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A finite element model was developed ﬁo study the
bebavior of masonry wallswexternaliy poet-tensioned by vertical
steel bars under lateral loading in the plane of the wall,
Material non-~-linearity of mort;r and non—linearity due to
failure of mortar jolnte and splitting of brickse are taken
~into cbnsiderat{on._ﬁoth the cracking pattern andjpost-crack~
ing behsvior can be studied. Comparison witb analysis of ua-
'reinferced masonry well was dbne. It-1is concluded that the
model gives realistic bredtction about the behavior of wglls
since gnalysis results qonforhfto the expected behavior, in
that, with post-tensioning the crackigg strengfh, stiffness
and post«érack{ng load capacity increased, and under service

loads tensile stresses dcocrneasead significantly.

s
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Digey ¢elik gubuklara digardan ¢n gerilme verilmig tufila
duyariarn, duvar dﬁzl;minde ‘yatay yﬁklcr altinda analizi ig¢in bir
sonlu elemanisr nodelil geligtiriimistdir, Harcin mal zemesel lineer
‘olmayan davranigi ile tullalarin ve tula-harg birlesme yiizeylerinin
kirilmasindan do%an lineer olmayan davranig goz Oniine alinmigtir,

"Modelle gerek gatlana gekilleri, gerek gatlak sonrasi davranig
incelenebilumektedir,

Analiz sonuglar\tbeklenilgn davranis ile uyum iginde ol~"
dufundan modelin duvarlarin davranigy hakkinda gergek¢i tabminler
yapabildigi sonucuns ¥srilmistar, Sdyle ki, ongerilme duvarlarin
gatiama mukavees tind, rijitligini ve gatlak sonras: yiik kapasitesini

ne¢tatmelite ve galigsma yiklert altinda gelkme gerilmelerini gnemli

dlgiide xzaltmaktadir,

( iv )
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1, INTRODUCTION

TEmmsmsrm T m s S

1.1 GENERAL

Inr both developed and developing comntries;masonry ele—
ments are largely in use especislly os partition elements,ret-—
« s2 walls,2nd culverts, In countries where reinforced concre-
ioduwstry ié not very advanced,tbe use of masonry ronges from
207%-70%,and sometimes goes up to 90Xin some rural ares. Design
and construct;on>in these arees depend largely upon experience
interited as well os g?iwed,rather than theory or code., I
fact,it has been found out that most cotastropbic Failuves
in eartauakes have 5een of =uych unreinforced masonry buildiﬁg&
On the other hand,iﬁ magoury were properly reinfovced and con-
fined,duite lavge deformatidgs~Cﬂn be accommodsted with some
crackiang but without cdllapse.(7) ‘

Prestressed brick wslls are higbly recommended in

areas of bigh seismic eaction in place of unreinforced walls,.

.
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Although the mechanical properties of materials improve with
iﬁcreasing rate of application of ioad,a member méy fail bef
cause of fatigue at a stress smaller then the.yield point of

(81},

the matiriel under many repetitions of loading. A ecrack forms
at 2 point of high stress concentration, &s stress is repeated

the crack slowly spreads,until the member ruptures without

measurable yield, Fatigue strength of & material may be imorow

N

by brestropsinz in such # way as to introduce favorable {internd
stresces. .

Bricks as well as mortar are bzsicly compressive mat-
erials with low and unrelisble tensile strengths.. Prestressiﬁg
nlies 2 precompreséion to the wall or member which reduces

or eleminates undesirnblg tensile stresses thet would other-
wise be presént. Moreover,cracking.can be minimized if not
avoided under service lnoads, Deflections,azs well,may be limitaf
to an acceptable vslue. However,in order to specify seismic
, . ﬂ

forces properly,the behavior of prestressed walls under laterd
loads must be studiel,especiallytbe post cr-cking beb=vior,
The bebevior of such wrlls is complicstaod by the presence of
zach Faentors as the nndhomogéniety of the system,the low stren
of bricks in ension, the nnnlinear properties of bricks and
mortar,and the influence of creep 2nd shrinkage.

Considerable research h-s been done to investigate
experimenta}ly the belnvior of mosonry under typical lateral

{5,6,13)

. . VA . . . .
and verticel loadianps - Melm( )has investigated unrein-

forced,reinforced and precompressed masonry walls under stati

(10)

and dynamic loadings experimentally. Page has formulated =

finite element proccdure based on a joint clement adopted fro
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only through the weakei_jgintg, He'hasvbot accounted for anf
rupture or cracking occurring fg bréck elements, This is geﬁeﬁ-
aliy true for unreinforceﬁ masonry walls. Wbile 1t was shown
experementally that when precompressive forces are high or

when brick elements sre relatively we=k,crack lines pass throug

g &
brick elements(4’ L
s DBJECT ARDVSCORE
; ¥ 4 {4)s
In this study,taking some experimental results into

conside¢ration,a finite elementmodel is developed for the ana-
lysis of mosonry walls post-tensioned by external,vertical sted
bare under lateral loads in the plane of the wall. The compli-
cations mentioned above,except creep and sbrinkage,are taken
into chnsideration., The influence of creep and shrinkage would
reguire a more elaborate anazlysis where the time frctor is
taken into consideration, The .model developed here accounts

for the failure of bricks by splitting ase well- as the failuwe
of _ Joints.

The model predicts the cracking and post-cracking
peuwavior,and the deformational and streses charecteristics of
masonry wolls. Because the non-linear behavior of masonry is
load path dependent,an incremental solution was adopted., At

each increment,an ireretive procedure is followed to check foi

both cracking and crack propagatin, Three types of finite

<
elements are used in the model., For bricks,a rectangular plai

stress element with eight dengrees of freedom is used. The joi

element adopted in the model is a line element first develope
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(9)

for the analysis of reinforced concret

(3)

"for modeling rock and

by Ngo and Scordellis
It was adopted by Goodman and Taylor

(

later by Page lo)for the analysis of masonry walls., For steel
a8 bar elemeﬁt with twn degrees of freedom is used.

In this study, the effect of post-tensioning is invest-
gated by comparing the behavior of an unreinforced and a post—-
tensioned masonry wall of the same dimensions., Results of non-—
linear and linear 2nalyses are also compared,

The model proposed here can 'be used for future research:
1o identify and analayze the effect of different parameters on
the capacity of post-tensioned walls., Some of these parameters
that. influence the behavior of masonry are post-tensioning stre

area of steel tendons, spacing and number of tendons, and the

dimensions of wzll panels.



2., PROPERTIES

AND BEHAVIOR OF
= sIre TP IR

MASONRY

The behavior and general properties of masonry have been
discussed in detail previously(4’5’7’10’ll’15). Spome relevant
properties will be mentioned here tO furnish a background £ b
the mathematical model.

In the following sections, first the general behavior of

masonry 1is discussed,aund then the corresponding properties of

brick and mortar are briefly stated.
240 MASOWEY

Masonry 18 a nonhomogeneous tWO phase material of rel-
<

atively elastic bricks linked together with an inelastic motar

SNotrix,. At high stresses masonry starts to behave nonlinearly

as @ .result of the nonlinear force~deformation characteristics

' B o
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of the joints under shear and compression,the local failure amd
slip that occurs in  the joints,and the splitting failure of
bricke. At the same time,redistribution of stress occurs which
leads to a loss of bond between mortar and bricks;thus.localized
failure occurs which propagates to other elements as the load

is increased.

Failure of post<tensioned - or prestressed masonry panels
usually occurs either in Jjoints,in bricks,or a combination of
both, Failure in joints occurs when 3 tensile or shear bond
strength criterion ig8 violated. Failure in bricks,however;occufs
by splitting when the tensile stress of!bricks in one of the
principal directions exceeds the tensile strenpgth of brick.

This is caused by the differential lateral deformztion of the

stiffer brick.zgnd the relatively more. flexible mortar matrix.

In addition to toe effect of prestressing,the perfor-
mance and durability of masonry depend upon otber factors such
as the quality of mnéerials,that is,0f bricks,mortar . and post-
tensioning steel. They also depend on the design,workmanship
and methods followed in manufacturiangiand constouction. Im
sddition, the strenpth of a masoary' panel depends largely on the
ratio of compressive to shear forces. It is found thag with
higher compressive stresses the capacity ©of walls| tougarry
lateral load after cracking increases with increasing the

(4)

number of prestressins tendons . The increase in cracking_
load due to precompression has been found to be approximately

40% of the total vertical load applied. However,although pre-~

compression on the wall causes an increase in strength, for
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bipgh verticalsgtresses,bebavior tends to change to a brittle
shear failure(7). It has also been found out that the strength
and deformstion characteristics of masonry depend highly on
the orientation ‘of stress, that is, T /¢ ratio, defining s
frict{on cocfficient independent of the type of mortar(5’6’7).
It should be noted also that for walls with low precompression
or low vertical reinforc¢ement, failure i "governed by yielding
of reinforcement which is similar to an underreinforced con-
crete beam(4’7).

Some'of the properties of the component materials

t.at affect the behavior of masonry are tdiscussed briefly in

the following two sections.
2,2 BRICKE
— ee————ri

The properties of bricks produced in different local-
ities vary even for bricks from the same batch, depending
upon workmanship and the clays and shasles used in manufacs
turing, This causes a scatter of resulgs of the mechanical
properties obtained. Bricks have been found to exhibit elastiyq
brittle behavior. They are not necessarily homogeneoﬁs or iso-
(10)

tropac . The properties of bricks which affect the per=

formance of walls are tlie vompressive—sand tensile strengths,

and water absovrption and saturation coefficients. Properties

that affect the bond between mortar and brick are the rate .

: ) ; ! b
of absorption when laid and the surface texture of brtcks( X



2.3 MORTAR

e e

The strength of mortar is usually less than that of
bricks. Its stress-strain relationships for compression and
shear are nonlinear which is responsible for the noniinear
bebavior of massonry before cracking., Mortar has a2 low tensile
but bhigh compressive and shear egtrenpths which are functions
of the bond strength between mortar and brick, 5nd the super-
imposed compressive force.

The bond strength is usually the critical factor for
precompressed or post—tensionéd masonry. Test results of
masoary boads give a wide range of results which 2re due to
the Yarge numbers of variables, some of which are hard to
detect or control, such as flow of mortar, "elapsed time'bet-

nzding mortar and placing brick in contact with 1t
pressure tapping applied to joint during forming, texture
or"brick’ 'sur, =, and other factors which have not been

identified.(ll

4 nd "'strength is found to increéase wWith the™"
flow iacrease, Thu. Yoss "of water from'mortar“due’ to"evap-
oration after mixing ¢ ~cases’ the flow which in turn reduces
the tenstile bond strength "Jorkmanship exerts”a larpge 1nf-

ilence "on this., This efrect ‘s onée of the reasons that expes

rimentnsl results obtained are so nuch scattered,

“



3. FINITE ELEMENT MODEL
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The masonry wall is assumed to be a continuous non-
elastic medium, The stresses and strains are continuous all
through the wall except for the cracked parts of the system,
In order to be able to represent the equations of equilibrium
of the gﬂsfem in the form of linear simultaneous equations,
this contimvous medium is idealized into a msthematical model
consisting of a finite number of elemente interconnected by
a finite number of nodal points, Finite elements are introduc
as a means of a mathemsitica !l model to convert a continuous
physical system into a discuntinuous discrete system such tha
the total potential energy of both +¢he original continuum and

the mathematical model are the same,

disid FORMULATION AND SOLUTION OF FINITE ELEMENT

EQUATIONS - GENERAL PROCEDURE

Finite element method is basicly minimizing the total

potentisl energy of the system with respect to nodal defor-
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mations in an affort to find the configuration satisfying
equilibrium conditions., In mathematical notation, the poten-~

tial energy TU of an element can be expressed as
T = Ue + (-we) {(3.23

where, Ue= internal etrain energy of the element

Ne= work done by external fo}cee

The potential energy of the system is assumed to be

equal to the sum of potential energies of the elemeants, that

is,

i=1l

where, J| = total potential energy of theéystem of
n finite elements
Uxpressing the displacements at any point withbin the
element as functions of the nodal displacements, and minimizing
the total potential energy, N similtaneous eguations are

obtained

EZE W, A U LRI, (3.3)
2q.

whére N is the number of independent nodal deformation

in the 'gliobal “sypetent
The resulting governing equatior, of motion in matrix

Aotation will be of the following form
(k] {a} « () {a} + o) (o} ={R__ 3} -2 (e} (5.4) €
where,[KF system stiffness matrix

dez nodal displacement vector



R

[€)= consistent Qamping matrix

{&}: nodal velocity vector :

[M)= concistent mass matrix

{d} = nodal acceleration vector

{Fexgr nodal external force vector

Z{f}: initial load vectors including initial strain

initial stress, temperature loads, body forces,

and/or edge loads

Ror the solution of statics problems the equations
takes the form

(x{al ={pext§_z{£—} (3.4a)

‘The solution procedure is inhitiated by defining the

‘deformations 2t each point within a certain element as 2
function of the nodal deformations of that element, that is,

{u]:[N‘]{d} (3.5)
where {u‘: element generic displacement vector

(v} = shape functions matrix

{d}= element nodal displacement vector

The strains inside the element are found as

{e}=1a) {u} (3.6)
where {6}: element strain vector

[AA: operator matrix relating the strains to deformatio:
within an element

Substituting equation (3.5) tn equation. (3.0} one

tet =8} (wlo} -
Defining[Gl=[A][N},the strains are expressed as

{€}= [c)a (5.7

where iG): strain matrix relating strains to nodal deformati
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of the element,

Defining the material matrix,\p], to relate the streses:

to strains within the element, stresses are obtained as
ey = (D} 1€} (3.8)

where ﬁﬂ: stress vector,.
/

Substituting the value of {¢]from equation (5.7 ) datia
equation (3.8), and defining the stress matriX'Eﬂ==Uﬂﬁf],
stresses within an element are obtained by

{o} = [s){a) (3.9)
Strain energy Ue stored in an element is defined as
U =4S {dday (3.10)

e v
Substituting the values of {¢}and {el, the potential

energy becomes
1 1 T L
v_=J, (a7 (6] Wikl av (3.11)
Defining[f\: f\,[sfr[ﬁug}dv, the stored potential energy is

expressed as

X
U =% {ail}{al %
where k) = element stiffness matrix.

For etatics problems, the external work can be gener—,

2lly expresced in the following manner
: i 1 T i is
=5, 9V AR av+§s{u\ {Pas«{o}{F .} (5.13)

where {P;k: vector nf body forces or dietributed forces
!

within the-element
{T‘\: vector of edpe loads
S
and,{F t1= vector of discrete externsal nodal forces. |
ex <

Following a simillar procedure to the one described
above for the strain enerey, external work energy can be

Abtained., Substituting the resulte in equations (3.1), (3.2),
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and equation (3.3), equation (3.4a) is obtained.
More detailed discussion of the formulation of the
|
A ) - (12188
Finite Blements equations can be found in the literature, "
A list of the basic equations of the Finite Element method
is presented in Appendix I,

The non-homogeneous nature of the structure presents
no problem for the finite element method ,as each element can
bhave a different material property. The stiffness matrices of
each component materisal czn be calculated seperately. The
global stiffness matrix of the whole structure can be pene-—

: y : (13) |
rated using the code number technique . Using the same
technique, the global force vector of the system can be

‘generated. Now, the globzl nodal deformations can be solved

for

A : i
1i={x17 7 ({p_ A -2Z {£]) (3.14)
Back substituting in equations (3.7) and i 3.8) 0 Oge

strains z2nd stresses within each 'element can be obtained.

d.2 MASONRY WALL MODEL

For analyzing masonry walls, a plane stress problem
is simulated, The wall panel is divided into diserete fdniile
elements., Hubdivision of thbe wall is presented in Appendix IL

A typical element divisibn is shbown in Fig.-1l. The 3
joint elements are linked to ‘the neighboring brick element%
at the nodes. Since the joint elements are thin, same coor-
dinates are assigned for pairs of nodes. For example, nodes

1 and 4 have the same coordinates, and nodes 2 and 3 share
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\ / 2
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Joint Element

Brick-mortar Connecti

Fig.-l1 Typical element division

the same coordinates,

caliculating the joint element

properties,

fhe joint thickness this used only ia

The dimensions of

the brick should be corrected by the apbropriate proportion

of joint thickness.

In the experiments done

by

was provided by tensionino

Yertical loads on the wall applied

buted to: the mppen edge of the wall
plenk | (Bio.=2). . To

atiff wood elements are linked to t
e v 8, inode 1 of the wood element

element share the came conrdinatas.

Tt e twornodes are a8s¢ share

umed . to

while

the x rand. . y-directions, But,

stiffness matrix, they are assumed

mations in the y-direction. Thus,

Hacim 4

external vertical steel

by

wi

he

and

Th

the

een

te

d.tensile force

(4)

nost-tensioning
tendons,

the tendons were distri4

th the help of a wooden

simulate the experimental problem,relative!

)

wall at. . the ‘top,: [In

node 2 of the steel
satisfy

continuity,

same deformations 1in

erating the global

have opposite defor-

applied:



Steel cap & nut d (wcod)
y

Wooden plank
-d steel

Wood
element
|_— Tendans

PR o 1
Steel element

ST S ST =77 SR

Rig.~2 Typical Post- Fig.-3 Steel-wood connecti
tensioned Wall

to the steel element will, at the same, time constitute a
compressive force on the wood element, and thus, a compressive

florce: on the wall,

3.3 MATERIAL PROPERTIES AND THE CORRESPONDING

STIRFNESS MATRICES

Bed. 1 BRICKS

The bricks are considered isotropic and elastic mate-

rial, The variability of brick properties and anisotropy is

neglegted in the analysis. Average values of 68460 kg/cm2

for Young's modulus, B, and 0,167 for Poisson's ratio,f‘, are
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(10)
used . Rectangular plane stress elemen: +ith isotropic
elastic properties is used, The rectangulasr element suits the

rectangular shape of the bricks, A typical rectangular element

is shown in Fig.-4,

b 4
d ti?dz tif‘x
3 1
2b *
ti?d4 3 fﬁl

e
N
e
[V

2a

N
S

Fig.~4 Typical rectangular finite element

Fig.-. typical rectangulsr finite element
: b & i &
Def'ining the o " ratioffi=4-, the shiffness matrix for an el=
i - A (14)
ment of thicknesst, be obtained as fnllows,
4 e
s .
k K
2L 11
i k k ’ 3
Jd 41 1l SYMMETRIC
k Kk k k
(k) > 2117y wy 11 Et
G K K : K 1271+
3 74 61 81 5%
k ' k k
kg1 Feniakgpe on s e iNeS
: : k k k K ;
kg o By o Bage 5E et Gty Noshnis
3 k: k k
Rgao! Megd ol Gea 85 ¢ WS 65 54
L— R —




2 17=k8
whére, k., = 48 42 (l=p) /s
kgy PSR A
Koy =~4 8+2 (Ap) /A
Ky =28 (1=p) /8

key =3(14p)/2

K., =3(1-3u)/2

61
k., ==3(1=3p)/2
kg, ==3(1+34) /2
kg =72 A=A
Keg == %+ (1)
Kyg mg= (1oM)
amd © ikgli= -~-—§- B Y

. 3.2 MORTAR (JOINT'?LEMENTS)

R

Due to the gon—linean behavior of morna;,'its férae~
deformation characteristics in shear and in compression showld
be determined experimentally omn masomnry walls after the average
properties of bricks are known. The joint model is expressed
ae 'a function of two parameters defining fhe behaviof of | the
moprtay in the directinns perpendicular (normal) £o the juint:j

and parallel [shear) to the joint. Figures 5 and & show the

‘10 5 4 2
results obtained bY Page( ) for the behavisr of mortar 1in

compression and shear respectively.

The idea ofitsing joint elements was first introduced

j ; T g
into the finite element method by Ngo and Scoruellxs( ) for
o

the analysis of reinforced co ncrete meémbers, Later special lin-

kage elements were developed and used in the analysis of jointe

(3) (10) |

rocks and masonry

o kg L DA
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The joint element is a line element of a leangth L and
thickness t. The potential energy stored per unit length ie
expressed as the applied force per unit length multiplied
by the deformations, For s joint of length L, the strain
energy Ue is obtained as,

+L /2
ok gwit {Plax : (3.15)
e
~L/2
where, {w\- relative displacement vector
?P}- vector of force per unit length

The joint element is assumed to deform only in the
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shear and normal directions (x and y in the loeal coordinates
4 - I 3
of Fig.~7). Therefore, : i ' ﬁﬁé
AW wt«opﬂwbottom

{wl=

AW

t Y
5 op*wbottom
boly n n

, p_ }
and P} =<
Pu

The subcriptse n sand s rebfeploilue normal and shear

Rig.-? Joiat element

directions,respectively., Assuming the deformattons 'at any
point x in the element are lineariy Droportional o ithe linodad
deformations, by linear interpolation,

., top 7% 2x

N PR B L ot [
W _‘A\ATL,\K-F Gk L)d4

bottom
W

# =% (1= “'r:‘ )@, +4 (l+-—«f-)d

g 2x 2x
Defining i:(l~~f4 and B=(l+~f~) v ohlen

Samilaxly,

tor bottom 2 6
AP LSRR = %{—A -B B x]

-5 =0 B n T o I & L R 2

It

Defining [ﬂ} A o 8 i & RO G gl

the vector of relative displacements can Dbe expressed as
{wi= + [G){ai (3.16)

where id}: vector of nodal deformations.
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The vector of force per unit lens:

relative deformatins by,

{pt = [p{sd

is related to the

(3.17;

where{DQ is:called the unit joint stiffness matrix. The mat-

rix of material properties can be written as

DB 8
A5 i Bl

Of 4D

where Dé and DA are joint stiffnesses per unit length in the

tangential and normal directions,

To understand the meaning of

consider a joint of length L and unit width.

respectively.

unit joint stiffness,

Apply a normal

force F“ zand pet the normal relative deformation wnr & ow ife

plotted against the applied force per unit length FnﬁL, the

slope nf the curve will

give unit normal stiffness for the

doint. Similawly, in a direct shear test, if the relative

shear deformaton w_ is plotted

acainst the applied shear

force per unit length FS/L, the slope of the curve will giVe

unit shear stiffness fFor the joint,
In other words,

A du SRR Déwn and

I1f a narmal stress va is

ness

Fn: %IT

and the force per unit length as

{1 TRl e

n n
From lHooke's law
2 =EE

n n

where B-= Younpo's modulus

K /L = Déxs

applied to

T and length L,the total normal force

a

o

2

(3.18)

Wwall of thick—

1

S

2xpressed as

(3.19)
) <

(3.19)
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‘coordinates, while fipure 8(b) shows it in { globalréd;¥;’“

‘dinates. Comparing the . two figures, and i:

 { “,{d}xy =(r1{d)yy

[T]matrix can he written as follows:

)
m
H~“A o

0 =1
shere [ } 0 0
0 Oa 0
0 B 2N o
X
|
l
1
g bty A 6
~8 d8 X d7
Ve, 1. L 9, L
4 3 4 3
| ,
d d
5 6
d'l L’dg
i s 2
A
{a) Vertical joint element
in local coordinates L4 o
5 6
Lodt Ld
1 54 2 4

(b) Vertical joint elemeant
in global coordinates

Fig.-8 Vertical joint element ;
transformation <

Therefore, for vertical joint elemnts, the stiffness
matrix is generated in the local coordinates, and using

equation (3.30) is transformed to global coordinates. Bquatioas

';nx.ﬁn\ﬁuhmnRhFSlKUfﬂFHANE&
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(3.28) and (3.29) are used {n a similar manner, The stiffness
matrix of a verticasl element 1in global coordinates is found
in Appendix III.

The stresses and strains at any point x within the
element can‘be found in the usual manner, Butlit should be
noted here that the strain matrix[G}used in the formulation
of the joint stiffness relates relative displacements to
nodal displacements, Thus the strasin vector for a mortar of
thickness t ie

fet= = [a)ld} (3.31)

Equation (3.17) relates force per unit length to
relative displacements, Thus, for a wall of thickness T ithe
the stresses can be calculated as

trt= A1 (3.32)
Detailed form of stresses and strains at any point x within

the joint element is Ffound in Appendix IV,

3.,3.3 STEEBEL ..  ELEMENTS

A
Since the steel bar can d 3 “// 2 dz
l"""“" =8 oy 4 tmnes |
only take loads along its axis, t L
A L -
a bar element with two nodes and
two deprees of freedom is used
{(Fig.~9). oy Fig.-9 Typical steel element

Following the usual mapner, the element stiffness

matrix for steel 1is Fouad as



where, E= Young's modulus for steel
A= Cross sectional area of the bar

L= Length of the bar.,

3.3, 4 WOOD ELEMENTS

For the wooden plank, rectangular plain stress elements
similar to the ones discussed in section 3.4.1 for brick
elements are used, but with 2ppropriate mechanicsl propertiés
for wood, Similar to the bricfs anisotropy and non-linearity
were neglected. Average values of 125830 kg/ch and 0.3 were

used for Younpg's Modulus and Poisson's ratio, respectively,



4. SOLUTEION PROCBDURB

A realistic analysis for internal stress distribution
wind pPosteracking beh;vior of masonry walls should include

several complexities such as :

() Non-homogeniety of the construction

(b) Men-linearity in the behavior of moriar

(c) The (nfluence of progressive cradking under in-

crensinj Load

(d);iThe effect of bond between mortar and bricks

(e) The effect of post-tensioninn,

\n incrémental finite element pnosram is used in
the analysis to account for the progressive cracking behaviol
At each 1lnad level, an iterative solution is used to accoun%
for the non-linear behavior of materials. At each iteration

both mortar and brick elements are checked for the violation

PG
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of their respective failure crtteria{ For the case of mortar
joint failure, residual stiffness properties are obtained and
the stiffness matrix is updated, Af¢ for bricks, nodal psuedo-
loads are applied at the nodes of the cracked brick element
to accountﬁéor the stresses to be restrained because of the

crack, These are discussed in more detail in the following

sections.

4.1 MORTAR FAILURE

Depending on the relative magnitudes of normal and
shear streeses, mortar fails either by tensile bond failure
or shesr bond failure, In tensile bond failure, due to high
tensile stresses and low shear stresses, the failure occurs
by sceperation of joints, while in shear bond failure, failure
occurs under a combination of shear and compressive stresces.

A joint failure envelope based on experimental results was

proposed by Page(lo). This Pailure envelone dis8 shown in
e WD
0 y t
* + 20 |
«© {
E & :
h 2 | Region 3
% ‘
110 Region 2:
Region_ 1 !
\( |
|
Tensiorm + ) Ay } {Compression
10 10 20
Ultimate normal stregg kg/cmy

Fig.-10 Mortar failure envelope

e
Page has produced the following equations for each

region in the envelope:

Region lz'tu =O.660;u+9.31
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1 y 2 ::' /4 i 2.‘
Repion 2.'Zu 0.87Uhu+ 495 §
Region 3J: zu = O.llo;u+20.08

2
where I; = ultimate shear stress in kg/cm

5]

and A ultimete normal stress in kg/cm/
In each iteration, each joint is checked for failure

(10)

and aﬁbropriate modification to the material properties
is applied, and the problem is solved another time. Forexample
if the frliure criterion of repgion 1 is violated, tensile
bond Failure is assumed, The joint can no more carry any shean
or normal stresses, If the failure criterion of regions 2 or
3 is violated shear bond failure is assumed. The doint,  in
thts case, can sustain its normal strength, but it loses
some of its strength in shear depending on the magnitude of
the normal stress. The shear strength, in this case, is due
to the frictiousl resistance of the goint. For instance, in
region 2, and depending on the normsl stress; the shear mod-
ulus will be G = 10.868v;u. In region 3, 2 constant value of

L )

G = 254,1 kxg/cm~ is assumed., The above mentioned modes of

falluwre and residual properties are summurized in Table 1,

Table 1

Pailure Criteria snd Residual Prepefties of Mortar

Fuilure Mode of © |Modified Material Prop.
Region Criteria : e
Feilure B (kg fem 3 G Ekg/ch)
4 Z =0,660" +2,31} Tensile bond 0 0
u nu
.

2 §m=0.87¢hu+2.31 Shear bond No change 10.8680;u
3 t6-0'110;0+20'1 Shear bond No change 254,1
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4,2 BRICK FAILURE

Cracking in bricks is assumed to occur when one of the
principal stresses of the element exceeds the tensile strength
of the brick, Thus, in the analysis, the stresses are calcu~
lated from nodal displacements for all brick eclements gnd
then from these stresses the principal stresses are determineds
If the principal streee in any direction for a certain brick
element exceeds the ultimate tensile strength, the element

~onsidered to have cracked normzal to that direction., As
brick. 3are..assumed incapable of sustaining tension more than
the tensile strength, the excesc tension ie removed, These
excess tensile stresses arc converted into nodal pseudoloads.
During the next cyele, these restraining nodel forces are
applied to the struetuté so as to distribute the excess ten—
sile stresses to the adjacent elements., The method to apply
pseudoloads at the nodes was first developed by Colville and
Abbasi(l)to be used in the analysis of reinforced concrete.
iyy <nuthod is adopted here to account for cracking in brick
elements,

The brick element in equilibrtum is assumed elastic
only in the uncracked part, The potential. energy of an element
is discribed as

n basbﬁnhc’(‘”e) (4.1) :
where U = strain energy of uhcracked brick element

b

ch= strain energy of the cracked part of the brick

element

we = external work



"

If the strzins are functions of nodal deformations,

u

0} and We can be written as Pollpgws:

oy = ${a17Cf, [617 (), (61 ev) 143
Ope~ #{017(f, (61700}, [elanie}

i, ={a} T {F}

i R o '

where  {d} = nodal displacement vector
[G] = strain matrix relating strains to nodal defor-
ma tions
[D]b= material property matrix for uncracked brick

p]

o symbolic matrix for the cracked part which need
not to be explicitly defined
{F}] = external nodal force vector

Vc = volume of uncracked brick element

vbc= volume of the cracked part of the brick elcecment
Let. Dﬂ ==j. kﬂT[ﬂ, &ﬂdv = stiffness matrix for
b vb o)

uncracked brick element

%]
o]
o

fk}bc=‘fvb£G3T[j]bC[G]dV = BtiffnedsBimatrixiforaithe
creacked portion,
Then The potenl’ 1 'energy ctuncticnal ccn'be writlen ag
Wk \ ! ! - ;3
-5 Lkl (oY= sqa)” k), foV-{ei R} (4.2)
Minimizing m, to obtain equilifeium configuration by diffe-

rentiating with respect to nodal deformations

am
;33- = O for i=1,2,...,8, the governing equilibrium
i
equations for the cracked brick becomes =
I, (ol =(P+li]_{a} (4.3)

Now, nodal pseudoload vector, due to cracking,{F%p

can be defined as
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(e}, =09, 1o}
that is
{r}, = (‘f‘,bctclrtnlbc [G)av) {d; (4.4)
Recalling that the stress vector in equation (3.9)
ig defined as
{r1= (D)(c]ie}

the pseudoload vector becomes

i 4
be
where {G}bc- strees vector of the cracked portion of the
brick element.
In the analysis, each brick element is subdivided

into nine subregions as shown in Fig.-11l, Bach subdivision

b
is assumed to have a constant
“tresgs distribution, In the 3 - ?
2b: X
(i-—l)th iteration stresses in 2
1 4
each subregion are computed by
P +
2
ot =(n], (clid} .

Fig,-11 Subdivision of

Using Mohr's circle, brick element

the principal stresses are computed, The principal stress

vector will have the form

P
Cmax

?G}ER' Vﬁin
0

where Vp

and VP are maximum and minimum principal stresses
max min

respectively.
The principal stresses are then compared with the

tensile strength tt of the brick, Three possibilities exist:



(1) Vmax'<tt' that is no cracking. In this case, the

principal stress vector for the cracked part will
be E
Folai =0
(ii)(rgax‘zft but~751n<:ft' In this case, cracking in

.. ° " a ddrection perpendicular. to Vﬁéx is assumed and

P
Tmax
P .
(Mo = 7 9
o
b |
Hd4d) 0"'max ft ando'min> ft

In this case, cracking in both directions is

assumed, and
P

Omax
AV
{oibc Tmin

(9]

The stresses in global cocordinates are determined by

0"}bc [T ]{U'bc

where [To} is a transformation matrix defined as

cerQ s{nQG -28inBcoe
[?o] ¢ taiate cosgor 28inQcost
sin® cosd -8inQcosd cerO-singeJ

and @ is the angle that maximum principal stress makes with

the globsl X-axis,
Pseudoloads can now be calculated by substituting

ioi'c in equation (4.5).

At each load level, the iteration process is started
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by setting {f%c = O for all brick elements other than those
already héd cracked at previous load levels, Pseudoloads are
calculated as mentioned above, and the system is solved

another time until convergence is obtained,

4l CONVERGENCE CRITERIA

After the stiffness properties of mortar elements
have been updated in the (k-l)th iteration, and after the
pseudoloads have been calculated and applied at the nodes,
the system is anslyzed again. New deformations are obtained
and compared with (k-—l)th deformations, If the change in
deformations is smaller than a preset value, the iteration
process is terminated. Absolute Deviation Teet(g) is used
in this study to check convergence at the kth iteration., That
is, for n unknown deformations, the system is assumed to have

converged if

0
1 d: e dfdl
ey ZZ: i < €
e i

where € is a small positive presssigned number, Two values

of ¢ were used in the study, 0.0001 and 0,01, Uesing a value
of ¢= 0,01 is found to b2 more practical because the number
of iterations are decreased with no significant effect on
accuracy.

Moreever, if the number of iterations exceeds a ceri
tain preassigned number, the analysis is assumed to diverge

and the system is considered to reach its ultimate load. The



e

maximum number of iterations used in thie <«udy was 20,

4.4 COMPUTER PROGRAM

'~ The method of analyeis is divided into two major parte
The first part is an incrementaL‘process to allow for cracking
to occur in each load level, The second is an iterative pro-
cedure that allowe for redistribution of stresses and propo-
gation of cracks at the same load level,

Two methods were used in modifying the material
characteristics of mortar elements., The first was to use the
instantaneous tangent to the stress-strain diagrams to deter-
mine Dé and D; defined in equations (3.24a) and (3.24b). This

shown in pig.-12.

Stress
Stress
r ol
|
} €' or G!
| i
O;s—-._. L
|
|
|
l
l
|
€, Strain Strain
Pig.-12 Instantaneous Fig.-13 Instantaneous
tangent modulus secant modulus

At a certain stress level gy the actusl stress Ui and
the actual strain %. are determined from the corresp.ondingC
strees-strain diagrams of Fig.-5 and Pig.-6. The slope of thu

stress-strain diagram at the actual stress and strain is
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tsken as the modulus to be used for fu cher approximations.
In the second method the slope of the secant (Fig.-13) at the
actual strain and strain was used for further approximations,
In bofh cases, the initial elastic mudulii were used., It was
found out that although both methods reached almost the same
results, using the tangent modulii converged in a time of
5-10% less than that when the secant modulii were used. Thus,
the ingstantaneous tangent modulii were used in later étages
of the study.

The algorithm of analysis used in the study can be
summarized in the following steps:

l- Read in general mechgnical properties,geometrical
properties, external and prestressing loads,

2- Generate code numbers for each element,

3~ Apply load vector.

- Thcrement load vector,

5~ Ca: late element stiffness matrices[k;lo

6- Generat. “obal stiffness matrix [K] using code
numbers,

7- Solve for nodal ge«formations idzi.

8~ Check for convergence of deformations at tbe ith
iteration. If yes go to steP 10, otherwise go to step 9,

9- Check if oumber of iterations exceeded the pre-~
assigned maximum number., If yes, the analysis is terminated,
otherwise update mortar etiffness matrix and go to step 6,

10~ Check for failure,

(a) If failure criteria for brick element is vio-

lated,apply pseudoloads,
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{») If failure criteria for mortar element is vio-
lated, residual stiffness properties are allo-
cated and element stiffness matrix is updated,

£ any failure has beem detected, mode and position
of failure is printed and the-problem is s8d0lved again by going
to step 6; othrewise the analysis procedes to the next step,
(11) If the external load level has not reached the
preassigned maximum load, the load is incremented and steps
5 through 10 are repeated; otherwise, the final stress dis-
tribution i8 printed out and the analysis is terminated.
A general flow chart of the algorithm described above

is shown in Fig.- 14.
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Two wal. were analyzed.'The firet one was an unrein-
forced masonry wai while the second was of the same dimen—
sions but post-tensi, 1 by external steel tendons. The resulft
of the two analyses are 'mpared, At the sametime, a compa- =<
rison is done with elastic lution of both, where no crack

or failure was accounted for,

e 8 DESCRIPTION OF THE WALLS ANALYZED

'The walls analyzed were 60cm in height, 80cm in lengt
and 9cm in thickness, They wéere assumed to be fully fixed at
the lower edge. The bricks were assumed to be 9x19x5cm andc
the mortar to be lcm thick., Sketches of the two walls are

shown in Figs.-15 and 16, Post-tensioning of Wall 2 was assul

PR
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Fig.-16 Post-tensioned Wall 2

60 cm

to be done by four external 14mm diameter bars. A lateral

load of magnitude F was applied on the two walls as shown

in the figures Fig.-15 and Fig.-16. Finite element discreti-

zation is presented in Appendix II,

Wall 2 was post-tensioned by a load of 600 kg. The



b
lateral load applied to Wall 1 was of 200 kg increments up to a
maximum load of 2000 kg. A maximum load of 4000 kg, in incre-

mente of 500 kg was applied to Wall 2,

5.2 RESULTS AND DISCUSSIONS

Anylysis revealed that the unreinforced Wall 1 started
to crack at a lateral load level of 800 kg, whereas Wall 2
startéd to crack at a load of 1500 kg. The final cracking
pattern predicted by the finite element analysis is shown in
figures Fig,-17 and Fig.-18 for walls 1 and 2, respectively.
In the post-tensioned Wall 2, cracking is predicted
to start at the point where the lateral load was applied,
and progress downward diagonally, After stresses were redist-

ributed, cracks occured at other points of the wall panel.

Fl3
FI5 — ‘\_ :
F/3 > Tensile

\ \\\ ) bond fail,

=== Shear bond
\\ _ failure

Fq,=1600kg

s SR [ Bricx

s ~ failure

NNV 77 SN 227NN TNSN 77 W7 NSNS 7777

FPig.- 17 Cracking pattern for Wall 1



- 43 -

F/3 -
F/3 —=
o F e ol

Tensile bond
AR
Uik \\, failure

- E\ 1 ~=-~-Shear bond
: failure

_prick failure

wl

-I e F t=4000 kg

Rig.~ 18 Cracking pattern for Wall 2

It should be noted here that Wall 1 ceased to converge

.¢«1 A load of 1600 kg, This can be easily seen from the

force-displacement diagram in Fig.-19. The analysis predicted

cracking to start ar s load level of 800 kg and continue until

the system diverges at load level 1600 kg. It 1is noted that

Load+kg ,
f elastic solution with
1600 3 average properties
1500 | /{'/ i
/rr/<_ ! non-lin-
// | ear solution
| | \
/ | |
800 :
iy |
i )‘, i ‘
500 i
/ | |
/1 |
it | ol
b, 316 | 8,88 11880
2 6 S eadh i D g Ls IR .20

~4
Displacement x10

Fig.,-19 Load-displacement curve for Wall 1
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as the system starts to crack at a load level of 800 kg, the
curve starte to flaten as it approaches the ultimate load.

In the linear analysis, average values for the mater-
ial were used. For mortar, G.e 1225 kg/em> and B = 6335 kg/cm>
were used. Whereas for brick, the same values were used as
those used for the non-linear analysis. Comparing the non-
linear analysis with the linear one, we can see that the dis-~
placement at failure is more than twice of that predicted by
the elastic solution,

The effect of post-tensioning can be easily seen from

Fig.-20. Wall 2 behaves more or less linearly., But still the

¢ Load-kg
displacement predicted by e elastic soluti
: i . { [ with average
the elastic solution is far N 4/ properties
A
less than that determined |
3000+ / ;
by the non-linear analysis. 2oy . non-line
2000 e : solution
The non-linear prediction 4 ;
1000 _/_ i
is 1,58 times more than 800 101§4j1.42 2,24
: L 2 3
that of the: elastic sol~ Al
Displacement x10O
vtion, Fig.~20 Load-displacement

curve for Wall 2
Moreover, the dis-

placements at a certain load level is less for Wall 2 than
that of Wall 1, Forexample, under a load of 800 kg, Wall 1
undergoes a displacement of 2.315x10"4cm, whereas, under the
ganis load level Wall 2 undergoes a displacement of O.64x10-59n
Bven at a load of 4000 kg, the displacement of Wall 2 was
much smaller than that of Wall 1 at smaller loads.
Furthermore, it is noticed from the results of the

non-linear analysis of Wall 2 that even though cracking start
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at a load level of 1500 kg, it can still carry increments of
load up to 4000 kg without collapse.
To see the effect of post-tensioning on the distrib-
ution of st:ess, principal tensile stresses at a certain
section A-A (in Fig.-15 and Fig.-16) are calculated for both

walls at a load level of 200 kg, The result is shown in

Max. principal Max, principal stresses xlO-

stress |
) 12
10
5 2 84
6 L
4
O.lﬂ T
7. 8

S0 eel (o SDLLLLE0 80 40 | iRt

distance from edge-cm distance from edge-

cm
(a) Wall 1 (b) Wall 2

Fig.~21 Stress distributiog at the sectiaa a-4 at a lateral
2 load of 200 kg

Fig.~21 a and b, Comparing the two graphs, one sees that the
prin¢ipal tensile stresses in Wall 2 under a load of 200 kg
are of the order of lO’"4 kg/cm2. With post-tensioning, the
tensile stresses of Wall 1 become almost zero, The 200 kg

in this case 1is analogous to service loads in real structures,
Thué; the model predicts that , as expectected, prestressing
masonry elements will decrease if not eliminate tensile
stresses,

As for the model, it gives a realistic analysis of

the behavior of post-tensioned walls, since it takes cracking
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of bricks into consideration., In particular, it gives a good
picture of the post-cracking behavior of masonry.

But still the model has its own shortcomings and limias
One is due to the fact that there are too many calculations
to be carried by the computer which introduces the possibility
of large round-off errors depending on the number of elements
and on the number of digits carried by the computer. Usage
of first order elements is another source of error, Thus,
using higher order finite elements and using double precision
arithmetic could decrease the error,

Although the results obtained are approximate, depen-
ding on the assumptions and idealizations made in formulating
the model, nevertheless, it can still be used as a tool to
describe and explain the physical behavior of masonry., The
model can be used in future research to identify the diffe-—
rent parameters that influence the bebavior and capacity of
post-tensioned masonry walls,

It should be noticed that the results obtained in this
study are purely mathematical and should be verified experi-
mentally., An attempt was done to compare the results of tbhis
study with some experimental results obtained by another
research done at Bogazici University(4), Similar qualitative
results were obtained as for the cracking pattern and load-
defiection relationship of post-tensioned masonry., A quanti-
tative comparison could not be done because the material
characteristics used in this study especially for mortar

could not be obtained for local mortar.
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Im this study a flfinite element model is developed
to analyse masonry walls post-tensioned by external steel
bars. An incremental-iterative procedure is suggested for the
s&lution of the non-linesr problem, This procedure can take
int® account the non-linear behesvior of materials as well as
non-linearity due to cracking and propogation of cracks.

Two mssonry walls were analyzed, one unreinforced
and the otther post-tensioned. The following conclusions csn

drawn from the results of these snalyses:

1- In spite of its shortcomings and limits, the model
gBives realistic 2nd accurate results about the behavior and
cracking of post-tensioned masonry walls; evidenced by the
following expected observations:

(a) Post-tensioning increased the strength of the

mgsonry wall,

(b) It also increased the capacity of the wall after

cracking.

(c) The stiffness of the wall was found to incresse

with post-tensioning, That is, displacements

DI L e



ijﬁl»wuiﬁ¥ffwnnder A certain load decreased significantly.

T  ;m,(§)i§oat-teneioning decreased tensile stresses in the
| wall under service loads,
2~ ﬁ?ﬁa#ior of post-tensioned masonry is relatively
linear and reliable especially under service loads.
3- The model can be used in future research as a tool

of analysis to describe and identify the different parameters

affecting the behavior and capacity of post-tensioned masonry,
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Y-~ GENERIC DISPLACEMENTS

{ui = [N] {4} (A.1.1)

where f{u}l= generic displacement vector
[N] = shape functions matrix

{dl= nodal displacement vector

2~ STRAINS
tef =(a]{u] (4.1.9)
{et=la)IN]{a} (Ab1s8)
1¢ (6] = [a)ln) (A.1.4)
then, {€} =[6]{d] (4.1.3a)

where {&]= etrain vector
[Al= operator matrix of derivatives

[Gl= strain matrix

3- STRESSES
o} =[p){ef (A.1.5)

e
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{ot= (0] [G'1{d}
1t [s]=[p](ac]
then, 1(vt=[8]{d}
where {9]= stress vector
[D] = material matrix

[S)= stress matrix

4- STIFFNESS MATRIX

(k) = j_v (61 (03 (G) av

where [k)= element stiffness matrix

5- LOAD VEBL TGRS

(a) Initial Strain Loads:

{ed, = -3f, [G%‘{D] {egyav

where {f}e = initial strain load vector

o
and € = ipnitial strain vector
o

(b) Initial S¢tress Loads:

{f§gg‘ *jv[G]T{VQSdV

uvhaye {f] = initial etress load vector
o
and {voaa initial stress vector

(c) Temperature Loads:

e}, = -ifvokAT[G]T{DT}dv

where {t§T = Temperature load vector

(A.1.6)
(A.1.7)

(A.1.8)

(A.1.9)

(A.1.10)

(R.1.11)

(A.1,12)



e U
K= material temperature const.: -
AT = temperature change

iDT}- temperature elasticity vector

(d) Body or Distributed Forces:

i g
{e}, = -[, ) AT (A.1.13)
where {fﬁb = nodal body or distributed load vector

{Pb% = body or distributed force vector

(e) Bdge Loads:

T
£ = _jeLN] {pe}ds (A.1.14)
where {fe}- nodal load vector due to edge loads

and {P;}u edge load vector

6~ EQUILIBRIUM BQUATIONS

() (A} +TC {7+ [M) {0} = (P, o - D e} (A.1.15)
where [K]- ~vgtem stiffness matrix

[C]= co stent damping matrix derived as,

= e A.1.16
[l o[ fx, Wlav (h.1.16)
where Co = material dsamping constant

§d}- nodal velocity wvector

[M]- consistant mass matrix derived as,

[Ml-f’fv[N]T[N]dV (AL LA

f = material specific density

{ds- nodal accelaration vector
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FINITE ELEMENT DISCRETIZATION OF
THE POST TENSIONED MASONRY
WALL
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- No, . of No. of Lateral applied
Wall elements unknowns load - kg
Wall 1 183 466 2000
Wall 2 193 484 4000

Post-tension

load -~ kg__

600
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i BENDIX IV

STRESSBS AND STRAINS IN JOINT BLEMBNT -

S m== mogDxyspIIm === mmIms SErstr R ROy

Relative displascements at any point x withen the
joint element of unit lengthis related to the nodal displace-

ments by the folloeing relation:

{wi= 4 (6] {4} (Kodel)

Ww = rvelative shear displacement
W = relative normsal dieplacement
{d} = nodal displacement vector
-A ~B B A O 0 9] 0
and [G] ™
€ 0 0L D -A =B B A
2 2
where A= (l- T?) and B=(l+ T?).

PFor a mortar of thickness t, the strains can be cal-

c =3 = .
ulated as 68 ws/t and €. wn/t

(e} = =fw} (A.4.2)

®ee
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&
where 26}- .

€n

Es = shear strain
e normal strain
t = thickness of mortar
Thus, from equations (A.4.1l) and (A.4.2) the strain vector
will be
fe} = 3 [6){a} (A.4.3)
2t gih
In explicit form {e} is expressed as
i o —Adl-Bd2

BE
e ~Ad -Bd +Bd, +Ad,

+Bd3+Ad4

. h I
where d{- g displacement of the joint element,

Force per unit length was related to therelative dis-
placements {sectioan 3.4,2) Uty

{P{=[D']}{w} (A.4.4)

Thus for a well of thickness T the stress -vector becomes

fo} = F [0 (v} | (Ae4.5)

G; = shear stress
g = normal stress
[D{]- material matrix defined in section (3.4.2)

From equations (A.4,1) and (A.4.5) the stress vector

becomes,

{of= a0 [6{a} (A.4.6)

In explicit‘form,
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