both on therlinear‘quective
and'the fixed charges can.ée-developed.'The algorithm may aiso %
Be extended to the.multiobjecti?g fixed charge_probléms withogti
increasing Ehe.nuhber'of ;uhproblems-to be solved at each
Verte¥;vi;e. iﬁétéad,of solving one subproblem for each liﬁear

objective, it could be possible to extent to the multiobjective

case by solving one MOLP.
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