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ABSTRACT
In thlS studq, a mu1t1 ~item 1nventorg control sqstem for a flrm where groups of -
1tems are supplled bu thelr own cpec:.flc factorles, was developed. The dependence
»_between items is caused bu the set up cost structure. When several 1tems are -
oraered on the same order llSt, a fixed set—up cost, 1ndependent of - the number
of 1tems and guantltles, is 1ncurred. -In order to use this- fixed part of the
‘ orderlng cost, a jOlnt orderlng pOlng, the (s,c,S),vwas recommended for the
_ 1nventoru system. As stated bq this pollcq,'orderlng dec151ons are taken also’
V?for 1tems W1th inventories ‘below. th81r can-order pornts (c 's) when any ltem
"w1th an 1nventoru below its must—order p01nt s 13 ordered.
A model with ; monetaru onjectlve functlon mlnlmlzlng the sum of orderlng and
‘1nventoru carryrng costs and satisfying Serv1ce level constralnts was set-up.
L An’ optlmlzatlon algorlthm, Wthh is. a comblnatlon of mathematlcar optimization
-and srmulatlon was .used to. determlne optlmal 1nventoru control parameters (must—Aﬁ

order p01nts, can order pornts, and order—up-to levels).

The'SOIutionialgOrithm:was‘programmed.and;its~imp1ementation for a‘selected
.group of rtems was presented_rnAthe'study. ThedCOSt sayinggachreued by the :
”dependent poIicu over a usual independent'inventoru control sqstem was also*’
demonstrated. Flnallu, the algorlthm s perfbrmance under changes in the )
uncontrolrable system parameters was analuzed and a case where changes occur in-

demand figures was presented at the end of the study.



UZET

 ‘Bu gallgmada, gok sa01da mamulun bellrll fabrlkalarda uretllerek bolge depolar1
ﬁarac1llgl 1le ¢ok saqlda magazada pazarland1g1 blr uretlm—dagltlm-satlg zinciri.
'lncelenm1§ ve bolge depolarlnda mamul stok. kontrol 51stemler1n1n kurulma51 amag—
'.lanm1§t1r.,slstem1n ozelllglnden oturu, -her 51par1§ aglldlglnda 1smarlanan mamul
'saul ve mlktarlarlndan bag1m51z olarak sablt blr 51parl§ mallqetl olugmaktadlr.
'Bu tir 51par1§ uap151 ‘nedeni ile a11§11m1§ stok kontrol pollt~kalar1n1n bu sis-
teme uggulanabllm951 mumkun gorulmem1§ ve bolge depolarinda ayni’ fabrlkadan kar-
‘§1lanan mamullerln blreusel stok kontrol uerlne ortak blr stok DOlltlkaSl ile
kontrolu oner11m1§tlr. Segllen (s c, S) stok kontrol pollt1ka51na gére, bir mamu—‘
lun stoku 1smar7anma nokta51n1n (s) altlna du§tugunde, stoku ortak 1smarlanabll-i
me noktasinin (c) altlndc tiim mamuller de :tok sev1ueler1 kendl hedef sev1uele—
 r1ne (S) glkacak §ek11de lsmarlanmaktadlrlar. Boulece, daha az saulda 51par1§

,agllarak sab;t 1smarlama_ma11yet1n1n ekonomlk kullanlml mumkun olacaktar.

: 551stem1n modellenmesznde, toplam 1smarl=ma ve stokta tubma mal uetlerlnl enazla—l
yacak blr amaq fonk51qonu olusturulmu§,‘stok kopma durumu lse uoksatma mallue— :
‘tlnl gergekg1 bir §ekllde hesaplamanin zorlugu gozonune allnarak servzs sev1ue—
~51 olarak klsltlarda modele dahll edllmlgtlr. Modeiin optlmlzasuonunda, paramet—
'r@ler ara51ndak1 tum fonk51uonel 111§kller1n tanlmlagamamlg olmas1 nedeni 1le_
'_-llnen matematlksel optlmlzasuon teknlklerlnln kullanimz1 . 1mkan51z oldugu gozleﬁ-

' m1$ boulece matematlksel ootlmlzasuon ve - benzetlm tekn xlerlnden uararlanar b1r

1g11e§t1rme algorltma51ﬁ;le optlmal stok kontrol parametrelerlne gidilmistir.

gall§nan1n uugulanma51nua 1se, algorltmanln bllglsauar programlama51 qapllml@ ve
| segilen bir bolge deposu igin model ¢ozlmleri Verllmlgtlr. Aurlca sabit 51par1§
mallyetlnln artmasi halinde pnerllen,ortak'stok pol-tlka51n1n bagimsiz politika-
léra gore sa§1adi§1 kazéng éﬁsterilﬁistir. Sistem éarameﬁrelerinde bir dedisik-
lik olmasi hallnde algorltmanln gabuk sonuca gidebilme ozelllgl ise gallgmanln

son. béliimiinde sunulmustur.
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CH/\PTEPI
II“TRODLCTION

Lo _oVERVI_Ew' OF THE .'»stDY :

'The study presented in ChlS the31s deals w1th one of the problems exposed in the
. reSearch prOJect-entltled De51gn1ng a Stock Control and Dlstrlbutlon System for

" the Marketing'Division'of Sumerbank - carrLed out by the Division . of Operatlonal
_Research of the Marmara Sc1ent1f1c and Industrlal Research Instltute (MSIRI)
Ihuouclof theipreviousﬁprojects carr{ediout by MéiRI the iuclusion»of'district
vwarehouses in the dlstrlbutlon system ot Sumerbank between tactorles ‘and retali o
’outlets ‘was proposed Arter these warehouses were establlshed aﬂd started to ‘
naVe an meortant'role 1n the- dlstrlbutlon svstem, it became necessary to

reoroanlze the stock control ana d1str1but1on system, to estaol sh the dlstrlct'

-Wvdlrtttoratts anu to determlne their functlons.

’fﬂntxvared bv this project, this‘study deals‘mith apmulti—product'iﬁyeutory
b-control s"stem wnere the 1tens areé not- treéated Lndependently 7*e'dependeacerisd
't.caused bv the set- up cost'structure. ‘In partlcular, }t hIl‘aﬂd \IJA aredthe"'

" oset- up costs “for Ltems' i and j; reSpectlvel) under 1ndependent replenlshments,
:_then the cost of a set—up lnvolvrng both of the 1tems is 1ess than the sum of
set— up costs ror WO 1ndepencent reprenlshments (RII¢KI ) :
Ihisvtype of_cost Structureh{s part{cularly appropriate when . a group of items’
‘aré’ordered from the same supplier'aod/or use thezsame"meaos of transportation;
when a replenishment is placed, there is a major fixed cost independent_of how
man> and which items*are'invoived and a Variable'cost which depends on the
numher of items. When several 1tems are anluded in an order, therunique"major
flxed cost is shared by all items in thdt order, and this causes a decrease in
~the total ordering cost. Same situation ex;sts-when aigroup of items is produced

in the same family; a major fixed production cost is required to switch over to



tﬁe production of the group_of'items, but only a minor cost is incurred to

switch among items within the same group.

A joint ordering policy based on the (s,S) policy as applied to the individual
items [10]-isvpropo$ed for the stock control of this multi-éommodity system.In
the‘multi-itém (s,c,S) ﬁolicy‘as discussed by Balintfy in [2] , a third critical
inveﬁcofy control parameter, "can-order point'", is added to two inventory control
parameters in the individual (s,S) policy. This ordering poliéy consists of
bfingiqg up’tovits‘order—up—to»levél 5; any itém i belqw its can-order poipt

c; whenever any other item j hits its must—order point Si'

In this study, a procedure introduced in [22] is used for selecting the cohtr01 
varlables (must order p01nt, can—order p01nt ‘and order—up-to 1eve1) of the
(s,c,S) system. The procedure which 1s a comblnatlon of mathemat1ca1 optlmlzatlon
and simulation is computerlzed Then this program is run for a real 11fe data

“and the results are presented.

‘In the following seccibns of this chapter, a general summary of the stock control
“systems is presented: First, inventory céntrol models are discussed in terms of
their general characteristics, and demand, delivery lead time and:objective’
function aspects are analyzed. Next, inventory control poiicies are examined

and sevéral common policies -are introduced. Last, some of the studies reported

in the literature about multi-item inventory models are summarized.

Chépter IT is devoted to problem definifion. Existing distribution system and
its problems are examiﬁed, Then diScussing'the several altérnétive poiicies to
éliminate'the present problems, an_iﬁventory qonﬁrol policy most fitting to the .
system and with least disadventages is recommended. Mathematical formulation of
the problem is given in Chapter III. At the beginning of the chapter, relevant
cost terms in the inventory system are determined,then the objective function

and the constraints are derived.

Chapter IV deals with the optimization phase and covers the solution algorithm.
The updating procedures, some numerical analysis methods used in solving the
service-level equations and the steps of the algorithm are all presented in
Chapter IV. The adventages of the proposed joint ordering policy over usual

independent policies are also shown in this chapter.



Computerization of the optimization algorithm is described in Chapter V. Main
'structureiof the program,'explanations'about'the snbroutinesvand functions,
their 1ogic.diagrams and the definitions of the variables used in the computer
. program are all'given-in‘Chapter V"Implementation‘of the model and adventages
of the proposed inventory policy over the 1ndependent one/are demostrated in
‘Chapter VI, The algorlthm's performance under changes in the uncontrollable
parameters 1s also analyzed in the same chapter. Thls thesis ends up ‘with

oncluslons in Chapter VII. Last chapter contains the criticism of the algorithm
“and comments on, 1mp1ementatlon. Theorv about the demand characterlstlcs,
'computatlons of inventory. carrylng and 1tem—order1no costs and the list of the

computer program are glven in appendlces.

[.2. INVENTORY CONTROL MODELS_
1.2.1. GENERAL CHARACTERISTICS

An inventory problem may be defined-as-designing.an inventory system and Of

making optimal decisions with respect to that inventory system. Designing an
inventory system, first.the existing conditions and the characteristics-of-the
present svstem should be carefully'investigated Then, an operating doctrine
vwhich tells us‘thé timing- and magnitude of the replenlsrment dec1510n has to

be determlned The chosen op rating doctrlne may be very dlfferent from system

to svstem regardlng their characteristics. The»ex1st1ng inventory systems-dlrter
“in size and compiexicity, in the types of items they carry,'{n the costs
associated with operating the system, ‘in the nature of the stochastic processes

" associated with the system, and in the nature of the 1nformat10n avallable to
déecision makers at any given noxnt in time. All these dlfferencescan be considered
to reflect variations in the structure of the 1nventory ‘system. Then, all these
variations can have an 1mportant role on the type of .operating policy that shouldh

be used in controlling the system.

After a suitable inventory policy is selected, demand properties have to be

- studied. Since 1inventories are kept for the purpose of meeting_future demands\
some information about the nature of demand, based on historical data, market )
research or executive judgements is essential. There are three possible states
of knowledge of demand. First, exact figures of future demand may be available.
In such a case, there is no uncertainty on the demand characteristics and it
is called a deterministic inventory control system. Secondly, there may be no
knowledge about the behaviour of future demand. Neither complete ignorance nor

.complete certainty is observed in actual situations. A third case, most fitting



real-life situations, is one where some knowledge about future demand is
obtainable. Most commonly, the demand can be described in nrobabilistic tefms.
In practice, probablllty distribution of demand is not: known exactly and
parameters characterlzlng the probablllty dlstrlbutlon should be determined’
based on historical data. In such an 1nventory system, because of the stochastlc
nature of the demand pattern, there may be tlmes when demands occur and the ’
system is out of stock An 1mportant characterlstlc of the process generating
demands 1is what happens when a demand occurs and the system is out of stock.
Basically, there’ are two pOSSlbllltles- Either the demand occurrlng durlng the
-stock-out time is 1ost,'or the customer walts until. the lnventory svstem obtalns
sufficient stock to meet his demand and he .is supplied. These are generally _

referred to as the lost sales case and the backorders case, respectively."

Another 1mportant factor in the formulatlon of 1nventorv control problems is
dellvery lead time Wthh is deflned as the length of time between the placement
- of an order and the actual addition of_that order to the inventory. Delivery
‘lead time 1is genefaily not subject to control and consequently is one of the
parameters of the inventory systems._tead time may be zero as in cases of
immediate dclivery,’in which the amount ordered is addedAtc the inventory level
as soon as the order is placed. Secondly, lead time may be aACOnstanp; After a
fixed time interval,from'thc placement of an order, -the inventory level is B
Vincreaséd byvthat amount . taét, it may not be“conétant, since the time to fill
;the order ap the»sonrce, the shipping time,:and the time reqnired to carry.out
the paper work, ‘etc may vary from one order to another .,It is seldom possible'
to predict in- advance prec15e1y what the lead time will be, and lt will be ,
necessary to assume that a stochasplciprocess generates the lead time. Lead time
-has generally considerable,effécts on the solution of probabilistic'inventory

systems.

The inventory policy and demand properties, with dellvery lead time characterlze
a specific 1nventory process. Then the criterion for selecting the operating
doctrine will have to be formulated. That is called the objective function and
it provides a measure of the performance of the inventory control policy.
Objective function can be expressed in monetary or non-monetary terms, but in
the literature emphasis has been given usually on monetary objective function.
The reason is that managers are more concerned with monetary results such as

maximization of profit or .minimization of cost which both mean more return.



In constructing the monetary objective function, it is Oftenvvery difficult in
practice to determine the stock out.cost,function. To avoid this problem, an
alternative.procedure might be to maximize the profit or minimize‘the cost,each
exclusive of the stock out cost subject to a constraint that the average
fraction of the time for which the system is out of stock is not greater than
a specified value._Here, instead of specifying the nature of the stock out cost,
onevinsteadbspecifiesvan upper limit to the average fraction of the time for
which the system is out of stock. ‘Alternative criteria for non—monetaryb
:objectives may be maximization of the.service'level to the customers or mini—
mization of the probability of stock outs provided that the capital invested in
1nvent0ry should not exceed a predetermined value of budget. Either type of
‘objective function may be formulated depending on the characterlstlcs of the

system under study.

Stuov1ng the characteristtcs of the inventory process systematically, a model
will be set up When mathematlcal analysis is used to help develop operating
rules and mathematlcs is applled to the solutlon of 1nventory problems while
controlling 1nventory systems, it is necessary to describe mathematically “the
system under’ study..Such_a descrlption is often-referred to as a ‘mathematical
moael The procedure.is to’construct a mathematical noael of the system of
1nterest and then to study the properties of the system. However, as it is not

. possible to represent the real world with complete accuracy, certain
apprt<1matlons and srmplifications must be made in constructing a mathematical
model. There are many reasons for_this. One is that it is essentrally impossible
to find out what the real world is really like. Another is that a very accurate
model of the real world can becomevimpossiblybdifficult to work with mathematically
Alsoc, accurate models might not be justified economically. Simple approximated
ones might yield results which are good enough sokthat the additional improvement
obtained from a more accurate model might not be sufficient to justify its A

additional cost.

After system is studied, its characteristics are examined, mathematical model

- 1s established, and the values of input parameters are calculated, the next step
is to determine the values of the decision parameters of the inventory policy
which optimize the given objective function.This part of the study is -called the
optimization stage. Finally, a sensitivity analysis can be carried out to observe
to what degree the objective function is influenced by changes in various param-

eters.



I.2.2. INVENTORY POLICIES

TwO fundamental questions to be answered in controlling the 1nventory of any
commodity are (i) when to order and (ii)how much to order. An inventory pollcy

should provide answers to these questions.

There are -two possible approaches for deciding about the timing of the ordering.
One uses the time and the other uses. the inventory level as the decision criterion
to answer ‘the question of when to order. These alternatives might be expressed :

more spec1f1ca11y as follows:
i) placement of an order after every t units of time

ii) placement of an order when‘the inventory level is equal to or below

'a given level, say s units.
The amount to be ordered_mey also be specified in one of two ways:

i) The order quantity is always the same, say q units. An amount of

q is ordered whenever one decides. to order.

1i) A variable quantity which is the difference between the inventory
level and a certain level S is ordered at every replenishment. Here,.

inventory level is being raised always to a predetermined level.

In the literature, the quantities t, s, q and S are used and defined as the_.

scheduling period, the re-order point, lot-size and order up—to level respectively.

For immediate delivery, the inventory in-sight is always equal to the inventory
on-hand and inventory on-hand will be used deciding for an order. But for a
system with a non-zero.lead time, inventory posltlon (or 1nventory 1n—51ght)
is defined as the inventory on- hand plus on-order minus back orders. In such a

system, inventory position is controlled instead of inventory level.

Most commonly used p011c1es are the (t, S), the (s, Q), and the (s, S) policies.
The (t, S) policy, known as the cyclical review system, is characterized by

scheduling period and order-up-to level. According to this periodic-review policy,



at the end ofievery interval of t'time eﬁits, a quantity'to Bring the'inventory
‘position to S is etdered. Re-order point and 1ot;size characterize the (s,q)
policy. inVenthy-levei'is reviewed continuousiy and whenever it is equal to,
or below the re=order point "a lot-size q is scheduled for a replenishment. In
the (S, S) pOlle, spec1f1ed by the two parameters s andv S correspoﬁding to
"minimum" and 'maximum" 1nventory positions respectively, whenever the inventory
position is equal to or below the re-order peint s, a quantity that will bring

the inventory to S 1is ordered.

There are several 6ther‘inventory eontrol policies generated for special

purposes by combining these common ones. The (t, s, S) policy is a combination
~of the periodic,review and the continuous review models. According to that policy,
an order ‘is placed at’the end of the every interval to bring the inventory level
up to S, but if inbetween periodé4,-the in—eight iﬁventory declines to or below
s, and order to bring the inventory posxtlon to _S. is also scheduied.-The (t,s,q)
policy dlffers from the (£, s, S) policy only by the amount of the order;

here a lot—SLZe q is scheduled.when an ordering decision is taken.

Several other inventory policies have been discussed in the literature. Some of -

_the referencee are (101, [161 and‘[25j;

[.3. LITERATURE SURVEY

Soﬁe"of the stvdi=s met in the literature about the>muiti-item ‘inventory centrol
.probltms are summarized in this section. As the number o6f items. and the degree

of complexity of the system increase, the difficulties of the modelllng and of
-the selution‘procedure‘also increase. Most of the methods are appllcable_to the

problems which have only a limited number of items.

Luigi Mariani and Bernardo Nicoletti ([14] studied a deterministic, cbhtinueus
time, nonstationary multi—produCt:inventory model and took the'hinimization of
the totai cost over a finite time horizon as the criterion of optimality. For
both backlogging and nobacklogging cases, they generated a set of difference
equations and used a method based on a modified form of the discrete maximum
principie for solving the resulting optimization problem. The conditions for the

determination of the optimal policy (the number of joint replenishments, the

.



'~order quantities and the times at which orders should be placed) are given,and -
the cases for. whlch these condltlons are necessary: and/or suff1c1ent are
dlSCUSSEd The case 1n which the costs are quadratlc, 1s dealt w1th1n detall

" and numer1ca1 eramples are demonstrated R

iJoseph L. Ballntfy [2] also examlned the multl-rtem 1nventory problems where
through, 301nt orderlng of several 1tems total set-up costs may be decreased

“His' pOlle operates through the determlnatlon of a reorder range w1th1n whlch

' 'several ltems can be ordered. The ex1stence of an . opt1ma1 reorder range is

proven and a computat10na1 technlque 15 demonstrated Then 1nd1v1dua1 and JOlnt

orderlng pollcxes are- compared in. thls study.

lA;differentvinventorj-policy, (r,'Y);is 1ntroduced by Fred Andres and Hamllton
Emmons ini{ l]v In the (t;'Y)-poliCy;r ,renewal is deflned as a tlme when all
'products are ordered 51multaneously and then, T is taken as.the tlme oetween
ﬁsucce551ve renewals and y= (Yl"f Yieos Yy ) 1s a vector where y is thexnumber
of orders of product i until the next renewal It is assummed that each or the
yi orders are equally spaced in time and an amount. 1s ordered ‘'s0 that the stock
flevel of 1 is zero at the next renewal t1me A branch and bound algorlthm 1s'
'”presented for flndlng the optlmal pollcv. In that algorlthm, the Y space is
"searched systematlcally in such‘avway that an upper,bound on the'savings_in the
total.cost'for all policiesvnot.searched‘yet is;deternined. Fordthe two-product

case, a special algorithm is developed to give more precise results.

Ho 11 has represented the multl—product lnvedtorv system bv a %arkov process..
"She developed a. nodel namely (R,-C, Q) nodel based on the 1ndependent (R, O)
pollcy and determined the can~order 1eve1 (C) by balanc1ng the reduced cost of
time welghted backorders w1tn the extra carrylng cost. Furthermore, she uses
a fixed order quantlty Q for- 1tem 1‘rather than an order-up—to levelASi. Her
- analysis 1nvolves certain approximations that allow determination of the stead
state probabilities of the,associated Markov process.'Simulationvexperiments
are alSO'donelto compare the joint ordering policy with the independent orderi
pollcy for .the case of stutterlng Poisson demands,- and- she show that the joint

orderlng pollcy achleves a substantlal sav1ng in total cost over the independe

' orderlng pOlle
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_S.K. Goyal examined the multi-item, single supplier systeéms and gave similar
apbroaches with small differences in (51,061, [ 7], (81, [9]. He presented

a search procedure for obtaining the optimum’ packaglng frequencxes for a number
of 1tems which are manufactured JOlntly but packaged 1nd1v1dua11y after
manufacture His method is equally appllcable to those problems where ‘the
optimum orderlng pollcy is to be obtalned for a number of 1tems from a single
suppller He developed an 1terat1ve procedure to obtain the optlmum frequenc1es
in a deterministic system and gave lower and .upper bounds for packaglng '
:frequenc1es for each 1tem in a sub- algorlthm Evaluatlng the frequency comblna—
tions and fathomlng 1mp0551b1e branches, he determlned ‘the orderlng pollcv The
effect of the change of the frequency for one 1tem on the total cost function
was<obseryed, and a new frequency-comblnatlon;lmprovlng the total cost functlon v
each time was obtained. He continued adopting‘the frequency combinations wuntil

no more improvement was possible..



- CHAPTER Il
D[FINITIDN OF THE INVFNTOPV DROBLEM

In this chapter, def1n1t10n of the 1nventory problem is glven and an 1nventory
control pollcy apprOprlate for th1s system is recommended “In the first sectlon,
‘current productlon distribution and marketlng systems of Siimerbank are described
and the flow of goods and information in'theroverall system is given Then, the .
subs\stem with which this thesis is concerned is spec1f1ed and its boundaries
arc drawn. A new 1nventory control system 1s recommended in the secopd part of
‘the chapter Flrst, condltlons effectlng the 1nventory control are analysed and .
g(ntral characterlstlcs of the new system are determined. Then, alternatlye '
1nventory control policies suitable for this system are»dlscussed,and an

“appropriate policy is presented.

1.1, DESCRIPTION OF THE GENERAL INVENTORY SYSTEM

In the oroduction—distribution and marketing system of Siimerbank, production is
(1rr1ed out in 23 factorles and then marketed over Turkey by the Warketlng
0rv1ulzatlon (the ASI) through four groups of buyers The operation of the

system can be descrlbed as follows

1) Sale estimates prepared by . the retail shops and district warehouses
are sent to the Marketlng Organlzatlon The ASM forecasts the future
sales of the whole system by taking these estimates and public sales

into consideration.

ii) Yearly‘protocols are prepared together by the ASM and the factories.
Taking the forecasts of the ASM and the available production
facilities into consideration, yearly production programs, based on
types, are set up which are then approved by the General Directorate

of Siimerbank.
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iii)

iv)

Within a year, usually every 3 or 6'months,7the ASM gives the

factories the desired production volumes for each color and design.
The retail shops send monthly order lists to the district warehouses
to which they are affiliated. The district warehouses compile and

revise theée, and then forward them to the factories.These order .

"lists usually do not cover details such as color and design, but

‘only types.

V) T

vi)

Ihe factories send the goods to the district warehouses and,rarely
to the retail shops directly, according to the order lists which
they have recelved There may be also some direct sales to the publlc

from the factorles

The district warehouses sehd the goods on the order lists to the

retail shops assigned to them, then they are sold to the customer.

Figure 1I.1.

thevGeneral

directorates

Other wholesalers and retallers may also be dlrectlv supplled by

the dlstrlct warehouses

ilIuStratesrthe main flow of information, goods and money .between .
Directorate of Siimerbank, the factories, the ASM, the district

‘and four groups of customers.

The present conditions are such that the direct delivery from factories to the

retail shops

"fact 1s that

more or less

factories to

in the whole

constitutes a small proportion of the total goodé flow. Another

the demands of public customers and wholesalers can be estimated
accurately. With these in mind, then the flow of goods from .

retail shops through district wa;ehouses'gains‘the major impdrténqe

distribution system. Consequently, the main product flow which

will be analyzed here can be represented schematically as in Figure II.2.
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Figure II.1. Information, Orders,'Codds,‘Monéy Flow Chart of
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1F =Factory'

ACEES =District warehouse.

ﬁ,
‘ ' | = Retail shop
F |

Flgure 1. 2 The Schematlc Representatlon of the Main Product

" Flow in- the Analyzed D1str1but10n System of Sumerbank

-

)1str1ct warehouses are very 1mportant elements in this system and they act ‘as
>uffer stocklng p01nts bttueen ractorles and retall shops. By meetlng the demands
>f the retail shops through district warehouses, a more efficieént structure_urrh'
respect to the fixed cost of ordering results. Carrying stocks in district
wérehouses also make quicker replenishment of retail shops possible.'Furthermore;
reorouplno the - goods in the district warehouses and sendlng in smaller but'
1ssorted lots increases the opportunity of quick marketlng and thus raises the
sales. The deliveries from district warehouses to retail shops, however, have
less 1mportance, because smaller amounts and shorter lead t1mes compared to the,
Eactory dlStrLCt warehouse palr are involved. Therefore the main emphasis is
>iven here to the’ stock control in district warehouses while the retail shops

are viewed only as sources of.demand for the'diStrict_Warehouses. The model to

e set up in this study will deal with the stock. control of district warehouses.

[.2., DEVELOPMENT OF A NEW INVENTORY CONTROL SYSTEM

‘n the system described above, each item is produced in a specific factory and
“here is accepted no substitution between the products of different factories.
{eeping these two assumptions in mind, items which are ordered from one factory

ind thus can use the same transportation facility will be examined seperately

13



from the.others. Dividing the_products,of each district into groups which are.
supplied by the same factory and controlling the groups individually, a general
stock control system in a specific district warehouse will be set up. So, the

whole system is divided into sub-systems for'each‘factdry—district pair.

Since the number of productswhich are stocked in a district warehouse is not so
small, a sophisticated stock control policy which requires many calculations
at every order does not seem very appropriate for the system. Preferably, the.

. recommended inventory policy should be practical and easy to implement .

An overall inventory poliéy'cémposed of individual poliéies for each item wiil
not necessiate high stock levels, but, as it increaéeS'the'total‘ﬁumber of
replunlshments, will not be etf1c1ent with respect to the transportatlon cost.
Then to decrease the’ ordering cost, when the replenlshment of an Ltem is
dictated by its lndependent polle, the actual replenlshment dec151on can be

taken according to one of the following p011c1es.

i) Do not place the order .of that item. Wait until for some other items
replenishments are dictated by their individual policies, and then

-place a joint order.

This policy will lower the total orderlng and stock holdlng costs.
However, as stock levels are lower than that prescrlbed by 1nd1v1dua1

policies, StOCkOUtartlll occur more trequently

ii) Place an order for the item. To use the transportation facility -

efficiently, two possibilities can be considered:

a) Order an amount.larger than that determined by‘the individual
policy. In this case total ordetring cost will be lowered, but

inventory holding cost will increase because more inventories are

kept.

"b) Do not enlarge the order size for that item. However, include some
other items, which don't have to be ordered yet, in the order
list. Then the ordering cost is shared by the items on the order

"list. In the long run, the number of orders .and the total ordering



cost for the total inventory system will decrease. Inventory
levels of all items will be higher, resulting in somewhat increased

inventory carrying costs, but providing higher service levels.

Among these p011c1es, the most suitable one with 1east dlsadvantages seems the
pollcy given by(ii. b) Through the use of thls pollcy, overall ordering cost.

is reduced and instead of unnecessarily raising the stock level of a SpelelC
item at a given time, stock levels of several 1tems are ralsed to some degree.‘
In thls way, the increases in inventory levels are more unlformly balanced and

the. stockout probabllltles are reduced for all ltems.

‘wheu an ltem has to be replenlsned; the problem becomes one of deciding on:
i) Whlcn other ltems should be included in the order lisc,

‘and ii) How much should.be"ordered from chesedipems.

To answer these questions, each iten must have enother easily,appliceble control
parameter in add1t1on to the ores in 1nd1v1dual p011c1es This criciCal-invencofy
vcontrol parametcr is related to the inventory position and is called can-order
p01nt. It is used to control the 1nventorv svstem togethet w1th ‘two other
parameters which answer the questlons of when and how much one must order. Thus,
keeping in mind that the (s,vS) pOlle is the optimal one among all 1nd1v1dual
’1nventory control pol1c1es, the (s, c, S) pollcv will be the one most suitable to
thlS mult1 ltem ‘inventory svstem. Accordlng to thls recommended (s, c, S) pOlle,»

the 1nventory system w111 be'controlled as follows

i) If all items have inventories above their re-order points (s), no

order will be placed as in the individual (s, S) policies.

ii) When the inventory oosition of an item drops below its re-order point,
s, a quantity to bfing the inventofy»position to its order-up-to
level 'S is ordered. ‘
Also, the inventory positions of all other items are reviewed one by
one and: ‘
- If its inventory position has not dropped below its can-order

point ¢ yet, this item is not included in that order.
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- If its inventory position is below its can-order point c, this item
is 1nc1uded in the order by a quantlty ralslng its 1nventory position

to its order-up to 1evel S.

\ realization of the (s,c,S) poliéy for three iteﬁs is shown in Figure II.3.

N

S --—-—~--------.--.-n---—-..........,..............................v.

_ AN
S | SN - -
2 - o
c2 ! RERTEE EP L
b : )
S. — P e
o o >t

N
S —— o i ereeeie
3 - .
————— ~——— inventory on-hand
'c3 U TURVUURIN o SOOI ==== inventory in-sight
————n - ° order placed
s T e, |
3 —
N Py >t o delivery received

Figure II1.3. Realization of the (s,c,S) Policy for Three-Item System
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As seen in Figure II.3, as soon as the inventory position of the-first item drops

below its must- order poxnt sy at tlme t an order to bring its-inventory posi-

1°
tion to 54 is placed and in addltlon, inventory bositions of‘the other two items
are réviewed. Even though the lnventory position of the. second item is above its
‘must*order point Sy» a quantlty to-ralse its anentory posxtlon up to S2 is'
ordered because its 1nventory p051t10n is below its can- order p01nt Cy- But the
third - 1tem, w1th an 1nventory pOSlthn between - 1ts can- order p01nt Cq and order—'
up- to level 83, is not replenisned in that ‘joint order. Amounts ordered'ertive

after L units of time and ate'added to the reSpective’invehtories on4hand..No

other replenishment is placed until time t when it becomes neceSSary to place

2
an onder for the thlrd item. Flrst ltem, whose lnventory posltlon is still
above Cl’ 1s only reviewed; but the Secondone with an 1nventory pOSltlon below
its can order polnt c2 is included in this replenlshment to bring its inventory

position to its orderfdp—to‘level Sy

In the studied inventorylsystem, 1ead‘timeS’of all items ordered by a specific
district warehouse from a speciFic faCtorv are the same because they uSe the

same means of transportation.. But lead tlmes are different foteeach’factory— A
district warehouse pair. This paramet er is taken as the a&efage'time paséed"‘
between the placement of an order and the actual addition of that order to the
inventory.The main elemeﬁts of the lead time are the time of communication between
district warchouse and factory to piace an order, time spent in'the feetory for
thc‘preparation'of properly-assorted lots; loading and-unloading times; and the
times passed on the roaddto transport the uoodsvfrOm the-faetorv to the distriet
varehouse., This last component which 1is hlghlv 1onger th31 the others is really

the determining factor of: the lead t1me
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C CHPTER 1T
FORMULATION OF TIE TNVENTGRY PROBLEM

[I]1.1. INVENTORY.COST PARAMETERS

) Inventorv control models require an obJectlve functlon to measure system
Lperrormance and unless 1t is expressed in non- monetary terms the obJectlve,‘
’ Eunctlon 1ncludes varlous cost parameters In real-life problems, the eff1c1ency
of any inventory eontrol model largely depends on the accuracy and acceptab llty,
of be data used to estlmate these cost parameters as well as on the va11d1ty

of the assumptions made and the technlques used in developlng the model. A very
SOphlStlLdted model deVeloped by u31ng elegant techniques with valid assumptlons
~is not reliable on as long as the cost parameters are mot Correctly measured or

evaliated,

The costs incurred in operatinO an inventorv susrem play a major role in
.dctelﬂlnln” what the operating doctrine. should be. The costs whxch influence

. the operating doctrine are those which vary as the operatlng doctrlne is changed
Costs that are 1ndependent of the dpplled operating doctr1ne need not to be
included in anv analysis where costs are- used as an a1d in determ1n1nt the
operatlng doctrine. Fundamen:ally, the re are three catagorles of costs Uthh
occur in inventory systems and may be important in derermlnlng what the operating
doctrine should be. These are ordering cost, inventory carrying cost and shorrage
cost. However, before going into the discussion of rhese_costs, it should be
stated that it is quite difficult to represent mathematically all the cost
components with near accuracy. Consequently, there is tendency to make some
approximations when representing the costs in the mathematical models to be

developed.
ITI.1.1. ORDERING COST

Ordering costs are incurred as a result of placing an order for replenishment.

These kinds of costs include all those cost components incurred from the placement
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of an order to. the addltlon ‘to the 1nventory such as clerlcal work, paper and
postage costs, 1abor costs and transportation costs. Orderlng cost may be constant
pcr;order, or varlable ‘depending on the amount ordered, or both.The constant

part of the ordering‘cost is usually called as set—up cost and incurred whenever
_an order 1s placed 1ndependent of the order content. These costs 1nc1ude fixed
order entry costs such as paper, postage telephone charges etc., as well as B
parts of transportation, receiving and 1n3pect1on costs which are 1ndependent

of the order size. The variable part of the ordering cost enholds the cost terms
thosy depending on‘thevquantity ordered -such es_the cost;ofhthe‘units,-some_Of .
the receiving,and:inspection costs and the quantity—dependent'transportation .

cos ts.

In th) inventory'system to be'studied the orderlng cost has ‘two components Flrst
one is a set-up cost whlch 1s 1ncurred 1ndependently from the number of 1tems

and the amounts. It contains the cost of plac1ng an order such as communication,
and | clerical work costs and a fixed charge pald to the transportatlon companles
for ‘each dlstrlbutlon Amono these cost terms, the last term is the most 1mportant
one in the actual system. The second component of the orderln0 cost is item- ;
'ord«rlno cost dnd 1ncurred when an item 15 ordered regardless of the amount . Thls
cOst consists of the clerltal work done to order a spec1r1c item, the cost of
ndn-xonr to plact and rece1VL that order,macnlnework to prcpare a uood 1ot V

assorted in color and ‘design, loading and unloadlnp works for each lot.
[[1.i.2. INVENTORY CARRYING COST

Inventory carrying costs are incurred as a result ofvholding i*ventori’s and
increase in direct proportlon to increases in 1nventorv on-hand and the tlme for
which 1nventor1ed items are held. The tollow1nb components of the 1nventorv

carrying cost are the real out of packet costs:

1) Storage or warehouse rental costs
ii) The cost of operating the warehouse such as light, heat, night
watchment etc.
iii) Clerical and administrative costs
iv) Insurance and taxes on inventory held

v) Costs of depreciation, deterioration and obsolence of inventory.
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A cost which is'frequently the most inportant cost is not_direct out of pocket
cost but rather an opportunity cost which would never appear on anAaccounting
statement. This is called the cost of capital and incurred by having capital
tied up in inyentory rather than having it invested elsewhere. It reflects the
lost earning power of éaPitaland is equal to the largest rate of return which

the system could obtain from.alternative investments.

It 1s observed that the most s1gn1t1cant parts of the 1nventory carrylng cost
1n the presented system are the cost of capital and the storage and operatxng
costs. Alternatlve methods for the evaluation of the 1nventory carrylng cost

can be found in [17] and how’ ‘the inventory carrylng cost is evaluated in th1s

studv w111 be glven later in Appendlx IIT.
III.1.3. SHORTAGE COST

Shortage cost is the cost incurred as a conSequence of 'a stockout, that 'is when
the demand can not be fullv and 1mmed1ate1y satlsfled due to a stock shortage.

This cost is composed of:

1) Lost profits: As a result of a stockout, some customers would not
want to wait,Someé orders and hence the profit that otherwise could

be made from these orders will be lost. ~

" 11) Stockout maintenance cost: Even if all demands occurring when the
svstem is out of stock are backordered and no order is lost, . cost
of 10051ng the opportunlty of u51ng standard ‘and common procedures,
cost of extra comm1n1catlon, cost of addltlonal labor and paperwork

will be incurred as a result of a stockout.v

iii) Loss of goodwill: The most important component of the cost of a
stockout 1s the somewhat intangible goodwili loss. This may include
loss of fhture sales by that customer or loss of the others“sales
affected by him. This cost should also include loss of sales of

other items marketed by the same system.

In the system presented, retail shops don't cancel their orders even if stockout
takes place, and the portion of demand which is not satisfied directly out of

.stock is completely backordered. Then no lost profit will occur in this actual
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system. Still, keeping in mind the difficulties of evaluating the other
components of the stockout cost, satisfaction of service levels for all .items

is imposed in the model instead of costing stockouts.

%athematlcal representatlon of the relevant cost terms and the formulation of

the inventory control model are given in the follow1ng sections.

[I1.2. MATHEMATICAL FORMULATION
ITI.2.1. CONSTRUCTION OF THE OBJECTIVE fUNCTION-"

Thc 1nventory system with all. relevant costs is. optlmlzed under a monetary
ObJLLt1VL function. The sum of the ordering and stOck holdlng costs are minimized
1n obJectlve functlon and stockout costs are expressed by service levels in
constraints while modelllng the system. Service cr1ter1on for each 1tem is.

chosen as ''not to. have probdblllty of running out more than an allowable percent

Lf
V Si = orderiupﬁtd 1eve1»f0r iteﬁ.i'
e ='canfofder‘point for item 1 A
s; = must-order (re—orderj'point for item i
D; = e¢xpected vélce of the yearly demand for item i
L = deterministic replenishment lead time’
KF = fixed sct—up cost per order o
KJi = ordering cost for item i in the order triggered by another .item
KIi = total crdering;cost for item_iiif the order is triggered by itself
( =KF+KJ,) , | A '
'hi = inventory carrying cost per year per unit of item i

NIRi= expected number of independent replenishments of item 1 in a year
NJRBi= expected number of joint replenishments triggered by'item i in a
year
NJRNB, = expected number of joint replenishments of item i not triggered
by i in a year
NIR,= expected number of total yearly replenishments of item i1

n = number of items in a group

2xpected yearly ordering cost for item i, K(i), will be the sum of all ordering
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‘ coéts in independent and joint replenishments When an item.is included in an

- order triggered by another one, ordering cost belonging to only that item 1s
charged. But if an 1tem triggers an order, whatever independent or Joxnt
replenlshment occurs, both components of the orderlng cost will be charged Then,

j'K(l) is expressed by
K(1) = (NIR + NJRB ) (KF+KJ ) + NJRNB . KJi : » (I1I-1)

_S1nCe demand 1s assummed not to be unxt sized, when item i triggers an order its

1nventory level is at or below its must-order point S5 Defining

0. = averagefvalue of the inventory level for item i just before

ordering when an order ié.triggers'by itself

R;. = average value of the inventory level for item i just before ordering‘
when 1t is 1nvolved in a joint replenlshment trlooered by some

other item

- then, ‘average order size will be (S -0. ) when the replenlshmrnt is trlogered by

'1tse1— .and hlll be (b —R ) when trxggered bv another one.

From the characterlstlc of complete backorderlng in the inventory system under

studyv, the tollow1ng demand satlsractlon equatlon must hold for each item:
— . ’ \ h ;_ 4 ‘. - : . . . _n
= (NIR; + NJIRB.) (Si Oi) + NJRNB. (Si R.). : ‘(III 7)

Dividing (III-2) by NTRi,

Di NIRi+NJRBi NJRNBi
= - (Si_oi) + ——-——~—-(Si-Ri) . (111I-3)
NTR. NTR. . NTR.
1 1 1
If set
NJRNB. _ NIR.+NJRB.
1 1 1
P,=— , . Q=1PF;= —— ,
1 NTR. NTR.



" then, Pi’represents the probablllty that a. replenlshment 1nvolv1ng 1tem 1 is the
result of another item h1tt1ng its must-order point and Q represents the '
probability that a replenishment involving item i is trlggered by itself.

R S NﬂmB
Subst}tutxngAthe‘Pi and Q. in (III 3) and’ using NTR ——;r——- and
_ : B o

Si—Ri=(Si—Oi)‘(RifOi); équation for'the demand satisfaction takes the form of -

P. ..D.
R

NJRNB. .
1

= (8;70;) ~ Py (R;-0).

ASolvingvthis equation for NJRNBi

NJRNB, = ' L R o (I1I-%)

NIR. +\JRB

U31nv NTR = —~ifi;~———f and folloying the similar steps, tétal'dumber of

replenishments for item i triggered by itseli is expressed by

NIRi+NJRBi = e L T (I11-5)
: S.-0.-P.(R.-0.) :
171 7171 1

Substitutiﬁg (I11-4) and -(111I-35) into (IILl-1), the total set-ﬁp cost for item i

is then:
(1-P.) D. P, D,
K(i) = LA KT, + ———— KT,
5,0, (R;=0,) ~0,-P. (R,-0,)
and
D, *
K(i) = (P, KJ, + (1-P,) KI,) . (I1I-6)

§;-0;7P; (R;=0;)
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Let .
E. = expected demand of item i over lead time L. If ifem‘i triggeqs

an order and ordered at 1nventory level of O on_the average,Ainventdry level

drops to (0 -E. ) after L units of tlme and amount of (S, —0 ) is added to the

inventory on—hand to raise it up to level of (s. —E ) Then the ave;ageAlnventory_

‘carried in an 1ndependent cycle will be

(si—Ei)+(0i—Ei) si+o.«

2 o . 2

When a JOlnt replenlshment occurs at inventory level R. i after L units of time,
1nventory level drops to (R -E. ) and rece1v1ng (s. —R ) unlts, it raises up- to

.(51~E1). Then, the_average_anentory carried in a joint cycle will be

(S;"E.)+(R;-E.) S 4R

2

N

If it is assumed that the average duration of both independent and joint cvcles
is the same to eliminate complications, expected inventory carrying cost for

item i, H(i), 1is given byf

S0 SRy
H(i) = h, [(1 P Yy (- - E.) + P. ( )- E. )] s
- i 5 i 1 2
‘and
S.+Ri ' S.+Oi- : - -
H(}) - hi [pi ( ; ) + (1—Pi) ( . ) - Ei ] '- 3 (III’j)

Then the total expected cost of the system, which is to be minimized, is givenAby:
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Z';'
i

i

(K(i) + H(i))

N ts

1
r i ———— [ P,.KJ, + (1-P,) KI. 1}
=1  5,-0.-P.(R,-0.) ' S
) 1 1 1 1 1
- . ‘,si+Ri , S .+0, S
+ {h, [P, (——2) '+ (1-P.) (L) -E. 1} ]
1 -1 : 1 1
, 2 2
n CKJ. D. S +R.
TP, bty L g
=1 ' $,-0,-P.(R,-0.) . 2 '
1~ 1 ‘L 1 1 :
. KL, D, . s.+0, :
S+ (1P ISR DRI P P
o $.-0.-P.(R.-0,) - - 2
RN T s S

.:.(III—S)

where Ei,'demaud during lead time L has an expectation of DiL as given in

appendix 1.

Setting

and

then

and

T, = §5.=0.
1 11
5. = R.-0. ,
1 1 1
S.+R. £i+oi
i1 + 0
2 2
S.+0. £
: 1= 1+Oi
2 2

2 | | .ﬁaéAmoluNNERsnEs\KUTUPHN

(1I1-9)

(III-10)



Using the substitutions above, total cost function can be reformulated as follows:

n KJ. D. E.4p . KI. D. 3
z= 1 [P, { 4 == h) +(1-P) (——S— += )
i=1 £.-P, o 2 E.-P., p 2
+ 0.h, ~D. L h. 1" : R : o -~ (III-11)
-1 1. 1 1 . ) : -

Thus, the mathematical model becomes minimizing the total expected cost function
_subject to the service level functions which will be introduced in the next-

section.

'III.2.2. CONSTRAINTS -  SERVICE LEVEL FUNCTIONS  —

‘Rather than exp11c1tly costlng backorders and m1n1m121ng stockout costs in’
obJectlve tunctlon together: with other relevant costs, safetv stocks are deter-
mined to suoply the demand w1thout stockout above predetermlned service 1evels
Dete"m1n1n5 the 1nventory pOlle parameters. the total cost, whlch is composed
of the ordcrlng and the stock holdlng costs 1s opt1m12ed subject to the '
'constralnt of satlsfy1ng these serv1ce criteria. Then the opt1ma1 values of the
anLntorv policy parameters will garantee the system to operate with stockouts
not greater than allowed ptrcents ‘as well as’ mlnlmlzlng the expected orocrlng

‘and the stock holding costs.

The demand during lead time L is analyzed in appendix 1 and stated that it
approximately follows a normal distribution.with mean uiéDiL and standart

. D.L :
deviation vi=/-—i— (m%+52) for each item 1. Standardizing the normal
i i .

.

approximation, its cumulative density function will be in the form of

t L
o(thy =  f L e 2 gx,
v J V21

where -w<x<+® is a random variable and -m<u<+°° and v>o0 are the mean and the

standart dev1at10n respectlvely
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In order not to have stock outs from placing an ordér'to'receiving it‘ demand
1ncurred during the lead time perlod must not exceed the 1nventory avallable
during that duratlon If item i has tr1ggered its must order p01nt and an order
is placed for item i at the average stock level of 0. i ‘then the probablllty of

not running out of item i before the order is recelved is equal to-

0.-u.
i1
¢( )
i : o
N oL
where  u.=D.L ' =V = (m? 2
;7L and Vi “V = (mi + ci)
: i
Define
: i . : | ' ' '
Event Ak = 1Not running oUt of 1 at the kth order trlggered by’ 1tse1f1
_Event Al = {Not runnlng out of i at all orders trlggered bv ltSElf in

a year
The total expected number of ofders.;figgered.by i was‘(NIRi+NJRBi); Then

N R Ai.A . »
5 e k-7 D(NIR.+NJRB,)

» Cody . . _ N ' L .
Since A 's are independent -events from each other

i i i i el
P(A") = P(Al) - P(Ay) .. P(A)) P(A(NIRi+NJRBi))

Tt has been assumed above that all A;'s have the same probability distribution

O.--ui

of &( ) . Using this assumption, probability of event A' can be expressed

as..

0, u; NIR+NJRB;

It
—~—
o

~
-
ey

P(Ai)



Similarly, an approximation to the probability of not running out of i'when_the
order has been triggered by some other item but item i is replenished at the

average stock level'Ri can be

R.-u.

. i

(=)
i "

Define
Event Bi‘= {Not runniﬁg ogt‘ofviﬂat tﬁeith order not triggered by i
’ but included '
" Event Bi - {thbruhning out of i at all drders in a,year.wheh'the ordersl

have been triggered by some other items R o )

The total expectéd nqmber.of orders of item i triggered by’otheré was NJRNB..

R-u
Us1no P(B ) &(

i N . : ) : C o, )
) and tfollowing the same steps and discussions. above,
Vi o . : - . - »

probabili;yfof eventB' will come out as

; - Ri—l.i NJRNB]‘_
P(B )y = ‘( - )

The service criterion for item i, which is the probability of not running out

in the whole year, may be expressed by:

Not running out of. 1tem i durlno the whole year in all .
Event C' = replenlshments elther tr1gger~u by 1 or trlggered by other

i is 1nc1uded

. i 1 . A
Since A" and B are independent events

pccly = pealy . b

and

0, -ui NIR,+NJRB, R.-u; NJRNB,
)} {o(—} .

{a(

p(ch

28



vathE_maximum allowed probability of running out for item i is determined as’

Hi as an operating policy, the stock of i carried in the system must garantee

the satlsfactlon level of demand of item i with a probab111ty greater than

(1-1, ) Then the probabilities of not running out from all items in the whole
year should be greater or. equal to respectlve service levels w1thout backorderlng

This statement can be expressed by the’ follow1ngs

p(ch > (1-1) S

0.=u; ‘NIRi+NjRBi L R, ‘“1 NJRNBi S
)i S e (=} o > (1-1,) i=1,...,n.

v, ' ’ .
i _ ’ Y4

{Q(

First, usxng the subst1tut1ons (111~ 9) and (IIL-10) in (III 4) and (III- 5), then 7

replac1ng thelr final forms in the inequality above, one will get

(1-P.)D P. D
0 4ui ;L—Plnl Ri—ui 51T . : :
(¢ ( ) H(—) > (1—7{) i=1,...,n.
1 T . ’
Finally, the service level funqtidnﬁmay"be modified as:
0 vu (1-P.) 0.« L. P AT
.—U. -L. Pl xSt DR i . '——‘—T—'
a2 Dyy P eyt s a-ny P
\)i . ) \)i

i=1,...,n (III-12)
Then, the Selectéd values of Oi'S have to hqld (I11-12) to satisfy the

respective predetermined service criteria and should be as small as possible

to minimize the cost of carrying safety stock.
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CHADTFR IV
SOLUTION OF THE INVENTORY PRODLEM

IV.1. GENERAL KNOWLEDGE ABOUT THE-SOLUTION PROCEDURE

After having determlned the relevant cost parameters and completed the mathemat-
Lcal formulatlon ot the problem, next come to the optlmlzatlon stage. The opt1ma1
values of the three cr1t1ca1 1nventory levels for each item were to be deter-

mined. The proposed mathematical model was:.

| n KL, D, gpg KI, D, &
min 2 = I ([P, {——  + ———~——-h } o+ (1- Pl) {(—2— +—=nh,}

gi-—P.o. o 2 - &;7P, P 2

s.to
o : : » ilfPin
0;-u; (1=Py) - 0g40.-u; Py L S 3
.LQ("~—-0 (1 > (-1 Lo =l eea,n
U, ‘ v, C '
i i
01, Di’ 51 >0 i=1, ,n
0 < Pi <1 i=1, s11
where
Pi'= probability that a replenishment involving item i is the result

of another item hitting its must-order point

0. = average value of the inventory level for item 1 when an order is
triggered by itself

p, = difference between the average inventory levels of item i when

it is included in an order triggered by itself and by another.
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[
I

e

average order size of item i when the'order'is-triggered by itself.

D, = expected value of the yearly demand for item i
u; = expected value of the lead time demand
v. = standard deviation of the lead time démand

i
KJ.= ordering cost for item i in the order triggered by another item

i
Kii=~total ordering cost for 1tem i if the order is trlggered by 1tself
hi = 1nventory carrying cost per year per unit of item 1

Hi = max1mnm allowed probabllity of running out for item i

n = number of items..

The objective is to determine the must-order points, can-order points and the

order-up-to 1eveIs for all items optimizing (III—ll) with respect‘to s-" ci's;

Si's . But reallzatlng a mathemat1cal optimizatlon on theése parameters would
requ1re the knowledge of their functional relatlonshlps with 1nvolved in m0uel
i.e. the Pi s Oi-s, pi S and_gi ._Although a closed-form 1teration leading

to the values of P and'R in the two—item case with unit siéed transactions and
Poisson arrivals was obtalned by J.P. Schaack [21], there has been met no closed—i
form results in the n—item compound Poisson demand context. Then, it w111 not.

be p0351b1e_to solvé this model by a pure'mathemat1ca1 optlmlzarlpn technique'g

and becomes necessary to approach to this problem by a heurisric algorithm.

An algorithm which is a combination of mathematical optimization and simulation
and developped.by J.P.Schaack and E.A. Siiver[22] ‘wasISeleCted for the .

i
Pi and R, can not be determined by a mathematical procedure as eXplalned above ,

optimization of the model. Since for given velues of S:s Cio S. the cdrreéponding

stmulatlon w111 have to be accepted as a part of .the algorithm. Simulation is
used to determine.numerlcal relationships between the different perameters '
those can not be related to each other functionally. A-simultaneoué’optimization‘
on s:, c., Si is not realized by the algorithm, but only alternative updating of
Sis Cy and Si will be available.

1

The main steps of the algorithm are:

1) Give the alternative values of the control variables,
, i.e. ‘si's, ci's and Si's .
2) Observe the behaviour of the system through simulation
.3) Make appropriate changes in the control variables according to the
observations done in step 2 and by means of some mathematical
'ﬁelationShips.



( START ).

Set the initial values of

thevparametefs and set up

'some necessary functions

-~ Set thevinitiél_values of

‘the stock control parameters

»Simulate the system with

the initial inventory

control parameters

‘| Evaluate the new”updating_

parameters. -

A\
Update the contrdl variables

according to the results of

simulation and other’calcula;ions

Simulate the system with the

new inventory control parameters

NO Stopping
condition
satisfied ?

Figure IV.1. Logiﬁ Diagram of the Optimization Algorithm
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IV.2. UPDATING PROCEDURES FOR THE PARAMETERS

Assume that the state of the system is given. This means that the 1nventory
policy parameters are flxed and the P, 's and R, are already observed In the
follow1ng sub-sections, it 1s explalned how a new state will be passed reallzlng

seperate optlmlzatlons on s1 S, c1 s and S
IV.2.1. UPDATING MUST-ORDER POINTS, s;'s

Must-order points; s{'s, are not.ditectly inVoived in the objective funetion '
and the constralnts, but are represented by the 0 . Then if one ‘can determlne
the O, 's and relate them to s 's’ somehow, the’ updatlng procedure of the must-
order p01nts will be completed In the model it. can- be e3511y observed that

each Q w111 be pushed up to satisfy the de31red service level in the- re5pec ive
consttalnt and will be pushed down to- minimize the stock holdlng and the ordering
costs in the objective~funetion. Ihen? forvptedetermined_values of Pi,y3i7and

Zis Oi will be chosen asjthe_smallest value of Oi which Satisfies the respective

=Y

service level funetion (IIIjIZ) for eacﬁ item.'

Iv.2.1.1. Methods for Solving the Service Lével Function (111-12)

Inequality (III- -12) has to ‘be solved in terms.of 0, for each updating on s,

But because of its complex form, alhebralc solutlon to thls function does not
seem possible. Some methods in numerical analy51s are examined for this study
and two of them are presented below. Then, a procedure-based on the last one

is developed and used to solve (III-12) in the study.
IV.2.1.1.1. One-Point Itetative Method

If an equation can be rewritten in the form of

x =t (%) | (Iv-1)
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then it can be found an x as the limit of the sequence
X1 x2=§(xi) ,  x,=t(x,) "x4=c"(x3),;..‘._

it is clear that if x) is selected so_ that the sequence Kl’ 22, Xg,... does

~converge to a value r, then r is the Toot of (IV—l)

{(X). e i

, X=1(x)
X s'{‘.()( .
xz'-""—(xd ——————— TTTATTTTT TS f
I
4 Xz=t(X) e o o N
Xs (xz) X4=t(X;) g :2 I
. e Al - |
N i | -
ol I |
A |
X R |
X4 X3 Xz Xy X
Figure IV.2. An Example of the , Flgure IV.3. An Exanple of the
Diverging Case - o T Converglng Case

This method is named as "One-Point Iterative Method" in (181, because we have
only single point at each stage different from other methods of:finding roots
such as the regula falsi or Newton's methods. The same method is referred as
"Iterative Procedure” in (247, whereby the answer at any stage is substituted
in the given'function,iteratively to produce the next number in the sequence.

In Fig.IV.2. and IV.3.,ﬁhe diverging and converging cases are illustrated on graphs.

To use one-point iterative method for the solution of (II1-12), the service

level function can be rewritten in the form (IV-1). Then:

O]'. = t(ol) ‘



- r = . *—*]."'P
55 Pioi .
D;
0.-u (1-1m,)
{o(-——11 > —
v, 0.4 .-y P
1 {o( i1 )l i
V.
L. 1 B

t is well known that for the case of contlnuous variable, 0 w1ll be the solutlon
f equallty minimizing the cost of carrying safety stocks. Multlplylng both
ides by the inverse of normal cumulative den31ty function _Q—l and making the

ecessary simplifications, (III-12) will turn into the form (IV-1) as:

£&.-P.o. i
i 11

0, = (o7! [ (1) [ e il T gy

Ltarting with an initial vaiue‘of O. and iterating 0 =t(0 n- ) we may come to
he solutlon 1n a few 1terat10ns, but the convergency must be garanteed before
sing this method. ¢(x) is often included in a computer llbrarv or can be
)rogramméd by using one of the'lntegratlon methods. % (y) can also be
rogrammed by solving y=0(x) for x by means of the Newton method [ZOT or by

olynomial approximation [ 3].
2.1.1.2. The Regula Falsi (Linear Interpolation)

ne of the oldestkmethods for computing the real roots of a numerical equation

s the method of 'Regula Falsi' or 'Falso Position'.[18]. It requires a

nowledge of the approximate location of the root and the values of the function
t two points, y1=f(x1) and yzéf(xz), where X <I<Xy, T being a root of f(x)=0.

£ Xy and X, are close enough to r, the function f(x) is continuous in R <K<K, .
ince the root lies between Xy and x,, the function y=f(x) must cross the

~axis between X, and Xy Then y1=f(x1)and y2=f(x2) must have opposite signs.
ince any portion of a smooth curve is practically straight for a short distance,
t may be assumed that the change in f(x) is proportional to the change in x

ver a short interval, as in the case of linear interpolation from logarithmic
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'.y1=f(xl)

y2=f(x2)

Figure IV.4. The Regula Falsi Method

1id trigonometric tables. The method of falso position is based on this principle

jd called also as linear interpolafion in [18] and [19] .

» derive a formula for computing the root, the arc X1X2 is replaced by a
1ique straight line which passes through the points (Xl’ f(xl)) and (X2’f(X2))'
:calling some coordinate geometry, the equation of this straight line may be

itten as

f(xz) - f(Xl) : .
f(x) - f(xl),= (x - Xl) . (Iv=2)

e intersection of the straight line and the x-axis, which 1is X3, will have

1e abscissa

Xy = ~ - (1Iv-3)
Yo ™ N

is value of x is not however the true value of the root, because the function

£(x) is not a perfect straight line between the points X, and X,. It is merely
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a closer épbeXimatidn than‘xl and xzvto the root. The process may then be

" repeated u51ng the arch X X3 In the practlcal appllcatlon of" 11near 1nterpo- -
‘lation, short tables showing the correspondlng values of x and f(x) and also
by means of (IV-3) corrections to be applled to the prev1ously obtalned

approx1mate values may be prepared
1IV.2.1.1.3. Procedure Developed in the Study

In this study, the Regula Falsi method is addpted'soﬁeWhat and used to solve
the service level function (III- 12). Without u51ng the subscrlpts and setting
the rlght Slde of (III-12) to A, solution of this inequality w111 be nothlng

'but the 1ntersect10n of two functlons

- (1-p) R
£l(x) = {o(EE0r T {o(XRIMy;
Sy ' v
" and
£2(x) = 4 »
. E-Pp
where Di
A= (1-7)

In the adopted Regula Falsi method, instead of looking for the root of a function,
i.e. its intersection with function y= O, the intersection of two functions fl

and t2 will be searched.

y : .

£2(x)

v

X, Xo(X7) X X(x7) X%

Figure IV.5. Graphical Representation of the Procedure Developed
‘ to solve (IIIL.12) '
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1,yl) and (xz,yé) is still

in torm (IV—Z) The point, where the ‘straight line and £2 have the same value,

AThe equatlon of the stralght line between p01nts (x

can be obtained settlng these two functlomsln equal Then, substltutlng A in

place of y in (IV-2), the abscissa of the;next point will be

XYy ¥y~ (%7%))

Y™

This updating procedure will continue until you are close enough to the true :

value.

It is obvious that the functlon £1 is monoton, non-decreasing and non-negatlve
because both terms are the cumulative density functlons for normal dlstrlbutlon
Then the tollow1nb algorlthm is developed u51ng the Regula Falsi method and

these character1st1cs of fl.

ITERATIVE ALGORITHM

1) Calculate A and choose a positive step size of &x

'2) Choose a startlng point X, and compute yi—f (\ ) _yl yl A

1
It Ay1>0 set Ax=-Ax

3) Compute the next point X2:

X=X, +AX

y,=f1(x,)
2 2

Ay2=y2_A
4) Control the interval (x 2) for the searched point:
-If (Ayl?Ay2)>O, intersection point is not between these two points;
Replace point X2 by X,:
17%2
Y1772
Ay =4y,

Go to 3
Otherw1se, continue
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3?%f§ﬁéwd¢sired point lies between X, and‘X2 . Select the new point. -

1y2 yl g2 0y 2

yz y1

‘¥iits ‘accuracy is accepted, stop. X, is the desired solution.

P YiHerwise, continue

4 "ppdade the selected interval.

t (A Ay3)>0 , lntersection point is between szand X3

Replace point X, by Xl:

3
X=Xy
Y1=Y4
Xyl=_\3
Go to 5
-ff@fﬁﬁefwise, 'intersection point 1is between 31 and X3 .

Replace point X3 by,X2

‘%»:innthgﬂwhole optimization algorithm, an approximate value of 0 is ready by

= zorev1ous iteration. Then, u51ng this value as the starting point, it will

“%i5ssible to use this search algorithm with an hlgher efficiency.
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IV.2-1-2? Method Used for Computing the cdf Function ®: Simpéohs.% Rule Formila

_Evaluat{ng fl(k) ln the previous section?lé; the cumulative. density function,“-
of normal dlstribution, has to be- known In order to calculate this functlon
,methods of numerlcal 1nteoratlon are examlntd and it has met lots of methods'

in this area such as rectangular quadrature rule, the trape201dal rule Gregor) s
formula, Slmpson s rule, Weddle's Rule etc. (18], (24]). And among these methods;
Slmpson s Rule with the Slmpllthy and falrly hlgh accuracy is selected to be'
used in the evaluatlon of the tunctlon Q.

f(x)
AN

Figure IV.6.

Given the pivotal values of the function f(x) which is to be integrated:

o B T B B i

evenly spaced by h, the area under the integrand between X: and X5, can be

approximated by the area under the parabola passing through points (x1 1’ fi—l)’--

(x , f. ) and (x. £.

1+1). Then that parabola will have the formula of

i+1?

f (x)=Ax2+Bx+C'with parameters

£, =2f.+f. £, . —f. .
A= 1+1 1 "1-1 ’ B = i+l "i-1 , C=fi
2 h? : 2 h
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'The area under this parabola between x.. .

izl anFi'xi+1 }s given
S X o
D = f . ¥ -2 L -
' <! £(x) dx 3 (f1+L * 4f’i. * fl—l)
“i-1

This result is knowﬁ as Simpson's ‘%_'ruié’formula for the area undef-ﬁwo'étrips ’
_of‘width h. E | ' o |

In general, g f(x)dxb represents the area from a to b under.the‘curve_y=§(x).

But if £(x) = 1is not”a.qgadratic function, the graph will not’usﬁally be a
'parabofé. HoweVer, if we splitvghe interval.(a, b) into an even number, n, of
parts, then f(x) may be apcdratély represented by different bafabdlas for each
'pairvof.consecutfve interQals{ Applying the Siﬁpsons Rule'gf timeé,‘which means

the graph of the given function is replaced by 1. arcs of parabolas, yields the

"so-called General Simpson's Rule: 2
b b , .
e < £ / 9 / 9¢ + F
| t(x)dg =3 (to + 4f )+ Lt2_+ 4F3 + 28 5 0t 4f -1 _Fn)
a

This formula can also be written in the general form:

Wl
it s

cfi’ where ¢ = 1,4,2,...,2,4,1
; /

Evénthough Simpson's Rule can be used for definite integrals, from the A
peculiarities of the probability-density function for normal distribution,

. N ) N Z
P(x), this method 1is used to evaluate ?(z) = [ u(x)dx. -

o

Iv.2.1.3. Updating Procedure

If demand size for each item has mean m; and standard deviation s, then the

difference between the must-order point and the average inventory level as soon

m%+o%

as the inventory drops below s; has an expected value of'ai =E-(—~————J. Proof

i

of this statement is given in Appendix II. Also in section IV.2.1l.1l., the
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minimum values of O 's whlch must be carr1ed to satlsfy the desired serv1ce.
levels were determ1ned solv1ng (III -12). Then, the must- order point will be-
hlgher than the average value of.theﬂlnventory’when the ofdef is placed by -
the expected dlfference between s and 0 For the determlned value of O the

new slrln the next iteration will be updated as

RSN - ,
s. =0, + = (——) i=1l,...,0 .
m. -
i

IV.2.2. UPDATING CAN-ORDER POINTS, cirsu

IV.2.2.1. Derivative of the Objective Function with Respect to ci_

The c; does not appear in the objective function and the constraints, but

i
eventhough the functional relationships between ¢y and P,, N are not clear,
we know that Ri debends on p . by (III-10) and Pi also depends on c; somehow.
Then, ‘ignoring the other dependencies, differentiation of (I1I-11) with respect

to ¢y gives us:

3P KJ: D: £.4p -3P.p. KJ. D. 30 h
1
LI + hil + Py [-(——) ————— ]
Bci Bci Ei—Pipi' 2 Bci (Ei—Pioi) aei 2
3P, KI. D. E. -3P.o . KI. D.
: 1
(5 =) = by} #(1R) () ————]
3., Ei—Pipi 2 - Bci (Ei-Piei)



The derivative-functiénlmay be siﬁplified as:’

KF D, 9P, h, - 0P, 9p. -D, » (P00

=) = (o ==+ BT )y = (KT +(1-PKT,) =
~P.p",  dc. » e (.- AT , ]
5i7PPy % 20 »acl ?Ci ‘ (€iAPipi) . L _F¥
‘By chain rule, éﬁf;ll = x 3y + y'éﬁ ~;
I 0 a0 30
| LB cap. o a(Pap.)
"Then , p. Lyp—1 = 11
e i i : : :
: ¢, - dc: T 3.
»1 1 1
. S o ,
and by (IV-6), Di(PiKJi + (1—Pi)KIi) =-f; (g, - Pooy) =
Substituting these values into the derivative functioh, it will be
' 3P ‘ | 2Y(£.-P.5.)2 . 3P.o.
oz _ NP Ry Ry 30y (/DGR 2Ry
] . .— R '\_ . . " . ) 5o - 2 . n
¢y &Ry B 2 sey - (ByTRy) 3¢y
'ft &ill finally be reduced to
C3(P.p.) KF D, o, |
2 oot : i=1,...,n. (1v-4)
5¢4 % §i7PPy 0
The optimal value of cs must satisfy
3z _ 0 : i=1l,...,n.
ac.
i
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IV.2.2.2. Iterative Algorithm-tb Update ci's'

Since the functional relatiqnships between Pi;go; and ¢, are not known, it can
not, be obtained a élosed—fofm solution for the optimal ci} Instead, performing
small changes on'c; until the derivative approaches zero, it will be tried to

catch. the optimal values.

Bv the definition of the derivative [12], if A0 is small enough, the following

approximation can be done:

_df . Af _ £(0+40) - £(8)

—_— ~

40 A0 e

[f Ac, is chosen small enough, the same approximation can be accepted for:

aP. AP. ' B(Pioi)

i . i - A(Pipi)
T and = -
a;i Aci E i aci - Aci

yhen we know the values P, and p. for thé value c¢. and similarly P.. and
10 10 : 10 -1l :

for the value c, if (Cil-cio)‘is small enough, (IV-4) can be approxfmaped

i1 1?
¥
-P, o, : P, —p.
Z . h. Pi1°117Fi 10 _ KF by il p?o . (IV-3)
h - -P. o. c.q—C. . ~
ey ¢i1 ~ Sio 5P iPio - il Tio
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o V c.
. ' RS N e
: N\.oC - . : :
| 1 : i
' a3 :
] z
Figuri IV.7. Optimization of c¢;
3 . ~ C L . '
If e >0, 1t means that the objective function increases as c; ilncreases, .

then c, must be reduced.

<0, .the objective function decreases as cs increases, then ¢; must be
i , : '
increased.

o 3z
Then the value of . must be corrected according to the sign of Ser The term
: - ’ . _ i
yi is defined as the difference between c; and 0., and it is used to define
ci'when 0, is known. At each iteration, the 1] is also corrected by another
parameter STEP; which is updated according to the increase or decrease in Zj:In
order to converge to the optimal‘ci, the STEPi is cut by two each time as soon

as ZiinCreases after having first decreased. The main steps of the updating

procedure are

R o
1).1f - > 0 Reduce Y; by STEPi y Yi=Y; STEPi
acC. : ) .
i
if 2 <0 Incr by STEP, ; y.=v.+STEP
if ncrease Y. vy i Y= i
ac.
i
and
c1 = Oi + Y1 ]
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.'ii) At the end of the each iteration, if you are in the optimal interval,

reduce the change on Y, and get closer to the optimum,

If z; >22. Divide SIEP, by 2.
© “previous : Lt T

' va_Zi < Zib ' Continue with the previous STEP,
: “previous e : -

Vhile updating cifs in the -algorithm, if the Valué of STEPi is .too "large, the

approximations made above

-~ 1
—= I.—=  and z

de. Ac. : S Qde. CAc.
i 1 1o <1

BEi AP, . BKPiOi)

are no longer valid. But if STEP; is too small, the algorithm will require too
nany iterations to reach to the optimal region. Taking both into account,
20Qi/10 is not a bad assumption as the starting value of STEP., . -

[V.2.3. UPDATING ORDER~UP-TO LEVELS, Si's

[ £ Oi is known in any itefation, Si andrii hold the same information by -
iizsifoi. Then they can be used interchangeably in the optimization of the total
ost function, Differentiating the objective function_(IiI—ll) with respect to

: gives us

~KJ; D, Ch —XI. D. h

_'?_g-— = Pi(___.__.]:__.z + 2 ) + (]_--Pl)(___]“.__1_....5 + _l.)
‘ BPi Gpi
there the changes in Pi and Oi due to changes in gi, i.e. —— and
‘ 9k . 3t .
i i

ire neglected.

etting the result equal to zero and solving for €; leads to
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D, o ' ‘
_ 1 : ’ o ) - rT i -
s (R s POKL)) + ;e-_‘o‘

(£ -P. 2
(§i Pipi) '

L2 g _ SRR
£, =2h.P.p.E. .P.p. =-2D.(P.KJ. - < =
: hl i _zblplplgl * hlplpl “Dl(Plxq;_+'(l ?i)kli)v 0

S .' 2;“ o) ;' - . ;' L
hyPioy v (hiPiQi) h, (h;Plo} 2Di(PiKJi_+ (1 POKINT

&y
“'h. -
1
. , 2 D. (P.KJ. + (1-P.)KI.) . S
£. = P.n. +/ L 1?2 . 1 1 . . - (IV-6)
Pi i7i no L

37 2D. S »
= : (P.KJ. + (1-P,)KI.) > O
320 (E.=Puo.) i i’ =
RS U
.v = = —. N, = - . L. < £,
where g5 = 5:-0;, 0;=R;=0;, 04nRyzS; oy 255

The same result, (E.—Pipi)>0, eliminates also the negative sign in the formula
i - .

(1V-6). When Pi and p; are known, the optimal value of gi will be then

7D, |
£2 =P, + Y —= (P,KI, + (1-P)KI;) ' (1V-7)
h. ' : .
i : 1



’iLfiBi=0, it means that only independent replenishmenté'occuf and the ordering
vicoSt 1s KI at each t1me. The same formula will be relevant for each 1ndependent~

i
v-rtem«and il w1ll be nothlng but the economlc order quantlty in {101 .

o fepixa.
P Py=0, £i= ¥ = = E0Q,
v 'hi S _

. Wher" the optimal 0; is determined, S; will be updated by the following: .

L Lok
5; = 03 +&;

IViB. STEPS OF THE OPTIMIZATION ALGORITHM

"Thelalgorithm used for the optimization of the problem is. an iterative one. In -
rhevalgorithm, the parameters .are updated at each iteration according to the
“pules ‘described in the previous,secfion. It is continued until an acceptable

result<is obtained. The algorithm proceeds as follows:
1- Select SI_‘EPi for each item.

'2- Start with the initial values of the parameters assuming independent

system. i.e. P, =0:

io
1) s. = 0. +«
i io 1
L 52
m 5.
1 1
where a. = = ( )
1 .
2 m.
i

and 0, is the safety stock of item i in an independent system

'guaranteelng the desired service 1eve1 Therefore O willvbe

the solution of (III—12) with Pi—O :
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‘ €5
0, -u o B ) rames
{o(—22—1Ly} 5 (i-1.) *
i Tl

11) ci.=.Qio + Yo

where yi:STEPi as éxplained'iﬁﬁ(iV.Z.Z.Z.) -

4oio as in (2-1)

1i1) Si =‘Oio + &i.

where £; is calculated by (IV-7) with Pi#b: )
. 2D KT,
£. = v ____.__.____. =E0Qi

h. -
1

Oio as 1n’(2—1) .

3- Simulate the system with the initial values of Si's, ci's and s.'s.

and determine NJRB,, NJRNB;, NTR., R., O,

Then célculaﬁe

CNJRB, + NJRNB, o
P, o= : 0oy = Ri—Oi~
NTRi L

4~ Calculate Zio,'the objective functiqn values by (III-11)

and set Zo = i Zib

* & is equal to EOQ; for P.=0. Then O, will be the solution of

o E0Q;

. —U. . :

{0222y} (1-1,) D;
i
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S5= Deterpine,the"new’Values for updating the paraméeters

N i)-Determingvnew Oi sblving (IIijIZ) with the new values of '

“Pi an@_qi‘

i) Evalvate Lo by (Tv-5)

2Ce

1.
Loz PR
1f 0. ~y.=v. .
s, < o - o YiTYiSTER;
YA - '
o 2 0 Y=Y ~STER;

"1ii) Determine new gi.solving (1IV-6) with the new values‘bf,

" P. and o.z.
i i

-6~ Update the parameters with the new values determined in step (5).

s. = 0. + 1,
1 1 1
C = O, +
1 1 1
S. = 0. + <.
. 1

7- Simulate the system with the new values of s;'s, ci's and S.'s
in order to find the corresponding values of the Pi's and pi's

necessary for the next updating.

8- Calculate the new objective function values Zi's by (III-11)

If Z, >2Z. -  Cut the STEP, by 2 STEP =STEP, /2
i- "1o _ o1 i i

If 2. < 2. " Continue
i io :

9- If stopping condition is achieved, stop

Otherwise set Zj, = Z; and go to 5.

50



IV,M ’CONPARISON OF THE PROPOSED JOINT ORDERING POLICY WITH
INDEPENDENT POLICIES AND THE STOPPING RULE

'One important practical point to know_befote°intfoducing‘an'(s,c,S).policy in

a particular context is whether or not the savings- accompiished by the change
offset the cost of 1mp1ementat10n A neCessary step then will be the examination
of the maximum p0351b1e saving reallzed by a 301nt orderlng pollcy over the '
usual continuous rev1ew independent 1nventory control system. The comparlson

of the Jolnt and 1ndependent p011c1es shows us what is the best posxtxon which
can be achleved by a joint pollcy The dlfference between the most p0551b1e ¥
“improvement and the improvement wh;ch has been reached will g1ve a criterion

to decide wheré we can stop, i.e. the.stopping condition for the algorithm.

~For an 1nventory system w1th n items and dependent orderlng cost, the worst
policy will be to control this system by n ‘"independent p011c1es Among the
1ndependent p011c1es, the best thlng w111 be contlnuous review (s, S) pollcy .

Then Z the maximum cost which may be occurred controlltng the system, will be

I’
the sum of all costs for a system allowing no joint replenishment, i.e. P.=0.

"It may be calculated by

D,  EOQ.

KIi + (—
i EOQi 2

+ O{ + DiL)h{ 1. . ' | (IV‘8)

where 0% is the safety stock in the independent system.

The answer to the question of what a joint'policy can do the best is given in'
the follow1ng For a joint policy, the total expected cost funct1on (I1I-11)
can be rewritten as the sum of the e\pected orderlng cost in terms of the
number of orderlngs (III—l) and the expected inventory carrying cost. After

some substitutions and simplifications:

Z = E [(NIRi + NJRBi) (KF + KJi) + NJRNBi KJi

1
+ (€1+Pipi) E-hi + Oi hi - Di L hi]
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'One lover boundary of the total cost function will. be obtalned N setting .

»NIR =0, i--’6_3- no 1ndependent replenlshments w111 occur. Therefore

Z > 5. [NJRB;(KF+KJ.) + NJRNB. KJ. + (£.4P.0.) + h.+0.h.-D, L h.]
_ i 1 1 REE R T TR A ! 9 T 111" 1

or

[
I'v ..
o)

The lowest cost in this. last 1nequa11ty represents the cost of a system

operat1ng without’ any 1ndependent replenlshments, in which case all replenlshments
occur JOlntly and (NJRB. +NJRNB ) represents the. total .number of replenlshments -
for 1tem 1 per annum. Hence, by substltutlng (111- -9) and (III 10) lnto (I1I- 4)'

and (I11- 5) then summ1no up two:

NJRB. + NJRNB. =
ST i

and where KIi > KJ, and iO <P

2D, (P.KJ.+(1-P.)KI.} D, KI.
S N R R S i R
Vo — 5 V———ee = EOQi
~ h, - h.

1 . . 1

It can be seen from (IV—6) that E'—P 05 fEOQi . Therefore a lower bound for

the total number of replenlshments where no 1ndependent replenlshment occurs 1is

NJRB, + NJRNB, > ——— . , (IV-10)

On the other hand Zl NJRB, represents how many times an order is triggered -
in a year, that means the total number of replenishments for the system during

the whole year. The minimum number of replenishments for the whole system has

52
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to be at least equal.to the number of replenishments of the fastest moving item.

-z NJRB. > ma' NJRB. + . RIS Lo
. i - " X ( R i NJRNBl) = m?x (E -P .o ) ) max(EOQ

. ) Coe (V=1
i L 1Py o

Then, substltutlng the lower bounds of the number of replenlshments for each ;
Ltem Jand for the whole system into (IV 9), the smallest value of the lower bound

on total cost function becomes

.":D' L D,
Z > max (—=) KF + T [—— KJ. A+, +P 0 )—-h 40, .h, —D L h, ]

i B0Q; i E0Q; 2

First two terms are the total orderlng cost for the system and the others

represent the 1nventory carrylng cost. Then the expreSSIOn '

171 ' ‘
e L A

1o

Arepresents the average 1nventorv of item i under a’ J01nt replenishment pOllC\

The joint orderlng pOllC\ ‘gives an overall saving in the total cost decreas1no
the total number of orderings thus the orderlng cost, but it makes necessarv

to carry more 1nventory than tarrled in the independent pol1ty orderlng

items more frequently. Then the average 1nventory level carriéd under an
independent system gives a lower bound for the 1nve1tory carr1ed in the

dependent system F1nally, a Lower bound tor Z in a joint pollcv can be expressed

USlng the approx1mat1ons above?

. Z. = max( YKF + £ [—— KJ.+(

L : o;’-ni L)h.] o (Iv-12)
i EOQ, i EOQ, 2. »

Thus the maximum possible saving which can be achieved by a joint policy is
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where ZI is the total cost of an 1ndependent continuous review system and Z; is-

the lower. bound on the total cost of a dependent contlnuous review system

At any 1nstant, if Z is the total cost for a JOlnt pollcy calculated by (III 11), .

the saving achieved by that over the 1ndependent policy 1s

Then, if Z* is the best Z fodpd up to now by the algorithm, the actual saving

achieved by the algorithm will be

AS —_—

Comparing the actual saving achieved by the algorithm up to now (Ach S) and the
maximum poss1ble saving of the algorlthm (MPS), one ‘may put a lower bound on the

saving of the algorlthm (Acc S). Then the stopping condition will be

" Ach S
MPS

> Acc S

When this target is reached and improvements are two small, the algorithm will t
not be run anymore. The best value of Z reached until then will be the optimél ;
cost and the inventory control policy defined by the control parameters of that

iteration will be accepted as optimum.
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IV.5. MACRO FLOW-CHART OF THE OPTIMIZATION ALGORITHM

(  START ’
<i%oop THROUGH FOR i=1,n :>>

Set STEPi=EOQi/10, Pi0=0, pio=0

054 by (III—lZ)Vw1th P,=0

2 2

1 v; = STEP, o
£, = EOQi (by (Iv-7) with Pi=0

w
®
(m
n
[N
Il
o
+
R

Compute ZI by (IV—8)_ ]
7 by (IV-12)
=(z, - zL)/zI-

..,

ig

n
!

I

Set Acc S

Simulate the system with

.,5.)'s and determine
(Si’cl’sl) S v.

Pi's, Ri's
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~LOOP  THROUGH
FOR i=1,n

Compute‘ Zi by (III-ll)

N ol

i

/ Loop ThROUGH
N\ TR i=l,n

\'.

Compute Oi by (III-12)

S
Ay
Compute Ei by (1IV-6)
Set Pio = Pi
Pio = %14
c. =c¢
io i
= . +
51 01 %5
= +
¢5 Oi Yi
Sl = 0'4'51




C o
Simulate the system |

with (s.,¢.,5.)"
( 1fc1’sl) s.

and determine P:'s, R.'s

\y

///'Loop THROUGH

. FOR i=1,

(Compute 2. by (ITI-11)

STEP./2
1 .

2

PRINT RESULTS

2
( STOP )



FHADTFD V.

FOMDUTFD DDnrDAMM]Mr

V. I. INTRODUCTION

>1nce the algorlthm descrlbed earlier in the thesis contalns a 51mu1at10n stage, .
zomputer usage becomes necessary in determlnxng the Optlmal values of the
lecision variables. A h1gh1v large computer program with 2 subroutlnes and 6
Eunctlons is written to computerize the model. The connections of the main

>rogram with the subroutines and functlons may be structurally shown as in

fgure’ v.1.

MAIN
_
OSUB | PIP STMSUB
i} . .
_
PNROP
DTFUN [ psFun
CDF

RANDU

Figure V.1l. Program Structure

ain steps of the algorithm are realized in the main program. First; the
ntrance of the input data and the computation of the necessary parameters
ccur. Then subroutine OSUB is called to solve the stockout function and the
esults, 0;'s, are used in the updating procedure of the decision variables.

ith the new values of the inventory control parameters, subroutine SIMSUB is
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called by the main program It realizes the simulationIStage ef the algofithm
and makes it possible to observe ‘the behav1our of the 1nventorv system through
sxmulatlon At the end of the each cycle in the main program, the 1nventory
contr01 and update parameters are corrected accordlng to. the results of - the

present system.

Finally, if the achieved pointris acceptable, the last values of the decision
variables are accepted as the best solution and the pfogram-ends But if it is
not so good, it is passed through the same cycle in the main program with the

new values of the parameters to achieve a better solution.

V.2. SUBROUTINES AND FUNCTIONS
v.2.1. SUBROUTINE OSUB

Subroutine OSUB determlheé the value of the parameter O; in the algorithm. It
solves the service level'functien (I1I-12) in terms of Oi‘. A new iterative
procedhre developed in the study and explained in (IV.2.1.1.3.) is used in the
subroutine OSUB. After thé interval in which the root lies is reached, new
point xj is generated usin;'linear interpolation Some checking points are
included in the subroutine and an- upper limit, NITMAX, for the number of lter4
ations is glven ‘If the de51red accuracy is not reached by the maximum number
of iterations, last value is accepted as the solution. The logic diagram of

subroutine OSUB is shown in Fig. V.2.

V.2.2. FUNCTION PNROP

Function PNROP calculates the vearly probability of not stocklng out with
current values of the parameters for each item. It computes the left-hand side

of (ITII-~12) and returns this value to the subroutine OSUB which will give the

solution of (III-12) . Figure V.3. illustrates the logic flow in function PNROP.

V.2.3. FUNCTION CDF

Computing the yearly probability of not stocking out, service level function is

the product'of two special fanctions which are both cumulative density functions
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of normal d15tr1but1on Then, function PNROP calls another function CDF to
evaluate the value of cumulatlve dens1ty functlon 9. CDF makes numerlcal

1ntegrat10n using Slmpson s %- rule as explained in .(IV.2.1.2.):

b

j f(x) dx = h T ¢ fi‘ where = c¢=1,4,2,...,2,4,1

where £(x) is taken as (1/2m)* ekp(—az/Z) for norﬁal distribution. "

The results obtained 1n function CDF are compared to the values glven 1n the
standard tables and for n= 10, it gives quite correct results up to four dec1mal
compared to ‘the tabulated values. The loglc diagram of function CDF is given

in Flgure V.5.
V.2.4. SUBROUTINE SIMSUB

Subroutine SIMSUB process the simulation stage. In this subroutine, inventory
system is observed taking the operating decisions with the current values of the
inventory control parameters and the new values of some parameters'(P and o. )

are returned to the main program. It uses .an event base simulation technlque.

The simulation time, CLOCK, passes from the present event to.the closest event.:

In the system, there are two: types of events which change the p051t10n of the
1nventor1es. Flrst, there will be additions to the 1nventor1es if an order is
received. Secondly, arrival of a demand decreases the 1nventory and a review
will be done. As a result, another order may be placed containing some items
accord1ng to their _inventory positions. Choosing the smallest of the all demand
tlmes, time of the earllest demand, NEXTDT, is determined. In the same way,
time of the earllest order receipt, NEXTOT, will be computed. Then the next

event to which system will jump will be the one with earlier time.

If the system jumps to a time at which an order is received, amounts received
are added to the respective inventoty ~levels and these orders are erased
from‘the list of ordeér on—road. But 1f a demand occurs as the next event,demand
is supplied by the respective inventory. After the updatings in the inventory
position and the inventory level are done, the new inventory position is

controlled whether it drops below the critical level. If placement of an order
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decided, a11 the other items are rev1eWed accordlng to the joint ordering
licy and the p0331b1e orders are 1nc1uded JOlntly in that order for the items

th the lnventory p031t10ns below thelr can—order p01nts.
broutlne SIMSUB calls two functlons, DTFUN and DSFUN in order to generate a
W demand for an 1tem Functlons DTFUN and DSFUN are used ‘to determlne the
mand time and demand size respectlvely )

2.5. FUNCTION DTFUN

nce the d1str1but10n of the arrival times of demand for an xtem is taken as
ILSSOH, it w111 have a probablllty mass functlon in the form of, [ 4]

p(k) = ﬁ:El__E___;, k=0,1,2,...

iere A>0 is the rate of arrivals and t>0 .

en, the distribution of time between successive demands is exponentially

stributed and has probability mass function and cumulative mass function as

ven in Appendix 1:

0 <t < o

1
(1]

f(t)

F(t)

L]
Ow
1]
.
b
|
)
)
[t

lving F(t) for t and setting r = F(t)

e M L 1R (E)
-\t = La(l-r)
¢ = -% La(l-r) . -1

generate exponentially distributed random variables, a random number r,

tween O and 1 is selected and t is evaluated by (v-1).
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nCtlon DTFUN is called to determlne when the next demand w111 occur. after the'
st one and it generates an exponentlally dlstrlbuted 1nterdemand t1me for an

em.. »The 10g1c ‘diagram of functlon DTFUN is glven 1n Flgure V.6.
2;6. FUNCTION DSFUN

ter the time of the next demand is generated by functlon 'DTFUN, functlon
FUN is called to generate the size of that demand Since the amount demanded
each t1me is assumed to be non—negatlve normally dlstrlbuted, the demand

ze will follow a normal dlstrlbutlon truncated to the left of O.. For certaln
rameter values, 1f»the prqhablllty of negative demand size is negllglble
(x<0) ~0) a normal process generatdr can be used for that purpose.

X 1s normally dlstrlbuted w1th mean p and varlance 02; the cumulatlve

stribution functlon of x is glven by

x Loty
- f 1 2" ¢
F(x) = e - dt
' J V2l o ‘

was shown in [23] that generator for that distribution will be

2.515517 + 0.802853v + 0.010328v2

' r-0.5
X =1u + g (v- _ - )
|r-0.5] . 1.+ 1.432788v.+ 0.189269v? + 0.001308v3
re  v=v- 2 Ln 0.5(1- | 1-2r |) and r is a random number between 0 andri;

- in the study, an easier and quicker approximation is used to generate a A
‘mal random variable. This process generator depends on central limit theorem
]. If y is a random variable with finite mean p and variance 02, from the
itral limit theorem:

N

Z vy,

. i

1=1
an approximate normal distribution with mean Ny and variance No? for

ge N. Since r., a random variable between 0 and 1, is uniformly distributed

162



on.ﬁhe-interval_(o;l),.

L
E (ri) = =
’ 2
Var (r.) = 1
YT
' 12

Therefore for large N,

I =z

i

has an qpproximate n9rma1 distribution with mean N7/2 and variance.N/122 This

immediately leads to a process generator for the standard normal random variable,

Z, and is given by:

N
.z
s1=1

v N/12

r. - (N/2)
7. = - 1

To generate a normal. random variable x ‘with mean u and variance o?

only thé relationship between the general normal and standard normal random

variables as

Using the last two equations, the process generator for a normal variable with

mean u and variance % will be:

I~z

oy (N2 |
X = u'+ o =1 . ’ ‘ (v=-2)

Y N/12

In order to simplify the formula, if N is selected 12 as in the program, the

generator becomes as
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| 12
x*x=u+g (2 r. -6 -

DSFUN? normal process generator function, is summarized in Figure V.7.
.2.7. FUNCTION RANDU

Functlon RANDU 1is called by funct1ons DTFUN and DSFUN’ whenever the demand of -
an item is to be ‘determined. It generates uniformly dlstrlbuted random numbers
for generatlng two’ random events, the demand t1me and the demand size. The -
multiplicatlve congruential method is used in RANDU to generate each random
number. This uniform random number generator is written for a binary computer-
with 36 bits per word. All we need to.do is supply ‘the first feed number IR
and make sure it is five d1g1t odd. The routine takes over and: generates the
new integer value of parameter JR to use for mext entry into function. This
gives the opportunity of generating any number of independent random numbers

'at.each time.
V.2.8. FUNCTION PIP

Function PIP is used to determine the minimum possible number of orders for
independent 1nventory system. Its function is to determine the smallest 1nteger
number equal to or greater than a floating point number Then this result is
used to compute the total cost for the system where items are controlled

independently.
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V.3, DEFINITION OF THE VARIABLES IN THE COMPUTER . PROGRAM

The indicators used in the program are listed as:

NI Cafd réadét‘ﬁnit number

'NOi . ) :‘P;iﬁtér.uniﬁ.number

MPS . | -:‘Maximum_ﬁbssible saving>by the model :

ACCS'_ : Acceptaﬁle péfcent of ghg'séQing by tﬂé ﬁddei over ébe

independent one
ACHS * Achieved percent of the saving at each iteration

NITMAX ! Maximum number of iterations for solving service level function

NIT® ! Number of iteratiqns passed for solving service level function
" DX : Step size in the iterative method for solving service level
function '

"ACCN, ACCO :.Accéptable accuracies in vertical and horizontal axis
respectively in service level function
NINT : An even number indicating the number of intervals in the

Simpson's integration method

- DV oo Intérval‘leugbt in the Simpson's integration method
DURSIM  : Duration of the 'sim'ulation run |
CLOCK  : Time indicgtor in the‘simulation run
FLAGO : Order ihdicatqr (1 if aﬁ order‘has ﬁo be placed, O'otherWise)
FLAGJO :.Joint order indicétor (1 if fhe order is placed jointly)

FLAGOR : Order receipt indicator (1 if an order is received at the present

time, 0 otherwise)
NORRAN  : Number of samples in normal distribution generator -

IR : Initial number for uniformly distributed random number generator

JR : Integer number used at each generation to generate uniformly

distributed random number.

65



Function defined in the program are:

;TRCFUN(,L..,): computes the value of the obJectlve functlon
vEFUN(,f..,)u': g1ves the optimal value of the parameter E(I) by 1v. 7

DERFUN(,)..,)# takes the derlvatlve of the obJect1ve functlon w1th respect

to can- order p01nt

CFGees) 1. defines the prObablllty density functlon for normal

: dlstrlbutlon

Main inputs to the program are defined as:

N- » o ;'NuﬁBer of’ltems ln_the greup

dKl S At“Fixed aetfdp'eostlﬁeriorder

K2(I) ;ivariable part of the'ordering cost foraited I per:order"
LTIME B B Reélenishment lead tihe .

D(I) ©: Expected yearly - demand for 1tem L.

' WTRAV(I), SDTRAN(I) Expected.value and standard deVlation'of-the

transactlon size for item I, respectively

H(I) S Unlt 1hventory carrylno cost'per vear'for item I

EAPRO(I) : Maximum allowed probablllty of runnlng out for 1tem I

The

(the serv1ce cr1ter1on)
K3(1) .+ Total ordering cost for:item I for an'indepeddent replenishment:
DRATE(I) : Parameter of the demand time distribdtien for item I °

MDLT(I),'SDDLT(I):AExpected value and staddard deviation of the lead-time

demand for item I with normally distributed:-demand

EOQ(I) : Economic order quantity for item I
variables used in the program as:

OUL(I) : Order-up-to level for item I (Decision variable S;)
COL(I),COlO(I): Can-order points for item I at the last two iterations

(Decision wvariables Ci"cio)
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QPkI)
jSAfES(I)‘
TRCI
“TRC, TRCO

MINTRC ©

: Must-order point for item I (Decision variable s;)

: Safety stock of item I in indépehdént system

: Total relevant cost for independent'system

: Values of the objective"function at the last two iterations

B(I), PO(I)

"E(i)
7853
DELTA(T)

U

A(L)

ORI, RSIM(I):

0(1), OSIM(I):

G(I), GO(I)

z1l, 722

Fl, F2

~ INV(I)
INVPOS(I)
DTIME(I)
bSIZE(I)
NEXTDT
ORTIME(I)

OSTIZE(I) -

: Lower bound on the objective function

Probabilities of»joiﬁt'ordering for item I in the last two
iterations, respectively. . '

Parameter used to update order-up-to IeVels'(Ei-in the model)

: Parameter. used to update can-order points (Yi in the model)

Change in the Y(I) at each iteration

: Derivative of the objective function with respect to can-order

point
Parameter used to update must-order points (ai‘in the model)

Computed and simulated values of the order level when a joint

ordering occurs

Computed and simulated values of the order level when'opdér

_is triggered byiitem I

Differences between RSIM(I) and OSIM(I) at the previous

and present iterations respectively

: Two values between -4 and +4

Values of the cumulative density function of normal

distribution for Zl, 722, respectively
Inventory level for item I

Inventory position for item I

: Next demand time for item I

: Next demand size for item I

Time of the next demand for the system
Next order receipt time for item I

Next order size for item I
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- NEXTOT

1

»;;32 |
“NORI -

/OMAT(K,J)

'”?RCI(l)

“RC(1), RCO(I):

FLAGRC(I)

Time of the next order receipt for the system
Index of the item which has a demand arrival

Index,df the item which has an order receipt

‘Number of items included in an order .

: Order Matrix

For J=1; Return time of the Kth order

-For J=23 Number of items 6rdered in the Kt order

For J= 3 2*'OMAT (K,2)+23 Indices of the items included in
the Kth order dnd amounts ordered
are stored in pairs

Relevant cost for item I in independent system

Objective function values for item I at the last two

iterations

Indicator for optimal region of COL(I)
(1 if RC(I) increased after having first decreased,'

0 otherwise)
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U, FLOW CHARTS

ENTER
from MAIN  '

.

Set pafameters-
o : ¢ A : .
: ¢ Loor THROUGH FOR I=1,'N'>

NS

Choose the initial point,fX1
|
N

<CALL PNROP> A

ke

A

Compute the next point, X
.
Y

< CALL PNROP \ :

to

in :
he solution No Replace X
interval? -~ i B & 2

) 1
by %y |

|

Yes

hay

AV)

Select a new point, X3,

bv Linear interpolation

] ‘ : No

Replace X3

by X2‘

<CALL _ PNROP

is
accuracy
satisfied

is
solution
between

At
: X1 and X,

Replace X

3

by X2

Set O(I) = X3

>

RETURN
to MAIN

Figure V.2. Macro Flow-Chart of Subroutine OSUB




. . /T ENER. .
R © \_from OSUB :
“Set parameters

" P,G,MDLT,SDDLT,

SET X
Set  21=(X-MDLT)/SDDLT
72=(X+G-MDLT) /SDDLT

\

{ CALL CDF

Computé Fl=CDF(Z1)
 F2-CDF(Z2)

i

e

\

r .
| compute  PNROP = F1l7Bx p2®

RETURN
"N\ - to MAIN

Figure V.3. Macro Flow-Chart of Function PNROP
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T ENTER. O\
from PNROP '

v

[P

‘Define F(X) =" exp(-X**/2)

Set parameters NINT, .ZZ

/

Set 'VV = ABS (2Z)
NHALF = NINT/2
DV = VV/NINT

\

Set  CDF = 0
‘ O THROUGH FOR I=1,NHALFS
G,

Set VL = 2%(I-1)*DV
VU = 2*I*DV
VM = (VL+VU)/2

Compute

CDF=CDF+(DV/3)*(F(VL)+4*F(VM)+F(VU))
N

CDF = 0.5+CDF

CDF = 0.5-CDF

RETURN
to PNROP

Figure V.4. Macro Flow-Chart of Function CDF




ENTER - -
from MAIN~  /
o DIMENSION and COMMON
Storagevsbecifications' v

Set Parameters LTIME, DURSIM

Set Starting Conditions

V//iLOOP THROUGH FOR 1;1,§:>

Set NIR(I) =0

" NJRB(I) = 0
‘NJRNB(I) = O -
S00(I) = 0
SRR(I) = 0

Set NOROAD = 0
NOREC = 0
NORDER = 0
FLAGJO = 0
FLAGOR = 1

A
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©

e

o~

OOP THROUGH FOR I=1;§>

{ CALL DIFUN »

s

et DTIME(I) = DTFUN

'CALL DSFUN

 Set DSIZE(I)

DSFUN

Choose. NEXTDT = MIN(DTIME(I))

= DTIME(I*)
Jl =1%o

FLAGOR

£0

Set

NEXTOT = OMAT(NOREC + 1,1)

FLAGOR = 0

®
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NEXTOT:

NEXTDT

<

(Order returned)

NEXTOT

Set  CLOCK =

CLOCK:DURSIM .

- Set
NOREC =

'NORI =

'FLAGOR =

NOROAD =
OMAT (NOREC, Z)

1
NOREC + L
' NOROAD - 1

<f£bop THROUGH FOR L2 =

1, NOR€>>'

J2 = OMAT (NOREC,2*L2 + 1)

INV(J2) = INV(J2) + OMAT (NOREC,2* L2+2)

]

NEXTOT:

\\\\\\

NEXTDT

(Demand arrived)

Set

CLOCK=NEXTDT

©
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CLOCK:DURSIM

?://(/ B

"Set FLAGJO = O
NIO = 0

CINV(J1) = INV(J1) - DSIZE(J1)
INVPOS(J1) = INVPOS(J1) - DSIZE(J1)

_<iTCALL 1DTF§N:> \A

- DTIME(J1) = DTFUN + CLOCK

((:CALL DSFUN :>
DSIZE(J1) = DSFUN

~

INVPOS(J1) .LE.OP(J1)

Yes

(Order places)

Set  NORDER = NORDER + 1
NOROAD = NOROAD + 1
NIO = NIO + 1
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.OMAT (NORDER, 1) = CLOCK + LTIME

'OMAT (NORDER, 2) = 1
OMAT(NORDER,3) = J1 . -~ . .
'OMAT (NORDER, 4) = OUL(J1)~-INVPOS(JL)

S00(J1) = S00(J1) + INVPOS(J1)
INVPOS(J1) = OUL(J1) |

“INVPOS (I).LE.COL(I)

—<iLOOP THROUGH FOR'I=1,N;>>

No

Set_

Yes
FLAGJO = 1
NIO = NIO+1

OMAT(NORDER, 2*NI0O+1)
OMAT (NORDER,, 2#NI0+2)

.l

I
OUL(I)~INVPOS(I)

SRR(I) = SRR(I) + INVPOS(I)
INVPOS(I) = OUL(I)

NJRNB(I) = NJRNB(I) + 1
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OMAT(NORDER,2) = NIO

, g
FLAGJO . ‘ ’

2N
i

NIR(J1) = NIR(JL1) + 1 | NJRB(J1) = NJRB(J1) + 1

.77



©
<:: LOOP THROUGH FOR I=1,§>> |

“Compute NTR(I) = NIR(I) + NJRB(I) + NJRNB(I)

Compute RSIM(I) = SRR(I) / NJRNB(I)

0SIM(I) = SO0(I) /- (NIR(I) + NJRB(I))
Compute 'l. P(1) = NJRNB(I) / NTR(I)
G(I) = RSIM(I) - 0STH(T)

PRINT P(I),G(I)

o RETURN
. to MAIN

Figure V.5. Flow-Chart of Subroutine SIMSUB
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/" ENIER
Erom SIMSUB /
'Set DRATE

' <CALL_ | RANDU>,

Get Randqm‘Number'R

Compute

DTFUN = - (1/DRATE) ALOG(1-R)

. RETURN
SIMSUB

to

Figure V.6. Macro Flow-Chart of Functiqn DTFUN
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ENTER

from SIMSUB

I . —
[ Set NORRAN, MTRAN, SDTRAN -

SR = 0

4//LOOP THROUGH NORRAN TIMES >
{ caLL RANDU D

Get Raﬁdom'NumbEr_R

SUMR = SUMR + R

Compute :
DSFUN=MTRAN+SDTRAN((SUMR—NORRAN/Z)fSQRT(NORRAN/12))»

RETURN

‘to SIMSUB

Figure V.7. Macro Flow Chart of Function DSFUN
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¥ CHAFTER v B
INPLEMENTATION OF THE STUDY -

VIL T I-MPLEME_NTATION oF THE‘ MODEL

A mathematlcal model for controlllng the lnventorles in the dlStr]Ct warehouses
‘of Sitimerbank was developed and the solutlon algorlthm to determlne the Opt]mal
inventory control parameters has been computerlzed As. explalned in Chapter II o
‘the model will be run seperately for items of each factory- dlstrlct warehouse
pair. The complete inventory - -control system for a spec1f1c dlStr]Ct warehouse
will then be set up combining the stock control systems of all groups of i tems

delivered by that district.

Applicatibn of the model for a selected group of jtems which are produced in a
specific factorv and dellvered bv a spec1f1c dlstrlct warehouse w:ll be presented

1n the follow1ng sect1on
VI.1.l. SAMPLE PROBLEM

Esk]sehlr Factory and Istanbul D1str1ct Warehouse are selected as sample factory
and district warehouse respectlvely The model will be run for i tems produced

in Esklsehlr Factory and delivered by Istanbul District Warehouse

First evaluation of the parameters for 1980 will be given, then the results:
will be presented. Selected items produced in Eskigehir Factory and sold
through Istanbul District Warehouse and their price . in 1980 are given in

Table VI.1.



TABLE VI.1. ITEMS USED IN THE EXAMPLE

jFactoryband Type Not >t Description o R L Price'(TL/mt)VJ
ESK.ZOSA; rt~v vdPr;nted Cioth kBasma) h . ‘ o ; 54
ESK.214 . ;, " Film Prlnted Satin (Fllm Saten Emprlme) ~r-1dd
ESK.283 -  Kreton. Emprlme’;___‘ S ',' v ',. 115
*ESKl29O . Jet. Poplln Emprlme f S t'v . S ilOO
d;ESK.293 j' . Jet. Raised Emprlme (Jet D]V]tln Empr]me)» i 120
ESK.722 o .:Satln Curtalnlng (saten Dogemel]k)_, - d125,

i)-Evaluation of brdering Cost:

i)

iii)

iv)

4) Fixed Set up Cost KF: It is taken as the amount paid to. transportation»'
companles ‘for a truck movzng between Esklgehlr and Istanbul. KF is

recently 20,000 TL per order.

‘B) Item-Orderlng Cost, KJ Wethod used for computlng thlS cost term

- and results for 1tems in Table VI l are glven in Appendlx IV

Evaluatlon of Inventory Carrylng Cost -hi:
Inventory carrylng cost was examlned in Appendlx ITI and ]t has been :

found out that unit cost is 24.3 % of the inventory value per year Unlt

‘ 1nventory costs per year for all items which are computed multlply]nO.

their unit prices with 24.3 Z.are given in Table VI 3.

Deliuery Lead‘Time, L:

Lead time for all items is taken equally and it is the whole time‘paseed
from placing an order_to’receiving it into the inventory. This time is
approximately 15 days between Eskigehir and Istanbul. o
Evaluation of Yearly Demand, D.: ‘

Sales forecasts for all items within the whole system were done in [26]
and the figures are presented in Table VI.3 of the same reference.
"Exponential Smoothing Method" which considers trade and seasonal effects
on demand is used to determine the sales figures. Mathematical background,

computer programs and other information about the forecasting method can
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;_be'met,in (27]1.

Slnce 24 52 7% of ‘the productlon of Esklsehlr Factory is sold through
'~Istanbu1 D]Str]Ct Warehouse on the average from ‘the. statlstlcal analy513
'ln [26]1, demands of items by this d]Str]Ct will be approx:mately 24,527

ﬂ;of the total sales forecasts. Result]ng flgures are glven in Table VI

TABLE VI.2. DEMAND FIGURES

_ . , Di S
_ - Total Sales ?orecast of " »Saies Fofecast°of Istanbul
Type No: - v.Esklsehlr in 1980 (mt) o . Dlstrlct in 1980 (mt)
-+ 205 : ,943,738 S 1,212,205
214 . 600,000 .. . 147,120
283 2,039,678 500,130
290 . 3,380,348 - 828,860
293 3,766,918 923,648 - -
o122 1,419,625 . 348,092

v) EvaIUationdof bemand'Size Parameters, m, andAo : ‘
There does not eYlSt exact data in the analyzed system to compute these'
parameters. As an approxamatlon, means of demand sizes for all items are
expressed as 1 7 of the:r yearly demand flgures and standard deVJatlons
are computed as a proportlon by means of (27]. These f]gures are 1xsted

in Table VI.3. taklng the percents as 15 Z, 25 Z, 15 Z, 20 7, 10 Z, 10%.

. vi) Allowed Probabll]ty of Runnlng Out, Hi:
It is a serv1ce criterion and depends on management policy. For the sample
" run, maximum allowed probabllltles of,stocklng out are taken as in Table

VI.3.

The complete data set for the sample run is -tabulated in Table VI.3.
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TABLE VI.3. SET OF

DATA USED IN. THE EXAMPLE

N=6
L =0.04 yr
KF= 20,000 TL/order
i m; o Ky KL GKERI) Ty
Item (mt/yr) (mt) (mt) -~ (TL/order) = .(TL/oxrder) ' (TL/mt/yr)
1 1,212,205 12,000 1,800 1,258 S 21,258 13.12 .10
2 147,120 1,500 375 3,957 23,957 24,30 - .. 0.05
3 500,130 5,000 750 3,957 © 23,9577 27.90 0:15
4 828,860 8,000 1,600 4,924 24,924 24,30 . .05
5 923,648 9,000 900 3,957 23,957, 129.16 .10
6 348,092 3,500 . 350 3,957 23,957, 30.38 . . .20




VI.1.2. EVALUATION OF THE RESULTS

Computeér program wasdrun>fdr‘the data set’fn Table VI'3 It takes. 2.59 minutes
of CPU tlme on a Unlvac 1106 machlne for 51x—1tem lnventory system for 10
'1terat10ns .

~Additional parameters Wthh are evaluated from the lnput data and used’ through

the program are. 1]Sted in Table VI 4.,

- TABLE VI.4. COMPUTED PARAMETERS

wy oo B R T EOQ; ~STEP,

_ . o - 'DQ.L R S EE ) éI. R
| Item . (=D; 1) G- o (m2+02)) (H_Ej;i) - (=‘f’ﬁf""”;°. (5EQQ;/1Q),.
1 48,488 2i,39é,v o 6,135 - l52’675a'd = v'5’268
2 N 5,885 . | 3,062. "y' o797 17,0324." | 1,703
3 20,005 10,113 }J.lr_rz,ssé_ 29,281 2,928
'4 o 33;154 - '16;609 '; | 4,160- - 41,235 4124
5 "35;946' ‘ d_".>i8,3264k 4,545 7_; | 38,958 - '} 3,896
6 13,92 7,006 1,768 23,30 2,343 N

The starting cond]tlons - Inventory control parameters and cost flgures for the
lndependent inventory control system - and the minimum cost for the dependent
system are given in Table VI.5. If no Jolnt replenlshment is allowed in the
dnventory system, total independent cost comes out to be-9,562,604 TL. When no.
independent order is placed in the dependent inventory system, lower bound on the
total dependent cost is 7,968,085 TL. The maximnm possible saving which the
dependent system can reallze w1thout any constraint on the serv1ce levels w111

then be 16 67 Z.

Iterative algorithm gives a total cost of‘8,532,800 at the end of 9 iterations
realizing 10.77 % saving over the independent policy. Solutions for several
iterations and final results are tabulated in Table VI.6. Simulated values of

i
algorithm.Figure VI.1l shows the pattern of the total'systemvcost through iterations

0, (OSIMi) are also given in the same table to compare the computed ones in the

of the solution algorithm.
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TABLE VI.5.. SOLUTION FOR THE INDEPENDENT SYSTEM *

Item P, I3 o, s, s, B -

98 .

i i L 1 _ i . i y I,i. = . "I,i o I;i
1 0 62,675 110,626 116,754 173,294 .‘1,226;3L1A v~411;151‘., 15637,462
2 0 17,032 13,593, . 14,390 0,625 394,256 206,938 " 601,196
30 29,281 43,739 46,295 73,020 © 1,072,567 409,198 ‘f.1,481;765
b 0 . 41,235 79,681 83,8400 120,915 | 1,631,583 ?‘iSOI,oob,_, 2;152,585  ,’.
5 0 38,958 84,913 . 89,457 123,870 1;965,?16‘31;568,000 2,534;716[-v 
6 0 23,43 29166 - 30,933 52,506 ©'818,972° 355,912 E'i;172€884'

(H[=7,110,405 \KI=2,4523199 zI=9,562,604_1

Total indepéndent cost, 2 19,562,604

I

Minimum dependent cost, Z

2Lt 7,968,085

Maximum possible saving, MPS .: 16.67-7.




TABLE VI.6. RESULTS

oz . , . .
Iteration ILtem oi Yi aCi» &y %5 | C] S] OSimjﬂ e H;’ Ki: Zi.,: »
"1 1 110619 12535 - 62675 116754 123154 173294 ° 111369 1239791 342347 1582138
2 13355 3407 - 14947 ~14152 16302 28302 13467 383882 L168493 492375
3 43707 ' 5856 - 29098 46263 49563 72805 - 43820 1087943 318280 1406223
4 79680 8247 - . 41235 83840 87927 120914 80454 1642683 450993 2093676
5 84912 7792 - 38958 89457 92703 . 123869 . 86791 1975012 - 532117 2507129
6 29034 - 4686 - 22584 30801 © 33719 51617 - 29677 820425 . 274755 1095180
o ' , ' o S , '»:H=7149735 K=20269857:9176720-
2 1 109552 - 18803 - 58301 115687 128354 - 167853 110513 1211630 - 293371 1505001
2 12729 5110 - 1580 13525 - 17838 25309 12924 356412 - 96332 452744
3 43003 8784 - 26487 45559 51787 © 69490 42901 1058910 . 278364 1337275
4 79211 12370 - 39601 - 83370 ‘9158l 118811 * 78647 1639596 . 385719 . 2025315
5 84621 11687 B 38000 89166 96308 122621 86363 1972913 502901 2475814
6 28588 7029 -+ 20871 30355 35617 . 49459 28633 _ 802734 240923 1043657
o ‘ - S H=7042196  K=1797610 Z=8839806
3 1 108884 25070 _ 5327 115018 133953 162310 109383 1204517 256422 1460938
2 12037 6812 - 11751 12833 18849 23788 11981 . 348263 - 109423 457686
3 42352 11712 - 24785 44908 54064 - 67136 - 42217 1041768 278248 .1320016
“ 78291 16494 - 37212 82451 94784 115502 78932 1618672 376374 1995046
5 84228 15583 - 37221 © 88772 99810 121448 85211 ;966744{? 473984 2440728
6 28065 - 9372 ~ 19648 - 29832 37437 47712 28385 __ 805197 . 181418 986615

H=6985162 .K=1675869

2=8661031



H'

K.

C oz,

H=6976450

K=1556351

" Iteration Item 0y i oc; £ 55 5 54 r‘OSimi"" i ~ i
(3 1 108548 31338 - 53310 114682 139885 161857 -+ 109631 1221775 - 229007 1450782
2 13398 5110 - 13842 14194 18507 27239 13421 381468 107198 . 488666
3 41106 14640 S 23418 43661 55747 64523 41114 1009972 - 297001 ‘1306972
4 75700 20617 +o 317 79860 96317 113517 76197 ,1585651'.;,381211 " 1966861
5 81759 27270 - 35193 86303 109029 116951 ~ 81061 2034082 ~ 361333 . 2395416
6 27281 7029 ¥ 18989 29048 34309 46269 - 27807 __ 726875 ~ 298340 . 1025215
o | | o . H=6959823 K=1674090 2=8633913
9 1 108263 37605 - 55642 114397 145868 163905 . 108803 1254211 . 218715 1472926
2 12234 . 3406 o+ 12044 13031 15648 - 24278 ' 12255 . 316066 - 155471 - 471538
3 41479 16104 - - 25119 44035 . 57583 - 66598 41675 1074877 - 229705 - 1304582
4 73727 . 24741 & 38656 . 77887 - 98468 112384 74480 . 1562742 - 360208 1922950 .
5 82438 21427 4 36346 86982 103864 118783 . 82592 1978224 . ' 391882 2370105
6 27515 = 10543 - 19202 29282 . 38058 46716 . 28168~ _.790330 200370 990700
' A ) ' ~2=8532801

- "AchS=.,1077 -~
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Figure VI.l. Total Cost Through Itérations of the Solution Algorithm

.iteration.



VI, 2 ADVENTAGES OF THE RECOMMENDED (s c S)
POLICY OVER THE INDEPENDENT (s, S) POLICY

The obJectlve in controlllng the Jnventorles by a common policy ‘in a multl—xtem
1nventory system is to use the fixed set- up cost of orderlng in an econom1ca1
way. When an increase occurs in the flxed set- up cost, i ltems are controlled
by thelr own Jndependent p011c1es, the system will tend to- place 1ess number of'
orders in order mot to increase the total orderlng cost in the same . percent At
the end lower re-order p01nts but hlgher order—up—to levels: for all items will
be observes Plac:ng orders rarely but in’ larger quantltles results in carry:ng_
higher stocks for each item. Flnally, the ‘total: cost will be highly lnfluenCed v;
by the change in the orderlng cost term. But if. a dependent 1nventory pollcy ]S.
used, increase ln the set—up cost w111 tend to have hlgher can—order p01nts for
1tems ln order to decrease the number of 1ndependent replenlshments J01nt
ordering probab111t1es w111 be hlgher in the new system than in the old dependent -
system For the new parameters,'the resultlng dependent policy w111 order from
each ltem w1th an higher frequency but by smaller quantltles. In short, total ‘
cost will be less effected by the change 1n the set-up cost in the dependent

system than it would be in the case of lndependent system.

For alternatlve ‘values of the set- up cost, total costs for Jndependent and
dependent systems and also percent 1ncreases are llsted ln ‘Table VI. 7 Percent
increases in total lndependent and dependent costs vs. percent Jncrease in
set—up ‘cost are plotted in Flgure VI.2. As seen in the flgure, recommended

1nventory pollcy has obsolute adventage over the dependent one-

Wax1mum p0551b1e sav1ng, actual saVJng achleved by the algorlthm in at most 10
1teratlons and achleved percent of maximum p0351ble saving are given in-
Table VI.8_for several numerical examples. Then, actual achieved saving vs.

1aximum possible saving is plotted in Figure VI.3.



* TABLE VI.7. TOTAL INDEPENDENT AND DEPENDENT COSTS FOR DIFFERENT
‘ . SET-UP COSTS.: B ' ‘ '

Alternative - 7 increase gz " 7% .increase

7 % increase.

Véluéé of KF . 1fn‘KF . . .;' S dn Zpo o t  v'i . in z
10,000 © < "8,556,451 - ‘8,119,9532'f -
. 15,000 ° .50 9,088,508 - 6.22 - 8,301,490 = 2.24’
20,000 . 100 9,562,604 - 11.76 8,532,801 5,08
25,000 150 19,994,679 . 16.81 . 8,761,161 7.90
30,000 . 200 10,394,630 21.48  8,879,60L . 9.36
140,000 300 11,122,017 . 29.98 9,386,254 - 15.59
50,000 400 11,777,219 37.64 9,644,928 - 18.78
: TABLE.VI.S.
S | Actual Saving achieved by , Pefcent Reached -
Maximum ?;;sib;e Saving the_algorfthm'(Z) . R of MPS :
12,3 5.1 41.5
14.8 8.7 58.8
16.7 1 10.8 64.7
18.1 - 12.3 68.0
19.3 14.6 75.6
21.0 15.6 74.3
22.4 18.1 +.80.8
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7 increase
in Total Cost .

A
40 4 — S
- » independent case
30 L
20 4 Lo
- © dependent case.
10 4
e + , , } _ ; > 7% increase in
50 100 ' 150 200 - 300 ’._ 400 BF
' F1gure VI.2. Adventages of the Dependent Pol:cy Over the
Independent Pollcy : '
Ach S A
A
20 4 '
fo]
- : 0]
15 4 '
5 ®
, oY
10 1 '
’ 0}
5 1 ‘ O]
t — : > MPS(%)
10 . 20 | .30

'Figure VI.3. Actual Achieved Saving v.s. Makimum'Pbssible'Seving
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VI 3 THE. ALFORITHM s PERFORMANCE UNDER CHANGES
IN THE SYSTEM PARAMETERS

An . lnterestlng feature of the algorlthm ]S 1ts adaptablllty to changes ln the
values of the parameters.vIn a real s:tuatlon, the demand for certain- 1tems
‘w111 change with time. Decreases or 1ncreases 1n the demand parameters may take
'place. Secondly, change on the lead t1me may occur Thlrdly, new pricing
“practlces Jnstltuted by the suppller will yleld a change in the 1nventory
carry:ng cost. Also fluctuatlons of the orderlng cost mlght be encountered.

Last, managers may propose new service 1evels for items.

'When one of the cases is observed, the new 1nventory control parameters ‘may . be
‘achleved solv1ng the model from the beglnnlng ‘But the respect:ve changes can
be’ introduced 1n the process of the solutlon and startlng from the Jndependent

system will be hence av01ded

-The algorithm performance over the change in demand flgures is examlned in the

following. When demand parameters 1n Table VI. 2 are changed asi

Dy = 0.90.D;

1.7
Dy =P
D} =0.95D,
D, = 0}99 D,
: Dé - 0.'95' D, |
'Dé = 0.90 Dy

the solution given in Table VI.8. is found by the algorithm at the end of 9

iterations.
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“TABLE VI.8. SOLUTION FOR NEW DEMAND FIGURES

1 1,090,985 99,087 . - 137,546 . - - 143,127 - 1,333,710
2 147,120 12,186 . .18,202 . 24,766 466,896
3 475,124 . 43,498 51,646 66,182 1,318,267
- 745,974 77,443 86,975 110,214 1,871,714
5 877,466 - 83,259 100,548 - 113,636 2,291,355
6 313,283 - 25,315 . - 35,773 43,210 914,775

z=8,196,716

Curve 1 of Flgure VI 4. ‘shows the behav:our of the solutlon for the 1n1t1a1

demand parameters (D D 6) .Curve 2 1n the same flgure

3’_ ’ 5’

corresponds to the system w1th the new. demand flgures (D D,

2, 3’ 4’ DS’ 6)
As a third case, give the solutlon of the flrst system at the end of the fifcth

iteration (P. 5) as the ]nltlal

1w Bisr 2540 Pis0 855 Siar S50 Sis Ly
condltlon to the second system Instead of ‘starting from the 1ndependent system,
1n1t1ate from that ponnt Give the new parameters into the algor1thm and
continue through the algor)thm Curve 3 of Flgure VI 4 shows the solutlon‘

,pattern Eor the thlrd case.

'These‘results'shom clearly that ffﬁchanges in the parameters are encountered

it is not necessary to start from the beglnnlng. An iteration. based on thelr
new values along with the ex—optlmal values of the. other parameters 1eads
quickly to a new nearly optimal solutlon In short, the algorlthm is adaptable
to changes in the values of the uncontrollable parameters.'This property of the
algorithm is very useful in reaehing a new solution in a short time, when a ehange:

occurs in the system parameters.
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| CHAPTER VII |
CONCLUSIONS

The obJectlve of thJs study was to develop an 1nventory control system for
warehouses where several groups of Jtems, each of whlch is Suppl]ed by a g]ven
suppller, are stored. Consequently there is a flxed set—up cost for each
replenlshment from a glven suppller. In order to use th]S flxed part of the
order1ng cost; the (s c,S) polncy 1s prOposed ‘to be used in controll:ng the
nventorles ‘in the warehouses Jnstead of using 1ndependent orderlng pollc:es

‘for i1tems.

In modelling the system, total inventory carrying cost and ordering cost are
taken to be mlnlmlzed Jn the objective function. The effects of the stock out
cost are considered by the serv1ce 1evel constralnts, because of the dlfflcultles

of computlng_thls_cost term.

Implementatlon of the recommended Jolnt ordering pollcy for a 31x—1tem case has
been reallzed and it has been shown that taklng the orderlng dec1510ns by the
(s,c,S) polrcy instead of controlllng each item by its independent (S,S)pol1cy
'saves 929;804VTL. Depehdeﬁt system achievesra reduction'of 10.77 % in the total
system_cost over the independent system.When an’ increase in the cost parameters
takes place, its effect on the total system cost will be less in the_dependenth

system than it would be in the independent systems.

The iterative algorithm used for finding the values of:the.inventory control
parameters of the{(s,c,S) policy results in considerable improvements 0ver the
independent replenishment policies in a few iterations. The best that the v
algorithm can do may be observed in Figure VI.3 for several numerical examples.
For the-sample run, the algorithm:achieves 64.61 7 of the maximum saving achieved

by the dependent policy without any service level criterion.

But the algorithm has weaknesses on two fronts. First, since the functional
relationships between the variables Ei’ Oi’ Ri and Pi in the model can not be

S T . }
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defined SJmulatlon is required as a part of . the algorlthm in determlnlng the
values of P and p. for the alternatlve values of s Ci’ Si' Thus - computer
usage ]S requlred 1n the solutlon of the model Secondly, updatlng of can—order
points is not" a complete optlmlzatlon. As it can be seen, from the results,:

the algorlthm prov1des a fast stablllzatlon of the S 's. Their values approach
the optlmal values within a range of 10 percent after 2 or 3 1terat10ns. ‘In the
rema:nlng 1teratlons, 1t trles to reach the optlmal values of the c 's by

dlchotomy method

If the remnant stocks (R 's) and joint orderlng probabllltles (P s) can be

expressed as. functlons of . 855 €4,

part of the algorlthm. Also, if updatlng procedure for determlnlng the can-order

Si; s:mulatlon will not be requlred as a

pounts is Jmproved optimum w1ll be reached 1n a shorter time.

Another criticism of the optimization algOrithmdconcerns the updating of s;.

If the simulated values of 0, differ from their computed values too much, oy
given in Append]x 2 may be used ‘as only an approx:matlon in uPdatlng s "but the

total cost can be evaluated us:ng the s1mulated values of 0

A very useful property of the algor1thm ]S its adaptablllty to the changes in the
uncontrollable system parameters such as demand rates, orderlng and holdlng costs,
service cr1ter1a etc. When a change occurs in one of these parameters, 1t is
poss:ble to reach the optlmum cont:nu1ng from the- ex—optlmal values of the other

parameters u31ng this property of the algorlthm.

In order to set up an overall 1nventory control system in a district warehouse
of the whole inventory system, items coming from the same suppller will be
handled in the same set. The model w1ll be run separetely for each group and
optimal values'ofrthe three lnventoryvcontrol parameters will be determlned for
veach_item; Then the total inventory policy for a district warehouse will be

described combining the separate inventory policies of all groups of items.

In the implementation of the study,‘if inventories are controlled on cards, three
critical inventory parameters are kept for each item and itemsvcoming.from the
same factory are put in the same file. When the inventory of an item drops below
its must-order point, only itemsbin this file will be searched for their can-order
points. Thus, the review of items will not be a very time-consuming task and .

can easily be done manually. T
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EXAKINATION OF DEWAND CHARACTERISTICS
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I.1. THEORY ABOUT THE DEMAND DISTRIBUTION

Definition 1: Let Q be a sample space and w be any realization on it. A stochastic

process N%{Nt; tzO}udefinedlqn 2 will‘bevaﬁ'"érrival prOcesé" such that for any
weQ , the mapping t+Nt(W) is ﬁqn—degréaging, increaséS'by jumps'dnly,:iéifight -

continuous, and has Ngy(w) =0.

Definition 2: An arrival process N?{N£3 t>0) is called a "Poisson Process"

provided that:
i)der almost all w&Q,ieach'jump of t»Nt(w) is Qf dnit.magni;dtel

11):F9r any.t,szoyA“Ntfs - Nt is 1pdependent,9§ {Nu; u:t}.
iii) For_any-t;szo; the'distfibution of N£+s '—.Nt is independent of t,
. but is dependent on s. - C R ' ‘

Lemma 1 : for aliv‘tzo;

Pth=0r=e - for some constant. X>0.

gémnas2 : ' We have - = ’ 1 ‘ :_ . ' N o ) -
Lim. = PtNt22;=O

t+0" ¢

emma 3 : We have

Lim P{N _=1}=)  where Aiis.the constant appearing in Lemma 1.

heorem 1 : If {Nt; t>0} is a Poisson process, then for any t>0,

-it K : .
piN =k}= & (A8 k=0,1,...,

t K1

) some constant A>0 .
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Expected value and variance of.PoisSOn’process with parameter ) are given by

EINJ = At and Var(N)=it .

Proposition 1t If T.,

1> Té,... are the.soCcessive times,of'jumps; for any nzO;
(T =T < t'/'-T Ty e1-eM s
. n+l n= 7o’ T e T =
In other words, the’ 1nterarr1val tlmes Tl’ T Tl, 3 2,... are independeht

_and 1dent1ca11y dlstrlbuted random varlables w1th the common. dlstrlbutlon being

. . _)\ A’- ) . N -
1-e "5 60 .

The distributionvabove is called the exponent1a1 dlstrlbutlon w1th parameter -
A The expected value and the varlance of 1nterarr1va1 times in a Poisson- Process
are ' '

| E[?n+l-—an]'=

el

S ' . o1
amr\hr(awlaTn)e >

A

Definition 3: If the restriction ot unit.ijp size is removed from the definitioh

of P01sson process and allowed jumps ot any 51ze, the stochastlc process
'Z—LZt, t:Or is said to be’a ' compound P01sson process. Then, the deflnltlon or

compound Poisson process will be such that:

i) for almost all w=2 , the functlon t*Z (u) has only flnlteTv many jumps

in any flnlte 1nterva1

ii) and iii) fOr'N={Nt; £>0} in definition 2 are the same for

Z={Zt; tiO} .

A possible realization of compound Poisson process is shown in Fig. I.1.
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~ Figure I.1. A Pbssibie Realizatiqn'of1Compound'PoisSon Prbcessv'
If‘Tl,. 2,..are the arrlval tlmes 1n P01sson process V and 1f Y &?,.;.“'are
-1naependent and 1dentlcally dlstrlbuted random varlables whlch are also :

1ndependent of the T 0’ then' the process Z obta1ned by summlng up all the YJ

for whlch TJ<t to make up Z is-a compound POlSSOH process.
R;O,l,;;; for some -constant >0

where YJ is 1nde0endent and Ldentlcally dlstrlbuted random variable w1th mean

m and standard dev1at10n T

Characteristic parameters 0f~thé_compdund'Eoissbn process ﬁay‘be'evalgatéd as -
follows: - ' ' o
i) Elz
If the number of_jnmps Nt of Z in (0,t] 1is n, then Zt‘is the sum of n

independent.and identically-distributéd }andom.variables. Hence, if

N E[Yj]=m and the rate of jumps is A, then

E(Z /N = E[Y;+Y, +....+ YN: /N_] = N-E(;] = m N
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'EI?t]‘

EE(Z, /N D= m BN

" 'Variance of tHeZt méy also be derived éS.f0110WS:i:4

Definition of the variance was

var(X) = E((X - E[X)?] -

Etx? -2 XJE[XI + (E[X1)?]

- E[X%] - (E(X])? .
" Same formula is also valid for Zt»:
."_ 2._’ 2
Vat(zt)_— E[th (E[Zt]) g
lSubstituting’
L . ) _"; e : _
E[Nt]— At , _Var(Nt)eut , B ELNt] nF+At

E[Zt/htk'zm‘kt'

v ( ._ T >’V - i :» ) 7.. .'. =
Var(Zt/Nt) = Var(¥,+. .+ YNt/ht), N, \ar(iJ?_ N

.

.and using some facts in probability theory -

R

Var(Zt)‘ E[E{éi/stll ’-_(E[ztl)z

% E[[ygr(zt/wt) * (E[zt)Nt1531 - (gtztl)?
- E:[ §;'02+ N§' m2] - ¢2x2t? |
=02 EIN 1+ n? E[N%]~—?m2}étz~~

= g2\t + m?ﬁt + 12t2) _ mz,\.-’-t-’-'

~ then

At(m2+02).

Var(Zt)

1105



1.2, LEAD TIME DEMAND

In theléystem breéeﬁted expeeted.valderof yearly demand Zt'iéjtaken as D, and
the same parameters ‘m and - cz.are used for'the mean and'tﬁe variance of the
d15tr1but1on of jump size respectlvely Then ana1y31ng E[Z ], rate of arrlval

of demand w111 come out. as A= D/m .

By Prop051t10n 1 1nterarr1val t1me 1S b of pOlSSOn dlstrlbutlon followst

exponentlal dlstrlbutlon Then, for. arrlval rate A D/m,.
E(S;] =m/D Var(sj)'= m2/D2."

Proposition 2: For a continuous review inventory system with constant replenish-

nent_lead'times,"intervéls of:time'betWeen successive demahd points and

quantities demanded at each po{nt_fof@ iﬁdebendent sequences of independent,.

identicaily distributed random véridbles with distribUtion fuhctidn A( ) and

B(.) respectivelv- If the number of arrlvals durlng 1ead t1me L is 1arge demand :

luring 1ead time can be approx1mated as [13]

N ko

D(L) v N ( ; — - ) .
L S |

vhere the subscripts 1 and 2 are used for demand size and interarrival time,
ind the'parameters u and'ﬂ,are used'for.means'énd_standard deviations of the
ilstrlbutlons respectlvely ‘

>ubst1tut1nb the parameters used in the 'study as:

Ul = m » Cl = g - L =_L :
=R g =l
2 p R

listribution of demand during lead time will come out as

2
2 m
2 m“-(—=) L
L)y »N (&E, L D2 )
ind
] v N (DL (62 + m?))
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STATEMENT ¢

Zt is a compound P01sson process w1th rate. and Jump ‘sizes {Y } are 1ndependent,

Ldentlcal non-negatlve random varlables w1th mean m and variance 02 When the

ft ralses above ‘a sPec1f1ed 1eve1 A at the first" tlme, the dlfference between

2
the Z and A has expected value of ,—>(m +0 ) .
For fixed -4 e-o,'ééfine
uy = inf. {:’t_>_0';nVZt' > .A} :
Find  £(A) = E(Z . - A]
. - A :
AN N
20, L
o (Zuy-a) {
A A2°\
NS
‘UA 4
Figure II.1. |
HEORY:

efinition 1: Let fw } be a sequence of i.i.d. ahd non—-negative random variables.
her, the stochastic process S={S 0 n>0} with state space R, defined by $,=0,
+1—sn+wnf1 w111 be called a vrenewal process"

=f1n1t10n 2: Let ¢ be a distribution functlon on R ,’and let f be' a non- negatlve
Jnctlon defined on R which is bounded over any f1n1te 1nterva1 [0,t]. Then

re function y*f defined by
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’ w*f(t).=v f ,w(ds)'f(t;s), ' :-t > 0 N -

’1s_ceiied the "chVOlutioh"-of ¥ andlf.

Deflnltlon 3: S (S , neN) 1s a renewal process and F 1s the dlstrlbutlon of

' the 1nterarr1va1 ‘times. For any m, the dlstrlbutlon of S f— S is the m—fold o

n+m
convolutlon F" of F w1th 1tse1f Along w1th the 1ndependence of the 1ncrements,

;thlS 1mp11es that

E{§n+m » Sn 5;t/so,..t., Sn} = El(t)f‘ | t> 0.

Definition 4:If N is the numbertpf renewals in the interval (0,t],

Fk'l(t).—;Fk(tjl"

,Deiinitiod 5: The expected number'of:reneWals'in [O?t]vwill he

CEIN = I E[ mt(s o

= I P{S_ < t:= T Ft) = L+F+F24F3 + ..

Theh the function R(t5=E[Nt}=1+F+F2+F3 +..,'- is called the "renewal'functioh"

‘corresponding to the distribution F.

Definition 6: A renewal process S is said to be "recurrent" if‘wn<+m almost

surely for every nj otherwise S 1is calied "transient".'F(m) lim F(t) will be
t oo

equal to 1l and less than 1 for recurrent and tran31ent processes respectlvely.
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Definition 7: A’reneWél process S is said to be "pefiodibf with period o if the

‘random variables W., W take values in a discretegset'{o,v0@420,.;;} and

1’ 7"" o - R i . _
o 1s the largest such number OtherwiSé, if there is no such 0>0, S is said
to be aper10d1q . ' o v o
Deflnltlon 8 f(t) g(t) + - f F(ds)f(t4s)v iéitailed'é "rénewai equation"

(0,e1 .
where F is a d1str1but10n on R, f and g are functlons bounded over flnlte-lnterval

‘and’ g(t) f (y t) df(y)
. t

Theorem '1: The renewal équétioh f=g+F*f »has”ohg and only one SOlutiQn;‘it is
.f=R*g

where R =I F' 1is the renewal function corresponding to F.

‘Theorem 2 (Key Renewél Theorem):

i) If F(~)<l, then

_provided fhat g(m) 1lim g(t) ekis;s.

At->oo

ii) 1f geD, F(wjéi, and F is ndt_ati;hmetic; then

lim £(t) = lim Reg(t) = = -g(y) dy -
t-reo T tow .

PROOF:

By the statement of the prbblem, f(A) can be rewritten in the form

£(A) = E[Z - A)
. UA )
K f
= [ (y=0) dF(y) + | £(b-y) dF(y) A > 0.
2 A | [0,4] .
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Hence, if we define

g(8) = [ (y-0) dF(y)
| p
then, we have
E(8) = g(8) + | E(a-y) dF(y).

- [054]
By definition 8, “f(4) ﬁiil'be'a rénewalieqﬁatibﬁ'gatiéfying
f=g+F Xf

By theorem 1, £(A) has a uniqueléolutibn and is

C£(8) = -f R(du). g(b=u) -
where . R(uj,: T Fn(u) by definition. 5.

By Key Reneway Theorem,

lim® £(8) = £ g(w)du
... m J "
s 0

Substituting the equivalent of g(u) into the equatioﬁ_above,

o2

-~ 8

lim f(a) = 1

=

,f (y-u) dF(y)] du.
u o

o -

Ao -
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“hanging the order of integration,

I

‘O“"—\Sv. .

' (y4u)dQ'].i "

S e

dF(y) [

!
[
<

2 :
2

3
N

o1 ’EV[Y 1= Lo (vér(yi)' + E_[Yi]Z.) ‘

3nd,finally

Ehefefore,:for A%O :

~u

Bz, -4 L
R
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COMPUTATION OF INVENTORY CARRYINE COST -~



Jomputation of inventory carrying cost was done as folloﬁs:
l.‘Valué’of thefayerage invenﬁory carried in Istanbul;DistriCt Waréhousa :
‘r_thrbughout the year,vil‘ . L
“'Total yearly stock carried in 1979 :. 9,972,000,000 TL
T = 9,972,000,000 /12 = 831,000,000 TL
. Labor costs, L.
Totalvhumbé; ofvpéfSOﬁnels'wopked in the warehouée, :4v2$'f>
A 'Avefége saiarybz. lS,OOO’TL/mon;h.
‘Total labor cost : 18,000 x 25°x 12 = 5,400,000 TL/year -
i;uStoragé cost, S.

Storage cost which contains electricity, maintenance, ¢leaning supplies and

other expences is estimated as 2,5 % of average inventory carried per year. -

S=T%2,5%

831,000,000 x 2,5 7%

20,775,000 TL/year
. Cost of Capital, c.

Since Slimerbank is a publiéifirm, it is.not possible investing money in any
~other area. This component of the inventory carrying cost is taken as the
‘interest rate charged by Secretary of Finance due to delay in paying income

tax. Thén, this figure is taken as 18 7 per annum.

C=1x1872

831,000,000 x 18 7%

149,580,000 TL/year
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5. Insurance'cost, 1,
‘.Invéntory carried in the warehouse is insurred byA3;3AZ_per annum. Then

I=1x3,57%

il

/831,000,000 % 3,5 %

29,085,000 TL/year

6. Inventory turnover, TR.

TR = Séiés‘for I§79/T'v .
= 2,114,894;312 / 831,000,000
= 2.55 % | |

. Inventory Carrying Cost, H.

g _L/TR+S + G
3 e

_ 5,400,000/2.55+20,775,000+149,580,000+29,085,000
~ 831,000,000 o

" Therefore, inventory carrying cost will be 24.3 7 of inventory value per E

annumn.
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Computation of . item—ordering cost (KJ ) will be given in Appendix IV. Item~
orderlng cost ]S a cost constant per order per item" and has two lmportant’“

components

1. First component is the part of productlon cost, charged in the factory,1n
order to supply orders from each Jtem ln t]me and to have opportunlty of
preparlng a good lot assorted 1n colour and des:gn. In order to have this
opportunlty, there must be enough productlon from’ each Jtem Jn factorles for o

orders of district warehouses.,Thls ‘leads to machrne_set,up cost in factorles}”

Machlne set- up cost for startlng productlon of each Jtem w111 be computed and»’
then ltem set up cost will: ‘be d1v1ded among orders of d]Str]CtS accordlng to

thelr sales percentages

Wachinevset—up cost'takes place when a typerof item starts to be produced.Method
used for computlng machlne set up cost can be found Jn [27] Computations for’
1979 prices’ are glven below |

Machine set-up cost consists of two factors:

i) Damage cost, DCii: Damages of models used in weaV]ng machlnes occur
with a certain probablllty durlng productlon and thlS cost is taken as
. the expected expense for models Computatlon of damage cost wasuevaluated

'for each machine as follows

DC=MCXNxP -
where MC = Unit model cost
N = Average number of models

P = Probablllty of damage of models Jn th]s machlne .

fype of ' Cost of model* Average number 'Probability**

machine . (TL) .of models : of damage .~ -DC (TL)
Roller 15680 3  0.45/6 . 3528
‘Rotatior - s80 . 6  0.5/6 2940
Film | 9800 9 0.35/6 5145

*Tt is computed for 1979 with 407 increase compared'to 1978 costs.
**Probability of damage for each machine is given for 6 design changes.Then
probability of damage for one design change is computed dividing the given

probabilities by 6.
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11) Lost productlon cost, LPC: It is the cost of machlne hours spent as set up
t]me for changlng de31gn and colour. This opportunlty cost is computed -
-as the- extra profit whlch would be done ]f set-up time were used for
productlon._The formula used for computatlon of 1ost proflt cost for each

: machlue is:

| , aLPC'= AP x P x (DI- CT) x 60
" where AP

= Average proflt done per meter of productlon on the
machlne. ‘ A
P = Amount of productlon per m]nute .
DT = Set-up tlme for changlng des:gn (ln hours) -
- CT = Set=-up time for chang;ng colour (1n‘hours)
Type of Machine _ AP*(TL) P (m) DT (hr) - CT (hr) - LPC (TL) -

Roller 3,77 . 17.5 ~ -2.8 1.1 . 6750
Rotation 141 275 0 2.8 o1l 37224

Fi lni © 16.93 12,5 2.8 . 1.5, 16507

*Average prof]t is computed as the we1ghted mean of proflts galned for un1t

productlons of 1tems manufactured in the machlne

Total .set-up cost for each machlne w111 be the sum of damage cost and the lost

productlon cost:
TSC = DC + LPC

 Type of machine . DC (TL) . LPC (TL) ~ TSc (TL)

Roller -~ 3528 . 6750 . 10258
Rotation = . 2940 37224 40164

Film U slés . 16507 - 21652
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Dlstrlbutlon of machlne set- up cost among items analyzed in the study was done -

as follows.

' Machlnes used for its . Average production set-up

:item, type no: : production” - cost* for the item (jL)
205 Roller."r- 10258
214 - .Rotatiom, Film .. - 30908 -
283 . - Rotatiom, Film .~ 30908
290 - Rotation . - - 40164
293 ©~ - - Rotation, Film - 30908

722 R _,'Rotati:od, Film - ' ':' © 30908

*Productlon set—up cost for each item is computed as the average of set—up

osts of machines which are used in productlon of 1tem.

Since 24 ;2‘2 of. productlon of Esklsehlr Factory is send to Istanbul Dlstrlct
productlon set— up costs for the ltems are taken -as 24 52 7 of the total
production set- up costs in the factory..Eachvtlme when an item is ordered -
vbinstaobul Distrfct, half oﬁ'its production set—up cost Qas evaluated belonging
to this,otde;clot;analyzing-the economical'production‘1ot sizesvfot items in °

1273

Then cost chargtd Eor each order of an 1tem when thé item is demanded from the

‘factorv w111 be computeo as:
oc = 2452 x 1/2 x AGerage'Prodﬁction.Set—up Cost for the item
Computed values for this cost is given below:

‘Item, type no: ‘ oc (TL)

205 1090
24 3789
283 | ~ 3789
290 , 4756
293 3789
722 o " 3789

- 119



2. Second component of Jtem—orderlng cost is: the cost of 1oad1ng and unloadxng.

It 1s pald 168 TL for loadlng and unloadlng of each lot: in- the recent system.

Then thls component of 1temrorder1ng cost (LULC) was taken as 168 for all 1tems;'

F]nally, 1tem—order1ng cost (KJ ) for each order of ltem i between Esklsehlr

Factory—Istanbul DlStr]Ct Warehouse palr is computed as

i_;’LULc =

Item no:c | TypeAno:’ oc, LULC - ",KJi(=dCi+LULcj
1 205 1090 - 168 . 1258
2 214 3789 168 3957
3 283 - 3789 168 3957
4 290 4756 168 4924

s 293 3789 168 3957 o
6 722 3789 168 3957
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cc
cc
cc
cc
cc
S ccC
cc
cc
cc

cc
cc
cc

THIS PROGRAM DETERMINES THE OPTIMAL VALUES ofF tTHE Sy0¢C
_COATRoL PARAMETERS ( OP,cdL,oUL ) FOR THE (R,C,S) JOINy
ORDERING "INVENTORY PoLICY o '
IT USES AN  HEURISTIC ALGORITHM , WHICH 1s A COMBINAT ON
OF HMATHEMATICAL ~OPTIMIZATION AND SIMULATIQN , FOR OPTIM[Z4

PARAMETER  N=s

INTEGER . ouL,ColL, OP ,CoLD

REAL LTIME MOLT MNREP MPS, MINTRC MTRAN

DIMENSTON K2(N), K3(N).H(N) SAFES(N)

DINENSTION EOQ(N),DELTA(N) A(N),Y(N).COLD(N),PD(N),GO(N)
DIMENSTIQN RCJN),RCO(N),R@I(N) FLAGRC(N)

COMMON /CSy/ DIN),APRO(N},0(N),E(N)

CoMMON /C527 P(MN),GI(N) ‘

coMitoy /€S3/7 MDLT(N),SDDLT(N)

COMAON /CS5%7 OULI(N)sCOL(NI,,0P(N)

coMMon ,CSS/ MTRAN(N):SDTRAN(N)aDRATE(N).LTIMEoDURSIM

Coltlon /C56/ NORRAN
.CoHMON /CS7/7 OSIM(N),RSIM{N)

CoOMMON HO
PATA S MNI,NO /7 5,6 /

DATA I DURSIH,IR NORRAN 7 3.,13557,12/
baTA ACCS 7/ 0.80. 7 °

rumcrxon DEFINITIONS

. TRCFUN(PP,KK3,DD,EE,GG HH,KKz 00, MMOLT =
_*(1~PP)¢\(rKJ~°0/(Fr PP-GG))*(EE-HH/Z))*PP.((KKz.DD/(E,—PP.Gg))

CYILE+GG)«Hi{/2) +00eHH=-MMDLTsHH

ccC.
cC
cC

201!
cc

TEFUN(PP,GG,0D ,HH,KK3,KK2)=

+ T PPe G:+SQRT((2-DD/HH)-((l-PP);KK3+PPcKK2))
DERFUNIPL,GL,P0,60,C1,COVHH,DD KK ,EE) =

* (fxtbx-Po.Go)-dH,(Cl- o)-(DD-KKl).(Pl Po)/((E;-PltGl)u
+ (C1=Cp)}

MCYCLE=D
DATA READING

READ(NT,101) K1 ,LTIME
WRITE(NO,1119) K1

DO 201 I=lsN . .
READ(NT,103) D(1) ,MTRAN(I) ,SDTRAN(I),H{I) APRQ([),K2(])

WRITE(NO,103)D(1),MTRAN(I) ,SDTRAN(1),H(1),APRO(]),K2(])
CONTINUVE
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ccC

cc

cc

- CC

CC

"301

4Gl

ccC
cC

cC .

47

402

%)

EVALUATION OF  THE KNECESSARY SYSTEM PARAMETERS

1=l

CG 3pl

K3{Iy=Kl+r2(1)

MBLT L] )=Dt 1) e TINHE .

JDDLT(l)=SQRT((D(I);LT1ME) (HTRAN(l)-.2+SDTRAN(])0,2)/MTRAN!
EOQ(X)‘SURT(?.D([)-KJ(I)/H(I))

CALTYEQls e (MTRAM(! )'n2+SDTRAN(1):.2)/MTRAN(1)

DRATE ( I)-D(T)/HTRAL(I) '
4R1TE(N0,165) K3(TI,MDLT (1), SDDLT(X):EOQ(K),A(I).ORATE(I)

ColTIinuL

[HIT1AL VALUES FOR THC VUPDATING PARAMETERS

R0 Wbl_‘lﬁle

Piti=gp

Po(l)=n

Gntl)=n

G(lli=p

E(I)=goQ(l)
Y{U)=pRLTA(L)
PELTA(IY=EOU(LY /10
O{)=oqgi )

CourTingUE

COMPUTATIONS  FOR  INDEPENDENT INVENTORY COnTROL SySTEM

CAblL 0sYB

DO My T 1=l

NRETE(MO,2250 E01),DELTACL) Y (1), 001}
ATES(Iy=g{0) , » :
Mgt ly=001Yy+E( 1)

,

Cocilyzolia=Y(l)

CP(ly=00ly+ A
coLdtpy=0ep )

CoanlT inuE
TneCi=p
SSU‘1=U

CMIRCP =D

Ny 42 1=1,%

MUREPAMAXLIMNRZP D) /E3Q (L))
SSUN=SSUM+ (1) eX (1) /ED09 LTI )+ ((EOQIT1)/2)+SAFS(1)=-MD T¢ 1) ) ), Hy

RCIGI)= K301 eD (1) /E(I)*ECIIeH{I)/2+%00 ) «H () MDLT()aH(1,
TRCI=TRCI+RCI () ‘

YRITE(HO,195) E(1),U,Y(1)y0oVLcl),Cob(l),0oP(l), RCI(])
CO”TIN“E

MEREP=PIP (MIREP)

MINTRC=K!l +1iREP+SSUM

MPS=(TRCI-MINTRC) 7TRCI

URITE (10,5630 TRCI,MINTRCyMPS
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® ® o 9 & 8 o 4

cc

- CC

ccC

ccC
CccC
cc

Ccc

v
~l o~

CALL -~  SIMSUB
TRC=Q C

DD 405 I=1,4N

405
502

GL1)=RSIM(I)=0(1) .

IF  ( G{I)eLT40 ) G(I)=0

WRITE(M0O,4847) G(I) :

RC(1)= TRCFUN(P(I),K3(I).D(I).E(I),G(1) H(I) Kz(l)oO(I’ MO
TRC=TRC+RC( 1)

CONTINUE:

CONTINUE

A NEW ITERATION IN THE OPTIMIZATION ALGGRITHM STARTS

- NCYCLE=NCYCLE+}

c¢

CC

407

NN

YRITE(NOy518) VCYCLE : .
tF { NCYCLE « GT , 10 ) GO 7O 515

THE NEW UPDATING PARAMETERS

CALL osuB.

DO~ 407 1=1,H .

IF ( MCYCLE«EQ.1 ) 60 To 562 :

U=DERFUN(P(T), G(l),Po(I).Gu(l),COL(l),COLO(l) HED D Ky

IF( U,GTen ) Y(I)=Y(1)=DELTA(])

TFC U LTen ) Y(L)=Y(1)+DELTACT)
IF  ( Y(I)eLEWD )' Yo =atny

G0 Tp 572

Y(I)=Y(1)+DELTA(I)

CONTInUE - '
E(l)-FFUN(P(I)-u(l),D(I)o“(l),K3(l)oK2(I))
PO(I)=P (1)

Gntly=n(l})

TCoLO(I=CoLil)

THE wEW STOCK “CONTROL PARAMETERS

OULLTy=0(Y+E( D)
Cottly=0(ly+Y (1)
OP{I)=0(l)+A(T]) _ _
WRITE(MO,185) E(L),U,Y(I),0VL (1), CoL(l), OP(I) RC(I)
COAJT]NUL N

calL . sIMsuB

TRCO=71RC

TRC=0 4

DO™ 8579 1=1,N
G(I)=RSIM(I)=0(1)

IF { G(I)eLT,0 ) G(1)=0

WRITE(HO,4847) G(1)
RCO(I)=RC(1)

RC{I)= TRCFUN(P(T),K3(I),DUT1),E(IY,G(I) H(l) Ka(1),0(1),MD
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CccC
cc

ccC

ccC
ccC
B«

TRC= TRC+R cen) o - _
HRITE(NO+S47) T,RCOU1), RC(1),DELTA(L)
579 CONTINUE '
Do 407 (=lsN : .
IF RC(I).LT RCU(I) ) §0 TO 409
DELTA(L)=DELTA(I)/2
. WRITE(MO,548) DELTALD)
409 COHTINUE
WRITE(NO 193) rINTRC
ACHS= (TRCI=-TRC)/TRCI
wpxre(uo.la9) ACHS , M

Tch'TRc,(DELTA(I),1=1,N,
PS,ACCS
AN UTERATION IN THE OPTIMIZATION ALGORITHM ENDS UP

IF ( (ACHS/MPS).LT.ACCS) GO 7TO 502
515 CONTINUE '
DO 411 I=l,M _
WRITE(NO,i85) E(1),U,Y(I),0uL(1),CoLtIy oP(1) RCLI)
411 COHTINUE o ’ ' '
WRITE (N0, 195) TRC.

CINPUT  AHD  OUTPUT FORMAT SPECIFICATIONS [N PROGRAM ¢ wmATl
191 FOPHAT(I10,F10.5)

103 FORHAT(FIp.0,2F10, z,rs 2, Fs.q I1g)
165 FORIAT(/110,10X, 5F10.1///l )

185 FORHAT(,/°E=" Fig,1,5%,°U=s,F10,5,5%, yFlo,1,5%,°0ut=*,1,0,

1
4

ANK

¢ 05U

0/8
/2t

ee

ccC
CcC

ccC

+CoL=" 110,,X.'0P—‘,110 %Xo'RC-‘.FIO-I/’ o :
189 rordAT(' ACHS =* F10,7,'MPS = F10,745X%X,7ACcS =*,F1qge77)
195 Foittat( * HINTRC=‘ F[S,],SX,_‘TR,C(J:'.'FXS.I,SX.'TRC=',F15.l/l(:(F]
~35%)) S Lo : :
225 FORHAT(10F: a.x) A
518 FORMAT(S5X, * ITERATION NO = ¢« 15/ )
547 FORMAT(,5X,"1=' 15 56X, ¢RCO=" Flo 2,5%, ‘Rc=' Flu 2 RX 'DELTAo s F!
548 FORMAT(5X 'JEN DELTA =+ .78, 2)
563 FOPHAT(SX 'TRCI='3F15.1,%X MINTRC',FZS.x,SX,iMPS=‘,F10.7)
119 FORMAT(SX, <1l= *,115/) - o
847 FORMAT(5X,*G* F10,2)
sTOoP o
END

602 DBANK g1 COMMON
B
-14331(,0)

SUBRQUTINE ‘¢ oSuUB *¢ SOLVES THE SERVICE LgVEL FUNCTIGN
USING +¢ REGULA FALSI *' METHOD ANO DETErMINgS ¢HE 0(I)
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gn

8l

.83

. 8%

87

' SUBROYTINE  0OSUB

PARAMETER N=6
REAL MOLT

CoMuoy /CS1/ D(V),APRO(N),o(N),E(N)

COHMON /CS2/7 P(M),GIN) :
CoMMon ,CS3/ MDLT(N),SDDLT(N)
CotMoN NO

DATA NITMAX, ACCN, ACco / 30,0, 000001

Do 89 I=1,N

~DX=0(1)/10,

Cz-tx-APRo I))'t((E(l)~P(I)'G(I))/D(I)’
Y=C2

ARITE(NO,209) 1,Y

N1T=1 o
X;«O(]) o

Yi = PNROFI(X1,I1)
Bl1=Y1laeC2 .

IF ( BleGTeDas ) DX=eDX
X2=X1+DX ‘ '
CONTINUE

Y2 = PNRor(x?.l)

‘B2=Y2.C2

IF ([ B1sB2 1.GT.0s ) GO TO 85
X3ZL(X2=X1)/(Y2=Y 1)) elY=Y1)*K] |

Y3 = PHROF(X3,1)

B3=Y3.C2 i '

IF  ( "MIT.GE.NITHMAX ) GO TO 87
MIT=N{T+! ' '

IF  { ABS(B31,LE.ACCN )- GO TO 838
IF {  ( 81233 ).GT«0s ) GO TO 83

IF (¢ ABS{ ( X3=X1 ) / X3 ) J,LE,ACCo-

X2=X3

Y2=Y3

B2=83

Go T 8}

CONTINUE. o o

IF ¢ ( ABS( (  X3=X2 ) / X3 ) ).LELACCO
X1=X3 . ‘ ‘ ‘
Yi=Y3

B1=83

GO To 81

CONTINUE

X1=X2

Yi=Y2

B1=B2

X2=X14+DX

NITEN]T+I

IF ( NIT.LT.NITMAX ) GO0 TO0 80
WRITE(ND,205) 1 :

CONTINUE
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GO
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T0
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2% , YELIE(M01207)  T1HNTITMAX

594 888 0(l)=x3 =

50s ~ ARITE(MO,135) 1,0(1),NIT

b1 89 CONTINUE ' ’

624 135 FORMAT (¢ 1=¢a]15,¢ ‘vFlO'l"NIT"'IS/////) -

53 205 FORMAT( //* "SOLUTION INTERVAL FOR o’ 13, HAS NOT B
54 & +REACHED YET’//) ‘ '

55 o - 207 FORMAT(// ¢ ACCURACY OF 6(*,13,¢) IS NOT SATISFIED IN
5é e *PITERATIONS AND LAST VALUE IS 'TAKEN as COPTIMUM/)

57, 209 FORMAT( * 1= ,xs 5X,'C2=',F1n,6)

58 RETURN

59 4 : END

3 IBANK 143 DBANK 49 COMMQN

+PNROF
05/30/81=-14:31(,0)
1. CC T
2. cc : : . :
3. Cc Funcrtiod ¢ PHNROF ¢+ (COMPUYgES THE SERVICE LEVEL FUNCT
4, cc '
\5-' CccC ‘ o :
b . FUNCTION PMROF (XX, 1)
7. PARAMETER N=6
8, REAL MDLT : .
9. CoMMON ,CS2/ P(N),GI(N)
10, o coMiony ,CS3/ MDLT(N),SDDLT(N)
1l , CoMtoy MO
12. Z1=( XX=MDLT(I) ) , SDOLT([)
13. U Fp=COF (21 ) :
149, Z2=( xX+G{I)=MDLT (I} } / SpoLT(l)
IS, : F2=CDF ( 22 )
16, PHNROF = Fl*c(l"P(l))-F?'-P(l)
17. RETURN '
18, , EHD
IBANh 20 DBANK 25 COMMON
lCDF :
15/30/81=14: 31( 09
1 cc
2. cc '
3. ccC SUBROUTINEL  *+¢ CDF ¢¢ DOES NUMERICAL INTEGRATION
44 . CC USIHNG ¢* SIMpSOoN¢sS RULE **
5. cC IT CoMPUTES NOT RUNNING oquy PROBABILITIES
b cc ’ '
7. cc
8. "FUHCTJON  CDF(Z2Z)
9 COMMON NO
10, DATA NINT /10O/

e FIX)=,398942284EXP(=(Xes2)/2)
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VV=ABs(22)
COF =g : :
IT" (VV4EQ.0) RETURN

| IF (yY.GTe4) GO " TO 90!

» NHALF=NINT/2 -

> ' DV=VV/NINT

, ‘ CDF=0, ‘

o DO 91 I=1,NHALF

, VL=28(]=1)eDV.

- vu=2t160v
VH= (VL +vU) /2

CDF = CDF+(DV/3)'(F(VL)+Q.‘F(VM)+F(VU))

| 91 CONTINUE
| 901 CONTINUE ' '
"IFT ( 2Z,GT.0 ) CDF=,5+CDF
IF (. 7ZZsLT+0 ) CDF=,5-COF

RETURN
END
BANK 42 DBAMK | COMMON
eP1P '
30/81l=-14131(,0)
| cC '
cc
cC :
ccC FUHCTION *¢* PIP ¢ DETERMINES THE
Ccc IN A DEPENDENT SYSTEM '
cC . ' .
cC . -
FUNCT NN PIP(P)
IP=pr ’
PIP=1p
IF(({Pa PIP).LE D.1E=8) RETURN
\ . PIP=PIP+! . ' :
- : RETURN
EMND

ANK 7 DBANK

MINIMUM NUMBER

SIMSUB
30/81-14?31(.0)
e
cc
cc
ccC SUBROUTINE “¢ SIMSUB ¢¢ SIMULATES THE [NVgNTORY
cc WITH CURRENT INVENTORY CONTROL PARAMETERS AND
ccC IT DETERMINES P(1)*'S AND G(I)*S
cc : .
cc

SUBROUTINE  SIMSUB
PARAMETER  N=6

oF

sYSTEM

oR



cc
cc

ccC

cc

cC

<cC

Cc

ccC
ccC

REAL
RCAL
INTEGER
CoOMMOYy
cotioy
colMoy
cotirton
‘coMiionN
CoHMOoN
COMMON
D[HﬁNs[oN
‘DIHENleN

Lo+

/7Cs2/
/C53/
/7Csu/
/C55/
7CS47/
7Cs7/

INTTIALIZATIO

Do 21
NIR(I)
NJURB( ]
HJRNMB (
MTRUT

)

l=l‘IN

CORTIME(TI)=10.

0‘317&(1)“]0

INV(I)‘OUI(I)

IHVPOS(|)=0YL
21 CONTINUE .

SETTING  THE
DO 14 KK=l,
00 1y Jd=142

nnAT(K ,J1 =9
14 ColTiNnUE
MORDAD=DN
TOREC=N
MORDER=(Q
NEXTOT=10n
FILAGO=0
FLAGJO=D
FILAGOR=
GENEATING TH
Do 23 =1
DTI!E(I)- T
23 COHTINUE
DO 24
26 CONTINUE

9
-
I3

I=1,N

'"NORRAN

MOLT | |
IMV,NEXTOT ,NEXTOT ,LTIME MTRAN,
ouL,coL,0P, FLAuo FLAGJO FLAGOR

PIN),G{N)

MDLT(N).SDDLT(N)

OUL(N) ,COL(NY ,OP(NY :
MTRAN(N),SDTBA@(N),DRATE(N)

INvPoS_

,LTIMg,DURSIM IR
OSIM{N),RSIM(N)
ND

»NIR(N),NJRB(N),NJRNB(N) NTR(N).
CINVEN) ,DTIME(H),

ORTIME(N).OSIZE(N)
SOO(N),SRR(N)

N OF VARIABLLS AND SETTING STARTING
~MOLT (1)
(1)
INTTIAL SYSTEM INDICATORS
300
5 B
E DEMAND TIMES = AND SIZES For ALL

UN(DRATE(D) IR)

129

TWMORT(N),
INVPOS(N),DSIZE(N),OMATtson.ZS)

CONDIT |

ITEMS



24

CccC
cC

(49

cC

ccC
ccC
ccC
CccC

cc
Cc

cc
cc

cC
(Y

cC.
ccC -

cc

25 ¢

‘29

DSIZE(T1)=DSFUN ( MTRAN(I)»SOTRAN(I) IR )
IF ( DSIZE(I).LE.D ) GO TO 26
courxNuE

OHNTINUE

DETERMINING THE NEXT DEMAND TIME ( NEXTDT 1AS THg MIN{!
OF ALL DEMAND ARRIVAL "TIMES IN THE [HygNTORY SYSTEM

NEXTOT=DTIME(L)

J1=1 . A _ , .
DO 1=2,N ) :

IF ( NEXTDT LT, DTIME(I) )} 60 TO 27

chroTyorxmstl)

Ji=1-

CONTINUE.

COHTINUE

DETERMINING THE NEXT ORDER RECEIPT TIME ( NEXTOT )

. AS HINTHUN oF ALL ORDER RETURN .. TIMES IN THE INVENTORY SYg

34
33

39

41

42

IF NORDAD. NE<O ) GO To 34

NEXTOT=100

GO To - 35 - . o
If (. FLAGOR,CQ,pg )} GO To 39
HEXTOT= OMAT(NORFC#I,I) '
CONTINUF

FLAGOR=

CONTXNUE

DETERMINING THE NEXT LVENT TIME AS THE HM[nu{MUM  OF
TVWO  pVENT CTIMES - AauD SETIINGVTHE SIMULATIOoy TIME 70 THA.

1F { NEXTUT,GT.NEXTDT - ) GO vO 35
COHTInDE . o

NEXT  EVENT 1S AN ORDER RFTURN

PECEIVE THAT  OROFR AND “TADD "THE RECEIVED AMQUNTS

TO  THE 'HESchrlvc CINVEONTORIES

ancn-anror :
IF  ( CLOCK«GT. DURSIH ) GO To 44

FLAGOR=]

. MOREC=MQOKEC+]
‘MOROAD=NOROAD]

NORI=QgMAT (NOREC,2)

Do 42 L2=1,NORI
J2=0MAT(NOREC,2¢L2+1)
INV(Jz)—IHV(J2)+0MAT(NoREC 2el2+2)
CQNTINUL

1F { MEXTOT ,EQ NEXTDT ! GO T0 35

1
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. o »

>6 o
37 o
58 ¢
59 »
>0

cc

ccC

CcC
ccC

- cc

- cc-

ccC
ccC

cC
cc

ccC

GO Tgo <28
35 COMTINUE

NEXT EVENT DEMAND ARRIVAL

15
SUPPLY THE DE
BY- AMOUNTS DE

CLOCK=NEXTDT _

IF ( CLOCK«GT,DURSIM )} GO To 44

N1O=0 ' ’

FLAGO=0

FLAGJO=0

IV (J1)=INY(J1)DSTZE(J])

INVPOS(J1)=INVPOS(J1)=DSIZE(J]) :

DTIHE(JI)~DTFUN(DRATE(J1)nl“)*CLOCK'
31 CoHTINUE

DSIZE(11)=DSFUN(MTRAN(J1).SDTRAN(JI),IR)

IF { DSIZE(J1).LE.,0 ) GO TO 31

REWIEW OF INVENTORY POSITIONS FOR CRITIC,L

IF ( INVPOS(J]1).GT.OP(J1) -} GO TO 25
PLACEMENT OF AN ORDER

CFLAGO=1

MORDER=MORDER+
NIO=N]O+1
NOPOAD-HOROAD+1 :
ORTIME(J1)=CLOCK+LTIME -
O0STZE(J1)=0UL(J1)=INVFOSI{J})
S00(J1)=S00(J)+INVPOS(JL)
ONMAT(MORDER, 1) =CLOCK+LTINE
OMAT (NORDER,2) =1 :
OMAT(NORDER,3)=J1
OMAT(NORDER, q)=OUL(JH-INVPOS(J1)
INVPOS(J1)=0UL (J1)
HIR(JLY=NIR{JL) +}

37 CONTINUE
Do 38 I=1,N :
IF (1.EQ,Jl.0R, INVPOS(I).GT CoL(l) ) Go
FLAGJQ=1 -
NIG=N1O+1
ORTIME(I)-CLOCK+LTIME
O0S1ZE(1)=0UL(I)=INVPOS(I)
SRRU1)=SRR(II+INVPOS(I)
OMAT(NORDER,2eNIO+1)=1
OHAT(NORDER,Z.N10+2)=0UL(I)-INvPos(!)
INVPOS(1)=0UL(])
NJIRHB(T)=NJRNB(])+)

A .
“8 dAND  DECREASE THE RESPECTIVE

LEVES S

38

- INVENT

€



»3a'conrxmug
OMATI{NORDER,»2)=N10 ; =
IF "{ FLAGJC,MNE,1] ) GO Tpo 25
MIR(J1I=NIR(J]) =} '
NJRBUJII=SHIRB(J1)+]
GO To 25

44 CONTINUE

cc _ S ’ _
€C S1BULATION PERIOD ENDS UP ,
cc - cAycuLAjlnn OF THE NECESSARY PARAMETERS
DO Hp " I=1,N
'UTR(I)=nxn(1)+HJRB(1)+NJPNB(1) :
o WRIIE(N0,345)I,NIR(I).NJRB(l),NJRNB(l)sNTR
345 FoPHAT(sX,'I- y 15, FHIR=?,15,5X% ‘NJRB=‘,

I”(I)-SRR(I)/NJRME(I)
0°l”(l)*500(1)/(N1p(1)+Nan(1))

DgManp ¢

plSTRIBUED

CP(I)= FLOAT(HJRNB(I)) JNMTRUT)
53 COMNTINUE
WPXTF(MO,BTS) 1,RSIH(I),0SIM(1),P(1),GlI) A
335 FORMATI(GX, I= y13,5 'RsIl= F10.2,5X,'°SIM=‘
+5X,'G=’,Fln 2) '
48 CONTINUE. ‘
RETURN
Euc
AMEK 7717 oquK 77 (onnou
JOTFUN : :
0/81-14% 3?(,U)
. CC
N« : . _ : '
cCc  Funcrgpon ¢ DTFUN ¢ GENFRATES  EXPONENTIORALLY
ccC CRANDGM  VARIABLES AS ¢t TIME  TILL  NEXT
Nde ‘ : .
. CC A
FUNCT I oN JTFUH(DDRATF’IR)
C R=RANDU{ IR, JR)
‘_orruu--(1/DDRhTF).Aloe(R)
RETURMN
END
NK 14 DBAMNK
_ «RANDU
0/81-14:132¢(,0)
CcC
cc _ , _
ccC FUNCTIOMN #¢ RANDU ¢¢ GENERATES UNIFORMLY
ccC MUMBERS  BETWEEN (0=-1)
cC
CccC

132

5X, *NJRNgI="

_.FlU.Z._Sx,'P"

v 1o, 1

CFL

DISTRIBUYED
FoR

T

RAND



IR=JR
RETURN
END
15 DBANK
DSFUN_
;1-14 32(,0)
IC .
i FuMcrioN: *¢* DSFUN ¢+ -GENERATES NORMALLY.
< VARTABLES . AS ¢! DEMAND SlIZg ‘¢ FOR AN
iC S o : S
- FUHCTION DSFUN(DMEAN.STDV,IR)
CoflMON /CS6/ NORRAN
:9uﬂR 0.0 : _
~DO  7pl C1H=1, huRRAN o
S SUHR=gUMR+ . RANDU(IR JR)
701 COMTINUE »

RANDU (IR, JR)

1 | .
UR,LTen ) JR=JR*2s(28e34m])+2
FJUR=JR N : -

. RANDU= FJR/p Ose20

19 DBANY | coMuoN

PANDU RANDU/Z 0&‘15

ENC

133

DISTRIBUTED.
ITEM

“DGFUN= DMEAN+STDVa((SUMR NORRAN/Z.)/SQRT(NORRAN/IZ.))
7RF*URN ' . . , R

RANDOM
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