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ABSTR,ACT 

In this thesis, solution procedures for mUltiobjective 

linear network~problems and bicriteria fi*ed charge network 

problems are presented. 

A labeling algorithm for mult~objective linear network 

simplex method is developed by incorporating a method of 

multiobjective LP and extended to the case with lower and 

upper bounds on the arc flows. 

A branch and bbund algorithm is given for the bicriteria 

fixed charge problem in order to generate the efficient extreme 

points. 



tl Z E T 

Bu tezde, ~ok ama~lL do~rusal serim problemlexi ve iki 

ama~lL degi~mez maliyetli serim proble~leri" i~in ~6zUmy6n

temleri 6nerilm"ek tedi r. 

~ok ama~lL do~rusal serim problemlerinin baskLn u~ 

noktalarLnL serim simpleks y6ntemi kullanarak bulan bir al

goritma verilmi~tir. AynL algoritma ayrLt Uzerinde ~lt ve Ust 

sLnLrlar oldugudurum i~in de geni§letilmi§tir; 

lki" ama~IL degi§mez maliyetli problemlerin baskLn u~ 

noktalarLnLn bulunmasL i~in bir dallandLrma sLnLrlandLrma al

goritmasL 6nerilmektedir. 
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CHAPTER I 

INTRODUCTION 

Most of the decision making problemd are multiple 

objective in nature. In some of the. decision problems an 

important objective can be selected as the~single objective 

to be optimized, however in most case~ there m~y be more than 

one conflicting and noncommensurable objectives. Especially," 

in public decision ma~ing problems, the decision maker has to 

make the best decision based on the general duties and 

objectives. The models develo~ed by using a single obje~tive 

can be o~timized by thefowerful techniques of optimizatidn, 

but may fall short of expressing the real decision problem. 

When the other dhjectives whic~ are as. important as the 

objective conside~ed.are incorporated, a more expressive 

model of the decision problem may be formulated but it 

requires somewhat 

traditional ones. 

different solution techniques than the 

During the last decade, mathematicians, operations 

researchers, and researchers"in related fields have contributed 

extensively to research in.multiple objective dptimi~ation. 

The solution to a multiobjective optimization problem, 
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. generally, is not a single point but a set of efficient .r/.'/. 

/,/ 

P 0 in t s. The set 0 f e f fie i e n t p 0 in t sis de fin e d ,as ,the set pf 

points where an improvement ln one of the objectives c~ri only 

be gained at the expense of at least one of the othel 
/ 

tives. III 
/ 

/ 

/ . 

The methods. developed for finding the pfeferred 

obj~c-

solution fall into twoclasse~: (i) finding. ~he efficient 

solution set and then selecting the pr~ferred solution 

" 
according to the preferences of the-decision' maker, (ii) taking 

the preferences of the decision maker into account through 

the use of-an interactive procedure. 

The methods which have b~ep developed fo~ ~ultiobje~-

-
tive analysis have found applications mostly in strategical 

planning ,problems such as sectoral economy planning, energy 

planning, water resources planning~ pipeline network planning. 

facility location planning and firm planning~,2~]. 

Network pr~blems form a class of the most established 

problems of operations research~ Maximum flow, minimum cost 

flow and ~he shortest path problems are among the best known 

n~twork p~oblems. There may be more complex decision problems 

which may require simultaneous consideration of maximization 

of flow with minimization o~ one or more measures of ,cost as 

multiple objectives. These three network problems cafi be 

formulated as LP problems. but there are more efficient 

algorithms for solving such problems than the general simplex 
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method[3]. These algorithms have been developed based on the 

speicial structure of the network ~roblems 0ne su~h algorithm 

is the network simplex algorithm~ 

In this thesis. solution procedures for generating the 

set of efficient extreme points for the multiobjective linear 

network problems and multiobjective fixed charge n~~work 

problems are analyzed. Throughout the thesis. the enumeration 

of only the efficient extreme points is attempted. 

In chapter 2. a survey of multiobjective optimization. 

especially. multiobjective li~ear programming in some detail 

is made. some ~ajor network problems are state~ and reports 

of research and applications on multiobjective networ~ 

problems are revie~ed. Then some possible applications of 

the models ta~kled in the third- and fourth chapters are 

proposed. 

In chapter 3. a labeling algorithm for multiobjective 

linear network flow problems is given. Th_is algorithm is a 

modified labeling algorith~ of neiwork simplex m~thod which 

includes the efficiency check procedure and the concept of 

monotone connectedness proper~ty of the set of efficient 

extreme points ~eveloped re~ently[l~. In order to incorporate 

the __ aximum flow objective. the .algorithm is extended to 

handle the upper and lower b~u~ds on the irc flows. 

In chapter 4. a branch and bound algorithm is given to 
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handle the bicriteria fixed charge network probl~m. The 

algorithm is based on the branch and bound algorithm for the 

fixed charge problem developed in{27]. The algorithm finds 

the set of efficient extreme points when the fixed charge 

objective and the linear objective are handled as separate 

objectives. It is possible to extend this solution procedure 

to the case with more than two objectives. 
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CHAPTER II 

LITERATURE SURVEY 

II.l~ MULTIPLE OBJECTIVE OPTIMIZATION 

I 1.1 i 1. INTRODUCTION 

In the literature, generally, th~ multiple criteria 

optimization problem has been formulated as a vector maximi-

zation problem and all of the efficiency check procedures are 

given with respect to the maximization prob~em. Alt~ough the 

problems considered in this thesis are minimization problems, 

to be 'consistent with the literature, the survey will be 

developed .on the maximization problem. 

The general multiobjective ~ecision making problem may' 

be formulated as. follows: . 

Ha'x1mize F(x) 
(11.1. ~.l) s. t. 

X E X = {x E in; G(x) < O} 
= 

F(x) is an i-vector of objectives and G(x) is also a vector 

valued function of dimension m. 

Methods involving multiple objective decision making 

problems range from finding the "bese~ (i.e the most preferred) 

solution by using the kno~n utility function of the decision 
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maker, to finding the set of all efficient solutions ~ithout 

having a priori preference weights of the decision maker. 

There are methods in between these extremes being closer to 

one end such as progressive determination. of the preferences 

of the d~~ision maker by interactiv~ methods[32] and 

generating, a relevant subset of efficient solutions corres-

ponding to the preference interval specified by the decision 

maker [19.28]. 

However, 1.n this thesis the methods of' finding the set 

of all efficient extreme points without having a priori . 

preferences of the decision maker will be examiu:ed. Therefore, 

the sol uti 0 n to - the m u it i obi e c t i v e 0 p tim i z at ion pro b 1 em is 
.. 

de r in: edt 0 bet he set 0 f e f f'i c i e n t poi n t s. The e f ( i c i e n t . 

solution is ·defined as follow~: 

Definition 11.1.1. Tbe vector Xo £ X is efficient if there 

exists no x £ X such that F(x) > F(xo )*. 

Two basic' approaches have been developed for the 
" 

solution of the problem stated above. One is the parametric 

approach by which, if the objective space is convex, the set 

of all efficien~, s~lutions can be found by solving the 

* The convention employed us ing inequalities 1. s' as below: 
Let x=(xl'···'xn ) and Y=(Yl'···'Yn) then 

i) x=y if and only if Xj =Yj for ail j=l, ••• ,n. 

ii) x~Y if and only if Xj~j for all j=l, ••• ,n 

iii) x~Y if and only if Xj~Yj for all ·j=l, ••• ,n and xiy. 
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parametric optimization problem[ 6] • 

(11,1.1.2) 

Max ATF(x) 

s. t 

X £ X 

A > 0 

The oth~r approach is the constraint approach where 

one of the obj.ectives is taken as a primary objective and the 

others are added into the constraint set to be satisfied at 

the values which have be~n specified[l6]. The constraint 

approach problem is formulated as: 

(11.1. 1. 3) 
s.t 

X £ X 

f. (x) > CL. 
J . J 

j = 2 ••••• JI. 

Where the right "hand side CLj will be changed parametrically. 

H~re the solutions to the problem with all nonzero lagrange 

variables assdciated with constraints corresponding to. the 

objectives are efficient. The constraint approach has an 

advantage over the parametric approach in generating the 

efficient solution set even when the objective space ~s 

nonconvex. where the parametric approach fails to generate 

all of the efficient points. 

. I I. 1.2. HULT10BJECT 1VE L IN.EAR PRJ GRAMM 1NG 

A multiobjective linear programming (~OLP) problem is 

formulated as follows 
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(11.1.2.1). Ma~ 

c~ x 

X E X - {xl Ax ~ b,x > O} ... 
where Ci is an row vector of dimension n being the 

coeffi~ients of ith objective function. A is an mxn matrix 

of the coefficients of the cocistraints, b is an m-vector of 

the right hand sides and x is an n-vector of th~ decisi~n 

variables. Since the generation of all efficien~ extrem~ 

points is aimed in this thesis, only the generatin~ approaches 

related with the efficient extreme points will be surveyed. 

The m~thods for gen~~ating· the efficient extreme points 

of a MOLP' problem are·based on the theory of linear programming, 

the simpiex method and the parametric linear programming. 

'The set of efficient extreme points is a co~nected set 
• 

that is, ther~ 1S either only one point in the set or there 

is path of adjacent efficient extreme points betw~en any two 

. 
points 1n the set. Therefore, it is possible to enumerate all 

efficient extreme points by sta~ting at an efficient extreme 

point and going through only the efficient extreme points. 

The methods rep~rted in the literature differ 1n the 

efficiency check procedures and in the enumerating paths 

through the efficient vertices of the conVeX polyhedron. 

Several authors have proposed procedures for the efficiency 
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check and enumeration of the efficient ~xtreme points. A 

comparative survey of these procedures including the, 

generation of the non extreme efficient points is given in 

K1z1ltan[l~. Here, some of these procedures will be briefly 

mentioned and two of them will be discussed in more detail. 

The first efflciency check subproblems are proposed by 

Philip[24J ,'He gives two different LP subpr~blems to ~heck 

the efficienty of a given point. H~ also indicates how to 

find another efficient extreme point once an initial efficient 

point is found. Steuer and ,Evans[ll] give a revised simplex 

method for MOLP problems. Ecker and Kouada[ 8 J give: a method 

for finding'all eficient extr~me points by determination of 

the efficiency of an edge incident to an efficient extreme 

ZelenY[3l] g1ves an efficiency check subproblem. The 

basic feasible solution X O is efficient if and only if:the 

maximum objectiv~ value of the subproblem below is zero. 

Max 

(11.1.2.2) s.t 

T 
e s 

x E X~{(x.s)lx E X, Cx-s~Cxo,s~O} 

Since by the definition of efficiency there can not be x E X 

such that Cx > 
o 

C.x , 

Starting at an effi~ient extreme point, this 

subproblem is solved for all adjacent ~~treme points which 
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are not obviously dominated and the adjacent efficient 

extreme points are determined. Then going to one of them 

which is not explored already and performing the efficiency 

check procedure for all adjacent extreme points to that 

extreme point and repeating this process all efficient 

extreme points are enumerated. 

1 s erma nn [17] s tat est h e e qui val e n ceo f m u 1 t i 0 b j e c t i v e 

linear programmlng problem (11.1.2.1) and"t~e 1in~ar 

~ultiparametric problem below. 

(IL1.2.3) 

Max ATCx 

s. t 

x e: X 

A > 0 

Theorem: 11.1.2.1. X
o 

1S an efficient point for the 

multiobje~tive linear problem (11.1.2.1.) if and only if there 

exists a A > d such that X
O is "an optimal solution for the 

multiparametric linear problem (11.1.2.3). Isermann gives 

the following adjacency definition for the efficient 

extreme points. 

Definitd.on: 11.1.2.1. Let x' and x" be efficient basic solutions. 

x' . and x" are said to be adj acent if. and only if, 

(i) x' and x" have (m-l) basic variables in common (i.e they 

are adjacent vertices) and 
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( i i) each x "'" ex x I + (L- ex) x", 0 ~ ex .:;. 1 is e f fie i ell t. ' 

Furthermore~ he gives the definition of dual 

feasibility as follows: 

Definition: II.l.2.2. An efficient basic feasible solution x· 

is s~id to be dual feasible if and only if the system 

has no solution, where R is the reduced cost matrix associated 

with the basic solution x'. 

Dual feasibility of .a basic feasible solution is a 

sufficient condition for the efficiency of a basic feasible 

solution of the multiobjectiv~ linear programming problem. It 

, is a 1 so 'n e c e s sa r: y for the e f fie i en c y 0 fan 0 n d e g en era t e bas i c 

feas'ible s~lution. A degenerate basic feasible· solution may 

be efficient without being dual feasible, but at least one of 
">, 

the degenerate e~ficient basic solutions which represent the 

same extreme point in the convex polyhedron is dual feasible. 

Thus, in order to obtain all effici~nt extreme points 

determination of all dual feasible base~ is adequate. Isermann 

gives the following definition of the solution graphs. 

Definition: II.1.2.3. Let E be the set of the dual feasible 

i j i j 
bases and L =- {(x ,x ) x .and x are adjacent dual 

feasible basic solutions}. The undirected graph G = (E,L) 1S 

the solution graph. 
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He gives the proof that the solution graph G is finite 

and connected. Based on this fact he gives an algorithm ~o 

en u me rat e all d u a I f e a sib 1 e b as e s. K 1 Z 1 1 t an [1 9 J g i v e san 

ilgo~ithm to enumerate all efficient extereme p6ints which is 

based on the dual feasibility concept. The monotone 

connectedness properity which is 'stated in the followl.ng 

theorem provides ,an efficient procedure for enumerating all 

dual feasible bases through a pat~ of efficient edges along. 

which the value of a spe~ific objective is nonincreasing. 

Theorem: 11.1.2.2. E.ch dual fe~s,ible basis, except the one 

where. objective k attains its maximum, has at least one 

adjacent dual feasible basis obtained by introducing a non-

basic variable Xs with the associated reduced cost coefficient 

of the k th objective is strictly less ,than zero. 

K1z1ltan gives the following LP subproblem for the 

efficiency che~k. 

Min s 
q 

(11.1.2.4) s.t 

v + 

v > 0 
= 

where R
j 

1S the J th co.lumn of 

S ==0 e , v j E P 

s > 0 

the, reduc~d cost mat~ix, and 

P .,. {j /RJ -j O}. If the minimum of s 
q 

is zero then entering 

will lead to an efficient basic solution. 

Starting at the dual feasible basis where the k th 

x 
q 

objective is at its maximum it is only required for the non-



basic variable x such that R k > a is ~o be checked wh~ther q . q . 

they lead to an efficient basis or not. Employing some 

additional tests eliminates the need for solving. the sub-

problem for each x such that R . > O. 
q qk 

11.2. SOME MAJOR NETWORK PROBLEMS 

11.2.1. INTRODUCTION 

The theory on .netw6~ks is closely re1~ted with the 

g~aph thaory and the same terminology is used. The following 

definitioris are employed both in giaph theory and networks. 

A graph G(N,E,~) is a collection of nodes denoted by 

the .set N and edges denoted by the set E. t is the incidence 

~e1ationship~ b~tween th~ nodes and th~ edges. If the links 

have di~~ction$·then the graph is called as a directed g~aph. 

A chain is a sequence of links connectingariy two 
, 

nodes, when the direction along, the ~hain. is speci~ied, 

then it is called a path. If the initial and terminal ~odes 

of a chain is the same then it is .ca1~ed as a cycle, 

similarly if'the initial and terminal nodes of a path is the. 

same then it 15 called a circuit • 

. A graph is said to be connected if there is at least 

one chain connecting every pair of nodes. A tr~e is a 

connected graph with rio cycles. A spanning .tree of a graph 

G i. a subgraph of G which forms a t~~e including every node 
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of-G. J~ there is an one ended arc outward from a node of a 

spanning tree then- it is called as rooted spanning tree. The 

one ended a~e is called a root. 

A net~ork is a graph which haswei~hts associated with 

the arcs. A source in a net~ork is a node with all of its 

arcs are directed outwards _and a sink·is a node with all of 

its arcs are directed in. 

The theory on networks can be applied to a wide range 

of ~roblems fro~ diverse areas such as electrical networks, 

communication systems, transportation systems, information 

theory and data structures, project planning and production 

scheduling. Ihe problems which have the special properities 

of the network structure, not necessarily representing a 

physical network, can be for~ulated as ri~twork models. For 

such problems, special algorithms which are more efficient 

than the general methods have been developed by exploiting 

the network structure. 

Three main network problems are shortest path,'maximum 

flow and the minimum cost flow problems. These problems will 

be reviewed briefly in the following sections. By using 

logarithmic transformation the network problems with 

multiplicative objective function c.n be formulated as shortest 

path problems. That simple transformation technique employed 

in chapter 4. Maximum flow and ninimu~ cost flow objectives 

can .be handled in the same multiobjective minimization 
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formulation. The solution procedure proposed in chapter 3 

haa been deriv~d from a sqlutiori method for the -minimum 

cost flow network problem. 

11.2.2. THE SHORTEST PATH PROBLEM 

Given a directed network with the- distances assigned 

on the arcs, the problem is to find the minimum distance path 

from one specific node to inother. 

The shortes~ path from a node to another node (or all 

other node~ wbich are determined jointiy) can be found when 

the network has no negative cycles. ~neof the most efficient 

shortest path algorithm for networks with positive arcs is 

Dijkst~a's algorithm with O(m2 ), computa~ions and comparisons, 

where m is the number of node~[20]. 

II.2.J. THE MAXIMUM FLOW PROBLEM 

Given a directed network with arc capacities, the 

problem is to ~aximiz~ the flow from a so~rce to a sink. ,The 

concept and algorithm is d~e to Ford and Fulkerson[l3]. They 

gi~e the theorem of max-flo~ min-cut stating the maximum flow 

thr~ugh a capacitated network from the source to the sink is 

equ~~ to the capacity of the minimal cut. _Th~ constructive 

proof of the theorem leads. to the maximum flowalgo~ithm[121. 

Ford and Fulkerson's max-flow ~lgorithm is the first labeling 

algorithm in the field. 
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The ~aximum flow problem maybe formulated as follows: 

max v 

s. t. 

=U 
if i-I 

m m 
L x .. - L ~. if i'l'-l or i+m 

j-l 1J k-l 1 
-v if i ""!n 

0 < x .. < u .. 
1J 1J 

The max-flow problem can be' generalized to a multi

sourc~ multi~sink proble~ by adding a pair of nodes being t~e 

super source and the super sink and arcs connecting the super 

source to the sources and the sinks to the super sink aa in 

figure 11.1. 

Figure 11.1 

If there are capacitated nodes in the network, they 

can be handled by creating two vertices instead of the 

capacitated node, which are connected by an arc with the 

capacity of the node, as in Figures 11.2.a and 11.2.b. 

Figure 11.2.a. Figure 11.2.b. 

J 
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11.2.4. THE MINIMUM COST" FLOW PROBLEM 

Given a directed network with unit shipping costs on 

the arcs, the pr~blem is to find the flow vecto~, composed of 

arc flows, which satisfies the supply and demand contraints and 

minimizes the cost. 

The well known transportation and transshipment'problems 

are minimum cost flow problems. The most general of such 

problems is the minimum cost circulation"problem. 

11 .• 2.4.1. The Transportation Problem 

The problem is to find the minimum cost flow in a 

bipartite graph, where the two kinds of nodes are origins and 

destinaiions. There can be arcs otily from origin~ to 

destinations. The problem can he formulated asf~llows: 

"min 

(II.2.4.l) s.t 

1: 
(~, j ) 

m 
1: 

i-1 

c .•. ' x •• 
1.J 1.J 

·x •• s. i=-l, ••• ,m 
1.J 1. 

x •• .!.. d. j =-1 , ••• ,n 
1.J 1. 

, 

x > 0 
'= 

In order to have a feasible solution to the problem 

above the total demand must"be equal to the total supply, that 

is 



s . 
1. 

n 
E d. 

. 1 1. J=-
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If the total supply exceeds the total demand or V1.ce versa 

a dummy destination or a dummy source must be added with the 

difference as its demand or supply. 

The problem may be- solved by the efficient transport-

ation algorithm rather than the general simplex method. 

II. 2.4.2. "The Transshipment Problem 

If there are nodes which are neither supply nodes or 

demand nodes in the net~ork. then the p~oblem i~ the trans-

shipment problem. The transshipment problem can be converted 

into a tr~nsportation problem and solved by the transportation 

algorithm or by the network simplex method of linear 

programming [ 3 ]. 

11.2.4.3.- The Minimum Cost Flow Problem 

If it 1.S possible to send the flow through the other 

sources and sinks, that is if there can be transshipment 

from a source or a sink, then the problem is a minimum cost 

flow problem and can be for~ulated as follows: 



mln' E 
(i, j ) 

- 19 

<: •• x .. 
lJ 1J 

(11.2.4.2) s. t. 
m 
1: 

j-l 

m 
x .. - E xk . - b. 

lJ k=-l 1· 1 

x.. > 0 , y. (ij) 
1J 

, -i-I, ... , m 

Nodes with b. > 0 are called source nodes, with b. <0 
1 1 

sink~ and with b. = 0 are transshipment nodes. 
1 

If there are upper and lower bounds on the aic flows 

the nonnegativity constraints are replaced by the bound 

constraints such as x .. > t .. and x .. < u .. , where t .. and 
1J - 1J 1J - lJ lJ 

u .. are the lower and the up~er bounds on the flow of arc 
1J 

(i,j). 

The minimum cost network flow problem 'can be solved 

by the network simplex method which will be described and 

used in the next chapter. 

The problems stated above can be reformulated asa 

minimum circulation p~oblem by adding a retu~n flow from the 

sink to the ~ources. This formulation is the most general of 

th~network ~low problems and can be used in multiple 

objective network programming. 

The out-of-kilter 'algorithm requires this formulation. 

This ~lg~rithm is an another effi~ient network flow algorithm 

which is due· to ·Fulkerson[lO]. 
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11.3. LITERATURE SURVEY ON MULTIOBJECTIVE NETWORK PROBLEMS 

In literature, there are very few papers dealing with 

developing efficient methods for multiobj~~tive network 

analysis, however, in the field' of application, multiobjective 

methods are required. 

In this, section, six papers ~ill be surveyed. Two of 

them are proposing methods for bicriterion transportation 

problems; one is an adaptation of a method developed'for 

general multiobjective linear programming problems to the 

trans~ortation problem; the other one proposes multiobjective 

shortest, path algorithms and the remaining two report mddeis 

and solutions for real life multiobjective transshipment and 

shortest path problems. 

Aneja and Nair[ l] give an algorithm (or bicriterion 

transportation problem which finds the efficient extreme 
, 

points in the objective space. Since the objective 'space 1S 

convex it is possible to find the set of the efficient 

extreme points by parametric ,search in the objective space. 

The algorithm ~tarts with ffnding the minimum of both 

objectives, and generates other efficient extreme points 1n 

the objective space by repeatedly solving the transportation 

problem which minimizes a positively weighted average of the 

objective ,functions. Choosing two points rand s in the 

objective space from previo~sly stored'pairs of efficient 

extreme points, new weigths for the weighted objective 
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• (I' s) 1 s rl funct10n are calculated as a
1

' . ~ z2 - z2 and 
(r,s) 

ai 

where z~1 denotes the value of the ith objective at 
1 

point r. Minimization of weighted objective function with 

these weights either generates a new efficient extreme point 

in the objective space or ends up at one of these points. 

If weighted minimization results the point either r, or 

s a new efficient extreme point is not generated but the pair 

(r,s) is excluded from further consideratioh. If a new 

e f f i c i en t ext I' e me poi nt' k i s g en era ted the two p a irs ( r -, k) 

and (k~s) are added to the set of ~airs of efficient point to 

be considered. Since the set of efficient extreme points is 

finite the algorithm terminates in finite number of iterations. 

-It is reported that the algorithm terminates exactly at 2k-3 

iterations, if there are k (~>2) efficient extreme points 1n 

the objective space. A third objective of minimizing the 

maximum time is incorpor~ted by an outer loop u~in3 the 
, 

bicriterion algorithm. 

Srinivasan and Thompson[26] giVe another parametric 

bicriterion algorithm for findjng cost verses average time 

trad~-~ff curve for multimoda1 transportation problem. They 

state the problem as follows: 
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Hin 

01.3.1) s. t. 
E 

x ij k s. for v. jk ~ 
, 

~ 

E x
ijk 

.,. d. for V . ik J J 

x
ijk 

> 0 

where C
Jjk 

is 

of shipping 

the unit cost of transportation, t .. 
k 

the time 
~J 

and x .. 
k 

the amount of shipment from origin -i to 
J.J 

destination j with mode k. The right hand sides s. and d. 
1 J 

are 

respectively the supply at i and demand at j. 

In this formulation the average shipment time is 

expressed as weighted average by the shipments x .. 
k 

as below: 
1.J . 

E t·.
k 

x .. 
k 

/ E 
. . k ~J 1J 1· 
1. , J , 

s. -
1. 

Since E s. 
~ 

is constant theyus~ the second objective function 
i 

in the formulation. They solve the bicriteria linear 

transportation problem by an parametric algorithm they-have 

developed. 

~huente[30J gives tw6 algorithms for the multicriteria 

shortest path problems. The first method is a dynamic 

programming .approach for acyclic networks. When there exists 

an i-vector of lengths asso~iated with each arc the problem 

is t~ £ind the efficient paths from the source to the sink. 
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The· nodes are renumbered such that i < J if there 1S arc 

(i,j). Since the network is assumed to be acyclic this can be 

done. Thus, dynamic programming equations are given as: 

f . 
1 

eff 

j < i 

{f. + d .. } 
J J 1 

1-2, ••• ,n 

d .. '==-oo 
J 1 

if (j;i) i A 

Using operator "eff", he means all the efficient paths to 

node i from nod~ I is stored. The nodes have labels L(i) with 

~+2entries which denote each efficient path from node I to 

each node i. The first and th~ second entries indicate the 

preceding node and the number of the efficient path coming 

from the previous node respectively and the remaining 1 

entries have the values of th"e ~ criteria of the efficient 

path specified by the label. 

The second approach proposed by Thuente uSes interval 

criterion weights concept which is due to Steuer. He obt~ins 

~-l combinations of lower and upper bounds of the weight 
~ 

interval such that E w
k 

= 1. It is proposed to find· the 
b 

weighted shortest ·path for each feasible combination of the 

weigh.ts. 

These concepts about two proposed algorithms are g1ven 

very briefly and are. not developed into complete algorithms. 
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Isermann ~8J constructs a -multiobjective transportation 

problem in ·order to enumerate all efficient solutions of a 

lin~ar mUltiple objective transportation problem based on the 

pre v i 0 u s res u Its h e has rep 0 r te din [ 1 7] for e f f i c i en c y c h e c k 

and enumeration of the efficient solutions which are reviewed 

in the first section of this chapter. 

Moore, Taylor and Lee[23] report a multiobjective 

transshipment model which is solved by goal programming. The 

problem has two parties involved, one is the mana~ement with 

the objective of cost minimization, the other ii the la60r 

union with a set of objectives such as shipping traffic from 

a specific plant to a specific warehauseto be minimized, or 

maximum of 50 percent of total supply will be transshipped 

through' s~ecific warehauses.· The problem is formulated into 

a goal programming model. The objective of weighted deviations is 

optimized and, parametr.ic analysis performed on the weights. 

The solution pro~edure is general and does not use the 

special structure of the transshipment problems. 

Egberg, Cohon and ReVelle[9. J report an initial work 

on a multiobjective analysis on the location planning of gas 

pipeline system from· off shore platform to an onshore plat-· 

form. The main objectives of the system stem from the high 

cost and potential environ-mental impact caused. They report . . 

that no explicitly mUltiple objective models have been 

adressed to gas pipeline network system as a whole. Environmental 
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agencies have developed policies to minimize the number of 

pipelines and to confine them to a few specific pipeline 

corridors. The problem defined as a shortest path problem 
. . 

with multiple objectives but formulated as'an LP problem. Two 

reasons have been reported for the LP formulation. The first 

is the difficulty of the post-opeimality analysis in shortest 

path problem~, second is the intention to include the network 

gathering and processing facilities into the model. The 

parametric objective weighing'.nieth-od.-is"used to handle the. 

miriimization the corridor length, wetlands area, forrested 

area and developed area in the corridor. 
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CHAPTER III 

!1ULTIOBJECTIVE LINEl\R NETWORK FLOW PROBLEMS 

111.1. INTRODUCTION 

An important subclass of multi objective network problems 

.are multiobje~tiv~ linear network flow problems. The cost of 

sending the flow from some sup~ly nodes to some demand nodes 

is, generally, a linear function of the flow. Someother linea~ 

measures, for instance, an environmental cost measure, or the 

cos~ of deterioration of the flow as indicated -in[l,9] can 

be incorporated. Sometimes, maximization or minimization of 
- " 

flow on some arcs is required. One other relevant proble~ 

can be to maximize the flow through the network simultaneous~y 

with the minimiz.tion of the other cost objective~. 

These type of problems can be formulated as follows: 

Min 

(111.1.1) 

s. t. 

-n 
L 

i=l 

1 c .. x .. 
~J ~J 

Q, 
c .. x._. 
~J ~J 

n 
• x •• - L 

~J k=l" 

x·· > 0 
~J 

xki 
=- b . , i=1,2, ••• ,Jl 

~-
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We have 9. linear objectives to be minimized~ where 

k 
c .. , {k =-1 , ••• , 9.} 1 s the un its hip pin g cos t due too b j e c t i v e 

1J 

k on the arc (i,j).~he constraints of the problem are the 

flow conservation equations of t~e netwo~k. The difference 

between the total flow into and out ofa node is equ~l to ~. 
. 1 

{ i=ol , ••• , m} • The right hand side of the consiraints, b., 
1 

1S. 

equal to the supply generated at node i. If the node i is a 

source node b. > 0.' If node 1.1S an intermediate node b. =- 0 
1 1 

and if it is a sink then b. 
. 1 

the total demand, that is 
m 
E 

< o. 

b . 
1 

The total supply is equal to 

"., O. 

The problem posed above is a MOLP problem and it can be 

solved by one of the methods developed for MOLP problems. 

Although.the linear network flow problems can be solved by 

the simplex method, a neiwork simplex method 'has been dev~loped 

by exploiting the special structure of the netwo~k problems 

which is more ~fficient than the other approaches[lS]. 

Also, in the multiobjective linear network problems a network 

simplex method provides an efticient pro~edure for finding 

the efficient extreme points. 

11.2. REVIEW OF THE NETWORK SIMPLEX METHOD 

Th'e' coefficient matrix of the constrai.nt set of 

(111.1.1) is the node-arc incidence matrix of the network. 

The coefficient matrix does not ha;e f~ll rank. If we select 

an (m-l) by (m-l) submatrix we form a nonsingular matrix. There 
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are m nodes with flow constraints and the rank of the 

coefficient matrix is (m-l). Since the simplex method 

requ1res a full ran~ constraint m~trix, an artificial 

variable corresponding to a node should' be added to form a 

matrix of rank m. 

Every basis for the minimal cost network flow problem 

corresponds to a roted spanning tree,. and· every rooted 

spanning tree 1S lower triarigular~ thus every basis is 

triangular. 

A matrix 1S totally unimodular if the deteiminant of 

every square submatrix formed from it has value -1, 0 oi +1. 

In the network problem any column of the coeffi~ient matrix 

corresponding to arc (i"j) conta~ns exactly t.wo nonzero 
. ' 

elements a "1" in row i and a' "-:-1" in row j. The coefficient 

~atrixof a net~ork flow problem (s totally unimodular. Thus 

the basis matrix B is unimodular which implies that B- 1 is an 

integer matrix, for arbitrary integer right hand side b, 

every basic solution formed as 

integer. Proofs can be obtained from Bazara and Jarvis[3 J and 

Garfinkel and Nemhauser[14]. The triangularity of the basis 

matrix permits an efficient determination of the dual variables 

and the values of the basic variables directly ort the network 

through a labeling proced~re. 

If lower and upper bounds are present on the arcs an 

algorithm for the bounded network can be used. In this case 
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the arcs at either their upper or lower bourids aie considered 

nonbasic. 

A Labeling algorithm for the network Simplex Aethod 

with lower and upper bounds ia reported in[ 3J. It is stated 

as follows: 

Initialization Step 

Start with an initial feasible basis, and set the basic 

variables to their req~i~ed values. 

Main Steps 

1) Compute the dual variables w. i=l, ••• ,m set W -0. 
1. m 

02 ) 

Compute Wi'S going from the root to the other nodes 

through the basic arcs. 

For each nonbasi~ arc compute z .. 
1.J 

- c .. ~ w.-w.-c ..• 
1.J 1. J 1.J 

If z .. - c .. < 0 for all nonbasic variables at their 
1.J 1.J 

lower bound and z .. - c .. > 0 for all nonbasic 
1.J 0 1.J-

varia~les at their upper bound. Stop, the present 

basis is 6ptimal~ 

If for a nonbasic variable x .. at its lower bound 
1.J 

z .. - c .. > 0, or if for a nonbasic variable at its upper 
1.J 1.J 

bound the reduced cost coefficient is less than zero, then 

such an arc is a candidate for an entering arc. 

3) Entering one a~c forms only one cycle with the 

spanning tree associated with the present basis. 

Through a labeling process determine the leavin~ 

arc as the first one which will go to its either 



- 30 -

bound and also determine the maX1mum flow change 6x. 

~) Perform the flow change by backtracking through 

the labels on the cycle formed in step 3. 

5) If the entering variable goes from its lower bound 

to its upper bound or vice versa~ The leaving 

variable and the entering variable are' the same. 

and the basis is preserved return to step 2. 

Otherwise. remove the leaving variable from the 

basis and add the entering variable to the basis. 

Return t6 Siep 1 •. 

111.3. THE MULTIOBJECTIVE NETWORK SIMPLEX METHOn 

For finding ill efficient extreme points of a multi-

obj~ctiv~ linear network problem network simplex' frame can be 

used inste~d ot standard simplex format. 

The badic ~odificationi of the single objective 

algorithm are: 

1) An mxQ. matrix of dual variables 
a 

cal c u 1 a't e d w. are· 1 .. 
2) An Q.xn matrix of the reduced cos ts are calculated 

3) An afficiency check subproblem is embedded 

4) The c~lculation of the values 6f the basic arcs, 

for any given basi"s, i's added. 

The fourth modification performs the generation of a 

required basic solution solution which-may require severa~ 

piroting oper~tions iri the simplex tableau format through a 
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labeling and backtracking process. This convenience is due to 

the network structure of the problem. 

Since the set of efficient basic solutions is connected, 

starting at an efficient basic solution all of the efficient 

extreme solutions of the convex polyhedron defined by the 

flow conservation conservation constraints can be enumerated. 

111.3.1. FINDING AN INITIAL EFFICIENT BASIC SOLUTION 

Although there are oth~r ways of finding an initial 

efficient basic feasible solution, a method which can be used 

is ~o find the basic solution whic~ minimize~ anyone of the 

objectives, say the first objective. If there is no alternative. 

solution to the optimal basic solution to the first objective 

that solution is an efficient" solution. Otherwise, alternative 

optimal bases are enumerated until a dual feasible basis ~s 

found. 

The method described above for finding an initial 

efficient basic solution is analogous to Phase I of the 

single o"bjective simplex me·thod. 

111.4. A LABELING ALGORITHM FOR THE MULTIOBJECTIVE NETWORK 
SIMPLEX METHOD 

II~.4.l. DEVELOPME~T OF TH~ ALGORITHM 

The algo~ithm is developed for enumeration of all 

efficient extreme points of a linear multiobjective network 
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flow problem. The efficiency check and the concept of monotone 

connectedness is applied from K1z1ltan[19]. since the problem 

is a vector minimization problem here, the LP subproblem for 

the efficiency check is changed as: 

m1n 

s. t 

v~ 0, s > 0 
=-

where sef is the slack associated with the nonbasic arc (e,f) 

and a is the reduced cost matrix. 

III~4.2. THE ALGORITHM 

Initial Step 

Start with an efficient basic solution Jl which minimizes 

the 1st objective. 

Form the set of generated efficient basic solutions 

Form the .set of efficient basic solutions to be 

generated M + 0 

Fo~m the set Jl as the set of nonbasic arcs. 
1 

Set k + 1 

Main Steps 

1) Se t 
a 

w 
m 

0, a 1, •..• ,R., R. the number of objectives 

- If w~ has been computed,' t.r~ has not been computed 
1 1 

. and arc (i, j ) 
a 

is a basic are, then set w. 
J 

a a 
w. - c ..• 

1 1J 
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- If ·w'; has been computed, w~ has not been compu ted 
L J 

and arc (j ,i) iS,a basic arc, then setw~ 
J 

a 
c ..• 

LJ 

- Repeat Step 1 until ,all w~ 's have been com.puted. 

2) For each arc £ J~ compute 

a 
z .. 

LJ 
a a - c .. + w. 
LJ L 

a l, ••• ,Ro 

, 
3) i) Apply the prelimenary check to each (e,f) £ J

k
• 

If there exist an arc (e~f) e: J~ such that (Z_c)(e,.f) 

• < 0, then J is a dominated basi~,'where (z_c)(e,f) 
- ef 

is the reduced cost column of the nonbasic arc (e,f) 

and J
ef 

is the new basis which will be obtained by 
, 

introducing the arc (e,f) £ J
k 

into the basis. 

ii) Form Bk as the set of remaining nonbasic arcs. 

Form the sets P + {(i J.) 
k \ ' 

1 1 
z .• - c .. ~O, 

LJ LJ 

EV + 0. If P
k 

=- 0 go to step 10, otherwise continue. 

4) Choose an arc (e,f) £ P
k 

and apply the efficiency 

check by solving the LP subproblem: 

Min s 
ef 

s. t 

vTR + s 
T 

-e R 

v > 0 , s > 0 = =-

where R LS the reduced cost matrix associated with the arcs 

Make the following observations ,during th~ solution of 

the subproblem 
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i) If any s .. associat~d with (i,j) E P
k 

1S nonbasic 
1J 

in any simplex tableau or basic at zero level update the sets 

as EV + EV + {(i~~)} and Pk ~ Pk - {(i,j)} 

ii) If all coefficients ~f the corr~sponding row to a 

basic s .. «i,j) E P
k

) arc ~onpositive update P
k 

as P + P -
1J k , k 

{(i,j)} 

iii) If the optimal value of sef is zero EV + EV + 

{(e,f)} an~ P
k 

+ P
k 

- {(e,f)} 

If P
k 
~0 repeat step 4. Otherwise continue. 

5) If EV = 0 go to Step 8. Otherwise choose (e,f) E EV, 

set s = f, t = e arid L(s) - (+t,~) 

6- a) If node i has a label, node 1 has no label and 

are (i,j-) is basic, set L(j) =- ( i,lI"j) where lIj == lIL 

b) If node i has a label, node j has no label and arc 

(j,i) 1S basic set L(j) (-i,lI
J
.), where lI·=min{lI. x } if 

J. l' ji' 

x .. < lI. set (g,~) = (j,i).· 
J 1 1 

c) Repeat step 6 until node t is labeled. 

7) Leaving arc 1S (g,h) and entering arc is (e,f) •. 

Set- E V + E V - {( e , f) }, and J e f + J k - {( g , h)} + {( e , f) }. 

If J
ef 

E N go to Step 5. Otherwise set M + ~ + J ef and go ~o 

St ep 5. 

8) If J 
ef 

E N (i,e the las t bas is which has been ob-

tained by entering (e, f) is· explored before) go to step 10. 

Otherwise continue. 

! 
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9) Set fj. == Ll t • If the first entry of L(t) is i, then 

add fj. to x k t' • 0 the r w i s e, i f the fir s ten try in L ( t ) i s - i , 

subtract fj. from x .• Backtrack to node i and repeat the 
lt 

process until node t is reached in the backtracking process. 

Update the sets M + ~ - J
ef 

and N + N + J ef • 

Set k + k + 1 and J k + J ef , go to step 1. 

10) If M == 0 stop. N is equal to the se~ of all 

efficient bases. Otherwise, select a basis JiM and obtain 

that ~asic solution through a labeling and backtracking 

process. Set k + k + 1, J
k 

+ J. Update the sets M + M - J
k 

and N + N + J
k

• go to step 1. 

111.4.3. EXAMPLE PROBLEM 

To illustrate the algorithm the example problem below, 

is solved. 

Figure ill. 4.1 
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Given the network in Fig.II.4.1 and the cost matiix 

x
IZ x l3 x Z4 x Z5 x 32 x

34 

I 2 5 4 1 3 

C """ 2 4 2 2 2 1 

0 -1 0 0 -1 0 

find all .the efficient extreme points. 

The sol u t io,n procedure: 

Initial Step 

The initial efficient basic solution 

maximizing the first objective, . 

2 

Figure IIl;.4.Z 

k *" 1 

J
k

*" {(1.3),(Z,4),(3,4),(3,5)}:, 

N ~ J
k 

- {\(l,3),(Z,4),(3,4), (3~5)1} 

JI *" {(l,Z),(2,5),(3,~),(4,5)} 
k 

x35 x
45 x5 

1 2 0 

3 I 0 

0 0 0 

is obtained by 

o 
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Step 1) 1 
0 2 

0 3 
0 w5 = w5 W = 5 

a a a 
w3 = W + c 35 5 

1 1 2 3 3 
0 w3 = w3 = w3 = 

a = wa + .a w1 3 c
13 

1 3 2 7 3. -1 wI = w
1 = w1 = 

a a a w
4 = w3 - v43 

I -2 2 2 3 0 w
4 = w

4 = • w4 = 
a a a w2 = w4 + v24 

1 3 2 4 3 0 w
2 = w2 = W = 2 

Step 2) for each (ij) Jl 
k 

calculate; 

3 - 3 - 1 -1 

(Z-C) (1,2)" = 7 - 4 - 2 = 1 

-1 - 0 - 0 -1 

3 - 0 - 4 -1 

(Z-C)(~,5) = 4 0 .,.. 2 = 2 

0 - 0 - 0 0 

1 - 3 - 1 -3 

(Z_C)(l,2) = 3 - 4 - 2 III -3 

0 - 0 + 1 1 

-2 - 0 - 2 -4 

(Z_C)(4,5) = 2 - 0 - 1 = 1 

0 - 0 - 0 0 
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i) There is no nonbasic arc (e,f) such that 

(Z~C)(e,f) ~ 0 

ii) BI ~ {(I,2),(2,5),(3,2),(4,5)} 

Step 4) 

For .each (e,f) e: Pk ':"' {(i,j) I z~. - c~. ~O -, (i,j)e: 
1.J 1.J 

Bk } , Pk '- Bk perform' the efficiency check through the 

subproblem. 

Initial basic feasible solution to the subproblem. 

Vi v2 v3 s12 s25 5 32 5
45

'- . 

, s 12 0 -1 -1 1 
-

-1 0 0 2 

VI 1 ~2 0 0 -1 0 0 1 

s 32 0 -9 1 0 -:-3 1 0 8 

s 45 '0 -7 0 0 -4 - 0 I 7 

Table III.4.1 

Observations on the tableau: 

1) s 25 is nonbasic therefore entering x 25 will lead to 

an efficient basic solution. 

2) s 12 and s 45 can not be less than 2 and 7 respectively 

because all of the coefficients of the corresponding ro~s are 

nonpositive. Thus entering x12 or x 45 will not lead to 

efficient bases. 

, 
Only s 32 remains to be checked by solving the subproblem-
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which minimizes s32. It becomes nonbasic at the first 

iteration therefore x 32 will lead to an efficient basic 

solution. 

Form the set EV the set of nonbasic variables which 

lead to efficierit bases 

Step 5) 

Step 6) 

Step 7) 

EV {(2,5),(3,2)} 

Pk 0 

(e,f) = (2,5), s .... 5, t 2, L(5) ... (+2,00) 

(3,5) basic 3 has no label L(3) - (-5,4),(g,h) - (3,5) 

(3,4) + L(4) (+3,4) 

(2,4) + L(2) (-4,2);(g,h) =- (2,4) 

J 25 
{(l,3),(2,4),(3,4),(3,5)} + {(2,5)} - {(2,4)} 

{(l,3),(3,4),(3~5),(2,5)} 

J
25

i N , M + M + J
25 

= {[O,3),(3,4),(3,5),(2,S)]} 

EV + EV - {(2,5)} - {(3,2)} 

Step 5) (e,f) (3,2)., s =- 2 , t - 3 , L(2) - (+3,00) 

Step 6) (2,4) basic 4 has no label L(4) = (+2,00) 

( 3 , 4 ) + L ( 3 ) =- (- 4-, 6) , (g, h) = (3, 4 ) 
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Step 5 EV ~ go to step 8 

Step 8) (e, f) =- (3,2) , J 32 .J. N 

/). + /). = 6 
2 

Step 9) L(3) (-4,6) + x
34 

+ x
34 

,- 6 = 0 

L(4) (2,00) + x
24 

+ x24 + 6 =- 8 

L(2) (3,00) + x
32 

+ x32 + 6 ... 6 

8 
2 ~--------------~ 

~ ______ ~4 ______ ~ 5 

Figure II.A.2.'The new efficient basic solution adjacent.to J 1 • 

M + M - J
32 

N + N + J 32 

{ [ ( 1 , 3) , (3' , 4) , ( 3 , 5 ) , ( 2 ,5 ) ] } 
J 

{[(1,3),(2,4),(3,4),(3,S)], [(1,~),(2,4),(3,5), 

(3,2)] } 

k + k + 1 = 2 , J 2 + J 32 ' go to step 1. 
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Step 1) 

1 
0 2 3 Ws , Ws 0 Ws 0 

1 
1 2 

w3 w3 
3 3 w3 0 

1 
3 2 3 

,wI wI 7 wI -1 

1 
0 

2 3 w2 
=0 w2 1 -, w2 1 , 

1 . 
=- -5, 2 

-1, 3 w4 w4 
= w4 1 

-
Step 2). [1 -

(H) (3,4)_- ; 1 (Z-C) (1,2)_ J ,(Z_C){2~5)= -41 -1 , 
1 -1 

[ =n 
-

(Z-C) (4,5) .. 

Step 3) 

i) There is no nonbasic arc (e,f) such that (Z-C){e,f)~O 

ii) Bk {(1,3),{2,5),(3,4),(4,5)} 

P
k 

{(2,5),(4,5)} 

Step 4) 

vI v
2 v3 s12 s25 s34 s4S 

v3 
0 -13 1 0 -3 -4 0 21/2 

s12 0 -16 0 1 -4 -6 0 13 

vI 1 - 3 0 d -1 -1 0 2 

s45 0 -10 0 0 -4 -3 1 11 -
Table 111.4.2. 

1n~tia1 basic feasible solution to the subproblem. 
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Observations on the initial basic feasible solution 

1) s25 isnonbasic therefore entering x
25 

will lead 

to an ef~icient basic solution. 

2) All of the coefficients of the row associated with 

S45 15 nonpositive and s45 >~ 11, therefore, entering ,x45 will 

not lead to an efiicient basts. 

EV f(2,5)}, 

Step 5) (e,f) - (2,5) , s - 5, t - 2, L(5) 

Step 6) (g,h) - (3,5) 

Step 7) J
25 

{(1,3),(2,4),(3,2),(2,5)}, J 25 i N 

M + M + J 2 5 = {[ (1 , 3.) , (3, 4 ) ~ ( 3 , 5 ) , (2 , 5 ) J , [ (l , 3) , (2 , 4-) , 

(3,2), (2,5)J} 

EV + EV - {(2,5)} ~.0 

Step 5) EV go to step 8 

Step 8) (e,f) (2,5) , J
25 

i N 

4 

Through the flow change proce~s. the following basic 

solution is obtained. 
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8 

a 

Figure III.4~3. New efficient basic solution 
.ad j acent to .. J 2. 

M + M - J
25 

... ·{[0,3),(3,4),(3,5),(2,5)]} 

N + N + J
25

.'" {[(1,3), (2,4), (3,4), (3,5)J, [(1,3), (2,4), (3,5), 

(3,2)J, [0,3), (2,4), (3,2), (2,5)J} 

k + k + 1 .... 3 

J
3 

+ J
25 

' go to step 1. 

a Step 1) w. , a .... 1,2,3 , i=1,' ••• ,5 are ca1cu1ate4 
~ 

Step 2) 

Step 3) 

(2-C) (1,2)_ [ j ], (2-Cr(3,4)_ [ J] 
(Z-C) (4,5):" [=~ 1 

;) (Z_C)(4,5) < 0 h f J ... , t ere ore, 45 

present basis. 

{(1,2),(3,4),(3,5)} 

, (Z-C) (3,5)=0.[ i] , 
-1 

~s dominated by the. 

Step 4) P
k 

= 0 i.e there is nO arc (e,f) E Bj such that 

zl _ c 1 < 0, then go to step 10. 
ef ef 
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Step 10) 

k +- k + 1 =- 4 

Select the last element of M 

J 4 - {(1.3).(2.5).(3.4).(3.5)} 

Figure 111.4.4. The selected effici~nt ba~is fr6m 
the set M to which a move will be d6ne. 

X
13 

11. x
25 

= 2 • x 34 ~ 8 

x35 4 - 2 =- 2· 

M +- M - J. = rio 4 VJ 

N +- N + J
4 

go to step 1. 

Performing steps 1 to 4. the set EV - {(1.2).(3.2)} 1S 

obtained. 

Performing steps 5 to 7 for (i.j) £ EV 

J
12 

{(1.3).(2.S).(3.4).(1.2)}. J 12 ¢ N 

J
32 

= {(1.3).(2.S).(3.4).(?2)}. J 32· t N 

are optained and the set M is updated •. At steps 8 and 9 the 

arc (3.2) is entered. The efficient basic solution is obtained. 
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the following updates are made M + M _.J N + 
32 ' N + J 32 ' 

k + k + 1 - 5 , J 5 + J 32 ' and return to step 1. 

Performing steps 1 to 4 on the basis J
5

it is detected 

that EV "'" 0 and at step 10 k is updated as k + 6~ a basis E M 

is selected as J 6 - {(1,3),(2,5),(3,4),(l,2)} and the corre

s~ondingbasic feasible· solution is obtained. The sets M and 

N are updated, and returned to step 1. 

Performing &teps 1 to 4 on the basis J 6 the set· 

EV - ·{(2,4),.(3,2)} is obtained. 

Performirtg steps 5-7 fot (i,j) E EV 

J
24 

-{(1,3),(1,2),(2,5),(2,4)} , J 24 i N 

M. + M + J
24 

"'" {[(1,3,>,(l,2),(2,5),(2,4)J} and 

J
32

."'" {(l,3),(2,5),(3,4),(3,2)} , J 32 E N 

are obt;;li~ed. 

-

Step 8) (e,£) (3,2) 

J
32

E N , i.e J
32 

i M, EV = EV - {(3,2)} 

Select (e,f) EEV, (e,f) + (2,4), 

perform labeling and flow change process 

. . The new efficient basic feasible solution F~gure 111.4.5. 
adjacent to J 6 • 
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M + .M - J 24 - 0 

N + 

k + 

go to step 1 

Performing steps 1 to 4 on the basis J
7 

the set 

EV - {(3,4)} is obtained 

Performing steps 5,6,7, J
34 

=- { 0, 3) • 0, 2), (2,5) .• ( 3.4) } - is 

obtained, J 34 e:: N, go to step 10. 

Step 10) 

M =0 0 

The set N is the set of all efficient basic 

solutions. 

I 

111.5. A LABELING ALGORITHM FOR THE MULTIOBJECTIVE NETWORK 
SIMPLEX METHOD WITH LOWER AND UPPER BOUNDS 

111.5.1. DEVELOlMENT OF THE ALGORITHM 

In this .section, the multiobjective network simplex 

algorithm will be extended to the case with lower and upper 

bounds. When there exists bounds on the arc flows the 

efficiency check subproblem is modified as followi: 

s.t. 

Min 

vT(Z-C) (i,j) + s .. =0 -eT(Z-C) (i,j) 
1.J 

T(Z C)(b,d) + sbd =- e -

v~O.s~O 

v- (i,j)-e:: LB 
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where (Z-C)ij 1S the reduced cost column associated with arc 

(-i.j). LB and UB are the "set of nonbasic arcs .at their lower 

and upper bounds respectively such that introducing anyone 

will not yield in decrease in the 1st objective. 

Also the labeling routine is extended accordingly. For 

the sake of completeness the steps which are identical with 

the previous algorithm will be repeated here. 

111.5.2. THE ALGORITHM WITH BOU~DS 

In i t i.a 1 S t e p 

Start with an efficient basic solution J
l 

which minimizes 

the 1st objective 

Here, an efficient basic solution is identified both 

by its basic arcs and also with its nonbasic ~rcsindicating 

whether these ares are" th,€ir 'upper or lower bounds. F.orm the 

set af'generated efficient basic solutions N·+ {J l }. Form the set 

of efficient basic solutions to be generated M + 0. Form the 

set· J~ as the set of nonbasic arcs. 

Setk-'-l 

Main Steps 

1) ·Set wa = 0, a ~ 1 •••• ,R.. R. = the number of objectives 
m 

. a 
- Ifw~ has been computed, w. h?s not been computed 

1 J 
a a a 

and arc (i,J·) is a basic arc, then set w. = w. - c ..• . J 1 1J 

arc 

. add - If w~ has been computed. w. has not been compute an 
1 J 

(j • i) 
a 

is a b"asic arc, then set Wj 
a w. 
1 

+ c~ •• 
1J 
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Repeat step 1 until all w~ s have been computed. 

2) For each nonbasic arc compute. 

a a a a z .. - c .. w. - w. 
1 J 

a - c .. a-I ..... Ro 1J 1J 1J 

3) Apply the prelimenary check to each (e.f) E JI 
k 

i-a) If there exists an arc (e,f) E J~ and xef 

Ro f • wh ere 2. f e 'e 
is the lower bou~d on arc (e.f). such that 

(Z_C)(e,f) < a 
, -' then J ef is a dominated arc (e. f)', and J

ef 
is 

the new basis whic~ will be obtained by introducing (e,f) irito 

the basis. 

i-b) If there exists (e,f) E J~ and x =- u 
ef ef· 

Where u
ef 

is the upper ,bound on arc (e,f), such ~hat 

(Z-C)(~·f) > o~ then J
ef 

1S dominated. 

ii)Form Bk as the set of remaining nonbasic arcs. 

For m the set,s: 

1 P
k 

+ {(i,j) z .. 
1J 

1 - c .. 
1J 

< 0 if x .• 
1J 

L. 
1J 

, or 
1 z '-
ij 

, 

cL > 01 
1J 

if x .. 
1J 

EV + (6 

u .. 
1J 

(i.j) E J 1
} 

k 

If P
k 

=- (6 go to step 10. 

and 

4) Choose an arc (e,f) E P
k 

and apply the efficiency 

check by solving theLP iubproblem. 
j 

'I 
I 
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min 

s. t. 

vT(Z_C)(i,j) + s .. 
~J 

-vT(Z-C) (b, d) + sbd 

v > 0 • s :> ·0 
=- =-

T ( •• ) -e (Z-C) 1,J y. (i,j) £ LB 

eT(z_C)(b,d) y. (b-,d) £ UB 

where LB {(i,j) I x .. =- R... and (i, j) £ B
k

} and 
... 1J 1J 

and (i,j') £ Bk }· UB --{(i,j) x. . u .. 
1J 1J 

Make the following observations during the solution of 

the subproblem. 

i) If any s .. associated with (i,j) £ P
k 

is nonbasic 
1J 

in any simplex tableau or basic at zero level update the sets 

EV + EV.+ {(i,j)} and P
k 

+ ·P
k 

- {(i,j)} 

i.i) If a 11 co eff i c ien t s of the correspond ing row to a 

basic Sij «i,j) £ P
k 

are nonpositive update Pk as Pk + Pk -

{ (i ,j ) } 

iii) If (e,f) £ P
k 

make one iteration on the tableau 

if sef - 0 update EV + EV + {(e,f)} and Pk + Pk - {(e,f)} 

make obse~vaticins (i) and (ii) 

- IfP + ~ repeat step 4. Otherwise continue 
k . 

5)· If EV =- 0 go to Step 8. Otherwise choose (e,f) £ EV 

- If xef 

set L(s) 

set s =- e , t =- f , (g,h) = (e,f) 

(-t, x -ef 
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- If x· """ 9.. 
ef ef se t s ~ f , t - e , (g,h) (e, f) 

set L(s) - (+t, u - ~ ) , ef ef 

6) The labeling process 

a) if node i has a label, node j has no label arc 

( i, j) is bas i c" set L (j) = (+ i, 6.) wh ere 6. 
J J 

min {6. , u.. -
1 1J' 

.x .• } 
1J 

if u .. - x .. ' < 6. set (g,h) - (i.j) 
1J 1J 1 

b) if node i has a label, node j has no label arc (j,i) 

is basic, set L(j) - (-i, 6.) where 6. ,.. min {L~., x .. - L.}. 
J J 1 J 1 J1 

If x .. - 9.. •• < 6. set (g.h) 
J1 J1' 1 • 

(j , i) 

c) Repeat step 6 until node t is labeled. 

7) Leaving arc 1S (g,h) and entering arc 1S (e,f)'. 

Set EV'= EV - {(e,f)} and.J
ef 

+ J
k 

- {(g,h)} + {(e,f)} • 

. and adjust the upper and lower b~und indicators accordingly. 

If J
ef 

E: N go toStep 5. Otherwise set M + M + J ef and go to 

step 5. 

8) If J
ef 

E: N go to step 10. Otherwise continue. 

9) Execute t~e flow change process: 

Set 6 = 6', if the first entr~ of L(t) is +i then add 
t 

otherwise, if the first entry in L(t) is -i 

from x .• Backtract to node i an~ rep~at the 
. 1 t 

process until node t is ~eached in the backtrackihS process. 

Update the sets X + M - J ef and N + N + J ef Set k + k+ 

1 andJ
k 

+ J
ef 

' go to Step·l, 
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10) If M - 0 Stop. N is the set of .al1 efficient bases. 

Otherwise, select a basis J € M and obtain that basic 

solutio~ ~hrough a labeling arid backtracking process Set 

k+ k + 1, J
k 

+ J. Update the sets M + M - J
k 

and N + N + J
k 

go to step 1. 
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CHAPTER IV 

f\ SOLUTION PROCEDURE r-OR ~~ULTIOBJECTIVE PROBLEMS HITH A 
COMBINATION OF ADDITIVE PND A SPECIAL TYPE OF 

MULTIPLICATIVE OBJECTIVES 

IV.I. INTRODUCTION 

When a problem is given to .maximize the reliabilit'y 

and minimize a linear cost function simultaneously, the reli-

abiliti function can be formulated as a type of ~ul~iplicative 

, Yij ., 
funct10n. TIP" . The var1~bles YiJ' are zero-one variables. The . 1J 

. working probability Pij of the component (i,j) is independent 

of the others'. This multiplicative function is transformed 

into an additlve function by a simple logarithmic transfo~ma-

tion L-Ih(Pij)Yij. Using such transformation the most reli-

able path problem can be formulated and solved as a shortest 

path problem[lOJ. 

Given a network, the problem is stated as to send a 
, 

flow which satisfies the flow conservation constraints, and 

simultaneously maximizing the reliability of sending the 

required amount of flow and minimizing the associat~d cost. 

Th~problem can be formulated as follows: 
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max IT 
i,j 
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p .. Yij 
1.J 

m1.n .r.. c·· x·. 
1.,J 1.J 1J 

s . t 

. n n 

L x .. - L x = bi j-l 1.J k=l ki 

x .. >,0 
1.J 

={l if x· . >0 y .. 1.J 
1.J 0 otherwise , 

for i= l, •.. ,n 

for V (i,j) 

Transforming the multiplicative objective to be 

maxiiniz.ed into L-ln(p .. )y .. results the following objectives 
1.J 1.J. 

L In(p .. ) y .. i,j 1.J 1.J 

m1.n 
L c .. x .. i,j 1.J 1.J 

subject to the same constraint set in the above formulation. 

One can observe that the sum of a single additive ob-

jective function and a single multiplicative function results 

in a fixed charge objective function. 

The problem above 1.S stated as.a bicriteria problem. 

In fact, there can be more than one multiplicative and addi-

tive objectivei. For simplicity 1.n statement and less compu-
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t~tional work, the algorithm and its related exampl~ 1n sec-

tions 4 and 5 respectively of this chapter will be given only 

for 11ll' hicril('rill caHe. 

The~osts a~socia~ed with the ~rcs In a network can be 

han d Ie d a s fix e d c h a r g l' s. TIl (' 0 the r fix e d e h a r g l' S, a sid e f r <> m 

the reliability meisure, can be the construction costs, set 

up times or distances related with the arcs of the network. 

When the fixed charges are noncommensurabl~ with the cost of 

flow a multiobjective fixed charge problem can be formulated. 

Since we are dealing with vector comparisons in ~he 

multiobjectivecase, the solution of th~ fixed charge problem 

is not necessarily going to be the solution of the fixed 

charge' problem, however, i~ will prove useful to investigate 

the soluiion procedures proposed for the fixed charge problem. 

IV.2. THE FIXED. CHARGE PR~BLEM 

IV.2.l. GENERAL PROPERTIES JF THE FIXED CHARGE P~JBLEM 

The fixed charge problem ffiay be formulated as follows: 

11 i II 

s. t. 

(IV.2.l) n 
E 

j=l 

x. 
J 

n 
i: 

. =1 J. 

c .x. I
J J 

a .. x. b , 
1. 1.J J 

> 0 -
y. 

J 

n 
E 

j=l 

= 

d.y. 
J J 

{ 1 

0 

i l,2, ••• ,m 

if x. 
1. 

if x. 
J 

> 0 
0' . j =1 , 2 , • • • ,n 
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The problem stated above requires the minimization of a 

_ concave function over a convex polyhedron defined by 

X:II {xIEa .. x. < b. 
. ~J J - ~ 

·i-l,2,.~.,m}. The concavity of the 

objective function has been proven in[7]~ 

Since the global m~n~mum of a concave function over a 

convex polyhedron is at one or more of the extreme points of 

the convex polyhedron, the optimum of the fixed charge problem 

is attained at an extreme ~oint of the conv~x polyhedron 

defined by the constraints. Hirsch and Dantzig have'shown 

that this is true for the fixed cha~geproblemi It is also 

shovn' that for a nondegener~te problem ~ith all equality 

constraints and all positive fixed charges, all extre~e points' 

are local minima. 

The fixed charge problem can also. 

mixed integer linear programming problem: 

( I V • 2. 2). 

where M.'1s 
J 

.. 
an 

Min 
n 
E c.x. + 

j=l J J 

s. t. 

Ax b 

x. M.y. 
J J ~ 

y .. 
~ 

(0;1) 

x > 0 

upper bound on x .• 
J 

d.y. 
J J 

< 0 - , 

be formulated as a 

J 1, ••• , n 

J 1, ••• , n 

There are several approximate and exact algorithms for 

i 
I 

j 

I 
I 

i 

i 

I 
I 
I 
I 
I 
I 
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solution of the fixed charge problem. 

Utilization of the fact that the optimal solution to 

the fixed charge problem is at an extreme poiut of the convex 

polyheron of the constraints results inn some approiimate 

solution procedures by ~eans of so~e heuristics or 

approximations. Balinski[2], Cooper and D~ebes[ 7J, 

Steinberg[27] have developed heuristic algorithms for the 

~ixed charge problem. 

The exact solution procedures are mixed integer 

solution, vertex ranking sol~tion prop~sed by Murty~4] and 

improved by McKeown[221 and.T~ha[291 and .btanch and bound 

algorithms proposed by Bod[ 4] and ~teinberg[27]. 

IV.2.2. EXACT SOLUTION PROCEDURES 

Exact solution procedures for the fixed charge problem 

require partial pr implicit enumeration of the vertices of 

the convex polyhedron. Thus they require much more computation 

time than the approximate algorithms. An appropriate mixed 

integer algorithm may be used to solve the fixed charge 

problem when formulated as a mixed integer problem. Algorithms 

specially designed fot the fixed charge problem may generally 

be more efficiint. In t~is section .two such algorithms will 

be reviewed. 

Aurty[24] proposes a vertex ranking algQrithm for the 
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fixed charge problem. The algorithm is based.on ranking the 

vertices of t~e polyhedron in nondecreasing order according 

t6 the linear ~bjective function values and then adding the 

fixed charges to determine the optimal solution. ~urty's pro

cedure is based on two facts. 

First: Let sl' s2, •.• ,sk be the k vertices of the 

convex polyhedron of the constraints rank i~ the nondecre~sing 

order of their linear objective function vafues then the ne~t 

vertex in the rank 1S adjacent to one of the k previous 

vertices,.' Secondly the ranking procedure can be bounded. 

Suppose some vertexs is determined in the rank the next 
r 

vertex r+l to be ranked should be such that Z l+D <Z +0 , r+ 0 - r r 

where Zr and Zr+l are the linear objective values to' the 

vertice~ r and ~+l respectiv~ly, J r is the fixed charge vafue 

of the vertex rand D 19 a lower bound ort the fixed charge. 
o 

Thus.when a vertex k+l with Zk+{+Do>Zk+Dk is r~ached the 

ranking procedure stops, be~ause vertices with the linear 

objective value greater than or equal to Zk will yield greater 

objective val~e to the fixed charge problem than the k th 

vertex in the rank. The optimal solution can be obtained from 

t~e set of the vertices which were ranked so far. As Aurty 

reports the efficiency of the al~orithm improve~ with the 

nearness of D to the greatest lower bound of the fixed charge 
o . . 

component of the objective function. As a numerical example, 

he solves a fixed charge transportation problem and determines 

D by summing the smallest 1 fixed charies where 1 is the 
o 

j 

I 

I 
'I 

I 
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number of destinations, since there should be at least ~ 

'positive variables to satisfy' the demands. In general, l.n a 

problem with m constraints, it is required to sum the smallest 

m-v fixed, charges where v is the highest degree of degenaracy 

of the problem • 

. Degeneracy causes difficulty in ranking vertices, 

therafore if a degenerate basic solution is encouniered it 

is r~quired to determine all th~ bases whi~h' represent the 

same extreme point. 

McKeown improves Murty's algorithm by finding a better 

lower bound D • He generates a ,set covering problem from the" 
o ~ 

~ixed charge problem with the fixed charge objective function, 

and solves the set covering problem by relaxing the 

integrality of the variables as 0 < Yi < 1. 

~cKeown has shown that the minimum of the relaxed 

version of the set covering' problem is a lower bound on the 

fixed charges of ,the fixed charge problem. 

Steinberg[Z7] proposes an exact branch and bound 

a'lgorithm for the fixed charge problem. The algorithm finds 

the global optimum solution without having to enu~erate all 

basic feasible solutions. The algorithm generates an enumeration 

tree by bran~hing at each node assigning the ~ariable 'Xj 

or x. ~O. In otherwords at each node one more constraint 
J 

either x. > 0 or x. = a is added to the primary convex 
J J 

> 0 
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polyhedron of the fixed cha~ge problem. A path will be 

terminated when there are m additional x. > 0 constraint~ or 
. J 

(n-m) additional x. 
J 

o constraints .are imposed on the 

initial constraints set, or no feasible solution exists when 

the current additional constraints are imposed.· Terminat}ng 

the paths when one of the three conditions stated above 

occur's will. lead to enumeration of all extreme points of the 

convex polyhedron. Thus a bounding procedure to reduce the 

number of vertices enumer~ted is employed. Tha.algorithm 

starts with an upper bound. A good upper bound is proposed 

such as an heuristic objectiv~ value. The pat~ LS fathomed 

when a lower bound computed is greater than the present upper 

bound and whenever a path is terminated with a unique basic 

feasible solution if the corresponding value of the objective 

~unction is less than the cur~ent upper bound it replaces the 

present 'upper ~ound when there is no live vertices the 

present upper ,bound and the corresponding solution is the 

optimal sol~tion: The computation of the lower bound bt each 

node requires solution of an LP problem each time with one 

more constraint added to the present constraint set when 

go ing down the tree •. 

The maximum level of degeneracy of the problem must 

be determined in order to find the lower bound on the fixed 

charges. Before ·starting· the .solution n linear program.nLng 

problems are solved as below. I 
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J 

s. t. 

(IV.2.3) 
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x. 
J 

Ax b 

x > 0 

x. in basis 
J 

The number of solutions with zero optimum value determines 

the maX1mum level of degeneracy. 

IV.). BICRITERIA FIXEO CHARGE NETWJRK PROBLEM 

A bicriterion fixed charge problem may be formulated 

as follows 

l1"in 

(IV.3.l)· 

s. t. 

we have two objectives. 

arc (i.j) and d .. 
1J 

is the 

E c .• x .•. 
ij 1J 1J 

E 
ij 

n 
E 

j=l 

y .. 
1J 

x· . > 
1J -

{~ 

n 
E x

k1
. ==- b. 

k=l 1 

pl •...• m 

0 'If (i. j ) 

x .. > 0 
1J 

x .. a 
1J 

c .. 1.S the unit shipping cost on the 
1J 

fixed charge associated with the 

. presence of the arc (i.j). -It is aimed to find the efficient 

extreme points of the conv~x polyhedron defined by the flow 
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conservation constraints. In the literature, there is no 

known procedure for solving such a problem. In the next section, 

a branch and bound algorithm for solving the fixed charge 

problem which is due to Steinberg[27] will be extended to two 

objectives. Enumeration of all efficient basic solutiops of 

the fixed charge problem is possible by using the bicriterio.n . . 

bran~h and bound algorithm for the fixed charge problem. 

Since we are deali~g~with fixed charge network probl~m, 

at each vertex of the branch and bound algorithm the LP 

subproblem can be solved by network simplex method. 

IV.4. A BRA~CH AND BOUND ALGORITHM FOR BICRITERIA FIXED 
CHARGE NETWORK PROBLEM 

Initilization 

'Step 1) 

Start it a live vertex o and set the initial upper 

bound vector UBo'~ (~) and set q=O. Co to Step 3. 

Branching 

. Step 2) 

. If no live vertices go to Step 7, otherwise select a 

live vertex (Depth first branching rule is applied) Branch 

to x .. = 0 and go to Step 4. 
1.J 

Separation 

Step 3) 

Select an unassigned arc (i,j) with the 

ch to x.. > 

maximuI,ll d .. 
1.J 

and 
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Bounding 

Step 4) 

Compute the vector of lower bounds k 
~ . The first 

. k 
component ~l 1S the lower bound on the-linear ·objective which 

can be found by solving the LP pioble~; 

k 
~l m1n cx 

Ax =r b 

- x .. > 1 
1J 

x .. co 0 
1J 

X > O· 

k for (i,j) e:' S 
1 

for (i, j) e: S ~ 

X 1. an extreme point ofAx~b 

S ~ is the set 0 far e s (i , j) wh i c h m u s t be po sit i v e at v e r t e x 

. k . 
k and S2" 1S the set of arcs (i,j) which must be zero at 

vertex k. 

If the ,LP problem has no feasible solution fathom, and 

go to. Step 2. 

The second component of ~k which corresponds to the 

fixed charge ~bjective can be calculated as follows: 

k { ( i , j ) 1 (i, j.) i Sk k 
Let S3 = U S2} 1 

P co { ( i ,j )·1 (i, j ) can be in the bas is at zero 1 eve l} 

k . k . 
Q =- P n (S 2 US) 

3 

N
k 
1 

the number elements in 
k 

Sl 
. k 

the number of elements 1n Q N
Q 

... 
k k N

k 
S4 the set of last m-N arcs 

1 Q 



Then 

k 
~2 

.F a thoming 

Step 5 
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L d .. 
k ~J 

(i,j) £ S4 

a) If one of the following holds fathom 

i) If there arc M constraints of the form '.' x .. > 0" 
~J 

ii) .1 f ther:e are n-m constraints of the form "X •• =-O" 

iii) If d .. 
~J 

o for all (i,j) E S~ 

S -k k 
et Z + ~ and go to step 2. 

~J 

b) If zk > UBP for some p fathom and go to step 2, 

otherwise t Z- th f' f z-k. _k compu e k' e ~rst component 0 1S zl 

and the "second component is "the sum of d .. with 
~J 

x .. > 
1J 

k 
~l 

o 1.n the 

. 1 1 . d' k If -zk opt1ma so ut~on correspon ~ng to zl' ~k fathom~nd go 

to step 2. Otherwise go to step 6. 
, 

Step 6) 

If zk > UB P for any p go to step.3, otherwise set 
= 

1 and UBq _k 
and store corresponding sol u t. ion "x q , if q + q + + Z 

TIB P _k 
for < drop UBP, and condense the set, ~Z any P q, 

q + q - 1 go to Step 3. 

Termination 

Step 7) 

If q o no feasible solution, 

If q > 1, U·B P , P = l, ••• ,q and the corresponding 

solutions are the efficient extreme solutions. 

i 

I 
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IV.4.1. FINDING. AN INITIAi BASIC FEASIBLE SOLUTION FJR THE LP 
SUBPROBLEMS FOR COMPUTING THE LOWER BOUNDS· 

In the branch and bound algorithm at each nod~ one 

more ,constraint of the form x .. - a or x .• >.a is added. Thus 
1.J 1.J . 

initial basic feasible solution 1.S required for the LP sub-

problem for the computation of the lower bound on ~he linear 

objective. Th~ following LP problem is solved to obtain an 

initial basic feasible solution if an additional constraint 

x .. ~ a 1.S impose.d at node k • 
. 1. J 

min x .. 
1.J 

s. t. 

Ax 

x 

b 

> a 
-

with the additional constraints on variables x .. > a"for the 
1J 

" . 
variables made basic and x .. - a for those variables which , 1J 

are assigned to zero. Also, x must be an extreme point of 

the polyhedroh Ax = b. 

zero, 

When the optimal objective v~lue for this problem is 

either x .. 
1.J 

is removed from the basis or it is basic at 

zero level. Otherwise, there is no feasible solution. 

However, when x .. is not basic in the previous basis 
1J 

then the present basis remains feasible when the additional. 

constraint x .. 
1J 

a is added. 

If an additional constraint x .. 
1J 

> 0 is imposed at 

node k then an LP subproblem with the same constraint set as 



- 65 -

the above problem but with the objective function as _ 

maximize x .. must be solved 1.J . 

If there' is an basic feasible solution with a positive 

objective value at any stage then it 1.S not necessary to 

optimize since an initial basic feasibl~solution is obtained. 

If the optimum objective function value is zero then there 

is no feasible solution. 

If the variable x .. 1.$ basic in the present basic 
1.J 

feasible solution that solution is still basic feasible when 

the additionjl 'constraint x .. > 0 is added. 
1.1 

IV.4.2. THE SOLUTION PROCEDURE FOR THE"RESTRICTED LP 
SUBPROBLEM 

It may be required J at any node k of the branch and 

bound algorithm, to solve the following LP subproblem: 

• 

m:i;n cx 

s. t. 

Ax = b 

x .. > a for ( i J j ) E: Sk 
1.J 1 

for ( i J j ) ·k 
x. " a E: S2 

1.J 

x is an extreme point of Ax ~ b 

x > a 
=-

T~e regular pivoting operations of the simplex method 

:are petformed un~il a stage where ther~ are only the candidate 

. 1 1 corresponding leavin~ variables ar~ entering var1.ab eS Wlose ~ 
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elements of S~. At this stage the c~rrent value of the 

objective function zl has been obtained, but there may be 

an extreme point which has a better objective function value 

but not adjacent to the present basis. In order to determine 

if there is a better objective value the following check, 

procepure is employed. 

For each (i,j) i s~ or not basic in the present basis 

solve the following problem 

and 

where x .. 
1J 

max x .. 
1J 

s. t. 

Ax b 

X , 

x .. 
1J 

x .. 
1J 

s > 0 = 

o 

o 

(i , j) E: s~ 
k 

( i , j) E: S2 

x is an extreme point to Ax = b 

1S the current value of x .. , initially zero. 
1J 

. At each step the minimum increase in x .. 
1J 

is taken and 

1.
·f > 0 the procedure is terminated· and a new at .any stage ~l. ' 

extreme point is ob~ained. The regular simplex .iterations can 

start at this basis. 

I 
-I 

1 
i 
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IV.4.3. COMPUTtNG THE LOWER BOUNDS 

When proceeding 'down the. tree it is not" always required 

to solve the LP subproblem in order'to check whether the lower 

bound at node k exceeds the ·one of the pre~ent upper bounds 

(i.e UB P s). Any ~ne of the following cases may occur at node 

k. 

i) If x .. > 0 ~s the additional constraint arid x .. is 
. ~J ~J 

k already basic in the pr~sent basis !l the first component of 

the lower bound vector is the same as the objective function 

k value of the present basis.T~e second compo~ent ~2 can be 

calculated as follows: 

k 
!2 = E 

( . .) k 
.~tl sl 

d .• + 
~J 

~ i) If x.. > 0 
~J 

is the additional constraint and x .. 
~J 

is 

k not 'basic in the present basis compute ~2 the second component 

k of the lower bound vector.' Set ~l' as the same as the 

.' f h basis.' If this k > UBP for object~ve va~ue 0 t e present ~ = 

so~e p fathom~ and go to step 2. Dtherwise. solve the LP 

subproblem •. 

~~~) If x . = Ois the additional constraint and x .. 
666 . ij ~J 

is,basic in 'the present basis.apply the sa:me procedu~e of .the 

s"ce.p 4. of the' ai.gorithm.· 
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iv) If x .. = a is the additional constraint and i.t is 
1.J 

not basic in the present basis the ftrst component of the 

lower bound yector is the same ~s th~ objective function 

value of the present basic solution. The second component 

needs to be computed as in i) .above. 

IV.5. EXAMPLE PROBLEM 

To illustrate the branch and bound algorithm the 

example problem belov is solved. 

b =-1 
3 

Figure IV.l 

d ~ -100 x tn (P .• ) 1.S substituted 
ij 1.J 

b =-L 5 

(1,2) (1,3) (2,4) (2,5) (3,2) (3,4) (3,5) 

( 1 2 5 4 1 3 i 
c = 

[ 3.04 2.02 12.78 4.08 8.33 18.63 24.86 
d = 

network in Fig.rrI.2, the unit cos t vector c, . and 
Given the 

d the problem is to find the set of 
the fixed char ge vector 

(4,5) 

2 J 
5.12 
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all efficient extreme point~. 

The- solution procedure 

k """ 1 

1 
~l 

.1 
~2 

_1 
zl 
_1 
z2 

UBI =-

k ==- 2 

X35 > 0 LS the additional constraint 

Z12-C12 

Z25-C2~ 

Z32- C32 

Z45- C45 

Figure IV.2. 

54 

24.86 +(4.-08 + 3.~4 + 2.02) =- 34 

54 

2.02 + ll.78 + 18.63 + 24.86 ~ 58.29 

( 54 ) . 0 -1 0 
58.29 • UB > Z • Drop UB. 

-1 

-1 
=-> optimal 

-3 

-4 

(X
35 

> 0). x
34 

> 0 are additional constraints, 

x
34 

LS basic. 

2 
~l =- 54 

2 
Z2 
_2 
zl 

2 
z2" 

24.86 + 18.63 + {3.04 + 2.02) = 48.55 

54 

58.29 



k =- 3 

k =- 4 
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(x 35 > 0, x 34 > 0) and x 24 > 0 are additional constraints 

x
24 
3 

~1 
3 

~2 
_3 
zl 
_3 
z2 

-3 
Z 

is basic~. 

54 

24.86 + 18.63 + 12.78 + (2.02) = 58.29 

54 

58.29 

3 
~ ,. fathom. 

(x 35 > 0, x 34 > 0) and x 24 = 0 areadd~tiona1 

constraints,x
24 

is basic in the p~esent basis. 

To make x
24 

nonbasic solve 

m'~n x
24 

s. t. Ax => b 

> 0 (i,j) s4 x .. e: 
~J 1 , 

x ... = 0 (i,j)'e: s4 
~J ·2 

xis an extreme point. 

W5 w4 w3 = wI = 0, w2 
1 

z12 - c 12 
-1 

CD 
z25 - c;25 1 -~ enter (2,5) -+ 

z32 - c 32 -1 

z 45 - c 45 
=0 Q 

Figure IV.3 .1 

I 



- 71 -

Now, solve the LP min cx 

s. t 

Ax "'" b 

x .. > 0 ( i I j ) c S4 
1.J 1 

x .. 0 (i I j ) 4 
1.J e: S2 

x is an extreme point. 

Z12 - c
lZ 3 - 4 - 1 ..a -Z· 

zZ4 - c
Z4 4 Z 5 1 + x

24 should rema1.n nonbasic 

z32 - c
3Z 1 - 4 - 1 =- -4 

z45 - c
45 -2 - 0 - 2 = -4 

·4 
cx =- 56 ~1 

4 
24.86 18.63 ~2 + + (3.04 + 2.02) = 48.55 

_4 
= 56 zl 

~4 
2.02 + 4. 08 + 18.63 24.86 =- 49.59 z2 + 

_4 

* 
UB P for UB

2 _4 56 
Z ~ny P 4 + z (49.59) 

k =- 5 

x 34 > a I x
24 

= 0) and x 32 > a are additional 

constraints. 

x
32 

is not basic in the present basis. 

5 
~2 

5 
~2 > 

24.86 + 18.63 + 8.33 + (2.02) = 53.83 

49.59 I since 
5 

~1 >56 fathom. 
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k -.6 

(x 35 ,::,1 , x 34 .::. 1 " x 24 "'" 0) and x
12

'=- 0 are 

additional constraints 

.K32 .. ~~ .. )l!l~ basic -+ no change in the lower bounds 

k =- 7 

( x 3 5 . >0, . x 3 4 > 0 , x 2 4 '= O· , x 32 > 0) and x 4 5 > () are 

additional constraints. 

In orde r to make x 45 bas ic x35 is has to leave, therefore, 
fathom. 

k - 8 

are additional constraints. 

k =- 9 

x
45 

is not basic in the present basis. 

8 
.~ 

(x
35 

> 0 , x
34 

> 0" x 24 - 0 , x 32 -0 , x 45 - 0) and 

x ~ 0 are additional constraints. 
25 

X is basic in the present basis; 
25 

~ 9 =:0 56 
1 

z9 =:0 24.86 + 18.63 + 4.08 + (2.02) = 49.59 
-:-2 

9 56 
. Z (49.59) 

z 9 ~ 9 , fat hom. 

.1 
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k ~ 10 

(x 35 > 0 , x 34 > 0 , x
24 

~ 0 , x
32 

~ 0 • x
45 

~ 0) and 

x 25 - 0 are additional constraints. 

x 25 1S basic in the present basis. 

Solve the LP problem to minimize x Z5 1n order to make 

it nonbasic. 

W .,.. W =- W - w' = 5 431 

Infeasible, fathom, infact theie are 4 constraints 

of the form x .. = o. 
1J 

k 11 

(x
35 

> 1) and x 34 

present bas is 

1 

11 

o are the additional constraints 

8 

2 

Figure IV.4 

is basi~ make it nonbasic by solving LP to minimize 



Z24 - c 24 

11 ... min {8,oo,2} 

11 

enter (3.2) '11 

11 
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a + 1 - a = 1 -r enter (2,4) 

2 

2 
2 

6 

;------------'5 

Figure IV.-5 

w .=-
1 

min {oo,6} 

8 
2 J---------'-----' 4 

6 

J--------~@ 

Figure IV.6 

Initial feaiible basis is obtained, solve LP to minimize 

cx. 

z12 - c 12 
3 a 1 2 -r enter (1,2) , b. m1n {6,ll} =- 6 

z25 - c 25 
a - a - 4 -I. 

z35 - C 35 
1 + 5 - 3 3 

.z45 "- c 45 
-5 - a - 2-= -7 
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8 

cx ~ 72 - 12 ~ 60 

5 

Figure IV.7 

Z25 - c 25 = 1 - 0 4 -3 

z32 - c 32 0 - 1 - 1 ~2 

z34 - c
34 0 .4 3 1 

z45 - c
45 -4 - 0 - 2 -- -6 

11 60 ~1 

11 24.86 + (4.08 + 3.04 +2.02) 34 ~2 = 

211 60 
(42.7) 

11 !... UB P for'any UB 3 60 
Z P ==- (42.7) , 

UB P i. Z 11 for any P < q. 

k ... 12 

(X 35 > 0 , 0 34 = 0) and x 24 > 0 are additional 

constraints. 

x 2 '4 > 0 1, s bas i c in the' pre sen t sol uti 0 n 

12 60 ~1 
12 

i=o 24.86 + 12.78 + (3.0,4 + 2.02) 42.7' 
~2 

Z12 6'0 
= (42.7) 

_12 ' 12 fathom. Z ==- ~ , 
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k =- 13 

(X 35 > 0 , x 34 = 0) and x
24 

~ 0 are additional 

constraints. 

X24 1S basic, 1n order to· make it non baii~;solve LP 

to minimize 

~ w = 0 
2 , w4 = -1 , z.34 - c 34 = 0 + 1 - a - 1 

X
34 

should enter butx
34 

= 0 is an additional constraint, 

fathom because of infesibility. 

k = 14 

X35 0 is the only additional constraint. 

The present basis is; x35 is basic, 

5 

8 

t. . 
1-----------t5 

Figure IV.8 

Solve LP to minimize x35' 

= w =.1 
4 

1 + enter (2,5)+ A = {4,5,oo} = 4 



10 

In order to find the 

z)2 - c n 3 - 4 -

z34 - c
34 

3 1 -

z35 - c
35 

3 - 0 -

z45 - c 45 
-1 - 0 -

8 

Figure IV.10 

14 
2:1 60 
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l-----=-8----{0 

5 

Figure IV.9 

lower bohnd zl minimize cx. 

1 ..;.2 

3 1 -+ enter (3.4) 

1 2 

2 =0 -3 

CX =0 60 

Z24 - c24 ~ 4 - 0 - 5 ~ -1 

. Z - C =0 3 - 4 - 1 - -2 
32 32 

z35 - c 35 ~ 3 - 0 - 1 ~ 2 

z45 - c45 - 0 - 0 - 2 ~ -2 

14 
~2 (5.12 + 4.08 + 3.04 + 2.02) 14.26 

_14 
zl 

_14 
z2 

214 i 

60 

3.04 + 2.02 + 18~63 +·4.08 = 27.77 

UB P for any P 

'-14 3 
> Z drop UB 

f 

+ (60 ) 
27.77 



k ". 15 

k =- 16 
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~X35 - 0) and x34 > 0 are additional constraints. 

X
34 
15 

~l. 
15 

~2 
_15 
zl 
_15 
zl' 

15 
Z 

is 'basic in the present basis. 

60 

18.63 + (4.08 + 3.04 + 2.02) 

60 

27.77 

15 
Z fathom. 

27.77 

(X 35 ~ O~ and x 34 = 0 are additional constraints 

x
34 

is basic in the present basis when it is 'made 

nonba~ic the following basis is obtained. 

8 

Figure IV.ll 

16 68 ~1 
16 

14.26 ~2 
_16 68 _16 

i. UB P f.or P UB
4 

Z ==a 
(21.92) , z any , 

. U B P J' z16 for an y p < q 



k .... 17 

k 18 
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'(X 35 - 0 , x 34 - 0) are additional constraints, 

x 24 is basic ln the present "basis. 

fathom. 

o are·additiona1 

constraints. 

X24 basic, solve LP to minimize x
24 

in order to make 

it nonbas ic. 

x
34 

is entering variable b~t x
34 

- 0 then fathom 

because of infeasibility. 



-,<;:) 

+..,'" 

:/51.) - (51. ) . 4 (51. . ) 
6;:\31. ,Z = 58.29 I US= 5S.29 .. 

.2.J56· ) 
UB-\49.59 

+ ., ..... 0 

+. 
~.:o 

(60) - (60 ) ~= 31. }Z= 1.2.7 I 

. u Ef = ( ~ g.7 ) 
+ 
~" o 

,<;:) 

i-"J'" 

f=(~~77)' 
- (60 ) Z = 27.77 

( 50 ) - (60 ) ~ = 11.. 2 6 , Z = 27. 77 

3 . 3 (GO ) Drop U 8 .1nd set U 8 = 27.77 
of-
./~~O 

( 68 ) - (68 ) .~ = 11..26 J Z = 21.92 

4 (68 ) 
U8 =. 21.92 

00 
o 

Figure IV.12: The solution tree for the example problem. 
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IV.6. SOME ADDITiONAL CONSIDERATIONS 

Some additional considerations on the branch and 

bound ~lgorithm can be listed as follows: 

1. THE BRANCHING RULE 

The depth first branching rule is selected in the 

algorithm. This ~ule provides a more efficient use of the 

present b~sis than the breath first branching rule. The 

breadth first rule may generate more and diverse upper bounds 

and increase the probability of fathoming in the subsequent 

vertices. Therefcire. initially calculating the upp~r bound 

for the first two branches provides two different· upper bounds 

for the follDwing verti~es when the depth first ·rule is· 

applied. 

2. A PROCEDURE FOR CALCULATIO~ OF THE LOWER 

THE 

The 

each vertex 

. (IV.6.1) 

FIXED CHARGES 

method proposed by ·McKeown[22] can be 

by solving the following LP problem: 

min E d Y ij ij 
(i. j) 

E 0, (' ') y .. 
( i • j ) ~. ~.J ~J 

o < y .. < 1 
- ~J 

> 8, 
:2 ~ 

BOUND ON 

employed at 

I 
-1 
I 
1 

1 
I 

1 

i 
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where 

if a .. ' > 0 -t if b. > 0 1J and S' • 1 

if < 0 1 
if a .. b. 0 1J - 1 

The minimum value of this problem gives the lower bound 

on the fixed charge function. Since the feasibility 

requirement is added then tighter lower bounds than the method 

used in the algorithm can be found. 

3. ALTERNATIVE EFFICIENT SOLUTIONS 

The fathoming conditioh ~k - ~k allows to find only 

one efficient solution with the same objective values. If it 

is required to generate the alternative efficient solutions 

it requires more computational time. When the example in the 

previo~s section is solved without this fathoming rule the 

solution tree in figure IV.13 is obtained. The number of 

vertices in the branch and bound tree increase from 18 to 42 

and in fact~' there is no alternative efficient solutions. 

4. A DIFFERENT SOLUTION' PROCEDURE FOR SOLVING THE 

RESTRICTED LP SUBPROBLEM 

The network simplex me~hod with lower and upper bounds 

can be used. Since the solutions to the network problem are 

inte~er we can set ldwer value 1 for each variable which 

appears as x .. > 0 in the branch and bound process. If the 
1J 

only candidate entering v~ri~bles require any x .. which is 
, 1J 

assigned as x .. > 0, it is allowed to 'be nonbasic at it is 
1J 

lo~er bound and the lower bound may be calculated. But this 
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lower bound is looser than the one which· may be found by.the 

method described in section IV. Also there will be additional 

storage requir~ments and difficulties associated with finding 

an initial basic feasible soluti~n at each vertex k. 



Figure IV.l3~ The solution tree fo~ the exa~ple problem'when the altern~tive 
efficient solutions are not ignored. 

00 
.&:-
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CHAPTER V 

SUMMARY AND EXTENSIONS 

In this thesis, solution procedures for multiobjective 

netwo!kproblems with linear dbjectives and fix~d charg~ 

objectives are develop~d. 

For the multiobjective linear network problems the 

network simplex algorithm is· extended into a multiobjective 

algorithm which includes anef£iciency checkprocedure.oThis 

algorithm is also extended to an algorithm with lower and 

upper· bounds. Only the efficient extreme points are generated 

by using the labeling algorithm ior.the multiobjective linear 

network problems. The algorithm can be extended in order to 

generate the efficient edges and faces of the convex 

polyhedron. 

A bianch and bound algorithm is given for finding the 

efficient extreme points to the bicriteria fixed charge 

problem. Lt seems that in the general case where all fixed 

charges are greater than zero, the set of efficient points 

will consist only of ex~reme points. A point on an edge or 

f~ce will include fixed charges of all variables at ~ positive 

level and will be dominated with respect to the fixed charge 

06jective by anyone of the extreme points of the face. Then 
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the extreme point of the face with the minimum value of the 

first obJective ,will dominate all interiorl.points. Only if 

the value of the first objective remains constant over the 

jace and the fixed charges associated with variables which 

are not common in the bases represen~in~ the extreme points 

·~f the face are zero, the points on the face will be 

efficient. It would be worthwhile to develop a formal proof 

and to extend the algorithm to incorporate this consideration. 

In the branch and bound pr~cedure the computational 

testing must be done. Different branching rules may be 

applied, the effi.ciency of the. breadth first· rule may be 

checked. A better method for determination of the maximum 

level of degeneracy maybe employed. Also improvements on the 

compu~ation of the lower bounds -both on the linear objective 

and the fixed charges can be-developed. The algo~ithm may al.o 

be extended to themultiobjective fixed charge. problems without 

increasing ihe number of ~u~problems to be solv~d at each 

vertex, i~e. instead of solving one subproblem for each linear 

objective, it could be possible to extent to the multiobj ective 

case by solving one MOLP. 
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