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ABSTRACT 

The scattering of steady-state anti-plane shear 

waves (SH waves) from arbitrarily shaped inclusions in 

an infinite medium is described by means of integral 

equations expressed in terms of displacement fields. 

The problem is examined for the two dimensional case 

where an inclusion fixed ill space like a cavity or a 

rigid body with material. constants different from the 

surrounding medium is taken as the scatterer.The result­

ing singular integral' equations are solved numerically. 

Both near and far-field solutions pertaining to circu­

lar,elliptical and rectangular cross sections are ob-
i? 

tained.All the res.ll1 ts are presented in graphical form 

and are found to be in good agreement compared with the 

known exact solutions. 
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QZET 

Skal er kayma dalgalar~n~n (SH dalgalar~) s onsuz 

uzaydaki ldlettayinkesitli gekillerdensag~lmalar~, 

yerdegi9tirme alan~n~n integral denklem halinde iIade­

siyle tariI edilmi9tir.Problem iki boyutta,bo~luk,veya 

malzeme sabitleri iginde bulunduklar~ ortamdan Iarkl~, 

hareket.etmeyen rijit ig cisimler ~gin incelenmi9tir. 

Ortaya g~kan tekil integraldenklemler sayl.sal olarak 

goziilmii9tiir. Dairesel, eliptik ve ':dartgenel- kesi tli 9 ekil,- , 

ler igill yak~n ve uzak balge goziimleri elde edilmi9tir. 

Blitiin sonuglar,gekiller halinde gosterilmi9 v.e bilinen 

kesin goziimlerle uyu9tugugarlilmli9tiir. 
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CHAPTER - I 

INTRODUCTION 

In an unbounded homogeneous mediUID;waves propagate 

without interruption at a constant speed and along a fixed 

path.However,with the insertion of an obstacle in the me­

dium, the path of the propagation .is changed,andthe obsta-

cle, when excited by the otherwise .undisturbedincident 

wave,acts as a-secondary source emitting waves outward from 

itself.The deviation of the waves from their original paths 

is known as diffraction, and the radiation -of, the secondary 

waves from the obstacle is called scattering.In an elastic 

medium,the obstacle may be in the. form of a cavity,or a 

rigid body .with elastic moduli and density different from 

that of the medium. 

Scattering theory is used in many branches of physics 

and mechanics .The diffraction of. waves is certainly impor­

tant in seismology and oil technology and has recently 

come to be appreciated in connection with th'e non-destruc­

tive evaluation of materials,NDE. In NDE,the scattered wave­

form is used to identify the shape and the size of the 

scatterer which' can be a void,an inclusion or a crack. 

This is known as the inverse problem~ 

In this work,the method of integral equations is used 

in solving the diffraction problem for the exterior region. 

From a theoretical point of view,this method is more direct 

and basic than other methods such as normal modes,as it is 

based on, the Helmholtz and Kirchoff's mathematical inter­

pretation of Huygen's principle[5,9].Helmholtz and Kirchoff 

I 
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integral formulas yi.eld mathematically the disturbance at 

time lit" if the wave velocity "c" and the wave form at time 

"t " are known. 
o 

In the usual treatment of the elastodynamic problems 

one has to find the solution to the equation of motion sat­

isfyin'g certain conditions known as bounda'ry and initial 

conditions.However,in the method of integral equation,the 

equation of motion,using the Helmholtz-Kirchoff formula is 

transformed into an integral equation which relates the 

wave field at any-point inside the lIlEdium to the known 

quantities ,on the' boundary ,hence incorporating the boundary 

conditions directly.According to Huygen's principle the 

points on the boundary of a scatterer,upon the impinging 

of an incident wave,act like secondary sources emitting 

the scattered waves.Therefore,once the wave field on the 

boundary is known one can precisely determine the scattered 

field 1Ilaking use of these integral equations. 

Previous studies of wave scattering have been usually 

carried out using the method of separation of variables. 

The method,however restricts .the shape of the scatterer 

to simple geometries such that they can be expressed con~ 

veniently in separable coordinates.This restriction may 

be remove~ by the integral equation. formulation;'however 

such an approach does not. facilitate the analytical solu­

tion,that is the problem formulated in terms of integral 

equations should be solved by uSing numerical techniques. 

One such effective procedure is to approximate the integ­

rals by a finite sum and then calculate the unknown quan­

tities at many discrete points by solving a system of al­

gebraicequations [2,3J.' To cite a related example: the 

scattering of steady acoustic waves,formulated as an integ-
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ral equation, in- terms -of the velocity potential was solved 

by Banaugh and Goldsmith[4] using finite difference methods 

where the boundary is .-described parametrically ~- -

The key feature of the method lies in the fact that 0 

only the surface of the body is to be discretized.An ad~ 

ditional advantage of this procedure is the reduction of 

the dimensionality of the problem by one.Hence the complete 

integral formulation with its numerical approximation has 

the distinct· advantage -that the method is not restricted 

to geometric configurations to-which the method of-separe­

tion of variables maybeapplied~ 

In the formulation that follows, the integral repre­

sentation for the displacement is taken as the starting 

point[5,6].This choice leads respectively to Fredholm in­

tegral equations of the second and first kinds for the cav-
-

ity and rigid inclusion problems.These--integral equations 

are solved in the spirit of the aforementioned numerical 

approximation.The solutions provide the unprescribed val­

ues ( U(s) for the cavity and ()u(s)/1>n' for the rigid 

inclusion, where u(s) is the displacement due to the scat­

tered field and n' is the outer normal to the boundary). 

The substitution of-these values in the integral represen­

tation for .the scattered field enables one to calculate 

U(s) at any point in space.Also the numerical differenti­

ation of u(s) with respect to G,the polar angle,yields 

the tangential stress on the boundary in the case of a 

cavity. 

In this work,we present the near and far-field re­

sults for a cavity and a rigid inclusion. Chapter 2 reviews 

the elasticity equations mainly for anti-plane strain case 

along with SH waves.In chapter 3,the int.egral equation 
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representation. for the scatt~ring problem is developed 

and the numerical method employed is ·discussed.In chapter 

4,the formulation. of· the problem for various cases is 

given and some specific problems are solved.Results per­

tainingto circular, elliptical and rectangular geometries 

are presented in graphical form. 



<mAPTER.2 

EQUATIONS OF LINEAR ELASTICITY 

This chapter briefly discusses the reduction of the 

Navier's equation to a scalar wave equation in/the case 

of anti-plane strain and describes the nature of the asso­

ciated waves. 

~ the absence of body forces,the linearized equa­

tions of motion in terms of the displacements (Navier's 

equation) . fora homogeneous, isotropic elastic medium are[~Jt 
. 2 

2 au 
( ~ + f') V\V-II) + )AV n= C? ot2 

wher~ A and}' are the Lame's constants ,and ~ the mass 

density of the medium. 

The solution to the scattering problem requires the 

solution of the above equation which is valid over a re­

gion V, satisfying the boundary conditions in terms of dis­

placements and/or tractions prescribed over a discontin­

uity surface of either a solid inclusion or a cavity 

(Fig. 2-~). 

Fig. 2-~ Geometry for anti­
plane strain 
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In two dimensional problems,components of the stress 

tensor are independent of one of the coordinates,say z, 

along which the cross sectional area of the body is con­

stant (Fig. 2-1) .A deformation described by a displace­

ment field of the form , [lJ , 

U (x,y,t) == U· (x,y,t) __ 0 x . y 

U = U (x,y,t) z z 

is called an anti-plane shear deformation,where U, U 
x' y 

and U ,rej'erring to the usual cartesian coordinates· z .. 
x,y, z , are the components of the displacement -vector U. 

Denoting the only non-zero component U - of U by U, Fq. (2.1) 
z 

takes the form 

2 1 
VU(x,y, t) - C2 

2 
oU(X,y,t) 

~tl 

where c= ~~ 
wave. 

is the velocity· of propagation of the 

In the case of anti-plane strain,the only non-vanish-

ing components of the stress tensor are· CT and CY 
xz yz ' 

and from the Hooke's -law 

they can be easily deter.mined to be 

ell 
CTxz= )A~ 

Considering only harmonic waves with a circular fre­

quency of w,the displacement and stress fields can be 

written as 

-iwt 
U(x,y,t) = U(x,y,w)e 

-iwt 
o-(x,y,t)= cr(x,y,w)e 

(2.2) 

(2.3) 
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To simplify. the wri t;ing we' will·' suppress the.time factor' 

-iwt 
e ' iil the rest of this work.Substitut:ing Rq.(2.3) into 

Rq. (2.2) we get 

where .. k= w 
c is the wave number.Fq~(2.4) is known 

as the Helmholtz equation. 

Under the conditions of anti-plane strain,the·dilata­

tion,V·U, is zero,and the waves are only of rotational 

(s waves) type.Since the displacement is ·always. papallel 

to the axis of the scatterer, z-axis, which· :for ~convenience' 

can be taken as lying in a·horizontal.plane,waves of anti'::' 

plane strain are also known.as SH waves.The boundary con­

ditions assothated .with Eq.(2.4) are 

for a cavity,and 

~=o on 

for a rigid inclusion. 

(2.5) 

(2.6) 



GRAPTER 3· 

FomVlULATION OF THE INTEGRAL EOUATIONS 

Application 'of the separation of variables method to 

the scattering problems is limited by the geometry of the 

scatterer since the equations 6f motion are not separable 

in all coordinates .However, this restriction can be removed 

by the use of the integra'll equation method where' the gov­

erning equations of· motion are -transformed into integral 

equations using the Helmholtz's formulas.Since the integ­

rals involved are-defined over the boundaries of the scat-

terer,the method incorporates the boundary conditions au­

tomatically. 

In this chapter a derivation of the Helmholtz's inte­

rior and exterior formulas and their application to the 

scattering of SH waves by prismatic cylinders of arbitrary 

cross section will be presented.We will also outline the 

numerical procedure employed in solving the resulting in­

tegral equations. 

3.~ HELMHOLTZ FORMtffiAS 

The Green's identity for two functions U and G defined 

in a region V bounded by the surface A is [8J 

J JJ( u'\]'n - GV
2
U ) dV = JJ( u ~~ - G 

V A 

OU 
on )dA 

where on 
n 

denotes differentiation along the outward 

normal to the surface A. 

Consider the case where the functions U(E) and G(r,r~ 

8 

(3.~) 
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satisfying the follo~ing Helmholtz equations respectively 

ifU(!J + k
2 ue!:) = 0 (3.2) 

(V
2 + k2.)GC,!:,r') = (\1'- + k2)G(r' ,E) = -S(r - r') (3.3) 

where E(x,y,z) and E'(x',y',z') are the position vectors 

of the "observation" or "receiver",and "source" points 

respectively, '12 is the Laplacian operator with respect 

to the "observation coordinates tl x,y,z and S(r - r') 

is the Delta-Dirac function. 

Multiplying Eq.(3.2) by G(r,r'),Eq.(3.3) by U(E) and 

subtracting we get 

If Eq.(3.4) is integrated over the volume V bounded by the 

surface A (Fig.3-~) we obtain 

Fig. 3-~ 

n' 

----A 

y 

Geometry of observation point 
Per) and source point Q(E') for 
int erior· probl;em· 

(3.4) 

J J/[G( r, r' lV'2 U( r' l-U(r' lV'2 G(r,r' 1 ] dV' =~!U(E' 1 S (r-E' 1 dV' 

V 
where the integration is with respect to the source coor-
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dinates • Employing th.e Green's identity,in the above equa­

tion we get 

!J7[ OUC!:') 
G<.~,_r') - u(_r') 

~n' 
A 
Using the following property 

_~_;G_\_r ~_~_' )-J dA' = J JJ U(E') 

V . 
of the delta' function 

b <,!:-r' ) dA' 
(3.5) 

r outside V 

r inside V 

we have 

ODC!' ) 

on' 
OG(!,!' )J' dA' = {:~ '. r. o·utside A 

on' , . -u<.!:) r inside A 

The function G(E,E') is known as the Green's function for 

the steady-state waveequation,Eq. (3.3) .In the three-di­

mensional case the Green's function has the form [8] 

for an unbounded region where 

ikr 
e 
4Tfr 

r=lr - E'I=~(x-x')2. + (y-y'/ + (z_z,)2 

Equation (3,.6) is known as the- Helmholtz first(interior) 

formula and is applicable in the case when all the singu­

larities of the function u(r) lie outside the surface A. 

(3.6) 

If on the other hand,all the Singularities of U(E) lie 

within a closed surface A,we can apply the Green's identity 

to the region V bounded int6rnally by A and externally by 

another closed surface B,such as a sphere centered at the 

origin and with a large radius R, (Fig.3-2) .The surface in 

Eq.(3.~) is-now composed of A+B.Following the same line 

of reasoning leading to Eq.(3.6) we get 
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B 

Fig. 3-2 -< < Geometry <for the observation <pointP(r}'<'i . 
and source point Q(.!:.') for the exterior' < " 
problem 
~ 

r outside V 
ouC.!:.') < -

d.A' = u(r) r inside V -11 [G(r'E') on' < 
- uft') 

~G(E'E' )1 { 0 

()nl' -
(3.7) 

A+B ~ - () 
Om the large surface B, r' = R and -"-- , also 

()n' ()R 

dA = R2 sinQ._dG- d¢. Thus the integral in_RCl.(3.7),over the 

surface B,becomes 1T ZIT 

. 4~ J JeikR [1"' (~~,- ikU) 

o 0 + U Jrt =-R s:i?GaGd¢ 

ff[G ~~·L u!; 1 dA' 

B 

In the limit as R approaches to infinity this integral van­

ishes if ,for any finite value J:iI, 

Iru I < M, 

r( ~ ikU) or -

as r -- 00 

~O, as r~oO 

for all values of angular coordinates G and ¢:Rquations 

(3.8) are knO\vn as the So~erfeld radiation conditions 

(3.8) 
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which the Helmholtz equation in unbounded regions must sat­

isfy for the uniqueness of its solution.On physical grounds 

radiation conditions guarantee that there is no backward 

radiation from infinity. 

Thus, for a function U<,!:) being regular in V,and satis­

fying the radiation conditions -given above,its value at an 

observing point is given by the surface integral over the 

sourc~ point as 

outside V 

r. inside V· 

As shovm in Fig.3-2,the unit normaln' is away from the 
. -0 

region V, and is an inward normal to the closed surface A. 

If an outer normal nl to A is used,we have 

au(r
l
)] 1_ 

- -G( r,_r l )-' (]A on' - -
r outside A 

inside A 
. (3.9) 

This is the Helmholtz second(exterior) formula. 

If the surface A is a cylindrical surface with its 

generics parallel to the z-axis,and if U(E') and oU(r')/On l 

are independent of the coordinate z,the waves U(r) in the 

region V are also independent of z and the problem reduces 

to a two dimensional one for which the Gr~en's function is 

giv.en by [8J 

where E(x,y) and r'(x' ,y') are the position vectors of the 

observing point and source point respectivelY.H(l)(kr) is 
o 

the zeroth order Hankel function of the first kind and 

i={::1 
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For two dimensional -interior problems, in view of Eq. 

( 3 • ~O) , Eq • ( 3 • 6) 

! f[ H~1)(k~) 
S 

can be written as 

Me!:') •. ~H~1) (kr) ] _ {U(E.) 
..,. '. - U{:u ). 0 ' ds' - 0 un· - ~ r 

. -

r inside 

outside S 

(3.~~) 

Where S is a closed curve,the circumference of the cross 
o section of the cylinder,with element length dS',and an' 

is the derivative along the outer normal to curve S.Simi­

larly,the exterior formula,ErJ.;.(3.9) ,reads 

oU{t') J {U(E.) 
..,., ds' = 
un 0 r 

r outside 

inside S 

(3.~2) 

Where U satisfies the following radiation conditions [~] 

-vr u --- 0, as r --..- 00 

~ ( ~~ - ikU ) ~ 0, as r~ co 

Equations (3.~~) and (3.~2) are also known as Weber's in­

terior and exterior formulas respectively. 

-

3.2 INTEGRAL EQUATION REPRESENTATIONS 

The .total wav~ field, u( t) ,in a medium is composed of 

two parts; the incident wave, u( i), and the scattered wav.e, 

U
(s) . 

1. e. , 

Where each wave function satisfies the Helmholtz formulas 

(3.11) or (3.12) ~ 

Applying Weber's exterior formula,Eq.(3.~2),to scat-
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, (s) -
tered waves, U . ,whi,ch represents physically -the waves ra-

.diated by secondary sources on-.S,we have 

'! J[u( s) (r') 

S 

ds ' = U ( s )( r.) , 

(3.15) 

Fig. 3-3 

rr outside S. 

ly 

~--------------~>-X 

Geometry of observation and source pOints 
for two dimensional ext~rior problem 

The e~uation above -states that tha scattered wave 

field outside the region S, the boundary of the scatterer,­

can be obtained by a line integration over the 

once the values of u(sl(r') and ou(s)(r')/'bn' 

~U(s)(E') -

curve S 

are known. 

However, U(s) (r') and are in general unknown - . 1>n' 
for a eiven problem.To find U(s) and its normal derivativ~ 
on the boundary,we let the observation point peE} approach 

the source point Q(E') (Fig.3-3). With r_r' E~. (3.15) 

ou(s)(r') 
reduces to an integral ~uation for u(s)(r l ) or 

Since ()n,1 
is discontinuous on S,one should go 

. through a limiting procedure (Appendix A) to obtain 

• 



-an' 
each other on S. 
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~ti(s) (r')~ 
_ H ( 1) (kr) - ds • -

o bn'-

(3.16) 

are not independent of 

The boundary conditions are usually prescribed in terms 

of U(t) or OU(t) / on' ; thus integral equations for the 

total wave becomes more convenient.For such a representa­

tion, we note that the incident field has nosingulari ty 

inside the_ boundary S hence,itsatisfies -the Weber's inte­

rior formula -(}.11) 

- on' 

Adding this to Eq.( 3.15) 

U{i) (E ) + ! J [u{ t) (r') 

S 

and using Eq.(3.14) we 

oR( 1) (kr) 
o __ H(1)(kr) 
on' -- 0 -

ds' = 0 , 

r outside S. 

get 

au( t)( r')] 
ds' 

()n" 

(3.'17) 
r outside S. 

If we now let r approach E',taking the limit as before we 

obtain 

1 u( t) (r' ) U( i) c!:') !J[u{t) (r') 
OH( 1) (kf-) 

+ 0 

an.' 2 - (3.18) 
s oU::.~ (r') J _ H( 1) (kr) ds' 

0 

_ . (s) (t) 
Solutions to Eq. (3.16) and Eq. (3.18) Y1eld U or. U_ 

on the boundary S,from which the values of the corresponding 
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quantities outside of-S can be -obtained using Eq.(3 .. 15) or 

E'q • ( 3 .~ 7) • 

In connection with the above integral rep ...... 

rcsentations,two boundary conditions are of great impor­

tance.One is that the total field,u(t) (total displacement) 

on S vanishes,or what is equivalent U(s) = _U(i) .This is 

known as the Dirichlet's condition representing a rigid 

inclusion (fixed) in space subject to incident SH-waves. 

Thus,from Eq.(3.18) with U(t)= 0, we get 

ou(t)c!:' ) 

on' 

The second boundary condit ion ,knDwn, as 

condition,is that the normal derivative of 

stress,vanishes on S,or equivalently oU(s) 
atilt 

- ds' 

the Neumann 

U( t) ,normal 

OU'i) 
~nl 

This is the case of-a stress-free boundary,i.e. a cavity 

subject to incident SH-waves.Eq.(3.18) with OU(t) = 0" 
on' 

yields 

_ i Ju(t)(r') 
4 -

ds' 

S 

Having obtained the integral equations for the field 

variables,u(i),u(S) and u(t) ,in the following section we 

(3.20) 

will outline the method effiployed to solve them numerically. 

3.3 GENERAL PROCEDURE FOR THE SOLUTION OF 
INTEGRAL EQUATIONS 

Boundary value problems formulated in terms of integ-

ral equations are concerned with integrals of the form 
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.0(r) = !K(r.,r')U(;')"dS'- (3.2l) 
5 . 

where S is a closed 'contour, and '£,r.' are vector variables 

specifying. points in the plane and on the contour respec­

tively.The function K(!:,r.') is a known kernel vvhile U(r') 

is the unknown. 

The first step in the numerical solution of Eq.(3.2l) 

is the subdivision of the boundary S into n smooth inter­

vals.Denoting the j-th interval by A J we have 

S = A1 + -/j2. +,. '. + fln . 

The subdivision-points are numbered in such a way that the 

subscript of~ increases when the boundary is described so 

as to keep the domain on its left.These sections are simply 

intervals of plane curves and-we refer to the end points 

of subdivision as n interval pOints". 

Fig. 3-4 

n 

interval 
vpolnts 

4 

Boundary subdivision 

Having chosen the interval points on a given boundary 

8,we must next select the nodal pOints,the points where the 

unknown values are considered.If the interval ~J of S is 

a straight line,ims mid-point is taken to be the nodal 

point for that interval (Fig.3-5a) where the length of the 

interval is 

h = I r' l -I+ r' f -J-
(3.22) 
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r'~ interval, /:,J 

point (j+~) f \~J-
j-th nodal \ 

point 
interval 
point j 

(a) (b) 

Fig. 3-5 Nodal point definition 

- When the interval AJis not--l?- straight line we approx­

imate it by a chord joining the end points of the j-th in­

terval\ and the~dal point is taken as the mid-point of 

this chord (Fi~g.3-5b-).In this case Eq.(3.22) becomes an 

approximation to the ll~terval length. 

Having divided the boundary into n suitably sma 1-1 sec­

tions, A,.,~2.'. >. ~n,the function U(E') in Rq.(3.2~) is 

approximated as follows 

u( r I) = U;, r' E 11 J ; j = ].,2,3, •.• ,n 

where U 's are some constants .Correspondingly, we approxi­
J _ 

mate Eq.(3.2~) by 

¢(E) = f K(E,E') ti( r') ds' 
s 

which we write in the form 

where 

of S. 
I J 

folc.!:) = tUJI K(r,r') ds' 
J=1 i1J 

denotes integration over the j-th interval, IlJ ' 

(3.23) 
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Consider now the case where the function U satisfies 

an integral equation of the form 

.fe;:) = O(U<,!:) + !K(E"E,')U(E,') ds' , 
5 

rES 

where K is a lmown kernel, ex is a known constant and. f is 

a given function.If U(E,') is approximated as described 

above,we obtain by virtue of Eq.(3.23) 

n 

feE) = dU(E) + L UJ f m(D!') ds' rES. 
. J=f L\J 

To solve th~s equation, one may use the method of 

"collocation" .Applyingtheequation at one particular 

point "Ei (whfch is called a nodal point) in each interval 

fl. of S we obtain 
l n 

f. = ex U. + ~ U jK( r ~ ,r') ds' 
l l ~ J . -l -

J=f . A . 
J 

r .. E b.. i = l,2,3, •.• ,n 
-l l 

. where f. = f( r!) 
l -l 

( eq ui val en ifl)y f '. = f ( r .) . wh en r E. S) • 
l -l 

(3.24) 

(3.25) 

Ln this way,we approximate the integral equation (3.24) by 

a system of n simultaneous linear algebraic equations, 

Eq.(3.25),in terms of the unknown constantsU
J 

,the approx­

imate displacement at the nodal point of the interval in 

question. What remains is the evaluation of the int~grals 

in Eq.(3.25).For thiS, t~.e simplest quadrature formula over 

the interval ~Jof length (or approximate length) hi is 

f K(E"E,') ds' = K(E"r~ )hJ rES 
AJ 

where r' is the nodal point within the interval.A more 
-:,J' 

accurate result can be obtained by using a four-point 

Gaussian quadrature 

(:3.26) 



!K(!:, r~")ds' 
l::t.J 

+. w" K( r, r' ) .+: wa K(r,r' ) 
.' - -J2. . . - -:Ja 

+ w/. K(r,r' )1. ,!::( S 
. T - -.14 J 
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Where Wi' ••• 'W4- are .the weighting coeffic.ients and 

, ••. ,r I 
-J4 

are the integration points on b.
J 

.The .values 

wand the corresponding integration points are given 

in Appendix B. 

Having set up the integral equati?ns for the scatter­

_ ing problem,we will apply these to specific problems as 

explained in the fort-owing chapter. 

-' 

(3.27) 



CHAPTER 4-

NlTh'IERI CAL EXAMPLES 

This chapter is devoted to the applications of the 

integral equation method described in the previous ,chapter. 

The examples presented include various types of cylindrical 

scatterers such as rigid inclusions or cavities with ellip­

tical,circular and rectangular cross· sections.Some of these 

solutions will be compared with· the kno~ exact andapprox­

imate solutions [4'-5J.Ext~n.sion of the method to· other scat­

terers with arbitrary cross sections is straightforward. 

Both the "near-field"and "far-field" cases are exam­

ined.As a consequence of the formulation of the integral 

equations, first the soluti"on to the former is obtained; 

namely the solution of the field variables on the boundary. 

The near-field solution is then·used to get the far-field 

solution. 

Consider a circular cylindrical inclusion in an infin­

itely extended solid as shown in Fig.4-~.The cylh~der can 

be a rigid inclusion or a cavity.An incident SH wave de­

fined b;;{· 
u( i) - U(i) = 0 

x y 

U( i) U(i)(x,y,t) ikx (4. ~) - e 
z 

propagates in the positive x-direction with constant veloc-

ity c,frequency w,and wavelength A=k/21T .Such waves can 

be generated by tangential forces distributed over a large 

plane located far from the cylinder. Upon impinging on the 

surface of the cylinder,part of the inc~dent wave is reflected. 

91 
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cavity or 00 

rigid inclusion' 

source at infinity 

Fig. 4-~ Geometry for the scattering-problem 

The scattered wave is also an SH 'wave and is represented by 

U(s) is to be found from the 'solution of· the wave equation 

(2.4) expressed in integral form. 

4.~ NEAR-FIELD SOLUTIONS 

SCATTERING BY A CAVITY 

For a cavity,as stated earlier,the normal derivative 

of u( t) vanishes on the boundary, i. e. 
()U(t) .. 
on' = 0, glVJ.ng 

rise to the following integral eQuation~EQ.(3.20) 

, ()H ( ~) (kr) 

i J' U ( t) ( r' ) 0 ds ' 
4 - 'on' 

S 

(4.2) 



We assume plane waves of the form ikx 
e 

ikx' 
e and utilizing the relation 

~ H ( l.) ( Y-)= -H ( l.) (y) ~ 
dz 0 l. dz 

Where H~l.) (y) =. cTm(y): + iYm(Y) t 

Eq.(4.2) can be written as 

ikx' 
e ~ U(t) (r') + ik ju(t) (r') H(l.) (kr) 

2 - 4 - l. 
S 

so that 

or 
() n' 

ds' 

Using the results of section 3.3~, Eq.(4.3) becomes 

ikx.,' = .!. u' ( t) + - ik 
e ~ 2 t . 4 

Where U' (t) = U(t) (.£') ~=l.,2,3, ••• ,n 

'Or 
on'·' ds'. 
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(From now on,field variables with n '" will denote the 

corresponding values on the boundary).Approximating the 

integrals in Eq.(4.4) by a four-point Gaussian quadrature, 

Eq.(3.27),we have 

(4.3) 

(4.4) 

n ·4 

~k [[ u;,(t] 

J=1 i:1 

[
w . H ( l.) (kr ) ( ~) ] 

l. l. Ji~ on' Ji' 

~=l.,2,3" ••• ,n • 

where h' is the· length of the j-th interval, £- 0 is the 
J Jjl 

distance from the ~-th nodal point to the i-th integration 

point on the j-th interval, (of/bn0Jjf is the cosine of 

the angle between the vector r Jji and the perpendicular 

to the j-th interval at the i-th integration point. 

For the derivation and the numerical approximation of the 

normal derivatives see Appendix C.The above quantities 

are further clarified in the figures below. 

(4.5) 
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. ~ ... , -

~-th nodal 
point 

Fig. 4-2 Geometrical definitions 

Fig. 4-:-3 Definition of 

n' 
or C~) = cos1lf3 un J i 

3 
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Note that the i!ltegral in Fq. (4.4) seem to have a 

singularity';when j = t . However,theintegrand over the j-th 

segment of the contour is zero due to the fact that the 

vector 1ii is orthogonal (see Fig.4-4) to the normal n·t 

yielding -t ~r a =0 .Hence the term when j =!has no contrib-
n ~ii-

ution and can simply be excluded from the summation in 

Eq.(4.5). 

J-

Fig. 4-4 

The solution of the system of equations given by (4.5) 

yields the total displacement at the boundary of the cavity. 

If desired,scattered displacement field may then be found 

from the relation 

u,(t) = Ut(i) + Uls ) 

where U,e i ) = U(i)(,E') , U'(s) = u(s)C,E'). 

4.1.1-1 ELLIPTICAL AND CIRCULAR CAVITY 

In the case. of an elliptical cross section, the bound­

ary is divided into n intervals such that each interval 

subtends a central angle of 2n/n.To determine the interval 

pOints,use ,is made of the polar representation of the el­

lipse given by 

ab 
r = Va2. s WG' + b2 cos2 G' 

from which conversion to rectangular coordinates is straight-

forward. 
BOGAZiCi ONIVERSITESi KOrOPHANESI 
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Recalling Eq. (4·.5) ,modified to exclude the term when 

j =t ,we have 

n 4: . 

ikr[u~.(t) 
11- L . '. 'J E ~!'lJ J=1 l=t 

J*! 
! = ~,2,3, •.• ,n 

(4.6) 

Which is the set of equations,When 'solved yields the total 

displacement on ·the boundary of the elliptical cavity. 

Eq.(4.6) can be written in matrix form as 

Y2. 0<12 • - - - 0(. U·{t) . . ikx' ·in ,e 1 . 
1;2 ~ 

u,(t) eikx; -
2 

I 

( 4.6) 

ikX' e n 

where xl refers to the x-coordinate of the R-th nodal 

point, lV(t) is the total displacement at the i-th nodal 

point ,and 

4 

ot
J1
= i: E h~ 

i=1 
Due to the 

[ w : H ( ~) (kr ) cor. J J 
~ ~ Jjt on Jjl 

geometrical symmetry of the scatterer with 

respect to the horizontal axis,x-axis,the off-diagonal ele­

ments1, O<J1 are symmetric .Also the displacement field, UI (t) , 

. obtained from Eq. (4.6) has a polar symmetry with respect 

to the x-axis. 



The circular cavity case follows the same line of 

reasoning .with the. major axis length set equal to that 

of minor.The tangential stress is obtained by the nu­

merical differentiation of utes) values with respect 

to G'. For this,the following "least squares polyno­

mial" is used 

1 
lOD 

The displacem_ent.at, the boundary,for various cases 

are shown in Fig.J. for a circular cavity and in Fig. 6 

for an elliptical cavity.Fig. 2 displays, the tangsp.tial 

stress for'a circular cavity. 

RECTANGULAR CAVITY 

y 

r 
a 

~JC--+-----~ 
1 ~_2 -b -----I 

"i 

I 

a 

n 

1~b I incident ~ 
plan~ wave 

Fig. 4-6 Boundary geometry 
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The numerical procedure involved in this problem . 

is virtually no more' different from that of -the- elliptical 

case.-The corners do not pose any mathematical difficulty 

since they are chosen as the interval points ·which are 

excluded from the evaluationof __ the integrals as a :resul t 

of the use of Gaussian quadrature.The results for the 

displacement at the boundary are presented in Fig~ 10. 

SCATTERING BY A RIGID INCLUSION' 

For a rigid inclusion:-the. boundary condit·ion is that 

the t etal displacement, IT' Ct) - v~nishes ,-i. e .U' (s) -' -U' ( i) • 

The integral equation corresponding to this case is given 

by Eq. ( 3 • ~ 9 ) 

oj' au(t) (r') 
= 2:... -H( ~) (kr) ~,-. ds' • 

4 0 n 

S 
ikx 

Assuming an incident plane'wave of the form e ,we have 

Again 

where 

ikx' 
e 

o J Qu(t)(r') , 
= 2:.. . - H ( ~) (kr) ds' . 

4 ~n,t 0, 0 

S 

with reference to section 3.J',we write Eq.(4.7) as 

0' . o. [n ['0 U( t) (r' )] J 
lkxt _ ~ - . . H ( ~) (kf-) ds t 

e - 4 ()n' 0 

(t) J = 1 J ~J 
out 
on,' 

represents the total normal stress on the 

boundary. Using Gaussian integration formula we get 

n 4 
e ikx; ~ i \' [r out (t)] hJ [w. H(~) (kf- )l - 4U l- on" '2 ~ 0 Jji 'J 

J=1 i:1 J 

where ~=~,2,3, ••• ,n. 

(4.8) 
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Hence;the, solution.o;f Eq.'s"(4.9)·yieldsthe' total normal 

stress on the boundary of the rigid inclusion~Scattered 

normal stress may then be calcuiated from the relation 

ou,:(t:) . out (i) 
.'+ 

out (s) 

on' ,om' on ',i 

For U' (i) = U(i) <,!:') ilex' ikr'cosQ' e e 

'OU' ( i) . 
ike ilex' cosQ' or' 

on' 'bn,' 

WhereQ' is. the angle r' makes with the positive x-axis. 

ELLIPTICAL AND CIRCULAR RIGID 'INCLUSION 

Scattering related to near-field is governed by Fq.(4.9) 

where boundary subdivision is as explained in section 4.1.1-1. 

However,in Fq.(4.8) the imaginary part of H(l) (kr) ,yo (kr) , o . 0 

has a singularity when j = ~ .Thus the terms for j=i should 

be excluded from the summation and approximated by other 

means (see Appendix D).Hence Fq.(4 .• 9)take·s the form 

n 4 

eilext' =' i ~L[ oU' (t)] hJ [w. B(l) (kr. )] 
4 Lon' . 2 J. 0 J.R 

. I 
J=l i=l J 
J=f.! . 

[ '~u,(t)){ 1. [k(ht./ 2) J ht . + . -- In - 0.4228 -
on' ~ n 2 2 

+ ~;} 
The above equation yields the total normal stress ont~ 

boundary from which the scattered normal stress may be 

found in a straightforv~rd manner as was explained in sec-

tion 4.1.2 • 



As before,the circular rigid inclusion, case can., be 

obtained from, the ellipt'ical • .formulation. by letting the' 

two axes become equal. 

Normal stress at the boundary are shown in Fig.'s 
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4 and m·for a rigid circular inclusion and a rigidellip;... 

tical :inclp.sion· respectively:. 

4.2 FAR~FiELD SOLUTIONS 

The general integral representation for the scattered 

fie~d is given by (see Eq. 3.~5) 

j f 
~U(s)(r') 

u(s)(,E)=. ~~.- -i(s)(;,) ds'G on';' ds'. (4.~~) 
5 s 

As seen u( s) (,E) at any point outside s is _completely de­

termined if U(s) and ou(s)/on on the boundary are known. 

One of these quantities is specified bjrtheprescrtbed 

boundary condition, aU'(s)/ on' for the cavity and utes) 

for: a rigid inclUSion, while the other is provided 1)y the 

solution of the problem as described in -the previous sec­

tion.Thus,substitution of U' (s) or out (s) / on' for the 

respective problem into Eq. (4. ~~) gives a complete solu­

tion for the scattered displacement,u(s) ,at' any point r.,~ 

CAV.ITY 

Denoting the total,scattered and the incident stresses 
-

b O"'(t) O"(s) 
Y n 'n ' 

( i) <r n respectively, the boundary condi-

tion for a cav&ty is 



Hence, :,', () I ( s) =' ..:.. (J I ( i) -. 
n:' Ii -, 

For an~ incident plane wave' UI (i) ....:.' e ikx.' 
} 

we have 

Thus, 

cr I(S) 
n 

a I (i) 
n 

: ikx'" ike cosGI 

. ikx' - l.ke, ' cosG I orl -ani 

orl 
'bn I 

"-~--'---+------ x -, - . 

ikr'cosG' e 

Fig. 4-7 Coordinates used for far-field calculations 

When r is far away from the obstacle,referring to 

Fig.4-7,one can write 

r ~ I r I - lEI I cos'X 

_or or or' -----on' "Or' on' 

Therefore, 
"On' 

r - rl cos'X 

or = - cosX or' 

or' 
cos'X on' 

32 
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Returning back to Fq.(4.11) ,and_substituting the val­

ues of- cyn,(S): from Fq.{4.12)',and of-/'bnl'cfrom Eq-.(-4.13) 

we get-

~J H~'-) (k~) [co£X ;~: J U· (s)ds' 

s 

:E -f H( 1) (:ko.) [ -'-k ikx' -Ai or'] - -. - -.r: - 1 e, cos'O' -""lo.-
4 OJ.- on' 

S 

ik J ( 1) OF' ( s) 
4 cosX H1 (k~) on-' U' ds' 

s 

~ J .. ikx· cosQ' H~'-') (k~) 
S 

ds' . 

ds" 

For any field point r fa~ away from the scatterer we can 
-~ -

then write 

u(s)(r ) - ik 
-i 4 

k 
4 

n 
'brr' . () ] [ [ cos 'X-JR H~ '-) (k".;r ) 0:' U S (r~ ) 

J=1 t [eikx
; 

H ( J.) (k£o ) cosQ' 
J o J~ 

J h 'b
r
'] 

"bn' J 

c>r' 
_J_

h on' J 

h 
J 
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where the integrals ~re approximated by the so-called 

mid-ordinate rule for integration (see Eq.3.26).The rel­

evant geometric quantities are illustrated in Fig.4-8 • 
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Having the near-field results ( U,(t) , thus U,(s) ) 

for o:ircular, elliptical and rectangular cavities, the cor­

responding far-f:i,.eld solutions obtaine"d from Eq.(4.~5) 

are illustrated in Fig.' s 3 , T"and" ~~ . 

4.2.2 RIGID INCLUSION 

Using the boundary condition corres:r>0nding to the per-. 

tinent case, we have 

utes) = _U,(i) " ikx' 
-e ". 

Substituting the values of orl ~n'from Eq.(4.~3) ,and 

u,(s) from Eq.(4.~6)', Eq.(4.~4) takes the form 

k fcosXiH(~)(kf-)" or' U,(i) ds' 
4 ~ on'" 

s 

'- ~ I ill ( ~) (kr) CJ" ,( s ) ds' 
4 0 n 

S 

For large distances away from the scatterer,Eq.(4.~7) may 

be approximated as 

n or' 
u(S)(r) k L cos X ill (~) (k~1 ) ---=!- u(i)(r' ) h

J 
-~ 4 Jl ~ on' -J 

J=1 
n 

~ L ((5 ,(s) ) nI (~) (kr ) h 
4 n J o 31 J 

J=1 

Whers the integrals are again evaluated in a similar man­

ner as for Eq.(4.~5). 

(4.~6) 

(4.~8) 

'" 

Far-field results for this case are pres~nted.in Fig.' s 
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5 and 9 respectively for a rigid; circular and a rigid 

elliptical inclusion.The calculations are carried out at 

points such that Ei = 2000· Ei 
l -th nodal point • 

,whereor' denotes the 
-2 



CHAPTER ,5' 

CONCLUSIONS 

The results for anti-plane waves scattered by a cir-
-" 

cular cavity and a rigid inclusion are presented respec-

tively in Fig.'s J.,2,3 and in Fig. 's 4, 5".For comparison, 

the exact solutions,where available,are also given at the 

upper right-hand side.Excellent agreement is observed "for 

all wave numbers. ' 

Far-field solutions, u( s) c.~:), were obtained using 

Eq.'s (4.J.5) and (4.J.8) for a cavity and a rigid inclusion 

respectively.However,in the'literature[5] U(s)(E) is gen­

erally given as 

ikr 
e 

( s) 
"4f . 

1Ir(s) where 't' is known as the scattering coefficient and 

r is the distance from the boundary to the point of in­

terest.Furthermore the relevant graphs are plotted as 

~1V(s) vs. G • Thus,for comparison purposes,the dis­

placement field,u(s), "obtaine"d through Eq. 's (4.J.5) and 
ikr 

(4. J.8) are multiplied by the factor -fkl ( ~) and then 

plotted vs. G in Fig.'s 3 and" 5 . 

For the elliptical case,some of the far-field solu­

tions (Fig.' s 7," 9) could have been compared with those 

that are found in reference 4.Contrary to circular geometry>, 

the results are not equally well for all wave numbers ;"" 

for the small vmve number ( k = J. ) better agreement is 
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observed.With increasing wave number (decreasing wavelength) 

within each segment of the boundary,variations of the wave 

function are more pronounced.Thus,the assumption that on 

each interval both the incident and the scattered field 

are constant falls short of meeting the real situation. 

Choosing linear or parabolic variations over each segment 

may improve the results obtained.However,one should be 

aware that when corners are encountered such choices cause 

problems which necessiate some modifications to avoid them. 

Although no comparison could have been made,near-field 

results (Fig.'s 6,8) are expected to be better than those 

of the far-field since the latter makes use of the near­

field solutions through an integration which is again ap­

proximated,somewhat less precisely than the one involved 

in the near-field formulation. 

The fact that the circular case yields better results 

than the elliptical one may be attributed to the geometric 

properties of the former.The constancy in the curvature of 

the circle renders the boundary to be more accurately de­

scribed by straig~t lines than the ellipse.In addition,the 

,values of or/on' used for the far-field calculations are -, 

exact for the circle. 

, For rectangular geometry" being unable to make any com-

parison,results pertaining only to cavity is ~iven.Guided 

by the general implication, corners may be thought to give" 

rise to difficulties;but since the integrals are evaluated 

only at points within the interval,no problem occurs. 

To sum up ,boundary' integral e~uation method,removing 

the geometrical restriction makes it possible to analyze 

the scattering of waves from inclusions of any shape. 

However, the variations of the field variables wlthin each 
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interval should be taken into consideration and mo~e 

precisely accountedfor.The number of boundary segments 

may also qe increased in direct proportion to the incident 

wave number and changes in the curvature of the configura­

tion. 
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FIGlffiE -CAPTIONS 

displacement at the boundary of a 
circular cavity due to the scattered 
wave field 

tangential stress,l~u(s)/oQlt at the 
boundary of a circular cavity due 
to the scattered wave field 

scattering coefficient due to the 
scattered wave field from a circular 
cavity 

normal stress,1 'bu(s)/onl t at -the 
boundary of-a rigid circular-inclusion­
due to the scattered wave field 

scattering coefficient due to the 
scatt'ered wave field from a rigid_ 
circular inclusion 

displacement at the boundary of an 
elliptical cavi~y due to the scattered 
wave field 

far-field displacement due to the 
scattered wave field from an elliptical 
cayity 

normal stress,lo-u(s)/'bnl, at the 
boundary of a rigid elliptical inclusion 
due to the scattered wave field 

far-field displacement due to the 
scattered wave field from a rigid 
elliptical inclusion 

displacement at the boundary of a 
rect-angular cavity due to tl1e 
scattered wave field 

far-field displacement due to the 
scattered wave field from a rectan&ular 
cavity 
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APPENDIX, A· 

Evaluation" of lim 
r ..... r' 
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. For generality,express Eq.(3.1.5) in its three-dimen­

sional analog 

[ ~(s) (.£') . (s) . = u <.!:),: 

A r in V ~ 

-,ikl r-r'l e --
where G is now 

p 

;-----..-y 

Fig. A-l. Approach of the observation point 
P(r) to the source point Q(£') 
on' the surface of a scatterer with 
volume VA and bounding surface A 
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Consider now th.e limit of the leading term on the left­

hand side of Eq. (A. J.) 

lim 
r-...r' - -+ 

CIA' 

where r' indicates that the limit is approached from the -+ 
positiv_e side of the normal g'. (Fig.A-J.) .Since oG(,£,r' )/on' 

is singular at,£= ,£',we exclude the source point from the 

surface integral by encircling it with a small area I:. 
In the neighborhood of Q(,£I) ,the Green's function for th6 

wave equation can be approximated as 

ikl r-r'l e --
lim G(r,,£') = lim . 4nIE-r'l 
r~r' r __ r' 
- -+ - -+ 

Hence, 

lim 
r __ r' 
- -+ 

J. . ' 
41T . IJ.m 

r __ rl 

aGe!:,.!:' )­
on' CIA' 

1Iu(s) (E') 

- -+ E 

l·im 
ffu(S,) (r') 

r~rl A-E -+ 

a CIA' . 
on' Ir~E'1 

oG(E,r ' ) 
CIA I 

onl 

J. 

+ 

. . 

The limit of the second term on the right can be evaluated 

directly 'because oG/"{)n' is' continuous at:. A-E .For the 

first term,one notes that 

o J. ---- ----.--- CIA' 
onl Ir-r'l 

!!" • (,£ - E I ) 

3 I r -.. r'l 
CIA I 
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where dwis .the solid angle ~subtendedby the surface' dN'.~'.' 

With a smooth surface at r' 'wethen obtain . ,; - , 

lim 
r __ rl 
- -+ 

The final answer is 

o 
()n,1 

dA' 

r_rl 
- -+ 

2n'U(s)(E
'
). ' 

,+ 

ffdw 
E ' -, 

(A.2) 

where PV~ designates the value of the integral as defined by 

PV. f f F(x,y)dxdy . = l~ - f f F(X,y) dxdy 

A L' 0 A-E 

:Dn view' of -Eq. (A. 2) ,Kg,. (A .-~) . may ..:be .expressed ·as 

~ u(S\£.) J!&(S)(r') 
A 

With G(r,E') = !H~~)(klr - E'I) , one obtains Eq.(3.~6). 
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APPENDIX ]3 

4-POINT GAUSSIAN INTEGRATION FORMULA 

1 4 

jy(x) dx ~ [ w.y(x.) 1 1 
-t i=f 

where x. w. 1 1 

0.86113631 0.34785485 

- 0.86113631 0.34785485 

0.33998104 0.65214515 

0.33998104 0.65214515 

(1) X ~=1 
1 (0) 
t--- h/2~· . (2) 

'I;' h I. --~I - ,2 I· 

Transforming the coordinates from x-y to the dimensionless 

coordinate ~ 

h 
x = ~ 2-- ,and 

(2.) J y(x) ~ 
(i) 

t 

== J :.en ~) d~ 
-1 

where () that the number in parantheses corresponds to 

the point number,not the distance.Using Eq.(B:.1),FcL·(B.2) 

may be approximated as 

"-" ...... ... . '.~. 

(B,. :D) 
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Thus,on the interval (~)-(2),integration points are deter­

mined as shown in: the figure below. 



APPENDIX· C 

-
Computation of 

·n'· 

Fig. C-ll 

oR 
'bn' 

= .g' . VR, where R = I R I 

and. r 
-41 

are the position vectorsa~~+ b~2 

and of P and S respe'ctively (Fig.C-~),then' x~~ + y~2 
.J 

so that 

R • 

Then VR =\7 C -/(x-a) ~ + (y-b) 2 J 

(x-a)e + (y-b)~2 R R 
-~ 

. -/(x-a) 2 + 2 /RI R 
(y-b) 

is a unit vector in the direction of R 
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Hence, 
:OR R 
- = n'. oR =-n'.-og' - v - R 

R·~·cos 

R cos 1Jf 

91 

but also cos1Jf = D 
R 

, where D is the distance from the 

line OR to the point Po (Fig. O-~) 

Let 0 and R respec.tively have the coordinates (x. ,y ) 
~ ~ 

and (x2 ,y 2) .Then the equation of the line OF is given by 

y = mx + (y~ - mX~) = mx + d 0 

From analytic .geometry~the distance from point (xo'yo) to 

line Ax + By + D = 0 is given by 

Ax + By +D· 
o 0 

(c 01) 

Thus,from P(a,b) to CE,defined by y = mx + d (mx - y + d= 0); 

the distance D is 

ma-b+d rna - b + y_- mx 
~ ~ 

Since x and yare knO\'VIl through a knowledge of the coor-
~ ~ 

dinates of the interval points ,D and hence cos1JI are 

completely determined. 
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APPENDIX m·· 

Evaluation of, 

i ( "b~' ~t)j j. : ... [J (kf» + iY (lef» J. ds·'-
4 n. J- o· 0 

when J =1 . 

AJ 

Since Ji (kr) ~.~ as r--O,the real part of H (ler) 
o 0 

causes no difficulty.For·theY (kf» part,using the ser­
o 

ies representation 

we see that the predominant contribution comes. from the 

first term.Therefore the problem reduces to the evaluation of:_ 

(t) j{'r -} e~~, ~! H ~LlS+ln ~r J ds' 

~J . 
which can be expressed as· . 

( "OU,(t\ i J.l + .2 r'6+1 krJ}d' 
.on' 1 4 l ~ 1n L n 2 s 

A~ 
where r is measured from the point Q • 

~ + f--
r
:-::;; .... ;:::=:-.::' £ -: __ -'-; i­

r 

We now use the ~ coordjjnate (Fig.D-~,below) and hFve 

~) ~) 

i J{ 2 [ krJ} i )( { .2 [ -. kr 1} 4 ~ + iTT '6 + In"2 ds' = 4 ~ + 1n -g + _Ln. -'2 ~ dr 

_ (1) (1) 

where () indicates that the number between them corre-

sponds to the point number not the distance. 



Fig. D-:t· ~ coordinates 

---"'Transforming coordinates and noting 

hi 
Ir:t l = I r21 = 2" ' one obtains 

l1 } 

Th us , wh en J = Y 

r = ~Ir I , where :t 

.. 'f 
] 

h 
.. -:- d~ 

-2 

i' ~U' (t) Jr.-
4 C on' 1 LJo(kIJt) + iY (k£- )] ds' 

o J{ 

AJ 

may be approximated as 

(
OU' (t)~ {_ ~l-ln k(h~/2) ] h~ i h f 1: 

TT 2 - 0.4228 -:-,2 + 2· -2 J on' t . 

A similar procedure is also given in [4J • 
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