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ABSTRACT

The scattering of steady-state anti-plane shear
waves (SH waves) from arbitrarily shaped inclusions in
an infinite medium is described by means of integral
equations expressed in terms of displacement fields.
The problem is examined for the two dimensional case
where an inclusion fixed in space like a cavity or a
rigid body with material constants different from the
sufrounding medium is taken as the seatterer;The result—
ing singular ihtegral‘equations are solved numerically.
Both near and far-field solutions pertaiﬁing to circu-
lar,elliptical and’ rectangular cross sections are ob-
tained.All the results are presented in graphical form
and are found to be in good agreement compared with the

known exact solutions.
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OZET

Skaler kayma dalgalarinin (SH dalgalari) sonsuz
uzaydaki l8lettayin kesitli gekillerden sagilmalara,
yerdegistirme alaninin integral denklem halinde ifade-
siyle tarif edilmigtir.Problem iki boyutta,50§luk,veya
malzeme sabitleri ic¢inde bulunduklari ortamdan farkla,
hareket. . etmeyen rijit i¢ cisimler i¢in incelenmigtir.
Ortaya c¢ikan tekil integral denklemler sayisal olarak
¢ozlilmiigtiir.Dairesel, eliptik ve dortgenel kesitli gekil — .
ler ig¢in yakln’ve uzak bolge ¢oziimleri elde edilmistir.
Biitin sonuglar,@ekillgr halinde gdsterilmig ve bilinen

kesin ¢oziimlerle uyustugu goriilmiigtiir.
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CHAPTER I . .

INTRODUCTION

~In an unbounded homogeneous medium,waves propagate
without interruption at a constant speed and along a fixed
path.However,with the insertion of an obstacle in the me-
dium,the path of the‘propagation,ié‘changed,and,the obsta-
cle,when excited bngie otherwise undisturbed incident
wave,acts assawseoondarynsource emitting;waves=outward,from,.
ifself.The deviation'of the waves from their original paths
is known as diffraction,and the radiation,of-fhe secondary
waves from the obstacle is called scattering.In an elastic
medium,the obstacle may be in the. form of a cavity,or a
rigid body with elastic moduli andidensity different from
that of the medium. ‘ |

Scattering theory is used in many branches of physics
and mechanics.The diffraction of waves is certainly impor-
tant in seismology and oil technoldgy and has recently
come to be appreciated in connection with the non-destruc-
tive evaluvation of materials,NDE. InMﬁDE,the scattered wave-
form is used to identify the shape and the size of the
scatterer which’can be a void,an inclusion or a crack.

This is known as thé inverse ﬁrobleml,

In this work,the method of integral equationé is used
in solving the diffraction problem for the exterior region.
From a theoretical point of view,this method is more direct
and basic than other methods such as normal modes,as it is
5aséd on_the Helmholtz and Kirchoff's mathematical inter-
pretation of Huygen's principle([5,9].Helmholtz and Kirchoff

1



integral formulas yield mathematically the disturbance at
time "t" if the wave velocify "e" and the wave form at time
"to" are. known.

In the usual treatment of the elastodynamic problems
one has to find the solution to' the equation of motion sat-
isfying certain conditions known as boundary and initial
conditions.However,in the method of integral equation,the
equation of motion,using the Helmholtz-Kirchoff formula is
transformed into an integral eQuation which relates the
wave field at any point inside the medium to the known
guantities on the-boundary,hence incorporating the boundary
conditions direﬁtly;According.to Huygen's principle the
points on the boundary of a scatterer,upon the impinging
of an incident wave,act like secondary sources emitting
the scattered waves.Therefore,oncé the wave field on the
boundary is known one can precisely'determine,the scattered
field making use of these integral equations. .

Previous studies of Wave'scatteringAhavé been usvally
carried out using the method of separation of variables.
The method,however restricts the shape of the scatterer
to0 simple geometries such that they can be expressed con-
veniently in separable coordinates.This restriction may
be removed by the integral eguation. formulationjhowever
such an approach does not facilitate the analytical solu-
tion,that is the problem formulated in terms of integral
equations should be solved by using numerical technigues.
One such effectivé procedure is to approximate the integ-
rals by a finite sum énd then calculate the unknown guan-
tities at many discrete points by solving a system of al-
gebraic equations[Q,jL'To cite a reléted example : the

- scattering of steady acoustic waves,formplated as an integ-



ral equation;ih-terms-of the_velocity'potential was solved
by Banaugh and Goldsmith[4] using finite difference methods
where the boundary is ‘described parametrically. -

The key feature of the method lies in the faét that o
only the surface of the body is to be discretized.An ad-
ditional advantage of this procedure is the‘reduction of
the dimensionality of the problem by one.Hence the complete
integral formulation with its numerical approximation has
the distinct advantage that the method is not restricted
to geometric configurations to-which the method bf~separe-
tion of variables may be=épplied;

In the formulation that follows, the integral repfe-
sentation for the displacement is taken as the starting
point[5,6].This choice leads respectively to Fredholm in-
tegral equations of the second and first kinds for the cav-
ity and rigid‘inciusion problems.These-integral equations
are solved in the spirit of the aforementioned numerical
approximation.The solutions provide the unprescrlbed val-"
ues ( U( s) for th? ;avlty and bU( )/bn' for the rigid

inclusion,where 4] is the displacement due to the scat-
tered field and pn' is the outer normal to the boundary).
The substitution’of‘these values in the integral represen-
tation for the scattered field enables one to calculate
U(S) at any point in space.Also the numerical differenti-
ation of U(S) with réspect to 0,the polar angle,yields
the tangential stress on the boundary in the case of a
cavity. ' |

In this work,we present the near and far;field re—
sults for a cavity and a rigid inclusion.Chapter 2 reviews

the elasticity equations mainly for anti-plane strain case

along with SH waves.In chapter 3,the integral equation



repreéentatioanor the scattgring problem is developed - -
and the numerical method employed is -discussed.In chapter
4,the formulation of-the problem for various cases is

given and'some'speeifiC'pfoblems are solved.Results per-
taining to circular,elliptical and rectangular geometries

are presented in graphical form.



GHAPTER . 2

EQUATIONS OF LINEAR ELASTICITY -

This chapter brieflj’discusses'the reduction of the
Navier's equatioﬁ to a scalar wave equation in-the casé
of anti-plane strain and describes the nature of the asso-
ciated waves.

In the absence of body forces;the linearized equa-
tions of motion in terms of the displacements (Navier's
equation),for‘é,homogeneous,isotropic elastic medium are[iL

3

U
2t

( >\+}4) V(Vo)+ ‘;uvzt_I: Q (2.1)

Wheré A andp are the Lame's constants,and<zthe mass
density of the medium.

The solution to the scattering problem requires the
solution of the above eguation which is valid over a re-
gion V,satisfying the boundary conditions in'terms of dis-
placements and/qr tractions prescribed over a discontin-
uity'surface of either a solid inclusion or a cavity

(Pig.2-1). -

Fig. 2-1  Geometry for anti-
plane strain



In two dimensional_problems,cbmponents of the stress
tensor are independent of one of the coordinates,say gz,
along which the cross sectional area of the body is con-
stant (Fig. 2-1) .A deformation described by a displace-
ment field of the form , [1],

UX(X’yy'b) = Uy(xvY1t) = 0

UZ = Uz(x,y’t)

is called an anti-plane shéér_deformation,where U* ;U

and UZ;rqfegring to the usual cartesian cobrdinafes-f
Xy¥s2Z2 o are the components of the displacement vector U.
Denoting the only non-zero componenf Ué of U by U, Eq;(2.1)
takes the form ,

1 iU(x,y,t)

2
VU(X’y,t) =_c-7. %tz . (2.2)
where c= {g— . is the velocity of propagation of the
wave. '
In the case of anti-plane strain,the only non-vanish-
ing components of the stress tensor are-isz and (T&z y
and from the Hooke's law
o = MV-U)I +Mu(VU + UV)
they can Be easily determined to be
| W AU
—1 <o = —_— .
Tz | a dX ? & M dy : |
Considering only harmonic waves with a circular fre-
quency of w,the displacement and stress fields can be
written as
—iwt
U(nyat) = U(x,y,w)e

(2.3)

~iwt
O'(Xayy't) = c'(XaY7W) €




To simplify:the writing we will suppress the time factor .o

—iwt L :
e in the rest of this work.Substituting Bg.(2.3) into

Eq.(2.2) we get-
VU + K¥U=0 . (2.4)

vhere - k= \-%%— is the wave number.Eq.(2.4) is known
as the Helmholtz eguation.

Under the conditions of anti-plane sﬁrain,the-dilata—
tion, V-U , is zero,and the waves are only of rotational
(s waves) type.Since the displacement is always papallel
to‘the axis. of the scatterer,z-axis;which for convenience " -
can be taken as lying in a-horizontalaplane;waves-of’anti;
plane strain are also known.as - -SH waves.The boundary con-

ditions assotiated with Eq.(2.4) are

U
on

=O -~ ’ . (205)
for a cavity,and

lu'=0- . o (2.6)

for a rigid inclusion.

s



CHAPTER = 3.

FORMULATION OF THE INTEGRAL FOUATIONS

Application ‘of the separation'of variables method to
~the scattering problems is limited by the geometry of the
scatterer since the equations of motion are not separable
in all coordinates.However,this restriction can be removed
by the use of the integral equation method where the gov-
erning equations of motion are -transformed into integral
equations using the Helmholtz's formulas.Since the integ-
rals involved are -defined over the boundaries of the scat-
terer,the method incorporates the boundary conditions au-
tomatically. 7 |

In this chaptef a derivation of the Helmholtz's inte~
‘rior and exterior formulas and their application to the
scattering of SH waves by prismatic cylihders of arbitrary
cross section will be presented.We will also outlinebthe
Qumerical proéedure employed in solving fhe resulting in-

tegrél equations.

3.1 HELMHOLTZ FORMULAS
The Gréen's identity for two functions U and G defined

in a region V bounded by the surface A is [8]

2 2 G ‘ U :
f[f( UVG~GVU).dv=‘[f(U 5o - ¢ 3. )aa (3.1)
v ‘ A ‘
where ;n denotes differentiation along the outward

’no}mal n to the surface A.

Consider the case where the functions U(r) and G(r,r")

8



satisfying the folloW1ng Helnmholtz equations respectlvely
Vu(r) + 1 U(r) = 0 - (3.2)
2 2 ' 2 2 1
(V2 + 15)e(z,r) = (V7 + ¥)e(r',r) = -8(z - r') (3.3)
where r(x,y,z) and gﬂ(x',y',z') are the position vectors
of the “6bservation“ or "receiver",and "source" points
respectively, V2 is the Laplacian operator with respect
to the "observation coordinates" x,y,z and §(r - r')
is the Delta—Dirac function.

Multlplylng Eq. (3 2) by G(r,r') Eq (3. 3) by U(r) and

subtracting we get
V20 - UV = US(r - r') / (3.4)

If Bq.(3.4) is integrated over the volume V bounded by the

surface A (Fig.3-1) we obtain

Fig. 3-1  Geometry of observation point
P(r) and source point Q(r') for
interior problem.

///[G(_lg,y)v'ﬁ U(g')—U(g')V'ZG(_lﬁ,g')] v = ff U(r') § (xr-r')av:
« -V

where the integration is with respect to the source coor-
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dinates.Employing the Green's identity in the above equa— -

tion we get

MW(x') G (z, ') | |
Gzz) g - W) | ]HU“"S“"-I” N

U51ng the folloW1ng property of the delta functlon (3 )

_ 0 r outside V
Uf(y)&.z:—y)aw:{ -

f(r) r inside V

- A2
in Eq.(3.5) we have

jfﬂ BU(E') S BG(E,E')” B (0  r outside A
'1: E “dn' -'U(-{") dn? AAY :'{':U(if r inside A

T (3.6)

The function G(r,r') is lmown as the Green's function for
the steady-state wave equation,Bq.(3.3).In the three-di-
mensional case the Green's function has the form [8]
. _t] el A
Jiklz-r'] o 1kT

»G(_I_"E') = AT r—1'| = ‘—Z—ﬂ'—f‘—- = G(':r'_,_:g‘_') '

for an unbounded region where
e S e L 1 s

Equation (3.6) is known as the Helmholtz first(interior)

formula and is applicable in the case when all the singu-
larities of the function U(r) lie outside the surface A.

If on the other hand,all the singuiarities of U(r) lie
within a closed surface A;We can apply the Green's identity
to the region V bounded internally by A and externally by
another closed surface B,such as a sphere centered at the
origin and with a large radius R,(Fig.3-2).The surface in
Fq.(3.1) is-now composed of A+ B.Following the same line

of reasoning leading to Eg.(3.6) we get



Fig. 3-2 :-Geometry.for the observation point“P(r)~-:'¥‘
and source point Q(r') for the exterior -

problem , » ,
‘ bU(_l_") A 2G(z,r") { 0 r outsideV
t S ] e — g . .
G(r,x'). 0 u(zx') 307 At U(r) r inside V
« - (3.7)
On: the large surface B, r'=R and - 2 = 9 alsoi
- ‘ o= T = on' M’ o

dA — R%sin® d0 df . Thus the integral in Fg.(3.7),over the

/ / . zv_:-lka-)

_p sin0%0a0

surface B,becomes
bG

In the limit as R approaches to infinity this integral van-—

ishes if,for any finite value M,
lrUl <M, as T —= 00O

r( gg - ikU ) ——+—O, as I —» o°

(3.8)

for all values of angular coordinates 6 and @. Equat10ns

(3.8) are known as the Sommerfeld radiation conditions
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which the Helmholtz equation in unbounded regions must sat-
isfy for the unigueness df its solution.On physical grounds
radiation conditions guarantee that there is no backward
radiation from infinity. |
Thus,for a function U(r) being regular in V,and satis-
fying the radiation conditions -given above,its valﬁe at an
Observing point is given by the surface integral over the

source point as

du(x') ¥G(r,r") O r outside V
Glz,z") 5o — - ulzY) . dA'={ | .
- 9% : 0 U(r) r inside V.
A "

As shown in Fig.3-2,the unit normal‘gé is away from the

o/
(o]

region V,and is an inward normal to the closed surface A.

If an outer normal n' to A is used,we have

//l: o (r,r') BU(E‘_‘)J {U(_I_:) r outside A
UWzr') —s—— - 6(r,r") ———|aa'= < |
\ on on O r inside A

(3.9)

‘This is the Helmholtz second(exterior) formula.

If the surface A is a cylindrical surface with its
generics parallel to the z-axis,and if U(r') and U(r')/dn’
are independent of the coordinate z,the waves U(g) in the
region V are also independent of z and the problem reduces
to a two dimensional one for which the Green's function is

éiven by [8]

G(r,z') = %Hff)(kl_r:—z'l) = -}Hg”m) | (3.20

where r(x,y) and r'(x',y') are the position vectors of the
observing point and source point respectively.Hgl)(kf) is

the zeroth order Hankel function'of the first kind and

iz~ .
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For two dimensional 1nter10r problems in view of Eg.
(3. 10),Eq.(3.6) can be written as

(') 280 (1) U(r) r inside S

(1) _________ G VY t = )
(k2) ' ulzr). 20! ds ~ {0 r outside S

(3.11)

R
17}

where S is a closed curve,the circumference of the cross

0
dn?

section of tho cylinder,with element length ds',and

is the derivative along the outer normal to curve S.Simi-

larly,the exterior formula,Eg.(3.9),reads .

, bH(l)_(kf_) ( N BU{r ) U(r) r outside S
2 u(er) —%— (k) —5—— |as' = .
4 - o | 0 r inside S

S (3.22)

where U satisfies the following radiation conditions L1l

‘\l-fU — 0, 8s I — o
RO L » (3.23)
‘\/_I'_(, >r - iky ) — 0, as r —> 0

Equations (3.11) and (3.22) are also known as Weber's in-

terior and exterior formulas respectively.
3.2 INTFGRAL FQUATION REPRESENTATIONS
,in a medium is composed of

()
(1)

two parts;  the 1n01dent wave,U , and the scattered wave,

(S) i.

The total wave field, U

S

NONNC IS (3,20

'Where each wave function satisfies the Helmholtz formulas

(3.121) or (3.122) . k
' Applying Weber's exterior formula,Eq.(3.12),to scat-
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tered waves U('),whlch represents phy31cally the waves ra—‘

dlated by- secondary sources on-S,we have

i (1), 0 (s) | |
y o T (k) U (") |
_} U(s) (E') , obn' - Hgl)(kf') ’ brl’l' : dS':U‘(s)'(E)s
2 e 7 : | (3.15)
 outside S.
Y
i/ /i B D. ]
S , ,_ :;." B ("\ — P(E)
) e
7 Tt/ S
P FRUD -
// / j LA r
Pl
> X

Fig.’3—3 "Geometry of observation-and source points
for two dimensional exterior problem

The equation above -states that tha scattered wave
field outside the region S,the boundary of the scatterery;
can be obtained by a line integration over the curve S
once the values of U( )(r') and bU( )(r )/'bnﬂ are known.

3uts )(r.)

However,U(s)(gl)'and > ~are in general unknown

for a given problem.To find U(S) and its normal derivative
on the boundary;we let the observation point P(r) approach

the source point Q(r') (Fig.3-3). With r —r' Eg.(3.15)

| | (s) aut®) (zn)
reduces to an integral equation for U ~‘(r') or ST .
dG(x,xr') |
Since 7 is discontinuous on S,one should go

"through a limiting procedure (Appendix A) to obtain
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™ (e ()
. oH ' (kt) Ut (xY)
108) iy 4 (s) 0 _x(2) = | asr
2 u (2»)-—4_ u (3{) ™I _'Ho (kf) n? 8
S ' ‘ :
showing that U and 357 are not independent of

each other on S.

The boundary conditions are usually prescribed in terms
of U(t) or BU(t)/ dn' ; thus integral equations for the
total wave becémes more convenient.For such a representa-
tion,we note that the incident field has no singularity
inside the.boundary S hence,it satisfies the Weber's inte-

rior formula (3.11)

dS'—_"O [}

L (4) (2) ..
. /T (r) . M T (k?)
3 al (e = g gy —2

4 - on! on?

S : : ' r outside S.

Adding this to Fq.(3.15) and using Eq.(3.14) we get

. | (1) e (%)
. . oH (k) U (r*)
U(l)(g‘_-) + % U(t)(f-') _Oan' -;H:gl)(kf-’) — ds!
S (3.27)
= U(t)(z) , r outside S.
If we now let g approach 3?,taking'the 1imit as before we
obtain ‘
(1), 4
A JH (k>
1 (), 0y (1), i (t) (. 0
U () = uw ) o [ E) T (3.28)
S (1), au(t)(_l:')
H (k) on ds?
(s) . (%)

Solutions to Eg.(3.16) and Eq.(3.28) yield U or U

on the boundary S,from which the values of the corresponding
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quantities outside of.§ can_befobtained using Eq.(3.15) or
Eq.(3;17)

In connection with the above integral rep~
resentations,two boundary conditions are of great impor-
tance.One is that the total field,U(t) (total displacement)
on S vanishes,or what is equivalent U(s)== —U(i) .This is
known as the Dirichlet's condition representing a rigid
inclusion (fixed) in space subject to incident SH-waves.

Thus,from Eq.(3.18) with U(t)=: 0, we get

o(1) (1) O |
_ e
(r ) = , (kr) Sy _ds (3.29)
| S '

The second boundary condition,known. as the Neumann
condition,is that the normal derivative of ( ),normal
stress,vanishes on S,or eguivalently BU(S) __'bU(l)

'- ~ ' T dnt

This is the case of a stress-free boundafy,i.e. a cavity

subject to incident SH-waves.Fq.(3.28) with ;EESEE =0
?¥nt T T
yields
(1) L (6) L [y, e 0)
vy =30 >-—K/U ) T (3.20)

S
Having obtained the integral equations for the field
variables,U(l),U(s) and U(t),in the following section we

will outline the method employed to solve them numerically;

3.3 GENERAL PROCEDURE FOR THE SOLUTION OF
INTEGRAL EQUATIONS

Boundary value problems formulated in terms of integ-

ral eguations are concerned with integrals of the form




o) = frzzver e G
5 '

where S is a closed -contour,and r,r' are vector variables
specifying points in the plane and on the contour respec—
tively.The function K(r,r') is a known kernel while U(xr")
is the unknown. |

The first step in the numerical solution of Eq.(3.21)
is the subdivision of the boundary S into n smooth inter-
vals.Den‘oting the j-th interval by A; we have

S = A1 + ,AZ o A, -

The subdivisiqn:points are nﬁﬁbered'in.suchva,way that>the»f
subscript of A increases when the boundary is described so
as to keep the dbmain on its left.These sections are simply
intervals of plane curves and-we refer to the end poihts

of subdivision as "interval points".

n-1
‘ n }

Fig. 3-4 Boundary subdivision

Having chosen the interval points on a given boundary
8,we must next select the nodal points,the points where the
unknown values are considered.If the interval A, of § is
a straight line,ids mid-point is taken to be the nodal
point for that interval (Fig.3-5a) where the length of the
interval is |
h, = |r* - r! . (3.22)
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/}
intérval

point (j+1)

J=-th nodal
point
interval
: vpoﬂw J :
(a) o (b)

Fig. 3-5 Nodal point definition -

. When the interval A is not~a straight line we approx-
imate it by a chord joining the end points of the j-th in-
terval. and the nodal point is taken as the mid-point of
this chord (Fig.3-5b).In this case Eq.(3.22) becomes an
approximation to the interVal length.

Having divided the boundary into n suitably émall sec—
tions, A, A, ,. . My, the function U(r') in Fg.(3.21) is

approximated as follows
Wr) = U, r'e€d;, 5 §=1,2,3,-..m
where UJ'S are some constants.Correspondingly,we approxi-

mate‘Eq.(3;21) by

B(x) =/K(£,£')'ﬁ(_1:') ds!
IS i
which we write in ‘the form

n

7 — L t : .

g(zx) = E UJ/K(;,z) ds' (3.23)
J=t 4

where jh denotes integration over the j-th interval, Aj,

A
of S. J
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Consider now the case where the function U satisfies.

an integral equation of the form

1(r) = au(r) + fK(z,z‘_')U(_r_') ds' , re€s (3.24)
S

where K is a known kernel, o is a known constant-and f is
a given function.If U(r! ) is ‘approximated as described

above,we obtain by virtue of Eq.(3;23)

f(r) = o(U(r)+Z [K( )ds' , TES.

To solve this equatlon one may use the method -of -
"collocation" ;Applying--the -equation at one particular
point g'_:',L (which is called a nodal point) in each interval

Ai of S-we obtain

£, = &U, +Z /K(r' r') ds' . (3.25)

—iEAi ] i=1,2,3,...,l’1
where fiz f(z'i) - (equivalently fi'= f(_r_i) “when r¢S).

In this way,we approximate the integral eguation (3.24) vy
a system of n simultaneous linear algebraic equations,
Bq.(3.25),in térms of the unknown'cons‘ban‘bs‘UJ ,the approx—
imate displacement at the nodal point of the interval in
_question.What remains is the evaluation of the integrals
in Eq.(3.25);For this, the simplest gquadrature formula over

the interval AJof length (or approximate length) hy is
fK(_g,_r_") ds' = K(r,r')h oy res (:3.26)

where r' is the nodal p01nt within the interval.A more
—J
accurate result can be obtained by using a four-point

Gaussian guadrature



,‘7-‘ h ’
fK(g_,g')ds' "_V,EJ[W K(rr )+wK(r r' ) +wK(r r} ) :
'~ . 3 (3.27)
41{(__:(_'_,5‘_J4 )] o I‘ES ,
where Wiogeee,W are the wéighting coefficients and - |
r} s...sr} are the integration points on A; .The-values
1 R £ ’ '
of w and the corresponding integration p01nts are glven

in App end:Lx B.

Having set up the 1ntegral equatlons for the scatter-
ing problem we will apply these to Spele].C problems as

explalned in the follown,ng chapter.



CHAPTER 4-

NUMERICAL EXAMPLES =

This chapter is devoted to the applications of the
integral eguation method described in the previous chapter.
' The examples presented include various ty?es.of cylindrical
scatterers such as rigid inclusions or cavities with eilip—_
“tical,circular and rectangular'crOSS'sectionS.Some of these

solutions will be compared_withfthe'knokn exact éhd*apprdx—,

imate solutiohs [4;5].Extension of the method to other scat
terers with arbitrary cross sections is straightforward.

Both the "near-field" and “"far-field" cases are exam-—
ined.As a consequence of the formulation of the integral
equations,first the solution to the former is obtained;‘
Anamely the solution of the field variables on the boundary.
The near-field solution is then -used to get the far-field
solution. - -

Consider a circular cylindrical inclusion in aﬁ infin-
itely extended solid as shown in Fig.4-1.The cylinder can
be a rigid inclusion or a cavity.An incident SH wave de-

fined by:

U(i) 'U(i)= o‘. .
X y

ikx

Uéi) U(i)(x,y;t) — e | : . (4.2)

propagates in the positive x—direction“with'conStant veloc—-
ity c,frequency w,and wavelength A =k/27 .Such waves can
be generated by tangential forces distributed over a large

plane located far from the cylinder.Upon impinging on the

gsurface of the cylinder,part of the incident wave is reflected.

N



1 .r
cavity or -
rigid inclusion’

source at infinity

Fig. 4-1. Geometry for the scattering problem

The scattered wave is also an SH wave and is reﬁresénﬁed by

(s) (s , s s
U>< :-Uy ) =0 , | U(Z ) = 'U( )(ny?t) .
U(s) is to be foﬁn@ from the solution of the wave equation

(2.4) expressed in integral form.

4.1 NEAR-FIFLD SOLUTIONS
" " 4.1.1 SCATTERING BY A CAVITY

For a cavity,as stated earlier,the normal derivative

>t )

kof_U(t) vanishes on the boundary,i1e.-—3;———

o = 0,giving

rise to the following integral equation,Eq.(3.20)
: . ‘ | SR G ) IR
. . 2H 7/ (k)
+
U(l)(zi) — -%—-;U('b)(:.s:) - -ji‘-fU( )(E') \ (')bn' dst' . ‘ (4.2)
: S




We assume plane waves of thé.form~ elkx so that

(i ikx! ' .
u )(3') = e y and utilizing the relation

L]

100 = 1Py &

where Hr(nll)(y)‘; .Jm(y)':+ iy _(y)

Eq.(4.2) can be written as

ikx! 1 (t),_,y, ik t R o8 |

A R —4—/u( Y@y a0y = e (a3
g |

Using the results of section 3.3, Eq.(4.3) becomes

. | . | |
MY = %’r UQ'(t) + -}f- EUJ'(JG) /H:(Ll)(kf‘) —:ii—,- ds'  (4.4)

d=1 i AJ
Wh.ere U'(t)z U(t)(z') L} Q=1,2’3’¢..,n .
(From now on,field variables with ™ ' * will denote the

corresponding values on the boundary).Approximating the
integrals in Eq.(4.4) by a four-point Gaussian guadrature,

Fq.(3.27),we have

: n 4
o _ oz, (8) , ik S8 T (1)
et = 2 9 + 4 ZZUJ 2 [1 1 (kiﬂﬂ)(bn' JQ]
. 3=t =t

(4.5)
Q—-l 2, 3,...,n .

where hj is the length of the j-th 1nterval b Q is the
distance from the {-th nodal point to the i-th 1ntegrat10n
point on the j—th interval, [bf/bn‘l}l! is the cosine of
the angle between the vector EMQ and the perpendicular

to the j-th interval at the i-th integration point.

For the derivation and the numerical approximation of the
normal derivatiﬁes see Appendix C.The above gquantities

are further clarified in the figures'below.
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 j-th interval: -

Yy
{-th nodal e __‘\/ o2 82
point ‘ 3t =V >q) —‘+'(33, % )
h = II" -t l
J I T

Fig. 4-2 Geometrical definitions

Fig. 4-3 ~ Definition of %?1—'—
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Note that the integral in Fq.(4.4) scem to have a
singularity‘vhen j ={. However,the integrand over the j-th
segment of the contour is zero due to the fact that the

vector %ﬁ is orthogonal (see Fig.4-4) to the normal n

. . [y
yleldlng-[—b;i-;)l.!:-o,ﬂenq_e the term when j=1 has no contrib-

ution and can simply be excluded from the summation in
Eq0(4'5)°

The solution of the system of equations given by (4.5)
yields the fotal displacement at the boundary of the cavity.
If desired,scattered displacement field may then be found
from the relation |

(8 _ o (D), s

_ Ul Ul

imere (P _ g gy L g8 _ gy,

4.1.1~1 ELLIPTICAL AND CIRCULAR CAVITY

In tﬁe case. of an elliptical cross section,the bound-
ary is divided into n intervals such that each interval
subtends a centralﬂahgle of 2n/n.To determine the interval
points,use is made of the polar representation of the el-

. lipse given by

ab
_—' \/é?sin?@'-+ b? cos? 0!

r

from which conversion to rectangular coordinates is straight-

forunrd. s ,
BOGAZIGT UNIVERSITES KOTUPHANES|
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“incident
'plane wave

Fig. 4-5 Boundary geometry,

9¢
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~ Recalling Eq (4 5) modlfled to exclude 'bhe term when .
J —R swe have -

ikt ,(t) ik ,(t J (
e:‘l - U + ZEU _2— 111)! )(bn)”
o J¢2 - ;;

.6
!=1,2,3,...,n (4.6)

which is the set of equations,when solved yields the total
displacement on the boundary of the elliptical cavity.

Eq.(4.6) can be written in matrix form as

— — P

1/?_ X, " R R U'(t) RS Ffeikx"' RS A_ﬂ
. 1/ o . 1 _ . : ‘
2 . : . . 1% ' -
_' o (t) > elkxz . z
2 -
= | - (4.6)
U (t)] . eier"
__dm ) , 1 L n n L =

where Xi' refers to0 the x-coordinate of the [-th nodal

()

p01nt, U' is the total displacement at the !-th nodal

point ,and

_ 4 »
ik ] (:L)
o = == —
o N 4 4 2 l: (ks Jid )[ ) ]

) t=1
Due to the geometrical symmetry of the scatterer with

respect to the horizontal axis,x-axis,the off-diagonal ele-

(t)

mentsi, 031 are symme'bric.Also the displacement field,U"
, obtained'from Eq.(4.’6') has a polar symmetry with respect

to the x—-axis.



The circular cavity case follows the same line of
reasoning with_the:méjor_axis Yength set equal to that
of minor.The tangential stress' is obtained by the nﬁ—
merical differéntiation of U'(S) values with respect
to 0'. For this,the{following "least squares polyno-

mial" igs used

au(er) .
> 2 (-2u : | -
ao’ Top ‘Tp, T Uy v U+ 200)
=0' _ O
where D Qk - Qk_l .

The displacement.at- the boundary,for various cases
are shown in Fig.1i for a circular cavity and in Fig. 6
for an elliptical cavity.Fig. 2 displays. the tangential

stress for-a circular cavity.

4.1.1-2  RECTANGULAR CAVITY

1Y
I -
LY
it
1 k S
> a ’ - K Q X
> ln
- 1| 2
n+
b - v "1 |
; 1
incident A 2 b
Plane wave . : =

Tig. 4-6  Boundary geometry




A The numerical procedure involved'in-thislproﬁlem'f

is viftually nO'more’different.from that of the elliptical
case.The corners do not pose any mathematical difficulty
since they are chosen as the interval points which are
excluded from the evaluation of.the integrals es a ‘result
of the use of Gaussian Quadrature.The results for the

displacement at the bovndary are presented in Fig. 10.

4.1.2 . SCATTERING BY A RIGID INCLUSION'
For a rigid inclusion:the. boundary condition is that’

the total displacement,utCt) - wE o (D)

vanlshes i.e.
The integral eguation correspondlng‘to this case is given

by Eq.(3.29)

e ) Rty
(xr') = (k) U ds' .
S ikx
- Assuming an incident plane wave of the form e” ,we have
1l ' N bU(t)(Ei) (1)
—_— = N 2 ] .
e = 7 S Yo (k2) as' . (4»7)
. 5 o
Again with reference to sectlon 3.3,we write Eq.(4.7) as
- n
St 5 bU(t)(r 'y (1) . .
| ]
e P = Z 30! HO (kf‘) ds (4. )
J=1 Al Aj ,
Btl(t) .
where ——S—T——- represents the total normal stress on the
n .

boundary.Using Gaussian integration formula we get

(%) |
_ _Z Z[Bgn' , ] 2+ [wi Hgl)(kf‘u)] (4.9)

Where Y:l,z,B,-..,n. ~
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Hence,the solution of Eq.'s (4.9) yields the total normal
stress on the boundary of the rigid inclusion.Scattered

normal:stress mgy'then be~ca1culatéd'from'therrelation

' T dnt on'

For U'(i) _ U(i)(_r_") _ eikx' — e.ikr"c:osQ' ,
_leiiZ~;; ke cosgr 2
~on' - dnt

-

where O' is. the angle r' makes with the positive X—BXiS.

4.1.2-1  ELLIPTICAL AND CIRCULAR RIGID INCLUSION
Scattering related to. neaerield‘iSﬂgoverned by Eq.(4.9)

where boundary Subd1V1S10n is as explalned in section 4 1.1-1.

However,in Eq.(4.8) the imaginary part of H( )(k ),Y (kr),
has a singularity when j=1 .Thus the terms for j=1 should
be excluded from the summation and approximated by other

means (see Appendix D) .Hence Eq.(4.9) takes the form

, (%) 1
T SN R

bu-m | E(y/2) by
[ >ar )Q ——ﬁ 1;1 ———'—-—2 - 0.4228 —--2 |
s B ' _ (4.20)
+§?}

The above eQuation yields the total normal stress on-‘the

boundary from which the scattered normal stress may bel

found in a straightforward manner as was explained in sec-

tion 4.1.2 .



As before,the circular’rigid inciusion;case can: be
obtained from: the ellipticalzfofmulation-by~1etting,the-
two axes become egual.

Normal stress at the boundary are shown in Fig.'s
4 and 8 for a rigid circular inclusion and a rigid ellip-

tical inclusion respectively:.

4.2 TFAR-FIFLD SOLUTIONS
The general integral representation for the scattered

fielld is given by (see Eq. 3.15)

(s) . |
- <y . : T e
U(S)(_r:), :/’&E“ o (z1) ast - /G = e (4.112)

2! ' -
5 - 2

As seen U(S)(g) at any point outside s is completely de-~
termined if U(S) and bU(s)/“bn. on the boundary are known.
One of these gquantities is specified by the prescribed .
boundary condition, bU‘(S)/'bn' for the cavity and U'(S)
for a rigid incluéion,while'the other is provided by the
solution of the problem as described in the previous sec->
tion.Thus,substitution of U'(S) or BU'(S)/'bn' for the
respective problem into Eq.(4.11)_gives a complete solu-—

(s)

tion for the scattered displacement,U ,at any point xm.

4.2.1 CAVITY
Denoting the total,scattered and the incident stresses

by Olt) , OKS) s gﬁé) respectively,the boundary condi-
n n »
tion for a cavity is

(1)

(%) _ ¢ o (8 4 o
n n: nA
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Hence, ' . © '«(S):-';o' n(l)
n: T n A
qu an-incident plane wave- U'»(i) - eikxj = -eikr'cosO'
we have
(1) o dkx' g
] . . - r e
S, — ike™ " cos@! Y .
Thus,
’ c'(s) _ ., dkx! dr? BU'.(S) -

Fig. 4-7 Coordinates used for far-field calculations

When r is far aWay from the obs‘bacle;referring %o

Fig.4-7,one can write

f‘:[g] - l_g" cosX — 1 - r' cosX
P _ A dr' 2 _
2m' ~ dr' dn? . drt cosX
Therefore, gi, = - cosX b;‘: . (4.13)
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Returning ‘back to Hq. (4 11), and.substituting the val-

s)
ues of . O'n'(, ) from Eq - (4 12),and 2%/ dn' - from Bq-(4.13)

we get-

U(S) (r) :/;.. %Hil)(kf‘) -5%—? U,(S) ds'

5 (4.34)
- [-} B (k) o 1(8) g
5

Bn::l U’ () ds'’
n: ..

= %/Hgl)( l;f') [cosX >
s i

i (1) o [ . dkx' o drt] oL
- Z"/Ho; (kf‘) ’:— ike -cos0! —B_n_'-] ds:_'

| | (4.24")
—%— /e—i%{x.cosg' (1 (k.’f‘) B ~ V;is".
S
For any field point g‘_g far away from the scatterer we can
- then write |
| n
: drt
(s) ~ ik (1) v (8), .,
U ('r‘f) = 5 E [cosx Hy (k ) >a7 U (EJ) hJ
' J=t
n : :
1y dr'
_% ’[elb{., COSQJ' (1)(1{?. ) bni] h
J=1
n .
~ -li- E [cos'x :_H(l)(krl) U(S)(I" )
. - (4‘015)

ort

- elkXJ‘ cosG' ( )(k ):I J hJ‘
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where the integrals are approximated by the so-called
- mid-ordinate rule for integration (see Eq.3.26).The rel-

evant geometric quantities are illustrated in Fig.4-8 .

Having the near-field results ( U'(t) , thus U'(S) )
for circular,elliptical and rectangular cavities,the cor-
responding far-field solutions obtained from Eq.(4.15)

are illustrated in Fig.'s 3, 7/and .11 .

4.2.2  RIGID INCLUSION
Using the boundary condition corresponding to the per- .

tinent case,we have

o) _ () o e | (4.26)

Substituting the values of %/ d¥n' from Eq.(4.13),and

U'(s) from Bq.(4.26), Eq.(4.24) takes the form

-

U(S)(_I_‘) = -% /cosx m( ) (xp) b U'( 1) g
s (4017)

o [ (3) . (s)

-2 /]HO (k%) 0;1' 7 ds! -
For large distances away from the'scatterer;Eq.(4.17) may
be approximated as - -

n_ : ¥’

(s) .k }:: . (1) Kt 3 (1)(r. ) b
U (_1:2) = -3 cos')(,ﬂl.'hl:L ( ) >ar

J=‘ \ (4.28)

IN[Y

where the integrals are again evaluated in a similar man-

ner as for Eq.(4.15).

Far—field results for thls case are pre:ented in Flg.'s
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5 and 9 respectively for a rigid:circular and a rigid
elliptical inclusion.The calculations are carried out at
points such that =r

2000 r! ,Where'za denotes the
§ —th nodal point. o

P = 9



CHAPTER -5

CONCLUSIONS

The results for anti-plane waves scattered by a cir-
cular cavﬁty and a rigid inclusion are presented respec-—
tively in Fig.'s 1,2,3 and in Fig.'s 4,5: IFor comparison,
the exact solutions, Where avallable are also glven at the
upper right-hand s1de.Dxce11ent,agreement is observed for ,
all wave numbers. - o |

Far—field’solutions,U(s)(E), were obtained.using
Eq.'s (4.15) and (4.128) for a cavity and a rigid inclusion
respectively.However,in the'literature[5] H(S)(E) is gen-~ ;

erally given as
S e
oy = £— VU

where u;(s) is known as the scattering coefficient and
r is the distance from the boundary to the point of in-

terest .Furthermore the relevant graphs are plotted as:
\/k1p(s) vs. © . Thus,for comparison purposes,the dis-

placement field,U(s),'obtained‘through Egq.'s (4.15) and

' ikr
(4.18) are multiplied by the factor k/ (if?_

plotted vs. © in Fig.'s 3 and "5 .

For the elliptical case,some of the far-field solu-
tiéns (Fig.'s 7, 9) could hé&e been compared with those
that are found in reference 4.Contrary to circular geometr@,
the results are not equally well for all wave numbers j§ -

for the small wave number ( k =1 )} bettgr agreement is

37
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observed;With increasing wave number (decreasing wavelength)
within each segment of the boundary,variationé of the‘wave
function are more pronounced.Thué,the assumption that én
each interval both the incident and the scattered field
are constant falls short of meeting the real situation.
Choosing linear or parabolic variations over each segment
may improve the results obtained.Howevér,one should be
aware that when corners are encountered such choices cause
problems which necessiate some modifiéétions to avoid them.
Although no comparison could have been made,near-field
results (Fig.'s 6,8) are expected to be better than those
of the far-field since the latter makes use of the near-
field solutions through an integration which is again ap-
proximated,somewhat less predisely than,the one involved
in the near-field formulation.

The fact that the circular case yields better results
than the elliptical one may be attributed to the gebmetric
properties of the former.The constancy in the curvature of
the circle renders the boundary to be more accurately de-
scribed by straight lines than the ellipse.In addition,the
values of dr/dn' used for the far-field calculations are
exact for:the circle.

© For rectangular geometry,being uwnable to make any com-
parison,results pertaining only to cavity is given.Guided
by the general implication,corners may be thought to give ~
rise to difficulties;but since the integrals are evaluated -
only at points within the interval,no problem occurs.

7o sum up,boundary integral equation method,removing
the geometrical restriction makes it possible to analyze
the scattering of waves from inclusions of any shape.

However,the variations of the field variables within each



interval should be taken into consideration and more
precisely accounted for.The number of boundary segments
may also be increased in direct proportion to the incident
wave number and changes in the curvature of the configura-

tion.
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FIGURE CAPTIONS

displacement at the boundary of a

circular cavity due to the scattered
wave field

- tangential stresstU(s)/BGL at  the

boundary of a circular cavity du€
to the scattered wave field

scattering coefficient due to the
scattered wave field from a circular
cavity .

-~ normal- stress,lbU( )/bnl, at “the
» boundary of ‘a rigid circular .inclusion.

due to the scattered wave field

scattering coefficient due to the-
scattered wave field from a rigid
circular inclusion

displacement at the boundary of an _
elliptical cavity due to the scattered
wave field

far-field displacement due to the
scattered wave field from an elliptical
cavity

normal stress,|bU(s)/bn|, at the
boundary of a rigid elliptical inclusion
due to the scattered wave field

far-field displacement due to the
scattered wave field from = rlgld
elliptical inclusion

displacement at the boundary of a
rectangular cavity due to the
scattered wave field

far-field dlsplacement due to the
scattered wave field from a rectanfular
cavity :
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Fig. 12-¢ 2 a= 1.0, b= 1.0, k= 1.0
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APPERDIX. A.. .-

Bvaluation of  1lim 9G(r,r')
rwr'

For generality,express Eq.(3.15) in its three-dimen-

sional analog

Fig. A-1 - Approach of the observation point
P(r) to the source point Q(r')
on: the surface of a scatterer with

volume VA and bounding surface A
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. Consider now th.e-limi{; of the 1éading term on the left-
hend side of Fg.(A.1) |

v VG(r,r")
lim //U(S)(;_-) — T anr
Z~ZL A :

where _x;:‘_ indicates that the limit is approached from the

positive side of the normal n'.(Fig.A-1).Since ?)G(_{;_g')/an'
is singular at r= r',we exclude the sburce point from the
surface integral by encircling it with a small area Y.

In the neighborhood of Q(r'),the Green's function for the

wave eguation cen be approximated. as

lim G(r,r') = 1lim — = .
gt oy ATT|Z-X o Amz-x
Hence,

aG(EaE')'
un [fofRen S ae =
A | R

!
=T

I~ T

(s) BG(E’E')
lim //U (z") dn? ar -
r—r' A.D

The 1imit of the second term on the right can be evaluated
directly because dG/?n' is' continuous at: A-L .For the
first term,one notes that |

2 ) o n'. (r - z')

an'  r-r'| )

At = dw(r,:

e
S
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where dw is the solid angle subtended by theé surface aA"; -

With a smooth: surfaé:e at r',we ‘thén obtain

[/ (S)( ') bbnl Irlfu dAf:.U(s)(}'_') 1im b-//dw

r-»r' Yot
=T=+ —-’-—_-"’

215 ®) (20)
The final answer is

- d6(z, o) o »
ﬂ(s)(r N ar = 2u®Ey 4

r-.-r'
L A

(A.2)

BG(_E:"_:E,')‘:" N
PV, //U(‘S')(}:f) n -
A

~where FV. designates the value of the integral' as defined by

PV. [/F(x,y)“_dxdy = lim _. // F(x,y)dxdy .
A BT

In view of -Eq.(A.2),Bq.(As2). niay ‘be .expressed -as

L (s)
ae(;;) U T ()
(S)(r e /[(S)(r A T G(E’E') 20! } '

A

mh-’

With G(r,r') = (1)(k|r - r'|) , one obtains Eg.(3.16).

l
4



“APPENDIX B -

4-POINT GAUSSIAN INTEGRATION FORMULA

i 4 .
[r00 e =) e (B-2)
~1 . i=1
where ‘ i W
: 0.86113631 0.34785485
—- 0.86113632 0.34785485
0.33998104 "0.65214515 .

- 0.33998104 - 0.65214515

Transforming the coordinates from x-y to the dimensionless

coordinate E s

x ::E%f,and

2) { 0
/ y(x) ax :/y(é-z-) de (B.2)
) Pt
where () that the nuﬁber in parantheses corresponds to
thé point number,not the distance.Using Eq.(B;l),@i-(B.Z)

may be approximated as
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h = | + h
y(§ 2 a :Zw-iy(s 2
i=t
~ w y(0.86113631 12) + w, y(-0.86113631 20 +
- 1 2 2 ' 2

h | h
W3Y(0-§3998104 5) + w4y(—0.33998104v2)

Thus,on the interval (1)-(2),integration points are deter-

mined as shown in: the figure below.




APPENDIX: C . =

S
on'

Computation of

R

=.n'-VR, wvhere R=|R|

on'

Since-r, ~and . r_  are the position vectors »ag_l+ be2~

i -3

and xe + ye, Oof P and § respectively (Fig.C-1),then

~

R=r -Ip = (x-a)e, + (y-blg,

so that

R = |R| = \/(x—a)2 + (y—b)2 .

Then g — V[—\/(xe-a)z- + (y—b)2 ]

(x-a)e, + (y-dle, R R

V)2 + (5-0)2 -

is a unit vector in the direction of R .
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Hence,

== = = cosVY (C.a)

but also cosY = — , where D is the distance from the

line CE to the point P.(Fig.C-1)

Let C and F respectively have the coordinates (xi;yl)
and (xz,yz) .'Th_en the- equation of the line CE is given by . .
y = mx 4 (y-'l —-}mxl'J =mx.+ 4 .
From analytic geometry,the distance from point (xo,yo) to
line Ax+4+ By+ D = O is given by
A><0+ Byo + D
4/ 8% + B2

Thus,from P(a,b) to CE,defined by y— mx + d (mx — y + d= O),

the distance D is
ma—b+d ma-b‘:-;-Ayi-mx
npmam 2 *
+*\fm 4+ x i\/m 4+ 1

Since o and Y, are known through a knowledge of the coor-

dinates of the interval points,D and hence cosw are

completely det erini_ned .
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APPENDIX D C
Evaluation of -

'::_[Jo(kff) + iYo(kf')].ds"f  vhen j=1

Since J%O(k%) —1 as $——0,the real part of Ho(k’r‘-)
causes no difficulty.For. the 'Yo(kf‘) part,using the ser-

ies representation

Yo;‘(z) = %[K + 1n_g_:l 5 (2) -_%Z ,( 1zm(l)/2) A -(-1+ '2.+ .t-'I]; Yo
| ' m=1 . )

we see that “the predominant con‘bribution comes from the

first term.Therefore the problem reduces to the evaluation of:

(t) o .
! k ,
B%n' ) 2[ 1 + J_“ K+1n -Z-EJ}ds.

which can be expressed as’

t). . :

BU'( i .2 % kr .

S )£~4 .l+lTT -%-1:1»2 ds

. Aq
wvhere r 1is measured from the point-Q
r-ﬁ‘
r
We now use the & coordinate (Fig.D-1,below) and heve

(2) (2)

. ’ ' | K.
_ji__ {1+ 1—[‘6-{- 1n lcr]}d 1T = = {1 + 1—[}54--“1 .El,]} dr

.~ ) (1)

where () indicates that the number between them corre-

sponds to the point number not the distance.



y‘

Pig. D-1  k coordinates

—~Transforming coordinates and noting r = E|r1| s Where
h .

|r1| = |7r2l ::,-2!- , one obtains
2) = (2) ‘-_"’- -
E 1 —-I:‘é-i- 1n£] dr—é— 1+1—\6+ 1n£{—r- ar"l |
o R 2 - A 2 |{ %
) 9 _ A (0) o
. h
-_—525/{1+1ﬂ?5+1 .(QZ)E]J_ZZdE‘
0 .
h h N h
_ it 2|, kCU2) 1
=35 -3 [m 5 —.0.4228:| >
Thus , when J:Q
5 2 ) J JeB) + i (kf' ) ast
1 dn' g + 5
may be approximated as
() T h s
U 1 k("1/2) _2_ ittt
TJE {" ﬂ[ln T T 04228 |5t 55 |

A similar procedure is also given in [4] .
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