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ABSTRACT
In the present study a finite element Galerkin method is presented for the solution of MHD duct flows.

The electromagnetic theory is used to derive the body force term in the Navier - Stokes equation and the
ohmic dissipation term in the energy equation. A computer program is set up to solve the finite element
formulation of these equations ln the case of steady, incompressible, fully - developed ﬂows in ducts with
arbltrary cross-section.

In this study, applications to rectangular duct geometries with ideally conducting and insulating boundaries
are considered. Comparison of the results provides a good agreement with the other approximate and exact
solutions found in the literature. It is observed that in flow of electrically conducting fluids, magnetic field
. applied in transverse direction retards the flow, inducing electric and magnetic fields in the fluid.

Recommendations towards |mprovement of the model and for general MHD flow problems are given for
future research.



- OZET

Bu galismada MHD kanal akisi ¢oziimleri igin bir sonlu elemanlar, Galerkin metodu sunulmaktadir.

Navier - Stokes denklemlerindeki gévde kuvveti ve enerji denklemindeki ohmik yayilma terimleri, elektroman-
yetik teori kullanilarak elde edilmistir. Bu denklemlerin sonlu elemanlar ifadeleri, siirekli, sikistirilamaz, tii-
miiyle gelismis durumlarda, herhangi bir kesite sahip kanallardaki akislar, gelistirilen kompiiter programiyla
¢oziilmiistiir. :

Bu ¢alismada, duvarlari miikemmel iletken ve miikemmel izolatér olan dikdortgen kanal geometrilerine uygula-
ma yapilmistir. Sonuglarin kar§|la§t|rllma51 literatiirdeki diger g¢oziimlerle iyi bir uyum iginde oldugunu gos-
termistir. iletken sivilarin akisinda enine uygulanan manyetik alanlarin akigi yavaslattigi, akigkanin iginde
elektrik ve manyetik alanlar oIU§turdugu gozlenmistir. :

Modelin gelistirilmesi ve gene! MHD akis problemlerine yonelik gelecekteki aragtirmalar igin oneriler veril-
mistir.
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NOMENCLATURE

height of the duct

magnetic field

specific heat at constant volume.
internal energy. ‘

electric field.

right - hand-side matrix.

length of an element.

magnetic field strength.

I =hTme o w® .

: Hartmann number.

byl
5]

current density.

k: stiffness matrix, height to width ratio of the duct.
K: nondimensional electric field.

Ko: permittivity of vacuum.

L; characteristic length of the duct, natural wordinates.
n: unit normal to the boundary.

N: element shape function.

p: pressure field, charge of a single particle.

P: nondimensional pressure gradient.

q"': free charge density

Qem: rate of electromagnetic energy
temperature field
x - component of velocity vector.
average velocity.
nondimensional velocity.
width of the duct.

: height of the duct.

: width of the duct.
area of an element.
viscosity.

EED>N<ZTCEEA

permeability of vacuum.
nondimensional coordinates.
thermal conductivity.
conduction parameter.

& 3‘&;‘53

electrical conductivity.
density of the fluid.
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Part I. INTRODUCTION

Magnetohydrodynamics (MHD) can be regarded as the combination of fluid mechanics and electromagnetism
with the most essential application in MHD method of electrical power generation which is the direct conver-
sion of thermal energy into electrical energy. Apart from power generation a few examples of applications are:

1. Electromagnetic pumping of liquid metal coolants in nuclear reactors and metallurgical industries.
2. Pumping of propellant gases to obtain high specific impulses for interplanetary flight.

3. Controlled thermonuclear fusion by confining hot jonized deuterium away from walls.

4. Affect the airstream at hypersonic flights for purposes of thermal protection, propulsion or control.
5. Magnetically - controlled lubrication by conducting fluids.

In MHD generators a moving -conducting fluid replaces the copper windings in the conventional electrical
generators. When this conducting fluid is coused to flow in a duct through a transverse magnetic field, and
if electrodes are placed along the sides of the duct, electrical power can be extracted from the system.

The'conducting fluid for MHD generation may be a liquid metal or a hot ionized gas. The latter method is
more efficient for the conversion of energy in commercial applications. .

The basic idea of MHD generation was reported about 1830 by Faraday who performed experiments with
moving mercury streams. The first serious attempt at engineering utilization of MHD was made by Karlovitz
(1) in the period 1936-1945, while other scientists such as Williams and Hartmann (2) performed simple
experiments on the flow of conductmg liquids in the laboratory. The emergence of MHD is marked by Alfven
(3) who has discovered Alfven waves.

The first large MHD generator is désigned and put into operation in 1963 by the Avco-Everett Research
Laboratory, known as Avco Mark V, which produced 32 megawatts of electrical power for a few seconds (4).

There has been a continued and determined effort to develop MHD generators for both commercial use
and special applications. In the last decade, several scientists and engineers have been investigating performance
of MHD generators. Aspnes (5) et al. have simulated an overall MHD steam electrical power generating plant.
Sodha (6) has investigated factors affecting power output of an MHD generator and discussed boundary layer
effects.

Hara (7) et al have optimized the shape of MHD generator channel in relation to its performance by three -
dimensional finite element analysis.

In MHD generators, the problem of duct flow in a transverse magnetic field is of practical interest, yet a
difficult analytic problem. It has been formulated by Shercliff (8) in 1953 for two-dimensional fully developed
flow. In 1961, Chang (9) has formulated and solved MHD duct flow for a parallel sided duct and a perfectly
conducting rectangular duct. The problem of duct flow with arbitrary conductivity is solved by lhara (10)
for circular pipe and by Chu (11) for rectangular ducts. Tani (12) represented an alternative approach based
on a variational principle, further he obtained boundary-layer-type solutions by minimization of the variatio-
nal integral. A wealth of investigations have been carried out to reveal various aspects of MHD flows. Some
of the more outstanding of these are mentioned in the following.



Oliver (13) et al, have examined some phenomena of interest in MHD channel flow at high interaction and
predicted resulting electrical distributions. Trung (14) studied one-dimensional MHD Faraday generators and
indicated general trends in operating characteristics. Miyata (15) has performed experiments on performance
- of linear Hall MHD generators with high interactions. Gherson (16) et al, have studied analytically the
efficiency improvement in liquid metal MHD generators by reduction of the electrical and loses. Asinovskiy
(17) et al., have investigated the efficiency obtained in converting the chemical energy of a condensed explosi-
ve into electrical energy in a linear explosive MHD generator. Sodha (18) et al., have evaluated the generator
performance in the presence of inhomogeneities cdused by growth of ionization instability and velocity/
temperature boundary layer. The effect of boundary layers was also presented by Scheindlin (19) et al.,
from the experiments performed with argon-potassium plasma. Kirillov (20), Biberman (21) et al., and
Zaporowski (22) et al., have treated the heat transfer from plasma to the walls of the generator.

In the present study, one and two-dimensional MHD duct flows are solved. numerically by the finite element
method. As examples to one-dimensional flows, Hartmann and Couette flows are treated and finite element
solutions are compared with exact solutions (23). For the two-dimensional cases, square and rectangular duct
flows are solved and are compared with solutions available in literature obtained by other methods such as
finite differences (11) and Fourier series (23, 11).

The continuous and discrete formulations of the problems are presented in the second chapter. The third
chapter gives a discussion of the results and comparison with available solutions. A detailed derivation of the
equations with a review of electromagnetic theory and finite element method and the computer program
is given in the appendix.



Part 1. DESCRIPTION AND FORMULATION OF PROBLEMS
1. One - dimensional duct flows

The problems considered are the classical examples of MHD flows; steady flow of incompressible, electically
conducting fluid with uniform applied. magnetxc field. Formulations and exact solutions will be given for
Hartmann and Couette Flows. s

In the first section, the magnetohydrodynamic equations will be formed and nondimensionalized, and in the
second section, the equations will be discretized by Galerkin method.

'

a. Continuous formulation

Consider fully developed fluid flowing in a duct as shown in Fig. 1.
' 3

B

insulating

condﬁcﬁng

Fig. 1. Channel geometry for 1-D flows

It is further assumed that W> a so that there is no variation of any quantities along x and z — axis except
pressure.
With the above assumptions. Navier - Stokes equations reduce to (appendlx A),

) d*u '

0= — 5%_.,_/,872 -~ —pH_ ], _ (1:1)
ap :

= — — 4 o )

0 ay T H ), : .
ap

0= 7

Maxwell's equations become:

aH oH

3y =0 3 ), 1§ (
%o | (1.3)

dy oz oy
and ohm'’s law: ,

)= o(E+ U H) , - (14)
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From y and z components of Eqs (1.1), it can be shown that: ~
o _ 2%
0xdy . 9x0z .

. ! [
Zl;er;afore, dp/ox is constant and x-component of Eqs (1.1) are decoupled. Substituion of Eq. (1.4) into Eq
1) yields: ' ‘

9p , d’u ‘
ax T i opMe (EF poH, U) H, ' ' (1.5)

[

0=—

This equation can be cast intq a nondimensional form by introducing the following variables,
U=u/d n=y/a E=x/a (1.6}
Ha? = ot H2a? [ K=E/iB P= — —

3
where, Ha is known as the Hartmann number. Thus, Eq (1.5) becomes:
d?u |
aq“ '

-

— Ha’U = (P+Ha’K) : } (1.7)

Hartmann and Couette flows differ with boundary conditions. In Hartmann flow, walls are stationary,
i.e,

Uu(l) = U(-1)=0 s ' - (1.8)
The exact solution to Eq (1.7) with Eq (1-8) is (23);

P ch Hay !

U= g 0 | (19}

In Couette flow, the upper wall is moving with a constant velocity Uo as shown in Fig. 2

Fig. 2 MHD - Couette flow configuration

. } |
Hence,the solution to Eq (1.7) with

u@=0 U(1)=1 (1.10) '

2



is as follows (23);

KHa® + P 2 I
- _ o 1+ ——»(KHazlP)] ch Hang sh Han
2ch Ha 2sh Ha

Ha?
where, U =u [ Uo

b. Finite Element Formulation
Applying the Galerkin method to Eq. (1.7)
d’u s
fN,(a;— — UHa® + C)’dvz =0
where, C=—(KHa?+P)

Integrating the second - order term by parts,
J gr—jz— jz + Ha? Np CN)dvz -0

Substituting the trial function of the form (appendix B)
u= N u

the following system of algebraic equations for an'element is obtamed
(k] (u) = (f) oy

Derivation of the equations is given in Appendix C.

-3
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(1.14)

(1.15)
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2. Two - dimensional Duct Flows

In the few cases of two-dimensional MHD duct flows found in literature, the cross sections considered are ®
rectangular or circular. In this section rectangular duct flows will be treated and the governing equations -
wili be discretized .by Galerkin method. Derivation of the equations can be found in the appendix.

a. Continuous formulation ‘ ‘ é

Consider flow through a rectangular channel as shown in Fig. 3;

'z}
)
1
K
]
I\4 : e
T =
=,
yJ- . ’/ B
| Z — |
Fig. 3. Two - dimensional flow configuration.
Assuhing fully-developed flov&, the governing equations are:
' ‘Navier - Stokes equatioﬁs: : ' *
op ?%u  d%u
= —pu( =+ —) +
0 ax M dy? oz? | ) IZH’}‘”
ap .
0= — 5;,— + L H o » ‘ (2.1)
dp ;
. S i
| 0 a2 I;HX)J,, .
Maxwell's equations;
‘ oH : |
M M oL VI (2.2)
9z y -y z 0z
%, _ O, ‘ 23)
oy oz
and Ohm's law: ) : ,
' JgE0 Iz (EHuH)o ' ‘ ‘ (2.4)

From Egs (2.1), it can be shown that 3p/dx is constant. Using Egs. (2.2).

op HE) a%u : aH, ' . \
@ — 4 — + MH y 2.5
Ix —y"( ayz . 812 ) }‘0 o ay ( )

_4_



Egs (2.2) can be combined to give:

H, oH, :

Equations (2.5) and (2.6) can be cast into the following nondimensional forms;

9*H 9%H Ha du ' :

—X b X — =

ay? o7? k dy 0 (2.7)
3%u ?’u . Ha aH

— + + X_— 1. *
ay? az? k dy ! ‘ (28)

where,

’ } 3
k=ylz z=1z/z, y=ylz

- 2 Op
u=uu [ ozg ( x)] ‘
o |
M=tz VG (-8 - (29)

Ha= Hygy/ —/%——

' Assuming constant wall temperature, energy quuation can be written as;

T 2°T 1 oH, oH,
C( —S + =)+ —=[( (=) 1+ 0=0 .
C ot @t w0 o7+ 1+ o (2:10)
where,
_ du 2y ou .,
¢ = ( E,y) G B
E'q (2.10) can be nondimensionalized as;
2T T oH,, 2 du_ : -
; (PR (P )P =0 2.1
b 7t (5 (a:L’ Gl (2.11)
with the boundary condition: ,
T=0 on$S . - ) (2.12)
where,
T= (T-Tw), ——1‘————~—‘ |
| 02(— )2 I
The most general boundary condition on the magnetic ficld is{:1T];
a—l:—L‘+¢H,z:0 on S (2.13)
on
where, ) is the conduction parameter defined as the ratio of fluid conductwnty to the wall conductivity. For

the extreme cases, i.e;



Perfectly conducting walls: (f) >0

oH

X_—

ﬁ =0 onS ‘ ' (2.14)
Perfectly insulating walls; ¢*°°
HF0 onS. (2.15)

The system of partial differential equations, Eq (2 7) and Eq (2.8) are solved with Eq (2 13) and the noslip
boundary condition;

u=0" on$S ; o B (2.16)

b. Finite Element Formulation

Applying Galerkin method to Eqgs (2.7) and (2.8),

0'H, 9%H, - Ha du
CJINT ayz”r 5;2‘5+ K, éy‘]dvdZZO (217)
9%u  d%u “Ha  aH_ '
N[ oo ot o a—y—+1]dydl=0 . (2.18)

The second-order terms lmpose unnecessary continuity requirements. Thus, usmg Green's theorem, Eqs (2. 17)
and (2. 18) become;

' N9 N, aH, H d 3 !
G- T S —"——;—l—Nl—s-—)dydz-fN, Mas=0  (2.19)

dy dy oz oz k on

N, 2 aN, du  Ha_ aH, d
Ny o M, du a0y aydz N, ds—o0 (220)
y oy dz 0z k dy on

o

Eqs {2.19) and (2.20) can be written for every node i. It should be noted that the surface integrals do not
contribute anything to the governing equation at the internal nodes, When the node i lies on the boundary,
then the surface integrals will be treated according to the physical boundary conditions:

case 1: If nodal values of u and H are prescribed at node i , then ith equation in (2.19) and (2.20) ,

are not formed, thercfore, the surface integrals are not needed.

case 2: If the normal derivatives of H are given at node i, , then the surface integrals will be evaluated
in Eqs (2.19) and (2.20).

—6—



For the two cases, from Eqs (2.11), (2.12) and (2.13), the surface integrals will not be needed. Using a trial
function of the form; .

¢ [

He= N}, u =Np, , ’ ' (2.21)

Eqs (2.19) and (2.20) become;
KIH) + K] () =0 | o ’

T (H) + () = (9) (222
];he eva!uation of the ihtegrals to form element equations are given in Appendix C.: "
Applying the same procedure to‘eﬁergy equation, Eq (2.11) becomes,

I« g%'— g:—— + %-:ﬁ | g—:— ~N, YHVH +VuVu J) dydz — f N,g—:— ds=0 (2.23)

Si}ice the wall temperatures are prescribed, the surface integrals will not be needed. Using Eqs (2.21) with, -
T=NT, | o * (2.24)
Equation (2.23) can be written as; |
[k1(T) = () | S (225)
where ' ‘ v |
(()=s/N[ HYN,YN, H+ JIYNVN, u] dydz | (2.26)

Since the energy equation is decoupled from equation of motion, Eq (2.25) can be solved seperately from
Eq (2.24) with the knbwn values of u and H.



Part [1l. RESULTS and DISCUSSION . oo : L

1. One - dimensional duct flows
One - dimensional Couette and Hartmann flows have been solved for various Plartmann numbers.

Fig. 4 shows the calculated velocity profiles of the Hartmann flow for various values of Ha. These profiles

are constructed by using nondimensional parameters. The nondimensional velocity is expressed in terms ofa ,, ,,
normalized velocity as u/f (Ha, K, P), where f(Ha, K, P) is a function of Hartmann number, pressure gradient

and the parameter K, given by Eq (1.12). - '

Each profile indicates an excellent agreement between the present finite element solution and the exact
solution (23] ‘

10

0.5F

00

00 0.05 ~ 010 015

u/f(Ha,K,P)

Fig. 4. Normalized velocity profiles for Hartmann flow, as calculated by
- the present method and the exact solution [26]. '

The slowing effect of Ha can be easily observed. This is due to the fact that in flow of cor]ducting fluids
through transverse magnetic field, electromagnetic body force will act in the opposing direction and retard

the flow, ‘

'



Figs: 5and 6 shpw t!1e velocity profiles of the Couette flow for various values of Ha with zero pressure
gradient and with different values of the parameter K, corresponding respectively to short dnd open-circuited
cases, | ' .

The results are in good agreement with the exact solution as in Fig. 4.

00 4

0 0.0 05
1N . . . d g : o
, ” | .U i
Fig. 5. Velocity profiles for Couette flow with the : Fig. 6. Velocity profiles for Couette flow with the _
parameters P:0, K:1, _ : : *  parameters P:0, K:0.

’ ' 4

X

The slowing effect of Ha is again apparent in both cases, but the profiles corresponding to K=1 appear to be

more sensitive to Ha. 1
‘ _ . : i
Fig. 7 shows the calculated flowrate of the Hartmann flow as a function of Ha. The nondimensional flowrate
.is normalized with the flowrate at Ha=0, It is noted that flowrate decreases very rapidly until Ha=5 and drops
to negligible proportions for Ha>10. .



10
/Q,

0.5F

0.0 . 2
00 100 200

Fig. 7. Normalized flowrate versus Hartmann number.

Q, is the flowrate at zero Ha.
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2. Two-dimensional duct flows

.

Results have been obtained for square -and recténgular ducts with perfectly conductihg and perfectly
insulating walls for various values of Ha.

Figs. 8 and 9 show the nondimensional velocity contours and profiles at cerfain cross-sections of the duct
at zero Hartmann number, for square and rectangular ducts, respectively. It can be seen that velocity is
maximum at the center and decreases towards the walls.

AA ¢C B8
10 ,
Y
06
>
0.2
-02
-06
-10 —
| | | 00 a2 04 00 Q2 " 04 Q0 Q2 o 04 |
A C B u .
Fig. 8. (a) Velocity contours for square duct (b) Velocity profiles at certain cross

calculated by the present method sections of the duct at Ha:0.
and the fourier series [23] at Ha:0 v
for different mesh sizes.

— n:200
——ne :128
——n: 32

o fourier series solution.

There is a good agreement between the present finite element solution and the fourier series solution [26],

the error decreasing with decreasing mesh size, shown in Fig. 8 (a). This is also illustrated in Fig. 10, in which
the relative error in the maximum velocity is plotted versus total number of nodes. It is seen that there is a
rapid convergence to the exact solution with increase in the number of nodes.

11—
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00

00

Fig. 9.
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" (b) Velocity profile at the certain cross sections. -
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50
L,O (3
8
=
& .
30 o
20 ]
10t
0.0 — N N A -
25 75 » 178 175
node

Fig. 10. Relative error in maximum velocity versus number of nodes.

Fig. 11 shows the calculated nondimensional contours and profiles for square duct at Ha=0. Due to symmetry
of the contours, only one quadrant of the duct is shown. The figure indicates that maximum temperature
occurs at the center of the duct which is due to the fact that viscous dissipation is maximum at the centerline,

CC ) AA

y 10075

1= 0145

’ 1:0020
04

00 a5 T, F

(Fig. 11. (a) Temperature contours at zero Ha.

' Results for nonzero Hartmann numbers are presented in two categories corresponding to the extreme cases
of perfectly conducting and insulating boundaries. ‘ o

! -13—



i.- Perfectly conducting walls:
Figs. 12 and 13 show the velocity contours in one quadrant of the duct at Ha =0.001 for square and rectangu-
lar ducts, respectively. Since the. contours are symmetric, only one quadrant of the duct is shown. Also shown
in these figures are the contours for Ha=0 as copied from Figs. 8 and 9, Comparison of profile shapes indicates
that MHD distortion of velocity profile is negligible at very small Hartmann numbers.

. . *

10
y
05
O’Opo' 10
M ,
Fig. 12. Velocity contours for perfectly conducting square duct
at Ha: 0.001. Dashed lines are contours at Ha: 0.
re
v . . Fla 0
= g 00m
(TR TS
o T -—&_—_&\\vv\

oyl e oy

e g ; v 0N
0 i
e , ,

N »

Fig. 13. Velocity contours for perfectly conducting rectangular duct.’
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.GC

o fourie
A fin.diff.

A-A

€0

oms

a0 QoS
u

Fig. 14. (a) Velbcity contours for perfectly conducting square duct at Ha: 6 as calculated by the

present method finite differences and Fouries series [11].
(b) Velocity profiles at certain cross sectlons

X

Qo10

o .
Q0 005

05 ;
Y u=0.005
u- 000
foee 1
025}
«coarse mesh
i
00;= o5 10
z,
Fig. 15. (a) Velocity contours for perféctly conducting rectangular duct at Ha:5.

(b) Velocity profiles at certain cross sections.

i

Figs. 14 and 15 show the calculated velocity contours and profiles at Ha=6 and 5, for square and rectangular
ducts respectively. Fig. 14 (a) indicates a good agreement between the present finite element solution and

other sol

utions by the Fourier series and the finite difference methods [11].

Comparison of Figures 14 (b) and 15 (b), respectively, with Figs. 8 (b) and 9 (b) |||ustrates the extend by
whlch flow is retarded and prof‘ les are flattened wnth increase in Ha.

i



Figs. 16 and 17 show the nondimensional induced magnetic field lines for squzire and rectangular ducts. It
is seen that the constant magnetic field lines which are the current lines extend all the way to the walls of
the duct due to the fact that the walls perfectly conducting, so that the current flows through the fluid and
_returns from the walls, The present solution is again in good agreement with finite difference solution [11]
shown in Fig. 16. .

—
05 — : ) |
H=0.080 ‘ 4
. -
A 4/:—_‘—_—
H:0,0SO ’ '
00 ) —5%5 0
z !

Fig. 16. Constant induced magnetic lines at Ha6 for perfectly conducting square duct.

0
y

H=0028 |

025}
H=0016
H=- 0005

co : —
00 . 05 . ., 10

Fig.17. Constant induced magnetic field lines at Ha:5 for perfectly conducting
" rectangular duct. :
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Figs. 18 and 19 show the calculated temperature contours at Ha=6 for one quadrant of square and rectangular
ducts. The maximum temperature still lies on the centerline of the duct and decreases towards the walls. The
figures indicate a decrease in temperatures in comparison to values at Ha = 0 (Fig.11). This is due to the fact
that viscous dissipation is dominant over the ohmic dissipation for reasonable values of Ha and it decreases
as the flow is retarded. '

.

10

05

OO()O O“ b] 71 0

z

Fig. 18. Temperature contours at Ha:6 for perfectly conducting square duct. .

05 ~
715 %10

Y
7-35x10"

Q25 L
T-60x10

T
000 e O , 10

L}
' .

Fig. 19. Temperature contours at Ha:6 for perfectlly conducting rectangular duct.
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(ii) Perfectly insulating walls:

Fig. 20 shows the calculated nondimensional velocity contours at Ha = 5 for square duct. Since the walls
are now perfectly insulating, the velocity field is less affected by the magnetic field than in the case of
conducting walls. This can be seen by comparing Fig. 20 with Fig. 14. The figure also indicates a good
agreement between present solution and Fourier series solution [26]. C
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Fig. 20. Velocity contours at Ha:5 for perfectly insulating square duct as.
calculated by the present method and the method of Fourier series. [23].
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Fig. 21. Induced magnetic field contours at Ha:5 for perfectly insulating square duct .

Fig. 21 shows the constant induced magnetic field lines at Ha = 5 for square duct. The contours indicate a
good agreement between present finite element solution and the Fourier series solution.

Fig. 22 shows the témperature contours at Ha = 6 for square duct. Comparison with Fig. 18 reveals that
the profiles are less affected in insulated duct.

In Fig. 23, temperature profiles along the centerline of the square duct is shown for various values of Ha.
Flattening of the profiles for increasing Ha is due to decrease in viscous dissipation. - _ |

Comparison of the results for perfectly insulating and perfectly conducting walls is given in Figs. 24 through

29,
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Fig. 22. Temperature contours at Ha:6 for

perfectly insulating square duct.
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- Fig. - 23. Temperature profiles along the centerline
of the perfectly insulating square duct
for various values of Ha.



Figs. 24 and 25 show the calculated velocity profiles along the centerline of the channel for various values .
of Ha, for square and rectangular ducts, respectively. It is observed that electromagnetic field exerts a
greater effect in the case with conducting walls

QF
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I NN - nduc !..ng ‘ — insulating )
RN — insulating \
" R ' \ \\
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Fig. 24. Velocity profiles along centerline of the square duct.

Fig. 25. Velocity profiles along centerline of
£
"Fig. 26 shows the calculated maximum velocity versus Hartmann number in sql?:ﬁ'ée e

¥ghlar (its with mixed
boundaries, i.e. perfectly insulating walls parallel to the magnetic field and perfectly conducting wall perper-
dicular to it are also shown. for comparlson It is seen that there is a rapid decrease in maximum velocity for

" increasing values of Ha.

Fig. 27 shows the maximum velocities for rectangular duct for the perfectly insulating, perfectly conducting
and mixed boundaries as'in the above. It is observed that the velocities are more readily affected than in square
duct. The figure also shows that the conductivity of the side walls has negligible effect on the maximum
velocity unlike the square duct (Fig. 26)

—————m ]
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Fig. 26. Maximum velocnty in the square duct Fig. 27. Maximum velocity in rectangular duct
varsus-Horbmann-number for 1. perfectly versus Hartmann number for:
T insulating, 2. perfectly conducting walls 1. perfectly insulating -; 2. perfectly
" perpendicular to applied magnetic field, conducting walls.
3. perfectly conducting walls.
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!:ig. 2§ shows the calculatgd maximum- temperature versus Hartmann number in square duct for perfectly
insulating a}nd perfectly conducting walls. The profiles are constructed by using temperatures normalized »
by the maximum temperature at Ha = 0. . ’
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Fig. '28. Normalized maximum temperature versus Hartmann number |

for square duct. N
i

Fig. 29 shows the flowrate normalized with the value at zero Ha, as a function of Hartmann number.
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Fig. 29. Normalized flowrate versus Hartmann number for square duct
as calceulated by the present method and the method of R

Fourier series.



Part IV. CONCLUSIONS and RECOMMENDATIONS

A computer program has been developed to solve MHD duct flows by the finite element method.

The applicability of the model has been shown by solving a few example problems, the results being in good
agreement with other exact and approximate solutions.

The problems considered were one and two - dimensional fully developed duct flows under transverse
magnetic fields that have practical importance in applications such as MHD generators. From the results of
the model, following conclusions can be drawn:

1. In flow of electncally conducting fluid under transverse magnetic fields, the magnetic body force retards
the flow.

2. The velocity profiles flatten as Hartmann number increases due to electromagnetic body force.

3. Temperature of the fluid is increased by viscous and ohmic dissipations. Howgver, as Hartmann number
increases, viscous dissipation dominates over ohmic dissipation. Thus, as the flow is retarded temperature of
the fluid decreases with decrease in viscous dissipation.

4. In all cases the applied magnetic field affects the flow. However, the effect increases as the wall conductivity

Following can be recommended for future work on MHD flow solutions;

1. In the present applications, the walls of the ducts were either ideally conducting or ideally insulating.
However, for a more realistic problem, walls with finite conductivity should be considered.

2. The model can be extended to solve flow over bodies or developing duct flows. In this case a modification
should be done to include the nonlinear terms in the governing equations. A simpler solution to this difficult
problem can be obtained when the induced field effects are negligible in comparison to applied magnetic field.

3. For applications involving high velocities such as ion accelerators or electrical propulsion e.tc.,
compressibility effects should be considered. In this case, Navier - Stokes and energy equations are coupled.

4. A three - dimensional analysis should be carried out for applications such as hypersonic flights. Because
of the high speed of the missile or reentry vehicle in the atmosphere, the air may be heated by the boundary
layer to a temperature at which the gas is ionized. By applying magnetic field, skin - friction can be affected.

5. The accuracy of the finite element solution can be improved by using a finer mesh structure. However,
this will require a larger computer storage.

6. In order to generalize the computer program, an automatic mesh generation scheme [29] should be adopted
so that the mode! can be applied to irregular geometries more easily.
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APPENDIX A
Review of Magnetohydrodynamics

MHD differs from ordinary hydrodynamics in that the fluid -is clectrically coﬁducting. It is not magnetic but
it affects a magnetic field by electric currents flowingin it. The fluid conducts because it contains free charges
(ions or electrons) that can move indeﬁni}ely, but it may also be a dielectric and contain bound charges
which can only move a limited extent under electric fields. As a consequence of this ability to .conduct -
electricity, the electromagnetic field will give rise to two principal effects: Body forces acting on the fluid
will be created and energy will be exchanged with the fluid. Then, for an incompressible fluid, Navier -'Stokes

and energy equations are;
[

Dy - | ‘

Por— =W taV L +E ; (A1)
D 1 ' .

P D (2——!.! + e)=— V.g+ Qem + visc. _ (A.2)

where,
¢
F; gravitational and electromagnetic body force field. : ;
Qem; rate at which electromagnetic field is doing work on the charges.

In deriving the additional terms in equations (A.1} and (A.2), the electromagnetic theory is to be reviewed. A
Since the velocities are much smaller than the speed of light, nonrelativistic theory will be discussed.

A charged particle is mainly subjected to three kinds of forces;

1. It is repelled or attracted by other charged particles, the total force on the particle per unit of its charge due
to all the other charges present being the electrostatic field E, From Coulomb's law,

curl gs: 0 . (A.3)
therefore, it can be expressed as the gradient of an electrostatic potential, |

E- Y6 | o o (A.4)
I‘t follows that in regions where there is a net charge q per unit volume [24];

div E,= q/Ko - | C(AS)
where, Ko is the permittivity of vacuum. '

2 Chargcd particles in motion produce the phenomenon of magnetism which is described by the magnetic
field B.If a particle is moving with a velocity u, that it will be exposed to a magnetic force, F, per unit of

its charge;

FguxB ' ' : (A8)
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3. I.f_.the magnetic field is changing with time, then per unit of its charge, a particle will be subjected to an
additional force Ei, the induced electric field, defined by; N »

div E,= 0 | - (A7)
and by Faraday's law;

%8

curl E=— % (A.8)
The latter implies that "

%t—-.(div B=0
or »

dvB=C ’ . , (A9)
Actually there is a stronger condition on B [23] ;

divB=0 ¢ ‘ : (A.10)
The combined electric field E, is then given as; |

E=E+E, ' o - 7 (A11)
it follows that,

curl E = _ g—?—— (A.12)

divE = a/Ko : ' : - (A13)
The total forge field is obtained by superposing electric z;nd magnetic fields. ; »

f=E+uxB o ‘ (A.14
This is called the Loréntz force. .
To describe the situation where there is a ‘spatial distribution._of moving charges we need another vector |,
the current density, which includes the net flow of all charges. For nonmagnetic materials the magnetic field,
current density and electric field are related by Ampere - Maxwell law;

curl Bj=] + Ko g—f’— | - C(aas)

where Mo isthe permeability of vacuum.
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The last term in Eq (A.15) is Maxwell's contribution.

Consider a conducting material containing positive and negative charged particles. Let a particle of charge p
have a velocity u. Then net charge (free and bound) per unit volume is given by
1 t

Tp=q o , (A.16)

and the net current density is given by
sz =l ‘ ' . (A.1 7)

Since the Lorentz force on a particle is p(E+ gxg), the total force per unit volume is given by

i

'

Fem = qE + |xB R (A18)

In a stationary conductor, free charges drifting under the action of Lorentz force are also subjected to a drag
force due to collisions equal to ku, where k is .some constant for each particle. Neglecting inertia, force
balance on each partlcle |eads to :

pE+uxBl=ku (A19)
Summing over the freé charges in the element of conductor one writes;

q E + JxB = -Eky:
or ‘

E+|xBla =Zkufq | | (A.20)
where,

lc‘: conduction current due to drift of free charges

q ; net free charge per unit volume
The righthand side of Eq (A.20) has been shown to be proportlonal to | [24],

E+)xBlq = o | o ‘ (A21)
where,o is the electrical conductivity of the material.

The termin Eq. (A.21) due to B is refered to as the Hall effect. If the free charges are electrons with charge —e
and number density n; ‘

E - IxBne=1jo | | (A22)

The Hall effect is due to the transverse magnetic force on the drifting free charges, which is negligible for low

magnetic fields [26].
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when the conductor is moving at a velocity v, the velocity of a particle is v+u. Summing over all charges,
1=2p (v+u)
=1t 1E L
where, 1y ; convection current:q v,

] . : conduction current due to free charges
Ip : polarization current due to bound charges 3P

at
and P is dipole moment [23].
Then the balance of forces on a freé charge leads tp,Ohm's law;
JEoAE+yxB) , (A.23) o
and due to motion of bound charges v
J=qx+vo‘('§+!xﬂl’3)+ g—%— | : | . (A.24)

MHD Approximations
Order of magnitude analysis for low - frequency electromagnetism and MHD leads to;

i. The ratio, curl B/u, Ko 'aEIat in i:_q (A.15) is'of order B/, d:KoEf (if B and E are typical magnitudes
and d and f are length scale and frequency), then using Eq (A.8);

CurlB/my  Blged 1 S
Ko OE/3t Ko Ef Kopod®f?  d?

where,
A= cff, = 1/Ko pto

This ratio is very large and the Maxwell term (K, 8E/dt) in Eq (A.15) is negligible unless the frequency is
very high. . .

Therefore Eq (A.15) reduces to:

curl B/p, = | - (A.25)
and furthermore, V 7

divj=0 (A.26)

Eqs (A.25) and (A.26) are Ampere's law and Kirchhoff's first law respectively.
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ii. Itis noted in Eq (A.13) that total charge de‘nsity qis of order;
q~ Ko E/d ~ K,Bv/d;
thus the convection current is of order
qy ~ K,Bv?/d . ¢
while from Eq (A.25), the total current is of order
]~ Blyd
consequently,
qy/} ~vi/c? <1
and thus it can be neglected.

Furthermore, the polarization current is also of the order of K, JE /9t [23], therefore, the conduction current
in Eq. (A.23) can be replaced by the total current:

JZO’(EJF,‘!‘XE) o : (A.27)

iii. The relative order of magnitudes 6f the electric and magnetic components of the body force in Eq (A.18)
are as follows: ,

E? KBV /d v
o~ K;, /d - g vi/ - ",T”" <1
JxB B /}(od B*/ p,d c’

therefore, qE in Eq. (A.18) can be neglected.
With these simplifications, the resulting equatioﬁs are;
curl B/ u, =] (Ampere's law)
]= o(E+vxB) (Ohm'slaw)
and the body force on the charged partigles; .
Fem=]xB : (A.28)
-Hence, Navier - Stokes cduations in the absence of gravi'tatioml forces becomes;

Dv ‘ ‘
T . . A.29
Por = TIp 7&?!*,!"5 | (A.29)

Since charges within a material move under the action of clectromagnetic forces, colliding and exchanging
‘energy with the rest of the material, electrical work can be done on or by the material. A single particle of
charge p, moving with a velocity u, experiences the Lorentz force, p(E-+uxB), which does work on it at a rate:

dw

= (u-§)+pg.(t;x§) o . . (A.30)
dt - -
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The second term vanishes because the force is perpendicular to the motion. Then, summing over such charges
in an element, the electromagnetic field does work on the charges at a rate .

Qem = (Zpu).E

(A.31)
=)E
. . [}
per unit volume of the element. From Ohm's Law, Eq (A.27)
E=}/oc — yxB (A32) _
Hence,
Qem'=).] /o ~ J.(vxB)
. (A.33)

The first term is the Ohmic d|55|pat|on and the second term is the rate at which electromagnetic force does
work.

Substituting Eq (A.33) into Eq (A.2), overall energy equation becomes:
D ! + e)= 4. ) o+ B+. i (A 34)
Va Dt ( 2 vy +e)= —vq ).) V. JxB + visc. : : .
Multiplying Eq (A.29) with y, the mechanical equation is obtained: -

(,0 — +v p)= (,J.XB) + vyglv | (A:35)

Subtracting Eq (A.35) from Eq (A 34), thermal energy equation is obtained: ‘

Pg—f—:d’)—v.g +1d o a (A36)

where Q0 is the viscous dissipation.

Using pérfect gas relation and Fourier heat conduction law,

De DT

== = c,pr o (A.37)

and defining magnetic field strength

H = B/ : | (A.39)
and from Eq (A.25)

J curl B/ps = curl H

~

one obtaines,
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DT .
(< a =CP# T+ Q) + (YX_I"_!). (Z XJ:') o . (A.40)
Hence governing equations for MHD are derived which are summarized belo:v ;

Navier - Stokes equations;

Dy, o - .
P o = VPtV 2y +p, i (A.41)
X 3
Energy equation; )
DT , . ;
P =CPT+ P +y x H.V xH/o ' (A42)
Ohm's law:
J=c(E+yxB) - (A.43)
e .
with the Maxwells relations; '
culH=]
divH=0 -
cul E=— 3B /ot ‘ ‘ (A.44)
divE- = q/Ko : '

The {last equation is not ﬁécessary for solving MHD - flow problems since charge distribution is of no interest.
However, in some applications the effect of q should be.included [24]. In the present study, it will be
ommitted. . .
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APPENDIX B

Finite Element Methods

In the finite element methods the continuous problem is divided into finite number of elements such that
the dependent variables are approximatéd over each element and hence over the whole domain. Thus the

continuous problem is transformed into a discrete problem, solution of which yields an approximate solution
for the domain [27,28]. '

The elements that discretize the domain are classified most generally into one, two and three - dimensional |,
categories. In all these categories, a general trial function can be represented over an element as;
u=Nuy ’ (B.1)

b

where N is the shape function matrix and u is the element nodal vector.

For a Lagrangian element there is only one degree. of freedom, i.e. one unkrown per node , and hence Eq
(B.1) can be written as;

U
uz .
U= [NNaworeerrreen NJ (B.2)
8
uS
where 1,2, .................s are node identifiers and s is the total number of nodes

1. One - dimensional elements ; S
Let the solution domain discretized by linear elements,

X, Xz

Fig. 30 One - dirﬁensional element
the trial function u will have the form over each element
- B.
u =ctc,x _ (B.3)
where ¢ and ¢ are constants. Evaluating Eq (B.3) on each-node of an element;

uy =c»1+c2x,1
u2=c1+c2 X

solving for cand c, ' .

~A.8—



X, Uy X —_ < Y
2 Uy X u,_ Ul
.x__.__.._.’ c= ; (B.4)
2= X Xo — X; -

Substitute Eq. (B.4) into Eq. (B.3) and rearrange,

g= X XL X=X ' (B.5)
Xp= Xy Xo= % . ° .
- Eq. (B.5) is of the form **
u=Nu +N, u, ’ (B.6)
where,\ ' '
Ny= 227X . N XX ‘ (B.7)
VX, x 2 X=X,

choosing a coordinate system peculiar to an element such that L, = Tatx =x, and L, =0 at x =x,,
namely natural coordinates,

Fig. 31 Natural coordinates in one-dimension
Hence, the approximation u across the element e can be interpolated as,
| u=L,(x)u+ L, (x)u, : : '_ (8.8)
Comparing Eq. (B.8) with Eq. (B.6) shows that the shape functions N, and N ,are given by
Nl:‘Ll(x) 3 Np= Lfx) L (8.9)
The following relation i; valid for natural coordinates |28];

al b!

= vy e ) | (810

e dx
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2. Two - dimensional elements

- Consider a typical triangular element with nodes j, j, m,

X
Fig. 32. A triangular element.
The trial function for the element will be;
u=c14; c,x+c,y ‘ " , (B.11)
evaluating at each node of an element,
iu, = ¢+ ¢+ cyy,
u=c + céxﬁ c5Y, ‘ o {B.12)

us=c + szm+ €3¥m

. |
The system of equations (B.12) will have a unique solution for ¢ provided the determinant of the coefficient
matrix does not vanish, i.e. ; '

T %y - :
240=1 x,, 0 : (B.13)
T X Y . v '

Solving for ¢ 's from Eqgs (B.12)

1 N
cF EZ(a, u,+ a "1+%“m)

1 . ‘ i
K(b_' u,+ b u+boy) ; | (B.14)
] .

¢ ~2—A—(C' u + g U+ G uy)
where, o .
q =X Yo — XY B =¥ = Y &1 F X

6thers are obtained by cyclic permutatidn of the indices.
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Substitution of Eqgs (B.14) into Eq (B.11) results with tﬁé trial function: .
3 1 . . - .
u= E[(3F+ byx +c y)u+(a +b x+ey)u+(aa+bh x+ey)um] (B.15)
Comparing Eq (B.15) withEq (B.1}) . e

1 .
N, = E(a.+b|x+c|y)

5

. 1 _ _ ,
Ny = o (aptbyx+cyy) ' (B.16)
: 1 - +
N, = E(3m+brnx+‘me)

- Introduce natural coordinates in two - dimensions, which arc referred to as area coordinates; '

v )
! B !
Fig. 33. Area coordinates
the approximation u acrosé an element bec;)mes, ‘ ‘ ' .
u=Lu+ l;2u2+'LJ uj o - (B.17)
therefore, for the triahgula; element |
Ny=Ly Np= Ly; N; = Lg ' (B.18).

It can be shown that the relation betweenvcartesian and natural coordinates is given by [28] ;
x]  [X1% X
yl= [viYayale ‘ o - (B.19)
1 11 1)L '

Similar to Eq (B.10), the following reiation holds for area coordinates:

a! b! c!

. (a+b+_c+2)! (B.20)

S5 15 L5 d
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3. Residual Finite Element Methods . V

.

Consider a governlng differential equat|on in the domain D which involves one dependent vanable u and
several independent variables x; :

Llu;x;)=0 . o ‘ ;- (B.21)
. &
Substitution of an approximate solution u will result an error, or residual R:

1)

R= L(u;x)) —L{u;x)) ' (B.22),,

by Eq (B.21),

i

=— L(u;x ,)V , | | ) ' (B.23) '7

In residual methods, the residual R in Eq (B. 23) is required to be small, or the weighted integral over the

domain is required to

fwe(u;x)dD=0 ' . (B.24)

where w is the weighting function.

Depending on the choice of the weighting funceion, different approaches can be rediscovered [27].

Galerkin Residual Methods

In this method, the weighting functions are taken to be the interpolation functions whlch leads in general to
the best approximation among other Residual methods [25].

\ . 1
Galerkin method forces~the residual to be zero by making it orthogonal to each member of a complete set of
functions, i.e;

SN; L{u;x)dD =0 | . (B.25)
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APPENDIX C

Derivation of the element equations.

Finite element discretization of the governing differential equations, leads to a set of algebraic equations
Hence, for a particular efement,

(K] (u) = () | (1),

In the above equation, the stiffness matrix k and right handside f would contain domain integrals which
could be easily evaluated by certain analytic expressions.

In the one-dimensional formulation, the element equations are-of the form Eq (C.1), where,

N, dN,
n

k=fgt S+ Ha N dn - ._ | (C.2)
f=C[Ngn | IR : (c.3)

Using linear interpolation functions, Eqs {(C.2) and (C.3) become:

k=7 % My e an 4 - (C4)
" dn dn
f=CfLdn L ‘ ' (C.5)

Performing the integrals in Egs. (C.4) and (C.5) by using Eq (B.10),

1+ Ha? h?/3 . _1+Ha’h?/6| | |

k= — ' (C.6)
—1+ Ha’h?/6 » 1+Ha2h?/3

ho 1 o
f=C 5 {1} (c.7)

where, h is the length of the element.

For the two-dimensional formulation, a similar procedure can bBe carried out. Eqgs (222) can be combined
in a single matrix equation for an element;

K =0 , (c8)

“]. r:ﬂ - (c9)
u| - |f

where,
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and, . . ¢ ’

N, AN, AN, N

ky = — + —J) dyd
1 I ( dy Dy 3% o ) dydz
Ha AN, ¢ .
k,= — —1—N C.10
2 K i 3y idy dz . (C.10)
f =[f N dy dz . . "

Using linear intcrpblation functions and by Eq (B.20);
k, = (c, c,+'b, b, )/ 4A
k,= Hac; /6k =123 . (c.11)
f =—4/3 i=1.,2,3
For the temperature ﬁcld ,;Ne have a similar equation; ‘
[k, 1(T) = (r) o (C.12)

where,

JINJHVNVNH +uV NVNju [ dy dz

.,
il

it

(c, ¢t b) (H, H_+ y u)/12A B | (C.13)

In the above, summation convention has been used.
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APPENDIX D

- Computer Program

The flowchart of the computer program to solve the system of differential equations (Egs 2.7,2.8 and 2.15)

is given with description of the subroutines in the following: R

MAIN

TEMP o

LEOTIF

INPUT|OUTPUT|[SMATR

~Jevatr TELM

Fig. 34. Computer program flowchart

INPUT: Reads input data and initializes %he program.

SMATR : Calculates necessary coefficients to cvaluate clement matrices, assembles element matrices
calculated through subroutine EMATR and finally inserts natural boundary conditions.

EMATR : Calculates element matrices.
TEMP : Subprogram to calculate the temperature field.

TELM : Forms element matrices of the energy equation. |
OUTPUT :  Prints out the results.
LEOTIF : Solves system of linear algebraic equafions. »

~ The listing of the computer program is given in the following.
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.

YO0 Cal) ) )

28200

t2802¢(2

COMMON/INP/NOD(HELFMvN):X(NPOIN)rY(NP IN)'NPT(NN)uNMP(NN) VAi(NN)
COMMON/ELEMT/STE (NELEMeNoN) »SMINNe NN} RRONELEM N)vR(NN)
COMMON/SYST/A(M) yB (M) »C(M) yDELTA
cOMMON/SYSTZ/BB(NtLLM'M):CC(NELEM M),DEL(NELEM):AA(NELEM'M)
COMMON/INPZ/IPLOT'IPRINTrLINrNEUMN NPRES'TvH(10)rNHoHArKCALL
COMMON/ELz/Hﬁ(M)'U(M) :
COMMON ITEMP | |
DIMENSION WKAREA (INN)
v*******************+*+****1*********** - :
PROGRAM TO SOLVE Mpp FLOW PROBLtMH By -
~ FINITE ELEMENT METHODS
’_*****************4*¢*4*4*******1*****$

PARAMETER N6 9M=3 ¢ NHZ242 ¢ NPOTN=121 s $FM =200

INITIALIZE PROGRAM o o=

CALL INPUT
DO 80 1=1rNH
KCaLLz0
MAZH(I) |

 GENERATE STIFFNESS MATRIX . ' A

. CALL SMATR |
7 IF (LIN=1) 60050050 g
50 CONTINUE  ~ ~ |

© SOLVE SYSTEM OF EQUATIONS 4
l

. CALL LEQTIF (SMy1vnNsHNIR, 101 {KAREA» [ER)
7 60 TO 70 | ! |
60 CALL ITERN ’ ‘
70 CONTINUE ' '
- CALL OUTPUT

. IF (ITEMP,EQ.0) GO TO 80

- KCaLL=1 | ~ /

" CALL TEMP o :
B0 _CONTINUE : d
S oosToP T T |
= END
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0000000000000 0O

SUBROUTINE INPUT
PARAMETER N=6¢M=3 ¢ NHZZ42 ¢ NPOINZ 121.NELEM4200 |
COMMON/INP/HOD(NELFMrU)vX(NPOIN) Y(NPOIN)oNPT(NN)rNMP(NN)vVAL(NN)

COMMON/INPZ/IPLOTvIPRINT LIN:NEUMN»NPRESrT PH(10) #NH) HA!KCALL
COMMON ITEMP o

‘INTEGER HEADG(BO)

“'READS AND PRINTS INPUT DATA b : '-l»

- HEADG=HEADING OF THE PROGRAM L @

NDIM=DIMENSION OF THE PROBLEM

LIN=1 IF PROBLEM Ig LINEAR

0 IF NONLINEAR A

"ITEMP=1 IF TEMPERATURE FIELD Is T BF solvep

IPLOT=1 PLOTS THE RESULTS M : :
IPRINF 1 ELEMENT STIFFNESS ATRICES ARE PRINTED ; !
NEUMNENODES WHERE, FLUX 1S SPECIFI ' '

: NPRES-NUMBER OoF pRFJCRIBED NODES

" TSHEIGHT TO wIDTH RAT10 OF THE DUCT

-HAqTWANN NUMBER ﬂ

3 READ(57160) (HEADG(I):I lv80)

READ(5910) NDIM/LIN(/ITEMP»IPLOT»IPRINT NEUMN NPRES

 READ(5915) NHeT»(H(L) rI=1rNH)

‘iPRINT10UT DATA j

. WRITE(ge180) T
WRITE(67160) (HEADG(I)sI=1y 89)

READ(5!20) (hl(NOD(l vd)rd=1eM) 0 I= l NFLEM}
READAS»30) (Y(I)oX(I)rI=1y NPOIN)
READ(S¢40) (NPT(I),VAL(1)sI5E1¢NPRES)
READ(51170) (NMP(I)!I:llNEU,N) BN

. WRLITE(6¢50) NPOIN N ' !
WRITE(6¢60) NELEM

- FORMAT(715)
" FORMAT(I3rF7.3010F5.2)

- WRITE(6r25) NDIM» LINvIThMPvIPLOT IPRINT NEUMN:NPRES
‘vWRITE‘E 70)'| ; l ‘ .

~ WRITE(6¢80) E
 WRITE(6190) (IsX(I)eY(I)sl f 'NPOIN)

WRITE(6¢100) ) ! : '

.WRITE(60110) SRS A

TWRITE(69120) (10 (HOD(Ird)iJ=1sM) 1=}, NELEM) =
WRITE(60130) |
WRITE(g0140) , ‘

WRITE(60150) (NPT(1)eVAL(I) rI=1+NPR

3

i

FORMAT (2413) ¢ R

FORMAT (// 15Xp715) , S |
FORMAT (22F3,1) o
FORMAT(7(I3/F7,2))

) FORMAT (////+1Xr 1 NUMBER OF NLDES'vIS) o §

FORMAT(lxerUMBER oF ELEMENTS»IS)
FORMAT(///'IX'rX AnD X COORDINATES't/). , e P
FORMAT(1X017H NODE X Yr2(21H|  NODE X )
g b , ; _ i
o Gk



b

90
100
110
120
130
140
150
160
170
180

: PO [ -

FURMAT((lera.Fa.L,i/ 2r2(10,F8, z.F/ ?)))
FORMAT(lHlv////le.rTHL ELEMENTS AND THEIR (IODES, /)
FORMAT(LX e 1SHELEM - [ J  Mrs(1pH LLEM T U M))

FORMAT (1%, v 150 I4,213, 10, 004,213,100, T49p13, Iu.Iu.alb)

FORMATULHL e /// /771 1A rUGOES wITy PREGCRIBED VALUL Se)
FORMAT(1Xr12H NODE  VALUE»3015H HOUE . VALUE))

FORMAT((LXe I3+Fu.3,5016¢F9.3))) |

FORMAT (80AL)

FORMAT(LHI5) ' : .
FORMAT (1H1e//// 01X, o FOLLOWING IS THE I8PUT TO FEM PROGRAM FUR

 RETURN

 SUBROUTINE JMATH

10 NS

20’

30

40

50

END

PARAMETER MN=6 M= 3z en 2o PO INS l°1:urLfM:200

ve/)

COMMON/IHP/NOD(MLLFN'l)'X(lPOIH)'Y(HPOIu)'WPT(JU)VHMP(Hh)'V/L(Hl)

COMMON/&LLMT/&TL(hplEu'u,u)r MORN M) o BRONELE M ) 0 RN
COMMON/ZSYST/ZA(M) pus(i4) 1 C (M) P ELTA
COMMOH/INPZ/IPLOT'IPR¢NfrLTHvNEUMH'NPRFS'TrH(IU)rHH'HA'KChLL
COMMOII/ZELS /HX (M) s U () .
COMMON/SYS Tu/bB(HL[L”")UCC(HLLLAI4),DFL(”LLCM)IAA(NELEW' )
D IMENSTON NJUR(JPOIH'xvuIH)'AK(M)vYY(Q)
DIMENS IOH T CHM) : .

A .
CALCULATES SYSTEM gTIFFHESS

DO 10 I=1rNPOIN
URCL 1) =0

DO 30 I=erELEM
DO 20 J=1.

LK=NOD (I, J) , ¢

NSUR (LK ¢ 1) =HSUR (LK, i)rl
LL=NSUR(LKr 1) +1

NSuR(LKrLL):I;

CONTINUE

DO 90 I=1rHELEM

DO 40 J=1sM

MOD (I o J+M) =D L » J)

LK=ZNOD(I D) . y
HA(J) =R (LK) ‘

UCUYSRILK+NPOIN) ‘ |
XX (J) =X (LK) ' -
YY{J)=Y (LK)

CALCULATE Ari3rC
. {

DO B0 J=1ri

LRK=J+1

LlzJd+2 -

IF (LK=M) 70+/60¢50

LK=1
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,fmvm,mm_wtuwéw;_f”.wT_m .

[
v

OO0

'2 XXz B

et

81

60
70

80

82

85
86
90

100
110

130

140

150

154
155
160

170

iNSERT’BOUNDARY-COHDITIONSi

LL=1
Aly)= XX(LK)*YY(LL)—AX(LL)*YY(LK)
BOU)=YY (LK) =YY (LL)

COUI=XX(LL) =XX (LK)
DELTAS(C(3)xB(2)-C(2)rB(3)) /2,

IF (KCALL,EG.1) GO 70 81 h

- CALCULATE ELEMENT gTIFFRESS MATRICES

CALL EMATRI(1)
GO TO 82 a-
CALL TELM(I)

- 60 TO 90 o ;

CONTINUE _ ]
DO 86 K=1NEUMN :
IF (I.NE.,NMP(K)) Co TO 86
1CalL=1

DO 85 J=1rM

AA(IrJ)=A(Y)

BB(IrJ)=B(J)

CC(Ird)=C(J)

DEL(I)=DELTA

CONTINUE - !

CONTINUE '

DO 110 I=1rNN

DO 100 J=1rNN

SM(IrJ)=0, ;
R(1)=0, i

IF (KCALL.EQ.1) 1CaLL=D

IF (ICALL.EQ.1) CApL HpCs
DO 230 NODE=1+¢Nii - k)
IF (NODE=NPOIN) 13ps13Qr140 .
ND=NODE ;
GO TO 150 ,

ND=NODE=NPOIN

CONTINUE

DO 155 I=1rHPRES :
IF (KCALL+EQ.,1) GO TO 154 ‘
IF (NODE=NPT(I)) 155r1600155
NT(I)=NPT(I)=NPOIN

IF (NODE,EQ.NT(I)) 6O TO 160
CONTINUE

G0 TO 170 o

SM(NODE »NODE) =1,

R (NODE) =VAL (1)

GO TO 230 -

CONTINUE

IE=NSUR(ND» 1)

- IEL=IE+]1

DO 220 ITEL=z2.I1EL
LEL=NSUR(ND ITEL) ;

~—=A.19—



2¥sXe

180

190

200

DO 180 I l [ M ST T e L e sl
IRzI . '

IF (NODE,GT.NPOIN) IR= IR+M

IF (NOD(LEL+I)=ND) 1807200y 160

CONTINUE

WRITE(6+190) ! :

FORMAT (/7 75Xs yERROR Ii NUMBtRING.'/k)

GO TO' 240 .

ASSEMBLE ELEMENT MATRICES TO FORM SYSTEM MATRIX A Eu't]
CONTINUE-~ — N

8

(24

OO0

DO 210 IC=1+N ) - § - i

210

220
230
240

ICO=NOD (LEL,IC)

IF (IC,GT.M) ICo= IcO+JPOIH

SM(NODE » ICO)=SM(NODE» ICO) +STE(LEL, IK, 1c)
R(NODE) =R (NODE) +RR (LEL s IR)
CONTINUE

CONTIHUE

RETURN

END

‘ |

" SUBROUTINE EMATR(I)

10
20
30

40
50

PARAMETER N=6¢Mz3/sniH= xuc'JPOIN =121/ HFLEM=200
COMMON/ELEMT/STE (HFLEM i NsN) ¢ SMINMoNR) o RR (NELEM 2 N) o R (NI
COMMON/INP2/1PLOT # THRINT o LTNy NEUMNs NPRES? Toi4(10) ¢ NHeHArKCALL
COMMON/ZEL2/HX (M) 1 U (M),

COMMON/SYST/ZA(M) p13 (M) 1 C(M)#DELTA

CALCULATES ELEMENT STIFFNESE MATRICEC
9]¢] 10 J=1+3 f - . |
RR(IvJ)=0. | |

DO 10 K=1¢3

STE(Irdr K)-(C(J)*C(h)+8(q)*B(K))/(u u*DELTA)

STE(IrJ+3¢K+3)= STE(IerJeK)

DO 20 J=1+3

DO 20 K=416 o

STE(IrJdrK)==(HA/ (6, #T) ) #C(K=3) !4

STE(I¢J+3rK 3)-5TF(1 JrK) !

DO 30 J=1+3 '

RR(I¢J+3)=DELTA/3.

IF (IPRINT.EQ.0) Go TO 50
WRITE(6e40) , I ((STE(LrJrK) rK=1r0) 1 J=1106)

FORMAT (// 15X+ tELEMENT ¢ 11X ¢ I8¢ //16(5X,F7,4))

RETURN : '

END
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OO0

10

20

10

46
47

— -

SUUROUTIJt TEMP e - e R
PARAMETER 1126 1 M= 5 0 1,1=242 1 HPOTHZ 121 ar LEMZ20

COMMO“/INP/NOJ(MLLFuru)'X(HPOIN)rY(JPOIH)thT(Jh)rNPP(Hn)vVAl(”m

COMMON/ INP2/IPLOT r 1PRINT s LINy NEUMN » HPRES P TerHd(10) e NHeHAPKCALL
COMMOMN/S YSTZA(M) #13(M) +C (M) » DELTA

COMMON/LLa/HA(M)rU(%) '
COMMON/LLEMAT/STE (NFLEM e Ny H)osw(NN NIY P RRONELEMeN) o R (NIN)
COMMON/SYaTe/uB(H'LtM'M).CC(NELLM'M) CELCIELEM) g AACIKELE My M)
DIMENSION THM(IPOIN, NWPOIN) ¢ RHS (NPOTIH)

DIMENSTION WKAKEA (1ipOTii)

CALCULATE SYSTEM MATRIX FOR TEMPERATHURE FIFLD
! b

CALL SMATR

DO 2 I=1/NPOLL

DO 1 J=1,nNPOLIN

TM(IrJ)ZSM(Iry) - _ o
RHAS(I)=R(I) ' |
CALL LEuT1F(74.1.u;olu HPOIN'RHS'OruKAPLA ILR) j

WRITE (6+10) ' _

WRITE(6020) (IrkHS (1) r1=10NPOIN)

RETURI

FORMAT(LH1v//+10Xr , TEMPERATURE s 0// ¢ 1x+13H NODE VALUE ¢ 3( 1944

1NUDE VALUE 1))

i

FORMAT((1XrI3+E12. 8o3(16 E12,95)))
END

: 9
SUBROUTINE TELM(I)
PARAMETER MG eMz3 0l =242 9 NPOINZ 1210 WFLEM=20
COMMON/ELEMT/STE CNELEMe s ) r SM NN Hh)vRR(NFLEM MY PR (NIY)
COMMON/ZEL2 /01X M) s U (1)

COMMON/SYST/A(M) sts (M) »C(M) »DELTA

CALCULATES ELEMENT MATKICES FOR TEMPFRATURE

]

DO 10 J=1¢3 | ) | |

RR(IrJ)=0.

DO 1CG:1K=1+3

STE(Irde K)-(C(d)*C(&)*u(J)*o(K))/(u n*DELTA)
CONTINUL

DO 47 J=1M

DO 46 K=1+Me

DO 46 L=1eM

RR(IrJ)ZRR(I, J)+(L(L)*C(K)+b(L)*B(K))*(HX(L)*HX(K)+U(L)*U(A))
RROIvJ)ZRROL eI/ (10 #DELTA)
RETURWH

END
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[ S ——

aRale!

10
20
30
40
50
00
70

IF(IPLOT.EQ.G) GO 1O 5 —

| o . . ‘ T (
! .

SUBROUTINE OUTPUT | o

PARAMETER N=6rM=3 1 yii=242 1 NPOTN=121 r NELEM=200 '
COMMON/ELEMT/STE(NELEM.N.N)-SM(NNwwa.RR(NELEM.N).R(NN)
COMMON/ INP2/IPLOT + T*RINT ¢ LINyNEUMNYNPRES * ToH (10) » NHrHA 1 KCALL
COMMON/PLT/VEL(20120) tMAG(20,20) ) %
REAL MAG |

PRINTS OUT THE RESULTS.

READ(5,60) liN1 /N2 R ' T R—
CONTINUE , ' ‘ o

WRITE(6010)

WRITE(6270) HA'T

WRITE(6150)

WRITE(6020) ; ‘
WRITE(6030) (IsR(1),I=1/NPOIN) }

WRITE(6r40) ‘ ' Bt

WRITE(6r20) , _ :

WRITE(6¢30) (I=pPOTHeR(I)» ISNPOIN+1 v nN)

IF(IPLOTOEQ.U) GO TO o ' o

DO 1 J=1rN2 E :

L=N2=J+1 | ' DU |

DO 1 I=1/N1 : ~

K=(J=1)*N1+1

MAG(I»)=R(K) L 1

VEL(IsL)=RIK+HPOIN) | ‘ . e
FORMAT(1HL»/// 110X, iSOLUTION BY FINITE ELEMENTSer/)
FORMAT(/»1X»13H NODE  VALUE,3(19H |  NODE  VALUE ))
FORMAT( (1X+I3,E12+5¢3(101E12.5))) ’
FORMAT(// 710X o VELQCITYr e/ )0

FORMAT(// 010X e t MAGHETLC INTENSITY /)

FORMAT(213) : ) A
FORMAT(QXryHAerX'.Tvr/-HX)F7.414XrF3.1)

END :

ﬂ%u*



Sample Input / Output

In' preparing input data to computer program, the domain is to be discretized into elements and numbered.
An example of triangularization is given below:
4

»

N

~ Fig. 35. Finite Elemenﬁ Mesh Structure

Following is input formats and a sample input/output for the mesh structure of Fig. 35, for the two - dimen-
sional computer program:' "

Variable ' Format
HEADG - ’ ' 80 A1

NDIM, LIN, ITEMP, IPLOT, IPRINT, NEUMN, NPRES - AT

NH, T, H (1) | : : 13, F7.3, 10F5.2
K,NOD(1,]) 2413

Y (1), X(1) ‘ 22F3.1

NPT (1), VAL (1) | 7(13,F72)
NMP (1) _ _ ‘ ' 1615
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i

FULLOWING 1S THL iUt 1o FEM PROOGKAM FOR
SUUARE DUCT WITH ClnoUCTING wALLS 444
MUMBER OF KNolws 51
NUMBER OF tipminty 1o
2 i i v G 1 e
X AHD ¥ COORLINATLY
WOOE X Y SR e Y aobe X
1 =100 " 1.0u Z - 7% 1,00 3 =.50
4 —elH l1.6U ) - W0 1.400 S 25
7 «HU 1.0y ) 75 Lo(u 9 1,60
ig =-1.00 o 15 11 =75 Y A 12 =00
13 ~e2Y LT 14 W00 . 75 i% .25
i6 o 50 W TY il e 7H ST 31 1.00
1y -1l.0u CHU 2u R A< Ty | =.5H0
2& ) -cab .‘J\} ) -UO IRV 914 .:5
25 DU TN a6 s e 7 1.00
26 -1.00 2N 2 - 7Y 25 34 =.50
Si me2d Ly a2 T .25
o ST ot K A e T o 1,00
37 "loUU QOU LA ~elH e UU 59 -cb()
40 =25 Jeo ol g LU hgo 2%
43 e U LOu 44 e UG ho L.00
46 -1,00 - 25 o -.7Y - 2D LE ~e50
4y —egh -2 50 PoU -i'h 51 .25
Lz Wbu o =.2 e IO =b Ly 1,00
t):_) -l'UU '.".LJU_ DU . "'-75 _-:)(5 u7 --SO
55 —ech  =.5y P I AR o B Y L0 .25
o1 DU =50l oZ L7950 =L - 03 L,uG
O ".LQUU ".7:; WD _o'/b "'075 LJ() _.E)O
oY -y -7 S19) W GU =, 7% w9 )
70 o 5U -7 71 ) - 75 Te 1,00
13 -1,00 ~l.bu 74 -.75 ~=1l.0:0 74 =50
1o -.25 -l.uu 17 U =l.rg 76 ceh
749 WU =10y LU «75 =1l..0 Gl 1,.¢0
¥
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T“E ELEMEHTj HNU ST N &S ”bUES

ELEm
1
5
9
13
17
€1
2%
29
33
37
41
45
49
o
57
ol
05
09
73
7
vl
a3y .
&9
93
97
101
105
1G9
113
117
11

1y

i
10
1g
ly
Al()
19
1< 21
144,23
16 2y
19 26
21 30
23 52
20 54
268 37
30 39
32 41
34 44
37 4¢
39 44
4150
45 opg
bo 5%
48 H7
50 59
52 ol
59 oY

Long .
CcNC oL

ST oo

59 0§
0l 7¢

o4 73

oo ,75’
OB 177
70 79

LLl‘. Ve

s

o

1C
L4
1L
ce
20
S
34
S8
L
40
o0
oL
LB
oz
0U
e
T4
ly
ge
1)
Yu
94
215)
1y2
10w
1106
114
Tie
12¢

1o

i
2
4
[
8!
il

o
15
L7
Y
=
ch

cu
oY
51

33

|
o

G-y

42

Lty
s
4y
Sl

Yo
LY
(3¢
uE
b
uf
LY
71

J
1y
1
I
1o

19

a1

3L
Page;
IRe)
@8
DU

M
11
15
15
17
20
oy
]

3

&9
31
33
55
358
G4y
4o

Ll

47
4G
51

OO

o
[a=2io RN a L $¥]

LY
%4
w9

/1
T

T6

T8
a1

<b-

B
.y
-
11
15
1Y
Fan)
27
21
ab
[ I
Gy
47
vl

L0
[O 20 3%

03
07
71

79

4]

o7

91

95

99
163
167

111

115
119
123
127

30

39
4 5
LYy
48
50
52
Oy
57
“,9
]l
%)
00
o8
70,

e

[AS -

¥

&
11
15
19
17
20
22
24
20
2y
31
33
35
A0
4o

—

i 4y
u7-

uY
Hl
53
56
$b
60

)
6/
(;9
71

2l
26
29
31
33
35
a8
40
L2
Ly

w7y

49
U3
6
LB
ul
19%%4
05
¢l
o
71
Ty
16
78
60

ELEM

12

<l

J6H

30
34
56
359
41
43
4%
ug
50

[ o4
-~

54
47
HY
73}
vl
518
08

70
72

.JA
11

1o

15
17
2u
2
24
2t

29

31
35
3h
3t
4o
4
Ly
47
uy
51
HS
50
5bL
oU
E’)Z(
oY
67"
6Y
71
74
7o
78
8u

¥
12

14

16

18
21
23
25
27
20
5
34
36
39
41
43
4%
48
L
52
54
57
548
o1
03 .
$13)
08
70
72
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