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_ ABSTRACT - ;

Near— and far—fleld solutions are presented for the-
scattering of SH—waves by a 01rcular cav1ty and a rlgld
inclusion in infinite space whlle\only far-field results
are given for‘an,elliptica1~geometry.iniegral'equations
defiﬁe the problem and these are solved in the spirit of
Hilbert-Schmidt method.The results are glven in graphlcal
form and compared with the ex1st1ng results. _

Simple geometrical nature of the circle renders an .
exact -solution whereas some approX1matlons are needed to
solve the scatterlng problem if: the cross—sectlon of the
scatterer is in the-shape of an- elllpse.Here Bessel func__
tlons are used instead of Mathieu functlons as is custo_,
mary in literature concerning elllptlcal geometrles The;v
results obtained are in fair agreement with the knowm
exact solutions for up to k<3 (k:wave number) If k¥k>1
only a good 1dea of +the shape. of the scatﬁered wave could’

be obtained.



o
OZETCE

Skalar kayma dalgalarinin (SH-dalgalarinin) sonsuz
ortamda dairesel bir boslik ve rijit: bir igcisimden
sagilmasinin yak:m've uzak bolge gaziimleri verilmi:qtir;"
Eliptik geometri ig¢in ise sadece uzak bolge gozumlerl
elde edllm1§'b1r. Problem en’begral denklemlerle 'ba.n'unlanmrg
-ve ¢ozlmi 1gm Hilbert-Schmidt metodu uygula.nnm%t:nr.
Sonuglar grafikler halinde sumulmus 61up, eldeki gérgek'
sonuclarla kiyaslanmis u:Lr." .

Basit geome'brlsl dolay:.s:l. :Lle dalrede kesin- sonug

allnabll:mmesme karsin ellp-blk sag:.lma problemmm gozumui-- -

icin bir takam yaklasimlar kullanilmistir. Literatiirde

bu tip problemlerin vgti’ziimiinde— genellikle "Mathieu" ‘fonksi_‘_
yonlari ltullanllml'g» olmasina ragmen bu galr§méda Resgel
fonksiy‘onlarl tercﬁh ‘edilmi.gtir. Elde“»edilevn;‘ sbmu;lar

k21l (k=dalga sayisi) icin eldeki doérul gﬁzﬁmlere- ya'k:th
olmakla. beraber, k>1 durumu igin ancak sagn.lan dalga:n:m
gsekli hakkinda fikir edinilebilinmistir.
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. CHAPTER I

INTRODUCTZ ON

When a disturbancé propagating in a medium encounters
an object or any material discontunuity,it undergoes ref
lection and refraction thus producing new waves propaga_
ting inside and/or outside the object.This phenomenon is
known as diffraction (scattering) of Waves;ConSiderable
work has been done over the past several years to obtain
a through %heoretical and eXperimental understanding of
the scattering of elastic waves from defects of different
geometries and material properties.The main goal is that
once a complete undefstanding is obtained of the: elastic
waves scattered by known defects_subsequent solution of
the inverse problem;that is the idéntification of unknown
defects in structural materials,will be possible.This is
also kmown as non-destructive evaluvation of materials.

The treatment of diffraction problems requires the
 solubion to the linearized equations of elastodynamics
subject -to the boundary conditions on the surfads=of the:
scatterer.For a rigid body these conditions consist of :=
the total'displacement field on thg surface of the body
while for a cavi%y the vanishing of the surface tractions
are required. , ‘ | -

The literaﬁure‘concerning the diffraction of elastic
waves is much less abundant for elliptic cylinders than
for circular cylinders or spheres.The first paper we can

trace is by Sezawa [1],in which the solution for the



scattering of g‘P—wavexwas‘givenéin:terms»ofEMathieu ST
functions. Later,Harumi[2] discussed the scattering of both
- P~ and S-waves,and calculated'the»energy distribution of
the wave scattered by a rigid ribbon,which is treated as
“the limiting cése:(infinite*eCCentrioity)xof a:general . . -
e¥lipse;k'.‘ h h

' The diffraction of acoustic or electromagnetic waves
by an-elliﬁtiéal’obétacle has been treateﬂ extensively. '
The formal solutlon in terms of Mathien functlons can be
found - in books by Me Lachlan[jl and by Morse and Feshbach
[A].For the ‘same. geometrlc boundary,the ‘analogous ‘problem . -
of the scatterlngrofaelectr;chwaves was :investigated in = -+
1897 "byrRayleigh;Iﬁlyandfin51908.by}Sieger,{ﬁ];who.also
- contributed a great deal to the elliptic wave functions. )
- The problem of sound waves was dealt with in 1938 by o
‘ Morse and. Rubensteln,[il,who first presented detailed
“Mnumerlcal results for diffracition by a sllt (degeneraﬁe
}elllpse) .Subsequent pub;;catlons were reviewed by
Bouwkamp[gLand Jones[}ﬂ .Scattered wave-energy densities
at low and medlum.frequency ranges were reported recently
by Barakatfxo] e

An integral formulation for the problem of scattering
of SH-waves will be presented in this work.As an alternate

to the numerical methods,Hilbert-Sthmidt: theory will be

- used to solve %hese integral equations.In thls method the:

field variablés on the boundary of the scatterer are
exXpressed in terms of infinite series with unlmown coeffi_
cients which are determined using the boundary conditions.

_ Théumethod will be applied to the scattering of
SH-waves by oircular_ana elliptical cylinders.Basically,the
. diffraction'of waves by an elliptic cylinder is not much

-
N .~



: t- ’ .
- different from that of & .circular cylinder,especially when '~

the~eccentricity of the ellipticai cross—section is smaill.
The Hilbert-Schmidt method is applicable only when

the kernel of the integral eQuaﬁion'can‘be represented by

a series of orthogonal functiénS~suitab1e*for?the*geometry-~

of the scatterer.In the case of an elliptic cyllnder,these

are Mathieu functlons which are difficult to evaluate

' numerically.Due¢to this difficulty,the basis functions of

the circular case,namely Bessel functibns,will be. used

instead of.the Mathieu functions.Since . the Bessel functions. .

are easier to handle and more-suitable-to nmumerical ~-L: -

i computatibn,ﬁhis:dhoiee"aSide“from the elliptical case,: -

allows one to deal other shapes much more efficiently.
Howeveri%he numerical approximation'of fﬁe*integra&s
coupled with the truncation of the infinite series
naturally introduces errors.Numerlcal-results presented
here agree well with the exact solutions for kﬂil,whereas
for k> 1 the solutlons roughly resenmle those of the exact
solutlan. ' : '
' In the followxng chapfer,dynamic eQuatlons of elasti-
01ty and’ Hllbert*Schmldt method,for solving the scattering
' problem,are. dlscussed.Formulatlon correspondlng o circular
and elliptical cavity and rigid inclusion are presented in
Chapter III.Next the obtalned results are dlscussed and
finally they are shown in graphical form.



. CHAPTER II
EQUATIONS OF ELASTICITY AND A METHOD OF ANALYSIS
2.1 Dynamic Equations of Elasticity

In a2 homogeneous,isotropic elastic medium,the
displacement equations of motion is governed by the )
celebrated Navier's equation, i.e. [1?]

. z?u | )
(A +,«) v (ch) +pV g=/>a—t-2-,e;;'-

vhere A:and M are the Lame's constants with p being
the mass density of the medium.

The scatterlng theory is based on the solution of
the‘above equation subject to the appropriate boundary
conditions prescribed over a dlscontlnulty surface.

An anti-plane shear deformatlon is descrlbed by the:

displacement dlstrlbutlon [l?]

-
4

UX(ny"?):uy(x;Yat):O ‘ and ,uz= U-Z(xyy"b)

Only the z-component of the displacement vector survives
and hence becomes a scalar quantity denoted by uw. In this
case the equations of motion reduce to a wave equation

g . 2 ,

1 2 u(X,y,%)

2 N
v U—(XzY’t)= 5
o2 at

where c=v/é? ‘is the velocity of propagation of the



wave., = .= |
Considering only harmonic waves with a'bircular‘
frequency w , we write

wltyy,8) = O,y gm) & 37

Substituting the above equation into the Navier's equation
we get o » 7

VQU,-!- sz =0 -

where k=w/c  is the wave numbef. This equation is kmown -
as the Helmhol+tz eQuafion.

Under the assumpition of apti—plane strain, the |
dilatation gfg is zero, and the wavgé are rotatioﬁal
(S-waves). Because thewdisplaqement vectorrof.fhe wave is
always.parallel to theuz—axis, which for convenience can
be taken aS—lying 6n évhorizontal plane, waves 6f |
\anti—plane strain are called SH-waves. Strictly speaking,
the name menifests itself only,ﬁhen there is a direction

which can be clearly labelled as horizontal.



2.2 Formulation of the integral equations

In this sect;pn a method for solving the wave
diffraction problém is discussed namely the méthod of
integral equation. ' | v .
| Consider two spécial functions U(Eo) and G(E’Eo)
which satisfy the following Helmholtz equations

respectively. .
S @ePru)=o ()
(v +%°) @(z,r )--g(r—r ) - : (2.2)

where E(x;y,z) a@d.go(xéfyaizb) are the!position vectors
.of the "observation points" and " source points“ respectivel
V2 is the Lap1a01an operator in the “"observing coordinated™

,y,z and. V2 the operator in “source coordinates"

93' 1Z B’ :
Multlplylng equatlon (2.1) vy G(z, T ), and equatlon
(2.2) by U(r ), and then substraotlng the first from the

second -yields

u(z,) Vif%G(}g;go) - &(z,z ) Vf) U’(;;vp)-—-" -u(z,.) &(z-z,)

(2.3)

Integrating equation (2*3) over the volume with respect

to source coordlnates, see Fig.(2. 1), we get

Jﬁ(u VoG -G v 0) av = - HJU &lr-z ) av (2.4)

)



Using the following relation:

" =y 2.7
Voo [pT, @)]=n(vg @)+ (1, ) (Y, &) (2.5)
the left hand side of the equation (2.4) can be written

as

A

M (Uvie-eviU) av_ =
v o o

(o)

Fig;AZ;igGeometry of Observatioh
Points P(r) and Source Points

Q(zr ) for the Interior Problem.

The right hand side of the equality given inrequation_(2;6)

is in a form where we can use the Gauss's theorem [4]
'V swdvV = X R
jﬂ ~O e~ [o) }3'}30 d_Ao
v A

where‘go is the unit outward normal to the surface A. Hence



(2.6) reduces to

LN

m' (u vi G- G vi U;)»dv‘;:.” (O ~ G5 ) an

v Y S e

where (3/3n )= (n .¥).
Substituting these results into equation (2.4) znd

employlng the 1ntegral property of the delta functlon -
6(1""1‘ ) ) \

: T g 0 ~ r outside V,
jﬂ Flg ) Blg-x,) av=19 . |
v o 4 l’F(r) 'r inside V.-
we getd .
au(z ) oG (r,z )
H [G(r,r ) , - O(z,) J A =
A ano ano

g U(z) ¢ inside &,

l 0  °r outside A.

The above‘equafipn is also known as the Helmholtz first
(interior) formula. ‘., | - .
Helmhbltz's first.formula is applicable in the‘case-
when all the singuléfiﬁies_of the function U(z) lie
outside the surface A,shown in Fig.2.l. (By a singularity -
of U; we mean & point at which U or one of itsvfirst and
second paftial derivative is‘discéniiniovs) If on the
other hand all the 31ngular1t1es of U(r) 11e within a

closed surface A, we can apply Green‘s 1dent1ty t0 the



region V bounded internally by A and externally by
another closed surface B, a sphere with the center at the
origin and a large radius RQ(Fig. 2.2). The surface is
now decomposed of A and B. Since UQg) is assumed - -
continuous outside A, application of Green's identity
leads, as in equation (2.7), o ’

| 3 o 4

3u(z,) a¢(z,z )
ey 252 ey 255 ] .
A+B or, an, |
(2.72)

g U(r). r inside v,

»l 0 T outside V.

Figs 2:2 Geometry for the Observation Point

P(g) and Source Point Q(go) for

the Exterior Problem.

On the large surface B, we have .= R , 3/ ano= 3/ AR ,
ond dA= R2sin® d® af . Nobing that: the Green's function

in three dimensional problems is of the form [4]
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G= -y | (2.7b)

<

In the limit as R>0° ,the integral over the surface B in

equation (2.72) using equation (2.7b) becomes

| 30U 3G
1im ﬂ(a———-u—-—-' yan =
R0 3R 3R °

A

T
l "X aU - ‘r‘ |

r (*—- - 1kU)+ U:l - ..sin@ 4o 4

Baeo qmib o ° ar, reR .

The integral vanishes if;for any finite valve BI, the-

following relation hold,

II' U|4M , as r_»00

0 » o

30 (2.8)
ro("— ~- iXU)>0 , as ro—>°°

,aro |

for all valuves of angylar coordinates € -and @ ¥ Equations
(2;8) are known as the Sommerfeld radiation conditions.
‘Thus for a functién:U(r) being regular in V, and
satisfying Sommerfeld radiation conditions, its value at
an observing poinf P(g) is given by 'bhé surface integral

over the source point Q(:.go) as



11

g U(r) 1 inside V,

; . \ .0 r outside V..

* As shown in Flg. (2. 2), the unit normal n is-away

from 'bhe reg:.on V, and ‘ig an inward norma.’.L to ‘bhe closed

surfgce'A..Ifnan-outer normal o, to A 1S—used, we have

’ ) aG-(};;;"o) S aU(,,ro)v SRR
Si[uxr")f———————— - G(r,r ) ——————] aa = o ‘
RO an ~¥%o an. 4 o
A o - T 7o o ’
. o . (249)
: B SU(£) E outside A, .
l o T inside A.

This is known as the Helmholtz second (exterior) formula.;‘

The total wave U( t) in a medium is, composed of two

(1) ()

parts, the 1n01dent wave U’ and scattered wave ]

loeoy

_I_U(t)='Ui(»i}+ s {2010)

Each wave function satisfies the Helmholtz formula, (2.7)
or (2. 8) Tet A be the surface of the scatterer wi th _
volume V (Flg. 2.3). We seek the solution for the total

ane U( ) in the region V outside the surface A. The

(s)

scattered wave function U s wWhich represents physically



7/
the waves radlated by secondary sources on or 1n31de
the surface A, usually is singular 1ns1de VA‘ Thus:

Helmholtz's second formula is applicable with

3e(z,xr ) | 30y
J][U’(S)(f’o) — - G(z,r ) ”rQ,, :l an_ =

A on, - an,

Fig. 2.3 Approach of the Observation Point P(r) to
the Source Point Q(r ) on the Surface: of
a Scatterer with volume V and Bounﬁlng

Surface .A.o

The derivative of U(S)(E) in V is obtained simply by

differentiating the aboﬁe eQuatioh:

12



3 o8Ny , pinv
an -

However, U ( )(r ) ana aU( )(r )/ an are uéually
unknown for a -given problem. -

To f:!.na U(s) and :L'bs normal . derlva'h:LVe on the surface

A, we let the- observation point-P(x) approach the _source -

point Q(r ) on 'bhe surface. With r>r , equation (2.11) -

reduces 'l:o an :m'begral equation for ( )(r ) or

_ BU(S)(r Y/ an . However,because d6(x,x. )/ dn_ is
dlscontlnuous across:the surface A, the 13_m1ts mu,st be
carried out with care. A general ‘bheorem for the:
continuity of U(S)» and aU(S)/ an -along a line norma.l\
'bq A can be constructed in a ma:ax\xéi analogous to the
in"aegré.l theorems of potential functions. The  following
- is a formal evaluation' of -the limits.

\ Consider at first the 1limit of the leading "berm on
the left hand side of equation (2.11)

o -~ - 3e(z,z,)
. lim JU(;O\) —2 aa
. )
£+£o ¢ . an0

N

The suffix (s) is dropped for the moment, and o}
indicates that the 1imit is approached from the positive
' side of the normal Eo; ‘Since aG(g;go)/ dn_  is singular

“at r-.:ro‘, we exclude the source point from the suvrface.
. ~ ~ . )
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“integral by encircling it with a small area Z » In the
neighborhood of Q(;o), the Green's function for the wave
equation (Equation 2.7b), can be approximated by its

static value

1
Glr,r )=
~'~o
41T|r—r
~ %0
Hence, .
' 36 (z,z )
1lim “ U(ggo) ' dA . =
rer* ' 'ano °
A .

-~ 1 - a 1 )
T um || U(p) T aa_+

AT rHr+ ° an |r-r
-~ "~0 3 o I~ =o
’ aG(’{"EO) '
lim X Uu(xr.) v aa
, ~0 0
r—»rg ano
A-3,

The limit of the second term on the right can be
evaluated directly. because 3G/ dn_~ is conbinious at

A-%, . For the first term,one notes that

3 _* By (zz) g
-9 O=._ o 30 dA0= do((r!ro) y
on_ |r-r | |z-x | ‘
0 '~ =o" ~ ~0

where dot is the solid angle subtended by the surface

a_Ao.W,ith a smoo*bh surface at ’:go,one then obtains
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1
1im j U(ﬁx;d\) 9 d.Ao.-:. U( 1im “ dol = 2wu(x )
£+£O X ano lmol E*}e z

The final answer is then

oG(z,r ) 1
‘1im “ U(’:go) f‘—_'_,*_(‘)— dAo-_—_-___— U(Eo)- +

S EIrEg A oamy 2
PV || Ulz,)) — - dA o, r=r.  (2.13)
. ~ ~ .0 ' ~ ~0 .

where P.V. designates the principal value of the:

integrai as defined by

P.v;f ﬂ F(x,y) ax ay 1lim ﬁ F(%;&) ax dy (2;14)
_ ' A R Z—a;O A-s o '

The Limit of fhe second integral in (2.11) as r+z*
can be evaluated directly if the unknown function

aU(S)(r )/“an satisfies the Holder condition(l)fw
Y=o’ %%

(1) A function f£(r) is said to satisfy the Holder
condition at_go if there‘are>threg positive constants
a,b and ¢ such that

£(2) - £z )| <2 |zz e
‘for all points r for which lg—golcb; When 0 <c<£l, this

" is lmown as the Lipschitz condition. ~

-~
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-

Thus as 2—»5; y equation (2.11) reduces %o

A amo |
. aU(S) (z,) |
~G(‘f"5a) d.Ao R r on A (2.15)

The statement "'"3 on‘Aj' means that r is set equal %o T
af'l‘;ei' integration, where r f.art_a_ﬁhhe'f.coor_dinates of the~
surface. points, -and the principal:value of the integral .
is to be taken whenever it becomes necessary.Applying

the same limiting prqcess to equatiom (2.12) we get

1 30 %/ (x) . AG(z,r ) 7

2 _ 23 ﬂ[ﬂ(S)(SJ %)

2 am-  an an, o

&(z,z,) — ]dAb y E: on A - (2:16)
o o .

‘Equation’ (2.15) and (2.16) show that the wave furobion
(s) (r ) and its normal derivative aU(S)(r Y/ dn are .
/ not :an'iependent of each other on the surface. If | \
(S)(r )/ 3an_is Xnown at A, U(S) (r ) must satls,y the
mtegral eQua'b:Lon (2 15) which is of 'the second kind
of Fredholm—type integral equation (2.16). On the other
hand, if the u(s) )
) aU(S) (Eo)/ ano is then determined by equation (2.15),

which becomes a Fredholm integral equation of the first

is prescribed at the surface A



kind. -

In many problems the boundary values are
prescribed in terms of the total wave functlon U(t) or
aU(t)/ an. It is then more convenient to derive a set
of integral equations for the*total wave. This can be
(i )
which has no 31ngular1ty‘1n81de the boundary A, hence

satisfies the Helmholtz first formula 7
( )(r )

(i)
au* (;_'0)
)| [tz ——= —

A \ - o o | o

done easily by notlng that -the incident wave U

aG(r,r )

], ak,=0

r in V.

)

Adding the above equality to equation (2.11) and using

(2.10), one finds

17

by, . | ¥lg,x)
O ﬂ (69 ) EEE)
A an,
(+) |
() ,\ |
6lryx,) ’ : ] aA (t)(r) rin V' (2.17)

By letting r approach %oz as in equa:bj.on' (2415), or by

differentiating it and than taking the limit as in

equation (2.16), it is easy to obtain

-
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: e, -
U(l) (£)+Jj [U(t) (5‘0) ‘ (E 20) —
| ) , 5;;ff |
(6}, |
, U " (x ) 1 . :
6(z,z,) ————————9—] aa=— 0 (zx) , rona . (2.18)
% o i

dA = — sy T on A

(2419)

Again the integrals are evaluated in the sense c;f
principal values. Solut:.ons of equations (2.15),(2. 16),
(2:18), or (2.19) y:Lel_d the values of U(S) (t)
their norfhal derivatives, at the bounda.ry A‘, from which
the values of the corresponding dquantities in the region
V owbside A can be obbained using the equations (2.11) or
(2.17) | |

- Two special bound'zry conditions are to be no’ced. One
is that the total field U(t)

that is U(s) ( ), o This is usually referred to as

vanishes on the surface A

Dirichlet's conditione.

The second special boundary condition is that the"

(%)

normal derivative of u vanishes on the surface A, or
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equivalently, = - o This is known as
In ' 3n

Nevumann's conditione.

For either of these tﬁo types of boundary-condifions;
. the integral equations are greatly simplified and are
- 1listed below.

(4)_

(1) Dirichlet Condition U (Uﬁs)== - U(i))

o
on A, Equation (2.18) reduces %o

(t)(r )

U(l)(z): ﬂ G(r,r ) — "% @A«b , T on & (2.20)
A B 31’10 ' {

‘ .
Similarly equation (2.19) becomes
] ' :

|

,aus(i)(g) 1 30" (2) H'BG(E;}“O) ‘3U(t)(2£‘o_)
+

an 2 - 32n n dn -3,

r on & (2.21)

(2) Neumann Condition aU(t)/ dn=0 on A. Equation.
(2. 19) and (2. 18) becomes .

(i) -
ayu; ( ) BG(I',I‘ )

sy T on A

0
o)

(2.22)



. 1 o
o @y =— ol (@)

2

respectively .

' 3c(r,r )
i j[ oy HEES

A . ano

r on A

dA

o

20

(2.23)
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2,3 Method of Hilbert-Schmidt

The Fredholm :m'begral equa'blon of the first kind
for T(r) 3 '

| f'(;;)'zﬂ G(z,z ) T(z,) a4, Tonh - (2.24)
A - .

can be solved if the kernel GE(E;EQ) can be expandéd
_into a series of orthogonzl 'funct;ions suitable for the:
surface Ay Tet S: (-fc»') (h=l 2"'*3;;‘. Q) be the orthogonal .
functions which satlsfles the wave equat:.on and ‘the

orthogonality condl'blon - . ;

. {l (m n) , | |
H S (r) S (r) w(r) GA— - ' (2.25)
A l 0 (m#n) . ‘

where w(r) is a weighting functiond Suppose G‘(E;’}:O) also

admits the following series expension -
| G’é<£,so>=:z;}bn 8,(x) 5,z

" We then expand the given function f(r) and the unknown

function T(go) “into two series of the form
£(z) :;La‘n Sn(z) o : : o

‘ T(EO){Z;% Sm(gq)]W(;‘O)

By substituting the three series in the integral equation;

LY
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One obtains

Z?'n Sn(g)-:ZZ[cm Py Sn(f) ﬂ. W(Eo) Sn(zo) Sm(_so)] d‘A:o
" "o A |

-

r on A
"~

which,in view of the orthogonality condi-bi‘-on;fixes the

wnknown coefficient cn as

Cn =an/ ‘bni"* o y n=1,2,000 - -

This,in essence,is the Hilbert-Schmidt's method,and
its applications o particular problems will be given in

the following sections.
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- ‘CHAPTER: I1I

P

NUMERICAL RESULTS:

3.1 Scattering by Circular Gylindrical Objects
© 371.1 Scattering by a Cavity

Consider a circular c'ylihdricalkcavity in an
 infinitely extended solid as shown in Fig.(3:1)s The
cylinder has a radius -of a:."‘JI-evl;‘a SH-wave propagating
in the pogitive >_<+-direc*bi'on,be"-'inciden’b: on it. The. wave .
will be scattered by the cylinder, and the question is =
to find the scattered wave form, both on the boundary -
of the cavity and outside, ive., T>a.

Equation (2:22) in two-dimensional case becomes

B P
LI XU(t)(r) W)  (20227)
: : "~0 o
‘Bn anr : an . o

A

‘where in the two dimensional case the Green's function is
[4]
AN G D W
G(z,r, ) =(i/4) B, (xlz-r _|)-
Tn the cylindrical coordinates (r,8 ), one can write [4]
Cy gD
G(z,z )= (i/4) Y cos m(8-8,)

m=0

l 7, 0e0) B (e ), rar

(3.1)



where Jm(z) and. H;;)(z) are the m-th order Bessel

function and Hankel function of the first kind respectively.

Flg. 3 71 Cerular Cyllndrlcal Cav1ty
‘and Inc1dent Slmple Harmonic

, SH-waves

The incident'SH—wave along the xX-axis is represented
by [14] — |

ED (£)=EOZ (?m sm 3_(1) cos m»g‘\ o (3fi;g)

.

where U is the amplitude of the Waveﬂandi€b=»l and
€m= 2 fOI‘ m=i;2,3v;ooo‘ P
:Assumingfthat Uit),on the surface of fhe scatterérAcan
. be written in the form
(). -y R | | ,.
A KEO)_ B cos n 9, o (3f3)

equation (2.227) takes the form



o, T aw
| ,aU(l)(r) - X Z
- —_——— i/4) ( B 9 )
- an 1 L cos n
o L (3.4)
1), | 1
ZJ(k)H (k:r')cosm(e 8) Sade

: where prime indicates dlfferentla'b:.on with respec’c to Toe
Note that .

21T | . | | | V'/ ) o " o ’ : m‘* n . -
© . o ; fTcos n@ m=n

Equation (3:4) together with (3.2) becomes

b A\

-—U)ze i g7 (ka) cos me

m=0

(:Lﬂa/A,)ZB J (k ) H(l)(ka) cos nB

=0

Usirig%-bhe orthogonality condition-for the circularpfunctiof;—,‘

cos:n® , in the above equa“bi'.on,wke. get

-E.,:L U,

B =
o (11Ta/4) H(l)(ka)

: . . N
/ [}

Once the value of U(t) over the surface A (r-a) is

; lmown,'bhe ‘scattered wave in the field r>a can be

t
calculated from (2. 17) since U(S) ( ) (1) wae‘re

B o | BQGAZ\Q\UN\IERS\TE%\ TP



‘aU(’t');(g_:‘vb)/anf-O .for a cavity.

v

2 :
) S 3G( )
U(S)(£)= U(t) (50) —.:_r___ a ao
o dn,
' 21 .
(TSt |
=-0, l(  — cos n® )
oMy o 'ﬁg.l)(k ) .

s n

"»['ZJ:-’G??*) 50 () com m (0 - 6 )]1f

t

Using equation (3.5) again,we get

oo 3’ (xa) Y
U(S)(r)= - UOZ gn i '____n y Hr(ll) (kr) cos nb
o M) :

Hence,:m the case of a cav:.-by, the total field ou'bs:.de

the scatterers 1s

¥ (z) = u,‘ 2 () -i-u(?) (x)

—
~

3/xa) gy |
=0 } E i [J (k) - 2 H(]f)(_l&z')] cos nd
— (1)/ n
n=c H (ka)

- Numerical results for the displacement and the
tengential stress fields on the boundary of the scatterer,
due to the scattered waves are presented 1n Pigures. 1 and

3 resﬁec*bively for different values of ka. We also present



~

the distribution of the dlsplacemen’c at 'bhe far f:t.eld
(r/a=2000) in F:Lgures 2.
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3.1.2 Scattering by a rigid inclusion

In the case of scattering by a rigid inclusion,the
total wave field U(t) on the boundary [' satisfies the
integral equation

(t),.
. 30 " (x))
U(l) (:'E):j G(:EQ:E'O) : ~0 dSo K r on'_‘ ‘ (2.201)
r | | |

ano

If we assume the normal derivative of the total wave field

at ro—_— a2 %o be of the form

aU(’b)(I‘ ) 0o ' - _ :
ZB cos. ne (36)

ano

. / .
equation (2.207) can be written as

21

U{i)“(g) = (i/4) j{ ( ZBn cos ~neo)
~ : % =0 -

[ZJ (ka) H(l)(k:z-) cos m (9 -9 )]} a deo

"(:Lﬂ’a/4)ZB J (xa) H(l)(lcr') cos n® ron [

n=0

. . i . .
Similar to the cavity case, replacing Us( )(30) by its
series"represen'bation;‘ the unknown coefficients B’n can

be shown to be



-4t e
n

B = - U (3.7)
n ;
Wa Hr(Ll) (ka) ° : " \

Knowing the value for BU(t)/ an  at the surface A,
(r= a), the scattered waves in the reglon ™>a can be -

calculated from equa:blon (2.17), 1.e.,' .

o) (1) 4 ”[ (t)( --») aG(r,r)
- A

Us:Ln.g the boundary condltlon U(’b)(r )=0 and: no‘l::mg -bha'b

(S) (r) U(t)(r) (1) (r) the above equation “n: 'bwo

dimensions reduces to - _ : L E
(S) | 4 - | aU'(t) (Eo) ~ - -
(r)=- | &(ryz,)) — as; 4y rin i (3.8)
- p ¢ . ano . ,

Substituting equations (3.6),(3.7) and using the series
representation for the Green's function in the @bove

equation, and carrying out the integrals we: get



30

11..(8)(;;)': --,(iﬁ_a/p,)Z/Bn' 3. (ka) ngl)(lcr) cos :n'ev

= - %Z% i® [Jh(ka)/HS)'(ka)] Hfll)(m)» cos %19

n=o0

i

Numerical'examples'regar&ing the far field displacementé
and the normal stress aistributiOn on ‘the boundary of the
‘scatterer due to the scattered waves are shown in-Figures

4 and 5,respectively:tFor,farffieldibaléulations-r/aj'is:

taken to be 20000 - -
)) » {



352 Scattermg by an Elllptlcal Cylindrical Obgec*B‘
3. 2.1 Sca’ctermg by a Gavrby

From equation (2:22°), it is seen that, the botal
(+)

wave U on the boundary [* for the problem of scattering -

by a cavity sa'bisfies the: :Ln“l:egraﬂ.\jequa'b:i.ion<

(i) : N
30 (1) ac(zr,r.) .
- —— = X (t)(r ) -——E—E—o—— as: A (2.227)
| gn -~ an r any o - ’

The normal derivative of +the Green's. funcﬁion'G(fx_f,"‘éé);
in the above equation using chain rule, becomes: ... . -

e

oG a¢ Jr : ‘ .
= . —0 | » L  _(3"-:10)

9N, 3T, ¢!,

where in cylindrical coordinates (r,@) from equation (_3';‘1)

X I’ (kr ) H(l)(kr) ," r>r

(1/4)Zcos m- (9— 6,)
3r : . m=0 - -

aG{g;f;O)

(341)
"bhe primes mdlca’cmg differentiation with respect to ro.
‘ 'l‘he boundary of an elliptical scatterer, in polar

coordinates is given by the relation

N



S ‘ | (
T ' (3.12)

\/atzs:i.n2 0,+ bzco"sae0

Hence,the derivative of r, with respect to the outward

normail no is

ar; " bzcoszebd—azsinzeoi _
= : ' - (3.13)

- f;iibd’éo'szeo-i- a4s:i'n290

-where ‘a and b are the ‘major énd minor axies of theellipse.
A detailed der:wa’c:.on of the a'bove e><press:|.ons (3.12) and’
(3.13) are given in Append:.x.
The integral in equation (23 221 ) over 'bhe arc 1ength

can now bhe 'bransformed :m'bo an.integral over the angle 9
using the relation

a4sin2eo+b4cos?'eo _ | . |
as =ab (- ‘ ae, - - (3a14)

(gzsjn290+b?cos290)3 - "

~

see Appendix for the details. Hence, using equation (3.3)
and the eguations (3.10) thru (3:14) in eguation (2:227),

.we gevb |

o (1) S 27 ,

3w~ (x) co ’
- _.__i = (i/4) __a_ {(ZBn cos n® )[ZJ (k:c-) H(l)(k:c )

an 0‘ n:o‘ m=0
- ‘ o ab , \
cosm (6 - 90) : .]l}dﬁ
azsin290+b2cos290

(3.15)

o



Utilizing the trigo‘n’ome'br.ic identity

cos ng  cos. m(® -,?O) =
'1/2 cos mG[cos (m+n) 9°+ cos (m ~ n) 90]4— (3.16)
1/2 sin m@ [sin (m+n)\ 9, + sj_n (m - n) 96]

. . - N
Iy .

equation (3:15) yield

3ot (x) oy
- (1/8) XZB cos m@ Ji (lcr)
3n : an peom=2 P

rd (l)(kr ) ab ae

j[cos(m-u-p) 8 +cos(m-p) 9 ]
2

\ -
, . © . : Va sin g-l-b cos29 :

+ (1/8) - B_ sin mf J(Icr')
;mc :

=N (l)(kr ) ab as
I[sin(m'-r'p) e +sm(m—:p) 8} ] -
2 o

a s:.n g +’b2cos e

R

(3T

De_afining
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2 - (1)
. | : (k:r') ab a8

Apm= [cos(m+p) 0+ cos(m—p)e ] -

0 : o '\/a2sin290+b2coszeou ‘ -
- zrr | :A | | . , N

, S Hr(nl)(kr ) 2b a8

6 .= | [pin(mp) g;+sin(m-n)e 2 =

B oo - \/azginzeék bzcoszeo

B € 1)

Equation (3.‘17)‘,can be évrif%:en-. ag
& = (i/8) — Z % By '(kr) [A cos mf +

an an n=ao m~0
G 51 mo| . (3.19)

! where pr:Lme :mdlcates dlfferen’cla‘b:.on with respect %o r. B
“'Recalllng equation (3 2) the normal derivative of the

,mcldent field on the boundary can,be written as

ag() (g.o) |

= U
0

“am j 81’10

Hence,'equa'bion (3.19) evaluated on the boundary becomes -

—UZQ :L}JW'(kr)cosmB

m=0 - _
: : \

(1/8)ZZB Ja (kr ) (A ‘cos mB+C  sin mQ_ )

=0 m=0
(3.20)
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Note that 90 appeax'"s impiicitly in’the\’argumentvof the
JTn;(};:t"o) '—ro is a function of § ~the well lmown orthogone _
ity condi-bion for cos m9 doesn't apply here to solve
equation (3.20) for the unk:nown coefflclen'bs 'B . S:ane
‘equation (3. 20) is true for all B, between 0° and 360°,

one can ‘take g = 0 . This choise simplifies equa'blon (3.20)

to
L

ze 3, = wmzzx(m)s w ()

N=8 m=g
Substituting "t;hej relation [18] :
, k- | A
ij(«kro) = _2_ [ J‘m—l(k?d) - Jﬁm:rl(kro) ] :

into equation (3.21),yields

l S R )
B sz _Eim"z:' ['ﬁm-l(l_EO) m«x—l(kr )]
- m

/o) 5. s, [J er ) = 3, (m)]

n=Cc m=t
y (3:22)
Recall the orthogonality condition [19]
o
L3 t) at =

St : 'Tj'xi+2n+l(t_)_ Jv 2m 1( )
(Wl :

g o (m# ) . (3423)

1 N
\/2(2n+v+l) “(m=n) (v¢nsm>-1) * .



Mul'blply:_ng equation (3.22) by I (k:c' )/k:r yintegrating

with respect to d(k:r ) from zero to mfln::by and using
(3s 23) ,we get

(24 .m 1 - = - 1 ) g
- Ujo;o @m * _2(m—l') S(m—l)s o 2(msd) 6(m+1)s ] =

-(i/ 8’22%*‘% [Z(mii) ;S(m"l)_s' )

1

Employing the proper'liy of kronecker delta,the above °
equation takes the form

- - S+l .s-—l] -

| - U’o [G_sﬂ 35T - es—l i |

E 8)[ n “n(s41) fZE;B x (s—l)] y §21,0,1,2,04
-n=0 —y !

" (3.24)

Note 'tha'b.ifdr:nega'bive values-of the subscripts both & .. -
and A n(s-1) are to be taken as zero because those terms
correspond to negative values of m in equation (3 22)

In equation (3:24) everything is kmown,except Bn; and

this system of equations can easily be solved for the
unknowns. o

To~find The: scattered wave for r not on the b‘oundai'y P,
e}qua’cion (2.17) must be. used. In two dimensional case we

have



dSo - ;i' o (3.25%

3 n_

: e
U(S)(£)=ﬁj Uﬂt)(gd) __;ffifkf_
rl

Using equations (3.3),(3.10),(3. 11) (3.13) ‘and (3.14),
equation (3.25) becomes o

B S

o) () = (1/8) Y, 1) (1 hz B, cos n8 cos m(e - 8
, = 1
gollr ) - — ae

] 0 ~ 1 O
. Va'?si’nzg '0+b2cos;2go S o
(3.26)

Using the trigonometric rela'blon (3.16), equation (3. 26)

$akes the form

(S) (r) = (1/8)ZZH(1) (kr) . cos: mb- B

Mm=0 ‘n=o

S

J{[’gos (mfn) eo+,co’s(m-fn‘) 90]
2 .. 2 2 2
o _ 2 sin"g +b cos’ 6,
3 | . .
RN (1/8)2211(1)(1{:0) sin mo B
m=0 =0

anw

r'a
Jﬁ(kro) ab dOo

ﬁ [sin _(m+n)96‘t-\s_‘jn(m-—n) eo] .
2 . 2. 2.
o 4 Va s:.n290+b cos 96

(3.27)



The a2bove eq_ua'tlon is very similar in nature to tha'h

given in equation (3717) and can be written as

(s) (z)= (3_/8)2213 H(l)(kr) [A cos m8+C‘* sin m(-)]

n=0 M=o

(3.28)

where A™ " ang C* have the same form as A and )
nm Pm: “pm

given by equation (3.’.\.8) except the Hankel functlons
(1) (lcr ) in the latber are to be replaced ‘by ‘Bessel
functlons I (k:r Y& By subs*bl'bu'b:.ng ‘the values of B

obtained f:'-:om equat:.on (3.24) +the displacement fleld

for any value of r due to the scattered waves can be
ob-ban_ned. /

Numerical resvlts for the far field displacements

(r =2000 ro) are presented in Figure 6.



3.2.2 Scattering by 2 rigid inclusion

In the scattering by a rigid inclusion case, as in
the section (3.1 2), ‘the total wave (t) on the boundary ['

‘ sa:blsfles the mtegra;l equation

(1) SR A ER e |
U}‘-} (£)= ! G’(:E,:Eo) ———— e dSO . ’ —I-‘ on r: o
/™n : . -
| P o - R

, Usé'mg ‘equations (3.1) "and ,(3;"6) and going through &

«similar.procedurefas explained in the previous section

we obtain ‘ ‘
2 |
(l) (r)= (1/4)223 J (kr) X cos-m/(e - 90) cos n 90 )
n=0 m=0 .
4 . 2 4L 2 '
a'sin p +bcos @
53 (xr ) ab |, ° o 7&90
m et TN s o o o 3
: (a“sin 90+b cos' ‘90) ?

(3.29)
Carrying ou'E ‘l:hé in‘cegra-bion we getb
n=o Mm=0

(1) (I‘) "(1/8)Zi cos m@ J (kr) B, Do

' ; (1/8)Zism me J (k:r‘) B, E

n=0 Mm=0

wlhiere



21

Dnm= L[cos(m«-p) 804- cos(m—n? Bo] ‘Hl(nl’)(ho) ab

. 0

a4sin290j- b4cose29v z )
| ° as,
(azsinze + b2c0826<)3 |
-~ 0 0
- | (13.30)
B =0 [sin(men) B + sin(mn) 8 150 (e ) ap
nm || 7 o . o” m’ o’ ¥
o . ) e
aA’s»in?G(v)li-‘ b4éos2-elév o -
[deo

2 .2, .2
(a7sin"g + b cos-:290)3

Recalling the: e><press1on for U( )(r), equa’clon(3 2), ’che

above equation at the boundary becomes .

UZG_ i JJ(k:c)cosme

-m=0

(1/8)2228 7J’ (k:c- ) [DJ . cos me +E -sin mQ ]

n=o m=0

To solve for the unknown coefflclenﬁs B .+ We once aga:m
choose 6 o_ and apply the: orthogonall’cy condition as ‘

explained in Section (37.'2;1), thus we obtain the- equation

U e i (1/8)ZB D, s with :=0,1,2,3,....

N=0

N . , - o (3431)

40
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which is analogous o equation (3.24). Equation (3:31)

can easily —be\ solved for Bn: and together with eduation

(3,6) they give the BUr’(t)‘/ 3n at the boundary of the
scatterer. In the numerical calculations we have solved
for the first 'ben Bn o ,
Once the value for Z\U(t)/ dn on the surface is
known, using v
am(t) (x )

ol® () = - S &(r,z ) 2 asy

r o

the: scattered wave’ field for r outside the: surface of-
the scabtbterer can be o‘bta:med. Substl’cu'blng G(r,r ),

( )(r )/ Bn and asi - one obtains

20
aA’sim Bo~+b40osze- ’ri .
cos n®_ J (kr ) ab » deo
o 'm0 3
(asme +bcose) :
(3032)

Pinzlly using equation (3.16), equation (3.32) becomes
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) (S)(r) = - (1/8)223 H(l) (kr) cos mB

m=0 nz0
([cos (m+n)‘»B ;éos (m-n)8 ] J (kr ‘) ab
1 i Y S 0 "m0 T
(o}

a4sin260+b4cds?9° : -( ,,
: ab

8]

(azsinZGOQP bzcoszeo) 3

- (1/8)) ) B B (1) sin n®

2 . 4 _ o
| J{[sm (m+n) 60+sin(m—n) Bo]Jm(k:c?d) ab

o]

~ 1

- ) a4sin260+ bb'coszeo

% lw,
(azsinzeo_-\- 'b2¢osz-eo)3-£

(3:33)

The -above equation can -be-written:ag. wow g o T

i
b,

(S)(r)__ (1/8)223 H(l)(kr) [D) cos: mB+E* ‘sin mB]

n=o0 m=0

K

- (3u34)



where D:m and’ E:m _:Ahaire‘ fl-,‘he\ aame'.form; ag D and E n
. given by equation (3.30) except: the Hankel functions
Hl(nl);(krm) in the: latter are to be_‘ replaced by Beése’li
functions Jémr.(kr’o)‘ By substituting the values of Bn
obtained from equation (3+31)) the displacement field
for any vé.lue_ of r due to the scattered waves can be
obtained.:

Numerical results for the far—field displacements

(r =2000 ro) are presented in Figure: '7/;‘

43



. CHAPTER IV

DISCUSSION AND CONCLUSION

This work's goal is the integrel formulation of -
field equations of elasticity theory in an attempt to
ahalyse the scattering phenomenon of SH-waves from
circular and elliptical cavities and rigid inclusions.
To this end the\gbverning differential equation is _

transformed into an integral equation and solved by the
~.Hilbert—Schmidt method.This method is first applied to -
the scattering of SH-waves by a circular cavity and rigid
inclusion.It is lmown that the Hilbert-Schmidt method

is appllcable only when the kermel of the 1ntegral
equation can be. represented by a series of orthogonal
Iunctlons suitable for the geometry of therscatuerer.In
theieaee of a circular cjlinder;the orthogonal functions
are the Beesel functions and using orthogonality condi_
tions,this problem is solved exactly;However;the-fesult
being in the form of an infinite series,should be trunca
" fed at'spmelpoi;ﬁ.to make it Suitabie,for'numerical
computation.To this aim only the first ten exPreseions
areiﬁsed;and ﬁhe:resulfs for near— and far-field
"disﬁlaeements with near-field stress distributions are
dbtained;The graphs corresponding to these'soluiions
are found to be almost eXact.

Then the Hllbert~Schmldt theory is used to solve
the scattering problem by elliptical cyllnder.Ba31cally,
the diffraction of waves by an elliptic cylinder is not

much different from the diffraction caused by a circular
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cylinder.There is of coufse no difficulty in setting up
the approprlate integral equatlons for a particular
problem the difficulty lies in solving them.In mathemati
" cal ana1y81s,because of the geometry of the scatterer an
entirely different wave: function must be: used,1nvolv1ng
products of Mathieu functions. ,
| Since Bessel functions are eas1er Yo handle and more -
'Sultable to numerical computatlon Bessel functlans are
used 1nstead of Mathmeu for the scattering problem by an
elliptical cyllnderhand ‘this choise aside from the
ellipticailcasé,allOWS-one~t0‘deal»0ther.shapes much
'more'efficientlyi7 ,

On the other hand,the use of Bessel functions instead
of Mathieﬁ makes it'imposéible‘tO'benefit from the
orthogonality‘conditions and fhe‘resulting integrals are
solved numerically}Again only“%hexfirst ten expressions -
of the infinite series are used to plot theﬂnearf‘and{
farLfield displacements.Since far~-field solutions converge}

! much mome faster than that of the mear—field,only .. i
excellent results for this case could be obtained. Alsox*
the graphs representlng far—fleld solutions of the -
scatbered wave are found to be in fair agreement for up
to kél;'whéreas “for k >1 the solutions roughly resemble
those‘bf the exact_solution;This is also due to the fact
thatthe series with increasing wave number,loses its

: asymptotié character;thouéh it is stilllconvergen;. S
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Figure 2

Figure 3

s

Figure 4

i

- RESULTS -

FIGURE CAPTIONS

' Displacement at the boundary of a circular

cavity,due to the scattered wave: .field.
(2) kw=0:s1 | .
(b) k2=0.5 |
(e) ka=1.0
() ka=10,0 |
Far—fleld dlsplacement due o 'hhe scattered
wave field from a circular cavri:y
(2) ka=0.1
, (b) ka=0.5 ‘- _
() kw=1.0 .
(a) ke = =5,0
(e) ka= lO 0 _
Tengential strees l aU(S)/aQ‘ on the: 'bounda:r'y
of a circular cavity due to the sca't“bere_:d wave-‘
field - |
(a) ka=0.1
’ (b) ka:-'-_O.f5
(¢) k=130

(d) ka=10.0 L

Far—-field dlSplacemen'b dve to the sca:b'berea
wave f:Leld from a r:l.gld circular :mclus:.on.
(2) xa=0.1 | |
(b) ka=0.5 -

(¢) ka=1.0

(d) xa=5.0



.Figure 5  Normal stress |3U€S)/ 3r| on the boundary
of a rigid eircular inclusion due %o the
scattered wave field. |

(a) ka=0.1
| (b) xa=0.5
S (e) w10 |
Figure 6' Far-field displacement due to the scattered
' wave field from an elliptical cavi't.y.ﬂ'
(2) x=0.1 , a=1.0 , b=0.5 |
(B) k=01 , a=0J5 , b=1.0
(¢) ¥=0.5 , &=1.0 , b=0.5

(8) ¥=0.5 , a=0.5 , b=1.0
(e) ¥=1.0 , =&=1.0 , Db=0.5
_(f)>_kv=lt.i0' ;, @=05 , B=1.0
(g) k=5.0 , ==1.0 ,; B=0J5
(H) k=5.0 , @2=0.5 , b=1.0
(1) ¥=5.0 ' @=0)5 , bB=2.5
Figure T Far-field displacement due Yo 'l:he’_sca'b’cgred

wave field from a:._rigid elliptical :mcl;;ﬁsion;z
() k=1:0 , 2=1.0 , b=05 '

(b) ¥=1.0 , =@=0.5 , B=1.0

(¢) k=5.0 a;=1.‘o, , b=0.5

(d) ¥=5.0 , a=0.5 , b=1.0



48

Exact solution [15]

Figure:it Displacement at the boundary of a circular

cavity;due to the scattered wave field.
- 1(a) ka=0.1



Exact

solution [15]

Pigure

1(b) ka=0.5
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1.2

Exact Solution [lSj

Figure 1(c) ka=1.0



Fi
| ‘gt'zrer- 1(a) ka=10.,0
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/ S - | o E%éctréolﬁti§n [i5j€6'

Pigure 2 TFar-field displacement due to the scatbered

wave: field from a c1rcular cavity.

2(a) ka= 0 1

FU(S)

(*)Thls figure is a polar plot of 11m| kr |
" D00 e.
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Figure 2(b) ka=0.5

(%) | e o'
This figure is a polar plot of 1im

ikr
Ty € -
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ﬁxact soiutidn [15]"&)

Fié\ui'e‘ 2(ec) ka=1.0

fE‘U(S)

ikr .

sk .
¢ )This figure is a polar plot of 1lim

Y'oeo




Figure: 2(d) ka=5s0 .



oo ) Exact solution [1

—~8.0

|

5_](;’)

Figure 2(e) ka=10.0

N . = o'®)
*#pnis pigure is a polar plot of Lim | =
N I 0 e
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>-1)

Figure 3

3(a)

Tangential streSs IaU(S)/39| on the

boundary of a circular cavity due 0 ho

the scattered wave field.

ka= Ool



Exact solution [15]

Figure 3(b)  ka=0.5
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Exact svoi-u-'bion‘[l“i] 'L

5)' a : +=1,0

t

Figure 3(c) ka=1.0



Figure 3(d) kxa=10.0
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Exact s‘o]v.u'bi?dn [15]@)

| Figﬁre 4 Far-field displacement: due to

the scattered wave field from
a ¥igid circular inclvsion.

4(a) ¥xa=0.1

(s) |
() R
o, This figure is a polar plot of 1lim ——1—1{;—-

X—>eo e
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Exact solution [15]%

~ Figure 4(b) ka =005

. )This figure is a polar plot of 1lim
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S

Figure 4(c) ka=1.0

s
W) e
This figure is a, polar plot of lim |




e 4(4)  ka
Figur
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Exact solution [15]

e

Figure 5 Normal stress:laU(S)/-ar | on

the boundary of a rigid circular

inclusion due to the scattered
wave field. '

5(a) ka=0.1
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Exact solution [15]

Figure 5(b) ka =0.5



Exaé'l: solufion [15]

-

Figure 5(c¢) ka=1.0
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Figure 6 Far-field displacement due to the scattored

wave figldrfrom an elliptical caviﬁy:
6(a) k=01 , a=1.0 , b=0.5



+ -.00056

< \
Figure 6(b

) k=01 , a=0i5 , b=1.0
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 Pigure i
: 6(c |
) k=0:5 s
S a=1.0 4.
_ 0 4, b=0¢



-1

~.0060

Figure 6 .
(a) k=0.5 , ==0J
| 3y = .5 - )
; D=1:0



‘Exact

T2

- P S |
solution [20]

—

T'014

T-+014

—»

-

Join

Figure 6(e) k=1,0

s

a=1.0

s

b=0.5
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. a _ . Exact solﬁfion [20]

013

b

L 013
}

Figure 6(f) k=1.0 , a=0.5 , Db=1.,0



~

IFiguI‘e 6(g) k= 540 , a=1,0

0.5
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Exact solution [20]

Figure 6(h) k=50 , a=0.5 , b=1.0
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3" ‘;

Exact solution [20]

W

Figure 6(2) k=5:0 | a=0.5 . b=2.5

P——
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4

N/

Exact solution [20]

Figure 7 TFar-field displacement due to the scattered
wave field from a rigid elliptical inclusions -



Figure 7(b) k=10 , @=0,5 , b=1.0

|
o



o

Exact solution [20]

Figure

79
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Exact solution [20]

 e——

-0 4090
>
—
>
—

Figure 7(d) k=5.0 , a=0.5 , b=1.0
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. APPENDIX

rd

The equation of an ellipse is

N

where

-

Equation (A1) can also be written as

b2><2+ a2y2; a2b2
Substitufing for X and y, the eXpressions in eduation

(A.2) and solving for T :

ab : ‘ ab -
= ©(AV3)

. ™ = 5
. \[b200329 + azsinzg VaQ + (b2—g.2) cos’8

The derivative of r with respect to0.0 is:

-~
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dr ab (a2—b2)' cos@ sing . ‘ | (4.4)
ae (bzcosze + azsinzf}' )3/:2 |
Arc length is given by ' o .

— =\[[><’(9)] +fy (9]
a8 |

‘where prime indicates differentiation with Bespect to §

Using (A.2) 4S/38 can be found as
® 2 2
—=Jr +r
ae

Substituting equations (A.3) and-(A.4) into (A.5), after

~

simple algebra, one obtains

a4sin29 + bA’cosze

ds = ab : a6 | | (A.6)

/ (2%sine +b%cos’e )3 |

It is known that

,/2 2
r=yx+4+7

Hence “ /



d 2 .. 2 2
_ =2 ST -
L T A A
X . . ' .
- i+ y i o (A7)
2 2 2. =~ ,
X +5¥ X +7¥
Substituting
§=r cosB - and Y= sin®
into eguation (AST)
r cos® . 1 sind |

~

\/rzéos?sé + r_?sin2g ¢rzcosze+r2sin29

=cos@ i+sing | | (228)
Since
2 2
x ¥ :
-+t =1 ~ : o
'_a.2 .b2

the wnit outward normal is

22 1+ 22
a ~ Db ~
n=
ax? &y
.
ah ph .

Using (AJ2), the last equality becomes

o
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b2cos6 i.+azsin9 i _
= (&.9)

W
n

L

\/b cos 9+a sin 9

‘Using (A.8) and (A 9), we can find

ar ' S o
an

bPcos® i+ alsing  j

~

' (cos® i+sin j)

Vb4cos29+ a*sin®e

bzcos?Q + a'-gs:iinzzg

(n:10) -

o

Vbﬂ'coszé-i— af’sin?"g '

Setting a=bW , one obtains aS/de and ar/ 3n for

the circle as

— =2 o - (A1)
ad ’ -

ar : : ’ .
—=i (A;12)
an '
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