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ABSTRACT 

Near- and far-field solutions are presented for the­

scattering of SH-waves by a circular cavity and a rigid 

inclusion in infinite space while"' only far-field results 

are given for an elliptical geometry.Integral 'equations 

deftne the problem and these- are solved in the spirit of 

Hilbert-Schmi/dt method.The results are given in graphical 

form and compared with the existing results. 

Simple geometrical nature of the circle renders an 

exact---solutionwhereas some approximat±ons-are-needed to 

solve the' scattering problem if'_ the cross-section -of -the: 

scatterer is in thee-shape of an- ellipse-.Here _Bessel func_ 

,tions are used instead of Mathieu fvnctions as is -custo_ 

mary in literature concerning elliptical geometries.Th~ 

results obtained are in fair agreement with the known 

exact solutions for up to k~J: (k:wave number).If k>~ 
-, 

only a good idea of the shape-of the' scattered wave could 

be obtaine-d. 
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QZETCE 

Skalar kayma dalgalarJ.nJ.n (SH-dalgalarJ.nJ.n) sonsuz 

ortamda dairesel bir bo§lUk~ve rij~~~bir igcisimden 

sagJ.lmasJ.nJ.n yalom ve uzak bolge gozfunJ.eri verilmi§tir.' 

Eliptik geometri igin ise sadece'uzak bolge gozfunJ.eri 

elde edilm±§tire' Problem entegral denklemlerl~ tanxm1anmx~ 

. v~ goziimU igfu Hilbert-Schm:i!dt metodu uygu1a.nmJJ.§t:tr~· 

Sonuglar graf'ikler halinde;sunulmu§ oiup, eldeki gergek' 
i 

s onugl'arla lnyaslanrru. §tJ.r. , 

Basit geometrisi dolay~sJ.ile· dairede kesinsonug' 

alJ.nabilinmesine kt3r§J.TI eliptik sagJ.-lmaproblemihin gozilini.ii. 

igin bir taln1Il yakla§J.mlar kullanJ.lnu.§tJ.r. Lit:eratiirde 

bu tip problemlerin go·zfun:Unde· genellikle "Mathieu" .fonksi.:..., 

yonlarJ. kullanJ.lm:L'§ olmaSJ.na ragmen bu galr§madaGess:eJ] 

fonksiyonlarJ. tercih edilmi§tir. Elde' edileTh son1.~.}lar 

k-~l (k = dalga sayJ.sJ.) igin eldeki dogru gozfunJ.erc yalnn 

olmakla beraber, k>:V. durumu igin ancak sag:l.:lan dHlgan'J.n 

§eldi hakkJ.nda fikir edinilebilinmi§tir • 

• 
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" 
CHAPTER I 

INTRODUCTION 

\V,hen a disturbance propagating in a mediu~ encounters 

an object or any material discontunuity,it undergoes ref~ 

lection and refraction thus producing new waves propaga_ 

ting inside and/or outside theobject.This phenomeno:n is 

known as diffraction (scattering) of waves:Considerable 

work has _been done over the past several years to obtain 

a through theoretical and experimental understanding of 

the scattering of elastic waves from defects of different 

geometries and material properties.The main goal is that 

once a complete understandin? is obtained of the: elasti-c 

waves scattered by lmown defects_subsequent solution of 

the inverse problem,that is the identification of unknovm 

defects in structural materials,will be possible. This is 

also lmown as non-destructive eValuation of materials. 

The treatment of diffraction problems requires the­

solution to the linearized equations of elastodJrnamics 

subject_ -to the boundary conditions on the surfac:e of the­

scatterer.For a rigid body these conditions consist of -~ 

the total displacement field on the surface of the body_ 

while for a cavity the vanishing of the surface tractions 

are required. 

The literature concerning the diffraction of elastic 

waves is much less abundant for elliptic cylinders than 

for circular cylinders or spheres. The first paper we can 

trace is by Sezawa [~1,in which the solution for the 
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scattering of a 1'-wave-wasgiven dn'termsof':1!athieu ,-:'-·_C.,:" 

:f,.mctions.Later~Harumi121discti.Ss'ed-the' sc'attering-,of .both' 

1'- and S-waves,and calculated the energy distribution of 

the wave scattered by a rigid ribbon,which is treated as 
J 

the limiting case (infinite' eccentric:Lty). of a: general. '-:', " 

ellipse.' , 

, The diffraction of acoustic or electromagnetic waves 

by an ,elliptical 'obstacle has been treated extensively. 

The formal) s~lutiop. in terms of Mathie}1 f~ctions can be 

found in, books by'Mc Lachlan [3] ,and by Morse and Feshbach . 

[4] .Fo~'thesa.me geometri~ 'boundary,theanalogous';problem 
( \ / 

of the scatterilig of·electr±c~cwaveswas ,investigated in::.~,- ".-

,18,97 by Rayleigh', 151~and in 1908 ,by'-'Sieger,{6] ~whoalso 
contributed a great deal to the elliptic waVe functions. 

The pr~blem of sound waves was dealt with in 1938 by 

j Mo~se and Rubenstein, [7] ~who first presented detailed 
- / 

numerical results.for diffraction by a slit (degenerate 

ellipse) '. Subsequent publications were reviewed by 
r 

Bouwkamp [81 and Jones [9J .S~a.ttered wave-energy densities 
, ' 

at low and medium.frequency ranges were reported recently 

. ',by Barakat [r oj!~j 
An integral formulation for the problem of scattering 

of SH-waves will be presented inthis~ work.As "an alternate 
) 

to the numerical methods,Hilbert-Sehmidt~theory will be 

used to solve ~hese integr~ equations.In this meth~d the' 
(/ 

field varia~les on the boundary of the scatterer are 

expressed in terms of infinite series with Unknown coeffi_ 

?,ientswhich are determined using the boundary conditions. 

The',;IIlethoa. will be applied to'the scattering of 

SH-waves by circular ,and elliptical cylinders.Basically,the 

diffraction of waves by an ~lliptic cylinder is not much 
..­, 
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( -. 
different from that" ofa :circUlar ·-cylilider,e·speciaJ.ly when 

the' eccentricity of the elliptical cross-section is smail.l. 

The Hilbert-Schmidt method is applicable' only when 

the kernel of the integral equation can be represented by 

a series of orthogonal f'unctions suitableforthe'geometry 

of the scatterer.ln the case of an elliptic cylinder,these 
/ 

are Mathieu functions,which are difficult to evaluate 

numerically.Due to this difficulty, the basis functions of 

the circular case,~amely Bessel functions,will be used 

instead of --the Mathieu functions.Since .. the- :BesseL functions­

are easier- to handle and-niore"~suitable-_to-nUmericaJ.-··-":~-~:: 

computation,this :choiee- aside-from the elliptical- case, < 
allows one to deal other shapes much more efficiently. 

However ;'the numerical approximation of the' integra.ls 

coupled with the truncation of the infinite series 

naturally introduc'es errors.Numerica!l. -results presented 

here agre~well with the exact solutions forkr6~,whereas 

for k~ ~ the solutions roughly resemble those of the exact 

solution~1 

In jihe following chaPter., dynamic equations of elasti~ 

city' and~;:Hi1bert~~hmidt method,for solving the scattering 

problem, are discussed~'Formulation corresponding to circULar 

and elliptical cavity and rigid inclusion are presented in 

Chapter III.Next the obtained results are- discussed and 

finally they are-' shown in gra-phical form. 



. CHAPTER II 

EQUATIONS OF ELASTICITY AND A WiliTHOD OF ANALYSIS 

2.1 Dynamic Equations of Elasticity 

In a homogeneous,isotropic elastic medium,the 

displacement equations of. motion is governed by the 

celebrated Navier's equation, i.e. [17J 

2 
.. :.... 2. au 

(A +1") !~(!'.J!) +"~···~=f-2 -
. at 

/ 

where A;,andJA- are the Lame's constants with'p being 

the mass density of the medium. 
/ 

The scatt~ring theory is based on the solution of 

the above equation subject to the appropriate boundary 

conditions prescribed over a discontinuity surface. 

An anti-plane shear deformation is described by the 

displacement distribution [11J 

"x ( x, y , t) -= u (x ,y , t) :: 0 
- y 

and u -= u (x,y,t) . z z 

4 

Only the z-component of the displacement vector survives 

and hence becomes a scalar quantity denoted by u. In this 

case the equations of motion reduce to a wave equation 

2· 1 
V u(x,y,t)= 

2 c 

2 . 
d u(x,y,t) 

at2 

where c =Y plf"\ ::.is the velocity of propagation. of the 
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wave. 

Considering only harmonic waves with a circular 

frequency w " we write 

5 

Substitut:ing the above'equation :into the Navier's equation 

we get 

where k= w/c·· is the wave number. This equation is.Jmown 

as the Helmholtz equation. 

Under the assumption of anti-pl~e strain, the 

dilatation V~1J -- is zero, and the waves are rotational 

(S,:","waves). Because the .displa~ement vector of ·the wave is 

always parallel to the z-axis, which for convenience can 

be taken asly:ing on a horizontal plane, waves of 

anti-plane strain ~e called SH-waves. Strictly speak:ing, 

the name manifests itself only when there is a direction 

which can be clearly labelled as horizontal. 



2.2 Formulation of the integral equations 

In this section a method for solving the wave 

diffraction problem is discussed namely the method of 

integral equation. 

Consider two special functions U(r ) and G(r,r ) 
"'0 - "'0 

which satisfy the following Helmholtz equations 

respectively. ' 

(2~i) 

where r(x,y,z) and r (x:,Y:'-','z' ) are the position vectors 
,... / ,., 0 0 0 o· '-' 

6 

.of the "observation points" and "soUrce points" respectivel 

V2 is the Laplacian operator in the "observing coordinateS'" 
. . 2 . i. ,,' ' 

x,y,z and V the operator in "source coordinates" 
o 

Xo;'Y o;Zo~' 
MuJ.tiplying equation (2:1) by G(r,-r ), and equation 

.... -0 
., 

(2,~i2) by U(!:o)' and thensubstracting the first from the' 

seQond,yields 

Integrating equation (2~'3) over the volume with respect 

to source coordinates, see Fig.(2~1)~ we get 
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Using the following· relation: 

the left hand side· of the equation (2:4) can be written 

as 

HI 
V 

(U V2 G - G V2 U) dV = 
000 

(2.6) 

.~j(!o'( [U(!o G)] - [G(!o U)] )} dV 0 

Fig. ~ 2·.;1_ Geometry of Observation 

Points Per) and Source Points ,., 

Q(r ) for the Interior Problem. 
""0 

7 

The right hand side of the equality given in equation (2.6) 

is in a form where we can use the Gauss's theorem [4] 

fIJ· Yo.w J -V 

w.n 
rJ ""0 

a.A 
o 

where -n is the U-.1'li t outward normal to the surface A. Hence 
..... 0 



(2.6) reduces to 

where (a / on) = (n .V)~' o "'0 ,.. 
-

a~ aU 
(u -::- - G - -) alL on' an' 0 o 0 

Substituting thes-e results into equation (2.4) and 

employing the integral property of the'delta- function 

5(r-r )~" 
.v ""0 

\ 0 r outside V, 

J11 F(~o) 
,.., , 

5(r-r ) dV=-
'" IV 0 

o tF(r) V :r inside V." -
we get 

(2:7) 

) U(r) r inside A, ,., tv 

l " 
0 r outside A. -, 

The above equation is also mown as the Helmholtz first 

(ll~terior) formula. 

Helmholtz's first ,formula is applicable in the 'case­

when al~ the singu~arities of the function UCr) lie 
,v ,. 

8 

outside the surface A,shown in Fig.2.l. (By a singularity 

of U, we mean a point at which U or one of its first and 

second partial derivative is'discontinious). If on the 

other hand, all the singalarities ofU(r) lie within a 
, , ~ 

closed surface A, we can apply Green's identity to the 



region V bounded internally by A and externally by 

another closed surface B"a sphere with the center at the 
, -

origin and a large' radius R. (Fig. 2.2). The surface is 

now decomposed of A and B.' Since U(r) is assumed . '":, ,.., 
. . 

continuous outside A, application of Green's identitY 

leads, as in equation (2 ~'7), to 

aU(r ) 
"'0 

on o 

- U(r ) 
""0 

\ U(r)· r 
"" 

aA\ -o 

inside 

(2.7a) 

V, 

1 0 r Outside V. ,., 

Fig: 2.'2 Geometry for the Observation Poi..11.t 
" 

per) and Souxce Point Q(r ) for 
N ~o 

the Exterior Problem. 

On the large surface B, we have r = R , a/ an = oj aR , 
""0 ~ 0 

and dA= R2s'in9 de d¢ • -Noting that: the Green's function 

in three dimensional problems is of the form [4] 

9 
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. iklRI 
e 

G.::---- • 
41TR 

. . 
In the limit as R-.poo ,the integral over the surface B in 

equation (2~7a) using equat:iJon (2:70-) becomes 

:s 

lim ,_1_ lfjrtreikR 
[0 r ( aU _ ~ iitH) + u] r- =R- _ -sine d9- d¢ 

R ~oo 4'IT 0 i 0- - - 0 or -
o 0 

-. 
The integral vanishes if, for any finite value WI, the 

following relation hold, 

au 
r (- - ikU)~O 

o .ar 
o 

, as r ~CXJ 
o 

, as r ~oo 
o 

(2.8) 

for all values of angular coordinates e':and ¢ '-.' Equations 

(2:8) are known as the Sommerfeld radiation conditions. 

Thus for a functionc-U(r) being regular in V, and 
oJ 

satisfying Sommerfeld radiation conditions, its value at 

an observing point P(r) is given by the surface integral 
- ,.., 

over the source point Q(Zo) as 



aU(r ). 
,"'0 (. ) , - U r" 

"'0 an' o 

~ U(!) 

1 ,0 

r inside V, ,., 

r outside V.~ 
'V 

As shown in Fig. ( 2 ;12) ~ the unit normal n I is away 
"'0 

11 

from the region :V, and is an inward normal. to the closed 
• I 

surface ·A'~'If an 'outer normal n to A is used, . we have 
\ . -0 

C)G(r,-r ) 
,... ""0 

an . 
o 

- G(r~r ) ,.., .... 0 

) U(E)' 

1 0 

r outside A, . ,... 

r inside A. 
'V 

This is known as the Helmholtz second (exterior) formule.~' 

The total wave U(t) in a medium is, composed of two 

parts;- ,the incident wav.e m(i) and scattered wave o.(s) , 

U(t)= n(i)+ U(s) 
/' 

Each wave function satisfies the Helmholtz formu},::1., (2'~:7) 

or (2~'8). Let A be the surface of the scatterer wj.th 
! 

volume ,VA (Fig.' 2-~'3). We seek the solution for the total 

~~ii';e -JCt) 'in the region V outside the- surface A. The: 

scattered wave function u(s), which represents physically 



/ 

/ 

the waves radiated by secondary sources on or inside' 

the surface A, usually is singular inside VA. Thus' 

Helmholtz's second formula is applicable with 

/ 

Fig. 2.'3 

an o 

. - G(r,r ) 
,.... -0 

au(s)(r ) 
-0 J an ,t·!lAo = 

o 

(2.11) 

, rinV 

p 

Approach of the Obse~ation Point P(~) to 

the Source Point Q(r ) on the Surfac-e' of 
""0 _ 

a Scatterer v;ith volume VA and BoUnding 

Surface A; 

. t" f u(S)( ) . V' bt· d s· 1 b The'derJ.va J.ve· 0 . r m J.S 0 ame J.mp y y ,., 
differentiating the above equation: 

," .~ 

12 

, 
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unknown for a given problem. 

, 

dA== 
o 

(2~12) 

r in ,V -
are usually 

13 

To findU~ ~.~cana. i ts~normal_~derivativ.e on the surfa~e 
A, we let the" observation-point<P(r) . approachthe.':source 

. ~ , 

point Q(r ) on the surface" With r+T ~. equation (2.;11) _ 

reduces ~~ an integral equati~n ~r -0 U(s) (r ) or 
, \ ~o 

o U(s) (r )/ an '. H~wev~r~because aG(r,r i)/ an is 
-0 0 . ,., -0 0 

discontinuous across~the surface A, the limits must be 
-

carried out with care. A general theo;r:-em for the:. 

continuity of u(s). and au(s)/ an;;a:Long ~ line normal' 

to A can be constructed in a manner analogous to the 

integral theorems of potential functions~ The'following 

is a formal evaluation i of ·the limits.' 
-

Consider at first the'limtt of the leading term on 

the left hand side of equation (2'~'11) 

- '--­
lim 
r~r+ 
- -0 

-

aG(r,r ) 
,.. -0 

dA 
o 

The suffix (s) is dropped for the moment, and r+ 
..... 0 

indicates that the limit is approached from the positive 

side of the normal n .~ 'Since aG(r,r )/ an is singular 
-0 .,.. ...... 0 0 

. at r = r , we exclude the source point from the surface'. 
,.. ..... 0 



integral by encircling it with a small area 'b. In-the 

neighborhood of Q(r ), the Green's function for the wave 
"'0 

equation (Equation 2.''Tb) , can be apprOXimated by its 

static value 

1 
G(r,r )= 

- "'0 
4fJlr-r I 

,..., ""'0 

Hence, 

lim 
r?r+ 

0 

11 u(ro) 

aG(r,r ) 
,... ...... 0 

A 

1 

an 
0 

l~ fI 
r...".r+ j 
.... - 0 L. 

lim (f 
r~r+ j] 

o A-~ 

dA . -0 

U(r ) 
• ... 0 

a 
an o 

aG(r,r ) ,.., ..... 0 

-an o 

1 

Ir-r I ,... -0 

dA 
o 

dA + 
o 

The limit of the second term on the right can be 

, 

evaluated directly because oG/an 
- 0 

is continious at 

A-I;. For the first term, one notes that 

an o 

1 

Ir-r I ,... .... 0· 

dA= 
o 

n • (r-r ) 
-0 ,... "'0 

Ir-r ,3 
-- -0 

dA =- dO(r~r ) 
0-0 

, 

where'd~ is the solid angle subtended by the surface 

dA .With a smooth surface at r ,one then obtains 
o ~o 

14 



lim )I u(,: 0) l 1 
r~r+ an I~ I 
,." ""0 ~ 0 -""0 

The final answer is then 

lim 
r+r+ 

, ..... ""'0 
A 

dG(r,r ) 
,., -0 

-an o 

P ~v :JIU(;£o) _O_G_(_~_~·,.._r 0.;;....)_. 

A 
. an . 0 

dA = U(r ) o ..... 0 

1 
dA =- U(r ) + o ..... 0· 

dA 
o 

2 . 

, 

where P.V.~ designates the principal value of the·' 

integral as defined by 

P.v;' If F(X;Y) ax dy =.;:: jJ. F(X,y) ax dy 

A ..Ll, A-~ 

The> 'limit of the' second integral in ~(2~ll) as' r+r+ 
..., ""'0 

can be evaluated directly if the unknown function 

au(s) (r )/ an satisfies the Holder condition (i) ~, . 
"'0 0 

(1) A function fer) is said to satisfy the Holder -
condition at r if ther~ are three positive constants 

. ""0 .. 
a;b and, c such that 

.' for all points r for which Ir-r I"-b. When 0 ~c~l, this ,..... .... -0 

, is known as the Lipschitz condition. 



ThUs as r~r+ , equation (2.~1) reduces to ,.., ...... 0 

: U(S)(E)= 1f[ U(s) (Eo) 

A, 

. G(r,r.~.) 
,.. "'0 

au(S)(r) 
____ ",-.,;0_ ] dA

o 'an' 
o 

, 

an o 

r on. A 

The statement Hr on AU means that r is .setequal to r ... 
~ ~. -0 

after integration,· where.r .. are the ,.coordinates of ·the;-
~o - . 

surface points, ·and the principal~'value of the integral. 

is to be taken whenever 'it becomes necessary.App1y:ing 

the same limiting process to equatio!)! (2.12) we get 

" } . 

().. . 

1 aU s (r) _. d Jf[ (s),aG(~~£o) 
---- -. - U(r) 

... ""0 
g. an -- an A a no 

, r on A~ -

~Equation (2~15) and (2~16) show that the wave fur(~t:;.on 

u(s) (r ) and its normal derivative au(s) (r' )/ on are 
-' ...,0 . .....0 .) 

not independent of each other on the surface. If 

16 

au(s) (r )/ dnis knmvn at A~ u(s) (r ) must satisf.y- the' 
-0 0 -0. r . . 

integral equation (2~'15) which is of the seco:nd kLld 

of Fredholm-type :integral equation (2.16). On th0 other 

hand, if the u(s): is prescribed at the surface A 

a u(s) (r )/ an is then determined by equation (2.~5), 
..... 0 0 

which becomes a Fredholm integral equation of th& first 
\ , 



c., 

kind. I 

In many problems,theboundary values are 

prescribed in terms of the total wave function u(t) or 

au(t)/an. It is then more convenient t~ derive a set 
I 

of- integral equations for th~total wav.e. This can be 

done easily by noting that-the incident wave a(i), 

which has no singularity inside the boundary A, hence 

satisfies the Helmholtz first formula 

5J [ G(r~ro) 
A. \ 

au(i) (r ) 
-0 

an 
o 

r in V. --
Adding the above equality to equation (2~1l) and us~g 

(2~lO)~ one finds 

(U(i) (r)+ If [U(t)(Eo) 

A 
an o 

'-

17 

, r in V' ( 2.1. 7) --

By, letting r approach to r as in eqUation (2:'15) 9 or by . 
-, -0 

differentiating it and tha..n taking the limit as in 

equation (2~16) ~ it is easy to obtain ,_ ,-



U(i)(~)+ Jf [U(t)(!ol 

A 

(ta 

dG(r,r ) 
. ,., "'0 

an -
o 

au (!'o)] 1 (.t) 
dA =- U·' (r) 

an 0 2- -
o 

(i) . ' 
d U (r) d If [. ( t) - . ----+-- U (r) 

--0 an an A . 

1 
G(r,r ) 

- -0 
dA - . --

o 2 an 

, r on A ' (2.18) ,.., 

, E on A 

Again the integrals are evaluated' in the sense of 

principal values.- Solutions of equations (2~15) ~ (2.16), 

(2:'18) ~ or (2~;19) yield the values of U(s) or U(t) ; or 
;' 

their norfu.a.l derivatives, at the boundary k., from which 
,-

18 

the.values of the corresponding quantities in the region 

V. outside A can be obtained using the equations (2.1l) or 

(2.l7).-

Two special boundarY conditions are to be noted. One 

is that the total field U( t) vanishes on the s~.rface A~ 
that is U(s) ; _u,(i)~, This is usually referred to as 

Dirichlet's condition. 

The second special bou..ndary condition is that the'" 

norrow. derivative of uCt) vanishes on the surface A:., or 
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equivalently, ~' ~hi's' is lmown as 

an "On 
Neumann's condition. 

I " 

For either of these two types of boundary conditions, 

the' integral equations are greatly simplified and are 

listed below. 

(1) Dirichlet Condition u(t)= 0 

on A~' Equation (2.18) reduces to 

, u,(i) (r)::; JJ G(r~r ) 
,- ....... _ -0 

A 

I ' 

an o 

. dlr. 
o 

Similarly equation' (2~19) becomes 
\) 

1
'1 oG(r~r) - -0 

----+ 
A . on 

----= 
an 2 an 

, (uSs ) = _ u(i)) 

, 'r on If . 

r on K ,.., 

ax o 

(2) Neumann Condition au(t)/ Cln=O on A. -Equation. 
. . 

(2.19) and (2.l8) becomes 

d m( i) (E ) ~ II ( t) -
----=-- U (r) 

-0 
an: an A 

'dG(r,r ) 
... -0 

an o 

dA o 
, r on A ..... 
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(i)' 1 (t) 
U (E) = - IT.' (! ) , 

2 

r on A 

respectively; 



2.3 Method of Hi1bert-Scbmidt 

The Fredh01m integral equation of 'the first kind 

for T(;-) 

f(~) = 11 
A 

G(r~r ) T(r ) dA 
- .... 0 -0 0 

, r on A ..., 

can be solved if the kernel G~(r~r ) can be expanded 
........ 0 

into a series of orthogone1.functions suitable for the' 

surface A~: Lets.; (r)(~ =1, 2~3~ .' •• 1 be-· the' orthogonaJ.. . n - ." , 
functions which satisfies the wave equation and the 

orthogonality condition 
" 

(til = til 
.,-, 
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f?- : J! s: (I') s_ (I') w(r) dA= ,( 2~'25) 
n - m- - \ 1.0; A (m=#- n) • 

-where w(r_) is' a weighting function~' Suppose G-(r;:r ) also 
,." -0 

admits the following ser~es eA~ansion 

We then expand the given function fer) and the unknown 

function T(r )-into t~o series of the form 
...... 0 

fer) =~:a S (r) 
- an n"" 

f\ 

. T(r ):[\6" S (I' )] w(r ) 
.... 0 ~ m m ... o -0 

. ~ -
., 

By substituting the three series in the integral equation, 
Q. 
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One obtains 

"\ an S (r)= '\ \" [Cb S (r) 
~. n '" ~~ m n n .... 
n n rn. 

fJ w(r ) S (r ) S (r )] dA J. -0 n ... o m .... 0 OOJJ 

A / 

r on .A:" 

which,in view of the orthogonality condition;fiXes the 

unknown coefficient c as 
n 

, n=1,2, ••• 

.. .. 
This,in essence,-is the Hilbert-Scbmidt's method,and 

its applications to particular problems will be' given in 

the following sections~' 



. 'CHAPTER: III 

Nm.rIERicAIr RESULT$ 

'-3.1 Scattering by Circular Cylindrical Objects 

3.'1.':]. Scattering by a Cavity 

Consider a" circular cylindrical cavity in an 

infinitely extend~d solid as shoWn in Fig.:(3~1);: The' 

cylinder has a radius of a;.>Let a SH-wave propagating 

23' 

in the positive x-direction be" incident' on it~ The_wave'.~ 

will be scattered by the cylinder,- and the- question is ' • 

to find the scattered wave'form, both on theboundaTY 

'of the cavity and outSide, i~;e., r~ a.' 

Equation (2~22) in two~dimensional case'become~ 

(i)() . ~ 'dU :E a (t) 
----;- U (r) 

,-0 
'On' an r 

'dG(r,r ) 
........ 0 ' 

dS 
o 

where in the two d~mensional case the Green's function is 

In the cylindrical coordinates (~~; a ),. one can write' [ 4J' 
J (kr·) H(l) (kr) r >r 
m "0 m ' 0 

, r--'r o 

(3~1) 



where J (z) and H(~)(z) are the m~th ordeT Bess~l 
. m m ' 

function and Hankel function of the first kind respectively; 

'Fig.' 3 ~~l Circular Cy1jpdrical Cavity 

'andtncident, Simple Harmonic 

SH-waves 

The incident SH-wave along the x-axis is represented 

by [14] 

where U is the' amplitude of the wave- and ~::: 1 and 
o 0 

E. = 2 for m =-1,2,3, • • • m ,> 

; Assuroing 'that U(t) on the 'surface of the scatterer can 

be written in the form 

equation (2~22 ") takes "the form 



25 

.2iT 

an 
- (i/4) l\ ~(f Bn COS n (

0
) 

an.J n=o o . 
(3~;4) 

Go) 11a deo' 

where prime indicates differentiation with respect to r • 
i 0 

Note· that 

.211 \ '0 , m~*n . 

J cos ·m~ (0'- S) cos·nG-ae = I (3~:'5) .' 
o· 0':., o· 

lrrcos 0 n8-
\ 

, m=n 

Equation (3;;:4) together with (3~2) becomes 
. , ' 
I 

m=o 

OQ 

(i fTa/4J.L BnJ~ (ka) ,II~11(ka)" cos neo 
0::.0 

Using-·the orthogonality condi tioncc for. -the circular .function, 
- . 

cosJn9 ,in the-· above equation,we get 

. E. .n __ " J. U 
n 0 

B = r 
n (i lTa/4) H(l)'(ka) 

. n 

Once the value of u(t) over the surface A (r= a) is 
\ 

known, the scattered wave in the field r> a can be . 

calculated from (2~~17) s:ince u(s)~ u(t) - U(i) where 
... "pp~I"(: 

- AZ,V"i ON\\IER.SnES\ \\IJ1U.. ". BOG ~ .. , I 



.21r 

u(s) (!)="j u(t) (Eol 

o 

for a cavity • 

an o 

a dle 
o 

Using equation (3~<5) again,we get 

H(l) ('kr) cos n6 
,n 

Hence,'in the case of a canty, the total field outside' 

the scatterers is 

-

26 

H~l-) (kr) ] cos n~ 

" Numerical resuJ.. ts for the displacement and the 

tangential stress fields on the boundarY of the scatterer, ' 

due to the scattered waves are presented in Figures 1 and 

3 respectively for different values of ka. We also present 



--
-' 

the distribution of the displacement at the far field 

(ria =- 2000) in Figures 2.' 

, 

( 

\ 
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) 



3~~.2 Scattering by" a rigid inclusion 

/ 
In the case of scatt~ring by a rigid inclusio.n,the . 

total wave field u(t) on the boundary r satisfies the 

integral equation 

28 

U(i) (r)=J G(r~r ) 
,... ,.. "'0 

au(t)(r ) 
""0 dS 

o 
, !: on r (2~20/) 

r 

If we assume the normal derivative of the total wave field 

at r == a to be of the form 
o 

I 

equation (2":'20") can be written as 

211" 

u,(i) (;s) = (i/4) J [ (I Bn cos nllo) 
. 0 1\=0 

00 

=,(i iT a/4) L B J (ka) H(l) (kr) cos n9 
1\:s0 n n . n.-

, ~ on r 

Similar to the cavity case, replacing U(i) (r ) by its ,.,,0 

series " representation~' the' unlmovm coefficients Bn can 

be shown to be 



B:.-------
n u 

o 

Ifuowilig the value for duet) / an at the surface A, 

(r = a)~' th'e' scattered waves in the region r:'> a can be 

calculated from equatio~( 2 ~17)~- i~~e~;~ _ 

G(r~r ) 
- -0 

an 
-0 

au( t) (r ) 

a.A = -0 ] 

on 0 
o 
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usilig the boundary condition u( t) (r ) = Q) and' nQtilig that'~ 
, -0 

u(s) (r) =u(t) (r)- Uj(i) (r), the above equatioll-5n ~two .... .., ..., 

dimensions reduces to 

an o 

dS:: 
o 

, r in. or':;;· - . 

(3~:8) 

Substituting equations (3~i6) ~ (3~'7) and usilig the' series 

re]?resentation for the Green t s function in the- above'" 

equation, and carrying out the'_ integrals we-' get 
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• ClO 

.(ina/4)IBn J~(ka) H~J.)(kr) cos nS 
0=0 

(3;9) 

NumericaJ. exampJ.esregarding the far fieJ.d dispJ.acements 

and the norrna.l stress distribution on the boundary of the' 

scatterer due to the scattered waves are' sh6wnin·~.Figure"6 
\ 

4i and 5 . respectively • For far~ field··calculat:Lons· r/ a . is:' 
, . 

taken to be 2000. 

i 

" 

. i 

,. 

.. --
::-. 
. ;. 



J~;2 ,Scattering by- an Elliptical Qylindrica1 Obje-cit 

3;·.z~J. -S catt ering by a Cavity 

,-
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From equation (2'~'22'); it is seen that; the totaJ. 

wave u( t) on the boundary r for the problem of scattering, 

by a cavity satisfies the- integral. equation, 

au( i) (E) = ~ fu(t)(r ) 3 G(!:;!:0) dS' 

a n an ~. -0 ano 0 r 

The normal derivative oftheGreentsfuncti~n'G(r~~) ,... · ...... 0 

in the above' equation uSingchain.·ru1.e', be-come's: ". 
( 

-=.-
on ar-

o .' 0 

ar 
_,_0 

an 
o 

where' in cylindrical coordin~tes (r~'9') from . equation (3.'1) 

co 

- (if 4) Leos m-(e - -9
0

) 

dG(r/r } 
, - -0 

,ar o 
m=O 

the primes indicating differentiation with respect to ro· 
I . 

The boundary of an elliptical scatterer, in polar 

coordinates is given by the relation 



ab 

Hence,the derivative of r with respect to the outward 
o 

norma3. n is 
o 

2 2 2. 2 . 
b cos e+ a SJ.n e 

o 0 
-- -. -:;:::~=;;===;:==::;=::;:-

\r:.':4 . 2 4 2 • "t:O 

ail," 
o 

V2:'b cose + a sin a 
o 0 

32 

where a and bare themaj'or and minor_ axies· of the~ ellipse. 

A\ detailed derivation of the above eXpressions (3.~tL:2) and' 

(3'~1.3) are given ~ in A'ppendix. 
. ' 

The integral in equation (2~~22~) over the arc length 

can now be transformed into an. integral over .:the' angle eo 
us:ing the relation 

dS = ab 
o 

~------------------~ 

a4S:in
2 e +b4cos

2e 
o 0 

~ 2 . 22 2 3 (a sm e + bo cos e ) 
, 0 . 0 

see Appendix for the' details. Hence, us:ing equation ( 3'.;i3) 

and the equations (3.10) 'thru (3~J.-4) :in equat·ion (2'::22~), 

.. we·,-'get 

au,(i) (r) 

an 

de cos m (6 - e ) 
o 

.' ab J1 
2 . 2 22 0 

Va sm e +b cos G f 
o 0 
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utilizing the trigonometric identity 

"1/2 cos m9 [cos (m + n) 9
0 

-+ cos (m - n) ~o] + (3.1.6) 

-equation ( 3;15) yield 

J! (kr) m "" 

Defining 

2" _ 
J [oos(m+p) 80+ oos (m-11) 80] 
o 

.2tT 

J [sin(m+p) 90+Sin(m-p) 80] 

o 

I 

H(l) (kr ) ab de 
m- 0 0 

I "-

\/ 2 . 2 b2 2. 
V a SJ.D. G + cos" e 

o ." 0 

I 

H(l) (kr)ao' dle:" 
moo 

.1 2.2 2 2 ' V a SJ.D. 9 + b cos e 
. 0 0 



2." I • 

. - -'Apm = J ~os(m+p)-eO+ cos (m-p) 9
0
1 

o 

. .2IT" 

C = frsin(m+p) 9 4-.Sin(m-p)e ] pm to. 0 
".. -' . 

o 

0, / 

, 
H(l) (kr ) ab de 
moo 

v' 2-. 2 2' 2 
a SJ.n e + b cos e o 0 

H(l)'(kr ) ab de 
moo 

V 2 . 2 2' 2 a SJ.n e + b cos e 
'. 0 0 

Equation (3~17), can be written as 

;.;: ----
an 

C sin me] - -, 
pm 

r 

w:Q.ereprime indicates differentiation with respect to r; 

"Recalling ,equation (3.-2) the normal. derivative of the 

incident field on the boundary can be written as 

-an 
o 

ar' DO . . ' .' -

=u . __ 0 ~ E. i m J'(kr ) cos me • '. -, 
o L m moo ano rn=c· , 

1 ~.-

Hence,equation (3.19) evaluated on the boundary becomes 

00 

- IT! ~ ~ .. i m Jr'(kr ) cos me = 
oLm m 0..0 

(i/8) f f"B
n
' Jr'(k:i' ) (A ,cos me+ C s~ mG ) LL m 0 nm 0 nm 0 

,,:0 111:0 
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Note that e appears implicitly in the' argument of the' 
,0 ' 

Ji/ (kr' )-r is a' ftmction of e -the -well" known orlhogona 
moo 0 -

lity condition for cos m9 doesn't apply here to solve 
, 0 

equation (3.20) for the unknown coefficients B :. Since , n 
equation (3:20) is true for all e' between OC and· 360° ~ 

, (- 0 , 

one can take' e = 0° .i This choise simplifies equation (3 ~20) 
o 

to 
l 

00 <>0 ' 

_ U ~ E. i m Ji' (kr ) = (i/8) \" \:""" Jr" (kr )rB :roo 
o L m m 0, LL;. m 0 n run 
m~ I\:Q Pl~ , 

Substituting the' relation [18] 

k 
JT' (kr ) = - [Jj ,(kr) - Jf, (kr)] 

m,' 0 2 m-l 0 m-tl 0 

into equation (3:,21) ,yields 

- no f ~m! i m [Ji~_l (kro) - J'b+l (kro)] = 
",:.0 

( 3'.-'22) 

Recall the orthogonality condition [~9J 

iO .. 

~ 0 (m#n) ( 3.~23) 

l- 2(2n~V+l) J 

, . (m=n) ( v+n+m): -1) • 



IiIultiplying equation (3';;22) by cl"~{kro)/kro ,integrating 

yjith respect to d{ki:.c) from zero to infinity and using 

(3;23) ~we get 

00 co 

(i/8)\S- BA . [ l' LL 11.' 'run 2(m-l) 
n:o (11:0 

1 
2(m+l) 

-

1 
b(m+l)s ] = 

Employing the property of kronecker delta, the' above 

equation takes the' form 

_ u r E:. i s +l _ <:.. i s- l ] = 
o ~ s~l s-l ' 

j 

. ~ . ~ 

(i/B) [fi"""'Jln A:n ( s+l) -:- £i BnA:n(s_l) ] 

36 

Note that for negative values'ofthe subscripts both ~ -1' , s-
and An(S_l) are to be taken as zero because those terms 

correspond to negative values of m in equation ·(3~'22). 

In equation (3~24) everything is lmovm, except B , and 
n 

this system of equations can easily be solved for. the 

unknowns. 

To find the: scattered wave for r not on the boundary r ~ 
equation (2~17) must be, used. In two dimensional. case we' 

have 



\ 

./ 

( ) f (t) 0 d G (r , r 0) -
U s (r) = U (r) - ,.. .... 0 as 

..... , -0 0 r -d n o 

Using equations (3'::3) ,(3~lQ) ~(3~-ll), (3.l3) ana (3~~4), 
equation (3.25) become-s 

I 

.2.1\ , 

n(s) (r) = (i/4) ~ H(l) (kr) Il{ ~ B cos n9 cos m( e - " ) ,- Lm Ln 0 0 0 
m=o 0 n:o 

J/ (kr ) ~~ Iae 
m, 0 -'--V' 2 . 2 2 2 d' 0 

a' sin e + b cos, g J o . 0 
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(3'~'26) 

Using the trigonometric relation (3.l6), equation (3~26) 

-takes the f orrn 

OQ 00 

n{s) (~) = (i/8)LLH~1) (kr)cos:~ mSBn 
(1):.0 l\:.0 

)-

I 

\ 
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The above equation is very similar in nature to that 

given in equation (3~;17) and can be' written as 

00 co 

lL(S),(~)= (i/8)LLBn H~l)(kr),,[J\:..:m cos mB+Ch'm sin me] 
n=o m:Q 

where -A* . and C* have the-- same form as A and C; 
nm nm ) pm:' ':"'-, ,pm 

given by equation (3';'1.8) except the Hankel functions 

H(l)(kr ) ~ the latter are to be replaced by Bessel 
m 0 

functJ.." ons JJ"(kr ) ~:By substituting the'values of B m 0 - n 
obta~ed f~om equation (J~'24) the displacement field 

for any value of r due to the' scattered waves can be 

obtained. 

Numerical xesults for the' far fie~d displacements 
; 

(r -= 2000 r ) are' presented in Figure 6~; 
o 
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3~'2.2 Scattering by a rigidin~lusion 

In the scattering by a rigid inclusion case, as in 

the section (3.1~2) ,the tot~ wave u(t) on the boundary r 
satisfies the integral equation 

U,(i) (~)= J 
r 

G(r,r ) 
':" -0 

an o , 
dS 

o ' 
, 

, usingequations(3.1)'and(3~6)' and going through a' 

'similar.procedure~as explained in-the previous section 

we obtain 

0:>.00 2fi 

U(i) (~) = (i./4)~kBnJ,"-(kr) 1 i cosm50 - e ) cos n e 
o 0-

o 

f 
4 . 2 4 2 

(1) a sm eo + b cos_' eo 1 
H (kr) ab, _ J deo m . 0, . 2 2 2· 2 3 

. . (a sin e + b cos ~ ) -
o _' 0 

Carrying out the integration we get 

·U(i) (r) = (i/8)ff cos me Jm(~) 
..., 1\:0 m::O , 

(i/8) f fSin m6Jm(kr) 
n:.o 01:0 

where 

B D' ;+ 
n run. 



2rr . 

D . fi[cos(m+n) e 4- cos(m-n) 
run J 0 . 

o 

.2.tr '. 

Enm = Jt [Sin(m+n) 

o '. \ 

Recalling the' expression for u;(i) (r), equation( 3~;2) ~ the 

ahov.e . equation at the boundary!becomes 

e>O 

U ~ f. i m 
JT (kr ) cos me = olrdo m . mo.. 0 

00 00 

(i/8)~ \B .. JJ(kr ) "[. m- cos me -\- E~ -sinm,e .. J. L..J.L n. om' 0 run ". 0 run" c. 0 : 
. 0:0 m=O ... 

To solve for the unknown coef'ficients B , we onae again - n 
choose' e = 0 0 

. arid apply the" orthogonality condition as 
o 

expla:ined in Section (3.2.1), thus we obtain the equation 

, with :,:g::= 0,1,2,.3', •••• 
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which is analogous to equation (3~24-).' Equation (3::31)1 

can easily be. solved for Bn and together.: with equation 

(3."6) they giv,e the du(t)/ -an at the' boundary of the' 

scatterer. In~he numerical calcUlations W~ have solvem 

for the first ten B ,.'s~': 

Once _the Value
n 
for duCt) / -an on the' surface is 

known, using 

u(s)(r)= -j duCt) (r') 

G~(r"r ) 
-0. dS; 

.- ,.. -0 0 (}n 
r 0 

the- scattered wave field forr outside' the' surface o'f· 

the scatterer can be obtained. Substituting G(r~r ), 
I ,... ""'0' 

au( t) (r 0)1 dn
o 

and dSh ~. one _obtairis . 

:2.11 

(i/4)ttoBn H~l) (kr) J ~ cos m( e - eo) 
- 0 

4 '2 4 2 
a sm e +b cos e 1 

0' 0 dB 

4:t 

cos n8 Ji (kr ) ab 
o m 0 2.2 2 2 3] 0 

(a sm e +baos e ), 
o 0 

(3~'32) 

Finally using ~quation (3'~'16), ectuation (3;;32)) becomes 



.2.fl 

') 
I 

cos me 

Jf[cos (m+n)90+cos (m-n)Bo1Jm(kro) ab 

o 

! .... 

!2.Ir 

jie [sin (m+D) e +sin(m-n) e ]JI (kr~) ab 
o 0 m 0 

o 

-, 

\ 
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where,D * and' E:*have- the' same' form' as D: - - anru.R ' 
- DID -DIm DID ;DID 

given by equation (3~;30)) excep-tj;thelianke1. functions 

H(l)Ckr ) in the' latter are-' to be' replaced 'by Bessel: m m 
functions J!(kr

J 
) ~ By substituting the'vru.ues of B m1 0 -' n 

obtained from equation CJ-;3JJ)) the'displacement -fiel.d 

for-' any value of J!' due to the scattered waves can be 

obtained~'; 

Numerical results for th~ far-field displanements 

(r = 2000 r ) ane pnesented in Figune' 7r. 
o 

43 



CHAiPTER:' IV 

DISCUSSION AND CONCLUSION 

ThJ.s work's goal is the integral formulation of 

field equa~ions of elasticity theory in an attempt to 

analyse the scattering phenomenon of SH-waves- from 

circular ~a elliptical cavities and rigid inclusions.' 

To ~his- end the' governing differ~ntial equation is 

transformed into an integral equation and solved by the 

Hilbert-Schmidt method.This method is first applied to . 

th~ scattering of SH-waves by a circular cavity and rigid 

:Lnclusion~tt is known that the Hilbert-Schmidt method 

is applicable only when the kernel of -the~.integrail.. 

equation can be represented by a series of orthogonal 

functions suitable for the geometry of the scatterer.ln 

the- case of a circular cylinder,the orthogonal functions 

are the Bessel functions and using orthogonality condi_ 

tions~this problem is solved exactiy.llowever~the result 

being :in the' form of an infinite series,should be trunc~ 
..-' . 

ted at some point to make' it suitable for nv.mericaJ. 

computation.To this aim only the first ten expressions 

are'" used~ana the'results for near- and far-field 

. displacements with near-field stress distributions are­

- obtain~d.The graphs corresponding to thrse solutions 

are found to be almost exact. 

Then the Hilbert-Schmidt theory is used to solve 

the scattering problem by elliptical cylinder. Basically , 

the diffraction of waves by ~n elliptic cylinder is not 

much different from the diffraction caused by a circular 



\ 
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cylinder.There is' of course no difficulty insetting up , 
I 

the appr~priate integral equations for a particular 
.. , 

problem,the difficuitylies in solving them.In mathema;;-t. 

cal analysis, because of the -geometry of the scatterer ,'an 

entirely different wave function must be'used,involving 

~roaucts of Mathieu functions. 

Since Bessel functions are easier to handle and more 

suitable to numerical computation,Bessel functi,ons are 
I -' ... 

used instead of Mathieu for the scattering problem by an 

elliptical cylinder "and this choise aside' from the' 

elliptica3. case ,allows one to -deal· other shapes much :1;> 

Imore efficiently;. 

On the other hand,theo use of Bessel functions instead, 
I, 

. ( 

of ~athieu makes it impossible to benefit from the 

orthogonality conditions and the~' resulting imtegraiLs are 
solved numerically.Again only-the' first ten expressions 

of the infinite series are used to plot the" near- -ana 

:far~field displacements. Since far-field solutions converge 

. I much mone faster than that of the near-field, only .,<""";' .j;. 

excellent results for this case could be obtainea.Alsm~ 

the' graphs representing far~field solutions of the' ~ 

scattered wave' are' founa to be' in' f'air agreement f'or· up 

to k6J.·~whereas-for k > J. 'the- 'solutions roughly resemble 

those 'Of the exact solution.This is also due to t~e' fact 

that/the series with increasing wave number,loses its 
, \ 

I asymptotic character,though it is still converge~t. 
\ 



--Figure' 1 

Figure 2 

\ 

, RESULTS_' 

FIGURE'CAPTIONS 

Displacement at the'boundary of a circular 

cavity,due to the- scattered wave- field. 

(a) ka": O~JJ " 

(b) Ita =0~'5 , 

(c) '1m = 1.~'0 

( d) Ita = 1 0 ~;O 

Far-field displacement due to the: scattered 

wave' field from a circular cavi ty~' 

(a) ka::::; O.l 

46 

Figure' 3 

I (b) ka = 0.'5_ 

(c») ka'_=l.-O 

(d) kiX- = 5~0 

(e-)1 ka=lO.O 

Tangential ~trees , I au(s) Ide \ on ,the' boundary 

of a circular cavity due to the' scatt~red wave' 

fiel'd. _, 

(a) ka= O.l 

\. / (b) ka == 0':5 

(c) ka'= i20 -­
( d) Ita = JJO .';0 

FiguJ2e' 4 __ Far-field displacement due to the'scattered 

wave' field from a rigid circular inclusion.' 

(a) ka= O~~ 
, 

(b) ka= 0.5 

( c) ka= 1~0 

Cd) Ita = 5~'0 



Figure 5 

Figure 6\ 

Figure T 

Normal 'str~ss I dU~ s) / or I on the· boundary 

of a rigid circular inclusion due to the 

scattered wave' field; 

(a) ka= 0.1. 

(b) 1m= 0~5 

(c) ka'=l.'O 
" 

Far-fi.eld displacement due to the scattered 

wave' field from an elliptical. cav.ity~· 

(a) k =0.'1- , a·= 1."0 , b= 0 • .5 

(D): k'= O •. J. , a = 0 .. .5 , b = 1~0 
-

( c) k.~~0.5 , ,a'.= l~:O , b = 0.~5 

(d) k= 0.;5 , a=0.5 ,. b =1.0 

(e) k:=l.'O , a'.:;=l.:O , b= O~·5 

(f) k=l.:O , 3.',= 0~5 , o~=l.·O 

(g) k=5.0 , a'_=l~O , 0'= 0':5 

(li) k=5.0 , 81.= 0~55 ,- b = 1 • .0 
\ 

(~) k:= 5~:0 
I a'= 0.'5 1).= 2.5 , , 
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Far-f~elili displacement due to the scattered 

wave field from 8;'. rigid elliptical incJiusion.-·, 
\. ,I ~ 

( a) k = 1 ~;O , a = 1;:0 , b- 0':5 

(b)\ k=l~~O 

(c) k = 5~0 

(d) k-= 5· .. .b 

, 
, 
, 

8:',= 0~5 

a; =1.-0 

a=0.5 

, '0:=1.:0' 

, b = 0~5: 

, b=l~O 

I' ,-
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Exact solution [15J;" 

-~15 

-;'062 

Figure'Tc::. Displacement at the boundary of a circular 

cavity,due to the scattered wave' field. 

=-l(a) ka -=: 0~1 

.15 
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Exact solution [15] 

":6 -.-
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\' 
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Exact Solution [15J 

., 

"i8 -. 
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1.:6 

-
Figure-· led) ka::: lO~O , 
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.001.002 

Exact sol~tion [15 j~) . 

• 0008 

-.0016 ;:0011 

-.0008 

Figvxe 2 Far-field displacement due to the scattered 

wave'· field from a circular cavity. 

2(a) ka~ 0.1 

C*)ThiS figure is a polar plot of 

I 
.' 
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" 

Exact solution . [15]~) 

.008 

I 

~-o088 . 

-~008 

Figure 2(b) 1m = 0.'5 

. ' /(k? U(S) 

(*')ThiS :figure is apolar plot o:f lim ikr 
r~ e ' 
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.8 

-

Exact solution [15jel) 

.014 

-.019 .. .Oi3 

-~014 

l
-im I ~kr:.Ukr(S) (*)~his figure is a polar plot of ~ ~. 

r~oo e 
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Figure' 2 (a) ka ~ 5.;0 



56 

/ 

I . 

8.0 ' 

. ( 

.0].8 

.065 

Figure 2(e) ka.=- ].0.0 

('f)ThiS figure is a polar plot of lim r~~(S) 
, ~:er 
r~ e 
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.12 

-~060 .060 

-.l2 

Figure 3 Tangential stress lou(s)/091 on the 

boundary of' a circular cavity due to .,--;1. .. .;.; 

the sca~terea wave' f'ield. 

3(a) ka= 0.1 
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Exact solution [15] 

.64 

-.64 

Figure' 3 (b) ka =- 0.'5 
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.75 

Exac~ solution [15J 

1~'0 

-1.0 

Figure' 3(c) ka= 1.0 
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j 6;0 

--
.< 

.~ , 

\ 

/ .-' 

Figure 3(d) ka=].O;O 

) , 
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Exact solution [15]~) 

e 
~044 

-.044 

Fiiure 4 Far-field displacement.· due to 

the scatteTed wave' field from 

a'rigid circular inclv~ion. 

4(a) ka:::. 0 .. 1 

(;)ThiS figure is a polar plot of lim 
r-¥-O 

Ptr' U(s) 

ikr e 
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.0 .• 5 

.. -

EY..act solution [15J<"~) 

Figure 4 (b)'J ka = 0~;5 

\
~kri u( 8) 

( ")ThiS figure is a polar plot of lim ikr 
r---,oo e 

" \ 



63 

.0 

Exact so1ution [15J C:*) 

-
-~~022 

1im 
r-?DO eikr 
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'. Figure 4(a) ka= 5~O 



Exact solution [15J 

\ 

.48 

Figure 5 Normal stresS'! I dues) I- ar I on 

the boundary of a rigid circular 
-

inclusion due' to the scattered 

wave' field; 

5(a) ka::. 0.-1 
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Exact solution [15J 

e 
-1~!65 l.~ 

Figure 5 (c) ka = 1.0 
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, -

~-~--! 

;-CP-I 
Figure 6 Far-field displacem~t due to th~ scatt~red 

wave field from an elliptical cavity.' _.-, , 

.. 
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-i~'00084 

-~'00056 

( \ . 
Figure" 6(b) ", 'k:. O~J. a=0~5 , b == 1.'0 , 
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-.'0074-

~'0074 

'--

, 
_ Figure 6( c) k = 0.'5 

/ 



Figure 6(a) k=0~'5 
-, , , 

~:0060 

-;:0060 
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I 
I 

, .~-.-.~ ~"~-~-I""~ ~-' -.' _~_-'I 

Exact solution [20] 

Figure 6(e) , a = 1.:0 , 

\ 
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;013 

r 

Figure' 6(f) k=l.'O , , b= 1.'0 
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i 

\ 
. Exact s~J.uti~~- [20J 

\. 

_$' - ! i 
- i - : I 

\ .. 

Figure 6(g) , , b= 0.5 

I -



-~;052 

\ 
\ 

Figure 6(h) 

, 

, 

Exact solution [20] 

, 

-~ -
b=1.0 
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.~ 

Exact solution [20] 

-
';:024 

.1.0 

-----~024· --;. 
-

Figure 6(:L) k ::. 5;;0 , a= 0~5 , . b :::'2.5 
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Exact solution [20] 

-' .. 024---

Figure 7 Far-field displacement due to the scatteren 

wave field from a rigid ellipticaiL inclv..si()n~ 

·7(a) k=l.O , a = 1.'0 , 



\ 

-.'024 

I 
"-

/ 

Exacit solution [20] 

, 

:~:044 

~ --
b = l.:O 

1 
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Exact solution [20] 

/ ... 

r--_-~. 

Figure' 7 ( c) k= 5.'0 , b= 0 .. 5 
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Exact solution [20J 

/ 

.r 

-;060 

---;.. 

, a=0 .. 5 , b :: 1.'0 
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· APP,ENDIX 

'. / 

The equation of an ellipse is 
I 

, (A.i) 

where 

x =r cose and y = r sine 

Equation (A~l) can also be written as 

~ 

2 2 22- 2 2 
b x + a y-- = a b 

, 

Substituting for x and y, the eXpressions in equation 

(A.2) and solving for r : 

ab ab 

The derivative of r with respect to,S is: 



, 
\ 

dr --- -
de 

ab (a2 _b2 ) . cose sine 

(b2cos2S + a2Sin2{} )3/2 

Arc length is given by 

dS , 
-= 
de 

82 

(A.'4) 

, 

, j 

'where prime indicates differentiat:L'on with nespect to \} '.­

Using (A.:2) as/ae can be' found as 

as I 2 2' ae- = r' + r 

Substituting equa;tions (A.3) and c (A~4) into ,(A.~5), after 

simple al'gebra, one obtains 

dS = ab 

I t is known that 

Hence ) 



·d ,I 2 - 2' . + a \ IX2 2' 
! r = a~ .Y x + y - :: aY V ;. ~ ~ 

x 
j ,..... 

Substituting 
, , 
)(= r cose y= r sinG 

( J 

~ cose ·-r sine 

V r = ~===============- i + \ I 2'- 2: 2 2 ,... j 2 2 2. 2 V r cos:::6 + r' sin G 

::. cos (} i + sine j 

Since 

the unit outward normail.. is 

2x 
2 

a 

. ..5L 
J.+ 2 
.... b 

j 

n=-----------------
2 2 4x '1:y-
-+~ 

a4 i_b4 

r cos G+r Sln G 

Using (A~i2), the J..ast equality becomes 

t\ 

83 

(K~~8 ) 



. b 2 e . 2. (\ 
COS J. + a sm c j 

,oJ 

n= ,.., 

Using (A~:8) and (A~;9) ,we' can find 

or 
-: n ." V r an ,.., -

2 b cose . 2." J.+ -a sm I:r 

-/'42 4 2 b cos 9 + a sin e 

b
2 2/l 2 .. 2(\ cos .t1 + a·.sJJn, b' 

j 
..... 

'.\ (cos e i + sine j) ,... 

Settinga= m ,i one' obtains dS/de and ar/ an for 

the circle as::; 

as 
-=a 
de 

or 
-=1 
an 

84 

; /" 
• r' 

(A'~1.1) 
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