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ABSTRAC"T 

In this study, a multi-item inventory control system fora firm where groups of 

items are supplied ,by 'their' oWn specific factories, was, developed. The dependence 

,between i tem.s is ca used by the set-up cost structure: When several items are 

ordered on the same order list, a fixed set-up cost, independent of-the number 

of items and quantities, is incurred. In order to use this fixed part of the 

ordering cost, a joint ordering policy, the (s,c,S), was recomm~nded for the 

inventory system. As stated by this policy, ordering decisions are taken also 

for items with inventories -below, their can-order points (ci'S) when any item 

with an inventory below its must-order point s if} ordered. 

A model wi~h a monetary objective function minimizing the sum of ordering and 

inventory carrying costs and satisfying service level constraints, was 5,et-:-up. 

An optimization algori thm, which is, a' combination' of ril~thematical optimization 

and simulation was used to ,determine optimal inventory control parameters (must"'" 

order-points, can-order points, and order:"up-to levels). 

The. solution algorithm 'was programmed .and ,its implementation for a selected 

group of items was presented in the study. The. cost saving aChieved by the 

dependent policy over a usual, independent inventory control system was also; 

demonstrated. Finally, the algorithm's performance under changes in the 

uncontrollable system parameters was analyzed and a case where ~hangesoccur in­

demand figures was presen~ed at the end of the study. 



OZET 
.. 

'. Bu qah§mada, qok say~da mamuliin belirli fabrikalarda iiretil~rek bolge depolan 

'arac~l~g~ ile qok say~da magazada pazarland~g~ bir iiretim--·dag~t~m:...sat~§ zinciri 

incelenmi~ ve bolge depolar~nda mamul stok kontrol sistemierinin kuruImas~ amaq-

.Ianm~§t~r. Sistemin ozelliginden otiirii,her sipari§ aq~ld~g~nda ~smarianan mamul 

say~ve miktarianildan bag~ms~z olarak sabit bir sipari§ maIiyeti olu§maktad~r. 

Bu tiirsipari§yap~s~nedeni iIeal~§:lm~§ stok kontrol politikaiar~n~ri bu sis­

teme uygulanabilmesi miimkJil goriiImemi§ ve bolge depolar~nda ayn~ fabrikadan kar­

§~Ianan mamuIIerin bireysel 'stok kontrol yerine ortak bir stokpolitikas~ LIe 

koritrolu onerilmi§tir, Seqilen (s,c,S) stok kontrol poiitikas~na gore, bir mamu­

lun'~toku ~sina~i~nma noktas~n~n (s) aItwa.·· dii§tiigiinde, stok~ ortak~smarlariabi1-
me noktas~n~n (c) aIt~nda tum mamuller de stok seviyel~ri kendi hedef seviyele-

" ·rine IS) pkacak §ekilde ~smarlanmaktad~rIar. Boylece,daha az say~da sipari§ 

· aq~larak sabit ~smarlama maIiyetinin ekonomik kullan~m~mumki.in olacakt~r. 

· Sistemin modi:dlenmesinde, toplam~sniarl3ma ve stokta tu=ma maliyetierini enazla-· .. . - .. 

yacak bir amaq fonksiyonu olu§turulmu§,stokkopma durumu iseyoksatma maliye­

tini ge;;qekqi bir §ekilde hesapJaman~n zorlugu gozonune a1.inarak servis sev.iye-

·si olarak k~s~tlarda'modele dahil ediImi§tir. Modelin optimizasyonuncl?, paramet­

r:eler aras~ndaki tum fonksiyonel iIi§kilerin tan~mlaj1amam~§ olmas~ nedeni ile 

.:: :linen matematiksel opt.lmizasyon teknikIe:rinin kullan~m~ imkans'~z olduqu gozlen­

mi§,boylece matematiksel optimizdsyon ve benzetim tekniklerinden yararlanan bir 

iyile§tirme a.lgoritmas~ .ile optimal stok kontrol parametrel~rine gidilmi§tir. 

<;al~~mailin uygulanmas~nda ise, algoritman~n bilgisa!?ar progr!'1inlamas~ yap~lm~§ ve 

seqilen bir bolge deposu {qin model qoziimleri verilmi§tir. Aynca sabit sipari§ 

maIiyetinin artmas~ halinde onerilen ortak stok politikas~n~n bag~ms~z politika­

lara gore saglad~g~ kazanq gosterilmi§tir. Sistem parametrelerinde bir degi§ik­

Iik olmas~.halinde algoritman~n qabuk sonuca gidebilme ozelligi ise qal~§man~n 

son boliimiinde sunulmu§tur. 
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CHAPTEP. I 

I N T·R '0 DU' C TI 0 N 

I I I, 
" 

OVERY lEW OF THE STUDY . 

The study prest:!nted l.n th.is .thesis deals with" one of the problems'exposed in the. 
-. .' 

resear~h ~roject entitled "Designing a Stobk CQntrbl and. Distribution Syste~ fQr . 

. the Matketing DiVision· of Silmerbari~'! carrie.dotit b~ the. riivision of Operatiop~l 

Resear.ch of the ~lq.rmara Scient:ific and Industrial 'Research Institute (HSIRI). 

In on~Df ihe prev1.ousproj~cts c~rri,edD~t by MSI~I, the inclusi6R of district 

warehouses in the distribution'.system.of Silmerbank betl.<Teen· factbries and retail 

outlets \,.ra:s proposed . After these \;'arehouse,s wer,e established' 2::1d started to 

have ·ani~por't·ant:· role in the.distributi·on system, it became. necessary to 
". '. . . .'. 
reorganize the stock cOht'rol.Cl.nd·distribut{on system, 'to establish the district 

di r~,ctoratcs and to det~rmine their functions. 

:!Qtivkted by this project, .thi's· study deals\.;j.th a multi-product' inventory 

control. system \,here the items are not treated' independently. ::::'1~ depend~::.ce is 

caused by the set-up cost structure. In partic\!lar~ if 'KI i and IT j are the 

set~up costs for items' iand j. respe~tively u~der independen~ replenishment~, 

then the cost of a set-up involving both bf the it~ms is lesi ~~an the sum cif 

set-up costs for two independent replenishments (K1i+K!j)'. 

This type of cost structure is particul~rly appropriate when a group of items 

ar·; ,Jrdered from the sam~ supplier and/or use the .same me~ns of transpoc,tation; 

when a replenishment is placed, there is a major fixed cost independent of hOvl 

mari~ and whi~h items are invol0ed, and a variable cost whIch depends on the 

number of items. Hhen several items are included l.n an order, the unique' major 

fixed cost is shared by all items in th~t order, and this caus~a decrease in 

the total ordering cost. Same situation exists,.,hen a .gr<?up of items is prodUCed 

in the same family;' a major fixed production cost is required to switch over to 
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the production of the group of items, but only a minor cost is incurred to 

s\"itch among items ,,,ithin the same group. 

A joint ordering policy based on the (s,S) policy as applied to the iridividual 

items [10] ·is proposed for the stock control of this multi-commodity system .. In 

the multi-item (s,c,S) policy as discussed by Balintfy in [2] , a third critical 

inventory control parameter, "can-order point", is added to two inventory control 

parameters in the individual (s,~) policy. This ordering policy consists of 

bringing up to its order-up-tolevel S. any item 1 below 1ts can-order point 
" "l 

c· whenever any other item J hits its must-order point s .• 
1 J 

In this study, a procedure introduced 1n [22] is I,lsed for selecting the control 

variables (must-order point, can-order point and o!der-up-to level) of the 

(s,c,S) system: The procedure which "is a combin~tion of mathema~icaldPtimization 

and simulation is computerized. Then this program is run for areal-life data 

and the results a~e presented. 

In the follm"ing sections of this chapter, a general summary of the stock control 

"systems is presented.: First, inventory control models are discussed in terms of 

their general characteristics, and demand, delivery lead time and ~bjective 

function aspects are analyzed. Next, inventory control p6licies are examined 

and several common policies. are introduced. Last, some of the studies reported 

in the literature about multi-item inventory models are summarized. 

Chapter II 1S devoted to problem definition. Existing distribution system and 

its problems are ex~m{ned. Then discussing the several alternative policies to 

eliminate the present problems, an inventory control policy most fitting to the 

system and with least disadventages is recommended. Mathematical formulation of 

the problem is given in Chapter III. At the beginning of the chapter, relevant 

cost terms in the inventory system are determined, then the objective function 

and the constraints are derived. 

Chapter IV deals with the optimization phase and covers the solution algorithm. 

The updating procedures, some numerical analysis methods used in solving the 

service-level equations and the steps of the algorithm are all presented in 

Chapter IV. The adventages of the proposed joint ordering policy over usual 

independent policies are also shown in this chapter. 
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Computerization of the optimization algorithm is described in Chapter V. ~!ain 

'structureof the program, e:<pla~ations about the s~broutiries and functions, 

their logic diagrams and the definitions of the variables used in the computer 

program are all given in Chapter V. Implementation of the model and adventages 

of the proposed inventory policy over the independent one ... are demostrated j n 

Chapter VI. The algorithm's performance under changes in the uncontrollable 

parameters is also analyzed in the same chapter. This thesis ends up with 

conclustons in Chapter VII. Last chapter contains .the criticism of the algorithm 

and comments on. implementation. Theory about the demand characteristics, 

computations of inVentory carrying and item-order~ng costs and the list of. the 

computer program are given in appendices. 

1.2. INVENTORY CONTROL MODELS 

1.2.1. GENERAL CHARACTERISTICS 

An inventory problem may be defi~ed as designing an inventory system and of 

making optimal decisions with respect to that inventory system. Designing an 

inv~ntory system, first t~e existing conditions and the characteristics of the 

p~esent system should be carefully invesiigated. Then, an operating doctrine 

\.,rhich tells us .the timing and magnitude of the replenishment decisiorl has to 

be determined. The chosen operating doctrine may be ve'ry different from system 

to system regard~ng their characteristics.' The existing inventory systems ·differ 

1n size and complexiclty, in the types of items they cariy, in the costs 

associated with operating the system, in the ria~ure of the stochasiic processes 

associated with the system, and in the nature of the information available to 

decision makers at any given point in time. All these differenc~can be considered 

to reflect variations in the structure of the inventory system. Then, all thes'e 

varlations can have an important role on the type of·.operating policy that should 

be used in controlling the system. 

After a suitable inventory policy is selected, demand properties have to be 

studied. Since inventories are kept for the purpose of meeting future demands, 
\ 

some information about the nature of demand, based on historical data, market 

research or executive judgements is essential. There are three possible states 

of knowledge of demand. First, exact figures of future demand may be available. 

In such a case, there is no uncertainty on the demand characteristics and it 

is called a deterministic inventory control system. Secondly, there may be no 

knowledge about the behaviour of future demand. Neither complete ignorance nor 

,complete certainty is observed in actual situations. A third case, most fitting 
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rea'l-life situations, 1S one where some knowledge about future qemand is 

obtainable. Most commonly, the demand can be described in probabilistic terms. 

In practice, probability distribution of demand is not known exactly and 

parameters characterizing the probability distribution should be determined· 

based.on historical data. In $uch an inventory system, b~cause of the stochastic 

nature of the demand pattern, there may be times when demands occur and the 

system is out of stock. An important characteristic of the process generating 

demands is what happens when a demand occurs and the system is out of stock. 

Basically~ there are two possibilities: Either the demand occurring during the 

stock-out time is lost, or the customer waits until the inventory system obtains 

sufficient stock to meet his d·emand and he .is supplied. These are generally 

referred to as the lost sales case and th~ backorders case, respectively. 

Another important factor·in the formulation of inventory control problems is 

delivery lead time which is defined as the length of time between the placement 

of an oider and the actual addition of that order to the inventory. Delivery 

lead time is generally not subject to control and Consequently is one of the 

parameters nf the inventory systems. Lead tim.e may be zero as in cases of 

imml"diate ddivery, in which the amount ordered is added to th~ inventory le\'el 

as soon as the order is placed~ Secondly, lead time may be a constant. After a 

fixed time interval from the placement ~f an order, the inventory level is 

increas~d by that amount. Last, it may not be constant, sinceth~ time to fill 

the order at the source, the shipping time, and the time required to carry. out 

the paper work, etc. may vary from one order to another. It is seldom possible 

to predict in advance precisely what the lead time will ~e, and it will be 

necessary to assume that a stochas.tic .process generates the lead time. Lead time 

has generally ~onsiderable effects rin the solution of probabilistic inventory 

systems. 

The inventory policy and demand properties, with delivery lead time characterize 

a specific inventory process. Then the criterion for selecting the operating 

doctrine will have to be formulated. That is called the objective function and 

it provides a measure of the performance of the inventory control policy. 

Objective function can be expressed in monetary or non-monetary terms, but 1n 

the literature emphasis has been given usually on monetary objective function. 

The reason is that managers are more concerned with monetary results such as 

maximization of profit or.minimization of cost which both mean more return. 
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In constructing the monetary objective function, it ~s often very difficult in 

practice to determiniihe stock outcost.func~ion. To avoid this problem, an 

alternative procedure might be to maximize the .profit or minimize the cost,each 

exclusive of the stock out cost, subject to a constraint that the average 

fraction of the time for which the system is out of stock ~s not greater than 

a specified value. Here,instead of specifying the nature of the stock out cost, 

one instead specifies. an upper limit to the average fraction of the time for 

which the system is out of stock. Alternative criteria for non-monetary 

objectives may be maximization of the service level to the customers or m~n~­

mization of the probability of stock outs provided that the capital invested ~n 

inventory should not exceed ~ predetermined value of budget. Either type of 

·objective function may be formulated depending on the characteristics of the 

system under study. 

Studying the characteristics of the inventory process systematically, a model 

will be set ~p. When mathematical analysis is used to help develop operating 

rules and mathematics is applied to the solution of inventory problems while 

controlling inventory systems, it is necessary to describe mathematically the 

syst~m under study. Such a des~ription is often r~ferredto as amathem~tical 

model. The procedure is to const~uct a mathematical mo~el of the svstem of 

interest and then to study the properties of the system. However,as it is not 

possible to represent the real world with com~lete accuracy, certain 

apprc:dmations and simplifications must be made in constructing a mathematical 

mode L. There are many reasons for this. One is that it is essent ially impossib.le 

to find out ~hat the real world is really like. Another LS that a very accurate 

model of the real world can become impossibl~' difficult to work \.,ith mathematical1~ 

Also, accurate models might not be justified economically. Simple approximat,ed 

ones might ·yield results. which are good enough so that the additional improvement 

obtained from a more accurate model might not be sufficient to justify its 

additional cost. 

After system is studied, its characteristics are examined, mathematical model 

is established, and the values of input parameters are calculated, the next step 

~s to determine the values of the decision parameters of the inventory policy 

which optimize the given objective function.This part of the study is 'called the 

optimization stage. Finally, a sensitivity analysis c·an be carried out to observe 

to what degree the objective function is influenced by changes in various param­

eters. 
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1.2.2. INVENTORY POLICIES 

Two fundamental questions to be answered in controlling the inventory of any 

commodity are (i) when to order and (ii)how much to order. An inventory policy 

should provide ariswers to these questions. 

There are ·two possible approaches for deciding about the timing of the ordering. 

One uses the time and th~ other uses the inventory level as the decision criterion 

to answer the question of when to order. These alternatives might be expressed 

more specifically as follows: 

i) placement of an order after every t units of time 

ii) placement of an order when the inventory level is ~qual to or below 

a given level, say s units. 

The amount to be ordered may also be specified in one of two Hays: 

i) The order quantity ~s always the same, say q units. An amount of 

q is o~dered whenever one decides. to order. 

ii) A variable quantity which ~s the difference between the inventory 

level and a certain level S is ordered at every replenishment. Here, 

inventory level is bein~ raised always ~o a pred~t~rmified level. 

In the literature, the quantities t, s, q and S are used and. defined as the 

scheduling period, the re-order point, lot~size and order-up-to level respectively. 

For innnediate delivery, the inventory in-sight is always equal to the inventory 

on-hand and inventory on-hand will be used deciding for an order. But for a 

~ystem with a non-zero lead time, inventory position (or inventory in-sight) 

is defined as the inventory on-hand plus on-order minus back orders. In such a 

system, inventory position is controlled instead of inventory level. 

Most connnonly used policies are the (t, S), the (s, Q), and the (s, S) policies. 

The (t, S) policy, known as the cyclical review system, is characterized by 

scheduling period and order-up-to level. According to this periodic-review policy, 
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at the end of every iriterval of t time units, a quantity to bring the inventory 

position to S is ordered. Re-order point and lot-size characterize the (s,q) 

policy. Inventory level is reviewed continuously and whenever it is equal to, 

or belo~ the re-order point, a lot-size q is scheduled ~or a replenishment. In 

the (s, S) policy, specified by the two parameters sand S corresponding to 

"minimum" and "maximum" inventory positions respectively, whenever the inventory 

position is equal to or below the re-order point s, a quantity that will bring 

the inventory to S 1S ordered. 

There are seveial other inventory control policies ~en~rated for special 

purposes by combining these common ones. The(t, s, S) policy ~s a combination 

of the periodic review and the continuous review models. According to that policy, 

an order is placed at the e~d of the every interval to-bring the inventory level 

up to S, but if inbetw~en period~, the in-sight invento~~ declines to or below 

s, and order to bring the inventory position to S is also scheduled. The (t;s,q) 

policy d~ffers from the Ct, s, S)policy only by the -amount of the order; 

here a lot-size q is scheduled when an otderin~ decision is taken. 

S~veral other inventory policies have been ~iscussed 1n the li~erature. Some of 

the re-ferences are [101, [16] and_ [25] . 

1.3. LITERATURE SURVEY 

Some of the itl:dies met 1n the literature abo~t the multi-item inventory control 

problems are summarized 1n this section. As the number or items. and the degree 
," 

of complexity of the system increase, the difficulties of the modelling and of 

.the solution procedure also increase. Nostof the methods are applicable to the 

problems which have only a limited number of items. 

Luigi }1ari.ani and Bernardo Nicoletti [14] studied a deterministic, continuous 

time, nonstationary multi-product inventory model and took the minimization of 

the total cost over a finite time horizon as the criterion of optimality. For 

both backlogging and nobacklogging cases, they generated a set of difference 

equations and used a method based on a modified form of the discrete maximum 

principle for solving the resulting optimization problem. The conditions for the 

determination of the optimal policy (the number of joint replenishments, the 
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'order quantities andth~ times at which orders should be placed) are given,and 

the cases, for.which,· these conditionsar~necessary and/or: suqicient are 

discussed. The case' in which the costs a~equadratic, is dealt within detail 

arid numerical'examples,are demonstrated. 

:Joseph L.Balintfy [2] also examin~d the multi-item inventory problems where 

through. joint ordering of 'several items, total set-up costs 'may be q.ecreased. 
, , 

,His policy operates through the determination of a reorder range within which 

sever~l items .ca~ ,be ordered." The existence',of an optimal reorder range is 

proven and a computational technigt;e is demonstrated. Then individual and joint 

ordering policies are compared in:.this stud)T. 

A different inventory policy , (T, y) ~ is. introduced by Fre'd Andres and Hamilton 

Emmons in[ 1]. In the (-r, Y)policy, a renewaI is defined as a time when all 

products are ,ordered simu.ldmeouslyand ~hen, ,T is taken as 'the ti~e b~t~e~n 
successive renewals and Y=(Y1'.: Yi •. ' '(n)is ~,vector whereYi is then~mber' 

of ' orders of product i until the next renewal. It is assunnned that each of' the 

Yi ordersareequa~ly, spaced' in time and an amount is ordered so that th~ stock 

. level of i is zero at the next renewaltime.A branch and bound algorithm is 

'presented for finding 'the optimal policy .. I~ that algo'rithm, the Y space is 

, searched systematical iy' in su~h a way that' an upper bound o~ the savings in the 

total cost'for all polidesnot sear~hed yet is determined. For the two-product 

case, a special algorithm is develope'd to give more pre~ise results. 

Ho [111 has represented themult~-product .inve;i.tory system by a :'-larkov process. 

'She developed a, model, namely (R"C" Q) model, based on the independent (R, Q) 

policy and determined the can-order level (C) by balancing the reduced cost of 

time weighted backorders witl'i the extra carrying cost. Furthermore, she uses 

a fixed order quantity Q. for item i rather than an order-up-to level S .• Her 
1 , ' 1 

. analysis involves certain approximations that allow determination of the stead: 

state probabilities of the associa~ed Markov process. Simulation experiments 

are also done to compare the joint ordering policy with the in'dependent orderi 

policy for .the case of stuttering Poisson demand~, and she show that ~he joint 

ordering policy achieves"a substantial sav~ng in total cost over the independe 

ordering policy. 



S.K. Goyal examined the multi-item, single supplier systems and gave similar 

approaches with small differences in [5], [ 6 ], [7 J, [8], [9]. He presented 

a search procedure for obtaining the optimum packaging frequencies for a number 

of items which are manufactured jointly but packaged individually after 

manufactur~. His method 1.S equally applicable to those problems where the 

optimum ordering policy is to be obtained fora number of items from a single 

supplier. He developed an iterativ~ procedur~ to obtain the optimum frequencies 

in a deterministic system and gave lower and .upper bounds for packaging 

frequencies' for each item in a sub-algorithm .. Evalu'ating the frequenc~ combina­

tions and fathoming impossible branches, he determined the ordering policy. The 

effect of the change of the frequency for one item on the total cost function 

was ·observed, and a new frequency combination'. improving the total co;H function 

eac~ .time \.;as obtained. He continued adopting the frequency combinations' until 

no more improvement was possible. 

9 



CH.npTER I I 
DEFINITION OF THE INVENTORY PROBLEM 

]11 this chapter, definition of the inventory problem is g1.ven and an inventory. 

control policy appropriate for this system is recommended. In the first section, 

current production-distribution and marketing systems ofSiimerbank are described 

and the flow of goods and inforination in the overall system is given. Then, the 

sllbsystem with \vhich this thesis is concerned is specified and its boundaries 

an' ura\m. A ne\v inventory control system is recommended in the second 'part of 

the chapter. First, conditions effecting 'the i~ventory.control are analysed and 

gl'l1eral characteristics of the new system are determined. Then, al.ternative 

inventory control policies suitable for this system are .drscussed and an 

appropriate policy is presented. 

I I I I I OESeR I PT I ON OF THE GENERAL INVENTORY SYSTEf1 

III the productio~-d istribution and marketing system of Siimerbank, production 1.S 

c;lrrleci out in 23 factories and then marketed over Turkey by the.:larketing 

Or.~~;l!1ization (the AS~1) through four groups of buyers. The operation of the 

system can be described as follows: 

i) Sale estimates prepared by the retail shops and district warehouses 

are sent to the Marketing Organization. The ASM forecasts the future 

sales of the whole system by taking these estimates and public sales 

into consideration. 

ii) Yearly protocols are prepared together by the ASM and the factories. 

Taking the forecasts of the ASM and the available production 

facilities into consideration, yearly production programs, based on 

types, are set up which are then approved by the General Directorate 

of Siimerbank. 
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iii)\.Jithin a year, usually every 3 or 6 months,the ASH gives the 

factories the desired production volumes for each color and design. 

iv) The retail shops send monthly order lists to the district \",arehouses 

to which they are affiliated. The district warehouses compile and 

revise these, and then forward them to the factories.These order 

lists usually do not cover details such as color and design, but 

only types. 

v) The factories send the goods to the district warehouses and,r~rely 

to the retail shops directly, according ~o the order lists which 

they have received. There may be also some direct 'sales to. the p'ublic 

from the factories. 

vi) The d~strict warehouses send the goods on the order lists to the 

retail shops assigned to them, then they are sold to the customer. 

Other wholesal~rs and retailers may also be dire~tly supplied by 

the district war~houses." 

~Fi gllre 11.1. -illustrates the ma~nflO\", of .information, goods and money.between 

the General Directorate of Slimerbank, the factories, the AS:!, the district 

directorates and four groups of customers. 

The present con~itions are such that the direct delivery from factories to the 

retail shops constitutes a small proportion of the total goods flow. Another 

fact 1S that the demands of public customers and wholesalers can be estimated 

more or less accurately. \-lith these in mind, then the flow of goods from 

factories to retail shops through district warehouses gains the major importance 

in the whole distribution system. Consequently,the main product flow which 

wi 11 be analyzed here can be represented schematically as in Figure II. 2. 
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~ = Factory 

.£ = District warehouse. 

® = Retai 1 shop 

Figure 11.2. TheSchem~tic Representation of the Main Prod~~t 

Flow in the Analyz~d Distribution System of Slimerbank 

)istrict warehouses are very important elements in this system and they act as 

Jutter stocking points bet\.;een factories and retail shops. By meeting the dema~ds 

J[ the retail shops through district warehouses, a more efficient structure \.;ith 

respect to the fixed cost of ordering reiults. Carrying stocks in district 

\.;arehouses also make quicker replenishment of retail shops possible. ·Furthermor·e, 

regrouping the goods in the district Harehouses and sending in smaller but 

assorted lbts increases the opportunity of quick ma~keting and thus raises the 

sales. The deliveries [rom district Harehousei to retail shops, hOHever, have 

less importance, because smaller amounts and shorter lead times compared to the 

factory-district w~rehouse pair are involved. Therefore the main emphasis is 

given here .to the stock cont~ol in district Harehouses while the retail shops 

are viewed only as sources of. demand for the district warehouses. The model to 

be set up in this study will deal Hith the stock control of district warehouses .. 

I I ,2, DEVELOPf1ENT 01= A NEW I NVENTORY CONTROL SYSTEM 

In the system described above, each item is produced in a specific factory and 

there is accepted no substitution between the products of different factories. 

Keeping these two assumptions in mind, items which are ordered from one factory 

and thus can use the same transportation facility will be examined seperately 
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from the others. Dividing the products of each district into groups which are 

supplied by the same factory and controlling the groups individually, a g~neral 

stock control system 1n a specific district war~house will be set up. So, the 

whole system is divided into sub-systems for-each fac~ory-district pair. 

Since the number of products\.,rhich are stocked in a district warehouse is not so 

small, a sophisticated stock control policy which requires many calculations 

at every order does not seem very appropriate for the system. Preferably, the 

recommended inventory policy should be practical and easy to implement . 

An ov~rall inventory policy-~omposed of individual policies for each item will 

not necessiate high stock levels, but, as it increases the total number of 

replenishments, will not be efficient with respect to the transportation cost. 

Then to decrease the ordering cost, when the replenishment of an item 1S 

dictated by its independent policy, the actual replenishment decision can be 

taken according to one of the following policies: 

i) Do not place the order -of that item. Wait until for some other items 

replenishments are dictated by their individual policies, and then 

place a joint ocdec. 

This policy will lower the total ordering and stock holding costs. 

However, as stock levels are lower than that prescribed by individu~l 

policies~ stockouts will occur more frequently. 

ii) Place an order for the item. To ~se the transportation facility 

efficiently, two possibilities can be considered: 

a) Order an amount larger than that determined by the individual 

policy. In this case total ordeting cost will be lowered, but 

inventory holding cost will increase because more inventories are 

kept. 

b) Do not enlarge the order S1ze for that item. However, include some 

other items, which don't have to be ordered yet, in the order 

list. Then the ordering cost is shared by the items on the order 

list. In the long run, the number of orders _and the total ordering 
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cost for the total inv~ntory system wiil decrease. Inventory 

levels of all items will be higher, resulting in somewhat increased 

inventory carrying costs, but providing higher service levels. 

Among these policies, the most suitable one with least disadvantages seems the 

policy given by(ii.b). Through the us~ of this policy, overall ordering cost. 

is reduced, and instead of unnecessarily raising the stock level of a specific 

item at a given time, stock levels of several items are raised to some degree. 

In· this \vay, the increases in inventory levels are more uniformly balanced, and 

the. stockout probabilities are reduced for all items. 

When an item has to be replenished, the problem becomes one of deciding on: 

i) \vhich other items should be included 1n the order list, 

and i i) How much should be· ordered from these items. 

To answer these questions, each item must have another easily applicable control 

parameter in addition to the ones ln individual policies: This critical inventory 

control patameter is related to the inventory pdsition and is called can-order 

point. It is used to control the inventory system_togethei with two other 

par~meters which answer the questions of when and how much one must order.Thus, 

keeping in mind that the (s, S) policy LS the optimal one among all individual 

inventory control policies, the (s, c·, S) policy \vill be the one most suitable to 

this multi-item-inventory system. According to this recommended (s, c, S) policy, 

the inventory system will be controlled as follows: 

i) If all items have inventories above their re-order points (s), no 

order will be placed as in the individual (s, S) pol icies. 

ii) When the inventory position of an item drops below its re-order point, 

s, a quantity to bring the inventory position to its order-up-to 

level S is ordered. 

Also, the inventory positions of all other items are reviewed one by 

one and: 

If its inventory position has not dropped below its can-order 

point c yet, this item is not included 1n that order. 
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If its inventory position is below its can-order point c, this item 

1S included in the order by a quantity raising its inventory position 

to its order-up-to level S. 

\ realization of the (s,c,S) policy for three items is shown 1nFigure IL3 • 

c . 
2 

52 

S ." 
3 
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Figure 11.3. Realization of the (s,c,S) Policy for Three-Item System 
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As seen In Figure ir.3, as soon as the inventory position of the·first item drops 

below its must-order point sl at time t
l

, an order to bring its· inventory posi­

tionto S1 is placed and in addition, inventory ~ositions of the other tw6 item~ 

are r~viewed. Even though the inventory position of the second item is above its 

must~order p6int s2' iquantity totaise its inventory posi~ion ~p to S2 IS 

ordered because its inventory position is belo~ its can-order point c
2

• But the 

third item, with an inventori position between its can-order point c
3 

~nd order­

up:"to level S3' is not replenished in that joint order. Amounts ordered arrive 

after L units of time and are added to t'he respective inventories on-hand. No 

other replenishment is placed until time t2 when it becomes necessary to place 

an ot-der for the third item. First item, whose inventory position is still 

above cl,.is only reviewed; but th~ secbndone with an inventory positio~ below 

its c~n order point c 2 is included in this replenishment to bring its inventory 

posi.tion to its order-up-to level 52. 

In the studied inventory system, lead time's of all items ordered by a specific 

district warehouse from a specific factory are the same because they use the 

same means of transportation. But lead tim~s are different fo~each factory­

district warehouse pair. This par~rneter is taken as the ave~age time pas~ed 

between the placement of an ord0r afid the actual addi~ion of that order to the 

inventory.The main elements or tile lead time are the time of communication bet\ .... een 

distl-ict \·,rarehouse and factory to place an order, time spent in the factory for 

th~ preparation of p~operlY'assorted lots; loading and ~nloading times; and the 

timL's passed on the road to transport the goods from the factory to the district 

;,arL'house. Thi slast COmpl)nent '.-lhich is highly longer tha~ the others is really 

the ~letermining factor of' the lead time. 
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CH~PTE~ III 

FORMUL~.TI0N OF TilE I NVE~TORY PROBLH'l 

I I I I I; INVENTORY, COST PARAt-1ETERS 

Inventory control models req~ire an objective function to measure system 

performance and unless it is expressed in npn-60netary ter~sthe objective 

function includes various cost parameters. In real-life problems, the efficiency 

ot any inventory control model largely depenclson the accuracy and acceptab5(ity, 

of the data used to estimate these cost parameters as well as on the validity 

of the assumptiuns made and the techniques us~d in developing the model. A v~ry 

sophistic~ted model developed by using elegant ~chniques with valid assumptions 

is rwt reI iable on as long as the cost parameters are 'not correctly measured or 

e\'a ll:a t ed . 

Th0 ~osts incurred in operating an inv0ntory s~stem playa major r6~e in 

,d~termining \vhi!t the operating doctrine should be. The costs \vhich influence 

_ the ')rerating doctrine are those \,'hich '!ary as the ()perati,ng'doctririe ~s changed. 

,Costs that are independeht of the applied oper~tihg doctrine need not to be 

included in any analysis where c6sts are'used as an aid'i~ de~ermining the 

operating doctrine. Fundamentally, there are three catagories of costs'whicb 

occur ~n inventory systems and may be important in determi~ing what the operating 

doctrine should be. These are ordering c~st, {nventory' carrying cost and shortage 

cost. Ho~ever, before going into the discussion of these, costs, it should be 

stated that it is quite difficult to represent mathematically all the cost 

components with near accuracy. Consequently, there is tendency to make Some 

approximations when representing the costs in the mathematical models to be 

developed. 

III.l.l. ORDERING COST 

',' 

Ordering costs are incurred as a result of placing an order for replenishtnent. 

These kinds of costs include all those cost components incurred from the placement 
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of an order tn the addition to the inventory such as clerical work, paper and 

postage costs, l~bor costs and transportation costs. Ordering cost may be constant 

pl~rorder; or variable depending on the amount ordered, or both. The constant 

part of the ordering cost is usually called as set-up cost ~nd incurred whenever 

in order is placed ~ndepe~~ent of the aider content. These costs include fixed 

order entry costs such as paper, po~tage,telep~one charges etc., as well as 

parts of transportation, receiving and inspection costs which are independent 

of the order size. The variable part of the ordering cost enholds th~ cost terms 

thos~' de'pending on t"he quantity ordered'such as the cost of the uni·ts, some of 

the receiving and inspection costs and the quantity-dependent transpnrtation 

cos ts. 

In the inventory system to be studied, the ordering cost ha~ two compbne~ts.First 

one I sa' set-up cost \vhich is incurred independently from the number of· items 

and the amounts. It contains the cost of placing an order such as communication 

and .clericalwork costs and a fixed charge paid to the transportation companies· 

forC><1ch distribution. Among these C,ost terms, the last terni is the mos~ important 

one in the actual system. The sec'ond component of the ordering cost is item­

orell·ring cost and incurred when an item is ordered regardless of the<1~l1ount.This 

cpst c',)nsists of the clerical work done' to order a sped fie i tern, the cost OL~ 

:nan-'iour to place aIld receIve that order,m~c:1ine'\-lork to'prepa're a good lot 

ass()rted in color and design, loading and unloading\-lorks for'each l~i. 

I II . l . :2. I:JVENTORY CARRYING COST 

Invl'I1tory carrY,lng costs are incurred as a result of holding j [~\'entories and 

incr~Jse in direct proportioh to increases ,in inventory on-hand and the time for 

~hich inventoried items are held. The following components of ·the inventory 

carrying cost are the real out of packet costs: 

i) Storage or warehouse rental costs 

ii) The cost of operating the warehouse such as light, heat, night 

watchment etc. 

iii) Clerical and adminis~rative costs 

iv) Insurance and taxes on inventory held 

v) Costs of depreciation, deterioration and obsolence of inventory. 
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Ac~st which is frequently the most important cost 1S not direct out of pocket 

cost but rather an opportunity cost which would never appear on an accounting 

statement. This 1S called the cost of capital arid incurred by having capital 

ti~d up 1n inventory rather than having it invested etsewhere. It reflects the 

lost earning power of capital and is equal t6 the largest rate of ~eturn which 

the system could obtain from.alternative investments. 

It 1S observed that the most signif~cant pa~ts of the inventory carrying cost 

tn the presented syst~m are the cost of capital and the storage and o~erating 

costs .. Alternative methods for the evaluation of t'heinventory carrying cost 

c~n be found in U71 and how"the inventory carrying cost is evaluated in this 

study will be given later in App~ndix III. 

111.1.3. SHORTAGE COST 

Shortage cost is the 'cost incurred as a consequence of a stockout, that is when 

the demand cannot be fully and immediately satisfied due to a stock shortage. 

This cost is composed of: 

i) Lost profits: As n result of a stockout, some customers would not 

\oJant to \0];1 it. SO::le orders and hence the profit that otherwis'e could 

be made from the~e 6rders will be lost . 

. ii) Stockout maintenance cost: Even if all demands occurrlng when the 

system is out of sto~k are backordered and no order is lost, 

of loosing the opportunity of using standard and common procedures, 

cost of extra comminication, cost of additional labor and paperwork 

will be incurred as a result of ~ sto~kout. 

iii) Loss of goodwill: The most important component of the cost of a 

stockout is the somewhat intangible goodwill loss. This may include 

lo~s of future sales by that customer or loss of the others' sales 

affected by him. This cost should also include loss of sales of 

other items marketed by the same system. 

In the system presented, retail shops don't cancel their orders even if stockout 

takes place, and the portion of demand which is not satisfied directly out of 

. stock 1S completely backordered. Then nO lost profit will occur in this actual 
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system. Still, keeping in mind the.dif[ic~lties of evaluating the other 

:omponents of the stockout cost, satisfaction of service levels for all items 

is imposed in the model instead of costing stockouts. 

~athematical representation of the relevant cost terms and the formulation of 

the inventory control model are given in the following sections. 

[11.2. MATHEMATICAL FORMULATION 

111.2.1. CONSTRUCTION OF THE OBJECTIVE FUNCTION 

The inventory system \"i th all relevant costs. is optimized under a mon:etary 

objectiv~ function. The sum of the ordering and stock holding costs are minimized 

in ;bjec~ive function and stockout costs are expressed by service levels in 

constraints while modelling the system~ Service criterion 'for each item is. 

clioSL''.1 as "not to. have probabil i ty of running out more than an allowable percent". 

If 

S1 = order-.up-.to level for item i 

ti can-order p01n~ for item i 

s· must-order (re-order) point for item i 
1 

D. expected value of the yearly de~and roi item i 
1 

L deterministic replenishment lead time 

KF fixed set~up cost per order 

KJ. ordering cost for item i in the order triggered by another ite~ 
1 

KI. total brdering ~ost for item i if the order is tiiggered by itself 
1 

=KF+KJ. ) 
1 

h. = inventory carrying cost per year per unit of item i 
1 

NIR.= expected number of independent replenishments of item i in a year 
1 

NJRB.= expected number of joint replenishments t~iggered by item i in a 
1 

year 

NJ&~B.= expected number of joint replenishments of item 1 not triggered 
1 

by i in a year 

NTR.= expected number of total yearly replenishments of item i 
1 

n = number of items in a group 

expected yearly ordering cost for item 1, K(i), will be the Sum of all orderirtg 
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costs In independent and joint replenishments. When an item is included In an 

order triggered by another one, ordering cost belonging to only that item IS 

ch~rged. But if an item triggers an ordet, what~ver independent or joint 

replenishment occurs, both components of the ordering cost will be charged.Then, 

R(i) is expressed by: 

, K( i) (N1R. + NJRB.) (KF+KJ.) + NJRNB. 
1 ' 1 1 1 

KJ. 
1 

(III-l) 

Since demand is assummednot to be unit-sized, when item i triggers an order,its 

inventory level is at or below its must-order point s .. Defining 
1 

9i average value of the inven~ory le~el for item i just before 

ordering when an order is triggers by itself 

R; = average value of the inventory level for item i ju~t before ordering 
1 

\-.Then it IS involved in a joint replenishment triggered by some 

other item 

then, average orde'r s lze,,'i 11 be (Si -OJ) "hen the replenishml'0t IS triggered by 

'itseliand will be (S.-R.) when triggered by another one. 
1 1 ' ,L 

FrL)lTt the characteristic cif 'complete backorderingin the inventory system under 

study,' the fo11O\,ing demand satisfaction 'equation must hold for each item: 

D. 
1 

(NIRI' + NJRB.) (S.-O.) + NJRNB. (S.-R.). 
1 1 1 . 1 11 

Dividing (111-2) by NTR., 
1 

If set 

D. 
1 

NTR. 
1 

P. = 
1 

N1R.+NJRB. 
1 1 

NJRNB. 
1 

NTR. 
1 

NTR. 
1 

NJRNB. . 1 
(S.-O.) + --­

I 1 
(S.-R.) • 

1 1 

Q. 
1 

l-P. = 
1 
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NTR. 
1 

N1R.+NJRB. 
1 1 

NTR. 
1 

(III-<n 

( III-3) 



then, P. represents the probability that a. replenishment involving item i is the 
1 .. _ 

re~ult of another item hitting it~ must~order point and Q.rep~esents the 
. 1 

probabil i ty tha t a replenishment involving item i is triggered by i tse If . 

NJRNBi 
and 

Pi 

S.-R.=(S.-O.)-(R.-O.), equation for the demand satisfaction takes the form of 
1 1 1 1 1· 1 

substituting .theP. and Q. in (111-3) and using NTR. 
111 

:ORNB .. 
1 

(S . -0 .) -·P. (R. -0 . ) . 
1 ·1· 1 1 1 

Solving this equation for NJR:.~B. 
1 

NJR:.'J B. 
1 

NIR. +!\JRB. 

P. D. 
1 1 

S . -0 . - P . (R. -0. ) 
1 1 111 

. (III-it) 

Usin;.; NTR;= 
1 

1 1 . 

l-P. and folio\ving the similar steps, total r1umbt2r of 
I 

r<.'plenishments tor item I triggered by itself IS expressed by 

NIR. +NJRB. 
I 1 

(l";P.) D· 
1 . 1 

s . -0 . - P . (R. -0 . ) 
1 1 1 1 1 

(III-5) 

Substituting (III-4) and '(III-5) into (III-I), the total set-up cost tor item i 

is then: 

K(i) 
(l-P.) D. 

1 1 

S.-O.-P.(R.-O.) 
1 1 111 

and 

D. 
K( i) 

1 

S . -0 . - P . (R. -0 . ) 
1 1 _1 1 1 
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P. D. 
KI. 

1 
+ 

____ 1 ____ 1 ________ KJ. 
1 

S. -0. -P. (R. -0.) 
1 1 111 

(P. KJ. + (l-P.) KI.) . 
1 1 1 1 

(III-6) 



Let 

E. = expected demand of item i over lead time L. If item i triggers 
1 

an order and ordered at inventory level of o. on,the average, inventory level 
1 

drops to (O.-E.) after L units of time and amount of (S.-O.) is added to the 
1 1 1 1" 

inventory on-hand to raise it up to level of (S.-E.). Then the average inventory 
1 1 

carried in ~n independent cycle will be 

(S.-E.)+(O.-E.) 
1.1 1 1 

2 

S.+O. 
1 1 

2 
- E. 

1 

Hhen a joint replenishment occurs at inventory level R., after L units of time, 
1 

inventory level drops to (R.-E.) and receiving (S.-R.) units, it raises up to 
1.1' 1 . 1 _ 

(5.-E.). Then, the average inventory carried in a joint cycle will be 
1 1 

(S .-E. )+(R.-E.) 
1 1 1 1 

2 

S.+R. 
1 1 

2 
E. 

1 

If it 1S assum~d that the average duration of both independent and joirit cycl~s 

1S the same to eliminate complications, expected invent,ory carrying cost for 

item i, H(i), is given by: 

S .+0. S.+R. 
H ( i ) h. [(l-P.) 1 1 - E.) + P. (...2......,2. )- E.) l 

1 1 1 1 1 
2 2 

and 

S.+R. S.+O. 
H( i) ( 1 1 (l-P. ) ( 

1 1 
) Eo (IIl-7) h. [P. ) + -

1 1 2 
1 

2-
1 

Then the total expected cost of the system, which is to be minimized, IS gIven by: 
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n 
Z [(K(i) + H(i» 

= 

i=1 

n 
[ 

i=d 

D. 
[ { ____ 1 __ -,--_ 

S . .,.0.-P . (R. -0. ) 
1 1 1 1 1 

P .. KJ. + (1-P.) KI. ]} 1 1 1 1 . 

S.+R. S.+O. 
1 . 1 1 1 

+ {h. [ P. ( _._-" ) + (1-P .) (-'---) -"E. ]} 
1 1 '2 1 2 1 

n KJ . D. S .+R. 

" P. 
1 1 1 L 

h. i- + --
i=1 

1 
S . -0 . - P . (R. -0 . ) 

1 
2 

. 1 11 1 1 

KI. D. S.+O . 
+ (1-P.) .• 

1 . 

. 1 _1 __ . 1 1 . 

S . -0 . .,. P . (R . -0 . ) 
1 1 111 

2 
h. ;. 

1 
- E. h.]. 

11. 
+~- (III-8 ) 

wher~ E., demand during lead time L has an expectation of D.L as given 1n 
1 1 

appe:ldix 1. 

Setting 

~ S.-O. (IIl-9) 
1 1 1 

and 

o. = R.-O. (III-I0) 
1 1 1 

then 
S.+R. t;. +D • 

1 1 1 1 O. + 
2 

1 
and 2 

S.+O. C; • 
1 1 1 

O. = -- + 
2 2 

1 
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using the substitutions above, total cost function can be reformulated as follo~s: 

n KJ. D. . ~.+p . KI. D. ~ . 
Z l: [P. { -1 1 + _1 __ 1 h.} { 1 1 1 

+(l-P.) +- h. 
i=l 1 

t,; .-P. p. 1 1 1 
2 t,;. -P. p . 2 111 111 

+ D.h. - D. L h. 
1 1 1 1 (III-ll) 

Thus, the mathematical model becomes minimizing the total expected c~st fu~ction 

subject to the service level functions ~hich will be introduced in the next 

section. 

I II . :2 .:2. CONSTRAINTS SERVICE LEVEL FUNCTIONS 

Rather than explicitly costingbackorders and minimizing stockout costs in 

objective 'function together with other relevant costs, safety stocks are deter­

~ined to stlpply the demand without stockout above predetermined ~e~vice levels. 

De teem; ni ng the inventory pol icy parameters, the total cos t, ~"hich is compcseq 

of the ordering and the stock holding costs,is optimized subject to the 

constraint of satisfying these service criteria. Then the optimal values of the 

inventory policy parameters will garantee the system to operate with stockouts 

not greater than allowed percents 'as well as minimizing the expected ordering 

and the stock holding costs. 

The demand during lead time L i~a~alyzed In ~ppendix I and stated that it 

approximately follows a normal distribution with mean ~.=D.L and standart 
.11 

D.L 
deviation V.=/_1_ (m~+a~) for each item 1. Standardizing the normal 

1 m. 1 1 
1 

approximation, its cumulative density function will be 1n the form of 

<f>(t-~ ) 

v 

t 
r 
J 

-00 

1 

I2rl 
e 

1 
2 

where -oo<x<+oo is a random variable and -oo<~<+oo 

standartdeviation respectively. 
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In order not toha~e.stock outs fr6m placing an order to receiving it, demand 

incurred during the lead time period must not exceed the inventory available 

during that duration. If item i has .triggered it~ must-order point and ari order 

is placed for item i at the average stock level of 0., then the probabIlity of 
1 

not running. out of item i before the order is rec~i~ed is equal to' 

where 

Define 

\..!.=D.L 
1 1 

Event Ai 
k 

Event Ai 

. O.-~. 

4>( 1 1) 

v· 

and 

1 

v. 
1 

D.L 
/ 1 

m. 
1 

:Not running out 

~Not runnIng out 

a year . ~ 

of i at the kth order t~iggeLed 

or i at all orders triggered by 

by itse If J 

itself In 

The total expected number of orders triggered by i \,''::'5 ·(NIR.+NJRB.). Then 
. 1 . 1 

'Ai , 
••• f I k , Ai 

· ••• 1 (NIR.+~JRB.) 
1 1 

S{nce" A~'~are independent events from each other 

1 

P(A(NIR.+NJRB.» 
1 1 

It has been assumed above that all A~'S have the same probability distribution 

of ¢( 

as: 

o.-~. 
1 1 

v. 
1 

) . Using this assumption, probability of event Ai can be expressed 

o. ~. NIR.+NJRBi {¢( I-I)} 1 

v. 
1 
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Similarly, an approximation to the probability of not running out of iwhen the 

order has been triggered by some other item but item i is replenished at the 

average stock level R. can be 1. 

Define 

Event B1. 

R.-~ . 
. ¢( 1. 1.) 

V. 
1. 

SNot running out of i ·at t~e kth order not triggered by il 

lbut included J 

{
Not running out of i at all orders in a year.when the ordersl 

have been triggered by some other items ) 

The total expected number of orders of item i triggered by others was NJRl'l'B i . 

. R.-~. 

US1.'n? P{B1.) __ · ... ( 1. 1.) d' 11 ' d d' , b _ ~ an to oW1.ng the same steps an . 1.SCUSS1.ons a ave, 
k .\i. 1. 

1 probability of eventB will come out as 

. R.-:. ,~JRNBi 
.~. ~.(~),. 

'J. 
1 

The serV1.ce criterion for item i, which 1.S the probability of not running out 

in the whole year, may be expressed by: 

Event Ci 

{

Not running out of. item i during th~ whole year 1.n all _~. 

replenishments either trigger~c by i or triggered by other 

i is included 

Since Ai and B1. are independent events 

and 

O.-~. NIR.+NJRB. 
_{cjl( 1. 1.)} 1. I. 

v. 

R.-~. NJRNB. 
{¢( I. 1.)} I. 

v. 
I. I. 
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If the maximum allowed probability of running out fo~ item i is deter~ined as 

n. as an operating policy, the stock of i carried in the system must garantee 
~ 

the satisfaction level of demand of item i with a probability greater than 

(l-n.).Then the probabilities of not running out from all items in the whole 
~ . 

year should be greater or equal to resp~ctive service lev~ls witho~t backord~ring. 

This stateme~t can be expressed by the' followings: 

i=l, •.. ,n 

O.-~. NIR.+NjRB. 
{¢( ~ ~)} ~ ~ 

v. 
~ 

R. -~. NJRNB. 
{<t>('~ ~)} ~ 

v. 
~ 

> (l-IT.) 
. ~ 

i=l, ... ,n. 

First, using the substituti6ns (111-9) and (111-10) in (111-4) and (111-5), then 

replacing their final forms in the inequality above, one will get 

(l-P.)D. 
~ 1 

~ .-P.c . 
1 ~ 1 R.-~: . 

!(~) 
~ 

·P.D. 
~ ~ 

~ .-P .':-' . 
. ~ .~ 1 

Finally, the service l~vel fun~tionma~'be modified as: 

O.-u. (l-P.) 
~~( ~ ~)} ~ 

v· 
~ 

O. +.' . -\1 . p. 
{¢( ~ ~ 1); ~ > (l-IT.) 

~ 
V· 
~ 

~.-P.o " 
~ ~ 1 

D· 
~ 

i=l, ... ,n 

Then, the selected values of O.'s have to hold (111-12) to satisfy the 
~ 

i=l, ... ,n. 

(III-12) 

respective predeterrninedservice criteria and should be as small as possible 

to minimize the cost of carrying safety stock. 
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CHAPTER IV 

SOLUTION OF THE INVENTORY PROBLEM 

IV,I, GENERAL KNOWLEDGE ABOUT THE SOLUTION PROCEDURE 

After having determined the .relevant cost parameters and completed th~ mathemat­

ical formu'lation of ·the problem, next come to the optimization stage. The optimal 

values of the three critical inventory levels for ~ach item were to be deter­

mined. The proposed mathematical model was: 

where 

m1-n Z 

s.to 

n KJ. D. t:. +p .. ., [P. { 1- 1- 1- 1-
L. + 

i=1 1-
2 t: .-P.o . 1- 1- I 

+ O. h. - D. Lh. 1 
I 1- I I 

".). 
1-

0., J., > > 0 
I 1- 'i-

o < P. < 1 1- -

V. 
I 

Kl. D. C 
h. } (l-P. ) { 1- 1- + -2:. h.} + 1- 1-

t:.-P.P. 
1-

2 1- 1- 1-

; .-P.~ .. 
I 1- 1-----D· 

i i=l, ." .. , n 

i=l, ... ,n 

i=l, ... , n. 

P. probability that a replenishment involving item 1- 1-S the result 
1-

of another item hitting its must-order point 

O. = average value of the inventory level for item 1- when an order 1-S 
1 

triggered by itself 

P. = difference between the average inventory levels of item i when 
1 

it is included in an order triggered by itself and by another. 
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~i = average order S1ze of item i when the order is triggered by itself. 

Di = expected value of the yearly demand for item i 

~. expected value of the lead time demand 
1 

v. standard deviation of the lead time demand 
1 

KJ i = ordering cost for item i in the order triggered by another item 

Kli=total ordering cost for 'itemi if the order is triggered by itself 

hi inventory carrying cost pei year per unit of item i 

TIi maximum allowed probability of running out for item i 

n number of items. 

The 'obj ective -is to determine the must-order points, can-order p'oints and the 

order-up-to levels for all items optimizing (III~ll) with respect to s.'i, c. 's, 
1 1 . 

Si's . But realizating a mathematical optimization on these parameters would 

require the knowledge of their functional relationships with involved in model, 

i.e. the P.'s, O.'s, p .'s an~ ~.'s . Aithough a cl~sed-form it~ration leading 
1 1 1 1 

to the values 6f P. andR. in the two-item case .with unit sized transactians and 
. 1 1 

Poisson arrivals was obtained by J;P.Schaack [21], there has been' met no closed-" 

form results in the n-item compo~nd Pbisson demand context. Jhen, it will not 

be poss"ible to solve this "model by a pure mathematical optimization technique 

and becomes necessary to approach to this ~roblem by a heuristic algorithm. 

An algorithm which is a combination of mathematical optimization and simulation 

and developpedby J.P.Schaackand E.A. Silver [22] . was selected for the 

optimization of the model. Since for given val.ues of s., c., S. the correspon.ding 
. 1 1. 1 

P. and R. can no~ be determined by a mathem~tical procedure as explained above, 
1 1 

simulation \vill have to be accepted as a part of the algorithm. Simulatian is 

used to determine numerical relationships between the different parameters 

those can not be related to ~ach other functionally. A simultaneous optimization 

on si' c
i

' Si is not realized by the algorithm, but only alternative updating of 

s~, c. and S. will be available. 
.. 1 1 

The ma1n steps of the algorithm are: 

1) Give the alternative values of the control variables, 

i.e. si's, ci's and Si's • 

2) Observe the behaviour of the system through simulation 

.3) Make appropriat~ changes 1n the control variables according to the 

observations done in step 2 and by means of some mathematical 

. r:elationships. 
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START 

Set the initial values of 

the parameters and set up 

some necessary functions 

Set the ini tial values of 

. the stock control parameters 

II 
·.Simulate the system with : 

I . ! 
the initial inventory I 

! 

control parameters I 

1 
tvaluate the new updating I· . 

! 

parameters, 
I 

\V 
-Update the control variables 

according to the results or I 
I 

simulation and other calculation 

I 
r--Simulate the system with the 

s 

~inventory control parameters 

NO 

STOP 

Figure IV.I. Logic Diagram of the Optimization Algorithm 
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IV,2, UPDATING PROCEDURES FOR THE PARAMETERS 

Assume that the state of the system 1S given. This means that the inventory 

policy parameters are fixed and the P.'s and R.'s are already observed'. In, the 
1 1 

following sub-sections~ it is explained how a hew state will be passed ~ealizing 

seperate optimizations on s.'s, c.'s and S'.'s. 
1 1 1 

IV.2.1. UPDATING MUST-ORDER POINTS, s.' S 
1 

Hust-order points; s.' s, are not directly involved in the objective fun'ction 
1 

and the constraints, but are ,represented' by the 0i's.'Then if one can determine 

the Oils and relate them to sits somehow, the updating procedure of the must­

order points will be completed. In the model, itcan,be easily observed that 

eCich i)iivill be pus he? up' to satisfy the desired'service level in the respective 

constrairit and will be pushed down t6minimize the s~ock holding and the ordering 

costs in the o~jectivefunction. Then, for predetermined values of Pi,oi and 

~..,~., 0. will be chosen as the smallest value of o. which ~atisfies the respect,ive 
1 1 ' 1 

servite level function (III~12) f~r each item. 

O·-w· O-P i ) 
r '" (1 1) ',Y ---- .. 

v. 
1 

O. +0. -Li. P. 
.i~( 1 11)}.1 

'.). 
1 

> (I-IT.) 
1· 

t.;.-P.o. 
111 

, Di 

IV.2.l.l. Hethodi for Solving the Service Level Function (111-12) 

Inequality (111-12) has to be iolved in terms of 0i for each updating on si 

But because of its complex fo'rm, algebraic sol.lltion tOo this function does not 

seem possible. Some methods iri n~merical analysis are examined for this study 

and two of them are presented below. Then, a procedure based on the last one 

is developed and used to solve (111-12) in the study. 

IV.2.1.1.1. One-Point Iterative Method 

If an equation can be rewritten in the form of 

x = ,t (x) (IV-I) 
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then it can be found an x as the limi~ of the s~quence 

it is clear that if xl IS selected so that the sequence xl' x
2

• x
3 
•... does 

converge to a value r. then r is the 'root of (IV~l) 

Xf:l(x) :..._~ __ I~ ___ -:-/__ X=t(x) 

t( ) . I l I .. 
)(z"'<:x{ - ----I- - - - I 

. I /' I I I I 
I I I I 
I I I I 
I I 

X
3

=t.(Xz) __ :.._ ,_/- ___ 2 

: -t: (X) 
I , 
I 

Figure IV.2. An Example of the 

Diverging Case 

x 

t(x) 
Xl.=- t (XI) 

X3: l(x2.) 
)<4" -l:.(X1 ) 

":':''+---""'7Ji 

Figure IV.3. An Example of the 

Converging Case 

This method IS named as "One-Point Iterative Hethod" In [IS). because ~.,re have 

only sinele point at each stage different from other methods of finding roots 

such as the regula falsi or Newton's methods. ,'he same method is referred as 

"Iterative Procedure" In [24]. ~""hereby the ans~.,re.r at any stage is substituted 

In the given' function iteratively to produce the next number in the sequence.' 

In Fig.IV.2. and IV.3 .• the diverging and converging cases are illustrated on graphs. 

To use one-point iterative method ~or the solution of (111-12). the service 

level function can be rewritten in the form (IV-I). Then: 

O. t(O.) 
1 1 
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0.- lJ. 
{H ~ ~)} > 

v. 
~ 

(1-IT. ) 
1 

~.":"P.p • 
1 1 ~ 

D. 
1 

o . +0 . -fj • P . 
{Q(l 1 1)} 1 

v. 
1 

1 
l-P. 

1 

t is \vell knm,m that for the case of continuous variable, o. will be the solution 
1 

f equality minimizing the cost of carrying safeti stocks. Multiplying both 

ides by the inverse of normal cumulative density function 9-1 and making the 

ecessary simplifications, (111-12) will turn into the form (IV-l) as: 

O. 
1 

C-P.o. 111 
-1 D.(l-P.) 

{<!> l (1-:1.) 1 1 
1_ 

:tarting with an initial value of o. and iterating o. =t(O. 1) we may come to 
1 1n 1,n-

:h~ solution in a few iterations, but the convergency must be garanteed before 

Ising this method. ¢(x) 1S often included in-a computer l~brary or can be 

)rogrammed by using one of the integration methods ,~-l(y) can also be 

)rogrammed by solving y=Q(x) for x by means of the ~ewton method (20) or by 

)olynomial approximation ( 31. 

lV.2.l.l.2. The Regula Falsi (Linear Interpolation) 

Joe of the oldest methods for computing the real roots of a numerical equation 

is the method of I Regula Falsi I or I Falso Pos ition I (18]. It requires a 

<nowledge of the approximate location of the root and the values of the function 

at two points, Yl=f(xl ) and Y2=f(x2), where x l <r<x2 , r being a root of f(x)=O, 

If xl arid x2 are close enough to r, the function f(x) is continuous 1n x l <x<x2 ' 

Since the root lies between xl and x2 ' the function y=f(x) must cross the 

x-axis between xl and x2' Then Yl=f(xl)and Y2=f(x2) must have opposite signs. 

Since any portion of a smooth curve is practically straight for a short distance, 

it may be assumed that the change in f(x) is proportional to the change in x 

over a short interval, as in the case of linear interpolation from logarithmic 
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y 

x 

Figure IV.4. The Regula Falsi Method 

1d trigonometric tables. The method of falso position is based on this principle 

1d called also as linear interpolation in [18] and [19] • 

) derive a formula for computing the root, the arc Xl X2 is replaced by a 

lique straight line which passes through the points (Xl' f(x l » and (x2 ,f(x2»· 
~calling some coordinate geometry, the equation of this straight line may be 

~itten as 

f(x 2) - f(x l ) 
-...:::.-.-----=- (x - xl) (IV-2) 

Ie intersection of the straight line and the x-axis, which 1S X3 , will have 

Ie abscissa 

(IV-3) 

lis value of x is not however the true value of the root, because the function 

f(x) is not a perfect straight line between the points Xl and X2" It is merely 
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· -. 

a closer approximation than Xl. and x
2 

to the root. The process may then be 

repeated using the arch X1X3. In the practical application of· linear "interpo­

·lation, short tables showing the corresponding values of x and f(x) and also 

by means of (IV-3)"corrections to be applied to the pre~iously obtained 

approximate values maybe prepared. 

IV.2.l.l.3. Procedure Developed ~n the Study 

In this study, the Regula Falsi method is adopted somewhat and used to solve 

the service level function (111-12). Without using the subscripts and setting 

the right side of (IIl-l2) ,to a, sbluticin of this inequality will be nothing 

but the inter~ection of two functions 

fl (x) {?(x-u )} 
(l-P) 

{~(x+')-\.l ) } 
P 

\) \I 

and 

f2 (x) a 
~-P p 

where 
D· 
~ 

t. = (1-;-:) 

In the adopted Regula Falsi method, instead of looking for the root of a function, 

i.e. its intersection with function y=O, the intersection of two functions fl 

and f2 will be searched. 

Y2 = nXz) 
Y3(Yi)=((X3 ) 
'h=f'(X3 ) 
y=!::, 

\-.. _ .. _ ... _ .. _ ... _ .. _ .. _ ... _ .. _ ... _ ... _ .. _ ... _ .. _ ... _ .. _ ... _ .. _ .. _ ... ..., ... ":. ~( _________ f2(X) 

............ ~ ......... -" 
Xl 

Figure IV. 5. Graphical Representation of the Procedure Developed 

to solve (111.12) 
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The equation of the straight line between points (xl'Yl) and (x2 'Y2) is still 

in form (IV:-2). The P?int, ·where the straight line and f2 have the same value, 

can be obtained setting these two functions in ·eq-ual: Then, sub~tituting !:, in 

place of Y in (IV-2), the abscissa of the next poi·nt will be 

xlY2-Ylx2- (xl -x2) 

Y2-Yl 

This updating procedure will continue until you are close enough to the true 

value. 

It is obvious that the function fl is monoton, non-decreasing and non-negative 

because both terms are the cumulative density functions for normal distribution .. 

Then the following algorithm IS developed using the Regula Falsi method and 

these characteristics of fl. 

ITERATIVE ALGORITHN 

1) Calculate!:' and choose a positive step SIze of !:,~ 

If 0.y ~·O 
1 

set !:,x=-!:,x 

3) Compute the next point X2: 

x2=x1+!:,x 

Y2~fl(x2) 

!:'Y =y -I::. 2 2 

4) Control the interval (x l -x2) for the searched point: 

·If (I::.Yl*I::.Y2) >0, intersection point is not between these two points. 

Replace point X2 by Xl: 

Yl=Y2 

I::.y l=l::.y2 

Go to 3 
Otherwi~e, continue 
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.lfue.desired point lies between X d X S 1 h " . . 1 an 2' e· ect t e new pOInt .. 

Y2-Yl 

''::'.<i:':{;:-i:rs 'accuracy IS accepted, ·stop. X3 1S the desired solution. 

" }\titler.{j;ise~ cont inue 

·,",,····~eouee'the selected interval. 

·-:·f·::C:~y'*f..y »0 , intersection point 1S bet\veen X d X . ...... 1 3 2 an 3' 

Replace point X3 by Xl: 

Yl=Y3 

'~Y =' v . 1 -. 3 

Go to 5 

intersection priint 1S between v "1 

Replace point X3 by Xz 

Y2=Y3 

6Y2=0.Y3 

Go to 5. 

··;;:\>:;~:~lg.ori.thm may not seem to be able to find the solution in a short time, 

·"i;·<in'·:1:h~'.whole optimization algorithm, an approximate value of 0 is ready by 

~Gp~~~ious iteration. Then, using this value as the starting point, it will 

':;';<os'sible to use this search algorithm with an higher efficiency . 

.... 
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1 IV.2.l.2. Method Used for Computing the cd~ Function ~: Simpsons Rule Form~la 
---'---- 3 

Evaluating f1 (x) in the previous section, (~, the cumulative _ densi tyfunction 

of normal distribution, has to be knmm. In order to calculate this function 

methods of numerical integration are examined and it has met lots of ~ethods 

in this area such as rectangular quadrature rule, the trapezoidal rule,Gregory's 

formula, Simpson's rule, Heddle's Rule etc. [18], [24]. And among these methods, 

Simpson's Rule \\'ith the simplicity anc:i fairly high accuracy is_selected to be 

used in the evaluation of the function ¢, 

f(x) 

a 
i=O 

Figure 1V.6. 

X. 
1 

h-i 

x 
b 

.1=n 

Given the pivotal values of the function f(x) which is to be integrated: 

f., f. l' f. 2' ... 
1 1+ 1+ 

evenly spaced by h, the area under the integrand between x i - l and xi+l can be 

approximated by the area under th~ parabola passing through points (x i - l ' f i - l ), 

(x., f.) and (x. l' f. 1)' Then that parabola will have the formula of 1 1 1+ 1+ 

f (x)=Ax2+Bx+C with parameters 

A 
f. l-2f.+f. 1 1+ 1 1-

B 
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f. l-f. 1 1+ 1-

2 h 
C=f. 
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· The area under this para.bol~ between and . g1.·ven xi - l xi+l 1.S 

.D f(x)dx 

This result 1S known as Simpson's 

of ~.,idth h. 

1 
3 . -rule formula for the area under two strips 

b 
In geneial, f f(x)dx represents the area from a to b under the curve y=f(x)-. 

a 
But if f(x) is not i quadratic ~onction, the graph will not us~ally be a 

parabol-a. However, if we split ~he interval (a, b) into an even number, n, of 

parts, then f(x) may be accurat~ly represented by different parabolas for each 
n pair of consecutive intervals. Applying the Simpsons Rule 2 times, which means 

the graph of the given function is replaced by narcs 6f parabolas, yields the 

so-called General Simpson's R~le: 
2 

b 
r f(x)dx - h 
J :3 

+ ... + 2f -? + 4£ 1 + f ) n-_ n-- n 

a 

This formula cau also be written 1n the general form: 

ct. 1. 
c = 1,4,2, ... ,2,4,1 . 

Eventhough Simpson's Rule can be used for definite integrals, from the 

peculiarities of the probability density function for normal distribution, 
z 

~(~), this method is used to evaluate ¢(z) = f ~(x)dx. 
_00 

IV.2.l.3. Updating Procedure 

If demand S1.ze for each item has mean mi and standard deviation ai' then the 

difference between the must-order point and the average inventory level as soon 

as the inventory drops below si has an expected val~e of a i 

2 2 
1 

m.+a. 
(1. 1.). P roo f 

2 m· 1. 

of this statement is given in Appendix II. Also in section IV.2.l.I., the 
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minimum values of O.'s which must be carried to satisfy the desired serVIce . 1 

levels were determined sol.ving (III-12). Then, the must-order point ,."ill be 

higher than the average value of the. inventory ·when the order is placed, by 

the expected difference between s· and 0 .. For the determined value of 0
1
" the 

. . 1 1 

new si in the next iteration will be updated as 

s. 
1 

IV.2.2. UPDATING CAN-ORDER POINTS, c. 's 
1 

i=l, ••• ,n 

IV.2.2.1. Derivative of the Objective Function with Respect to ci __ 

Theci does not appear in the objective function and the constraints, but 

eventhough the functional relationships between c. and Pl" p . are not clear, 
1 1 

we know that Ri depends on Pi by (III-10) and Pi also depends on ci somehow. 

Then, ignoring the other dependencies, differentiation of (Ill-ll) with respect 

to C i gives us·: 

dP. D· KJ. D. KJ i c;, ·+P . -3P.p. dO . 
3Z 1 1 

+~h.] [_( 1 1) 1 1 1 
+ P. +--.-

2 1 1 
dc. 

1 
dc. c;,.-P.p '. 

1 111 

dP. KI. D. c;,. 
+ ( __ 1) [ __ 1 __ 1_ +-2:. h.] +(1-P.) 

2 
1 1 

dc. 
1 

c;,.-P.p. 
1 I I 
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dC. (c;,.-p.J.)2 dc. 
1 111 1 

-dP.p. 
[_( 1 1 ) 

dc. 
I 

KI. D. 
1 I 

-----] 
(c;,.-P.p .)2 

1 I I 

h. 
-2:.] 
2 



The derivative function may be simplified as: 

-KF D. ClP. - h. ClP. Clp. -Di _ - Cl(PiP:i.) 
( 

1 
) 

1 1 (p. 1 P. __ 1 +- ----- + )+ - (p .KJ .+(l-P. )KI.) 
t;. -P .p .. Clc. 2 

1 Clc. - 1 2 -1 1 1 1 Clc. --(C-P.p.) 1 __ -1 1 1 1 1 111 -

By chain rule, Cl(x, y) -Cly 
+ 

- Clx x- y-
Cle Cle- oe 

ClP. a p. Cl(P.p.) 
Then 1 p. __ 1 1 1 p. -- + 

1 
Clc. 1 

Clc. . - Cle • 
1 1 1 

h. 
and by (IV-6), D.(P.KJ. -+ (l-P.)KI.) 

111 1 1 
1 (~. _ P .p. ) 2 _. 

111 
2 

Substituting these values into the derivative function, it will be 

Cl(P.p.) 
dZ 

KF D. 3P. h. 
1 1 ·1 _ 1_ 1. 

+ -
Clc. t; .-P.o· dc. 2 

1 1 1._1. 1 

It ~ill finally be reduced to 

3Z d(P.p.) KF D. 
h. 1 1 1 

1 
dC. t;. -P.p . dc. 

-1 1 1 1 1 

The optimal value of c. must satisfy 
1 

3c. 
1 

3P. 
1. 

Clc. 
1 

ClZ o i=l, ••. ,n. 
dC. 

1 
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- - ;, 
d(P.o .) (h./2)(;.-P.;) .)~ 

1 1 1 1 _ 1 1 
+ 

(t;. -P.2 . ) 2 de. 
1 1 1 1 

i=l, ..• ,n. 

c. 
1 

(IV-4) 



IV.2.2.2. Iterative Algorithm to Update c·'s 
~--

Since the functional relations. hips betweeri P~~ a. and c. are not known, it can 
.L ~ • ~ . 

not. be obtained a closed-form solution for the optimal c i . Instead, performing 

small changes on'c i until the derivative approaches zero, it will be tried to 

catch· the optimal values. 

By the definition of the derivative [121, if 60 is small enough, the following 

approximation can be done: 

df :: M 

d0 60 

f(0+60) - f(0) 

L'l0 

If ~c. is chosen small enough,the same approximat{on can be accepted for: 
~ 

dP. 
~ 

dc. 
1 

6P. 
~ 

~c. 
1 

and 
d(P.a.) 

1 1 

dc. 
1 

6(P.p .) 
::: __ 1_1_ 

L'lc. 
~ 

~hen we know the values P. and p. for the value c. and similarly P. l· and 
~o . 10 ~o.· 1 

'1'1 for the value c. l , if (c.l-c. ) is small enough, (IV-4) can be approxima~ed 
~ . ~ 10 

dZ P·lP .l-P, a. 
:: 1 1 10 ~o h. 

1 

KF D. 
1 

~ .-P. a· 
~ 10 10 
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z 

1 2 
Figuri IV.7. Optimiza~ion of ci 

If ::Z >0 
3c. ' 

~ 

it means that t~e objective function ~ncreases as c: increases, 
~ 

then c. must be reduced. 
1. 

;Z 
If <0, 

k. 
the objective function decreases as c. increases, then c. must be 

~ ~ 
~ 

increased. 

Then the value of c. must be corrected according to the SIan of 
~ a The term 

y. IS defined as the difference between c. and 
1. 1. 

0., and it is used 
1 

to define 

c. when O. is known. At each iteration, the y. 
1. 1. ~ 

IS also corrected by another 

parame~er STEP i which is updated according to the increase or decrease ~n Zi:In 

order io converge to the optimal c., the STEP. is cut by two each time as soon 
1. ~ 

~s Zi intreases after having first decreased. The main st~ps of the updating 

procedure are 

i) if ~ > 0 
ac. 

1 

if az 
ac. 

1. 

and 

< 0 

Reduce 

Increase y. 
1. 

STEP~ , y.=y.-STEP. 
.L ~ ~ 1. 

by STEP. ,y.="(.+STEP. 
1. 1. 1. 1. 
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ii) At the end of the each iteration, if you are in the optimal interval, 

reduce the change on y. and get closer' to the opti,mum~: 
1, 

If Z. > Z. 
1. - l' . 

prevI0us 

If Z. < Z. 
1 1 • 

'preVIOUS 

Divide' STEP. by2. 
1 

Continue with the previous STEP. 
1 

While upda~ing ci's In the 'algorithm, if the value of STEP
i 

IS too large, the 

ap~roximations made above 

3p. uP. 3 (P .0 • ) L'I(P.p .) ,1 1 
and ' ,1 1 - 1 1 -

dC. 6c. 3c. DC. 
1 1 'I 1 

'ire no longer valid. But if STEPi IS too small, the algorithrri \"ill require too 

nariy iterations to reach to the optimal ~egion. Taking both into account, 

is not a bad ~ssumptioct as the starting value of STEP .. 
1 

[\' .2.3. UPDATING ORDER-UP-TO LEVELS, S i ' s 

[f o. is known In any iteration, 
1 

s. and ~. hold the same information by 
1 1 

~.=S .-0 .. Then 
111 

they can be used interchangeably in the optimization of the total 

:ost function, Differentiating the objective function (III-II) with respect to 

-KJ. D. 
P. ( 1 1 

1 U:.-P.p .)2 
1 1 ,I 

h. 
1 

+ - ) + 
2 

-KI. D. 
(l-P.)( 1 1 

1 (';.-P.o .)2 
111 

~here the changes In P. and O. due to changes In ';., i.e. 
111 

Ire neglected. 

h. 
+ ~) 

2 

3P. 
1 

;etting the result equal to zero and solving for ';i leads to 
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(l p • 

1 

de 
1. 



D. 1. 

(C;.-P.p. )2 
1. 11.· 

, ' , , 

(P.KJ.,+ (l-P.)KI.) 1 1. 1.1. 

. 2· 2 2 
h~C;~ -2h.P.p.C;. + h.P.p. -2D.(P:KJ. + (l-P.)KI.) = 0 

.L .L 1. 11.1. 11.1 1.' 1.1' ·1 1 

P -'-.; (h )2 2 2 h .. p. . .P.;). -h.[h.P.o. -2D.(P.KJ. + (l-P.)KI.)] 1. 1 1. l' 1 1. 1. 1 1 1 1. 1. 1 ' 1;' 1. C; . 1. 
h. 1. 

') D. (P.KJ. + (l-P.·)KI.) 1111.1. 
C' -p) -,-_,.I 
c,~ - .;. • 

.L 1 1 
h. 

1 

positive s~cond-order derivative guarantees the global minimum: 

3Z 
2D. 

1 

(t;.-P.o.)~ 
111 

(P.KJ. + (I-P.)KI.) > 0 
1 1 . 1 1 

S.-O., c .=R.-C)., O.<R.,·S. 1 1. 1 1 1 1- 1- 1 
< ;. , 

1 

o < P. < I 
1 -

(~.-P.o.) > 0 . 
. 1 1 1 

(IV-6) 

The same result, (C;i-PiPi)~O, eliminates also the negative sign 1n the formula 

(IV-6). ~~en P. and p. are known, the optimal value of C;. will be then 
1 1 1.. 

P.p. + .; 
1. 1 

2D. 1. 

h· 1. 

(P.KJ. + (l-P.)KI.) 1.1 1. 1. 
(IV-7) 
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[~"Pi=O, it means that only independent replenishments occur and the ordering 

~'icostisKli at each time. The same formula win be relevant for each independent 

~. will be nothing but the econom1C order quanti,ty in [10] . 
,1 

/2 D. KI. 
t;..= 

1 1 
EOQ. l = 1 1 h. 

1 

,\\Therf"the optimal O. is determined, S. will be updated by the following: 
1 1 

S. o. + ~~ 1, 1 1 

\'trrvr3~STEPS OF THE OPTIHIZATION ALGORITHM 

'5f'heloalgbrithm used for the optimization of the problem is an iterative one. In 

2.:lie·,algorithm, the parameters .are updated at each iteration according to the 

"~"r'u1es;'described in the previous section. It is continued until an acceptable 

'lresu1:t'is obtained. The algorithm proceeds as follmvs: 

1- Select STEP. for each item. 
1 

'2- Start with the initial values of .the para~eters assum1ng independent 

system. i.e. P. =0: 
10 

i) s. o. + a. 
1 10 1 

2 2 

1 m· + ::; . 
( 

1 1 
) where a· 1 

2 m. 
1 

and O. 1S the safety stock of item 1 1n an independent system 
10 

guaranteeing the desired service level. Therefore 0io will be 

the solution of (111-12) with P.=O 
1 
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"ii) c. 
1 O. + Y1' 10 

~"J; 
1" 

~ 
> (i-n.) 1. 

1 

where y.=STEP. a$ explained 1n (IV.2.2.2.) 
. 1 1 

" o. ~s 1n (2-i) . 
1.0 

iii) S. = O. +~." 
1. 10 1. 

where ~. 1S calculated by (IV-7) with p.=6: 
1 1. 

~ . 
1 

2 D. KI. 
1. 1" 

h. 
1. 

O. as 1n (2-i) ~ 
10 

EOQ. 
1 

3- Simulate" the system with the initial values of S. IS, c. 's and s. 's 
1 1 1. 

and determine NJRB., NJRNB., NTR., R., O. 
1 1" 1 1 1. 

Then calcuLa te 

P. 
1 

NJRB. + NJRNB. 
1 1. 

NTR. 
1 

o . 
1. 

R.-O. " 
1 1 

4- Calculate Z. , the objective function values by (111-11) 
10 

and set Z 
o 

Z." 
1.0 

* ~. is equal to EOQ. for P.=O. Then O. will be the solution of 
1. 1. 1. 1.0 
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?- Determine the new values for updating the parameters 

i) Deterrnine new O. solving (III-12) with the new values of 
1 

P. and' 0 .. 
. ' 1. '. 1 

ii) Evaluate . tiZ 
by (IV-S). 

3c. 
1 

if elZ 
0 < elc .. 

1 

y. =y:+STEP .' 
1 l' 1 

if elZ 
0 > elc. 

1 

y. =y. -STEP. 
1 1. 1 

iii) Determine new ~. solving (IV-6) with the new values of 
1 

P. and o. 
1 1 

-6- Update the parameters with the new values determined in step (5). 

s. O. + :L 
1 1 1 

c. O. ... .( i 
1 1 

S. O. + ;i 1 1. 

7- Simulate the system with the new values of s.'s, c.'s and S.'s 
1 1 1 . . 

in ord~r. to find the "corresponding values of the Pi's and 0i's 

necessary for the next updating. 

8- Calculate the new objective function values Z. 's by (111-11) 
1 

If Z. > Z. 
1 - 10 

If z. < Z. 
1 10 

Cut the STEP. by 2 
1 

Continue 

9- If stopping condition IS achieved,stop 

Otherwise set Zio = Zi and go to 5. 
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IV,4, COMPARISON OF THE PROPOSE~JOINT ORDERING POLICY WITH 
-INDEPENDENT POLICIES AND THE STOPPING RULE 

-One important practical point to know before"int"roducing an (s,c,S) policy 1.n 

a particular context is whether or not the savings accomplished by the ~hange 

offset the cost of implementation. A necessary step then will be the examination 

of the maximum possible saving realized by a joint ordering policy over the 

usual continuous review independent inveritory control system. The compar-ison 

of the joint and independent po-licies shows us what is the bestpositio"n which 

can be achieved by a joint policy. The difference between the most possible ~ 

-improvement and the improvement which has been rearihed wtll give a cri~erion 

to decide where we can stop, i.e. the-stopping condition for the algorithm~ 

For an inventory system with nitems and dependent ordering cost, the worst 

policy will be to control this system by n independent policies. Among the 

independent policies, the best thing will be continuous review (s, S) policy. 

Then ZI' the maximum cost which may be occurred controlling the system, will be 

the sum of all costs for a system allowing no joint replenishment, i.e. Pi=O. 

It may be calculated by 

D. 1. 
Z[-- KI. + . 1. 
1. EOQ. 

1 

EOQ. 
( __ -1. + 0" *. D L)h t-. .-

1. 1. 1. 
2 

where Ot 1.S the safety stock 1.n the independent system. 
1. 

(IV-8) 

The answer to the question of what a joint policy can do the best is g1.ven 1.n 

the following.For a joint policy, ;he total expected cost function (III-II) 

can be rewritten as the sum of the expected ordering cost in" terms of the 

number of orderings (III-I) and the expected inventory carrying cost. After 

some substitutions and simplifications~ 

Z l: [(NIR. + NJRB.) (KF + KJ.) + NJRNB. KJ. 1. 1. 1. 1. 1. i 

1 
+ (~.+P.p.) - h. + 01.' hi - Di L hi] 

1. 1. 1. 2 1. 
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orie lo~er boundary of the total cost functiori will,be obtained 

NIR.=O; i.~. no i~dependen~ repl~nish~ents ~ill occur. Theref~re 
1. 

setting, 

z > 'L 
1 

1 [NJRB;(KF+KJ.) + NJRNB. KJ. + U;.+P.Q.) h.+O:h.-D. L h.J 
1. '1. 1. 1 . 1 1. 1 1. 1. 1. 1. 'I 

2 

,or 

.:... 
,I 

[NJRB. KF+'(NJRB. +NJRNB. )KJ .+( ~~ +P.o '.)..!. h. +0. h."':D. L h. J 
1 ' 1, 1. 1 1. 1 1 2 1. 1. 1. 1. 1. 

(IV-9) Z > L 

The lowest cost In this last inequality represents the cost of a system 

operati~g without any independent replenishments" i~ which ~ase all replenishments 

occur'jointly and (NJRB.+NJRNB.) represents the, total nl!mber of replenishments 
1 ' 1 

for item i pe'r annum. Hence, by substituting (111-9) and (111-10) 'into (111'-4) 

a n9 (III"':S) then summing up t\.JO: 

NJRB. + NJR.'lB. 
1 1 

D. 
1 

~ .-P. ::: l' 
1. 1 

and where KI. > KJ. and 0 < P. < 1 foi ~ll i 
1.- 1 1-

2D.(P.KJ.+(1-P.)KI.~ 2D. 
,I 1 1 1" 1 1 1 < " 

, h. 
1 

It can be seen from (IV-6) that ~;-P.o. <EOQ. 
, '1 1. 1. -, 1 

K1. 
1. 

EOQ. 
h. 1 

1. 

Therefore a lower bound for 

the total number of replenishments \.Jhere no independent replenishment occurs IS 

NJRB. + NJRNB. > 
11.-

n 

D. 
1. 

EOQ. 
1. 

(IV-UJl) 

On the other hand iEl NJRBi represents how many times an order is triggered 

In a year, that means the total number of replenishments for the system during 

the whole year. The minimum-number of replenishments for the whole system has 
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to be at l~ast equal,to the number of replenishments of the fastest moving item. 

L NJRB.' > max (NJRB,+NJRNB.) 
1 1 - i ' . 1 I, 

D. 'D. 
, 1 )' 1 

max (~._P.P. ~ max(EOQ.)· 
1 1 ' IIi 1 

(IV-H) 

Then, substituting thelo\.,er bounds of the number of replenishmen'ts for each 

i tern and for the whole, system into (IV-9), th~ smallest value of the, lower bound 

on total cost function becomes 

t > max 
i 

D. 
(_._1_) 

EOQ. 
1 

KF + L 
1 

D. " 
l' "1 [-- KJ. + ( ~ . + P . p • )- h. +0 . h . -D . 

EOO. 1 I, 1 1 2 1 1 1 1 
'1 

L h.] 
1 

First two terms are the total ordering cost for the system and th~ others 

represent the inventory c?rrying cost. Theri the expression 

r,. P . .) . 
( 1 1 1 

L) + O. - D. 
.') 1 1 

,represents the average inv~~tory of item i under a joint replenishment policy. 

Ihe joint ordering ~olicy -gives an overall saving in the total cost decr~asing 

the total number of orderings thus the ordering cost, but it makes necessary' 

to carry' more inventory than carried in the "independent pol icy "ordering 

items more frequently. Theri the average inventory level carried under' an 

indeperident system gives a lower bound for the inventory carried in the 

dependent system~ Finally, a lower ~ound for Z In a joint policy can be expres~ed 

using the approximations above~ 

D. 
1 

max(--)KF + L 
1 EOQ. 1 

1 

, D. EOQ. 
1 1 [-- KJ.+(--

EOQ. 1 2 
1 

O~-D. L)h.) 
111 

,(IV-:12) 

Thus the maximum possible saVIng which can be achieved by a joint policy IS 

MPS 
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where ZI is the total cost of an independent continuous review system and Z is· 
L 

the lower bound on the total cost of a dependent continuous review syst~m. 

At any instant, if Z is the total cost fo~ a joint p6licy calculated by (III-II), 

the saving achieved by that over the independent policy is 

Ach S 
Z - Z 

I 

Then, if Z* is the best Z fo~nd up to now by the algorithm, the actual saving 

achieved by the algorithm will be 

AS 
Z· - Z* 

I 

Comparing the actual saving achieved by the algorithm up to now (Ach S)and the 

maximum possible saving of the algorithm (HPS), one may put a lower bound on the 

saving of the algorithm (Acc S). Then the stopping condition will be 

Ach S 

MPS 
> Ace S . 

When this target is reached and improvements are two small, the algorithm will 

not be run anymore. The best value of Z reached until then will be the optimal 

cost and the inventory control policy defined by the control parameters of that 

iteration will be accepted as optimum. 
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IV,~, MACRO ~LOW-CHART OF THE OPTIMIZATION ALGORITHM 

START 

LOOP THROUGH FOR i=l,n 

Set STEP.=EOQ./lO, P. =0, ;-' io 1 1 10 

O. by (III-12) with P.=O 
10 

Ct. 
1 

y. 
1 

t;, • 
1 

Set s. 
1 

C. 
1 

S. 
1 

c· 
10 

Compute 

2 2 
1 m. +0. 

( 
1 1 

) 
2 m: 

1 

STEP. 
1 

EOQ. 
1 

(by (IV-.7) 

O. + a. 
10 1 

O. + '( .. 
10 1 

O. + • '-> • 
10 1 

s. 
1· 

ZI by (IV-8) 

'\ by (IV-12) 

1 

\.,i th 

}~S = (ZI - ZL)/Zr . 

Set Acc S 

Simulate the system with 

( S ) ' and determine s.,c., l' s 
1 1 

P.'s, R.'s 
1 1 
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P.=O 
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<0 

y. 
1 Y i + STEP J 

I 

LOOP THROUGH 

FOR i=l,n 

Compute z. 
~ 

by (III-H) 

LOOP THROUGH 

FOR i=l,n 

Compute 

c.-c. 
1 ~o 

\ " 

O. by (II~-12) 
~ 

P. KF 
~ 

E:.-P.o. 
~ 10 ~o 

=0 

jt 

I Compute C 
1 

by (IV-6) 

Set P. P. 
~o ~ 

P io c . 
~ 

c. c. 
10 1. 

s. o. + ct. 
1. 1. 1. 

c· o. + y. 
~ 1. 1. 

s. 
~ 

o. + E:. 
1. 1. 
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P. P. 
~-~o 

c.-c. 
~ ~o 

y. -
~ 



Simulate the sy~tem 

with (s.,c.,S.)'s 
~ ~ ~ 

and determine P.'s, R.'s 
1 1 

\ , 

..--. ______ ---«. LOOP THROUGH 
. FOR i==l,n 

Set 

[(;mpute 
I . . 

z. 
~o 

z. 
~ 

z. by (III-II) 
~ 

< 

Set Z Z 
o 

7. - ::: z. 
1 

1 

STOP 
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rJ.!JlPTFD \I 
J ••.. I ~ •. 

V,"I, INTRODUCTION 

;ince the algorithm described earlier in the thesis contains a simulation stage, 

~omputer usage becomes necessary in determining the 6pt1mal values of the 

iecis ion variables. A highly large computer program with 2 subroutin~s and 6 

Eunct ions is \.;rri t ten to computerize the model. The connections of the main 

Jrogram with the subroutines and functions may be structurally shown "as in 

?igure- V.l. 

'--__ H-iA~ 

1-

PIP 

: PNT ; 
CDF 

Figure V.I. Program Structure 

Main steps of the algorithm are realized in the main program. First, the 

entrance of the input data and the computation of the necessary parameters 

occur. Then subroutine OSUB is called to solve the stockout function and the 

results, ai's, are used in the updating procedure of the decision variables. 

With the new values of the inventory control parameters, subroutine SIMSUB is 
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called by the main program. It realizes the simulation stage of the algorithm 

and makes it possible t.o observe the behaviour of the inventory system through 

simulation. At the end ~f the each "cycle in the main program, the inv~ntory 

control and update parameters are corrected according to the results"" of" the 

presen.t system. 

Finally~ if the achieved point 1S acceptable, the last values of the declsion 

variables are accepted as the best solution and the program ends. But if it is 

not so good,"it is passed through the same cycle 1n the main program with the 

new values of the parameters t6 achieve a better solution. 

V,2, SUBROUTINES AND FUNCTIONS 

V.2.1. SUBROUTINE OSUB 

Subroutine OSUB determines the value of the parameter 0i in the algorithm." It 

sorves the service level function (III-12) in terms of O .. A new iterative . 1 

procedure developed in the study and explained in (IV.2.l.l.3.) is used in the 

subroutine OSUB. Aft~r ~h~ inter~al in which the root lieS is reached, new 

point x3 1S generated using linear interpolation. Some checking points are 

included 1n the subroutine and an "upper limit, ~In1AX, for the number of "iter-. 

ations is given. If the desired accuracy is not reached by the maximum number 

of iterations, last value is accepted as the solution. The logic diagram of 

subroutine OSUB is shbwn in Fig. V.2. 

V.2.2. F1~CTION PNROP 

Function PNROP calculates the yearly probability of not stocking out with 

current values of the parameters for each item. It computes the left-hand side 

of (111-12) and returns this value to the subroutine OSUB which will give the 

solution of (111-12) . Figure V.3. illustrates the logic flow in function PNROP. 

V.2.3. FUNCTION CDF 

Computing the yearly probability of not stocking out, service level function is 

the product" of two special functions which are both cumulative density functions 
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of normal distribution. Then, function PNROP calls another function CDF to 

evaluate the value o~ cumulative dens·i ty function <!>. CDF makes numerical 

integrati~n using Simpson's i rule as explaineq in .(IV.2.1.2.): 

b 

J f(x) dx 

a 

:: h 

3 

n 
E 

bO 
c f. . where 

1 
~=1,4,2, ... ,2,4,1 

where f(x) IS taken as (1/2IT)* exp(-~2/2) for normal distribution. 

The results obtained in function CDF are compared to the values give~ in the 

standard tables and for n~lO, it gives quite correct results up to four decimal 

compared to the tabulated values. The logic diagram of function CDF is given 

in Figure V.s. 

V.2.4. SUBROUTINE SU1SUB 

Subroutine SIHSUB process the simulation stage. In this subroutine, inventory 

system is observed taking the operatin~ decisions with the current values of the 

inventory control parameters and the neH values of some parameters (P. and 0.) 
1 1 

are returned to the main program. It uses .an event base simulation technique: 

The simulation time, CLOCK,'passes from the present event to.the closest event. 

Ln the system, there are tHO types of events Hhich change the positio~ of t~e 

inventories. First, there Hill be additions to the inventories if an order is 

received. Secondly, arrival of a demand decreases the inventory and a review 

will be done. As a result, another order may be placed containing some items 

according to their. inventory positions. Choosing the smallest of the all demand 

times, time of the earliest demand, NEXTDT, is determined. In the same way, 

time of the ear.liest order receipt, NEXTOT, will be computed. Then the next 

event to which system will jump will be the one with earlier time. 

If the system jumps to a time at which an order is received, amounts received 

are added to the respective inventory levels and these orders are erased 

from the list of order on-road. But if a demand occurs as the next event,demand 

is supplied by the respective inventory. After the updatings in the' inventory 

position and the inventory level are done, the new inventory position is 

controlled whether it drops below the critical level. If placement of an order 
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decided, all the other items are reviewed according to the joirit ordering 

licy and the pbssi~le orders ~r~ includ~d jointly in that order for the items 

th the inventory positions below their can~order points. 

br6utine SIMSUB calls two functions, ,DTFUN and DSFUN, in order to generate a 

Y.~ demand for' an item. Func tions DTFUN 'and DSFUN are used to determine the 

~and time and dema~d size respectively. 

2.5. FUNCTION DTFUN 

nee the distribution of the arrival times of demand for an item 1S taken as 

'Lsson, it will have a probability ~ass function' in the form of, [4] 

-At 
p(k) 

e k='O, 1,2, ... ' 
k! 

lere A>O 1S the rate of arrivals and t>Q 

~n, the disttibution of time b~tween successive demands is exponentially 

~stributed and has probability mass function and cumulative mass function as 

~\.1en in Appendix 1: 

f(t) e 

t 

F(t) f 
o 

-At 

-Ax 
e dx 

Q<t<oo 

-At l-e 

llving F(t) for t and setting r F(t) 

-At . 
e = I-F(t) 

-At = Ln( l-r) 

t = - '1 
A 

Ln(1-r) • (V-I) 

) generate exponentially distributed random variables, a random number r, 

etween 0 and 1 is selected and t is evaluated by (V-I). 
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nction DTFUN is called to. determine when the next demand will occur. after the 

st one and it generates an exponentially distrihuted interdemand time for an 

ern. ,The logic diagram of function DTFUN is given }n Figure V. 6. 

2.6. FUNCTION DSFUN 

ter the time of _the next demand 1.S generated by fu~ction DTFUN, function 

E'UN is called to generate the size .of that demand. Since the amount demanded 

each ·time is assqmed to be non-negative normally distributed, the demand 

le will follow a normal distribution truncated to the left of O. For ·certain 

rameter values, if the prob~bility of negative demand size is negligible 

(x-<O) "'0) a normal process generator can be used for that purpose. 

x is normally distributed with mean ~ and var1.ance a2 , the cumulative 

5tribution function of x 1.S given by 

F(x) 
x 

r 1 

) rzrr a 
-00 

was shown 1n [23] that generator for that distribution will be 

x ~ + 
r-O.5 2.515517 + 6.802853v + O.Ol0328v 2 ) a (v- .::..:::.:::..~::.:.-.~-=-::..-=-=-:=-=:.::...::~--=-~=-=-=~...:-.---

Ir-O.51 1,+ 1.432788v + O.189269v 2 + O.001308v 3 

~re v = /- 2 Ln 0.5(1- I l-2r I) and r is a random number between 0 and 10 

: in the study, an easier and quicker approximation is used to generate a 

~mal random variable. This process generator depends on central limit theorem 

]. If Y is a random variable with finite mean ~ and variance a2 , from the 

ltral limit theorem: 

N 
L 

i=l 
y. 1. 

; an approximate normal distribution with mean N~ and variance Na 2 for 

~ge N. Since r
i

, a random variable between 0 and 1, is uniformly distributed 
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on the interval (0,1) , 

E 

Var 

Therefore for large N, 

(r. ) 
1 

(r. ) 
1 

N 
'2: 

i=l 
r. 

1 

1 

2 

1 = 
12 

has an a.pproximaten~rmal distribution with mean N/2 and variance ~/12. This 

immediately leads to a process generato'r for the standard normal random variable, 

Z, and is given by: 

N 

z 
iElr i -(N/2) 

To generate a normal random 'variable x 'with mean 1.I and variance '0 2 , \.Je need 

only the relationship between the general normal and standard normal random 

variables as 

z x - 1.I ---

Using the last t\.JO equations, the process generator for a normal variable with 

mean 1.I and variance 0 2 will be: 

N 
2: r· - (N/2) 

i=l 1 
(V-2) x 1.I + 0 

In order to simplify the formula, if N is selected 12 as in the program, the 

generator becomes as 
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12 
(Z 
i=l 

r .. - 6) 
.~ 

DSFUN, normal process generator function, is summarized in Figure 'V. 7., 

V.2.7. FUNCTION RANDU 

FunctionRANDU is called by functions DTFUN and DSFUN'whenever the demand of '. 

an item is to be 'determined. Ii: generates uniformly' distributed random numbers 

for generating two random events, the demand time and the demand size. The 

multiplicative congruential method is used in RANDU to ge~erate each random 

number. This ullifoDm random number generator is written for a binary computer' 
,. , 

with 36 bits per word. All we need to do is supply the first feed number .IR 

and make sure it is five digit odd. The routine takes over and generates the 

ne\v integer value of parameter JR to use for next entry into function. This 

gives the opportunity of generating any number of independent random numbers 

at each time. 

V.2.8. FUNCTION PIP 

Function PIP is used to determine the minimum possible number of orders for 

ind~pendent i~ventory system. Its function is to determine the smallest integer 

number equal to or greater than a floating point number. Then this result is 

used to compute the total cost for the system where items are controlled 

independently. 
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V.3. DEFINITION OF 1HE VARIABLES IN THE COMPUTER PROGRAM 

The indic~tors used 1n the program are listed a~: 

NI. 

NO 

MPS 

ACeS 

ACHS 

NITMAX 

NIT· 

DX 

Card reader unit number· 

Prin.ter unit number 

Maximum possi·ble saving by the model 

Acceptable percent of the sa~ing by the mddel ovei the 

independent orie 

Achieved percent of the saving at each iteration 

Maximum number of iterations for ·solving service ~eyel function 

Number of iterations passed for solving service. level function 

Step size in the iterative method for solving service level 

function 

ACCN, ACCO : Acceptable accuracies 1nve·rtical and horizontal axis 

respectively in service level function 

:HNT 

DV 

DURSIH 

CLOCK 

FLAGO 

FLAGJO 

FLAGOR 

NORRAN 

IR 

JR 

. An even number indicating the number of intervals 1n the 

Simpson's integration method 

Interval lenght in the Simpson's integration method 

Duration of the si~ulatioh run 

Time indicator in the simulation run 

Order indicator (1 if an order has to be placed, 0 ~therwise) 

Joint order indicator (1 if the order 1S placed jointly) 

Order receipt indicator (1 if an order is received at the present 

time, 0 otherwise) 

Number of samples in normal distribution generator 

Initial number for uniformly distributed random number generator 

Integer number used at each generation to generate uniformly 

distributed random number. 
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Function defined 1n the program are: 

"TRCFUN(J~"'): com~utes the valu~ of the objective function" 

EFUN(, ... , ) g1ves the optimal value of the paramet~r E(I) by IV.7. 

DERFUN(, ... ,): takes the derivative ofthe"objective functionw~th respect 

to ~an-orderpoin~ 

F(, ... ,) :" defines the probability density function for nonnal 

distribution 

Main inputs to th~ program are defined as: 

N Number of items in the group 

Kl Fixe~ se~~~p cost ~erorder 

K2(I) . Variable part of the'orderingcost for item I per order . 

LTDIE Replenish~erit le~d time 

D(I) Ekpectedyearly-demandfor item I . 

~ITR.-\N(I), SI?TRAN(I): Expected"value and st"andard devi..ition of" the 

transaction size for item I, respectively 

H(I) 

APRO(I) 

K3(I) 

DRATE(I) 

Unit iriventory carrying c6st per year for item I 

Naximum allmved probabi 1 i ty of running out for i tern I 

(the service criterion) 

Total ordering cost for. item I for an independent replenishment 

Parameter of the demand time distribution for item I 

HDLT(I), "SDDLT(I): Expected value and standard deviation of the lead-time 

demand" for item I with normally distributed" demand 

EOQ(I) Economic order quantity for item I 

The variables used 1n the program as: 

OUL(I) : Order-up-to level for item I (Decision variable Si) 

COL(I),COLO(I): Can-order points for item I at the last two iterations 

(Decision variables c 1., c. ) 
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Opel) 

'SAFES (1) 

TRCl 

'TRC, TRCO 

MINTRC ' 

p(I), PO(l) 

E(l) 

Y( I) 

DELTA(I) 

,U 

A(I) 

Must-order point for item 1 (Decision varialJle s.) 1. 

,Safety stock of item 1 in independent system 

Total relevant cost for independent system 

Values of the objective function at the last two iterations 

Lo~er bound ~n the objectiVe func~ion 
, ' , 

Probabilities of joint ordering for item 1 1.n the last two 

iterations, respectively. 

Paramet'er used to update order-up-to levels (~ . 1. in the model) 

Parameter, used to update can-order points (y. 
1. in the model) 

Change 1.n the Y(l) at each iteration 

Derivative of the objective function with respect to can-order 

point 

Parameter used to update mU,st-order points (0. .in the model) 1. ' 

R( 1), RSIH(I): Computed and simulated values of the order level when a joint 

ordering occurs 

0(1), OSI~l(I): Computed and simulated values of the order level when order 

, is triggered by i~em 1 

G( 1), GO(l) 

Z I, Z2 

Fl, F2 

INV(l) 

INVPOS(l) 

DTIME(l) 

DSIZE(l) 

NEXTDT 

ORTIME(l) 

OSlZE(l) 

Differences b~tweehRSIM(I) and OSIM(l) at,the previous 

and present iterations respectively 

Two values between -4 and +4 

Values of the cumulative density function of normal 

distribution for Zl, Z2, respectively 

Inventory level for item I 

Inventory position for item I 

Next demand time for item I 

Next demand size for item I 

Time of the next demand for the system 

Next order receipt time for item I 

Next order size for item I 
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NEXTOT 

Jl 

32 

'NORI 

?OMAT(K,J) 

. "<'ReI(I) 

Time of the next order receipt for the system 

Index of the item which has a demand arrival 

Index of the item which has 'an order receipt 

Number of i terns included in an order 

Order Matrix 

For J=l; Return time of the Kth order 

·For J=2; Number of items ordered in the Kth order 

For J=3~ 2 * OMAT (K,2)+2; Indices of the items included in 

the Kth order .and amounts ordered 

are stored in pairs 

Relevant cost for item I 1n independent system 

...... RG(I), RCO(I): Objective function values for item I at the last two 

FLAGRC(I) 

iterations 

Indicator for optimal region of COL(I) 

(1 if RC(I) increased after having first decreased, 

o otherwise) 
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, /1 . 
I -: I !=LOW CHARTS 

ENTER 

from HAIN 

Set parameters 

LOOP THROUGH FOR 1= 1> . ~r 

Choose the initial point, Xl 

CALL PNROP 

CALL PNROP 

In 
he solution '- .~;.~ .~ 
inte::-_? I 

Yes 

Select a new point, X3 , 

by Linear interpolation 

CALL PNROP 

Set 0(1) = X3 

RETURN 
to HAIN 

! 
Replace X2 bY.X

lt 

No 

~s 

solution 
between 

Replace X3 by X2 

Replace X3 by X2 

Figure V.2. Macro Fiow-Chart of Subroutine OSUB 
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ENTER 

from OSUB 

·Set parameters 

Set Zl=(X,...t·ffiLT)/SDDLT 

Z2=(X+G-MDLT)/SDDLT 

CALL CDF 

·1 Compute Fl=CDF(Zl) 

F2=CDF(Z2) 
I 1--___ -.--____ --1 

,--------"'-----.:..--------,. 

I Compute L _______ ~--__ --__ ~ PNROP = Fl l - P* Fl 

RETURN 

to MAIN 

Figure V.3. Macro Flow-Chart of Function PNROP 
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~NTER 

from PNROP 

'Define F(X) = __ ._1 exp(-X**/2) 
rzrr 

Set param~ters N1NT,iz 

SetVV = ABS (ZZ) 

NHALF = N1NT/2 

DV = VV/N1NT 

Set· CDF 0 

.--_________ -{LJO THROUGH FOR 1=l,NHALF 

Compute 

Set VL 

I 
W 
2*(1-1)*DV 

VU = 2*1*DV 

VN = (VL+VU)/2 

CDF=CDF+(DV/3)*(F(VL)+4*F(VN)+F(VU)) 

< 
CDF O.5-CDF 

RETURN 

to PNROP 

> 

Figure V.4. Macro Flow-Chart of Function CDF 
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ENTER· 

from MAIN 

nUIENSION and COMHON 

Storage Specifications 

Set Parameters LTD-IE, DURSIH 

Set Starting Conditions . 

. LOOP THROUGH FOR 1= 1 , N 

Set NIR(I) == 0 

NJRB(I) = 0 

NJRNB(I) 

SOO(I) 0 

SRR(I) 0 

Set NO ROAD = 0 

NOREC = 0 

NORDER = 0 

FLAGJO = 0 

FLAGOR = 1 
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LOOP THROUGH FOR I=l,N 

CALL DTFl'N 

DTlME (I) = DTFlm 

CALL DSFUN 

G DSIZE(I) DSFUN 

Choose NEXTDT = !-lIN(DTIME(I)) 

DTIME(I*) 

J1 1* 

NOROAD 

o 
FLAGOR 

~~t NEXTOT = OMAT(NOREC + 1,1) 
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INV(J2) 

(Order returned) 

Set CLOCK = NEXTOT 

CLOCK: DURSIH 

Set FLAGOR = 1 

NOREC = NOREC + L 

NO ROAD = NO ROAD - 1 

NORI = O~~T(NOREC, Z) 

LOOP THROUG~ FOR L2 1, NORI 
'-- __________ .-__________ J 

J2 m~T (NOREC,2*L2 + 1) 

INV(J2) + OHAT (NOREC,2* L2+2 ) 

NEXTOT: NEXTDT 

(Demand arrived) 

Set CLOCK=NEXTDT 
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Set FLAGJO = 0 

NIO = 0 

> 

INV(Jl) = INV(Jl) - DSIZE(Jl) 

INVPOS(Jl) = INVPOS(Jl) - DSIZE(Jl) 

CALL DTFUN 

DTIHE(Jl) - DTFUN + CLOCK 

CALL DSFUN 

! DSIZE(Jl) = DSFL~ 
L-. ____ -.-___ ---' 

Yes 
(Order places) 

Set NORDER = NORDER + 1 

NO ROAD = NOROAD + 1 

NIO = NIO + 1 . 
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·OHAT (NORDER, 1) =. CLOCK + LTINE 

OMAT(NORDE.R,2) = 1 

OHAT(NORDER,3) = J1 

OHAT(NORnER,4) OUL(J1)-INVPOS(J1) 

SOO(J1) = SOO(J1) + INVPOS(Jl) 

INVPOS(J1) = OUL(J1) 

LOOP THROUGH FOR I=l,N 

Set FLAGJO = 1 

NIO = NIO+1 

~o 

O~~T(NORDER,2*NIO+1) = I 

O~~T(NORDER,2*NIO+2) = OUL(I)-INVPOS(I) 

SRR(I) = SRR(I) + INVPOS(I) 

INVPOS(I) = OUL(I) 

NJRNB(I) = NJRNB(I) + 1 
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OMAT(NORDER,2) = NIO 

= 0 -I 0 

NIR(Jl) = ~IR(Jl) + 1 NJRB(Jl) = NJRB(Jl) + 1 

I 

I 

L 
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LOOP THROUGH FOR I=l,N 

[-compute NTR(I) = N1R(I) + NJ~B(I) + NJRNB(I) 

Compute RSIH(I) SRR(I) / NJRNB( I) 

Compute 

OS1H(I) = SOO(1) / (N1R(I) + NJRB(I)) 

P(l) NJRNB(I) / NTR(I) 

G(I) = RSIM(1) - OS1M(1) 

PRINT PCI) '7 
RETURN 

to MAIN 

Figure V.S. Flow-Chart of Subroutine SIMSUB 
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CALL RANDU 

[~~andom Number R 

Compute 

DTFUN = - (l/DRATE) ALOG(l-R) 

RETURN 

to SIMSUB 

Figure V.6. Macro Flow-Chart of Function DTFUN 
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Set NORRAN, MTRAN, SDTRAN 

LOOP THROUGH NORRAN TI~ffiS 

CALL RANDU 

Get Random Number R 

SUMR = SUMR + R 

rcompute 
I DSFUN=HTRAN+SDTRAN( (SUHR-NORRA~/2)~SQRT(NORRAN!l2)) 

RETURN 

·to SIMSUB 

Figure V.7. Macro Flow Chart of Function DSFUN 
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CHAPTER VI 

IMPLEMENTATION-: 0F THE STUDY 

V I I I I IMPLEt1ENTAT I ON O!= THE MODEL 

A mathematical model for con-trolling the inventories in the district warehouses 

of Silmerbank was -developed and the solution algori thrn to determine the -opti mal 

inventory control parameters has been computeri zed. As -explai n~d in Chapter II, 

the model wi 11 be run seperately for i terns of each factory-di stri ctwarehouse 

pair. The complete inventory control system for a s~ecific district warehouse 

wjll then be set up combining the _stock control systems of all groups of items 

delivered by that district. 

Applicati6n of the model for a selecte6 group of items which are produced in a 

specific factory and delivered by a specific district warehouse w:ill be presented 

ln the followirig section. 

VI. 1 • 1. SANPLE PROBLE~f 

Eski§ehir Factory and istanbul District Warehouse are selected as sample factory 

and d:istrict warehouse respectively. The model will be run for items produced 

in Eski§ehir Factory and delivered by istanbul District \-larehouse. 

First evaluation of the parameters for 1980 will be glven, then the results 

will be presented. Selected. items produced in Eski~eh:ir Factory and sold 

throughtstanbul Disttict Warehouse and their price in 1980 are given in 

Table VLl. 
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TABLE VI.l. ~TE~lli USED IN THE EXAMPLE 

Fa~tori arid Type No: Description Pr~ce (TL/mt) 

ESK.205 Printed Cloth (Basma) 54 

ESK.2i4 Film _pri nted Sati n(Film Saten Emprime) 10-0 

ESK.283 Kreton Emprime _ 115 

-ESK-.290 Jet.Poplin Emprime 100 

ESK.293 Jet.Rais~d Emprime (Jet.Divitiri Emprime)-120 

ESK.722- Satin CurtaIning (SatenDo§emeUk) 125 

i)-~valuation of Orde~ing C6st: 

A) Fixed Set-up Cost,KF: It is taken as the amount paid to trilllsportation 

compani es for a truck movi ng between Eski §ehi r and is tanbul. KF is 

recently 20,~00 TL per order. 

B) Item-Ordering Cost, KJ j : Method used for computing this ~ost term 

and results fo~-items ]n Table VI.l ar~ given ~n Appendix IV. 

ii) Evaluation of Inventory Carrying Cost, h.: 
- - 1 

Inventory carrying cost wa:s examined in Appendix III and it has been 

found out that unit co~t ]s 24.3 % of the inventory v~l~e peryear.Unit 

inventory costs per year for all items which are computed _multiplying 

their unit prices with 24.3 % are given in Table VI.3. 

iii) Delivery Lead Time, L: 

Lead time for all items 1 s taken equally and it is the ~hole time passed 

from placing an order to receiving it into the inventory. This time is 

approximately 15 days between Eski§ehir and istanbul. 

iv) Evaluation of Yearly Dem~nd, Di : 

Sales forecasts for all items within the whole system were done in [26] 

and the figures are presented in Table VI.3 of the same reference. 

"Exponenti al Smoothi ng Method" whi ch consi ders trade and seasonal effects 

on demand is used to determine the sales figures. Mathematical background, 

computer programs and other information about the forecasting method can 
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v) 

be me t " 1 n [27]. 

Sirtce 24.52 % of 'the production of Eski§~hir t~~tory is sold through 

1stanb'ul Di stri ct Warehous~ on the" average from the "statistical analysi s 

in [26], demands of items by this district ~ill be approximately 24.52%" 

,~f the total sales forecasts. ~esultin~"figures ~re giveri in" Table VI.2. 

TABLE VI.2. DEMAND FIGURES 

Type No: 

205 

"214 

283 

290 

293 

722 

Total Sales F~recait of 

Eski§ehirin 1980 (m~) 

4,9~J,738 

600,000 

2,039,678 

3,380,348 

3,766,918 

1,419,625 

Di 

Sales Forecast of 1stanbul 

District in 1980 (mt) 

1,212,205 

147,120 

500,130 

828,860 

923,648:" " 

348,092 

Evaluation of Der:nand . Si ze 'pa~ameters, m, and a ." 
1 1 

There does not exist exact data ]n the analyzed system to compute these 

parameters. As an approximation, means of d~mand sizes for al1.items are 

expressed as 1 % of their yearly demand fizures and standard deviations 

are computed as a proportion by means of [27] . These figures are li.sted 

in Table VI.3. taking.the percents as 15 %,25 %, 15 %, 20 %, 10 %, 10%. 

vi) Allowed Probability of Running Out, IT i : 

It is a service crit~rion and depends on management policy. For the sample 

run, maximum allowed probabilities of stocking out are taken as In Table 

VI.3. 

The ~omplete data set foi the sample run is tabulated In Table VI.3. 
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VI.l.2. EVALUATION OF THE RESULTS 

Computer program was run for the data set in TaQle VI.3. It takes 2.59 minutes 

of CPU time ,on a Univac 1106 machine for six-item inventory system for'lO' 

iterations. 

Additional parameters which are evaluated from the input data and used through 

the program are.·listed in Table VI.4. 

TABLE VI.4. GO~WUTED PARAJlliTERS 

~. V· a' EOQ. ·STEP. 
} . ,1 .1 1 1. 

D. L rri~+a~ ~. Item (=D. L) ("7 -. '}-(m~+a?)) ( 
1 . 1) (= 1. 1) (=EOQ./lO) 

1 m. 1 I 2 mi h. .' ... } 

1 1 

1 48,488 24,392 .6,l35 62,675 6,268 

2 5,885 3,062 797 17,032 1,703 

3 20,005 10,113 2,556 29,281 . 2,928 

4 33,154 16,609 4,160 41,235 4,124 

5 36,946 18,326· . 4,545 38,958 3,896 

6 .13,924 7,016 1,768 23,430 2,343 

The starting conditiqns -'Inventory control parameters and cost figures for the 

independent inventory control system - and the minimum cost for the dependent 

system are given in Table VI.5. If no joint replenishment is allowed in.the 

inventory system,.total independent cost comes out to be 9,562,604 TL. When no 

independent order1s placed in the dependent inventory system, lower bound on the 

total dependent cost is 7,968,085 TL. The maximum possible savingwhich the 

dependent system can reali ze wi thout any constrai nt on the serV1 ce levels wi 11 

then be 16.67 %. 

Iterative algorithm gives a total cost of 8,532,800 at the end of 9 iterations 

realizing 10.77 % saving over the independent policy. Solutions for several 

iterations and final results are tabulated in Table VI.6. Simulated values of 

O. (OStM.) are also given in.the same table to compare the computed ones in the 
1 1 . 

algorithm.Figure VI.l shows the pattern of the total system cost through iterations 

of ~he solution algorithm. 
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TABLE VI. 5. SOLUTION FOR THE INDEPENDENT SYSTEN . 

Item p; C O. s. S. HI . KI . 21 .. 
1 1 1 I 1 ,1 . ,1 _. __ ,1 

1 0 62,675 110,620 116,754 173,294 1,226,311 411,151 1,637,462 

2 0 17,032 13,593. 14,390 30,625 394~256 ·206,938 ' 601 ;194 

3 0 29,281 43,739 46,295 73,020 1,072 ,567 409,198 1,481,765 

4 0 41,235 79,681 83,840 120,915 1,63i,583 .501,000. 2,132,583' 

5 0 38;958 . 84,913 .·89,457 12.3,870 1,966,716 .568,000 2 ,534 ~ 716 . 

00 
0\ 6 0 23,430 29~166 30·,933 . 52,596 . ·818,972·· 355,912 1",114,884· 

HI;;} ,110,405 KI~2,452,199ZI=9,562,604 

Total independent cost, 21 9,562,604 

Minimum dependent cost, ZL 7,968,085 

Maximum possible saving, MPS.: 16.67%· 
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TABLE VI.6. RESULTS 

ClZ 

Itera ti on Item 
O. y. ClC. F, • s. C'. S'. Osim. H'. K. Z. 

1 1. 1 1 ] I, 1 ] , 1 1 I, ' 

I ' 
1 1 110619 12535 62675 116754 123154 173294 111369 1239791 ,34.2347 ,1582138 

2 13355 3407 14947 14i52 16302 28302 13467 ' 383882 ,108493 492375 

3 43707 5856 2'9098 46263 , 49563 72805 43820 ' 'i087943 318280 1406223 

4 79680 8247 LI1235 83840 87927 120914 ' 80454' 1642683 450993 2093676 

5 84912 7792 38958 89457 92703 .123869 86791 ' 1975012 532117 2507129 

.6 29034 . 4686 22584 30801 33719 5161i ' 29677 . 820425 274755 .. 1095180 

H=7149735 K=2026985 Z::9176720, 

2 1 109552 18803 58301 115687 128354 '167853 110513 ' 1211630 293371' 1505001 

2 12729 5110 12580 13525 ' 17838 25309' 12924 356412 96'332 452744 

3 43003 8784 26487 ' 45559 ' 51787 69490 42901 1058'910 '278364 1337275 

4 79211 12370 39601 83370 91581. 118811 . 78647· 163,9596 ' 385719 2025315 

5 84621 11687 38000 89166 96308 12262"1 ,'86363 ,1972913 502901 2475814 

6 28588 7029 20871 30355' 35617 , 49459 28633 ,802734, 240923 ' 1043657 

H=7042196 ' K=1797610 Z=8839806 
" 

3 1 108884 25070 ,53427 115018 133953 162310 '. 109383 1204517 ' 256422 1460938 

2 12037 6812 11751 12833 18849 ' 23788 11981 348263 109423 457686 

3 42352 11712 ' 24785 44908 54064 67136 42217 1.041768 278248 ,1320016 

4 78291 16494 37212 82451 94784 115502 78932 1618672 376374 1995046 

5 84228 15583 37221 88772 99810 121448 85211 1966744 473984 2440728 

6 28065 9372 - 19648 ' r29832 37437 47712 ' 28385 805197 181418 , 986615 

H=6985162 ,K=1675869 2=8661031 
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Iteration Item O. y. dC· t, . s. c. S. Oslm .. H. K. Z. 
1. 1 1 1 1 1 1. 1 1 . 1 1 ",----- ----

'6 1 108548 31338 53310 114682 139885 161857 ' 109631 . 1221775 229007 '1450}82 

2 13398 5110 13842 14194 . 18507 27239 13421 381468 107198 488666 

3 41106 14640 23418 43661 5574'7 64523 41114 1009972 297001 ' 1306'972 

4 75700 20617 + 37817 79860 96317 113517 76197 1585651' , 381211 ' 1966861 

5 81759 27270 35193 86303 109029' 116951 81061 ,2034082 361333 2395416 

,6 27281 7029 +- 18989 29048 34309 46269 27807 726875 29'8340 1025215 

H=6959823 K=1674090 Z"';8633913 

9 1 108263 37605 55642 114397 145868 163905 '108803 1254211 218715 1472926 

2 12234 3406 . + . 12044 13031 15648 24278 1-2255 316066 155471 . ' 471538 

3 41479 16104 25119 44035 57583 6'6598 4167.5 . 1074877 . 229705 ' 1304582 

4 73727 . 24741 + 38656 77887 . 98468 112384: 74.480 . 1562742 .360208 1922950 

5 82438 21427 + 36346 86982 10'3864 '118783 82592 '1978~24: ' 391882 2370105 

6 27515 10543 19202 29282 38058 46716 28168 ' ,.790330 200370 990700 

H=6976450 ,K=1556351 . Z=8532801 

AchS=.1077 
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VI,2, ADVENTAGES OF THE RECOMMENDED (s:c,S) 

POLICY OVER THE INDEPENDE~T (s;S) POLICY' 

rhe objective in controlUng the inventodes by a 'connnon poUcyin a mufti-ftem 

invento:i:y system fs to use the fixed set-up cost of ordedng in an economical 

';lay. '-!hen an increase occurs in' the fhed set-~p cost, ifi te"ms are controlled 

by theh own independent polides, the system \-1i11 tend topl.ace less number of' 
- ., . 

o"rders in order not to i"~c"rease the total ordering cost j n the same percent-At 

the' end,lm-1er r,?-:-order points but higher order-'up-to level~" for all i terns wi 11 

be obser~es. Placing ord~rs rarely but in'largerq~antiti~~ re~ults in c~rrying 

higher stocks for, each item. Finally, the,""total:cost will be highly influenced 

by the change in the order"ing cost term. But] f, a" dependent inventory policy is 

used, 1nerease in the set-up cost will tend to ha~e higher can-order points for 

items in order to decrease the number of independent repleni shments '. Joi"nt 

ordering probabilities will be higher In the new system than in the old dependent 

system. For the new parameters, the resulting dependent policy will order from 

each j tern wj th' an hi gher frequency but by smaller quanti ti es. In short, 'total' 

cost will ~e less effected by the change in the set-up cost in the dependent 

system than it would be in the case of jndepend~nt system. 

Fat alternative 'values of the set-up cost, total costs for ind~pend~nt and 

dependent systems ~nd als? percent Increases are li~ted in Table VI.7. Percent 

lncreases in total independent and dependent costsvs. percent jncrease in 

set~up cost are plotted in Figure VI.2. As seen in the figure, reconnnended 

inventory policy has obsolute ad~entage over the dependent 6ne~ 

~aximum possible,saving, actual saving achieve~ by the algorithm in at most 10 

iterations and achieved percent of maximum possible saving are given in 

Table VI.S fcir several numerical examples. Then, actual achieved saving vs. 

:naximum possjble saving is plotted jn Figure VI.3. 
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tABLE VI. 7. TOTAL INDEPENDENT AND DEPENDENT COSTS FOR DIFFERENT 

SET-UP COSTS .. 

Alternative % lncrease 
21 

% increase. z· % .lncrease 

values of KF . in KF in 21 in Z 

10,000 8,556,451 8,119,953: 

15,000 50 . 9,088,598 6.22 8,,301,490 2'.24 

20,090 100 9,562,604 11.76 -8,532,801 5.08 

25,000 150 ·9,994,679 16.81 8,761,161 7.90 

30,000 200 10,394,630 21.48 8,879,601 9.36 

·40,000 .300 11,122;017 29.98 . 9,386,254 ·15.59 

50,000 400 

TABLE VI.8. 

Naximum Possible Saving 
(%) 

. 12.3 

14 .. 8 

.16.7 

18.1 

19.3 

21.0 

22.4 

·11,777,219 ·37.64 

Actual Saving achieved 

the algorithm (%) 
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5.·1 

8.7 

10.8 

12.3 

1.4.6 

15.6 

18.1 

9,644',928 18.78 

by Percent Reached· 

of MPS 

41.5 

58.8 

64.7 

68.0 

75.6 

74.3 

80.8 
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F:i gure VI. 2. Adventages of the Dependent PoU cy Over the 

Independent Policy 
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Figure VI.3. Actual Achieved Saving v.s. Maximum possible Saving 
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VI.3. T~EALG6~ITHM/S PERFORMANCE.UNDER CHANGES 
IN THE SYSTEM PARAMETERS 

An interesting feature of the algorithm is itsa_daptabi~i.ty to changes in the 

values of the parameters: lri.a real situation, the demand for' certain items . " - . . . . 

will change w:ith time. Decrea"ses.6r increase~ in thedemand parameters may take 

. place. Secondly, . change cinthe lead time may occur. Thirdly, new pricing 
~ .: 

practices iristituted by th'e supplier will yield a change in the inventory 
. '. . 

carryin~ cost: Also fluct~ations of the orderi~g cost miiht be encountered. 

Last, managers may propose ne~ service levels for items. 

When one of the" cases 'is observed, the new inventory control parameters "may be 
" . 

achieved 'solving the model from the ·beginning. 'But the respective c.hanges can 

be introduced in the ~rocess of the sbl~tion and 'starting from the independent 

system will be hence avoided. 

The algorithm performance over the change in demand figures IS examined in the 

following. ~Vhen demand parameters In Table VI.2 are changed as: 

Di 0.90 Dl 

Dr 
2 D2 

Dr 
3 = 0.95 D3 

Dr 
4 0.90 D4 

Dr 
5 

=,0.95 D5 

Dr = 0.90 D6" 6 

the solution gi ven in Table VI. 8. ] s found. by the algori thm at the end of 9 

iterations. 
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. TABLE VI. 8 . SOLUTION FOR NE\~ DEMAND FIGURES 

-
Item D~ s. c, S, Z, 

] . ] ] ] ] 

1 1,090,985 99,087 137,546 143,127 1,333,710 

2 147,120 . 12,186 .18,202 24,766 466,896 

3 475,124 43,498 51,644 66,182 1,318,267 

4 745,974 77,443 86,975 110,214 .' '1,871, 714 

5 877,466 83,259 100,548 113,636 2,291,355 

6 313,283 25,315 35,773 43,210 914,775 

Z=8,196,716 

Curve 1 of Figure VI.4.shows the behaviour of the solution for the initial 

demand parameters (D l , D2, D3 , D 4,D5 , D6).C~rve 2 ] n the same figure 

corresponds to the, system with the new demand 'figures (Di., D~, D;," D4, DS' Df)., 
As ~ thirdcas~, give the solution of the first syst~m at the end of the fifth 

iteradon (F'4' F'5', 0 '4' P '5' s'S' c"4' c'S' S'S' Z'S' ZS) as the ini"tial, . ]'.]' ] ] . , ]1 1 ] 1 . . ' , . 

condition to the second system, Instead of starti?g from the independent system, 

initiate ~rom that point. Give the new parameters into the algor:.ithm and 

continue through the algori~hm. Curve 3 of Figu~e vI.4 shows the sol~ti6n 

pattern for the third case. 

'These results show clearly that if changes in the parameters are encountered, 

it is not necessary to start from the beginning. An iteration ,based'on their 

new values along with theex-opti~al values of the other parameters leads 

quickly to a new nearly optimal sol~tion. In short, the algorithm is adaptable 

to changes in the values of the uncontrollable parameters. This property of the 

algor] thm is very useful in reaching a new solution in a short time, when a change 

occurs in the system parameters. 
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CHAPTER. VII 

C nNe L U S ION S 

The objective of thi s study was to develop an inventory controt system for 

warehouses where several groups of i terns, each of which is s~ppU ed by.a gi ven 

supplier, are stored. Consequently there is a fixed set-up cost J;or ~ach 

replenishment from a glven supplier. In order to use this fixed part of the 

orded ng cost.; the (s,c,S) policy IS proposed to be used in controlling the 

inventod es in the warehouses instead of usi ng i ndepen:dent orderingpolid es 

for items. 

In modelling the system, total inventory carrying cost and ordering cost are 

taken to be minimized in the objecti~e ftinction. The ~ffects of the stock out 

cost are consider~d by the service level constraints, because of the difficulties 

of computing this cost term. 

Implementation of the recommended joint ordering poUcy for a six-item case has 

been realized and it has been shown that taking the ordering dedsions by the'. 

(s,c,S) policy instead of controlling each item by its independent (s,S)policy 

saves 929,804 TL. Dependent system achieves a reduction of 10.77 % in the total 

system cost over the independent system.~fuen an increase in the cost parameters 

takes place, its effect on the total system cost will be less in the dependent 

system than it would be i.n the independent systems. 

The iterative algorithm used for finding the values of the inventory control 

parameters of the (s,c,S) policy results in considerable improvements over the 

independent replenishment policies in a few iterations. The best that the 

algorithm can do may be observed in Figure VI.3 for several numerical examples. 

For the sample run, the algori thm achi eves 64.61 % of the maximum saving achieved 

by the dependent policy without any service level criterion. 

But the algorithm has weaknesses on two fronts. First, since the functional 

relationships between the variables ~., 0., R. and P. in the model can not be 
1. 1 1 1 
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defined, simulation is required as a part of the algorithm in determining the 

values of P. andp. for the alternative'values of s., C., S .. Thus·computer 
1. 1 . ' .'. 1 1 1 

usage is required in the solution of the mode1.Secondly, updating of can-order 

peii nts is not 'acomplete optimization. As it can be sl:enfrom the results, 

the algorithm provi des a fas t s tabi li za·tion of the S. ' s. Thei r values approach 
. ." 1 

the optimal values. wi thin a range of 10 perc:ent af.ter 2 o'r 3 iterations. In the 

rem~ining iterations, it tries to reach t6e riptimal values ofth~ ci's by· 

dichotomy method. 

If the remnant stocks (Ri's) and joint ordering probabilities (Pi :s) can be 
. . 

expressed as functionsof .. s i , c i ' Si' sim~lation will not be required as a 

part of the algorithm. Also,: if ~pdating procedure for determining the can-order 

points is improved optimum will be reached in a shorter time. 

Another cri tici sm of the optimization algori.thm concerns the updati ng of si' 

If the simulated values of O. differ from their computed values too much, ex. 
1 1 

g1 ven in Appendi x 2 may be used as only an approximation in updati ng s.," but the 
. l. 

total ~ost can be evaluated using the simulated v~lues of O.'s. 
] . 

A very useful prope~ty of the alg?r:ithm lS itsadaptability to the changes In the 

uncontrollable system parameters such as' demand rates ,orderi ng and, hqldi ng costs, 

service criteria etc. When a cbange occurs in one of these parameters, it is 

possible to reach' the optimum continuing from the ex-optimal values of the other 

.parameters using this property of the algorithm. 

In order to;set up an overall inventory control system in a district warehouse 

of the whole inventory system, items coming from the same supplier will be 

handled in the same set. The model will be run separetely for each group and 

optimal values'of the three inventory control parameters will be determined for 

each item. Then the total inventory policy for a district warehouse will be 

described combining the separate inventory policies of all groups of items. 

In the implementation of the study, if i nventori es are controlled on cards, three 

critical inventory parameters are kept for each item and items coming from the 

same factory are put in the same file. When the inventory of an item drops below 

its mUst-order point, only items in this file will be searched for their can-order 

poi nts. Thus, the revi ew of ~ terns wi 11 not be a very ti me-consuming task and 

can easily l>e done manually. 
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APPENorX. I 

EXAMItlATION OF DE~AND ·CHARACTERISTICS 
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I, I, THEORY ABOUT THE DEMANri- DISTRI~UTION 

-Defini don 1: Let n be a sample spac~ arid w be any realization on it. A stochas tic 

p-rocess N;'{N
t

; t,::O}. defined on Q :will be an' "arrival process" such that for any 

. WED , the mapping t-*N (w) is non-decreasing, 1ncreasesby jumps only, is right 
. t .... 

con t inuous, and has No (w) = O. 

Definition 2: An arrival process 

p-rov~dedtha t: 

N={N ; t>O} 1S called a "Poisson Prqcess" 
t 

i)For almost all .wd"l,each jump of t-*Nt(w) is of unit magnitute-. 

Ii) For any t,s_>O, N - * is i~dependent of IN ; u~t} . . t+s t . u 

iii) For any t,s,::O, the distribution of '. N
t
+

s 
-Nt 1S independent oft, 

'. but is dependent on s. 

Lemma 1 

~errnna 2 

~emma 3 

heorem 1 

for all t::,O, 

- ,-\t . 
p. N =Or~e . for some. constant 71.>0 • . t 

\ve have'· 

Lim 
t->O 

He have 

1 

t 

P{N >2}=0. 
t-

1 
Lim -P{N=l}=A 

t 
where A 1S the constant appearing 1n Lemma 1. 

t -

If {Nt; t>O} is a Poisson process, then for any t,::O, 

k=O,l , ••. , 

)r some constant A>O • 
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Expected value and var1ance ~f Poi~~on process with parameter A· are given by 

Prop6sit~on 1: If T
1

, Ti, .. ' are th~ successive times of ju~ps, for any n~O, 

-
P{T 1'- T< ~/T , •... , T } 

n+ n - 0 'n I -At 
= - e ., t>0 

In other words, the'interarrival times T
l

, T2.:-T
1

, T3-T
2

...... areindependerit 

and identically 'distributed random variables tvith the cOmrilondistdbution being 

1 -
-Xt· 

e t>O 

The distribution above is calle.d the "e~ponential distribution" with' parameter 

A. The expected value and the variance of interarrival times 1.n a Poisson'Process 

are 

En 1 T 1 n+· n 
1 
, 

. ,I 
and Var (T 1 -.T ) n+ n. 

1 

Definition 3: If the restriction of unit jump size 1S removed from the definition 

.of Poisson process and allowed jumps cif,any si~e, the sto~hastic process 

Z={Zt; t.:::O} is said to bea "compound poisson'! process. Then, the definition' of 

compound Poiss~npibcess will be such that: 

i) for almost all lVO:~, the function t-Zt(I';) has only finitely many jumps 

in any finite interval. 

ii) and iii) forX={N ; t>O} 1n definition 2 are the same for' 
t 

Z={Z ; t>O}. 
t 

'\ possible realization of compound Poisson process 1S shown l.n Fig. 1.1. 
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>t 

Figure 1.1. A possible Realization of Compound Poisson Process 

If Tl , T 2, •. are the arrival·times in Po.issori process Nt and if.Yi,Y 2 , •.. are 

independent a·nd identically dis tributed . random variables ~vhich are also 

independent of the T , then the process Z obtained by.surruning up all the Y. 
. n, J 

for whiGh Tj~t to make up Zt isa cbm~ound Poisson process. 

k=O,l,.;. for some :constant '.>0 

where Y. is independent and iderttically distributed ra~dom variable with mean 
J 

m and standard deviation o. 

Characteristic p~rameters of· the.comp6und·Poisson process maY'be evaluat~d as 

follmvs: 

If the n~mber of jumps Nt of Z in (O,t] ~sn, then Zt~S the sum of n 

independent and identically distributed random variables. Hence, if 

E[Y.]~m and the rate of jumps IsA, then 
J 
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/ 

Vaiiance 'of theZ may also bederi~~d as follows:' . t 

DefiQitio~ of ~he varianc~ was 

Var(X) 

Same formula 1.S also valid for Zt' 

Va~(Z ) = E[Z2] - (E[~t])2 , t . . t 

.Substituting 

E[Z IN ) =m N . t t - ' t 

and uSl.ng some facts in probability theory" 

- (E[Z):? 
t 

N ;-.:2 
l t ,.J 

E[[Var(Z IN ) + (E[Zt/Nt])2) - (E[Zt])2 
. t t 

then 
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1.2. LEAD TIME,DEMAND 

In the system ~re~e~red, expec~~d value of yearlj de~and Zt i~ ,taken a~ D, and 

th~ sameparametersm and 0 2 'are used for the,mean and the variance of the 

distribution of jump'size- respectively. Then analysing EIZt ], rate of arrival 

of demand will come out ~s A=D/m 

By Proposi tioll: 1, il)terarri vai time '{ S. } of' poisson distribution follows 
J 

exponential distribution. Then, for,arrival rate A=D/m, 

E [S.] 
J 

miD Var(S.) 
, J 

Proposition 2: For a continuous review inventory system ~."ith constant replenish­

nentleadtime~,intervals of time between successive demand points and 

quanti~i~s demanded ~~ each point for~ {ndependent sequences of independent, 

identically distributed random variables ~."ithdistribution function A(.) and 

B(.) tespectively~ If the number of arrivals during lead timeL is large,demand 

iurin~ lead time can be approximated as [13]: 

~lL aL L \.]2 -2 L 
D(L) 1 1 °2 

) 'V N (- --,-+ 
'< 

Il 2 ~2 \.1;2 

::here the subscripts 1 and 2 are used for demand SIze and 'interarrival time, 

ind the parameters \.] and a are used for meansind standard devi~tjons of the 

jj sed butions respectively. 

;ubst~tuting the parameters used In the study as: 

\.]1 m 0 = CJ L = L 
.1 

m m 
~2 

D 
°2 

D 

lis tribut ion of demand during lead time will come out as 

m2 

(m L a 2L 
m2(-) L 

D(L) 'V N D2 ) --+ 
miD miD (miD); 

lnd 

'V N (DL, 
DL 

m 



APPE~lD IX 11 

P 1 m2 + 0 2 
ROOF OF ,~= - ( . ) 

2 m 
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STATEMENT: 

lt is a compound Poisson·process with rate A a-nd jump ~sizes {Y i } are independent~ 

identical non:-negative.r'arido~·variables with mean m and variance 0'2. Hhen the' 

Z t raises 

the Zt and 

above :a specified level/). at the first -time, the difference between 
- 1 m2 +O' 2 

/). has expe~ted_ value ~f .1 ( ~ ) 

For fixed ,6 > 0, ~efine 

.. ZtT 

u inf ft_>O,· Z > /).}-./). t 

Find f(/).) E[Z 
u~ 

Z I --U
ll 

.......... ".'" ....... -. 

. ~ 

L._· _ 
Ftgure ILL 

HEORY: 

/).] 

- - Ull 

efinition 1: Let (Wi} be a sequence of i.i.d. ·~nd non-negativ~ random variables .. 

hen, the stochastic process S={Sn; n~O} with state space R+ defined by So=O, 

l
=S +t-l +1 \vill be called a "renewal process". 

n+ n n . 

~finition 2: Let W be a distribution function on R , and let f be a non-negative 
+ 

~mction defined on R+ which is bounded over any finite interval [O,t] • Then 

je function $~f defined by 
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~~f(t) jW(ds) f(t~s), t > 0 
[0, tl 

is calied the "convolution"of tV and f. 

Definition 3: ,S= (S , m:N) ~s a renewal pr~cess andF is the distribution of 
, ..,' -n ' 

'. the interarrival times. For' any m,' .the distribution of S ' . - 'S ~s the'm-fold n+m . n 
convolution Fmof F with itself. Along ,-lith the i'ndependence of the increments, 

this implies that 

p{s - s' <'tiS , .•.. , S } = 
n+m'n 0 n 

m -
F ,Ct) , t> O. 

Definition 4: If Nt ~s the number of renewals ~n the interval [O,t·l, 

P{S < t} 
k 

De:'inition 5: The expected number of renewals in [O,t] ,,,ill be 

E[N ] 
t 

p{S < L­
'n -

DO 

'2: 
n=O 

Then the function R(t)~E[N ]=I+F+F2+F3 + ... 
t 

corresponding'to the di~tribution F. 

+ ••.• 

is called the "renewal funGtion" 

Definition 6: A renewal process S ~s said to be "recurrent" if W <+00 almost 
n 

surely for every n; otherwise S is called "transient".F(oo)=lim F(t) will be 
t-+oo 

equal to I and less than I for recurrent and transient procesSes respectively. 
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Definition 7: A renewal process S 1S said to be "periodr"c" with period a .if the 

randbm variable~ Wli W~, ... take values in a discrete~e~ {a, ai 2a, •. ,} and 

a is the largest such number. Otherwise, if there is no such 0>0, S is said 

to be "aperiodic". 

Definition .8: f(t)=g(t) + f . F(ds) f(t-s) is called a "renewal equation" " 
[0, t] 

where F is' a distribution on R+, f .and g are functions bounded "over fini teL interval: 

00 

and g( t) = f (y-:-t) dfCy). 

t 

Theorem I: The renewal equation f=g+F*f has one and only one solution; it 1S 

.f=R*g 

00 

where R =l: F
n 

is the renewal function corresponding t6F. 

Theorem 2 (Key Renewal Theorem): 

lim f(t)=!im R* g(t) = R(G) .g(oo) 

t-+= t->= 

provided that gem) = lim get) exists . 

. ii) If gED, F(oo)='l, and F is not arithmetic, then 

1 im fC t) = lim R*g( t) 
1 .g(y) dy • 
m 

t-+oo a 

PROOF: 

By the statement of the problem, f(~) can be rewritten 1n the form 

f(~) = E[Z -~] 
u~ 

00 

r r 
} (y-~) dF(y) + ) f(~-y) dF(y) 

(O,~] 
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Hence, if we 

then, we have 

define 

00 

g(ll) = r (y-ll) dF(y) 
) 

II 

f(ll) - g(ll) + : f(ll~y) aF(Y) . 
. [O,ll] 

By definition 8,f(ll) will be a renewal equation :,atisfying 

f g+F*f 

By theorem 1, f(ll) has a unique solution and 1S 

f(6) = r 
) .R(du). g(ll-u) 

[O,L] 

00 

,,,here R(u) E Fn(u) by definition 5. 
n=O. 

By Ke~ Reneway Theorem, 

00 

lim f(i!) 
1 r g(u)du. -

·m J 
"J-+CO 0 

Substituting the equi~~lent of g(u) into the equation above, 

00 00 

lim f(6) 
1 

m 
r .( r (y-u) dF(y)] du. 

) ) 

o u 

.:\ 
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Changing the order of integration, 

ooy 
1 J dF(y).[ J(y~u)du ] 
m o '0 

00 

X? 1 r dF(y) == -
m 

) '2 -. 
0 

1 (Var(Y.) + E[y.]2) 
- 1 1 

.'= -
m 

and, finally 

lim f(6) 
;2+m2 . 

0.-+-00 
2ni 

Therefore, for £1»0 

1 
? ') 

E[Z Ii] T-+m-
·U 

0. 2 m 
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APPErlDIX III 

Cor'1PUTATIO~! OF HIVENTORY CARRYHIr:' COST" 
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C6mp~tation of inventory ca~rying c~st was done as tollows: 

1. Val\.le of the, average inventory carried' in 1stanbul District H'arehouse 

.throughout the year, I. 

Total yearly stock carried in 1979 9,972,000,000 TL 

'I 9,972,900;000 /12 = 83l,000,000~L 

2. Labor~6st~,L. 

Total number of personnels worked in the warehouse, 25 

Avera~e salary 18,,000' TL/month. 

Total labor cost: 18,000 x 25'x 12 = 5,400,000 TL/year 

3. Storage cost, S. 

Storage cost which cont~ins electiicity, maintenance, cleaning supplies and 

other expenceS1S estimated as 2,5 % of average inventory carried per year. 

S = I x 2,5 % 

831,000,000 x2,5 % 

20,775,000 TL/year 

. Cost of Capital, c. 

Since Slimerbank is a pu~lic firm, it 1snot possibie investing money 1n any 

other area; This component of the inventory carry1ng cost is taken as the 

interest rate charged by Secretary of Finance due to delay in paying income 

tax. Then, this figuie is taken as 18 % per annum. 

c I x 18 % 

= 831,000,000 X 18 % 

= 149,580,000 TL/year 

,:. 
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5. Insurance·cost, I. 

Inventory carried in the warehouse IS insurred by 3.5 % per annum. Then 

I = I x 3,5% 

=831,000,000 x 3,5 % 

29,085,000 TL/yea~ 

6. Inventory turnover, TR~ 

TR Sales· for 1979/f 

2,114,894,312 / 831,000,000 

2.55 % 

7. Inventory Carryin~ Cost, H. 

H = L/TR + S + C + I 

I 

5,.400, 00 0 L2 ..... } 5+ 20 ,}is, 000+ 149,580; 000+29, 085,000 . 

831,000,000 

.243 

Therefore, inventory carrying cost \vill be 24.3 % of inventors value per 

annum. 
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· APPENDIX IV . 

:'COMPUTATIONOF ITEM ~ ORDERING COST 
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Computation of item-ordering cost (KJj ) wHl be given in Appendix IV. Item"': 

ordering COStlS a co~t coristaritper order per item and has two i~portant 

components: 

1. Fiist component is the part of production cost, charged in th~ factoty,in 

order to supply orders from each item in time and, to have oppor'tuni tyof· 

preparing a good lotassbrt~d in colo~r and design. In order to have this 

opportunity, there' must be enough production from each item in fac~ories for' 

orders of district warehouses. This lea~s to machine· set~up'cost ln factories. 

Machine set-up cost for startingprodu~tion of each ltem will be computed and 

then item set-up cos't \-lillbe divided among orders of districts according to 

th~ir sales percentagei. 

Machine set-up cost· takes place when a type of item starts to be produced.Hethod 

used for co~p~ting machine set-up cost 'can be found ln [27]. Computations for 

1979 ~rices are given below: 

Machine set-up cost consists of two factors: 

i) Damage cost, DC Damages of models.usediil .weav1ng.machines 'occur, 

with a certain probabiUty during production and Chis .. cost is taken as 

the expected expense for models. Computati~n of damage cost \-las evaluated 

for each machine as follows: 

DC = HC x N x P 

where HC Unit model cost 

N Average number of models 

P Probabi Ii ty of damage of models 1 n thi s machi ne 

Type of Cost of model* Average number Probability** 
machine . (TL) .of models of damage DC (TL) 

Roller 15680 3 0.45/6 3528 

Rotation 5880 6 0.5/6 2940 

FHm 9800 9 0.35/6 5145 

*It is computed for 1979 with 40% increase compared to 1978 costs. 

k*Probability of damage for each machine is given,for 6 design changes.Then 

probability of damage for 6ne design change is computed dividing the given 

probabi li ties by 6. 
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Ii) Lostproducti.on cost, LPC: It is the cost of machine hours spent as set-up 

time for changing de~ign and colour. This opportunhy cost is computed 

.:!'.XEe 

as the extra profi t whi:ch would be donei f~ set-up tfmewere used for 

production. The formula used for computation of lost profit cost for each 

machine is: 

where 

of Machi ne 

. LPC 

AI> 

AP xP x (DT-CT) x 60 

Average profit done per meter of production on the 

machine .. 

Amount of production p·er minute P 

DT 

CT 

= .Set-:.up time for changing design (in hours) 

= Set-:up time for changing colour (in hours) 

AP* (TL) P (m) DT (hr) CT (hr) LPC (TL) 

Roller 3.77 17 .5 2.8 1.1 6750 

Rotation 14.1 27.5 .2.8 1.2 37224 

Fi 1m 16.93 12.5 2.8 1.5 16507 

*Average profit 1S computed as the weighted mean of profits gained for unit 

productions of items· manufactured in the machine. 

Total set-up cost for each machine ~"ill be the sum of damage cost and the lost 

produc t ion cos t: 

Type of machine 

Roller 

Rotation 

Fi 1m 

TSC = DC + LPC 

DC (TL) 

3528 

2940 

5145.· 

liB 

LPC (TL) 

6750 

37224 

16507 

TSC (TL) 

10258 

40164 

21652 



Distribudon of machine set-up cost among items analyzed in the study w8:.s done 

as follows: 

Item, type no: 

205 

214 

283 

290 

293 

722 

Hachines used for its 
'production' 

Roller " 

. Rbtati on, Film 

Rotation, Filrr; 

Rotation 

. Rotation, Film' 

Rota~i'on, Film 

Average production set-up 
cost~ for the ite~ (TL) 

10258, 

30908 

309.08 

40164 

30908 

3'0908 . 

, , 

*Production set-up ~ost f6r each ~tem is 'comput~d as the average of set-up 

costs bfmachines which are used in prodl.lction of item. 

since 24.52 % of product'ion of Eski~ehir Fa:ctory IS send to Istanbul Di'strict, 

p~oduction ~et-up costs for the items a:retake~as'24.52 % of the total 

product'ion set-up costs In the factory. Each time when an item is ordered 

by ,Istanbul District, half o~ i,ts ~rddu~tion set-up cost ~as evaluated belonging 

to thi S order lot analyzi ng the economi cal production lot 5i zes for items in 

[27] • 

Then cost charged for each order of an item when the i tern I s demanded from the' 

factory will be computed as: 

DC .2452 x 1/2 x Average'Pr~duction Set-up Cost for the item 

Computed value's for thi s cost 1 s gIven below: 

Item, type no: DC (TL) 

205 1090 

214 3789 

283' 3789 

290 4756 

293 3789 

722 3789 
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2. Second component 6f item-ordedng cost is the cost of loading and unloading. 

It i~ p~id 168TL f~r loading and un1badingof ~~~h lot in the recent system. 

Then thi s component of i tem-orded ng cost (LULC) was taken as 168 for all items. 

Finally, item~ordering cost (KJ.) for each order of item i between Eski§ehir 
1 

Factory-Istanbul District .Harehouse paIr is computed ~s: 

'KJ . . OC. + 'LULC 
1. 1 

Item no: TY.pe fib: OC. LULC KJ. (=OC.+LULC) 
1. _ 1 1 . 

1 205 1090 168 1258 

2 .214 3789 .168 . 3957 

3 283 3789 168 3957 

4 290 4756 168 4924 

5 293 3789 168 3957 

6 722 J789 168 3957 
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APPENDIX ~v 

LIST OF COrpUTEP PR0GRAM' 



~RV~,E BE~G~N,111~1~~216,TH[SlS,5'lOO 
CC· • 

.OELGIN (ILHAN) 

cc 
CC THIS PROGRAM DETERMINES THE OPTIMA~ VALUES OF THE SToe 
CCCO~TROL PA~AHETERS (Op.COL,otiL) FdR THE (R,C,S) JOINT 
cc ORDERING INVENTORY POLICY 
CC IT USES A~ HEURISTIC -ALGORITHM, WHICH IS A COMBINATION 
CC OF MATHEMAiICAL OPTIHIZ~T~ON AND SIMuLATION I FOR OPTIMIZA 
CC 
CC 

CC 

PARAI~ETER N=c'J 
INTEGER OLJL.COL,OP,COLU 
ReAL LTIME,MDLT,MNREP.MPS,MtNTRC.MTRA~ 
D 111 C NS ION K 2 ( N) • K 3 ( r~ ) • H ( iii ) .5 A F E S ( N I . . . 
o I II ENS ION E a Q ( N) • DEL T A ( N ) I A ( N I • Y ( N ) • COL 0 ( N ) , PO ( ~l ) • GO ( N ) 
DIM ENS ION R~.c N) • Reo ( N I , R ~ I ( N) • F LAG R ~ ( N) 

COMMON /CS1/ D(NI.APRO(NI.O(N),E(N) 
COMMON /CSll P(NI,G(N) 
COM r tON / C S.1 / r1 0 L T ( N) • 5 D D L T ( ~ I 
(0 H r1 ON / C s't / 0 U L ( i-J J , COL ( r~ ) , II P ( tJ ) 
CO 11 NON / C S 5 I H T RAN ( N ) , sot ~ A I~ ( N) ,DR ATE ( N ), L T r ME' 0 U R S 1M. I R 

(0 fHI 0 f..J Ie '3" / NOR RAN 
.CoHMON /(571 OSIM(N),RSIM(N) 
COHMO"J tlO 
DATA NI,NO I 5,6/ 
D A TAO U R 5 I H, 1 R • NOR R A r~ / 3.,1 3 s~ 7 • 1 2 I 
DATA ACCS I 0.80 I 

C C F IHJ C T 10 tl f)£ FIN I T ION 5 

cc 
Tf~ C F U r~ ( p P , K rU , D D,E E t G G , H H , K K 2 , 00, M H () L T ) = 

+ ( 1 - P P ) • ( ( K K J • DO, ( E r .. P P • G G I ) ~ ( E E • H HI 2 ) I + P P. ( ( I\. II. 2 • 00/ ( E ~ .. P P • G (,) I 

+ ( [[ + (; G ) • Hill ;~ I + 0 U • H H - tl t1 0 LT. H H 
- E F IJ N ( p P , G G , DO. H H I K K 3 , K" 2 1 = 
+ PI'. G G + 5 q R T ( ( 2 • 0 D I H H ) • ( ( 1 - P P ) • K K :1 +P P • '" K 2 ) ) 
. [) E R I" U t.j{ P 1 I (, I , P (1 I G [) , Cit CO. H H • D D , K I< 1, E E ) = 
+ (I') ~c.il-PO .. GO)"HH/(Cl-C01 .. (DD.KKl ).(Pl':'POIl( (E~"Pl.GI)' 
~ «(I-Cn» . 

t1cYCLE=n 
CC 
CC DATA READING 
CC 

REAO(f..jI,lOll Kl.LTlI'lE 
WRlfE(NO,1119) Kl 

DO 201 I=l.N . 
REAO(NI,11l31 O(t),MTRAU(I'.SDTRAN(I),H(I),A PR O(I),K2(I) . . . 

201 
WRITE(NO'InJID( l),MTRAN(I).SOTRAN( I),H(I),APRO(I).K2( I) 
CotJTINUE - .-

CC 
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c c r v A L lJ" T [ 0: j ·U r THE tiE C ES S A RY 5 Y S T E 1·1 PAR A 1'1 E T E R 5 
CC 

CC 
CC 
CC 

r I) '101 
F' ( [ I :;: 0 
P(1<ll=r1 
G r1 ( I 1= n 
G(II=O 

I :: 1 ., N 

E(II=[Oq(11 
Y(I)=Dr:LTA(tl 
prLTA{I)=COU(tl/lD 
o ( ! ) = ( I) (J ( I I . 

IICiI COrlTINIJL 

Ci\LL 05')0 
nO '117 1=1,~1 

ItIV[tHORY COrlTROL SySTEM 

:: ~ ! T!~ ( 'I U , 7. ? ~ ) [ ( I') t [) E L T A { .1 I , Y ( t. I , 0 ( I ) 
. ') :i ;- [ S ( I I = ') { i ) 
'1 : ) ' ... ( t ) = tJ ( r ) .. E ( I I 
e)< .. ( t)= J ( I I ~ Y ( ! ) 
01'( 1 J=r'JCI)+·\(J) 
(')L.J{II=on(11 

II 1 7 C ') r I T I IJ '. J r: 
T r? C [ = 0 

SSll·I=U 
,~ I! R t~ ~) = rJ 

') I) If I J ? I = 1 , ~,; 

,~ : J q :: p = ,i i'\ A X 1 [ '1 ~J{ :: p , C' ( I lIE;) \~ ( 1 l ) 
S S u: 1= S S U ~I + ( ) ( I I • !( 2 (I ) lEO (J ( Ii) + ( ( EO Q ( t l 12 I + 5 A F~ .. S { I I - M D C T ( I.l ) ~ H ( 
f~ C 1 ( I ) = J( 3 ( I ) • 0 ( I ) I E ( I ) + E ( I I • H ( I ) I 2 + 0 ( 1 ) • H I I I _ ~I 0 L T ( . T' I • H ( I ) 

TRCI=T;~CI+~CI (II 
") ~ I T £ ( t lOt 1 q S I E ( I I • U • Y ( I ) • 0 U L ( I ) • COL ( I I lOP ( 1 ) • ReI ( 1 ) 

Lj02 CotITINIJ[ 
MtjRt:P=P I P (r-l'lREP I 

11 I In R c= K 1 .'1 iL~ E r + '5 5 U i'" 
~rs=( rRCI-MI~TRCI/TRCI 
/1 R I T E ( ~ I 0 • S 6 j ) T Rei , MIN T R C , M P ::i 
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i • 

'. 
I • 

, . 
I • , ,. 
1 • 

~ . 
I • 

I • 
) . 
) . 
r , 

~ . 

CC 

CALL . 
TRC=O 

SIMSUB 

DO LiaS I=1,N 
G( I )=RSPi( I )-a( II 
I F (Ci( I I • L T ~ 0 'I G ( 1 ) = 0 
~RITE(NO,qB~71 G( II 
R C ( I ) ~ T I~ ( FUN ( P ( I I , K 3 ( I I , 0, ( I ) , E' ( 1 I I G ( I I , H ( 1 I , K 2 ( I I "a ( I I ~ MOL T 
TRC=TRC+RC( I I 

'f 0 5 C 0 rl TIN U E -

502 CONTINlJE 

CC A NEi ITERATION IN THE OPTIMIZATION ALGoRITHM sTARTS 
CC 

CC 
CC 
CC 

CC 
C( 
CC 

562 
S72 

il [J 7 

tJCYCLE~N(YCLE+l 
~RITE(NO,51~) NCYCLE 
IF ( NCyCLE • CiT • 10 Go TO 515 

THE NEW lIPDft,"TING PARAMETERS 

CALL oSUB 
DO - 'I 0 7 I = 1 , fi 

IF (~CYCLE.E1.1 ) GO To 562 
u = DE R FUN ( P ('I I , G ( I I ,P 0 ( 1 ) , ~ 0 I I I , COL ( 1 I , ~ OLD ( I' I • H ( I I , 0 ( I I , K 1 , [ I 
Ir( U,GTtO I Y(I,=Y(II.OELTA(II 
IF( U.LT.n I Y(il=Y(I)+D~LTA(II 
IF ( Y ( I ) • L E. J I Y ( I ) =A ( I ) 
GO To 572 
Y(II=Y(II+OELTA(II 
( 0 NT 1 t~ U [ 

[ ( I 1= E FuN ( P ( I I , G ( [ ) , 0 (I ) , H ( 1 I , K 3 ( I ) , K Z ( I I I 
P(JiIJ=P(11 
Gn(II=G(11 

( J LU ( 1 I = COL ( I ) 

T H [ "I [ \J S T 0 C K 'C 0 NTH 0 L pAR A 11 E T E R S 

OULI 1 I=()( I I+EI r, 
CQL(II=O(II+Y(I) 
op( I )=(')( I )+,\( I I 

1'1 R IrE ( II 0 , 1 B S .l E ( 1 I ,U , Y ( 1 ) , 0 U L ( I I , coL ( I I I a P ( I ) • R C ( I I 
COilTINtll ' - , 

CALL SIHSUB 
TR~O=TRC 
TRC=O 
Do - 579 I = 1 ,tl 
G(II=RSIM(II-a(II 
IF (G(II.LT,O I G(II=O 
WRITE(rJO,I~B'i71 G( I, 
RCO(Il=RC(Il 
Re( 11= TRCtUN(P( II,K3( II,D( II,E(II,G(Il,H(I',KZ(II ,OiII,MDL 
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CC 
CC 
CC 

CC 
CC 
CC 

If09 

SIS 

If 1 1 

TRC::TRC+RC ( I) 
I'IRtTE(NO.SLf71 I ,RCOI II, Re( I I ,.OElTA( II 
corn I NlIE 
DO' If 0 9 I :: 1 , tl 
If (RC( Il~LT.RCO( II Go TO -Lf09 
DELTA( I )=DELTA( 11/2 
'II R I T I:: ( 110 , S c.j ti) DE l T A ( I ) 

COllT I NlJE 
WRITE(NO,195) NINTRC,TRCO,TRC,(DELTA(II,I=l,N) 

ACHS=(TRCI .. iRCI/TRCI 
W R I T E ( no, 18 9 I A C H 5 ~ M P 5 • A C C 5 

Af~ ITERATION IN THE OPTIMIZATIoN ALGORITHM ENDS UP 

IF GO TO S02 
C CJ tIT I N lJ E 
D 0 if 1 1 I = 1 , ~l 

WR I Tt. (NO, i 85) E ( I ) ,u, y ( I ) , OUl 11) , COL ( Ii, OP ( I I : RC ( I I 
COllTINlJ[ 
WRIrE(lIntl9~) TRC 

Ibl FQPMATIIlo,F10.S) 
103 FOPI1AT(Fio.O;2 F I0.2,F5.2,FS.lf,1101 
165 FORilAT(/110,lOX,SFtO.11111 " 
1 R 5 r 0 P 11 A T ( I I ' E=' , FlO. t , 5 X , , lJ = " FlO. 5 , 5 X • ' : =, , FlO: t ~ S X , ' 0 U l =' , I 1 0 , ! 

+ COL =' , I 1 (J , :, x , '. 0 P =' , I 1 0 , 5 i{ , , R C =' , FIr) • 1 I ) . 
le 9 rOf'i1ATC' ACHS =',Fl0.7,'NPS ='.rl0.7,SX.'ACCS =',FI0.7/1 
1 9 S F o;~ 11 AT C ' '1 ~ ~I T R C =' • F 1 S. 1 , 5 X,' T ReO =' ,"F 1 5 d , C; X, , T R C =' , F 1 S. 1 I I cd F I 

- • 5 X) I 
225 FOr.IIATClor:J.l1 
S18 FORHATISX, ITERATION NO=' ,151 ) 
5 Lf 7 FOr! I A T CIS X t ' I =' , I 5 • 5 X , 'Re 0 =' , Fla. 2, S X , I I~ C :: I , F i 0 • 2 • c; X , ; DEL T A -;. F! 
S Lj A F O~! ~1 AT ( 5 X , ' 'IE IV DE L T A=' , F 8 • 2 ) . 
56] FORMATC5X,'T~CI=',FlS.l,C;X.·MINTRC',F2S.I,5X,'MpS=' ,FlO.)) 

111 9 FonI1AT(S>-,'<.l= '.115/) 
Lj13q7 F"or;r1AT(5X.'~' ,FlO.?) 

STOP 
[flD 

ANK 602 DRANK 101 caMMON 

.05UB 
O/2e- 1Lf : 31 (,O) 

~t 
CC 
CC 

CC 

5 U B I~ 0 UTI N E 

USING I' 

'I oSUB If 

REGULA FALSI If 
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s0nR6uTINE oSU8 
PAf~AMETER N=6 
REAL t1DL T 
C a IH1 0 N I C S 1 1 0 ( N I , APR 0 ( N) ,0 ( N ) ,E ( N ) 
CoHMON 1(521 PIN) ,G(N) 
coMMON ICSJI MDLT(N),SDOLT(N) 
C a 11 M 0 N - U a -
DATA NITMAX,ACCN,ACCO /30,0.000001,0.001 / 
DO 89 I=I,N 

o.X=0(II/I0. ' . 
C 2 = ( 1 - A pR 0 ( I ) ) •• ( ( E ( I ) .. P ( I ) • G ( I ) ) 10 ( t ) ) 
Y=C2 
~RITE(NO,2n9) I,Y 
NIT=1, 
Xl=I)(II 

Yl = PNROF(Xl,11 
Bl=Y1-C2 
I f ( B 1 • G T • a • 
X2=Xl+DX 

80 CONTINUE 
Y 2 - = , P N I~ 0 F ( X 2 , I I 

02=Y2.C2 

DX=-OX 

Ir ( (BI.~2 I.GT.O. I GO TO 85 
8 1 X 3 :' ( I X 2 - X 1 I 1 ( Y 2 - Y 1 ) I e( Y - Y 1 I ~ X 1 

Y3 = PNROf(X3,11 
£13=Y3.C2 
IFI 'nIT.GE.NITt1AX Go TO 87 
~J I T = tJ I T ~ 1 
I Fe A B 5 ( B J ) .L E • ACe N 'G U 
IF" ( I I1t*d3 l.GT.o.) GO 
If ( (AnSi ( X3-XI) I X3 

X2=X3 
'2::Y3 
A2=B3 
Go TO Al 

8 3 Co rJT 1 NUL 

TO 8138 

TO B3 
i.LE.ACCO 

IF ( I ASSI Xl-X2) I X3 I.LE.ACCO 
Xl=X3 
YI=Y3 
[31=B3 
GO To 81 

8S CONTINUE: 
Xl=X2 
Yl=Y2 
81=02 
X2=Xl+DX 
NIT:iNIT+l 
IF I NIT.LT.NITHAX Go TO 80 
WRITE(NO,20S) I 

87 CONTINUE 
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570 
:18. 

6 1 • 
() 2. 
~.3 • 
~ If .. 
bS. 
06. 
67. 

68. 
69. 

~~!lzlnO'207) 

8880(1)=X.3 
'1IRITE(NO,135) 

89 CONTINUE 

I,NIUIAX 

I,O(I),NIT 

135 fORMAT I ' 1=' tIS" 0=' .f~O~l"NIT=' 'I~IIIII) 
205 FOR 1'1 A TIll' - SOL UTI a N IN T E R v Al FOR 0 I , , I 3 , ' ) 

+R(ACHED YETi/I) 
207 FORNATIII ' ACCURACY Of 0(',13,'), IS NOT 

+'ITERATIONS AND LAST VALUE IS TAKEN AS 
Z09-FORMAT(' I=',IS,SX,·C2=',F1n,b' 

RETURN 
EflD 

7 rBAIJK 1'13 D£3f1NK lf9 COMMON 
.PNROF 

DS/30IBl-l'l:31( ,0) 
1. - CC -. 

, 2. CC 

SATISFIED 
OPTIMUM,) 

B 

IN 

3. ce r U II C T I 0 I J " P N R 0 f , f C 0 t1 PUT EST H E ~ E R V ICE LEV ELF U N C T 

, '1 • CC 
s. CC 

, 6. 
7.' 

, 8. 
, 9. 
10. 
1 1 • 
12. 
13. 
1 q • 

15. 
J 6 • 
17. 
18 0 

f"lH~ C T I ON 
PARAMETER 
REAL MDLT 

PNROFIXX.I) 
N=6 

CorH10rJ IC52/ PIN) ,G(N) 
coMMON /CS31 MOLT(N),SDDLT(N) 
C Otltl0 N NO 
Z I = I X X - ~1 D \. T I I I ) 1 5 DOL T ( [ I 
Fi=CDF ( Z1 ) 
Z2=( ·XX+G( I I-"\[)LT( I) ) 1 S[)l>LT( I) 
F2=CUr ( Z? ) 
P tJ R 0 F = r 1 •• ( 1 - r ( I ) I • r 7. •• P ( I I 

R[TURt~ 

E tl D 

lUANK 20 nBANK 2S (OHHON _ 
.CDf 
JS/JD/81-1lf:Jl( iO) 

1 • - C C 
2. ec 
3. ce 
'f. CC 
s. CC 
6. CC 
7. CC 
B. 
9. 

10. 
1 I • 

SIJBROUTINE 0, CDF'f DOES NUMERICAL INTEGRATIoN 
USING " SIMpSON~S RULE" 
IT COMPUTE~ NOT RUNNIN~ OUT PROBABILITIES 

FUNCTION CDF(ZZ) 
CoHMON NO 
DATA NINT 1101 
f(~)=.3989q22B.EXP(.IX •• 2)/2) 
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9 I 
901 

VV=ABS(ZZ) 
COF=·S 
Ir (VV_EQ.O) 
IF (VV.GT.~) 
NHALf=NtNT/2 
DV=VV/NINT 
COF=O. 

RETURN 
GO TO 901 

00· 91 1=I,NHALF 
V L = 2 * ( I .. 1 ). D V 
VU=2*I·OV 
VM=(Vl,+VU)/l. 
CDf=CDf+(DV/3).(f(VL)+Q.·F(VM)+F(VU» 
C o~ir I N liE 
cot~ T I NUE 
If" ( ZZ.GT.O 
IF (ZZ.LT.O 
RETURN 
END 

COF=.s+COF 
CDF=.S .. CDF 

.BANK Li2 OBfdlK 
.PIP 

,30/fil-11i:31 (,0) 

corlMON 

- C C . 
CC 
CC 
CC 
CC 
CC 
(C 

F lJ r~ C T IoN "P [ P 
IN A DEPENDENT 

F U r~ C T I 0 rJ 
Ip.:P 

PIP=lp 

PIp (P) 

" DETERNINES 
SYSTEM . 

IF( (P_PIPI.LE.o.IE-B) RETURN 
PIP=PIP+! - . 
RETURN -
£tID 

iANK 7 oBArJK 

.SIMSUI3 
'~O /8 1 - 1 'I ~ 3 1 ( ,0 ) 

CC 
CC 

~INIMUM NUMBER 

CC 
CC 
CC 
CC 
CC 

SUBROUTINe If 

WITH CURRENT 
IT DETERMINES 

SIMSUB fl SIMULATES THE INVENTORY 
INVENTORY C~NTROL PAR~METERS AND 
P(tl.S AND G(I)fS 

CC 
SUBROUTINe 
PARAMETER 

SIMSUB 
N=6 
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SYSTEM 
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, , 

, , 
, , 
, , 
, 

• I, 
, 
I 

'I 

, I 

" 

, . 
, . 
, 

• , 

• 
I. 

I. 

• 
, . 
I. 
I. 

•• 
, . 

J. 

CC 
. CC 
CC 

cc 
cc 
cc 

+ 

REAL MOLT 
ReAL INV,NEXTDT,NEXTOT,LTIHE,HTRAN,INVPOS 
INTEGER oUL,criL,OP,F~A~O,FLAGJO,FLAGOR 
CO'" M 0 N 1 ( S 2 / P ( N ) • G ( N ) 
com, 0 N 1 C 5 :\ 1 H 0 L T ( N) , 5 DOL T ( r! ) 
COIHi0N /CSLt/ DUL(N) ,COL(U) ,OPeN)' , 
CO~~'QN IC?5/ HTRAN(N) ,SD~~Ar~tN) ,DRATE(~) ,LTn1E,DURSIM.IR 
coHMON 1(56/ 'NORRAN 
coMMON 1(571 OSIM(N) ,RSIM(Nl 
CO~''''ON NO 
DIMENSION . NIRtN),NJRB(N),NJRNB(N),N!R(Nl. 
D J 11 ENS ION J N V ( N ) , D TIM E (In, OR TIM E ( N) ,0 5 J Z E ( N) , I \'I H 0 R T ( N l , 

SOQ(N) ,SRR(il~ .INVPOS(Nl .DSIZE(N) ,OHAT(30ri,2S) 

IIJITIALIZATION OF VARIAALES ANn SETTING STARTING coNDITIC 

no 21 l=l,N 
N 1 R ( 1 )= II 
NJRB(Il=O 
rI J R N l3 ( r ) =r} 

. 'I T r, ( I ) = 0' 

SoOt I )=0 
SRR{I)=O 
ORTIt·'E(I)=lD. 
o sl !. E ( t I = f1 • 

I r ~ V ( t ) = 0·0 l. ( I I - ~1 [) L T ( I l 
IIIVPOS( I )=00L( I) 

2 I. C 0 tIT IN lJ [ . 

S[~TING THE INITIAL SYSTEM INDICATORS 

~. f)() 14 K;<=1,30n 
I. 'io .14 J"'l,ZS 
I • (\ HAT ( K K , J ) =:) 
). 14 COtlTIN'.J[ 
'. ~lni?O'\D=n 

'J 0 r~ [C =n 

3. ~lOf~OER=O 

I. rJ[,<rOT=10n 
1. F'LACio=n 
I ~ FLAGJo=O 
~ • F' I. A GO R = I 

CC 
CC 
CC 

GENEATING THE DEMAND TIMES AND SIZES FOR ALL ITEMS 
J • 

:. . 
7 • 

3 • 
1 • 
~ . 

DO 23 I=l,N 
o T 1 ~, [( I ) = D T fUN ( D RAT E ( 1) I R ) . , 

2 3 C 0 tI T t ~J U E 
00- 21./ I=l,N 

26 CoNTINUE 
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• 

• 

.' 

· . 

'. 
, . 
" 

'. 
! • 

, 
0' 

I • 
I • 

) . 
, . , . , . 
1 • 
) . 

cc 
CC 
CC 
CC 

CC 
CC 
CC 
CC 

cc 

DSIZE( I)=nSrUN MTRAN( II .SDTRANCII,[R 
IF ( D S I Z £ ( I ). ,_ E • 0 . I GO To· 26 

211 CONTINUE 
25 CO tl TIN U E 

DE T E R 111 III ti<i THE 
OF ALl. J)[MAtiD 

NEXT DEI1AND 
ARRIVAL °TIMES 

TIME ( NEXTDT lAS THE MINIM 
IN THE INVENTORY SYSTEM 

NEXTDT=DTIMI::(1) 
J 1 =1 
00 27I=2,N 
IF ( NEXTDT.LT.DTIME(!) 
N[XTDT=DTIM~( I) 
J 1 = I 

27 COtiTINUE 
2R COrlTINUE 

" 

G0 TO 27 

DETERMINING TH[ NEXT 
AS NINIHUII OF ALL ORDER 

ORDER RECEIPT TIME ( ·NEXTOT I 
RETURN TIMES IN THE INVENTORY 

IF ( NO~OAD.NE.O 

tJ EXT Or = Ion 
GO To 35 

GO TO 3'i 

3~ Ir ( FLAGOR.[Q.O ) GO To 39 
II EXT a T = 0 M,\ T ( tJ 0 R E C + 1, 1 ) 

33 CONTINIIF:: 
FLAGOH =ri 

,3q CorlT I NUl 

SYSl 

C C D E T t: R 11 I , J I 1 I G THE N EXT L V E N TTl t1 E A 5 T H [ 11 I , J I t~ U M 0 F. 
(C TVICl [v[r'T TP'ES AI!D SETTING THE SIMULoATlOI/ ,PolE TO THAT 
CC 

J r NEXTUT.~T.~[XTUT GO TO 35 
11 1 ( 0 tIT 1 ~! I J [ 

cc 
CC tl[ X T ElJl!~T IS Atl ORDER RETURN 
C( PrC[IVr. . T II II T ORDrR AND ADD THE RECEIVED AMOUNTS 
CC TO THE RESPECTIVE INveNTORIES 
CC 

( U1 C 1\ = ,., EXT 0 T 
I r ( C L 0 C J( • G T • 0 U R S I ~1 Go To 'PI 

FLACiOR=l 
tJ G R t. C = tl 0 H E C + 1 
NOROAD=NOROAD-1 
NORl=OMAT(NOREC,2) 
DO li2 LZ=l,NORI 
J2=OMAT(NOREC,2.L2+1) 

li2 
INV(J2)=lflVi J 2)+OHAT(NOREC,Z_L2+2) 
coNTINUE .-
IF ( NEXTOT.EQ.N[XTDT GO TO 3S 
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1 • 

3: 
'I • 
S. , 
b. 

GO 'TO 

C C 3 5 C 0 tIT I N 1I E 

CC 
CC 
Cc 
CC 

NE X T [VEtIT 
SUPPLY THE 
BY- AMOUNTS 

CLOCK=NEXTDT 

IS A DEMAND ARRIVAL 
DEMAND AND DECREASE 
DEMANDED 

7. , 
S. 
9. IF (CLOCK.GT.DURSIM Go TO 
O. 
1 • 

tJIO=O 
fLAGO~O 

2. FLAGJO=O 
3 • I II V ( J 1 ) ;: I tl V (J 1 ) .. 0 5 I Z E ( J 1 ) 
"h IrIVPOS(Jl l=lNVPOS(Jl I-DSIZE(Jl) 
S. DTIME(JI I=OTFutHDRATE(Jl) .1f~I+CL'OCK 
~6. 31COtlTINU[ 

THE 

~ 7 • Os 1 Z E '( .11 ) = 0 5 FU N ( M T RAN « J 1 I , SOT RAN ( J 1 ) , I R ) 
~8. IF ( DSIZ~:(Jl).LE.O ) GO TO 31 

10. 
11 • 

cc 
CC 

12. 
13. 
1'1 • 

IF INVP05(Jl).GT.OP(Jl) ). GO TO 2S 
, -CC 

CC PLACEMENT OF AN ORDER 
IS. CC 
16.FLAGO=1 
37. NOROER=tlORD[R.l 
38. tl~O=tlIO+l 
39., NOROAO=NOROAD+l 
~O. ORTIME(Jl,=CLQCK+LTIME 
~1. OSIZE(Jl)=OUL(Jll-INVPQSCJl 1 
~2. SOO(Jll=SOO(Jl 1+INV POS(Jll 
Y3. OI1AT(tIOHD[R,ll=CLOCK+LTII-I[ 
q~. OMAT(NORD[R,21=1 
qS. OHAT(NORD(R,3)=Jl 
~6. OMAT{NORDER,QI=OUL(Jll-INVpOS(Jl) 
'17. INVPOS(Jll=OUL(Jll 
'10. NIR(Jl)=NIR(Jl1+1 
'19. 37 CO tIT IN U E 
,s a • 0 0 3 8 I = 1 , N 
51. If (I.EQ.Jl.6R.INVPOS(I).GT.COL(I) ) Go TO 38 
52. ,FLAGJO=l -
S3. NIO=NIO+l 
Sq, ORTIME(I):CLOCK+LTIME 
55. OSIZE(I)=OUL(I)-INVPOS(I) 
56. SR~(tl=SRR(i'+INVPOS(ll 
57. OMAT(NORDER;Z.NIO+ll=I 
58. QMAT(NORDER,2.NIO+21=OUL(~I-INVPOS(I) 

59. INVPOS(I):::QUL(I) 
&0. NJ~"B(I)=NJ~NB(I)+l 

131 



CC 
cc 
Cc 
CC 

·38 COIITINUE 
_DHATINOROER,2)=N)0 
IF . ( rLAGJG.~E.l 

NIR(JI )=NI.RIJI I-I 
NJRB(J) l=tJ.JRB(JI )+1 
GO To 2S 

LjLf COIITINLJ[ 

St l1 ULAT lOll 

CALCULATION 

PlRIOD 

OF THE 

DO 'Ttl I=l,N 

GO TO 2S 

ENDS uP 
NECESSARY 

tI T R [ I ) = r I I I~ I I ) + I I J R Bel I + tl J rn~ B I I I 

PARHIETERS 

'/I R I T [ ( 110 , 3 't S ) I , N IRe I I , r I J R B ( I ) , N J R N.B C I ) tNT R ( I ) : 
3 Lj 5 r 0 r 111\ T (~X • • I =' t I 5 t 5 X t I r I I R = I tIS t S X • ' N J R B = I I 1S t S X , ' N J R N F\ I =' I I ~ t I j 

R S I r1 I I I = S R R I 1 ) /t'l J R tlf> [ I ) . 
OS~M(l )~SOOII)/(~IR' 1)+N~RR[I» 

P(l)= tLOATINJRNBcI» ;HTR(J) 
S.1 COrITINII[ 

1'1 I~ I T [ I ~I 0 I 3 J 5 I I, R S I M I I ) ,0 S I M ( I ) '.p , I ) ,G', I I 
3 3 5 r n R II A T [ S X , , I. = , , I 3., S X " R S I ~l ;:' t FlO. 2 I 5 X , , 0 S I M = 'I FlO. 2 t. 5 X I ' P ;:' ~ F 1 ( 

+5X,'G=',FIO.21 
Lj8 corlT T NII[ 

ReTURN 
Er;C 

A II K 77 I 7 DBA r: K 77 CO tHI MJ 
.DTfUrJ 

0; 8 1 - 1 4 : 3"1 ( ,(1 ) 

CC 
·CC 
cc 
cc 
cc 

F lJ I JeT I ("l r J ,. f) T F I J~ ; " c;[NrRATES EXPONENT lor;ALL Y 

., Tl~IE TILL ~EXT DEMAflD 

cc 
Fun (T lor J 9 T Flit I (f) [l RAT f , I R I 
P = f~ itt! D II ( 1 R , J R ) 
D T r u r~ = - ( 1 1[' 0 R i, T f ) •. I'll. 0 G C R ) 
RE TUfHI 
[11O 

NK 1 Lf DBAfJK 
.RANDU 

O/81-1'f:32(,O) 
cc '.' 
CC 
Cc 
cc 
CC 

FUNCTION 
NUI'IBERS 

" RANDU " GENERATES 
BfTWEEN (0-1) 

cc 
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FUtlCTION RANOU(IR,JRI 
JR=lR.031ZS 
IF (JR.LT.O ~R=JR~2.(2 •• 3q~1).2 
FJR=JR 
RANDU=FJR/i.o •• 20 
RANbu=RANDU/2~O.·15 
rR.=JR 
RETURN 
END 

18 DBANK 
.• DSrur~ 

11 - 1 q =>2 ( ; 0 ) 
:C . 
:C 
: C . 
:C 
:C 
:C 

FlJNCTlotJ 
V AinABLE 5 

II DSFUN "'GENERATE5 .NORM~LLY DISTRIBUTED 
~S II DEMAND SIZE 1.1 FOR AN ITEM 

FunCT ION DSFlJN (OMEAtl ,STOV, IR) 
COrnlON IC56/ NORRAN .. .. 
SU ~I H= 0.0 

. DO ,70 1 . t U =1 , II () R RAN 
5 t I r h~ = 5 U f1 R + RAN D U ( 1 R , J R I 

701 CONTIN~E . ~ 
Dsru~=nMEAN+STDV.«SUMR-NORRAN/2.)/SQRT(NORRA~/12.» 
~ r.-i URN ' ." .. . 

END 

1 9 ·D B A IJ': 

" 
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