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SUMMARY

In this thesis transient tepperature and stress distributions in
turbine blades were investigated numerically,Finite element wethod
vas used a3 the nuwerical technigue to calculate the temperature
fields in three gas turbine rotor blades having different cooling
effectivenesses but the zawe external geowetry,The transient tempe-
rature distributions et three locations where transient effect

is significent were given,Also the isoterw contours at three differ-
ent tives in the transition period were contained,In order to
examine the effect of transient temperature distributions on blade
life chermal stresses were calculated by using a finite difference
schawe applled to thermoelasticity,.Ciose vrelations between cooling
geometry and wagnitude of thermal stresses were observed,Besides
overall cooling effectiveneas ,local cooling effectiveness i3

also an 1-porCant pura-eter.Even if wost of the blade is effect-
ively cooled, existance of less cooled parts csuses probless by

giving risc to high tewperature differences im the blade and so,
creating high thermal streuaes.

Duttng start and shut~down oparations of gas turbines transient
lewpervature distributions becowe very couplicated In these periodn'
‘ewperature gradients are very high both in chordwise direction

ind between the skin end cove region of a blade,Because of these
ilgh gradients,wagnitudes of therwal strésses in blades are also
rexy high ian these pericds.
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OZET

Bu tezde tirbin kanatlarindaki geg¢ici sicaklik ve gerilim dajga-
laimlara saylsal olarak incelenmigtir. Dig geometrileri ayni olan
fakat deZigik sogutma etkinliklerine sahip ¢ gaz tiirbini rotor
kanadindaki sacaklik alanlarinin hesaplanmasinda sonlu elemanlar
sayisal yontemi kullanilmigiir. Gegicilik etkisinin belirgiﬁ 0l-
dugu U¢ bdlgede gegici sicaklik dagilimlari verilmigtir. Tez ay-
n1 zamanda gegicilik silireci i¢indeki li¢ degigik zamana ait egsi-
caklik efrilerini igermektedir. Ge¢ici sicaklik dagilimlarainin
kanat omril lzerine etkisini incelemek ig¢in i1sisal gerilim dagi-
linlari hesabedilmig, bunun igin ise sonlu farklar yontemi kul-
lanilmigtar,

Soputma kanal geometrisi ve i1sisal gerilim giddetleri arasinda
yakin iligkiler gﬁrﬁimektedir. Toplam sogutma etkinliginin yani-
sira, yerel sofutma etkinlipi de tnemli bir parametredir. Bir
kanadin blylikk bolimii iyi bir sekilde sogutulsa bile, az sogutul-
mug bolgelerin varligi biiyllkk sicaklak farkliliklarina yol agmak-
ta ve boylece yiksek 1sisal gerilimler yaratmaktadarlar.

Gaz tlrbinlerini ¢aligtirma ve durdurma iglemleri sairasinda gegi-
ci saceklik dagilimlari ¢ok karmagik bir hal almaktadir. Bu sira-
da sicaklik gradyani hem kanat boyunca hem de enlemesine ¢ok bii-
yiktiir., Bu siiregte, boyle biliylk gradyanlarin olugmasl nedeniyle
1s1sal gerilim giddetleri de ¢ok biiyikk olmaktadir.
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NOMENCLATURE

Conduction matrix, arbitrary région,area
Capacitance matrix

Arbitrary domain

Modulus of elasticity

Thermal force vector, transformed mapping function
Arbitrary subdomain

Jacobian matrix, arbitrary subdomain

Shape function

P,R Weight coefficient

S Surface boundary, perimeter

T Temperature field variable

Z Shape factor for cocoled blades

; Arbitrary constant

a,b,c Local strains

85 sh Coordinates of integration points
o Heat capacity

£ Mapping function, arbitrary functicn
h Convective heat transfer coefficient

k Thermal conductivity

3 Chord length, length of a line segﬁent
m Number of elements

n Number of nodal points, outward normal vector

p,r Number of integration points

S8

Peripheral length



: o time variable

x,y Global coordinates

det Determinant

« Coefficient of linear expansion, arbitrary constant
€ Strain

A Arbitrary constant

e Density

'y Stress

§:7 Local coordinates

SUBSCRIPTS

B Prescribed values at the boundary
e Cooling passage
i,J Node numbers

x,y Variables in x and y directions

v
~

0 Initial value
l...8\ Local node numbers
DR | Global node numbers

.

©0 External condition

SUPERSCRIPTS

? Transpose

[} Elemental value

-1 Inverse

% Average value
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I, INTRODUCTION

Today,the, continious increase; in the costs of .fuel has made the
high specific power and the high therwmal efficiency an essential
requirement in the design of gas turbines,But these two parameters
wean high turbine inlet tewmperature as it has been investigated
and confirmed by many researchers,They are functions of turbine
inlet temperature and both specific power and thermal efficiency

increase with increasing inlet temperature,

Héwever,the inlet temperature iisylimited by the resgtrictionsyin
éhe ultimate strengths and melting points of existing materials
used in the production of gas turbine components,The cooling of

the turbine blades is among the solutions of the problem,At present

_9gp;oximate1y L1Q97°C maximum inlet temperature has been reached

with the cooled blades in pgas turbines,[j].

On the other hand besides the afore-mentioned advantages of high
working temperature in gas turbines the long time rupture and corro-
sion behaviour of the heat resistant waterials depend mainly on
temperature,ESpecialfy the start -shut down operations or load fluc-
tuations of turbines create transient tewmperature distributions in
turbine blades and thereon cyclic thermal stresses appear which
cause failure due to low cycle fatigue in the blades,

Hencegqthe investigation of gas turbine blades under transient condi-

tions has a two fold iwmportance and the analysis of results should



be made with care since it will provide the way of optimizing the

maximum working temperature of the gas turbines,

In the design of.a gas turbine the life estimation of blades inclu-
des an important part of the work,Civen the shape of blades and
cooling geometry,the external and internal flow ratios and the heat
transfer coefficients on the blade surfaces are determined both
analytically and experimentally,Thenon,the results obtained are used
as the means to determine the temperature and the stress distribu=-
tions in the blade sections,The tool to compute the steady-state or
the transient distributon of temperature and accordingly the stress
is gpenerally the numerical analvsis with various computer programs,
The insight offered by these calculations enables us to determine

the permissable number of cycles that the blades can withstand,

The finite element is one of the numerical analysis techniques that
can be used for above wentioned calculations,This methed is adequate
especially for the problems whose solution domains have irregular—
geometries,In this thesis,the ¢as turbine blades with their complex
geometries are thought to be discretisized best with the finite
elements,So,the finite element wethod is applied to the problem to
obtain the temperature distributions in the blades,The superiority
of the.finite elewent method in the steady~state problews is.put
forward by Emery and Carson,[Q],Henco,by taking this faet iato
consideration,in this study the spacewise solution of the unsteady

problem is obtained by this method,

On the other hand,in the solution of the remaining time dependent
ordinary differantial equation,Euler method has been utilized,This
method is examined to be the wost accurate method in time marching
problems again by Lmery and Carson,[Z].This combined wethod is
thought to be the most convenient ‘one in solving the governing un=-

steady equation of the thesis,

In the finite element forwmulation of the differential equation,the
method of Calerkin has been used,In such formulations,generally

the classical variational method is used,But this method is not
applicable to parabolic type of equations,likewise the case in this
thesis,In such cases,a quasi-variational method can be utilized as

has been proposed by Curtin,[3] .In fact ,the functional obtained



by CGalerkin method is just the same as the one obtained by the
quasi-variational mwethod, [4].

The boundary conditions on both the outer surfaces and the inner
surfaces have been assumed to be purely convective,In reality,this
is not the case,of course,and especially the effect of radiation
heat transfer can not be neglected, But ,when the heat flux emmited
by radiation onto the blade is considered and applied to the proble:
the boundary conditions become non-liunear,It is hard to solve the
problem in this complicated form,This is the reason for taking the
boundary conditions to be purely convective,But besides,in this
thesis,a convective heat transfer coefficient,h,which is corrected
for the effect of radiation has been used, [SJ.This application com
pensates the error that results from neglecting the radiation term

in the governing differential equation,

The external gas temperature is 1145 °C,This temperature resembles
both the highest temperature that a blade material canm withstand
[I],and the temperature giving the hiehest performance,In a way
this temperature is the extreme test temperature by which it can

be obtained the severest conditions that may occur in a blade,

The thermal analysis of the cooled gas turbine blades is under-
taken as a two-diwmensional transient problem,Thus,the governing
equation of the problem is two-dimensional transient heat conduc-
tion equation,The three-dimensional thermal analysis of gas turbine
blades under steady-state conditions has been carried out by Camca
[6] and the thermal fields determined for various blade geometries
have been given,The investigation of these fieldsshows that neglect
ing the radial temperature distribution does not give rise to se-
rious errors whereas,it simplifies the problem very much,The tempe-

rature gradient in radial direction is low enough to neglect,.

In a transient probtem,the time range is also an important paramete
The investigations have shown that twenty four seconds is the
period to reach the steady-state conditions for all three blades
used in this thesis,S5o,the analysis has been carried out in this
period,As the time increment At ,of Luler method becomes small,the
results converge to the exact solution,Therefore,the minimum time

o 1 g T e Tl
increment allowed by the CPU time of the computer used has been



selected, Namely ,this value is sixty milliseconds,In fact ,the order
of magnitude of the error due to Euler method of integration is
proportional to the square of the time increment,Thus,in this par-
ticular case the error due to numerical time integration is less

than one percent,"

Besides the thermal fields,the analysis of thermal stresses caused
by these thermal fields are also included in the thesis,The deter-
mination of thermal stresses has been made by using finite differ-
ence method which is investigated and proposed by Mukherjee,[?]
and Barnes and Fray,[gj,



II., LITERATURE SURVEY

The cooling of turbine blades is one of the wost important re-
search areas in todays gas turbine technology since it is the wos¢
applicable wean to increase therwal efficiency and specific power,
In order to achieve the wost effective cooling many types of cool-
ed blades have been designed up to now,Convection filwm ,transpira-
tion therwosyphon and iwpingewent cooling are the most utilized
blade cooling wethods and they are explained in detail in reference
r9] and [6] & study on the cooling of gas turbine blades which
contnins the investigation of cooling effect on blade life has been
published by Mukhexjee,[ ] in 1977,Besides cooling studies there
ave wany studies investigating heat transfer wechanisws on turbine
blades but the work dome by Mukherjee and Fref, [10] ,in 1974 in
wvhich they weasuyed tewperature distributions on two first-stage
air-cooled vanes of a gas turbine during the test run,the study
done by Consigny et al,, DJ],in 1979 in which they obtained the
heat trasfer rate distributions 6n a turbine blade as affected by
inlet Mach nuwber and free stream turbulance level and a recent
study done by Craziani et al,, Dé],in 1980 upon the heat transfer
distribution on the biades in the vicinity of secondary flows have
particular importances as the subject of this thesis is concerned,
The study containing experimental results of the cooling performw-
ance of various convection and fil® cooled turbine blade wodels

in a two-dimensional stationary cascade done by Hennecke et al.,
[Sj,should also be wentioned,



The cooling of blade and heat transfer on blades studies are always
considered together in order to achieve the wost effective cooling
geowetry,In such cases the heat transfer in the blade itself should
be known.In past,to solve the heat transfer in blades ,many analyti-
cal wethods have been applied which approximate the blade as a
siwple geometrical domain,The studies established by Pollmann, Di]
in 1947 and Panteleev and.Trushin.l}é],in 1974 are examples to such
approaches,But today such methods are not used anymore and some
nuserical wethods which approximate blades wuch more accurately are

studied,Finite element wethod is one of these numerical approaches,

Although it is a new approach,in solving the problems governed by
differential equations there are numerous publications about finite
elewent wethod in the literature,After introduced by Zienkiewicz
[15,16],this method becawe quite popular and attermpt has been made
to apply| it to alwost all fields of engineering.A detailed survey
of finite elewent wethed is given by Huebner.[&].An application of
finite elewent wethod to heat conduction problewms is given by
Wilson and Nickel, Ei],in 1266 . and this study has been used as a
reference in alwost all studies done after 1966 in this field,In
their study Wilseon and Nickel have wade the transient heat conduc-
tion analysis of cowmplex solids of arbitrary shape with tewmperature
&nd heat flux boundary conditions by finite element wethod utilizing
&8 variational principle,In this study authore discuss also various
shapes and their associated temperature fields for one,two and
three~diwensional bodies by systews of siwplex elements,In 1970,
Zienkiewicz and Parekh,[}ﬁ],have formulated the transient fleld
problems of the type encountered in heat conduction problems in.
te?ws of finite element process using Calerkin approach in a general
ized wanner,Curved two-~diwensional and three-dimensional isopara-
wetric elewments have been used in a tiﬁe stepping aolution and
vavrious examples are gilven to illustrétg the applicability of this
procedure.Following this study Emery and Carson,[Z].have discussed
the use of finite elewent wethod in the cowputation of tewperature
in 1971,They investigated accuracy and efficiency of the finite
elewent wethod in com;arison#ﬁith'the standard finite difference
algorithws used for the computation of temperature.Again in 19711,
Callager and Mallet,{}i],have presented systematic procedures for

reducing the order of a watrix differential equation governing



transient heat conduction in solids,Two-dimensional transient heat
conduction problem has been solved for various domains and results
have been cowpared with the analytical solutions by both Bruch and
Zyvaloski, [20] and Kéhler and Pirer,[21], in 1974.Kéhler and Picer

have applied finite elewent wethod also to the tiwe domaim.

The application of finite elewment wethod to solve heat transfer in
blades is given by Hogge, Pé]'in 1976,In his study the author
presentedthe wain approaches to calculate therwmal fields and stress-—
es in cooled turbine blades using so-called tewmperature and dis-
placement wodels and considering all kinds of heat transfer even

the non-lineay case.Various situations concerning turbine blades

are analyzed,In 1979,Caﬂc1.[6] s used the sawme method to solve
turbine blade heat transfer but in this study he has taken the
problem as steady-state and three-diwensional problem ,He has

investigated various blades under favorable gas turbine conditions.



IITI, THECRY

3,1, TWO-DIMENTIONAL TRANSIENT HEAT CONDUCTION PROBLEM

The two-dimentional transient heat conduction problem is governed

by the following differential equation in the domwain,D,

d 7,41 Mixa ar=\LM Ny sy
ax<‘3< ax >+ Ay (ky ay>“ 8¢ o

»
~

subjected to the conditions om the boundary,S,

T—.:TB on S1 gt el
ot \ a7 Ly s
kx—é—; nx+-ky—5-y-—ny+h(T Tm)- 0. on Sp;at t>0

and the initial conditioen,

(1)

(2)

(3)

(4)



where:

T(x,y,t) is the temperature,
|3 'kx are thermal conductivities in the x and y-directions,
g 1s the density.

c 1is the specific heat capacity of the solid,

h is the convective heat transfef coefficient,

T0 is the ambient tewperature, and

xl

to the boundary,§,

n ny are the direction cosines of the outward normal vector n

3527 FINITE ELEMENT FORMULATION BY CALERKIN"METHOD

The process by which one might deduce the discretization of the
differential equation (1) begins with the assumption that the un-
known exact solutionm T(x,y,t) may be approximated,element by ele-

ment ,as,

T(e)(x.y,t) = Z___ N, (x,y) Ti(t) = [N1,N2, ...... ,Nn]{T](e) (5)

1=1

where Ni are the assumed shape functions and Ti are the unknown
nodal walues of T(x,y,T),The alternate variational expression of
equation (1) is obtained by Calerkin method,The application of

Galerkin wethod to the differential equation (1) yields,

f n
IR 0 (1 AN T e BT i
/Ni 5;<kx—é-§>+ 3y (ky. EYJJZN'T‘ £e 3*2 M ‘&
el i=1 i=1
j='%2L 000

Imtegration by parts can be applied to equation (6) in order to
simplify it,The siwmplified form of (6) is,

__f (kx g:\:l ZT'. 4K aNj o7 +Nj gc—a—L) dxdy —|Nyh (T-—Ta'.)ds]-':() (7) |

D(e) ‘ S
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Now,inserting the approximate form of the unknown variable,T(x,y,t)

given by equation (5) into equation (7),oné obtains,

w s
[ie) ! i=1
n n
aT: aN;
- | N. N.———'—> dx d ( ‘
J‘”'<.l FT XY+INJ kxz ax X Les
D(e) |= 51 1=1
L aN \
. .8 .. 48 = 0
+ kyzz 3y " x ! Gt 1

The system resulting from equation (8) will consist of n linear
algebraic equations in n unknowns,Evaluation of the integrals in
equation (8) will allow the cowplete solution of the problem,

n such equations appearing in equation (8) can be put into a

watrix form as,

(e)
[C](e)_%{_[}_e_ + [A]W){T }(¢)+ {F}(¢)= 0 (9)

where [C]&n [A]m)and {F](e) are element capacitance matrix,element
conduction watrix and element thermal force vector,respectively,

and their contributions are,



&

le) A o
[C] = j/ QCNidex dy .il (}by.‘

D(e)
(e ONQ OGN AN N B
[a]" = —L 25y, L M) axdy 4 | hNNG dS, )
g g y dy dy ' .
[je) s .

1

[F](e);‘f“”w b et L A
S _ b

The global form of equations defining the whole solution domain
will be obtained by the assewmbly of the element equations.Thqs
for the whole region it i1s obtained that,

& (e)
[c]=2 [c]
e=1

i -{e) ‘ _.
[A] FZ [A_j L)
e=1
AL (e)
{F} :Z [F]
e=1
where w is the number of elements and [ ] [ ] and { are global
capacitance watrix,global conduction matrix and global thermal .

force vector,respectively,lence the resultant system of equations

may be expressed as,

[c] %—{g-l + [a] {1} + {r}l =0 (1_,,.)'
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3.3, DISCRETIZATION OF SOLUTION DOMAIN

The finite element method divides the solution domain into sub-
domains-called ELEMENTS and it defines local approximations to the
governing equations each of which is valid for only one element,
Finally,the assemblage of these discrete elements gives the approx-

imated solution domain,

Even if curved boundaries of a domain can be represented satisfac=
torially by straight-sided elements, they are best fitted by curvi-
linear elements,Moreover ,availability of such elements reduce the
number of elements in a mesh by providing enlargement in element
sizes without losing the close representation of boundaries,There-
fore ,in this thesis the gas turbine blades which were considered
as the domains to the problem described in section 4,1 have been
discretisized into curvilinear elements,The finite element meshes

of the considered blades are given in Fig,11,Fig,12 and Fig,13,

Assignment of the nodal points or in other words,selection of
degree of shape functions wmainly depends on the accuracy needed in
the solution,As has been investigated by Emery and Carson,[Z],the
computation of temperature in the two-dimensional tranmsient heat-
conduction problem may be established best by '"quadratic elements",
Thus ,quadratic approximation which is shown in Fig,2 has been pre-,

ferred ‘in this study,
3,4, VARIATION OF TEMPERATURES IN ELEMENTS

The behaviour of a field variable in an element can be represented
by the functions which are called SHAPE FUNCTIONS in the finite
element términology,Many types of functions can be used as shape
functions among which are the polynomials and the trigonometric
functions,but a few are easy to treat,The polynomials are the most
appropriate tools providing an easy and systematic method of gene=-

rating shape functions of any order,
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If a rectangular elewment with eight nodes shown in Fig.3 is con-
sidered, the variation of the field variable T{x,y,t) 19 quadratic,-i
in both § and 7~directions,Thereof this element is called QUADRATIC_Q

and the variation of field variable may be expressed as,

8
T(g.?)=T1N1+T2N2+.....‘.+ TSNSEZ Ni(g,"?) Ti (15) .‘

where NF are the easily generated quadratic polynomials defined
in § and 7 coordinates and T? are the unknown nodal values of the
field variable T(x,y,t),The shape functions of rectangular quad-
ratic element are given in Appendix A,The derivation of the shape
functions and the particular shape functions for other types of
elewments can be found in Zwienkiewicz,[}%],Ergatouidis et al.,[?ﬂ
and Huebner,[éjyin detail,

3,5. ISOPARAMETRIC TRANSFORMATION

Since thé domain of the problem investigated is not discretisized
into rectangular elements but into curvilinear elewents in the
global Cartesian coordinate system,it is not possible to

use the simple shape functions defined above,directiviin

these elements to interpolate the field varible,But if it is .pos~-"*
sible to establish a transformation between the recténgular element
of Fig,3 into the distorted elements of Fig.Z,then‘the resulting

element equations for the curve-sided elements can be evaluated,

The coordinate transformation from local to global as shown in

Fig,4 can be achieved by expressions similar to equation (15) as,

8 : _
x= > B8 x, (16)
i=)
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8
y= On . Blis, N8 ) (17

p=1

In order to map the nodes of quadratic element into distorted glo-
bal element of turbine blade,the mapping functions should also be
quadratic and at the same time the evaluation of the expressions
(1.6, and ¢(17)s &t any node should result in the wvalue of that nodes
A group of functions meeting above requirements are the shape func-
tions of quadratic elements used to interpolate the unknown field

variable,This means that,
IS, = N (5,7) | (18]

and consequently it is possible to write,

8
x= > N8 x | (19)

y=, D NSy, (20)

i=1

Curve~-sided elements whose geometry are defined by the shape func-

tions interpolating the field variable are called ISOPARAMETRIC,
3,6, COORDINATE TRANSFORMATION 1IN ELEMBNT MATRICES

When the element equation of the problem given as equation (8) is
investigated,it is seen that the terms of matrices are in general

integrals of the form,
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N, BN,
tim, 22 BN
I (% 5 ) , (21)
D(G)

(e)

where D is the area of the curve-sided element,As mentioned

earlier N1 are functions of the local

coordinates $and 7 and
therefore it is necessary to express éNi/Bx,BNi/ay and dxdy in
terms of § and 7,

Considering equations (19) and (20) and applying the chain rule

of differentiation,it can be written that,

N: oN. 3 :
aL= e e .E_NL_a_y_ (22)
as ox 8§ dy 09§
oN; 2 oN; 8x + aN; @ (23)
a7 ax 87 dy 37

or in a more compact form,

aN; ax dy aN;

aN;
s 2 k3 95 dx ch [J] ax (24)
N [ | ax dy ON; oN;
37 37 91 3y 3y

where [J] is known as Jacebian matrix,To find the required global
derivatives of Ni,equation (24) is inverted as,

N ON;
dx (<1) | 95§

= | J (25)
ay | 87



Similarly,the area element can be expressed as,

dx dy= det [J] d$d7 (26)

Now,using equations (19) and (20) in equation (21),it can be

formed integrals of the form,
F(S,7) det[J] d5d7 (27)

as the terms of governing element equation (2).F is the transformed

function of £ in the above integral,

In the mean time,application of above procedure requires the exis-
tance of the inverse of J matrix for each elewent,This,at the same
time,means that the coordinate mapping from local to global is
unique,This fact should be checked strictly in the analysis of
above kind,Otherwise a mathematically acceptible transformation is

not possible,

As the result of substitutions given in equations (25) and (26),

the element equations (10) and (11) become,

1
[c:](e) - Ij ec N N; det[J] dS d7 (28)

-1 -1

A]¢ (0T p A1) ar;

e 1 ]

jj aN Lhigd <) aN. det{ 3] ds 47 + | hNN;dS,  (29)
"1 —1 Sl

3,7, INTEGRATION TECHNIQUES

Even though the transformations performed provide simple integra-’

tion limits,the transformed function T is generally not a simple
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integrand that permits closed-form intceration.Therefore,nunerical
iptegration is utilized in sueh cases,In this thesis alseo,thenumes

rical integration is used,

When the finite lelement formulation of two-dimensional transient
heat conduction equation with convective (Neumaun) type of boundé?y
conditions. is investigated,it is observed that surface integrals
exist. in the domain of space and line integrals appear on its boun=
daries,Iln the matrix form of the above formulation,surface integs
rals are elewents of heat conduction and heat capacitance matrices

and line integrals are elements of convection matrices,

In the finite element solution of the equationms,the surface integ-
rals are evaluated by numerical integration technique whereas the
line integrals are tackled analytically/in this tEesis,Simpson's
rule is "utilized as the numerical integratioﬁ technique,Simpson's
rule is one of the ' simplest techniquessi'to apply in this particulans
case,Two-diwmensional Simpson's rule is a nine point approximation
performed by the values of the integrand function .at thgée,goings.
But,in any case eight of these points are obtained to be used in

the finite element analysis,So,only one additiconal po;n:.comp;ggggkv
the data needed for Siwpson 's rule of integration,Futhermore,the
Lnteérations approximated by two-dimensional Simpson's rule converge
to their exact values provided that : the integrated differentiadl
terms ‘are at wost of second order,EUJ,in our case,the highest ordes
g rwe for. the existing idtegral terms,So,by using Simpson's rule
the additional error due to numerical integration is reduced to

zero percent,All integrations in the analysis are carryriedioutilig

the local coordinate system and then transformed,into e¢lobal,

The elements of heat conduction and heat capacitance watrices yjaye
approximated by two-dimensional Simpson'srule as mentioned before,
In the local coordinate system,consider M as a region in two~-dimen=
sional Euclidian space with points (§,7).Let M be a region composed
of two subrepions I and J where both regions are in one-dimensional

Euclidean space with points (§) and (%) ,respectively,Then,by taking
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I and J as r and p-point rules of

integration over I and J,respect~-
ively it can be expressed . that,

I
= > Rif(S)

izl

P
oy
1

f(5) dI 5, € 1 (30)

1t

f(7) dJ '7J-€ J (31)

j=

Thereon,the product rule gives the result as,

r P
Asinl =Z ZRiF’j f(gi,vj) z £(§,7) dA (32)
isl j=1

Returning fhow to the particular problem considered in the thesis
the domains on which the integrations are carried out,are the

finite elements in the local coordinates,In this case,IxJ designates
the rectangular region where,

a £ 35 £ b
c £ 7 £ d

Since the three"poiﬁt rule of integration in both directions is the
most convenient one together with quadratic element having eight

nodes,consideration of the product of two three-point Simpson's
rules yields,

f(§,7) dA = %—GL {f(a,c) + fla,d) + fibc) « f(bd) + & [f(a,h) + flg.,c)

A

+ f(b,h) + f(g,d):l + 16 flg,h) (33)
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where,

e =B
t=d < ¢
. (34)
g= ‘5‘(0+b)
h= —%—(c +d)

More particularly,if M is the square region of any element used

in the local coordinate system where,

«f &£ & & 1
(35)
i £ &1
Then,
e = 2
f =2 (36)
g =h= O
, and,
fff(s,w dA = —‘g—{f(-l,-l)¢f(-1,1)+f(1,—l) £+ 4 [ 11,00+ £00,-1)
A
¢ £01,0) + f(O.l)]+16f(0,0)} (37)

Equation (37) is the one used to approximate all integral terms

existing in the heat capacitance and conduction matrices,
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The line integrals that are introduced to handle the boundary condi~-
tions exist as the elements of convectioﬁ matrix and thermal force
vector in the governing matrix equation,To simplify the integration
along the boundary,s has been used as the coordinate direction as
shown in Fig,5-a,As it can be observed in Fig,5,in forming the ele-
ment convection ratrix and thermal force vector the integral limits
become sl and 33 for each element boundary,

On the other hand,the shape functions for such a curved element
boundary can be obtained by using Lagrange interpolation functions
for a quadratic element in one-dimensional form,Considering s as

the variable and the terminology of Fig,5-b,it can be written that,

N1 (S ~S9)(s~5,) . (s =55 ){s-549 ) (431
(s, ~52)(51—s3) S, 53 :
i : . .
Ny & (s~s, s =35, ) 2 (sils 53) (39)
g (sz—s1 )(52—53) (52)(52-53)
g N, = (s—sy Ms~-s5) i (s)(s~-s,) {4
(53'-51 )(53—52) (53)(53_52)

Now it is convenient to investigate the terms of convection matrix
and thermal force vector.As it is also giveh in Appendix B,all

terms of both parts contain onIy shape functions as variables.Then
insertion of equations (3%8),(39) and (40) into these terms forms
line integrals that can be easily calculated aﬁalytically;The
results of these calculations are also given in Appendix B in terms
of lengths s, and S 4 whose definitions are given in Fig,5-b but their

values are unknown,
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The, second stage. of the line integral evaluation contains the cal-
culation of Sy and 84 values,But this operation give rise to a new
problem to be tackled,Since the behaviour of boundaries of complex
surfaces, considered is not specified,it is not possible to calculate
s, and S 4 values analvtically and so the numerical arproximation:
appears as the most probable estimation of these values,Therefore,
in this thesis a numerical approximation technique which uses the
finite element wethod as a tool has been devised for the calcula

tion of these wvalues,

According to the technique devised,all boundaries are assumed to

be composed of isoparametric line elements in quadratic forms and
the, isoparametric transformation shown in Fig,6 is considered,The
shape functions for such an element can again be obtained by utili-
zing Lagrange interpolation functions and in this.particular case

have the forws,

My mIRE/R) (5 ~1) (41)
He i (1-§) (1+%) ’ (42)
By = {B/2) (148 § (43)

As was explained in section 3,5,the global coordinates of any
point on this line element can be obtained by the isoparawetric
transformation which is expressed as,

3 gl 3
x = lel + N2x2 + Haxg = zN} {xi§ (44)

y = Ny, + Ny, + N ae fabE e (45)
3 y Y y ! 3
S 2 33 { J

where x and y are the coordinates of any point and x, and v, are
i G
the, coordinates of nodal points on the line element in global co-

ordinates,respectively,

Now consider the approximation of line element by the combination
of a group.of line segmrents as!shown in Fig,7:The lengths ofFise
segments shown in Fig,7-b can be evaluated easily if the coordi-

nates of points from one to five are known,and thel® summatl s
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glves 8,y and S4 values accurately,The coordinates of points 1,2
and 3 are known from finite elemwent dataLOnly the coordinates of
points 4 and 5 remain to be found,Thereon,equations (44) and (45)
will be used for this purpose,Evaluation of equations (44) and

(45) at points,
§ = - 0.5
§ = 0.5

provides the particular equations that can be used in the calcula-
tion of the coordinates of points 4 and 5,For point 4 the expres-
sions (44) and (45) becomes,

x, = 0.375x; + 0750 x5 ~ 0125 x4 (46)

y, = 0.375 y, 0.750 Y, - 0.125 Y (47)
and for point 5 the equations are,

Xg = = 0125 Xp * 0.750 Xo + 0.375 Xq : (48)

y5 = - 0125 y] + 0.750 y2 + 0.375 y3 (49)

Then,the following relations can be written,
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2 V2
o= [0y =) *(YL"YNZ:] « (50)
L, = I:(x ~x 124 (y. - )2]1/2
_ 2 2712
=[x+ (a0 ] (52)
L= [xgmx2e (y, =y 22
L 37 s | ) Yg (53)
Hence,s, and s, values can be evaluated as
2 3 , '
So =l1+l2 7 (54)
S3 = L+ lyrlyel, | (55)

Consequently,the substitution of s, and S 4 values into the expres-—
sions of the terms of convection matrix and therwmal force vector
calculated before and given in Appendix B gives the numerical

values of these terms,
3.8, %ORMATION OF GLOBAL SYSTEM

The assemblage of global wmatrices is based upon a simple summation
proceduréﬂAéplication of this procedure on conduction mwmatrix ‘A]

and therwmal force vector {F is given in Fig,8 schematically,Accord-
ing to this procedure,the local node numbers specifying the terws

of element matrix'are replaced by global node numbers and these
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terms are added to the terws of the global matrix specified by

these new numbe;g,As an example,the term“a33 of the element conduc-
tion watrix given in Fig,8 is changed to app and then added.to the
corresponding term of the global conduction matrix,App.The procedure

is the same for thermal force vector as can be seen in Fig.8 .

“In tbe formation of the global svstem, the assemblage of global
matrices is f0115§ed by the boundary condition corrections.In this
thesis, for the elements having convective type of bouﬁdary condi-
tions this operation is not applied because the governing differen-
tial equations have been derived as to include such boundary con-
ditions,The therwmal force vector {F} is composed of those termws,
But if prescribed tewperature (Dirichlet) type of boundary condi-
tions are iwmposed on the elewments ,then the global watrices need to
be corrected for the boundary nodes of those elewents,The schematic

explanation of this procedure is given in Fig,8..

In this procedure,first the column corresponding to the node that
is selected to be corrected is carried to the right hand side of
the global matrix equation by subtracting it from the right hand
side vector namely the thermal force vector.,As an example,the
column p in Fig,8 can be considered,Then its elewments and the
elements of the row which is the transpose of this column, for
example row p in Fig,8.which is the transpose of coluwn p, are
equated to zero,The procedure 1is finalized by assigning a value of
, 0ne to the element corresponding to the node with prescribed tempe-
rature,likewise the node pp in Fig,8,in the global matrix and by
assigniﬁg a value of the prescribed temperature to the element of
the thermal force vector corresponding to the corrected node,This
procedure is repeated for all nodes on which prescribed temperature

type of boundary conditions are imposed,
3,9, INTECRATION IN TIME DOMAIN

Two of the ‘many popular procadures for solving the linear differen- -

tial equation (14) for T values are Euler method and the one

i
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dimensional finite element wmethod.In this thesis the former is used

since it needs less programming work and—it is as accurate as the
latter, [2‘)’] .

Assume that two points at times to and t. on a curve are given and

1
the derivative at the point (t+xAt),is required where,

0 £ x £ (56)
and,
At = t1 - tO (57)
as illustrated in Fig, 9.
In this case the following assuwmptions are possible,
.di_'(t+°< At) — T(t*-At)-T(t) (58)
dt At
and,
T(texAt) = {1 —-) T{t) +» X T{t+ At) (59)

Using equation (1l4) together with equations (58) and (59) ,at tiwe
" (t*xAt) it 1s obtained that, ‘

a

.g.(_t_-tcrA—t__) T(t+ Q1At) + A(t*‘XAt)T(t.{. “At) _ F(t+At) + (60)
| e}
VERS\TES\ KUTGPHANES\

BOGAZIGH Nl
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and also,

1 ,
Tltep) = @By 1y qyyy (e1)
a 9
wheéé,
d, = At and q1=1 for X =0
(62)
G, = XAt and, a, = for X z 0

But on the bther hand,since C,A and F are independent of time and
if it is assigned the subscript 1 to the values obtained at time
(t+At) and the subscript O to the values obtained at time (t) ,the
équations (60) and (61) can be obtained to form the equation,

c ,
(3« *A)IT ~Tg) = Flteant) - ATy (63)

This discretization formula is so-called Euler forrmula with time
step (XAt),A family can be formed by using Euler formula with dif-
~ ferent X values,In this fawmily,

<= 0 " corresponds to the explicit Euler schemwe
= 1/2 corresponds to the trapezoidal rule
X= 2/3 corresponds to the CGalerkin scheme

§= 1 corresponds to the pure implicit Euler schewe

The selection of the value of o owes to the type of the problem
considered,In the problems where sﬁort time accuracy is needed the
Calerkin scheme may be used,If long time steps are required,the
pure implicit Euler schewe and if long time solution is needed the

‘trapezoidal rule may be used, 2{],
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For any linear relation,likewise the system of equations obtained

in this thesis,in form,

dT
el AT = 0

where A is a coﬁ;tant,the stability criteria is,@é],

‘1 - (1=« )AtA -

1+ <xAAL

This expression leads to the following results:

a) for 1/2 the scheme is unconditionally stable
b) for «£ 1 the scheme is stable provided that,
M€ —2
A1 - 2)

Using the trapezoidal rule to discretisize the time dowain -

equation (60) takes the form,

- () - (o) - G0

which reduces to the collected form,

([a] + Z[c]){n] = <’§F[C] - [a]){1o) - 2 {Fits Lan)]

But if the following definition is used,

(64)

(65)

(66)

(67)

(68)
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{F*} - Fltedat) =-’2-({F1'}+{FO}) (69)

~ the final form of governing equation becomes,

(4] 2 CDf) = (2 6 - L) -2 (=) oo



IV. TIHERMAL BTRESS AhAL"”IS

4,1, THERMAL STRESS CALCULATIONS

Whern the tewperature gradlents in a body are high,then considerable

therval stresses appeay In that body which are frequently an

4]
(o3
jo
s

jwportant fa in deterwining wateyrial 11fe.In cooled gas turbine

©

blades also,especially during start and shut-doun operations,high

ftn
©
[ad

tewpevrature n

o0
[
[

5 exist on blade sections,This fact may be

observed in section VI of this thesis and in Fig,16,17 and 18,

[ i S =

-analysis Becowes an unavoidable watter,

[/

3]
o]
m

Hence ,therwal

Eoth‘analytical and nuwmerical wmethods canbe used to predict thermal

ress  diszributions in an =zlastic body with the tempevature dist -~

sty
ributions given,The various aspects of amalytical wmethods are dis

cussed i Boley et al [}{} and Gatewood [}o sThere are also wany
numerical approaches applied o thermal stvess calculations one

of which is investigated by Doherty et al, Eﬁﬂ

Cn the other hand, in this thesis only order of magnitude analysis
of theymal stresses Lls considered to be important and a much
simpler wean of calculating blade therral stresses has been taken

inte considevation,

ind
g
i)

Assumihg that re 15 no longitudinal tewperature variation but

s-sectional tem erature vavriations in gas:turbine

(]
i
Ry
"

there is only

blades and supposing constant modulus of elasticity,E,the thermal
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stress on any one fiber of the unloaded blade at a particular

section is ,

- where,Ti and Gi are local temperature rise and strain,respectively
and”°<i is the coefficient of linear expansion,Depending upon the
geometry definitions given in Fig,10,the force and moment balance

equations about principal axes are expressed as,

.rqu
>
A

il
o

i1
Y

>

-
x
)
o

(72)

[H
—

Ay =0

-

t
—

vhere Ai Ty and (xi,yi) are the area,stress and coordinates of ith

L]
fiber element respectively ahd n is the nuwmber of elements.
Now,assuming that plane sections remain plane,we can write,
€i='a+bxi+cyi (73)

where a 1is the straiﬁ at the origin O and,[7]

Z A X T

(74 )
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n
z A Ty

C = i=1

n (74)
2 At
i=1

Thus ,combining equations (71),(73) and (74) yields,

n n n
Z AT > AT Z AT Y,
(Fl = E( i=1 X =1 +y i=1 - o‘iTi ) (75)

i=1

n n n
> A D A > Ay
i i=1

In above analysis centroid O of the blade section is the origin

of the principal axes and so,

. M:
>
_><

i
o

n -
ZE: Ay, = 0 ‘ (76)

On the other hand, for a simpler analysis the coefficient of
thermal expansion can also be taken as temperature independent as

‘ modulus of elasticity E,Then equation (75) reduces to the form,
n ' n n

—1n #X—= vy, =1 - 1) (77)

i
n n
> A A D Aivf

i=1 i=1 =1

In this thesis,equation (77) is used,



V. TURBINE BLADES

5,1 VARIOCUS CHARECTERISTICS OF INVESTIGATED TURBINE BLADES

Ian ordey to clarify the gubjects investigated in this thesis and
to obtain the necessary data that will be utilized 1o analysing
various aspects of cooled gas turbine blades,three different

blades have been selected,Tvo of these are cooled blades with

[

®
T
¥4
[

different coccling geom es and one is a solld dDlade resewbling
the extrewe case,The 2¢istance of the solid blade in analysis is
~usgeful since it will provide the weans to be compared with in the

analysis of the cooling process in blades,
In the design of turbine blades the degree of the effectiveness of
cooiing geowetry is deterwined by the shape factor Z whose expres-

] -
sion can be gilven asgbq}g

— 20 il o}
wheve | is the chord length of the blade and SC and A are the

perimeter and area of cooling passages,respectively,The Z values

between 150 and 250 are rvequived fovy good cooling,

in the selection of the turbine blades mentioned above,this fact
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was taken into considerastion and each blade was selected from a
different class,Awong the selected blades,BLADE-A (solid blade)
is with zero Z factor,BLADE-B {(pedestal blade) is with Z factor

0of 120 and the Z factor of BLADE-C {(blade with elliptical cooling

passages)y is above 200,

The detailed geometries of the selected blades including the
dlscretizations- into elewents are given in Fig,11 Fig,12 and Fig,13,
The discretizgtions of the blades A,B and C are made of 33 quadratic
elewents with 122 nodes 29 quadratic elewments with 127 nodes and

31 guadratic elements with 129 nodes,respectively,

©°

type of the blade material was assuwed to be the same for all
b1l

wateyial a¥e given ia Appendiz (

o

des and it was taken as Inconel 600,Sowe properties of this

.y Table 1 ,Although the thermal
expansion coefficient and therwal conductivity are given as
temperature dependent properties in Table 1 ;these parameters were
‘assured to be coustants in the calculazions,The reason for this
assumption is te wake the calculations simpier.Essentially,it does
notgive vise to serious deviations from the exact solution.,This
fact has been investigated and presented by Hogge‘[?é} . The
constant values of coefficlents of thermal expansion and thermal
conductivity are taken to be 1,ééx105 oo/ {(pe=x°C) and 19,18

Joules/{sec <"Cxm} ,respectively,

The external (gas to blade) heat transfer coefficlent is geowetry
dependent and the variation of this coefficient with respect to
blade pgeowetry is given in Flg,.l4.This distribution has been
derilved frowm vreferences [5] and POJ as to take the radiation

effect into consideration,Fig,l4 1is wvalid for all blades considered

)

in this thesis because the external geometries are the same in

<

e}

e
r

[y]
83
o3

all thres 25, The tewperature of the gas flowing at the outer
surfaces of the blades is 1145 °C,The charvacteristics of the
convective exchange at the cooling passages for both cooled blades

are given in Table 2.
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VI. RESULTS AND DISCUSSION

The computer prograp FINEL solves the governing differential
equatiaﬁ of the problem explained in Chapter I by using the finite
ement method and gives the temperature values at the nodes
specified by the finlte element mweshes of the blades,The nodal
tewperatures have been calculated at 0,06 second tiwme increwents,
The results of the computeyr prograw are utilized to examine the
:transient temperature behaviour at the stagnation point,mid point
and trailing edge -end of the blades ,which are representative

points as rvegavds to stress,

In Flg,15,the transient temperature distributions of the stagnation
point ,mid point and trailing edge end of BLADE-A have been shown,
It is seen that thé stagnetion point tewperature increases at a
decreasing rate,The tewperature increase is roughly 400 °C/sec

at 0.6 second and 110 °C/sec in the first two seconds of the start
operation,This value decreases to 60 °C/sec after four seconds and

11 °C/sec after twenty seconds,

The trailing edge end temperature shows the sawme behaviour as the
stagnation point does but the rate of change in temperature is
‘very different at this point especially a2t early times,At the

trailing edge end the average rate is about 650 °C/sec in the



first 0,6 second.This rate decreasss to 125 °C/sec at two' seconds
and it is 80 “C/sec at four seconds,lt reaches approximately to
2,5 °C/sec between twenty and tventy four seconds.At twenty four

seconds the tewperature of this point ig 1135 °cC,

On the other hand;at the wid point the temperature is not changing
for 0,6 second and it is rewmaining at the ianitial temperature-of'
20- °C,This is 2n expected result and the reason for it is that the
inside part of the solid blade dces not receive the effect of .
boundaries iwmediately.The diffusion of heat into the blade takes
some tiwe and ounly then the wmid point tewperature begins to rise,.
After 0.6 second,a linear vaviation of temperature is observed

up to eight seconds,The rate of temperxrature increase is constantfl
63 °C/sec,in the interval of two and eipght seconds.,The rate
decreases to 12 °C/sec between twenty and twenty four seconds,

At twenty four seconds the temperature of the wid point is 960°C ..
In the wean tiwe,the wmaxlpur tewmperature differences between
these three points are observed to appear at around four seconds.
The temperature differences between the stagnation point and wid
point-and between wid point and traililng edge end are about 340°C

and 630°C,respectively,at this time,These values reduce to 90°C

‘and 180°C at twenty fouy seconds,
_ ¥

»

In Fig,16 ,the transient tewpevature distributions of the stagnation

(&

oint and trailing edge end of BLADE-B have been illus-

point wid

v

he

gtyveted, It

o

s seen frow this figuré that the behaviour of tewperature
disetriburion of the stapgnation point is similar to the one of
LADE-A,The tewperature Again increases at a decreasing ratéﬁbué

in this case,cthe vate of increase i 125 °C/sec at two seconds,

75 °C/sec at four seconds and 5 °C/sec between twenty and twentf
fouy seconds,VWVhen twenty fouy seconds of tiwe is reached ,the

stagnation point temperature reaches to the wvalue of 1010°C,

In contrast to the trailing edge end the tewperature dist-
ribution of BLADE-A the tewperature distribution of the correspond-

ing point of BLADE-B is not so gradual,At the tiwes of 0.6 ,one

two,four and eight seconds,the rates of increase in temperature

are 1160 °C/sec,830 °C/sec,40 °C/sec,;7 °C/sec and O °C/sec

respectively,According to these values at the tvailing edge end
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of BLADE~B,the temperature is at the steady state condltibn_éiter

eight seconds,The steady state temperarure of this point is 975“C.f

Surprisingly this temperature is below the tempevrature of:thé
stagnation point temperaéuye after twenty four seccnds,This faéth
is surprising because if the gecmetries of the leading édge and '
trailing edge are considered,wlth its swall thickness and 1argé}“
heat transfer surface,the trailing edge should be at a highef:

temperaturs even in sready state condigions,Whereas,the film

m

cooling passage placed

iveness is higher than the cooling passage at the leading edge

cowpensates the effect of large heat flux,It even keeps the tempe=~-

rature at this location undevr the leading eadge temperatdfé in

steady state conditions,

The wmid point temperature.distribution in BLADE-B has the 16Vest 
tewperature values at all tiwes as it is in BLADE-A,However, in
this case the initizl behaviour of this peint is not similar to
the one in case of BLADE-A,The time at which the'effect.of heat
flux-diffusing into the blade is receivedﬁfs so small that it is
not possible to observe it on the curve,This also means that .this
value is even less than time increrent value(0.,06 second).The
temperature at this point gradually increases to

& maximus of $10°C at twenty four secconds,The temperature

changes wore or less linearly up to three seconds and the rate

in this intevwval ig 110 °C/sec,At four seconds, this value
decreases to 75 °C/sec and between twenty and twenty four seconds

it 18 2.5 “C/sec,The tewperature differences between these three.

points are wuch sevever in this case.At two seconds the temperature

difference between wid point and tyrailing edge end is about

700°C and this is the waximur difference that occurs.At this
pazticular tiwe the temperature diffevence between the stagnation
point and the wid point is 200°C.0n the other hand,while the
difference between the stagnation point and wid point reﬁains
consgant in tiwe,after two seconds the difference between the mid
point and the trailing edge end decreases continiously in time and

reaches to a walue of 150°C at twenty four seconds,

t the trailing edge whose cooling effeqt‘faf
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The transient temperétgres atr the three locarions, the;#{agﬁéiiaﬁi
point ;the wid point , and the trailing edge end,in BLAQE4d.aré}
given in Fig,17,1¢ follcﬁs from the figure that the stagﬁﬁtién'”
pointvtemperature keeps its gradually:increasing behavibuf;wich.

2 decreasing vate in case of BLADE-C' ,toc.But in this casé,tﬁeré;
"is one point differing frow the previous cases that qﬁe sfagnation:'
tewmperature seews to reach the steady state at sixteen~se¢ond§11n.
BLADE-C the vates of increase of the stagnation point femperatufe
are 330 *C/sec,200 °C/sec 125 °C/sec and 70 °C/sec at the times. .
0,6‘one,two,and four saconds,respectively,The rate is zero'bétyeéd
twenty and twenty four seconds which weans that in this fn;efval

the temperature reaches to the steady state value of 930°C,:

In BLADE-C ,the trailing edge end tewmperature behaves as in éé§é f’
of BLADE-B,A rapid increase in temperature is observed first and
then suddenly the temperature reaches to the steady state value, -
Up to 0,6 second a lineayr increase in the tewmperature “exists at
this point with the rate of increase of 950 °C/sec,Thenon,at time
one second the rate is 700 °C/sec,at tiwe two seconds the rate is
125 °C/sec and at time four seconds the vate is 30 °C/sec,After
tern seconds the vate cof tewperature increase is zero and the '

tewperature remains at this steady state value of 1055°C..

When the wid point tewpevature variation in tiwme is observed in
Fig,l7,at the beginning, the existance of a portion with an
increasing vrate is deterymined,This fact is due to the tiwe elapsed
until the hzsat ¢transferved into the bladevis received by this
poing,But unfortunately it is not posgible to determine this time
interval in this casé as cleary as in case of BLADE-A,After this
poinz ,the transient tewperature curve of the mid point is swoothly
incieasing huz apein decreasingly as in two previous cases.,The
tepperature iacrease vates are /0 °C/sec 90 °C/sec,75 °C/sec and
2.5 °C/sec between zers and one,one and two,at four seconds and
between twenty and twenty four seconds,respectively,The wmid point
temperature at twventy four secounds is 750 °C,The maxisuw terperd-  ’
ture diffevence between the wid point and the trailing edge end :
secems to occur at two seconds in Fig,17,This value is about 710°C.

On the other hand,at this particular time the temperature differ-
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ence betveen the wid point and the stagunation point is 290°C,

becording te Fig,Ll7 as cime passes .,the tepperature difference

betveen the mid point and the trailing edge end reduces continiously

while the difference between the wid point and the stagnation point

.3

increages to 3060°C first and then detreases continiously.At twenty

v
&

four seconds the differences are 310°C between the mid point and
7
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~trvalling edge ead and 1 betweeu the mid point and the stag-

ation point,
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ve is teken as the eonly design pavameter and if

[

he result aralysis given above is considerved, it is easy to

cbserve that BLADE-A can not be used undey the specified condi-

fuhe

tions of the thesis,This 1is based om the fact that in this blade
the temperature ls changing st all points countiniocusly in time up
to the external gas tewperatuve and as 1t was mentioned before the
external gas tewpevature bhas taken to be the ultimate tewperature

that the blade watevi{al Inconel 600 ,can withstand.On the other

o

hand,in the cocled hlades B and C the tewperatuye is wuch lowver
than the external £86 temperatuve at most part of the blades when
they veasch the steady state,Only at the trailing edge of BLADE-C
the témpevature is critical and it is just 100°C less than the
external gas tewperature,At the tralling edge ehd of BLADE-B this
wvalue fs abeo 175°C and at any other point at the trailing edge

of BLADE~ Mgth&a tempervature difference is higher in cowparison to
the corrvesponding peints of BLADE-C,The overall cooling effective-
nese of BLADE-C is the highest but at the trailing edge the cooling
15 legs in comparison te the trailing edgé of BLADE¥B,Thus,it can
be concluded that altheugh £he ovrall cooling effectiveness is
higher in BLADE-C ,the local cooling effectiveness of its trailing
edge geowerry is less thsn a& filw cooling geowetry as it is con-
tained in BLADE-B,At the leading edge ‘and wid portion,the cooling
process is much wore effective in BLADE-C thah in BLADE-B as it is
concluded frow the results,At the lea&ing edge,the temperature is
sbout 250°C in BLADE-C while it is about 150°C in BLADE-B,

In figures 18,19 and 20 the isoterws in blade sections are pre~
sented st the times 1,5,12 and 22 seconds,vespectively.In Fig,18
the temperature distribuctions in sections of blades A,B and C at

the time 1,5 seconds.ave shown,According to this figure at the
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leading edge and mid portion of BLADE-A the temperature is a little
higher than 300°C.These portions are surrounded by the 300°C iso-
term just inside the blade boundary except a portion of the pressure
side.On the pressure side the temperatures are lower than the suc-
tion side temperatures and on this pdrtion of the boundary it is a
little higher than 200°C,As one goes inwards the temperature reduces
gradually and the lowest isoterm is reached near the wmid portion.
This isoterm has a value of 60°C,Besides,at the trailing edge,the
temperature is rather high and 300°C isoterm is followed by 350°C

400°C and 500°C isoterms as it is come near to the trailing edge,

On the other hand,in blades B and C the variations of the isotermws
are not as clear as the ones in BLADE-A,Only it can be talked about
the general trends,The reason for such a behaviour is the cooling

of these blades,By the cooling process on various portions of

these bladgs‘different cooling conditions are iwmposed,Together with
the external heat transfer coefficient distribution,these condi-
 tions distroy the siwmplicity of the temperature distyibutions

,inside the blades, 7

In bbth blades the suction sides are hottey than the pressure sides
as it was in BLADE-A,.In BLADE-B,just inside the boundary 400°C
isoterm takes place and it extends from quite above the stagnation
point to thé tralling edge,On most of the pressure side the iso-
terms are beléw 300°C,This limit is exceeded on the leading edge
and on the portions of the wid part near the trailipg edge,As one
comes neat the tralliing edge end higher isoterms appear which
extend transverslly and reach to the maximum of 800°C,The coolest
parts are the regions between the first and the third cooling

passages,In this region the temperature is around 200°C,

In BLADE-C the large portion of the suction sidd is at 400°C and
400°C isoterm extends from above the stagnation point to the trail-
ing edge,But in this blade there is one exceptional region on which
the tewmperature even exceeds 500°C on the suction side of the lead-
ing edge,The trailing edge temperature distribution is similar to
the corresponding part of BLADE-B but in this case the hot region
"is rather 1arge;1n this region the isoterms begin with 500°C and
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end with 800°C.One other important point that should be mentioned
here is the existance of a large cool region in the mid portion
of BLADE-C,In this rvegion the téwperature is below 200°C and there

is even a region in which temperature is below 120°C,

The temperature distributions in the sections of blades A,B and C
at the time twelve seconds ave presented in Fig,19,In this figure
it. can be seen that in BLADE-A the hot trailing edge region is
diffusing towards the mid portion,Therefore the cooler isoterms
extending frow the leading edge to the trailing edge at time 1,5
seconds now surrounds only the mid portion,The hottest region is
the trailing edge,At this location the isoterms are betweeﬁ 900°C
and 1080°C,The coolest region is in the wid part of the blade and
it is surrounded by 650°C isoterm,In BLADE-B the isoterms are
clearer at this instant of time.Now they are léng 1ongitudinél
lines,900°C isoterw surrounds a large portion of the blade,includ-
ing most of the leading edge and all of the mid portion,Only the
trailing edge 1s excluded by this isoterm,At the leading edge there
~1s a region hotter than 920°C,0n the other hand,the coolest regions
are again the ones between the first and the third cooling passages.
750°C isoterm seews to bound the coolest region in BLADE-B,At the
trailing edge,950°C isoterm is the wost significant one,The tempe-
rature is 968°C near the trailing edge end.In BLADE-C the compli-
cated behaviour of isoterwms rewains at this instant,Approximately
the distribution of isoterms is the sawe as in Fig,18.The hot
regién on the suction side above the stagnation point is still
there and it is now bounded by 900°C isoterm,The mid portion is
still the coolest region and the tempevature of this region is the
lowest among all three blades,This region has a temperature of
650°C aé the lowest,The trailing edge distributioﬂ is alsoi the

same except the change in the magnitudes of isoterws,In this region
"the iseterws take the values between 900°C and 1040°C as one pro-

ceeds towards the trailing edge end.

In 21l three sections the pressure sides are cooley than the sucw-

tion sides,This fact is the consequance of the heat transfer dist-
yibution on the blade surfaces,The distribution considered in this
thesis is given in Fig,14,In this figure it is observed that the



suction side heat transfer rate is generally higher on every loca-
tion corresponding to that of the pressure side,This stems from
some aerodynamic phenomenon existing in the cascades,as demonstratéd

recently by Graziani et al, 27 ,Consigny et al, 2% and by many
others in past,

Fig.20 contains blades A,B and C with their temperature distribu-
tions at the time twenty two seconds. After this time the tempera-
ture distributions are expected to reach the steady state,The
distribution of isoterws in BLADE-A at this instant is exactly the
same as the distribution in the time of twelve seconds.given in
Fig,19,0nly the wagnitudes are different and they are higher in
this case,At the leading edge 1020°C isoterm is the highest,The
coolest region of this blade is again in wid portion and it is
bounded by 950°C isoterm,The enlargewment of the hot trailing edge
region seers to stop which means that the steady state values are
close,In the trailing edge the isoterms are between 1060°C.and
©1130°C,1130°C is very close to the external gas tewperature which
is 1145°C,

In BLADE-B and BLADE-C enlargewents in cool portions of the mid
part are observed,This also weans that both blades have alwost
reached the steady state,In BLADE-B the coolest region is surround-
ed by 850°C isoterw while in BLADE-C the temperature in the same
region is about 750°C.at a large portion,The highest leading edge
isoterms are 990°C and 900°C in BLADE-B and BLADE-C,respectively,
The‘hot region appearing on the suction side of BLADE-C above the
stagnation point at times 1.5 seconds and twelve seconds does not
exist anywmore,At the trailing edge of BLADE-B the isoterms are all
longitudinal now and the highest is 980°C isoterm.But at the same
locstion of BLADE-C the complicated behaviour of isoterms: remains

and. the highest temperature is above 1040°C in this case,

The results of the therral stress analysis that has been carried
cout in this thesis are presented in the same order és the thermal
field analysis,Therefore the first illustrations belong to the
transient thermal stress distributions,Figures 21,22 and 23

illustrate the transient thermal stresses in blades A,B and C.
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Fig,2l contains the calcdlated stress distributions in BLADE-A
during the starting opevation for the stagnation point;widjﬁoiﬁt -
and the trailing edge end,it may be followed from the flgure £hat
there are two curves behaving similarly and only difterlng in mag*-’
nitude,These curves are the ones that belong to the stagnat£o1 pb1nt
and the trailing edge end, Both curves have their maxiwma at.‘the ;1mg |
equal toe two seconds,The magnitudes are ~195 MPa for the siaghafibn
point and ~310 MPa for the trailing edge end.The third'curVe Is
.111Uatrdtlﬂg the thermal stress variation of the mid point,Tﬁiﬁ
curve also has its m&ximum at about two seconds,This is é_vé?yfex4ﬂ'
pected wanner because as it was wentioned inm the previOué'therﬁaf
field results,twvoc secends is the time at which the temperafufe gré;z.
dients reach their maxivur values,Just as the temperature distribu—
tion,the vate of change of stress is high at the beginning and 1t
decreases in time,The maximur differehce in stresses of the tpree
points is at two seconds,The difference is 450 MPa between the mid
point and the tralling edge end,This difference decreases to 60 M?a
at twenty four seconds and the tendency to decrease cont*nuésALﬁ K |
spice of the high rvate of change in stress at the beginning the ‘

distribution of stresses 15 quite swmooth,

Fige22 is the figure preééntingvtransient stress distributipﬁé in
BLADE-B at the stagnation point,mid point and trailing edge end, .
fhe stress variation at the wid point of this blade is'exacély :hé
same as in BLADE-A,even in wagnitude,Therefore there 1s no need

to discuss this curve,But on the othey hand,the Eehaviours of the
other two points,the stagnation point and the trailing edge end,are
quite different.At the trailing edge there is a very sudden increase
in stress in a cowpressive manner in the first second and in this
pevicd the stress féachés a value of =390 MPa,Then a rapid decrease
in stress at this point is observed and it reaches 4 value of

~100 MPaz at four seconds and a value of 0O MPa at eight sgcénds;From
that time ouwards the stress at this point is tensile and has a
maximum of 40 M?a,ln bontr"stgthe vate of change of stagnation pdint
stress’is rather small and at this point the stress veaches to its
waxivuw namely -75 MPa,at about two seconds,From there on,it 1is
obéer?ed that thé stress increases at this point and it reaches. a

value of O MPa at fifteen seconds,At later tiwmes the stress has a
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constant value of 8 MPa,The waxiwmum stress dif ference appear";agéih

between the mid point and the trailing edge end at about twa 4ecoﬂd°_
and its wagnltude is 500 HPg | -

The transient stress disfributions of the stagnation point mid point

and the trailing edge end 6f BLADE-C are given in Fig.23,The beha- .
viour of stress at the mid ~point is again the gsame as it is in two
preyious blades.In this’ ca 2 only 1its wagnitude is.hipher;Dﬁrihb'
the start mperatgan at th'e trailling edge,a sudden increase 1n stress
appears also in this blade 1;The stress is 1n compressive mantmmer but "
it i¢ higher cowmpared to the stresses at the corresponding. points
of the other two blades,It has a value of -400 MVa.Be51deo,the r&te
of chaunge of styess is not as.high as in other two cases, after the-
peak value,The stress decreases slowly up to =200 MPa thqh,ié‘dt

a tiwve of seventeen secconds and then it increases again.A: tBe
stagnation point an incyease in stress with rather 1uu.rateszbf_ v
change up to fiftceen seconds,From thereon,an increase .in étteQS‘is

observed at this polnt,teo, -

In fig.zéaFig,Zi and Fip.26 the stress distribuctions in Slades'A;B
and C are presented at the times 1,5,twelve and twenty two seéeconds
espectively,According to these figures in all three’ bladGS'and at
all times there are central portions surrounded by neutzal stress:
conteurs. inslide these contours one observes tensile.strgssés;Whereﬁs
as one proceeds towards the skin of the blades the stresses become
ccmpreséive,?his observation is valid at all tiwes,However,this fact
is expected because the skin tewmperatures of all three bladéglare
always higher than the inner tewperatures,Thus the outer fibers of
the blaﬁes have wore tendency to extend than inner fibérs,So.whilé
outey fibars exert tensile stresses on inner fibers,inner fibers

exert rowmpressive stresses on outey fibers of the blades

On the other hend,there is another fact that generally on the pres-
sure sides of the blades tensile stresses exist.,But on the suction
sides it 1is always obsefved that the styesses are compressive,This
is alsc an expected behaviour,As it is observed in températufé

analysis of blades,the suction side tepperatuves &arve always hig .er
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thazn the pressure sidelieﬁperaturesﬂBut this means that-the QUCtiéﬁ'
side fibers of the blades tend to extend wore than the pressure
side?fibersfﬂence,while the suction side fibers exert tensile stress—
es on the pressure side fibervrs y,they exert CONpaeS"VQAStTQSSBS Qn

the suction side fibers of the blades, | o

Besides these geneval trends in the blades ,individual ,variations

w

arve alsc obvervgd,Fmr'invfw1ce at the trailing edge cfxBLADE-B;at 2
time of 1,5 seconds high compressive stresses are observed,. But these
t

resses disappear at a-time of twelve seconds and they reach values
v .

'.'.o“

ing the osrder of magnitude of 30 MPa,Fror thereon they'remain
constant,¥hereas Iin BLADE-C 'high cowpressive stresses-élwayé'exist
at the trailing edge with the order of wagnitude of -300 MPé,The
leading edge and the wid portlon of the blades have wmore or less
the sere sitresses.agt all tiwes,The . veason for the ahxsgance of hign
stresses,elther tensile or cowpressive,is the high tempe"atuwe
gradients existing on diffﬂment portions of the blades,Fox 'instance
inm BLADE-C ghe gradient is 380 °C/sec at the stagnation point |,

950 °C/sec at the trailing edge end and 70 °C/sec at the wid point
at 046 geceond,This obviously gives rise to large temperature differ-
ences between these portions in a very swmall period of tiwe.ln facet
at two seconds the tewperature difference between the mid point ahd
the zrailing edge end is 710°C,This very high difference is the

cause ¢f & very high therwal stress,

As it is fellowed frow the tewperature analysis,the coolest and the
hottest regions are obsevved in BLADE-C,Thegvefore the highest
thegwal stresses appear'in this blade.ln ovder to eliwinate these
stresses cithery the_ce61 regions way be warwed up or the hot regions
way be cooled down“‘hc existance of the cool regions are desirable
snd they ave the goals of cecoling process by which the material of
the blade ig saved,Thus,the hot regions should be cooled down,This
solurion can be achieved by checosing a wore effective cocling
geowmetry pavticulavly for these regions,When the cooled blades of
this thesis asre investig ated it is seen that the leading edge and
the wid portion of BLADE-C zre cooler than the corresponding portions
of BLADE-B,Butin contravy,the trailing edge of BLADE-B has wore

effective tooling geometyy than the simllar portion of BLADE-C,
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Consequently, the combination of the various cooling geometries of
the two blades which are the most effective geometries may create
the most convenient blade,Depending upon the preceeding analysis
and above conclusion,it can be proposed that BLADE-C with a filwm
cooled trailing edge will be the most convenient,An example of such
a blade is given in Fig,27,In this blade since the temperature
.gradient between the mid point and the trailing edge end will dec-
reaseé the therwmai stresses will be reduced,In the wmean time,pre-
sumably the maximum temperature of the trailing edge in BLADE-C
will also be reduced.,In such a case,the lowest difference between
the blade temperature and the external gas temperature will be of
the order of magnitude of 250°C,This means that even if the gas
with temperature higherithan the allowable wmaterial temperature is
used the blades of the turbine will not be destroyed due to high

temperature effect,
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vII., CONCLUSIONS

In this thesis features of the transient temperature. distribution
in turbine blades were examined in detail ,using finite elewent

wethod,.The following was concluded:

1, Finite elewent wethod solves heat transfer problems accurately
even if the geowatry is very complex,Hence,it is one of the best

wethods to selve hesat transfer in blades when very complex geometries

of cooled blades are consideved.

2. In a trangsient heat conductlon problew,application of finite
element wethod to space coordinates and finite difference method
.to time coovrdinate establishes an easy and accurate cowmbination.
3. Cooled blade ie a povwerful tool in cases where one has to in-
crease the external gas temperasture es high as possible and to keep

blade tewpevature as low as possible,But in the design of cooled

[t}

5
blades therwal stresses must always be caken into consideration,For
sowme cooled blades therwal stress problew is very serious eventhough
they have high cooling effectivenesses.This is the case for BLADE-C

invesgtipgated in this thesis,

4, Besides overall cooling cffectiveness,local cecoling effectiveness
'is also an Iipportant paraweter,Even 1f wmost of the blade is.effect-
ively cooled,existance of less cooled parts causes problewms by

giving rise to high tewperature diffevences in the blade and so,
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creating high theywal s¢resses,This fact was rcalized in the ana-’
lysis of BLADE-C, '

5, During start and dhut»dawn operat*r s of gas turbines ;fansieﬁé>
témperature uistributlonu becoie very cowplicated,In fhase periods'f
temperatuzre graalenta.dgo vewy high both in chordwise dixcction o
and betvween the skin and ;y?ﬁ ?eglon}ct s blade.Because of these
h%gh gradi&nts Bagn itudés'pf’therwal s#resses in.blades afe“alsp

very high in these pericds,
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APPENDIX A

SHAPE FUNCTIONS OF A RECTANGULAR QUADRATIC ELEMENT

) (04) . (14)
- F 2 3
AU ey
17 5 5
("‘."1) {04) | (1,-1)

NODE NOJ " SHAPE FUNCTIONS -
1 1/6(1—5)(1-»?)("7—3*1)
2 15 (1-§2)( 1+ 7)

3 La, (148001 7) (7+5-1)
K Jol1esl(1-77)
.5 BALEIEMISEYERE
- 6 1 (1-7)( 1-%)

7 Vo 01=8101-711-7-5-1)

8 15 11-810 1= 77




<
(98]

APPENDIX B

INTBGRAT ION RBSULLS WOR TLINE INLLGRALS USED IN THE ANATYSIS

TUTEGRAL TERAMS , TNTEGRATION  RE“ULTS
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TABLE 1

PROPERTIES OF INCONEL 600

Max. Elastic Coeff Thermal |Thermal Conductivity
DESIGNATION :jgcgmc HARDNESS MOdUC‘)US uTS Densityl=XRanslon Joules/m°C sec
nended oo 20°C) 20°CH, 31 300%| 650°%| 20°C |300°C |650°C
Temp.°Q MPa_| MPa_ | %8/M° | m/meclm/mC
Inconel 600 1200 | 187 Max. | 21 | 550 | 8442 |14x1671.5410% 15 19 | 248
TABLE 2 : INTERNAL COOLING CONDITIONS
BLADE-B BLADE~-C
pucT T(C) | hiw/mPc) DUCT | T(°C) |hiw/°Crf)
! 500 | 00248 | 1-2-3 500 - | 00262
2-3 500 | 00265 4L~5-6 500 0.0265
L 700 | 0.0232 7-8-9 700 | 0.0232

XION3ddV

J
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APPENDIX D

COMPUTER PROGRAM : FIN

e
=
[

The following fovtran progvaw 1s to solve two-diwmensional transient
heat conduction problem given in Chapter II1I,The boundary conditions
considered in the program arve both prescribed tewperature (Dirichlet

type) and convective heat transfer (Heuwann) type of conditions,

.DESCRIPTION OF THE COMPUTER CODE

This progvaw is adequate for thé weshes with maxisuw 130 nodes,.
In the prograw,the local coordinates of the nodes of elements and
weightiﬁg factors of integration belonging to these nodes are
recorded as data in statewents 8-13.In statewents 14 and 15 the
nuwbers of elements and nodes and the number of nodes under

bed tewperature condition are read under names NEL ;NNODS

respeatively,

The statements 16-21 are for the leoops initializing the global
conduction matrix!giobal capacitance matrix;global therwal force
vector and unknown tewperature vector by setting all thelr terws

equal to zevro,



g6

After readiag in.the necessary‘dataicalculation of the vialues of
both shape functions and first derivatives of these functions
with respect to the local coordinates g énd % at each node of an
elewent is calculated and stored in the loops between statewments
36-67,Calculation of the elewent watvices aand their assemblage
into global ones begin with the statement 68 and end with the

e
statewent 126,The detalls of the procedure follewed are as below:

1=-) Loop 7 and 9 (statewents 70-75) : These loops initialize the
elewent conduction matrix and element capacitance matrix by

setting thely terws equal to zero,

2-) Loop 13 (statewents ?5~115§.: This loop is used to form the
Jacobian watvix and elewent matrices mentioned in step 1.
2:1-) Lecop 2 (statements %1-90) : The terws of Jacobian
matrix are forwmed in this step,

2,2-) Loop 11 {statements 100f102) : The terws of element

capacitance matrix ave calculated in this loop, .
2,3-) Loop 12 (statements 103-10%) : This loop calculates the
Berws 0f elewent conduction wasrix,

e

2,4-) Loop 13 (statewents 111-115) This loop calculates the
€

exms of element convection matrix,

\3*) Loop 15 {(statements 120-125) : In this loop,the assemblage

of elewent conduction matvix and elewment capacitance watrix into.
globel donduction matrix and glo§a1 capacitance watrix is realized,
This paﬁt of the prograw together with section 3,8 of the thesis

iliustrates the assembly process In finite element mwmethod,

The time integration datagthe-time increwent and the numbey of
zntes are read in statement 127 under names DT and NT,

ou data,initial temperatuve walues of all nodes,
TIN(L) are ingput in'statement 129,By using these data,the governing
watvix eguation is rearvanged and a simpler equation is establised

which has the form,



7

Now,the governing matrix equation is ready to be modified for the
boundary conditions Loop 17 is for this.purpose and its first
statement numbered 137 inputs thé boundary condition data,In state-
ments from 143 to 164,the governing equation is modified for the
prescribed temperature boundary conditions and in statements from
165 to 212 convective heat transfer boundary conditions are appli-

ed to the governing equation,

In solving the system of equations obtained LU decowposition is
used,[3ﬂ .The statewents from 214 to 273 contain the steps of

this solution procedure,

The préparation of input data of the problem to be solved by using
program FINEL should be made according to the forwat statements
275-287,The program prints the calculated values éf the unknown
variable at the end of the program according to an output control

data read in statements 236-239,
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C STARD j

i

Set matrix arrays.

{

Read number of system nodes and elements.

[

Initialize matrices.

)

Read and print nodal point coordinates.

!

Compute shape function derivatives in local coordinates and shape
function values at nodal points. '

!

Begin with first element

. |

¥
Read element mesh topology and material properties.

!

Perform Jacobian matrix to use in transforming

local coordinates to global.

i
Compute element matrices.

)
Add element matrices to global matrices.

/'
No : I

T~—-~____£E_Eii_fiifiifs asseubled ?

Yes
\

Read and print time increment and number of time increments.

¥

Read initial condition data.

Perform the new matrix equation containing time effect.

!

Begin with the first element boundary.

FLOW CHART OF THE PROGRAM "FINEL"




\ 0T}

ol
i

Read type of boundary condition,node numbers

on the boundary and boundary conditions.

Check if R.C. convective 7

No

Modify system equations to account for

~constant temperature L.C.

Evaluate line integrals on the boundary.

Fodify system equations to account for

convective E.C.

‘.~__-.§ZE_3ii_Eiffiiifes accounted ?

Yes

Form 1U decomposition of system matrices

to use in solving system equations,

begin time integration.

|
3

Form right-hand side vector at time t+at.

Solve system equations

for nodal point temperatures at t+at,

Print results.

(Continued)
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_PROGRAM PINEL

e eka oo €3 K i, e e D i Ve A% Sk s

e i £ o oy S Bt e i W £ e i S La S8 S S 42 o 2 TR R ot e i Mk 4 s i s o e i i A 8 8 S i e 27 e . A 0 Pt e S
- e ™ —— - 8% — any — i S - > iy ———— b

i . REAL JAKD,JAKZ, JAVBVJAKQ,!JAKI 1JAKZ, IVYAKS, TJAKY
2 © DIMENSION NR&°!,ALO”€9§°YLOC(9)9 NXSI1%7,8),DNETA(9,8),YaLN(D

C 3, DINMENSION 55&8(895}9ﬁK€813}gNODS(8)gB(398}»BTQB,Z),CX(S),cYE

L, : DIMENS!ION Aiﬁsﬂgizoasﬁglsoﬁ130),85(330391(x10)9X(1“0) Y(130)

T . DIMENSTON S{B),SHATI3,3),SVECI3), IGA(2), TINF(a),NoD(3 3.xswc(
be DIMENSTON TIN(iSDi,B AB(AuD),BSUBiSEDi?V ootsuoi,moot(zso)

7 - DIMENSION YM{130),xM1130)
8, ) OA?A XLDC/ EVOQDGO 1a 0930 130, Uaﬂa“ivmgnl G,UQD/
L2 : DﬁTA YLOC/”!QOanlaUgmi 0 DeO;.a g!;ogiga 0 0,060/
10, - nATA R0 460, ’ﬂagﬁﬂnﬁlto 4 Ool:mpqo 916;0/

Fls DATA 15WC/0,0 sde001/ :

320 Do} 1=§,9
3o I WRED)=WRIT)}/79.0

14 - READ\HpuOEQNrL;NNODS

359 READC.‘;;&@%?"”‘T

. . Do 2 IﬁﬁyNNOQS

LG 1 T(i)»?Ua

19 ) DO 2 J=)sNHODS

204 o PiigJQ"ueG

P 2 Ctiedy=0a0

229 . READ{s, 2027(AiligY(Iioi"l,NVODS)

23, zrzl“wceiﬁgsepii G0 YO 3

24 _ VRE!a1633b3§“((I)aYlK?g1‘~i.mNDDS;

25, 3 CONTINUE ‘

26, . . . DO 4 ,u; NNODS - : -

37¢ A=y i)’iﬁe

28, 4 rzsz&}tzix Oa

2%, ' DO & 18,9

30, ‘ K51=4,0C411)

It EThaYLO0Ci)

32 . SABlEp.DRETA

33}" N SAEEWE%D*ETﬂ

I, S5AB3m) 40 ns!

35, BaBYsl ,0¢ 48]

36, TSABSRO.BRETA

375 ‘SABé"QQ?SéuTﬁ

{380 i'\bf‘“ng.:"\SI

39, ) SaBAwn 280 XS .

40, v O DNXST{!,1)=(SAB7+SABL}wSAB)

bl DNXS] 1,2)0rRs125,8]

42, DHASY{T,31={5AB7=5ABs) =SAR}"

H3, - DNX&I(Z,”?“Ja%“SRES*ETA

84, CDNASI(I 51 (5AB7+5ABL)a3AB2

455 DNXST([,6)ueX5105AB2

46 - DNXSI¢l,71={5aAB7-3AB6 ) sSAB2

47, DNAST(] ,B)e=0,5+3AB5%ETA

iBe - DMETA{1,1)=(5AB5¢S4B8105AB3

490 DNETA{],2)meD,5+5AB7e k5]

50, DNETA(],3)={5ABS=SABB ) oSABY

51, DNETA(Z,ﬁiumrTAﬁSaBQ

52, DNETA(] ,B)=(S5aAB5¢SABS) «SABY

53¢ DNE!A({ 61zl 8a348875XS]

58, - DNE TA(!:?)"{SAB:Pgﬁaa)GJABB

55, DNETA(S,8)=~ETA«SAR3

56, .7 VﬁLN(x,i3ﬁnaAB§GSAB3¢€CABu¢ ARBY(,.25).
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57, © VALN{,2)=5ABje{0.5-SABTOXS] )"

58, .¥VALN(1, }vwaAB‘t~A84BiSﬂ8¢wSABB#D°25§;'
59, 'f VALNG)Y  4)=SABYs(0,5-34R52ETA) .
60, ‘ . Vn@V(;,S}*5A82°QABN¢(JA86+9 Ba=le25t
tle . VAEI‘%\Tg(ﬂ}thg"”(QGS Sl\Bfﬁ' ST ’
62 Lo VALNG 7= SAB2¢SAB3+{SABE=SABEY0,25

63, , -.'\VALmtggaz 54B38 (045 SﬂBBﬂETA)'

P ‘ 5 CONTINUE

5, o - IFUISNCi2).EQ,07. Go Y0 & R
b, o WRITE s, 1 %)iKDNXS!<I J)oJ“I,BFg£419 b
670 C 6 CONTINUE oo
68, _ DO 16 Kmi,NEL o ' o
69 ¢ . 'RFADCESQID“)“\‘ODJ(\HgJ“lgB}QCONDgP\LPHA :
70, . . DO 7 i= 1ys .
Tl D07 =18

7Z¢ : o7 CSABLI ) =0.0

73, DO 8 1=i:8

74, Do &8 J=1,8

75;; 8 AK%IBJ’“U;«G -

e - . DO 13 L=i,9

774 ‘ AR ER 0

18, . JAK2=0,0

79 JARI=0.0

80.¢ L JAKA =G0

Ble - DO 9 M=1,;8

82, .. N=NODs{M)

8,5,; V ' AVnL""(f\-) '

a4y, YVAL=Y (N)

855 : L DYEDNXSTAL M)

8o , D2=DNETA(L M)

87, . JAK e gaK eD L RXVALS

88, JAKZ= JAK2+D1®YVAL

8§9¢ SAKIs JAK3+D2s XVAL .

50, . F JARY= JAKH<D2OY VAL

Fle DEV=JAK I e JARS = JAKZA JAK

92, 1JAK = JAKY/DET .

$3s - . 1JAKZ==JAKZ/DEYT

94 . CJMAK3s=JAK3/0ET

95, [JAK4=JAK1/DET .

Fbo o HRITE(S 108 MJAKY (JAKZ AR yaAKH , DET

P75 . CIFLISYCidERLLY GO TO 1O

$8; 10 CONTINUE

P9, CONST=DEToWR{L}=ALPHA

Gl DO 11 Jdmi,8. : :
(24 1B CS&Bfg%J3*VALN(LﬁJ)“VALN‘Lt])”CONST*ﬁSAB(I.J’
03, DO 12 Mmi,8 '
QL“ . D‘{‘g“‘DN}{SI(LQM.}

GSo. D2uDNETALL M}

Ub, - 3(gpM)ﬂDz¢1JhK]¢D2u!JAK2

G7, Bg2,M4)=D1alJAR3+D2:1JAKY

08, BYiM p1eBii M)

09, 12 BT{M,2)=B(2,H)

10, . CONST=DETeWR{L)2COND.

11 - DO 13 1=1,8

l2u B0 13 J=1,8 . '

13, SUMaBT( 1 3)eBll JYeBTLI2)eB(25)

Fas AKET,J)=AK( 1, J)CONST&SUN

1565, 13 CONTINVE

16s - IFLISWCIY),EQ,0) GO TO 14

17 WRETEeé,iua)i(CSAB(x,d),ﬁuy,a),xux,8)
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. 'WRETEféggﬂé)5{AV(E‘J29JW'Pa),iuted;
o

CONTINUE |

Do 15 !xzis.

LaNODs( i
DO 1% Jeiy8’

CH=NODRS ()

AL My R AL MY AR T )
S 18
CONTINUE

L(LpngafiLgH5¢CSAas;gd;

CREADLG !bprT NT

WRSIE(&,B;&”DT NT

READ(S, 2181 (TINALY,L=1 chog,
DO 23 LEl,NNODS

23

17

Do 23 Mwi,NNODS

_QONST 2,0707

"V 0

 ;ngc1)mT;z

ASABEC (L o1} s CONSTa (L ;i

f.( H ggg}mgng?M‘ls}(’OnSr AL eM)

A(bgﬁ}"ﬁ)&

e

?\) Bu

I&F(’}m(ih

'*T Nre=;a;xwr%

ZrelKoDQanOx,Gq fo 22

CUTFCIKQD,ERL2) 60 TU 419

Mo M)

CMIENeg

MJoMs 2

NODT () sNGD

NOPTEMI)=NOD2Z
NODT (Y= NﬂDE'

‘NOD{L §y=NOD

NoDzzaawanz

NOD{3)=NOD3.

PJel -
EfeihODaNtalf G0 -To 1%

L Tgn2

19

CGNT»NJE

DO 118 JEy D

DO 1B 1®1,NNODS

118

NOQFSMQS i}
Bsiiy dS(El”h{LgNQDF?fT!NF(J!

AiiaNQDFBwQ ]
ﬁgﬂaﬁagéééaaﬂ
A{NODE  NODEI®}40

"BSUB\H{)QL?'”T x iF{'wl;

GO V0 17
CONTINUE
EX{yi=Xil0D)

CCX§3YexiNOD2)
CXEB)=X(NODI}

CRi21=0,3752CX(])40o753CK{3)m0,125aCK(5)
KA =w0ot25¢CX(1)90.782CX{3)+0.375°CK15)
CY{h aY{NODL) :

CY{3IaY{NOD2}

CY{Siaf (NOD3}
CYQZ?303375¢CY(1)*DnIDQC {3
CYiHiamDs1290CY (1) 20,780CY(
S¢3i=0.0

SS5UK=g,0

DO 20 J=1.§

}=001250CY(S)
3)+0.:378¢€CY(5)

0D, HODIQNDDz NOO:’;9 MFS T!hrz T!NFS,H



179,

18G.

faz;

1834

184,
185 ¢
186,

187, .

1684

187q” 
190, .
i-_?_i o n '.
SIS
193,

154,

§954
196,
97, -
198,
199

LDO@
204,

202.
203,

204 ¢
205 o
206 .

207,
208, .

0%

;5ls

2120

214,
215,
26

218,

??Zo
123
124,
5 25,
’26,
227,
228,
229,
130,
31,
232,
133,
134,
235,
136,

137

138,
‘39,

:20

o
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Lejey
ALlnrxtlivC\fJ)

LALZECY (T E ROV i)

SSUM= 3U”¥SQRT€AL}&&4VAL2&42)

S{I)=g55uUM

Sa=5{3) D - ) o

55 (b) P ' o . - . ) . \ L
SAZ2=5p654A - o ) . ’ . -
53‘358058.. . . . . . .

SB3=S82+58 -

T SAMBESA=SE

SHAT(},11=SB3/¢(3 DFDQSA¢7’SB7/€6nD¢Su;+48/3 0

!'_aMATix‘Lzrésﬂs S8/ 120:005A2)-SB3,/112,0%5 A))/SAMB
,snAT<;=3> €5?J/( 20,0050 288274, c»SAasafé DJ/SANB
U SMAT 2, ATLE.2)

' Sﬁnv(.’is!’w“fdf*)(i%#)

SHAT (24212583 Sw?/!BGoO&SAZGQAMBéSA3B‘

. SM%T(pgﬂkw SB3sSB/{20.0%5A)=S$B3/12 G&/(Jgﬂﬁuag)

551117(3,4}F‘SP1A|(2 3)
SHMAT(3,31=1583/5. O¢>ﬁ°aa?/2a0+5‘zwsﬁf3 m)/(SAnBaaz)-
SVEC(1I=8B/2:0=SB2/165035A) .

SYEC(21m=SB3/(6.0¢5aSAMB)
SVEC{3)=(3A8SB*0,5-5B2/3,0)/5AMB
IGA{Ly=HOD}

1GEL2)=HNOD2

1GX(3}=NOD3

DO?! "!93

430

’

340

330

360

350
3z0

420

gl

3p2

16=IGx (1) o :
BQ(TG}-US(!G)anTLNF(I}¢SVEC(I) '
DO 21 u'i'lgd

JeEIGK {J)

C(ZG;JG)“C‘IG JG)"Ha MAT(I

ALIG,JGI=ALIG JG}*h*SMATQI,J)

GO TO 17 .

CONTINVE

N=NNODS

NizN=)

DD 430 [J=2,N

AT smAL T 1) /A1)
DO 320 K=2,N!

NARASK -}

NBAS=K»)

DO 330 JeKyM

TOPSAYT=0,0

DO 340 iP=1.NaARA :
TOPSATRTOPSAT A K Py ®alirP s d,
Algsdi=AlgagloTOPSAY

DO 350 1=NBAS,HN

TOPKOL =01,0 ,

DO 360 [P=1,NARA

TOPRKOL =TOPKOL+ALL,IPIeA{IP,K)-
Al Ky=tail, V}fTOPYOL)/Aik,K}
CON(&NUE .

PO qzo xxz;,wl -
TOPLAMSTOPLAMCA{N,TI)oA(I, N)Y.
A(N NIcsA{NN)=TOPLAM

DO 303 I=1,NT

KKOD{1)mU

DO 302 Jel,NT,S

KKOD(u) =]



DO 30 \‘::ssl\l‘

24

24,

125,
225

382

- 380

DO 124 L=1,NNODS

CBSUMs=(04,0

DO 24 HMeil NNPDS

'BJUH«C(iqghﬁszN(f1)¢BSUM

BSAB{LY=BSUNM=2,0s85(L)
IF{NCT.EQeD) 6D TO 22; .
DO 125 l"i;NCT :
JueNODY |}

BSAB(J)”B SUB(J) o
CONYINUE ‘
MiT=qg )
YM{L 1 eBSABY L)

DO 372 1=z,N

TOPAL=0,©

iEisie} -

DO 374 Kei{,1E}
TOPAL=TOPALSALT K e YH K
YN‘:)"BJABGI)WTOPAL

CAMUR) = YHINY /AN N

DO 380 [=2,N
TOPAL=0,0

Jubel ey

IBAS= g+

DO 28z K=I{BAS,N |
TOPALFTOFu!¢A§J K)WXM(K)
ALY s {(YM{J)=TOPAL) 2ALJ, V) .

DO 29 J=1,HNODS

TING y=’M{d)} o
IF{RKODIKKYEQD GO Y0 128
wRETC(c)pEQ?’“iT :

WRITE {6, 110V{TINGYJ=) NNODS)
CONTINUE

CONTINUE

WRITE (S, 130}§TaN(J),d-1‘NNODS)
FoRMAT (214

FORMAT{18F8,1)

FORMAT(/// 317 F6 2% Féolﬁzk) /)

FORHATcaiagﬁFRO;b)
FcRMNT{;UX grlé 6)
FORMAYT (I 23,,5 F? zFé 1 eFé, 4}

FORMAT(F4,2,13}

TFORMAT /7, 10X, 24H NUMBER OF ITERATXONS..

FORHaTg3H?§UX33(7{53205?ZX)‘/))
FORﬂAT(//4,6&;30X39F1003?)
FORMAa7 (123

-rﬂﬁﬁhxiXH5310n,“TIME INCREMENT =
FORMAT(16F441) '
IF{ISUC{5),EC,1) Gp. TO 10D

sTopP :

END

'S FUE/ 11K, P TOTAL TIME
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