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ABSTRACT 

In the past'iears many developments have been observed and 

so many devices have been invented. The design of new systems using 

these devices are becoming more and more important. Moreover non­

linear behaviours of these devices and systems necessitate knowledge' 

of nonlinear circuit theory. 

In this thesis, memristor which is introduced as the fourth 

basic circuit element into nonlinear circuit theory, and memristive 

systems which are the generalization of memristors into a special 

class.of dynamical systems have been considered. And examples of 

applications are also given. Finally a new model of bipolar 

junction transistors is presented and the theoretic proof the model 

has also been given. 



OZETQE 

Ge~tigimiz y~llarda Elektrik Mtihendisligi Biliminde bir~ok 

geli§meler gozlenmi§; ve birgok yeni devre eleman~ icat edilmi§tir. 

Bu elemanlar, yeni sistemlerin tasar~m~nda' yayg~n olarak kullan~lmaya 

ba§lanm~§t~r. Ayr~ca bu yeni icat edilen devre elemanlar~n~n bir~ogu­

nun davran~§lar~ dogrusal degildir. Dolay~s~yla bu sistemlerin in­

celenmesi dogrusal olm~yan uevre teorisini gtindeme getirmektedir. 

Bu tezde dogrusal olDl~yan devre teorinine dordtincti temel 

eleman olarak giren haf~za-diren~ler, bunlar~n bir genellemesi 

olan haf~za-direngsel 'sistemler gozden ge~irilii ve uygulama ornek­

leri sunuldu. Son olarakta bu eleman kullan~larak yeni bir transistor 

modeli geli§tirildi ve modelin ispat~ yap~ld~. 



1- - Introduction. 

11-- Memristor 

1- Definition and Basic Properties. 

2- An Electromagnetic Interpretation of Memristor Definition. 

3- Mechanical-Analogue of Memristor. 

111- Realization of Memristors. 

1- Realizability Conditions. 

2- Hutators 

3- Active Circuit Realization. 

IV- Memristive Systems. 

1- Definition of Memristive Systems. 

2- Generic Properties of Memristive One-Ports. 

3- A Canonical Model for Memristive One-Ports. 

V- Device Modeling Using Memristors and Examples. 

VI- A Model of the Bipolar Junction Transistor Using Memristors. 

1- Preliminary Studies. 

2- Construction of the Model. 

3- Justification of the Model. 

4- Remarks on the Model. 

VII- Conclusion. 

References. 

1 

2 

2 

8: 
--. .: .... 

11 

16 

16 

17 

19 

24 

24 

26 

3~ 

51 

75 

75 

87 

90 

105 

107 

109 



C HAP T E R I 

INTRODUdTIO~ 

In the recent years, many new developments have been observed 

in the field of Electrical Engineering Science, and many new devices 

have been invented. These devices are becoming more and more important. 

in the design of new systems. The analysis and the synthesis of these 

systems and the modeling of the newly invented devices bring the tools 

of nonlinear circuit theory into consideration, since the behaviours 

of most of these devices are nonlinear. 

This thesis is going to deal with the new born, basic, two­

terminal element of the nonlinear circuit theory, namely the memristor. 

In Chapter II, the definition and basic properties of memristors are 

given. The electromagnetic interpretation of the element and its 

mechanical analogy is also presented. In Chapter III the realization 

of the memristor is considered. Though it is postulated as a two terminal 

basic circuit element, the memristor is realized using mutator, a two­

port element, which in turn requires active elements fox its realization. 

In Chapter IV, the memristive systems which are a generalization of 

the memristor concept are studied. The properties which distinguish 

them from the other systems are given. ~everal existing memristive 

systems such as termistors, discharge tubes are also presented. 

Applications of the memristor to device modeling ~s the subject 

of Chapters V and VI. The junction diode model ~sing memristor is the 

main subject of Chapter V, whereas the model of a bipolar junction 

transistor presented in Chapter VI is new. First, necessary preliminary 

studies are carried on and then the model is constructed and justified 

in Chapter VI. 



C HAP T E R II 

"MEMRISTOR ~" 

11.1- DEFINITION AND BASIC PROPERTIES 

Let's consider four basic electrical 

variables, namely "flux, charge, voltage and 

current. Out of six possible binary 

" relationships of these four variables five 

lead to well known relationships. Three of 

them are the axiomatic definition of 

L 

, , 
" , , , , 

R 

" " , , 
,'<, 

,,' " , " " , 
" " , , tp , , 

Classical circuit element. i.e. They are the Figure 1101 

definitions of resistor (fR(i,v)=O),capacitor 

q 

(f (v,q)=O)and inductor (fL( ~,i)=O). The other two are operational i.e. 
c t t 

'P(t)=Jv(Z)dt: and q(t)=fi(-c)dL 
-~ -~ 

From a logical point of view there is~' missing relationship : 

between flux and charge. In 1971 Chua postulated a fourth basic two­

terminal· circui t element for the completeness of the figu.re [1) .• 

The name memristor is given to this 

new circuit element, which is a contraction 

from "memory resistor". And the proposed 

symbol is shown in figure 11.2. Although 

we don't have a memristor in the form of 

a passive physical device yet, there are 

some active circuit realizations of the 

device. This will be covered in the 

chapter III. 

v M 

Figure 1102 

Now let's see the basic properties of the memristor. 

By definition a memristor is charecterized by a relation of the 

type g( 'P,q)=O; it is said to be charge(flu~ controlled if this 

relation can be expressed as a single~valued function of charge q 



(flux~). Then the voltage (current) devel~ped across the device can be 

written as 

d \p(t) 
dt <. 

- . 

dg( t) 
= dt 

( .i(t)= W(~(t» vet) or 

d \!leg) 
dq 

dg (\fJ) 
d4J 

dg(t) 
dt 

dt 

(11.1) 

) (11.2) 

Since M(q)(W(4J» has the unit of resistance (conductance) it's 

called incremental memristance (menductance). We also see ~rom equation 

11.1 that the value of the incrementel memristance at any time t depends 

( 
-t:. , I 

on q t) and since q(t)= J i(t)dt, it depends upon the integral of 
_00 

memr~stor current form t= - 00 to t, we observe that the value of the 

memristance depends on the complet~ past history of its current (voitage) 

and this is why the name memory-resistor is given to the element. Note 

also that once the voltage of a memristor is specified it behaves like 

a linear time-varying resistor. In the special case when th~ ~-q curve 

is a straight line the memristor reduces to a linear time-invariant 

resistor. Hence there is no need of introducing the memristor into linear 

network theory. 

What was said before was that, there was no memristor in the 

form of a passive physical device. The following theorem may be thought 

as a criterion for the class of memristors which may be discovered in a 

pure device form without internal pover supply~ 

Theorem 11.1: Passivity Criterion. 

A memrister charecterized by a differentiable charge-controlled 

4J-q curve is passive if and only if, its incremental memristance M(q) 

i~ nonnegative i.~. M(q) ~ o. 

Proof: 

The instantaneous power dissipated by a memristor is given by . 

pet) = vlt).i(t) = H(q(t» (i(t»2 

if M(q(t»~O then p(t)~O and memristor is obviously passive. 
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Suppose there is a point qo on tp-q curve such that M( qo) <0 

Then the differentiability of the lp-_q curve implies that there exists an 

£>0 such that M(qo+ l1q)<O, ll1ql<E. Now if we ~rive the memristor 

with' a current source i(t) which is zero for t~t and such that ,. 
q(t)=q + l1q(t) for t~t ~t,then since for this current M(q + l1q)<O 

o 0 -t 0 

and since p(t)= M(q(t»(i(t» 2~0 and !p(r)dz < 0 for sufficiently 
-co 

large t,then memristor is active. Hence the conclusion follows • 

. This criterion shows that only memristors which have monotonically 

increasing ~-qcurves can exist in the form of a passive device. 

Theorem 11.2: Closure Theorem. 
":­'., 

A one-port containing only memristors is equivalent to a memristor. 

Proof: 

Let i.,v.,q. and ~J' denote the current voltage, charge and flux-
J J J 

linkage of the j'th memristor. W.here j=l, •••• b and i and v denote the 

port current and voltages. We can write (n-l) linearly independent 

Kirchhoff current law equations where n is the total number of nodes and 

b is the total number of memristors. More explicitly KCL eq's are 

j=1,2, ••• , n-l (11.4) 

Similarly we can write (b-n+2) linearly independent Kirchhoff voltage 

law equations. 

j=1,2, •••• ,b-n+2 

where are either 1, -1, or O. 

Now let's integrate these equations with respect to time 

1: -!: 

aJ·o_.[i(t)dt + J( ~a'kik(t»)dt = 0 
- -00 ~1 J 

to obtain 

j=1,2, ••• n-l (11.6) 

t 
and I3jO_L v( () d( +. to obtain 
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j=1,2, ••• b-n+2 

if we also assume that memristors are charge-controlled then 

b ' 
f3joY' + k~ ~jk~k(qk) = q,j (II.B) 

These equations (11.6) and (IIoB) constitute a system of (b+l)' 

independent nonlinear functional equation in (b+2) unknowns,solwing for 

~ we obtain a relation f(q, \jl )=0 

Theorem 11.3: Existance and Uniqueness Theorem. 

Any network containing only memristors with positive incremental 

memristances has one, and only one solution. The proof of the theorem 

will not be given here. See [11] • 

Theorem 1104: Principle of Stationary Action (Coaction). 

A vector g" =9l, (pj =~1) is a solution of a network N containing 

only charge~controlled (flux-controlled) memristor,if and only if it is 

a stationary point of the total action R (gl, ) associated with N. i.e. 

the gradient of R(91.) ( R(\f'J) ) evaluated at 9.(. (~:J) is zero. 

( ) 

Before the proof of the theorem let's define the necessary concept 

Definition 11.1: 

The action (coaction) associated with a charge (flux-controlled) 

memristor is defined to be the integral 

q 
A ( q) = J tp ( x) dx (A ( \fl) = 

o 

IV 
J q(X)dX 
o 

) (11.10) 

L'et's ,now consider a pure memristor network N containing n 

node sand b branches. Let 'J be a tree and cC its associa ted cotree 

Let's label the branches consecutively starting with the tree elements 

and define. 
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t 
4J = ( 41 , ~, •••• 4J b) , 
'" i.2 

4J= (lP,4J, •••• \j>n_l)t and 
,. 'J i .:z 

We know also that 10 or q 't''J ., 
,.. ~ dv. t 

variables in the sense' that to = D 4' 
..( '" 'J 

t 
q =(q •••• qb) 
-f,. n . 

constitutes a 

and q=Btq 
-f,. 

complete set of 

where D and B 

are the fund·amental cut-set matrix and the fundamental loop matrix. 

respectively. 

Definition 1102: 
":--_. 

Total action (coaction) associated with a network containing only 

charge-controlled (flux-controlled) .memristors is defined to be the 

scalar function 

(R (~t )= Ao 
t 

(B ~ L ) ( " t 
(R(~1)= AO (D ~:J) ) (11.11) 

b b qj 
A = A(q) = 2: A .(q.) = .2 f I{>.(q Jdq. (11012) 

j=l J J J=l 0 J J J 

( " b ... b 'Pj 
A = A(~) = .~ A.( ~ j) = j~ [ q/4' j )dIP J ) J=l J 

and 0 denotes the composition operation. Now we have the mathematical 

tools to prove the theorem. 

Proof of Theorem 11.4: 

a(R(gt) = aAo(EtQt) = B aA(g) I = B\j>o(B-tq ) 
aq aq aq t "'....:.; 

,./.. -L ,. ct=Bq 
. t - -t 

But as B \j>o( B q ) is nothing but KVL in terms of L, any vector Q.. 
,. ~~ . 

is a solution of N if, and only if it is a stationary point of ~(q ). . ..r.. 
The above theorems are concerned with the networks composed of 

only memristors. Now a more general theorem for networks containing 

resistors, capacitors, inductors and memristors will be given. Inmost 

cases the governing equations of this kind of networks take the form of 

a system of m-first order nonlinear differential equation in the form 
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~ = f(~, t) where ~ is an mxl vector whose components are called state 

variables. The number m is called the "order of complexity" and is 

equal to the maximum number of independent initial conditions that can , 
be specified arbitrarily. 

Theorem II.5: Order of Complexity:. 

Let N be a network containing resistors, inductors, capacitor, 

memristors, independent voltage sources and in dependent. current sources. 

An uppel' bound. for .the order of complexity m of N ·is given by 

(II.14) ., ..... .... . 

where' bL,bC,bM are total number of inductors, capacitors and memristors 

respectively ; n
M 

is the· number of independent loops containing only 

memristors, nCE is the number of independent loops containing only 

capacitors an~ voltage sources, nLM is the number of independent loops 

containing only inductors and memristors, Ii is the number of independent . m 
cut sets containing only memristors,IiLJ is the ,number of independent cut 

sets containi{ig:' only inductors and current sources, nCM is the number of 

independent cut sets containing only capacit.ors and memristors. 

Proof: 

The order of complexity of an RLC network is given by m=(bL+bC)~ 

(nCE)-(nLJ ). For an RLC-Memristor network with nM= nLM=nM=nCM=O each 

memristor introduces a new state variable and we have m= (bL+bC+b
M
)-

Observe next that a constraint among the state variables occurs 

whenever anindependen~ loop 'consisting of elements corresponding to 

those specified in the definition of nM and nLM is present in the network. 

And similarly there will be a constraint among the state variables 

whenever an ihdependent cut-set consisting of the elements correspending 

to those specifi.ed in the definition of nM and nCM is present in the .. 

network. Since each constraint removes one degree of freedom the order 

complexity must be reduced by one. 
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11.2- AN ELECTROMAGNETIC INTERPRETATION OF MEMRISTOR DEFINITION. 

We know that the circuit t~eori is a special case of electromag­

netic field theory. Particulary the three classical circuit elements 

(resistor, capacitor, inductor) can be given a good electromagnetic 

interpretation in terms of the quasi-static expansion of. Maxwell 

equations. Now we will give an electromagnetic field interpretation of 

memristor analogous to that of other basic circuit elements. First, 

Let's write down the Maxwell equations. 

-- aB (11.15) Curl E = - at 
.... .... - aD Curl H = J + 

at 
(11.16) 

..... ..... ~ -... 
where E H are the electric and magnetic field intensity, D, B are the -magnetic field density and J is the current density. 

Defining 7=~t as the family time where ~ is called the time-

rate parameter, the Maxwell equations become 

-- aB (11.17) Curl E = -(X 
aZ' -- ~ aB Curl H = J+lX (11.18) 

az: 

~""'-f""'" ~ 

E, H, D, Band J in these equations are functions of both the position 

(x, y, z) and of ()(/z. Let's expand the vector quantities in power 

series in ~ and substitute them into the equations. Upon equating the 

c6efficients of ~nobtain the nth order Maxwell's equations where n=O, 

1,2, ••••• 

- n - "-1- -For example if E= 0{ E.+O( E l+ ••• +CXE
l 

+ E , then zero, first, n n- 0 

second order Maxwell equations can be written as follows. 

Zero-order Maxwell equations: 

- (11 0 19) Curl E = 0 
0 

-Curl II = J (11.20) 
0 0 

0: ... ~ ... . 
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:first-order Maxwell equations: 

~ - aB 
Curl El 

0 = 
at: 

(11.21) 

-.. - aD 
Curl Hl J

l 
+ 0 = 

az: 

Second-order Maxwell equations: ---Curl E2 = -

(11024) 

and so on. 

Many electromagnetic phenomena and systems can be analyzed 

satisfactory by using only the zero-order and first order Maxwell 

e~uations4 The corres ponding solutions are called quasi-static Maxwell 

equations [2J. Forexample a resistor can be identified as an electro­

magnetic system whose first-order fields are negligible as compared 

with the zero-order fields. So the resistor is interpreted as an - ... instantaneous reletionship between E and H . When only the first-order 
o 0 

magnetic field is negligible the electromagnetic system can be interpreted 

as an inductor in serieS with a resistor. Similary when only the first­

order electric field is ne~igible the system can be interpreted as a 

capacitor in parallel with a resistor. But the case that both first-

order fields are not negligi.ble has been omitted in the studies as 

having no correspondance in ·circuit theory. 

It is suggested, that this case is precisely the one that gives 

rise to the charecterization of a memristor. Under,appropriate conditions -the instantaneous value of the first-order electric flux-density Dl 

(surface integral of Dl is propartional to q(t» is related to the 
. ~ 

instantoneons value of the first-order magnetic flux-density Bl -(surface integral of Bl is proportional to ~(t». This would the 

case if we postUlate the existance of a two-terminal device with 

the following propertres. a) zero-ordef fields are negligi~le as 
. . -.-.. -+-.... -I*-+- --..,..-.. ...... ~ 

compared to first-order fields. i. e. J::: J l' E::: El , H:: Hl , B:: B
l

, D:: D
l

• 
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b) The material from which the device is made is nonlinaar .. More 

generally we have the following nonligear relationships 

-+ -J
l

· = J(E
l

) (11.25) 

-+ -Bl = tB (H
l

) (11.26) 

-+ -
Dl = <D (E

l
) (11.27)" 

where J ( .) , (8 ( .)", ([)C») are one-to-one continuous functions from 1R3 to 

1R3 .Under these assumptions the equations 11022 and 11025 can be combined 

to give. 

-Curl Hl = J (E;.) (11.28) 

Observe that 11028 does not contain any time derivative. Hence, under any --specified boundary condition appropriate. for the device,E
l
"is related to -Hl by a functional relation namely 

(11.29) 

- --- --... -
if we substitute into Dl=<D(E

l
) and using Bl = <B (H

l
) 

we obtain 

-I 
G3 

- ..... 
This speci fies the instantaneous relationship between Dl and Bl which 

can be interpreted as the quasi-static rep~esantation of the memristor 

in terms of electromagnetic quantities. If we summarize the above inter~ 

pre~ation of the memristor, the physical mechanism charecterizing the 

device must come frem the instantaneous.interaction between the first­

order electric .field and the first-order magnetic field. We see from the 

interpretation that .the physical memristor device must essentially 

be an a,c. device otherwise its associa,ted dc electromagnetic fields 

give rise to nonnegligible zero-order fields. This is consistent with the 

circuit-theoretic properties of the memristor,a dc current source would 

give rise to an infinite charge q(q(t)-r 00 as t- 00 ) 
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and a dc voltage source would give rise to an infinite flux (1j1( 0- 00 

as t_ 00 ) 

11.3- MECHANICAL ANALOGUE OF MEHRISTOR 

What we considered so far is the memristor as an ~lectrical 

device. But as in the case of other circuit elements the memristor 

also has analagues from other systems. [3] 

Now let's consider the mechanical systems. In this case, what 

we have as basic variables are the velocity(e), displacement(q), 

force(f) and momentum(p). Again we can relate these variables to each 

other in 6 :wais as in the case of electrical variables, 

q 

Figure 1I.3 

": ... ..... . 

explicitly two of these 6 relations are the definitions of displacement, 

t 
q(t) = q(O) + J e(r)dr 

o 

and of momentum 

pet) = p(O) + 
1: 
Jf(c:)dc:: 
o . 

three of them are the constitutive relations of energy storage and 

dissipation elements. 

FC (f, q) = 0 (11.31) 

FL (e, q) = 0 (11.32) 
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But, there is one missing constitutive relation relating p and q(which 

was drawn as hidden l~ne by Paynter in 1961). This fourth constitutive 

relation can"be defined as 

F (q,p)=O, and called as "memristorU i.e. memory resistor since 
m 

it remembers both integrated flow(q) and integrated effort(p). 

The constitutive relation for a I-port memristor is a curve in 

the q-p plane. Depending on whether the memristor is displacement or 

momentum controlled the constitutive relation can be exppressed as ~-

p = G( q) or as q=F(p) 

differentiating with respect to time we obtain 

. 
p = ~ 

dt' 
f = M(q)e 

. 
q = e = Vl(p),f 

M(q): is called the incremental memristance. 

W(p): is called the incremental memductance. 

(11.36) 

\We see that dynamically the memristor appears as either a displacement 

or momentum-modulated resistor. In the case of linear constitutive 

relation (ioe. M=constant, W~constant) the memristor app~ars as an 

ordinary resistor. So memristors have a meaning only for nonlinear 

sYf?tems. 

To distinguish a memristor from a resistor, let's consider 

the tapered dashpot shown in the figure 11.4. If we attempt to model 

the device on the e-f plane as a resistor we will not obtain a unique 

constitutive relation F(e,f)=O, but rather some hysteritic behaviour, 
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since the incremantal resistance depends on the instantaneous 

displacement. W6 may attempt 

to model the device as a 

modulated resistor. taking 

the state varriablex as 

parameter in the constitutive 

relation. Howover x is not 

a defined state variable for 

any element in the system. 

What is required is the 

displacement of the dashpot. 

But modeling the system as a 

Figure 1104 

piston 

memristor eliminates',the cumbersome modulation and permits us to 

charecterize the device as a single curve in x-p plane. 

Example: 

Now. let's study the mechanical system mentioned above in some 

detail. The mechanical system can be considered a crude model of an 

automobile suspension using a shock absorber whose charecteristic 

depend on displacement. The schematic diagram of the mechanical 

suspension system is shown in figure 11.5. 

The mass could represent 

the mass of the car, the spring 

and dashpot its suspension 

system, and the velocity 

source the input due to 

undulations in the road. 

velocity source 
11717177717717f771 

Figure 11.5 

The bond-graph,with the tapered dashpot as a memristor can 

be drawn as follows. 

I ------,l111t---- E 
(mass) 1 (velocity source) 

o 

(Spri~g~ ~~emristor) 
Figure 11.6 
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Particularly for this system, it is also possible to represent 

the tapered dashpot as a modulated ~esistor since the displacement 

of the dashpot is the same as the displacement of the spring and 

proportional to the force in the spring. The bond-graph for this system 

is the following. 

------II 1 1-1 ----- E 

1 
o 

./ ~ mod~(ate-d 
l~ '-y. resistor c/ -----_TF~ R 

Figure 11.7 

But the bond graph with the memristor uses fe~er elements and 

avoids the necessity of defining a different kind of bond (dashed bond 

for modulation). 

Let's define the p-q relation for a dashpot as following and 

let's draw' it in the p-q plane •. 

p = sign (q) • (Absolute (q ».n 

p 

-----~~~~-----+--~q 

/ 

Figure 11.8 

":- ... 
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The responses of the suspension system to a sinusoidal forcing 

velocity taking the tapered dashpot as a memristor that has the p-q 

relation as defined in the above equation 11.37 are shown in the 

fiqure 11.9 for different n's. 

e 

Figure 11.9 

It is said that these results are consistent with thoseebtained 

using the modulated resistor instead of memristor[3];-

..... ·r .. :~ 

The case n=l corresponds to an ordinary linear dashpot and its 

state-plane trajectory is an ellipse. The other two trajectories are 

non-elliptical, indicating that the nonlinear p-q relation causes 

frequencies other than the forcing frequency to appear in the ( _ 

output. The presence of these harmonics is typical of nonlinear systems. 

The slopes of the trajectories near the velocity axis (for spring 

force close to zero) shows the charecteristics of the displacement 

modulated dasphot; for n=2 the dashpot is very soft around its center 

and the trajectory shows this property being nearly horizontal. 

On the other harid for n= ~ the-dashpot is very stiff near the center· 

and its trajectory is very steep. (Theoretical~y for nx ~ the slope 

is infinite at the origin. Use of finite-difference solution, however 

replaces the infinite slope with large but finite slope near the origin, 

which is a much more realistic situation. 
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C HAP T E RIll 

REALIZATION OF MEMRISTORS 

111.1- REALIZABILITY CONDITIONS. 

As stated before, a memristor in the form of a physical device 

without an internal power supply has not yet been discovered,but ther~ 

are some active circuit realizations. In this section the realization 

of a memristor will be investigated. 

+ + 

M R 

(0 ) 

1m 1m IL 

]M + + 

- Vm v L 
L 

( b) 

1m 1m 

+ + 
vm M - vm C 

(e) 

Figure 111.1. 

':-,.. 
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The passivity theorem 11.1 shows that only memristors characterized 

by a monotonically increasing lP -q curve can exist in a device form 

without internal power supplies. But using a mutator a memristor with 

any prescr.ibed ~-q curve can be realized by connecti~g an appropriate 

nonlinea~· resistor, inductor or capacitor across port-2 of an M-R, M-L 

or M-C mutator respectively as shown in figure 111.1. 

Now mutators will be defined and discussed in some detail. 

111.2- MUTATORS 

Mutator is a generic name for a family of linear ~lgebraic 

2-ports ~], [5J.A type 1 L-R mutator is charecterized by the constitutive 

relation ~=v2 and i 1=-i2.if we terminate port-2 by a resistor having 

11 1 IR 2 

+ + + 

V
1 

V
2 

v 
R 

R -

Figure 111.2 

a constitutive relation iR=g(vR) then from figure 111.2 and using the 

mutator constitutive relation we can write the following equations 

combining these equation 

we can obtain the equation 

In other words, the port~l is equivalent to an inductor which 

is charecterized by a constitutive relation identical to that of the 

":0". 
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resistor connected to port-2.Conversely, if we terminate port-l by 

an inductor having a constitutive relation f(i
2

, ~2 )=0 then what we 

observe from port-2 is a resistor having a constitutive relation f(i
2

, 

v2 )=0. 

This shows us that this 2-port transforms one type of' element 

into another type element, and reveals the reason why the'2-port is 

called mutator. 

A type-2 L-R mutator is charecterized by the constitutive 

relation ~i= -i2 and i l =v2 • The same mutation property also holds 

in this case, except that the two variables in the resulting element are 

interchanged i.e. when we connect a resistor charecterized by a 

constitutive relation iR=f(vR) across port-2 of a type 1 L-R mutator 

we get an inductor having a constitutive relation il=f( ~i) but in the 

case of type 2 L-R mutator we get 

Similarly we can define other mutators namely L-C, C-R, M-R, M-C, 

M-L mutators. 

We observe that by using different mutators, it is possible to 

synthesize any three of the four basic circuit elements R,L,C,M given 

the fourth element. Since mutators are linear 2-po.rts, they can be 

realized using only linear el~ments. For example a type 1 L-R mutator 

and type 1 C-R mutators can be synthesized by the circuits given in 

figure 111.3. 

i1 i
Z i1 i 

Z 
+ + + '+ 

v' 1 
1 Vz 'v I\ Vz 1 

Type 1 L_R mutator Type1 CRmutator 

(a) ( b) 

Figure 11103 
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111.3- ACTivE CIRCUIT REALizATION 

A memristor with a prescribed lP -q curve can be realized using 

a M-R, M-C or M-L mutator. Charecterization and realization of these 

mutators are given in table I. 

Since it is easier to synthesize a nonlinear resistor with a 

prescribed v-i curve, only memristors realized with M-R mutators are 

studied. Practical active circuit realization of a type 1 M-R mutator 

is given in figure 11104. In order to verity that a memristor is indeed 

~ 

Port I 

0,. 
(2N4236) 

RIC) 
(910) 

+Ecc 

~----------------------~------~----~~-Ecc 

Figure 11104 

Iz 
~ 

Port 2 

realized across port 1 of an M-R mutator when a nonlinear resistor is 

connected across port-2 it will be necessary to use a 

tracer. For more detail of the . lP -q curve tracer see 

ljl-q curve 

[lJ. Using this 

tracer the ~-q curves of memristors realized by a type 1 M-R mutator 

and the corresponding V-I curves of nonlinear resistors are given in. 

figure 111.5. 

.: .. , 
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TABLE I 
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SYMBOL 

A~D 

CHARACTER'ZATION 

TRANSM'SSION -MATR'X 

BASIC REALIZATIONS 

US'NG CONTROLLED SOURCES , [ ;: 1· [ T(p) ] l~::] 
------~~~------------+-----------~~~~~----~--~~-------REALIZATION I REALIZATION 2 (q,CP)-(iR,VR) 

"'-R 
IoIlHATOR 

2 

~G>i;,n + + 
v, M R v2 - , -

dvZ 
v,' dJ 
. di Z 
'I' -dJ 

. (q,'i'i - (vR• iR) 

TMR (p). [ p 
I 0 

i, i2 

t1~ [0 ~TMR(P)' 
2 p di z 

v,' -Tt 
~ 

:] 
REALIZATION I REALIZATION 2 

:] 
;, • dr ____ ~ .. __ ~ __ ~ ______ ~ ____ ~--~------~~--~~~--~~~~I=~=~mn------

REAL'ZATION I REALIZATION 2 

M-L 
IrIUTATOR 

M - C 
l.tuTATOR 

2 

v, • v2 
di 

i"-Tt 

dl Z 
v,' - dJ 

i l 1:"'2 

~ :, ~ v~ - , -
dVZ v, • dr 

i,' -i2 

TML (p).[ I 
I 0 :] 

(Idontica' to TLR2 (p) 

of 0 Typo 2 L-fl MUTATOR) 

TMC (P).[ P 
I 0 

(I~rical to TLR,( p) 

of a Typo I L-R MUTATOR) 

REALIZAT'ON 3 REAL'ZATIO~ 4 

REALIZATION I REALIZATION 2 

REALIZATION , REALIZATION 2 

---+-------1---

REALIZATION 3 REALIZATION 4 

r·--+-~--~--~--~;--------------+----------------~I-------------------
(q,9')+- lvc,qc) REALIZATION I REALIZATION 2 

2 

YI • - 12 

dVz 
I'--I ~I 

I Id.n.,ca' '0 TCR2 (p) 

of 0 Tr0>4 2 C-R ~TATOR) 
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q(t) = f i (t")dr 

-00 

t 
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v 
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Figure 11105 

Now consider the simple memristor-resistor circuit given in 

figure 111.6. 

..... : "": 
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R=100.n. 

Figure III.6 

i( t) 

+ 

V(tl M 

The oscilloscope tracing of the voltage v(t) and the current 

i( t) waveforms generated by this circuit and the correspondfng~ tp-q 

curves are in Figure III.7. 

In fact, it isn't so much suprising thet the current and voltage 

waveforms are somewhat" different although the ~-q curve is relatively 

smooth, because ~ and q are the integrals of·these quantities. 

But,it is these unique signal-processing properties which are 

not shared by any other of the three circuit elements that have led 

to the belief that memristors will play an impartant role in nonlinear 

circuit theory, especially in the area of device modeling and 

unconventional signal-processing applications. Some examples of these 

will be given in the device modeling section. 
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Figure 111.7 
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C HAP T E R _.IV 

MEHRISTIVE SYSTEMS 

IV.l- DEFINITION OF MEMRISTIVE SYSTEMS 

The memristor that we have studied before is really a special 

case of a much more general class of dynamical systems called memristive 

systems [6J. The memristive systems are defined by the following set of 

equations. 

~ = f(~, u, t) (IV.la) 

y = g(!, u, t)u (IV.lb) 

",,": ... :~ 

Where u and yare the.input and output of the system and! denotes 

the state of the system. The function f: --:IR~xlR x R __ Rn 
is a 

continuous n-dimensional vector function and for one-port go: IRnxIRxIR _ "01R 

is a scalar continuous function. It is assumed that the state equation 

(IV.la) has a unique solution for any initial state ~'eRn •. The output 
00 

equation(IV.lb) is such that the output y is equal to the product 

between input u and the function g. This special structure of the readout 

map is what distinguishes a memristive system from an arbitrary dynamical 

system, n~mely the output y is zero whenever the input u is zero, 

regardless ofo the state ~. This propetry manifests itself in the form of 

a Lissajous figure which always passes through origin. 

In terms of electrical variables an n'th order current-controlled 

memristive one-port is represented by 

x = f(x, i, t) 

(IV.2) 
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and an n'th order voltage-controlled memristive one-port is represented 

by 

. 
f(:s, t) x = v, 

i = G(x, v, t)v (IVo3) 
,.., 

where v and i denote the port voltage and current,- respectively. The 

functions f, R, G are defined similar to f, g in equation (IV.l). 

Now to motivate the significance of memristive systems, let's 

consider two examples below. 

Example 1: Termistor. 

by [7J 

A negative-temperature coefficient termistor is charecterized 

v= 
1 

R (T ) exp [13(-T o 0 
~ )J i (IV.It) 

o 

where J3 is the material constant, T is the ab'solute body te.mperature 

of the termistor and T is the ambient temperature in Kelvin, and 
o 

R (T ) is ~he cold temperature resistance ~t T=T • 
000 

The instantaneous temperature T, however, is a function of power 

dissipated in the termistor and is governed by the heat transfer 

eq·uation, 

= vet) i{t) = k(T-T )+ c 
o 

dT 
dt 

where c.is the heat capacitance and k is the dissipation constant of 

the termistor. Substituting (IV o4) into (IV o5) and rearranging the terms 

Vie get 

dT 
dt = 

k 
c 

R (T ) 
(T-T

o
) + °c 0 exp[13( ~ - ;)J i2~f(T,i) (IV o6) 

o 

We see from (Iv.4) and (Iv~6) that a termistor in fact is not 
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a memoryless, temperature-dependent linear resistor, but rather a 

first-order time-invariant current-controlled memristive one-port. 

Example 2: Discharge Tubes. 

The behavior of a discharge tube is described by the following 

equations, [8J 

n = o<iv - f3n 

v = F 
n 

i (IV.7b) 

where ex, J3 ' Fare constans depending on the diinensions of the tube and" 
...... 

the gas filling the tube; n denotes the electron density inside, the tube. 

Substituting (IV.7b) into (IV.7a) we get 

. 
n = 0( F .2 6 f( .) n ~ - f3 n = n,~ 

Again we see from (IV~7b) and (IV.7c) th~t the discharge tube 

should be modeled as a first-prder time-invariant current-controlled 

memristive one-port. 

Thus some systems classified as a certain class of dynamical 

systems should really be considered" as memristive systems. 

Now let's see the generic properties of memristive systems which 

distinguish them from other systems. We will only "consider time-invariant 

current-controlled memristive one-ports. 

IV.2- GENERIC PROPERTIES OF MEHHISTIVE ONE-PORTS. 

Property 1. Passivity: 

A generalized n-port memristor with the state representation ~ = ~ 
, l = B(!)2 is passive if, and only if B(!) is positive semidefinite at 

each po in t ! E 2:: [12]. 

Proof: 

Sufficiency: If B(I) is positive semidefinite, then for any input-output 

pair {!3(.), l(.)j and any time t~ 0 the power input <~(t),~(t» = 
~?( t) [B(~( t» J ~(t) ~ 0 

Hence n-port is passive. 

Necessity part will be proved by contradiction. suppose n-port is 

passive, but·~(~) is not positive semidefinite everywhere. In 'other 
* * *T (") :It words, there exists ~ E L ,~E U such that 1:! CB! J u= -a < O. 
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Since the entries of ~(!) are continous functions, there exists an E 

such that II~-ill ~ £ which implies }!" T q~C:s) ] i < -a/2 <0. Let Q(.) 

be given by ~Ct) = (£/II\d"U ht cost, -for all t~O, let g(.) be the 

trajectory resulting from the inp~t ~(.) with initial state ~~ and let 

y( .) be the corresponding output. Then for all t ~O 

i: 
A if f 11 *" " II ~(t)-~ II = II ( E / 1\ ~ 1\ )E cost dt \I = € Isintl ~ £ 

o 

so 

*" 11 < -a/2 , for all t ~O 

Furthermore 

T T 
-J < ~Ct), lCt) > dt= - J ( E )2Cu*T R(xCt)) ~) cos2 tdt 

o • 111'''11 ,.. ~-

T 

~ C )2 C ~ ) . J cos2 t dt 
o 

Then the available energy at the state 
,.. 

x 

T dt}~ EA (~t) § ~up { -J . < Q( t), i( t) > +00 

~-
0 

Since, E (-:1)= +00 we can extract infinite amount energy from the system A ~ 
which contradicts our assumption that n-port was passive. The proof of 

the passivity theorem for the current-controlled memristive one-ports 

defined by the equations x = f(~,i), v=·R(~, i)i can be found in the 

reference [6]. 

Property 2. No Energy Discharge Property: 

If the readout map of a current-controlled memristive one-port 

is such that RC~, i)~O, then the instantaneous power entering the· 

one-port is always nonnegative. 

Proof: It is given that R(~ ,i) ~O for any admissible input signal. 
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Therefore, the instantaneous power entering the one-port is always 

nonnegative. 

V/.e see that energy discharge from a memristive one-port satisfying 

- the above constraint is never possible. 

Property 3. DC Charecteristics : 

A time-invariant current-controlled memristive one-port under 

dc operation is equivalent to a time-invariant current-controlled 

nonlinear- resistor if f(~, 1)=9 has a unique solution ~=X(I) such that 

_for each value of I 

asymptotically stable. 

the equilibrium point x=X(I) is globally 
rv 

Proof: Substituting ~=X(I) into the output equation in(IV.2)we obtain ,. 
V= R [X(I), I] I ~ V(I). Since XCI) is globally asymptotically stable, 

each value of dc input current I gives a stable, hence measurable dc 
,.. 

voltage V. And the function V{I)can be regarded as the V-I curve of a 

time-invariant nonlinear resistor. 

In practical analysis this property is still valid under low 

frequency periodic operation so long as the period of the excitation 

source is much larger than the settling time of the associated transient 

response. 

It is because of this behaviour that so many memristive devices 

are improperly identifed as nonlinear resistors. 

Property 4. Double-Valued Lissajous Figure Property: 

..... 

A current-coritrolled memristive one-port under periodic operation 

with i(t)=I coswt always gives rise to a v-i Lissajous figure whose 

voltage is at most a double-valued function of i. 

Proof: In the time-invariant version of the representation IV~2 the -

state equation has a unique solution ;set) for all t~to, given any to, 

any !(to) and any piecewise i(.), moreover !(t) is continuous by the 

fundamerital theorem of the differen~ial equations. It is also given that 

the function R(.) is continuous, then .the voltage v(t)= R [~(t), i(t)]i(t 
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for i(t)=Icoswt is also continuous. Hence for any value of the current 

iE~I,IJ there correspond at most two distinct values of vet). 

v 

A possible Lissajous 

Figure 

Figure IV.l 

v . 

An impossible Lissajous 

Figure 

Property 5. Symmetric Lissajous Figure Property: 

First let's define half-wave symmetric and quarter-wave 

symmetric waveforms. 

A periodic waveform x(t) of period T is said to be half-wave 
T T 

symmetric if x(t+ k~).= x(-t+k~) for k=1,2 for all tE[O,T/2] and 

it is said to be quarter-wave symmetric if X(t+k~) = X(-t+k~) 
for k=1,3 for all tE [O,T/4J. 

Now let's state the property. 

If the readout map of a time-invariant current-controlled 

memristive one-port is such that R(~,i)=R(~, -i), then the v-i Lissajous 

figure coresponding to the input current i(t)=Icoswt is open (i.e not 

a closed loop)whenever the state ~(t) is periodic of the same period as 

that of the input i(t) and is half-wave symmetric. Morever it is odd 

.symmetric with respect to the origin whenever the state ~(t) is periodic 

of the same period as that of i(t) and is quarter-wave symmetric. 
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Proof: If both ~(t) and i{t) are half-wave symmetric, then it fallows 

from the output equation v = R{~,i) i that 

= R. [?S~-t+ ;), i(-t+ - ; )] i(-t+ ;) 

= V (-t+ ~ ) for all t -e [0, ~ J 

where T is the period of both x{t) and i{t). Hence the v-i curve ,., 

doesn't form a closed loop~ If ?S{t) is quarter-wave symmetric, then 

sin~e· i(t+ +)= -i{-i+ +) for all t E [0, +J when i(t)=I coswt 

we get 

v (t+ +) = R [?S (t+ -}), i (t+ +) ] i( t+ +)~ 

= -R [~(-t+ !)] i(-t+ !) 

= - v (-t+ +) for all t €; [0, -}J 

lience v-i curve is odd symmetric with r~spect to the origin. 

Property 6. Limiting Linear Charecteristics: 

If a time-invariant current-controlled memristive one-port 

described by 

~ = f{~, i) 

v= R(x)i 
'" 

is bounded-input bounded-state stable, then under periodic operation 
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it degenerates into a linear time-invariant resistor as the excitation 

frequency increases toward infinity. _ 

Proof: It is sufficient to show that the state vector x(t)--x as the . ~-o , n 
excitation frequency w-+ 00 where xis a constant vector in IR • 

"'0 . 

From bounded-input bounded-state stability and the continuity 

of the function f, for any bounded-input i(t), f(~, i) can be written 

as 

k=co 
f(x, i) = ex + 2:exp( jkwt) £<k 

N ""0 ~-oo 

n 
0 0 '~kE c 

n k:to 
(c is the space of n-tuples of complex 

(Iv.B) 

numbers) • 

Note that the vectors ~oand ~k are bounded because of bounded-input 

bounded-state stability. 

From ~ = f(~, i) and (Iv.B)· we obtain 

-I: 
x(t) = x(to) + J f[~(r), i(z)] d~ 

-1:0 

t 

= x( to) r [~o+ 
fo 

k= co 
L exp( jkwz) S2<'k] d-z: 

k=-oo 
k*o 

= x( to) + 0{ ( t- to) + k~(X) ~_expqkwto) + exp( jkw t) ~k] 
"'0 k=-oO Jkw 

k;l:o 

Since ~(t) is bounded and periodic, by assumption, ~o=O and 

asw ....... oo x(t)- x(to). 
,... IV' 

Property 7. Small-Signal AC Charecteristics. 

I~ a time-invariant current-controlled memristive one-po~t is 

globally asymptotically stable for all dc input currents I, then its 

small-signal equivalent circuit about the dc operating point is as 

shown in the figure IV.2. 

' . ... 



-32-

R(~,IJ 
_-....tINv-.:....-_~"""'----.o---- . ......... _--.~-<Jn\,\<A"", A._..., 

. ,yyy 

-'-

((~.Irr-
n 

...-----+--------- .......... -----<~------' 

Figure IV.2 

Proof: Let th~ input current i(t) be such that i(t)= 1+ 6i(t) where 

SUPtcR 16i(t)1 ~ III and let the time-invariant current-controlled 

memristive one-port be characterized by 

x = f(x, i) - "" 

If welinearize (IV.9) about (~, I) where ~ is the solution of f(~, I)=Q, 

we will get 

(IV.IO) 

6v= ah(~2I) 6~ + ah(:&2 I ) 6i = c( 1S ,I) 6~+ d(~,I) 6i (IV.II) 
a.~ ai 

where 

afl(~,I) afl(~,I) afl(~,I) 

O.x2 
...... 

OX oXI n . . 
A(X,I) 

/::, 
= 

N 

af (X,I) ofn(~,I) af (X,I) 
n '" n "" 

OXI oX2 OX n 

":, 
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b(X,I)~ 

af (X,I) n r' 

Taking Laplace transform of both sides of (IV.IO) and IV.II) 

with 6x(o)=o we obtain 
", N 

(IV.12) 

(IV.13) 

solwing (IV.12) for ~~(s) we get 

-1 
Ax( s) = [sU-A(X,I) J b(X,I) AI (s) and substituting this into 
~ N ~ 

(IV.13) 

(IV.14) 

is obtained. 

It follows from this equation that the small-signal impedance 

about the operating point (X,I) for a time-invariant current~controlled 
IV 

memristive one-port is given by 

n-l n-2 
~S + l1 S + •••••• ·+,Bn_IS+ f3n = d( X, I) + -'------::------==-=---= (IV .15 

N sn+ N.,Sn-l+ S 
v\, •••••• +0< I + ex n- n 
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where Oct I Jl.are dependent on (~,1) 

~ (s) can be written in the form of continued fraction 

expansion as 

1 

1 

1 

+ 
1 

sc + 1 
n Rn 

(IV.16) 

And the equivalent-circuit follows from the equation (1V.16). 

For the case of time-invariant current-controlled memristive 

one-port described by 

~ = f(?S, i) 

v = R(?5)i 

the associated small-signal equivalent circuit is as shown in the 

figure.(1Vw3) Where I appearing in the element values is the operating. 

current. The small signal equivalent circuit can easily be obtained by 

the procedure that we have applied above. 

--, 
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More explicitly, A(I,I) and b(!,I) are the same as before. c(~,I) 
and d(X,I) can be written as: 

tJ 

aR(X) , ... 

and d(~,I) = ah(~iI) = R(~)=Ro(~). Then the small signal impedance is 

given by 

ZQ(s) = R (X)+I o N 

~ n-l")( n-2 -''1: 
Is +u2s + ••••• ~ •• +vn 

n k n-I Ie s + Is + •••••••••• + n 
• And the small signal 

equivalent circuit shown in Figure IV.3 follows from the continued 

fraction expansion of ZQ(s). W;here ~. and k. depends on (X,I)) 
1. 1. 

I R(>,$1J 
.A~Af\. _~M/lll'--__ --,NW"'--1~-' ••.•..••. --"t---N"V\ ,,,r--. 

R(XI 
0- I Rr~ II 

qXIl 
I 

. 9X11 

I 

_------4-----__ - ......... ---4-------' 

Figure IV.3 

When the biasing current 1=0 the small-signal input impedance 

ZQ(s) reduces to the linear resistor Ro(X). 

':.-. 
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As the frequency of the small signal bi(t) approaches zero 

the small-signal impedance of the above figure degenerates into 

n 
ZQ(s) = Ro(~) + I i=~ Ri(~,I) and this corresponds to the 

slope of the dc V-I curve at I=IQ• And as the frequency.of small 

signal bi(t) approaches to infinity the impedance goes to' 

ZQ(s) = R (X) 
o -

We see from the above considiration that the small signal . 

impedance depends on the biasing point. And this small signal impedance 

can either be capacitive or inductive depending again on the value.of 

biasing. 

Property 8. Local Passivity Criteria: 

A first-order time-invariant current-controlled memristive 

one-port described by 

x = f(x, i) 

v = R(x) i 

is locally passive with respect to an operating point I=IQ if and 

only if. 

af(X,I) <0 ax -.; 

ii) R(X)~O 
and 

af(X,I) aR(X)I 
R( x) ~ __ ~a:!.::i=--_--.:a.:..;x~_ 

f(X,I) 
x 

when 

af(X,I) 
ai 

aR(X) 
ax I ~ 0' when 

af(X,I) 
ax 

af(X,I) 
. ax 

=1=0 

=0 
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Proof: The small-signal impedance of a first-order time-invariant 

current-controlled memristive one-port described above is 

ZQ(s) = R(X) + 

af(X,I) 
ai 

oR(X) I 
ax 

s -
af(X,I) 

ax 

Then, in order for ~. (s) to be the impedance of a passive 

one-port it is necessary and sufficient that ZQ (s) be positive real., 

And the above conditions are equivalent to the positive realness 

of ZQ (s). 

Remarks On The Generic Properties [6J. 

The properties derived above can be used not only to identify 

those memristive devices and systems which have so far been ident1f~ed 

incorrectly, but also to suggest some different applications. For 

example by using two Lermistors one having a positive temperature 

coefficient and the other a negative temperature coefficient and biasing 

them in their locally active regions we can design an ultra-low 

frequency oscillator [9J .It is also interesting that Hodgkin-Huxley 

circuit model of the nerve axon membrane is locally active and hence 

is capable of firing nerve impulses [lOJ. 

We see that many physical and biological systems should be 

modeled as memristive one-ports. To identify such devices and systems 

we look for the following properties of the one-port 

investigation. 

7T under 

1- The dc charecteristic curve of ff passes through the origin. 

2- The v -i Lissajous figures corresponding to any periodic 

excitation having ~ zero_mean always pass through the origin. 

3- The one-port ~ behaves as a linear resistor as the excitation 

frequency w increases toward ~nfinity. 
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4- Its small-signal impedance can be resistive, inductive or 

capacitive depending on the ~perating point. 

5- The ord~r of the' small-signal impedance is invariant with 

respect to the dc biasing. 

IV.3- A CANONICAL HODEL FOR MEMRISTIVE ONE-roRTS 

Our objective in this section is to present a canonical model 

which will correctly mimic the steady-state response of memristive 

one-ports to the following class of input s~gnals. 

where 

1- DC or slowly varying waveforms. 

2- Sinusoidal signals of arbitrary amplitudes and frequencies'. 

3- Sinusoidal signals of arbitrary amplitudes and frequncies 

superimposed on top of a dc bias. 

Let's denote these 'signals by 

'U~ {u(t) ~ Ao+Acoswt I (t,w) e RX Cl,OO)} (IV.17) 

(Ao,A) E RXR+ I R+ ~[O,oo) . 

Although the lower bound of the frequency range seems to be 

restricted in the. above expression, in fact it is not a strong 

restriction because we can always normalize any given set of frequencies 

so that the lowest frequency becomes unity. 

Our main assumption in the follOWing derivation is that the system 

response yet) tends to a unique steady state for each input uCt) 

such that the functionfCt)(yCt)=fCt)uCt» tends to a periodic waveform 

ot the same period as that of the input u(t) in the steady state. 

Observe that each input signal u(t)ell is uniquely specified by 

three numbers, namely; Ao,A, w • Hence for each combination of 

fAo,A, w f there corresponds a unique pC t). In other words pC t) is 

'actually a function of Ao,A and w .W,e may denote it by FC t, Ao, A, w.). 

Let fs(t) to be the steady-state component of ~Ct). Since the function 

~(t) is periodiC of ~he same period as that of the input uCt), by 

assumption, it admits the following F6urier serie~ representation: 

" . ..... 
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where N is an arbitrary number which is determined by fs( t) .• The Fourier 

coefficients in CIV.18) are determined as follows 

w 
1T 

W 
1T 

2lT/~ 

f Ps(~,Ao,A,w) coskwzd~ 
o 

21f/W 

f fsCT.,A ,A,w)sinkwZ"d-z; 
o 0 

(IV.19) 

(IV.20) 

(IV.21) 

These coefficients are assumed to be co~tinious functions of Ao 

and A in the mean-square sense and to be square-integrable functions 

of w; namely 
,. ... 

1) for each E >0 and for each (Ao,A) E RXR+ there exists a neighorhood 

N of (Ao,A) such that 
s 

(IV.22) 

... 

(IV.23) 

and ... ,. 

II b
k 

(Ao ,A, w) - bk(A o ,A,w) II L 2 < E . (IV.24) 

for all (Ao,A)E Ns where L2 denotes the space of square-integrable 

functions. 

2) a (A ,A,.), a (A ,A,.) and bk(A ,A,.) are square-integrable functions 
o 0 k 0 . 0 

of w. 

Before proceeding further let's introduce two families of complete 
2 

orthonormal functions in L[1~1~) 
These functions will allow a unique decomposition of the Fourier 
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coefficients into the product between a frequency-dependent component 

and a frequency-independent component which depends only on A and A. o 

The two families of complete ortronormal functions are defined 

by 

where N denotes the set of natural numbers 

defined by 

·r.-l Tf [2(m+n)-1 J 

n=l 
~ 11 2(m-n) 

n=l 
n:/:m 

(-1 TT [2(m+n)+1] 

n=l 

n=l 

n=/=m 

2(m-n) 

(IV.25) 

(IV.26) 

()(fm and F{m are constants 

(IV.27) 

m~e (IV.28) 

The families ~ and <Bk will be used to construct the readout 

map of our state-space model. To model the steady-state response of 

....... ...... . 
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memristive one-ports subject to the input signals u(t)E ~ the 

following is proposed. 

State equation: 

· -a(t)xl -+- b(t)u xl = 

· x2 = -x + 1 u 

· p( u-x -x ) x3 - 1-. 3 (IV.29a) 

· p(-x2-x4) x4 = 

where 

T 
Xo ~[Xl(O), x2 (O), x

3
(O), x4 (O)] = Q and p(.) is a monotonically 

increasing function whose graph is similar to the diode charecteristic 

curve and 

by 

-Kt 
a(t)= __ ~l~-~e~ __ _ 

Output equation: 

b(t)= __ =1 __ 

t+(l/K)e -Kt 
K»l 

(IV.29b) 

The nonlinear map g(.) in the output equation (IV.29b) is defined 

\ 

x M , 11 
g(xl,x2,x3,x4'u)~ 'L"fn(xl ,-x3»)aU «1+ 2) -2 ) 

Y=l of x4 

N 
+ Z 

k=l 

+ 

{r ~ '6 (xl ,X3)"k( 

x h,( u-x 
«1+ ..JL.) .2...) 1 ) (IV.30) 

(=1 k~ 2 x4 x3 

[ 
M 1i x ~ 1f x 1f u­~ ~ o(x

l
,x

3
).bkO «1+ -2 ) ---2)«.1+ -:;-)-2 +-2 )u (­

~=1 '1<\ \ x4 c..... x4 k-l l 
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Where Mis an integer, and 

scalar nonlinear functions of xl' x3 which are identified via the 

following Fourier coefficient expansions. 

00 

/\. () D ( A ,A) = J a (A ,A, w ) al~ (w) d w fo, 0 1 0 0 \ 

(IV.32) 

The functions a o(.)' a
k
(.) and b

k
(.) in- these equations are 

themselves Fourier coefficients of ?set) defined in (IV.18)wpile 

ak~(.) and b
k

{ (.) are basis functions defined in (IV.25) and (IV.z6). 

In (IV.30) N is a fixed integer defined in (IV.18) and T
k
(.), U

k
(.) 

are Chebyshevpolinomialfunctions of the first ~nd second kind. Namely: 

k 
2 

(k-j-Y)! k-2j 
- (2z) 

j! (k-2)! 

where [k/2] denotes largest integer less than or equal to k/2. 

(IVo34) 

(IV.35) 

We observe that in spite of seemingly complicated algebraic 

structure of the preceding canonical model the only model parameter 

and model functions that need to be identified are the integer M, 

nonlinear functions '\flof ( .), Okf ( .)", ~ke (.) and the nonlinear function 

p(~). As we said before the function p(.) may be any strictty 

monotonically increassing Lipschitz continuous function whose graph is 

.: .... ..... . 
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similar to the diode curve. However for simplicity it can be choosen 

as a piecewise linear function defined by 

pee) ~ eXe+ (1/0<. - C><)r(e) (IV.36) 

where CXE(O,l) and r(.) is a unit ramp function i.e. 

for e~O 

for e <0 

Hence only the. parameter ex has to be determined to uniq.uely 

specify the function p(o). 

Now ~e will present an algorithm that will determine the 

model parametres ~, M and the nonlinear functions. Before stating the 

algorithm let's first define the following stopping rule. Given any 

set of input signal 'U = {uo 0k( t) ~ A 0 +A ocoswkt] where the subscripts 
o ~J ' o~ J 

i,j,krange from 1 to NAo,NA,Nw respectively, the performance index 

of the model with respect to these inptit signals 'is defined to be 

~= (IV.38) 

where 0 (t, u 0 0 ) denotes the steady-state component of f (t) in the 
)5 , ~Jk '" 

original system and 0 (t, u 0 ok) denotes the steady-state component of 
)s ~J 

f" (t) in the model subject to the input U o °k( t) E'lio Another error 
~J ' 

index to be used is 

NAo 
.2 
1=1 I a (A o,A o,wk )- ~ 1f) (A o,A o)alD (w

k
) I 

o o~ - J ~=1 [o~ o~ J "\ 

N 
+ 2 

n=1 
ria (A o,Ao'Wk)-D~ 
( n o~ J \=1 

'X D (A o,A 0) a , 
Un, ,o~ J n, 

2. 

.: •... ..... . 



+ I b (A ., A . , w
k

) -n o~ J 

-44-

where a (.), 
- 0 

a (.) and b (.) are the Fourier coefficients of n n 

(IV.39) 

. fs (t,uijk) 
(IV.26) 

defined in (IV.18)--(IV.2l),a
n 

C),bn (.) are. defined in(IV.25) 

The error index EM is used to ensure that the model parameter 

N and the nonlinear model functions ')f) (.), 0 (.) and g ( .) are 
'roe n.t n~ 

determined properly_so that the Fourier coefficients a (.), a (.) and o n 
b

n
- (.) can be approximated closely for the given components A .,A. and 

o~ J 

wk' 

To initiate the algorithm we need to prescribe an upper bound 

1 E(O,l) for the performance index n. We also need to assume an max -v 
initial guess on the iterative parameter CXE(O,l) 

The algorithm is as follows: 

Step 0: Select an~E(O,l) and 

Step 1: Compute ')j) (A .,A.), Y 
_ lot o~ J Un~ 
4 

J1 E (0,1) set -lmax 

(A .,A.) and 
o~ J 

f=l 

~ (A .,A.) 
Il\ o~ J 

from (IV.3l)-(IV.33) for n=1,2, ••••• ,N for each i,j ranging from 1 to 

NAo and NA respectively._ 

Step 2: Set H= ~ and compute EM using (IV.39) 

Step 3: If EM > ~ma-/3 set ~=frl and go to step l. 

Step 4: Compute the performance index q using (IV. 38) 

Step 5: If n > J1 ,set ()I.. = cX/2 and go to step 4~ 
-l -{ max 

Otherwise stop. 

The convergence of the iterative process is guaranteed by the 

following theorem. 

Theorem~ If the Fourier series representation of a (A ,A,-.) o 0 

relative to the basis functions in Gl ,ak(Ao,A,.) relative to the 

basis functions in ~ and bk(A ,A,.) relative-to the basis functions k 0 -

in ®kconverge uniformly over the se~ of testing signal components 

{(A
oi

,A
j
)l for i,j ranging f~Qm 1 to NAo and NA respectively 
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and for k=1,2, •••• N then for each n > 0 the preceding algorithm 
'l max 

terminates in a finite number of iterations. 

The proof will not be given here. 

The model is canonical in the sense that given any memristive 

one-p6rt satitsfying the technical assumptions described earlier, we 

can construct a dynamical system model having the same structure giv~n 

in (IV.29). The state equation (IV.29a) is £ixed (independent of the 

device or system ,being modeled) except for the parameter ~ defining 

the nonlinear function p (.) which has to be chosen properly so that 

the time constant of the model is much smaller than the period of the 

input singals. To illustrate the implementation and the validity 

of the preceding . algorith an hypothetical memristive system and its 

associated model is presented. 

Example: Let's consider a, fifth-order memristive one-port, 

charecterized by 

· -2x 2x
2

i xl = + 
1 

· i x 2 = -x + 
2 

· -4x 2 .2 
x3 = + X4l. 

3 

· -2~ 
.2 

x4 = + l. 

· x5 = 1 - x5 

The steady-state component R(~( t» ·of the zero-state solution 

~(t) due to the input current i(t)=Ao+Acoswt has been found 

analytically and is given by 

R (x(t» 
'" 

Ii- t = a (A ,A,w)+ L: an(Ao,A,w)cosnwt 
o 0 n=1 
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A A 
a 1 (A

o
,A,w) = 4 ----,~~- + 4(A~ +A2) 

w. +1 

a 2(A ,A w) = 
o ' 

2 2 (w +1)( VI +4) 

A4 (1_w2 ) 

16(w~+1)2 

A A A A3(w2+2) 
__ o~_ + ~o~ __ ~~_ 
w~+4 (w2+1) (w2+4) 

2 w +1 
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C 2 2 
w +1)( w +4) 

The model parameters and model functions were identified from 

the above data and from the system response to the input testing 

signals 

A ., A. E C f, 2 ,3, 4 ,5) 
o~ J 

E 

The ~odel parameters determined by the algorithm subject to 

n -0 5 is found to be L max- , 

M = 3 1 
0< = 151\ 

and the nonlinear model functions 1po~ C.), 0ne(.) and Sn(.) are 

also identified using the algorithm and the nonlinear map g(.) is 

constructed using the above results. 

Then to verify that the model can indeed simulate the original 

system for the above class of input signals, the results obtained for 
/' -

the steady-state response Fs C t) given by the model and fs (t) exact 

steady-state response of the system are compared. These are given in the 

Figures. IV.4, IV.5, IV.6. 
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~------~-----4------~------tlme (sec) 
1.6 3.2 4.8 

The Steady-state model and 

system response, for i(t)= 

A +Aeoswt where 
o 

(A ,A,w) = (1,1,1) 
o 

Figure Iv.4 

-'system 

.. ·· .. mo del 

response 

_---"--::l~------e xci tat ion 

Frequeney=l 

a) 

--- system 
..... model 

-3 

steady state 
response 

200 

100 

o 

-100 

-:200 

2 

The de ehareeteristies of 

the system and the model. 

, Figure IV.5 

-system 
.... - model 

response 

3 de 
excitation 

i--+---+-=r-------"--- ex cita ti on 

Frequeney=3 

b) 
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----=-l~--~exci totion 

Frequency=lO 

c) 

Figure IV.6 

W.e see from the above figures 

Frequency dependance of 

Lissajous figures for the 

system and the model. 

that the waveforms of the 

model and those of the original system are very similar and we also 

see that Lissajous figures of both the model and the system shrink and 

tend to a straight line passing through the origin. The model is also 

tested under the triangular input signal which is not a member of the 

above mentioned class of signals but the results are again close to 

each other. 

In this section we have considered an interesting class of 

nonlinear systems called memristive systems. One of the most important 

feature of.these kind of sy~tems is the zero-crossing property. In 

other words the output is zero whenever the input is zero and this 

corresponds to a Lissajous figure which always passes through the 

origin. And among the varios properties o~ the memristive systems the 

frequency response.of.Lissajous figure is interesting. As the frequency 
\ 

increases toward infinity the Lissajous figure shrink and tends to a 

straigth line passing through the origin. The physical interpretation, 

of this phenomenon is that the system has a certain intertia and can 

not respond as rapidly to the fast variation ih the excitation 

waveform and therefor~ must settle to some equilibrium state. This 

implies that the hysteritic effect of the memristive system decreases 
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as the frequency increases and eventually degenerates into a pure 

resistive system. Another property is the behaviour of the system 

either as inductive or capacitive depending on the bias point. 

The model presented above is useful for simulating dynamic 

behaviour of the system properly, once it is identified -asamemristive 

system [6J. 



-51-

C HAP T E Ii V 

DEVICE MODELING USING HEt1RISTORS AND EXAMPLES 

In this chap~er, the applications of memristor to device 

modeling will be d~scussed and examples will be given. But first let's ~~~ 

consider the nonlinear device modeling problem in general. 

Device modeling is more of an art than science. Although no 

general theory of device modeling is presently available, most existing 

circuit models of devices have been derived mainly by two basic 

approaches: a) the physical approach, b) black-box approach. 

The physical approach constists of four.basic steps: l)device 

physics analysis, 2) physical equation formulation, 2) equation 

simplific~tion and solution, 4) nonlinear network synthesis. 

~he black-box approach also consists of four basic steps. 

1) experimental observations 2) mathematical modeling, 3) model 

validation, 4) nonlinear network synthesis. In either approach a 

mathematical description which approximates the behavior of a device is 

first derived. This crucial step is where most of the art is involved. 

Once the mathematical description has been obtained, systematic 

methods from nonlinear network synthesis can be applied to arrive to 

a suitable circuit model made of some prescribed set of nonlinear 

circuit elements[20]. 

Now we will give the examples of some systems or devices modeled 

by making use of the memristor concept. 

1- An Amorphous Ovonic Threshold Switch Model 

An amorphous ~vonic threshold switch is a two-terminal device 

which uses amorphous-glass rather than the more common crystalline 
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semiconductor material used in most sQlid-state devices. To show 

that the memristor provides a reasonable model for some types of 

amorphous devices, let's consider the memristor circuit shown in the 

Figure V.1. 

(a) 

v (t) 

I • T 

+ 

V(t) o 

.. I 

E ......... ..-------------, 

OFF 
!---Td--I 

E 1 ......... ;..... -----==---, 

E2 ..... -.. - ................... ; 

ON 

: t +T 
: 0 

: 

~kT 

I .. -...... .L ................. -.. ~: ------, 
2 ; 

t 

t 

t. 

Figure V.l 

q 

(b) 

where 

El=[(H2+R2)/(M2+Rl+R2)]E 

E2= [(M3+R2)/(M3+Rl+R2).J E 

1 1= E/(H
2

+R
l 

+R
2

) 

1 2= E/(H
3

+.R
1

+R
2

) 

Td= [~o+(Rl+R2)Qo ] /E 
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Then 

v (t) 
s 

Integrati~g both sides with respect to time from t to t 
o 

-I: 
-l;[(Rl +R2+M(q»:; .d-z: = 

and 

are obtained. 

Defini~g 

t 
J V- (dd-z: 

to s 

(V.l) 

(V.2) 

and observing that h(q) is a strictly monotonically increasing function 
. -1 

of q , h (.) always exists and 

(V.4) 

Then the output voltage is given by 

( dg (t) ) V (t) = V (t) - R -
o s 1 dt 

Let V (t) be a square-wave pulse as shown in Figure V.lc with 
s . 

g(t )=0; then the waveforms V (t) and i(t) for the memristor q-Io o 0 . y 

curve shown in Figure V-lb can be drawn using equations (V.l)-(V.5). 

These waveforms are shown in Figure V.lc. The expression for the time 

delay Td shows that for a given memri~tor, Td increases with decreasing. 

E. The comparison of the results obtained from the above analysis with 
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those obtained for an amorphous threshold switch reveals an interesting 

resemblance [13J. Thus the memristor seems to simulate well not only 

the shape of the waveforms but also the variation of Td with E. 

2- Modeling An Electrolytic E-Cell. 

An E-cell (also known as Coul Cell) is an electrochemical 

two-terminal device capable of producing time delays ranging from 

seconds to months. An E-cell is a small electrolytic plating tank 

consisting of three basic components namely an anode, a cathode and 

an electrolyte. The anode, usually made of gold, is immersed in the 

electrolyte solution which in turn is housed within a silver tank can 

that also serve as the cathode. The time delay is controlled by the 

initial quantity of silver that has been previously plated from the 

cathode onto anode and the operating current. During the specified 

timing interval silver ions will be transferred from anode to the 

cathode, and E-cell behaves like a linear re~istor with a low resistance. 

The end of timing interval corresponds to the time in which all of the 

silver has been plated off the anode, then the E-cell behaves like a 

linear resistor with a high resistance. We will now show that this 

behaviour of the device can be precisely modeled by a memristor with 

a ~~q curve as shown in Figure V.2b. Let's consider the Figure V.2a, 

q 

s , ilt) 

+ 

M 
vlt) 
o ------~~~-------~ 

( a) 
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E ............ - ... r----------

t 

El =( 
M2 

) E 
M

2
+R

l 
(c) 

.E2 =( M2 ) E 
M3+Rl 

E2 ................. ; ....................... r--------
. Td-

E1 ................. t----------' ~ + QoRl 
Td ·= 0 

t 
E 

Figure V.2 

where the E-cell has been replaced by a memristor. The output 

waveform is almost identical to the corresponding waveform measured 

from an E-cell timing circuit. The only discrepancy between this 

waveform and that actually measured with an E-cell timing circuit is 

that in practice, the rise time is not zero. It always takes a nonzero 

but small time intervel for an E-cell to ~witch completely from a low 

resistance to high resistance. The step jump in the Figure V.2d is 

due ~o the piecewise-linear shape of the assumed ~-q curve. H~nce 

even the finite switching time can be accurately modeled by repl.acing 

the ~-q curve with a curve having a continuous derivative that 

essentially approximates the piecewise-linear curve. 

.. ~ .. :'" 
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3- A Model For p-n Junction Diodes. 

Consider the one-dimensional p-n junction diode shown in figure 

Vo3a with an n-type region width W. and junction area A. n 

i: 

i1 
J 

+ + 

+ ·i1=I1( i '~JVjlqm) 
c.( v·) v· 
J J J 

P 
v -·r v 

n 
Wn 

... L 

i2=I 2(qm) Rm(qm) vm 

(a) 

(b) 
Figure V.3 

Assume that the p-type region is much more heavily doped than 

the n-type region. Hence, the hole current at the junction is 

approximately equal to the total diode current. It is known from diode 

physics that there exists a thin transition layer at the junction 

and that the resistance in the neutral region depends on the carriers 

available there. 

Observe that as carriers flow through the diode, they either 

flow into the transition layer and change the amount of charge stored 

there, or leak through the layer into the neutral regions (actually· 

these two mechanisms occur simultaneously) where they are recombined. 

or stored. In the latter case, the carrier concentration in the 

neutral regions may change, therby inducing a corresponding change in 

.... :: .. 
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conductance. These basic diode operating mechanisms are incorporated 

in the model shown in Figure V.3b, where C. is used to represent the 
J 

effect of the transition layer, i
l 

is used to simulate the leakage of 

carriers through the layer, R is used to simulate the conductance 
m 

of the neutral regions, and i2 is used to represent the "recombination 

of carriers. The charecterizing functions for these four elements are 

derived from basic physical principles [14Jo 

The nonlinear junction capacitance C.(v.): 
J -J -. 

For simplicity we choose the stand~rd exprossion for C.(v.) . ~~ 
J J 

derived from the depletion approximation for a one-dimensional diode. 

This expression is given as follows [15J 

where 

C.(v.)= 
J J 

1/2 
A [2EgNDJ 

~ 

-1/2 
( lIJ -v.) 

To J 

4'0 = Built-in voltage 

E. = Dielectric permitivity of the semiconductor 

q = Charge of electron 

ND = Donor concentration in the n-type region. 

A = Junction area of the diode. 

The memristor R (q r: --..:.....------ m - m-

(v.6) 

The memristor is a two-terminal circuit element defined by 

v ~R (q )i , where R (q )is a linear resistance whose value depends 
m m m m m m 

on the charge q passing through its terminals. 
m 

R (q ) = m m 
1 
A 

Wn dx 
J -::"\f=->(-x-, q---) 
o m 

(v.?) 
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where ~(x,qm) is the conductivity of the semiconductor. Therefore 
'--

a memristor can be considered as a charge-controlled linear resistor. 

Now let's derive the expression for the conductivity ~(x,q ). 
m 

If NA is the acceptors concentration in the p-type region, "the resistance 

of the diode is mainly contributed by the n-type region {base regiori), 

since NA~ND. The conductivity ~(x) of the base region under low " 

injection condition is 

~(x) = q ( Un" + IJ p (x» 
l-n no Ip n (V.8) " 

where p (x) is the hole concentration at x (x is measured from the - n 
junction into the base region). The expression for Pn(~) is found from 

the solution of the steady-state diffusion equation under appropriate 

boundary conditions. 

2 ' 3p (x) 
n 

: , 
p (x) 

n = 0 

, 
where Pn (x) = Pn(x)-Pno is the excess hole concentration at xl and 

L is the hole diffusion "length. 
p 

where 

The solution of (V.9) is given by the exppression 

, 
p (x) 

n 

w 
= p' (0) [ cosh(L x )-coth ( L n)sinh ( ~ ) ] 

71 p p p 

, V; 
Pn(O)= p [exp (--->1.)_ I ] 

no VT 

The stored excess minority charge qP" is given by 

(V.IO) 

(V.II) 



-59-

, 
Aqp (O)L [ 

n p 

cosh(W /L )-1 
n P J ----~~~---- = qm 

sinh(W /L ) 
n p 

(V.12) 

Solving this equation for Pn (0) and substituting it into (V.10), we , . 

obtain p (x) in terms of q • Then again substituting the expression 
n . m '. 

for p (x) into (V.B) (where we also used p (x)~p (x)+p ) 
n n n no ., .... ..... . 

'if (x,q )= q un +qlJ fp + m I" no Ip no 

qm 

AqL 
.p 

( 
sinh(W /L ). W 

n P ) [cosh( ~ )-coth( L n) sinh(~ . 
cosh(W /L )-1 p . p p 

np 

is obtained; in (V.13) 

n no 

w 
n 

L 
p 

D 
p 

'Lp 

= electron mobility 

= hole mobility 

= equilibrium electron concentration in n-typeregion 

= equilibrium hole-concentra~ion in n-type region. 

= width of the n-type region (base-width) 

=/01' ~r = hole diffusion length. 

= hole diffusion constant 

= hole recombination life time 

(V.13) 
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20 

-10 
0·+---2f----:O----

6
----+

8
---

1
+-
0 
----1

12
=---- qmx 10 ) coulomb 

Figure v.4 

A typical relation ship for rnernristor R (q ) as a function of 
m m 

charge qm is shown in Figure Vo4. 

The controlled current source i2=~2Lqm): 

From equation (V.12) 

, 
qrn = Aqp (O)L [ 

cosh(W /L )-1 ___ .:..:;n_.,I;;,p __ ] 
~ P 

, 
AqD p (0) 

[ p n = ----:-~-­
L 

p 

sinh(Vl /L ) 
n p 

coth VI { \'l f ( L n)] [l-sech ( L n)J~r 
p . p 

where the identity L 
2 = D ?: was used. p p p 

(V.14) 
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On the other hand the diode current is-given by 

i = -AqD 
P 

From (Va14) and (V~15) 

or 

, 
AqD P (0) 

i = __ ~p--=n __ 
L 

p 

i = where 

VI 
eoth (_n_) 

L 
p 

W, 

"l"= "["p[l-seeh( L n) ] 
p 

and z is called the effective hole life time., 

(V.15) 

(V.16) 

(V.l?) 

The controlled current source il=Il(i,i.,v.,q ): 
- -J-J-m-

The source i
l 

can be described by 

where U(.) is the unit step function and 

v. 
Ilf ~ I [exp(-L)-l ] + 

s v
T

' 

where I is the diode saturation current and vT = 
5 

voltage 

(V.18) 

(V.19) 

kT is the thermal 
q 

...... : ... : 



v. 
exp (-2) 

vT 
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is the diode 

diffusion capacitance and C.(v.) is as defined in (V.6) 
J J 

I is defined by 
l.r 

where 

i o = ------=-----~ 
Q. f I q I +.I t: J } c (v.) 1+0([ m s U(-v) 

j J ( I i I +1 s) .j 

(V.20) 

(V.21) 
.. : .... 

(V.22) 

(V.23) -

(V.24) 

(,V.25>:' 
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All the parameters in the above equations are the physical 

parameters except 0< and' • otand t are the empirical parameters whose 

values have to be choosen to obtain accurate predictions for the 

storage time ts and fall time t f • 

In the definition of the controlled current source i
1

, we didn't 

give the explicit derivation of the quantities appearing in the 

expression of i 1 ," but only the results are given [14J • In fact, our 

main purpose is to emphasize the use of memristor in the modeling of 

the device. 

The,mode1 is tested using the following circuits and the computer 

simulated results are also given. 

a) Reverse Transient: 

R 

i (tl 

v(tl 

Figure V.5 

, It is assumed that switch S is thrown from right to left at', 

t=t =0 and that before t=O the diode is at steady state with current 
o 

. I 10mA E . t k n to be 10V. 0< is chosen to be unity and ~ to ~= f= .• 2 ~s a e r 
be 1.5. For this case, the computer ~imulated results are shown in Figure 

V.6. 
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Figure v.6 

b) Forward Transient: 

i It) 
S 

Figure Vo 7 

015 020 
t/r 

.: .. , 

itt) 

... 
-:!" v(t) 
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Different current steps are applied and the computed voltage 

transient waveforms are shown in Figure v.B 

vItI )vo\ts 

0.9 

0.6 

1mn 

~~--~----~----------------------~ t/~ 
2 3 

,Figure v.B 

These computed waveforms are very similar to those obtained 

from real observations [16J-[1B]. 

vItI 

(a 1 

vItI 

vlt) 
vjltl 

vrJ t) 
-=:::::-..-~ __ t 

(b) 

Figure V.9 

v(t) 

~=-~--------~t 
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The qualitative forward tran~ient waveforms of voltages v(t), 

v.(t) and v (t) across the memristive diode model, the junction 
J m 

capacitor C. and the memristor R respectively are shown in Figure V.9 
J m 

for a) high input current, b) intermediate input current and c) low 

input current. 

c) Rectifying Circuits: 

The circ~its shown in Figures V.10a and V.lla are also simulated 

in the computer and the calculated waveforms are plotted in Figures 

V.10b and V.llb. 

2kil 

i (t ) 
IOsinwt 

+ 
v(t) 

2volts 

(a) 

Figure VolO 

e(t) t 

(B) 
Figure V.ll 

.~.J.~( t )-E O .1 0 .. 

fol -0 

0~!~ __ ~~ __ ~ __ ~~ ____ 2~O ___ t ps ------. ---- /------. ----7--
I ! ./ ; .......• . ..... .' 

voltage s: 2v per div. current s~ 2ma per div 
(b) 

2·0 
~----~.r---~~~----L---~~~-tps 

\ '. ..', 
\ 0. 0" I 

\········"'j-..i (t) 
\ " 2 ''''-' 

vol tage s: 2 v per div. 
current s: 2ma per div 

(b) 
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Again the computed results agree remarkably well with real 

observations [19J. 

d) Small Signal Impedance of The Model: 

Assuming that the junction diode is under forwarq bias (i>O), 

the memristive diode model reduces to the model shown in Figure V.12 

dI. 
= ( .J 

r j dV. 

z-I s 

J 

-1 t d { V.·? ]-' ) = -- I [exp (----l)-lJ dV
j 

s VT 

exp 

i 2 (qm)= 
qm 
z: 

w,. 

Rm(qm )= 
1 J dx 
A ~(Xtqm) 0 

+ 

i·' J 

r· 
J 

Cd 

v 

iZ 
~ 

Figure V.12 

+ 

Vj 

.. 
vm 
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Since Cd»C j under forward bia.~, C
j 

can be neglected, and a dc 

current source I. upon which a small signal i. (t) is superimposed 
~n ~n 

as shown in the Figure V.13 is applied to the diode. 

I}tI=I.+i.(tl + 
Id(tl=Id+id(t l ..• ·r-. 

J J 

r. 
J 

V·( t)=V· + v·1 t) 
J J J Cd 

i 1. i. It) 
In In 

I Itl=I + i It I 
z z Z 

+ I (t)=I +i It)=q . .m m m m 

qm 
Iz(qml=T Vm(t)=Vm+vm(t I Rm 

Figure V.13 

The impedance Zl of the parallel connection of rj with Cd as 

shown in Figure V.13 is given by: 

1 

l/r.+jWCd J . 

r. = _---'JIL--__ 

l+jwr jCd 
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Where the incremental resistance rj and capacitance Cd are given by: 

d1. -1 
( J)' 

r. = dV. = 
,J J 

and 

V. 
exp (-L) = 

V
T 

-( 

I +1. ] s J 
VT 

exp 

(V.28) 

about the dc operating point. Substituting equations (Vo27) and (v.28) 
into (V.26) we obtain 

Now let's calculate the impedance Z2 of the parallel connection 

of the controlled current source I
2
'(q ) with the memristor R (q ). m . m m 

From the Kirchoff's current law we can write 

I. +i. (t)= q (t) + 
~n ~n m 

q (t) 
m • If we solve this equation und~r 

the initial condition q (0)=0, we obtain' 
m 

q (t) 
m 

1: l' " = z: [l-exp(- ~)JI. + J [exp (- -:;;:-( t-t »J i. (t )dt fort ~O c: ~n 0 ..., ~n 

(V.30) 

-.... 
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The first term in the expression of q (t) goes to zl. as t 
qm - m 1n 

goes to infinity. Since 1 2 (qm)= -z: ' then at the steady state the'dc 

component of the current passing through the controlled so~rce 

12~qm)=12(t) will be equal to the 1 in1 i.e. it is equal ~o the dc 

component of the input current sOijrce and the dc component of the 

current passing through the memristor is equal to zero at steady 

state. Then at the steady state 

i. (t) 
1n 

+ i (t) 
m 

And, by the definition of 1 2 (qm) we can write 

t , , 
J I C t )dt 

12 C t) = --,,-0 .---;..m_<: __ _ or in differential form 

At steady state this equation gives 

=1 C t) 
m 

di
2
(t) 

L-~- = i (t) 
dt m 

combi~ing equations (V.3l) and (V.32) we 

and taking the Laplace transformation of 

we can write 

(V.32) 

di
2

Ct) 
obtain iinCt)=i2 (t)+7:" dt 

both sides with i 2 (0)=0 

whic~ gives 

On the other hand 
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but v (5)= R i (5). From (V.32) we can write m III m 

v (5) 
m Z2 = ---.,.~...,.........-

i. (5) 
~n 

R i (5) 
= _..:;;m:.......:;;m:..,.-~_ 

i. (5) 
~n 

= 

Substituting equation (V.33) into (V.34) we obtain 

z:R 5 
m 

Z2 = ----
1+ Z:s 

In jw-domain 
R (jwl+w2z:2 ) = __ ~m __ =-=-__ _ 

1+w2-c2 

Finally, the total impedance can be obtained as 

2 2 jW[t:R m ... 
c:: VT 

VT+(I.+I )w z: R I +1. 
Z Zl+Z2= 

J 5 m + 5 J = 2 2 2 2 
(I +I.)(l+w t: ) l+w t: '5 J . 

] 
(V.36) 

If w~ consider this expression we see that when I. is small so 
VT J 

that R < I I. 'then the reactive component of Z is negative and the 
m s+ ~ VT impedance is capacitive. Similarly if I. is large so that R >~~--

J m I +1. 
then the impedance is inductive. 5 J 

We again observe that this property of the model well coincides 

with the real physical behaviour of the device. 

Another conclus'ion is that if the applied current is pure d. c. 

having no a.c signal superimposed on.it then at steady state, the model 
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reduces to a nonlinear resistor obeying the diode junction law. 

4- Use of The Memristor in Sig~al Processing • 

. Memristors can also be used to process many types of· signals 

and generate various types of waveforms. Here we will present a typical 

application that uses.a memristor to generate a staircase waveform. 

Let's consider the design of a four step staircase waveform 

generator. If we drive the circuit in Figure V.14a symmetrical 

square-wave voltage source then the output voltage isa four step 

staircase waveform, provided that the memristor ~-q curve is as shown 

in }'igure V .14b. 

q 

R=1kiL 

j(t) 

+ + 

+ 
v(t) v(t) 

o 
------~~~-------~ 

(a) (b) 

Figure v.14 

The input and output waveforms are as shown in Figure V.15 

0: .. 
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~ 

vs(t) 

v~{t) 
r---·-

__ -.1 
t . 

r--
r- ____ ---.I 

~--

Figure V.15 

The memristor with the ~-q curve given in Figure v.14b can be 

synthesized by the method? peresented in the realization section. The 

memristor for the above circuit can be synthesized by connecting a 

nonlinear resistor across port-2 of a type-2 H-R mutators, and the 

nonlinear resistor can be realized by two back-to-back zener diodes 

in parallel with a linear resistor. This realization is shown in the 

Figure v.16. 

+ + 

v v ----------~=-------------v 

( a) 

Figure v.16 
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In this chapter we have studied the device modeling problem 

using memristors by giving examples ~nd we have also given an example 

on the application of memristor to signal processing. These examples 

show that the memristor is a new and powerful tool in the device· 

modeling. Indeed a new model of bipolar junction transistors that I 

will give just below somehow justifies this idea. 
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C HAP T E R VI 

A MODEL OF THE BIPOLAR JUNCTION TRANSISTOR USING MEMRISTORS 

In this chapter, a new model of the bipolar junction transistor 

using memristori will be given; this model will also illustrate the 

use of memristors in device modeling. 

First, some preliminary studies of the device physics will be 

presented, then the new model will be given and justified. 

VI.I- PRELIMiNARY STUDiES. 

Let us consider a one-dimensional p-n-p transistor with uniform 

equilibrium hole density concentration p in the base region. Further 
n 

C let's assume that the hole 
+ 

. .... -

V It) 
C8 

B 
IS!t) _ 

lC!t 

P 

n 

..... -..... x=w 

diffusion current is large in 

comparison with the hole drift 

current in the base region (low­

injection level case). In that 

case the hole density concentra- . -

VfBlt) 
p 

+ 
IE!t 

E 

Figure VI-I. 

_ .......... x=O 

) . 

tion p in the base region satis~ 

fies hole diffusion equation 

wh~ch may be written as follows 

[21] • 

(VI.I) 

Where Z is the hole lifetime, D is the hole diffusion constant and 
. p p 
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2 
L = D ( is the hole diffusion length in the base region. p p p 

follows 

The hole density concentrations at x=O and at x=W are as 

pex,t) =.peo,t) 

x=o 

pex, t) I = peW" t) = 
X=W 

p' exp [ n 
] 

e VI .2) 

where e is the charge of electron, k is the Boltzmann's constant, T 
kT is absolute temperature in Kelvin, V

T 
= -;;';;'e""-- ,is the thermal voitage 

and W is the width of the base region. 

We also have the followings as the emitter and the collector 

currents. 

- eD A 
p 

eD A 
P 

apex, t) 
ax 

eVI.4) 

x=O 

x=W 

where A is the cross sectional area of the ~ase region, IEet) flows 

into the emitter and Icet) into the collector. 
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Case 1: 

Now- let's apply a voltage VEB(t) = VEB+Vebejwt to the base­

emitter junction and VCB(t) is such that the base-collector junction 

is reverse biased i.e p(W.,t)=O then for p(O,t) we have 

p(0,t) = p exp [ -n 

"'{EB 
= p exp .(-V---). exp [ 

n T 

VEB v 
= p exp [-V- + ~ e jwt ] 

n _ T VT 

If veb is taken to be small compared to -VT then we have 

p(o,t) 
veb . t 

e:J w ) 
V'll 

. ": ... --

V B veb VEB · t 
= P exp (~) + p - exp (--). e Jw 

n VT. n VT VT 
(VI 0 6) 

where expx =l+x was used for small x. 

Under these boundary conditions the solution of the equation 

(VI.l) can be written as follows [ 21] 

VEB 
p(x,t)= p [exp(y-)-l] 

n T 

. h( W-x) 
s~n -_L v~b VEB ___ ---i:-P:...-._ +p -exp(--) 

sinh 
W 
L 

P 

n V
T 

V
T 

. h x 
s~n L 

( W-x 
sinh -L-- ) 

El 

sinh 

jwt 
e 

- -p n 
p + P n (VI.7) 

W 
sinh - L_ 
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D L 
= ( p P 

1+ jw z: 
P 

1/2 
) 

Indeed, as p(x,t) satisfies both initial conditions and the 

differential equation then it is the solution. 

Now, let's find the currents IE(t) and IC(t). F~om (vI.4) 

h( VI IX ) cos L 
pl jwt 

. h VI 
e -

s~n L 
pl 

cosh( WL-x ) 
VEE 

(---)-1] -----~~p--
VT . h W 

s~n L 
p 

X 
Pn cosh L 

j P 
W 

L sinh L 
P 

P 

x=o 

v 
[ (~)-l] eD Ap exp 

p n V
T 

IE(t)= --------- + 

L 
p 

tanh w. 
L 

p 

L t h 
W. 

pl an -
Lpl 

eD Ap 
+ __ p"'--....;n'"--__ 

. W 
L sinh L 

p p 

. and from (VI.5) 

VEB 

jwt 
e 

eD Ap [exp(-V-)-l] 
p n T 

VEB 
eD Ap (v b/VT)exp(-V---) 

__ p=--_n __ e _____ .-,;T~_ e jwt 

W 
L sinh L 

p p 

W 
Lpl sinh L 

pl 
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From Kirchhoff's current law 

. V
EB 

eD Ap exp(----)-l 
p n V

T 
-IB ( t) = --------,W::-:-o--( COSh~L 1) + 

L sinh .. 
p L P 

P 

jwt 
e -

eD Ap 
P n 

L tanh 
p 

VJ. 
L 

P 

V
EB 

eD Ap (v b/VT)exp(---V ) 
p neT W· 

w. (cosh ---:.y~ 
Lp1 sinh Lp1 i 

Lp1 

eD Ap 
P n ( .. W cosh 

L sinh L 
p p 

w· 
L 

P 

-1) (VI.10) 

These are the steady state and periodical components of currents 

which are obtained from the semiconductor theory in the case, the 

( jwt 
vOltage VEB t)=VEB+vebe is applied to the base-emitter junction, the 

base-collector junction is reverse biased and veb«.VT -

Case 2: 

Now let 

jwt 
= VEB + veb e 

and again assume that v e~< V T and v c §< V T 
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Then 

p(O,t) 

veb . t VEB Y b . t 
e Jw ] =p exp(--) exp( __ e_e Jw ) 

VT n VT V
T 

..... ·f .. :· 

VEB veb jwt) 
= Pnexp C-V-). (1+ --e 

T VT 
(VI.ll) 

Similarly 

pCW,t) 

And the solution of the time-dependent diffusion equation (VI.l) subject 

to these conditions is 

V
EB 

. 
p(x,t)= p [exp(----V )-1] 

n T 

+ p -exp 
n 

, ' 

\II • h x 
sinh(~-!) V

eB 
s~n -L-

__ ---"L.,..p'-- + P [exp C-
V
-) -1] ----:::-'"""p--

. h W n T sinh LW 
s~n L 

,p p 

jwt 
e 
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x'· 
sinh L 

______ ~p~2_ ej2wtoej~ +p 
. h Vi . n 

s~n L 
p2 

where L = (D Z )1/2 L =( Dp"Z'p )1/2 
p P P 'p1 l+jw,r ' 

D"Z 
L = ( P P )1/2 

p2 1+j2w~p p 

The emitter current from (VI.4) 

. VEB eD Ap (exp(----V )-1] 
VeB eD i\p [exp(-V )-1] 

L . h VI 

p n T 
I E( t) = --------:;;..--

L W. 
p n T 

+ 

tanh L 
p p 

VEB 

s~n L 
p p 

eD Ap exp(-V---).(v b/VT) 
__ p __ n ____ T_~-e--- jwt 

\~ e-
tanh - -

Lp1 

and the collector current form (VI.15) 

VEB 
eD Ap [exp(-V-)-l] 

p n T. 
IC(t)= .- -----~W-- + 

L . h . 
s~n L 

p p 
L 

P 

w· 
tanh B 

p 

VEB VCB 
eD Ap exp(--V )(v b/VT) eD Ap exp(-v--)(v b/VT) 

p n T e jwt __ p __ n ___ .=.T-:::-_c __ _ 
-------=~----e + VI 

Lp1 sinh ~ Lp2 tanh L 
p1 p2 

(VI.13) 

j2wt jf/> 
e e 

..... 
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Case 3: 

Now the following more general case will be considered. 

V ( t) V jWlt jw2t 
EB = EB + vel e + ve2e 

V ( t) V jW3t jW4t 
CB = CB + vcle + vc2e 

Then 

p(O,t) 

VEB vel jw t 
= P exp(V-)exp [ -V-e. 1 

n T. T 

VEB { vel jw t = p exp (----) l+---e 1 + n V
T 

V
T 

1 ( Vel)2 j2wl t ~{l+V e2 - - e +.... V 2! VT T 

. v 2. j2w 
JVl2t+.L(~) 2 

2! V
T 

e + •• 



VEB 
= p exp(v 

n ']' 

and similarly 

- I 

(VI.16) 

. _ . VCB { m1 
p(W.,t)=p exp(v) 2: 

n T r =0 
o 1 

eVclO/l (VC2 / 2 ej(rlW'3+r2W4)t)<VI017)""'i 
Vir' V'll'_ 

are obtained, where nl ,n2 ,ml ,m
2 

must in fact be infinite and w
l

,w
2

' 

w
3

,w'4 are not restricted but positive. 

Then the steady-state, periodic solution of the equation (VI.l) 

subject to the above conditions 

1/2 

sinh ~ [1+j(kl Wl +k2w2)"l] p p 

VCB { + P exp(-V ) 
no. T 

1 
r l ! r 2 to' 

I 
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1/2 

sinh ~ [1+j(r
1 

w
3

+r
2

w
4

) Zp] 
p 

sinh 
W ... X 
L 

. h x 
s~n L 

oe j (r1w)+r2
w4)t 

P 

. h VI, 
s~n L 

p -Pn -----::-:-I~- +P
n . h W 

s~n L 
P P 

is obtained. Then the emitter curcent 

,1/2 
[1+ j(k

1 
w

1 
+k

2
w

2
) C

p
] 

V' eB 
-eD Ap exp(-V ) 

p n - T 

1/2 

l+j(rlw3+r2w4)::lp] 

k v' k 
1 , vel 1 (~) 2 2 -k----=' k~' (T) V

T k =0 1,' 2· T 
2 

j(k
1

w
1

+k w
2
)t 

o e. 2 

,(VI.18) 



eD Ap 
P n 

L· tanh VI 
p ~ 

eD Ap 
+ _---"'-p_ . ...;n~-.,....._ 

L sinh ~-. 
p L. 

P 

and similarly the collector current 

.. VEB 1 2 1 
-eD Ap exp(---y-) 2: L k 'k ' 

[

n n 

P n T k =0 k =0 1· 2· 
1 Z . 

1/2 
[ l+j(kl wl +k

2
w

2
) "l p] 

VeB { + eD Ap exp(---V ). 
p n T: 

eD Ap 
+ __ p'"--....;n~~_ 

. h W. L s~n L 
p p 

eD Ap 
P n 

VI 
L tanh L 

p p 

(VI.19) 

(Vlo20) 
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What is done so far is finding the theoretic, steady-state, 

periodic currents for different applied voltages. 

Now the model for a p-n-p transistor will be given. The 

inspiration for this choice of the model is explained in the section 

VI-2. 

r 
e 

C. (v.) 
JC JC 

+ 

v 
me 

.j. 

C:.lv. ) 
Je JE' 

Cd (v. ) 
C JC 

C. (v. ) 
Je Je 

+ 

v. 
JC 

+ 

Figure VI.l 

C 

t m Cl.Ei • 
L,=2 j3 .(-+Q. ) 
'oJ i:O Fr"lp Ei 

E 
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VIo2- CONSTRUCTION OF THE MODEL. 

'W.hiie"constructing the mode-l in Figure VI.l a) the memristive 

circuit .model for p-n junction diodes given by Leon O. Chua and Chong­

Wei Tseng[14], b) the charge controlled transistor model given by Randa~ 

W.Jensen[22], c) the Ebers-Moll model of the transistor[23]have been a 

source of inspiration and motivation. 

By considering the first two models and thinking that there 

exist two p-n junctions in a transistor/base-emitter and base-collector 

parts have been constructed based on the Ebers-Moll model. In the 

definition of the dependent current sources placed between collector 

and emitter the second and the third models and the previous theoretic 

study have been used. 

In the model, the memristors MC and ME are used to simulate the 

conductivity modulation phenomena; C. ,C_ represent the junction 
Je JC 

capacitances of base-emitter and base-collector junctions respectively; 

Cde ' Cdc represent the diffusion capacitances of the emitter and cOllec~ 
regions; the aependent current sources 11 and 12 represent the r~combi- ! 

I 

-I 
nation of the carriers. 

Now the parameters and the quanti ties used in the mod.el will be I 

defined. j 
i 

QT(t) is the total excess hole charg~ stored in the base region. i 

w , 
QT(t)= eA J p (x,t)dx 

o 
(VI.2l) 

QE(t) is the total excess hole charge stored in the base when 

VCB(t)=O and QC(t) is the total excess hole charge stored in the base 

when V EB (t) =0. VI.hen both voltages are different from zero, total 

excess hole charge stored in the base is 
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"lis seen from the previous study in section VI.l, p(x,t) 

contains some frequency components: 

Thus,the same frequency components will come into the expression 

for QT(t), i.e 

m n 
2: QE·(t) +. 2: QCk(t) 
i=O ~ k=O 

or 

(VI.23) 

·The ?'s appearing in the expression of the dependent current sources 

I3 and'I4 are defined as follows, 

13 y.; = ----....:1:---:1,-/7"'='2-
... W 

_. [l+jVl. L 1 -1 
L ~ P . 

P 
cosh 

(VI.24) 

where wi is the frequency of QEi(t) and 

1 ¥ Rk = ---w-----:l~7r:::2-
cosh T[l+jwk,] -1 

p p 
(VI.25) 

W
k 

is the frequency of QCK(t). 

.. , 

The memristor ME and MC may be defined as follows. The conductivit 

of the base region is 

u- (x) = e [ IJ n +}J pC x) ] 
/n no IP 

(VI.26) 



1 
=T 
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w 
f dx 

I ] 
VCB=O 

o ~. e [p n + tJ p( x) 
n no Ip I ] 

Vcn=O 

w 
J 
O[~(x) 

w 
f 
o 

dx 

e [p n + p p(x) n no p 

The other circuit elements are defined as follows [23],[21] 

v. -1/2 

C. (v. ) = C . (1- T) 
Je Je Jeo ~E 

v. -1/2 
C. (v. ) = C. (l-~) 

JC JC JCo 0c 

?:F 151 v. 
( ) (~) Cde v je = kl -:~V""'T";;";;;;- exp V

T 

Cd (v. ) C JC 

r i. 
e Je 

r . i . . C JC 

v. 
= I 51 [exp (~)-l ] VT 

v. 
= I 52 [exp (-.J.£)-l] 

. VT 

(VI.28) 

(Vl o 29) 

(VI.30» 
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VI.3- JUSTIFICATION OF THE MODEL. 

As a first confirmation of the model it will be shown that" the 

base current given by the model is the same as the one obtained 
theoretically. 

The base current given by the model is 

" I B( t) 
Qc 

Q -
QE 

QE = - -- --
Cp c Zp 

Since QE+QC=QT 

QT . 
IB(t) = - QT Zp 

(VI.36) 

is obtained. 

..... 

Now let's conside~ the diffusion equ~tion (VI.l). The excess hole: 

concentration is p'(x,t)~p(x,t)-p and using this definition, equation -
n 

(VI.l) becomes 

ap'(x,t) = 
" at 

" , 
p (x,t) + D " 

"Z'p P 

2 ' a p (x,t) 

ax2 

" Multiplying both sides with the constant eA and integrating from 0 to 

W with r~spect tox 

W 
eA f 

o 

, W 
C3p (x, t)dX= -eA f 

at o 

, W 2 ' 
P (x, t) dx + eA J D a p (x, t) dx 

"lP.. 0 P C3x2 



",.-.--

VL , 
o 
at J eAp'(x,t)dx= _ 1 

C:p 

, J eKp (x,t)dx+eAD 
" ~" p 

of (x,t) 
ax 

o 

w , 
results; but the term J eAp (x,t)dx is the total excess stored hole 

charge QT(t) in the ba~e region and hence 

, 
= - -1- Q (t) +eAD 

("" T P 
P 

ap (x, t) 
"aX 

, 
On the other hand, as eAD 

p 
ap (x,t) 

"aX 
x=w 

x=w 

IE(t) it followq from equation (VI.39) that 

which is as given by the model. 

-eAD:. 
p 

, 
ap (x,t) 

" ax 

-eAD 
p 

, 
oP (x,t) 

ax 

.':''' 

1= 
x=p 



Now the expressions of collector and emi~ter currents given by 

the model for different applied voltages will be written. 

Let's consider case 1 studied in section VI.l. For this case 

p(x,t) is given by the equation (VI.7) as 

V
EB 

p(x,t)= p lexp(---V)-l] 
n T 

( W-x) sinh L 
- p 
W 

sinh L 
p 

sinh( W-x ) 
L sinh jwt _ . .. pl 

e -p 
W n 

sinh 
L sinh 

pI 

x 
bp +p 
VI 

n 

L 
p 

Then from equation (VI.21) the total excess stored hole charge will 

be found as follows 

w , 
= eA J p (x, t) dx 

o .' 

VEE 
eAp ['exp(-V )-l]L (cosh 

n T p 

.W 
sinh L 

p 

-1) 

VEB VI 
eA(v b/VT)P exp(---V )L l(cosh ---L -1) 

e n T p pI 
+ -------------------------~----~-~----

')W . 
sinh 

Lpl 

jwt 
e 



Then 

W 
eAp L (cosh ---L -1) 

n p 
p 

. h W 
s~n L 

p 

eAp L (cosh ~ -1) 
n p p 

. h Vi. sJ.n L 
p 

eAp (exp(V~B)_l ]L (cosh ~ -1) 
n T p P 

QEO = --------------------------~---
. h W. sJ.n L 

p 

VEB W 
eA(v b/VT)P exp(-'--V )L l(cosh - -1) 
en· T p Lpl . t _________________ ~ ____ ~ ____ ~~____ eJw 

QE1 = 
. W 

s~nh -L-
pI 

L 

(vI.42) 

(vI.44) 

where Lpl= p / 
(1 . . )1 2 +Jw,' ~ 

On the other hand, the emitter current can 

. p 

be obtained from the model as 

(Vl o 46) 



where 

~ FO = ~RO = 
1 

W 
cosh T -1 

p 
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and 1 
~Fl = cosh ~ (l+jw l ) ll~h 

p. p 

Arranging the terms of equation (vI.46) we find 

And calculating the parameters (PFO+l) and (¥Fl+l) 

1 
. W 1 cosh L -

p 

cosh 
W 
L 

+1 = ---------=p------­
cosh L-l 

L 
p' 

(vI.47) 

1 
cosh ~.«1+jWGp)1/2 

+1 =.------~p~------------

cosh . ~ (l+jw~ )1/2_1 
p p 

VI 1/2 coshL ( l+jw Z ) -1 
p. . p 

are obtained. Substitution of these parameter into equation (VI.47) 

yield 

VEE 
eAp [exp(-V )-1] L cosh ~L/, 

n T p 
IE = ----------~~~----------~p-­VI, 

z: sinh L 
,P P 

(vI.48) 
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VEB W 
eAp (v b/VT)exp(-V ){l+jw.~)L lcosh 
neT p p L 1 

+ ------------------~-------------------p~--
"7 h VI 
l. sin --=---

p Lpl 

D Lp 

jwt 
e + 

eAp L' 
n p 

VI 
Z sinh --
p L 

P 

Using now L2 =D L 
P P P 

obtained as 

and L 2 = ~.p~-----
pI l+jwZ'. the final expression for IE is 

p 

V
EB 

. VEB 
eADpPn[ exp( VT)-l] eADpPn(Veb/vT)exP(VT) 

IE = --------------=-----+ ----------------------
eAD p 

jw.t p n 
e + ---.~~~W---

L tanh ~ L I tanh ~ 
p Lp P pI 

L sinhT 
p p 

which agrees with eqpression (vI.B) for IE as developed from· the 

diffusion equation (VI.I) .• 

Similarly, the collector current Ie calculated from the model 

agrees with equation (VI.9) as shown below. The collector current from 

the model can be written as· 

(l+jwZ ) 
p 

'Lp 
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Substituting the expressions of fRo' ~FO' ~Ft. and Qco ' QEO' QEI into 

(VI.50) yield 

I = c 

eAp ,L cosh W
L

, 
n p 

Z"p sinh 

p 
? VI, 

sinh L 
p p 

, V
EB 

(l+jw )eAp (v b/VT)exp(-v-)L I 
_______ p _____ n ___ e __ ~--------T---P-- e jwt 

. h VI z 
p s~n L 

pI 

and using L2= D Z 
P P P 

D L 
L 2 P P and = --~-~---pI l+jwZ' 

p 

eAp D 
n.p 

V
EB 

eAp ·D [exp(V-)-1 ] 
n PT 

I = -
c L tan h VI 

P L L . h VI 
s~n -L . P 

is .obtained. 

P 

VEE 
eAD p (v b/VT)exp(-V--) 

p neT jwt 
e 

P 

For case 2, p(x,t) is given in equation (VI.13). Then, the total 

excess hole stored charge in the base region becomes 



W 
QT = eA J 

o 

, 
p (x, t) dx 

-97-

VEB VI.) 
eAp [exp(---V )-1] L (cosh -r- -1 

VeB VI 
eAPn[ exp(V)-~)L (cosh -r- -1) 

n T p P 
QT= ----------~--------------~--- + 

We 
sinh r:-

T p , p 

. h Vl 
Sl.n -r-

+ 

.', 

p 

jwt 
e 

p 

j2wt jrt> e .e 

The components of QT areas follows. 

VEE W 
eApn[exp(~,v )-1] L (cosh ~ -1) 

T p P 
QEO = ----------------~--------~------, VI 

QE1'= 

sinh -r­
p 

VEB VI 
eAp exp(-v )(v b/VT)L l(cosh -- -1) 

n . T e p Lpl . t _____________________ ~ __ eJw 

'. h VI 
Sl.n T 

,.pl 

(VI.55) 



VCB W 
eAp [exp(-v=-)-l] L (-cosh L -1) 

n T p -. P 
QCO= --------------------------~-----

. h VIi 
s~n L 

p 

Now let's find the currents. 

j2wt j~ 
e e (VI o57) 

(VI.58) 

Substituting the equations (VI.24), (VI o25),(VI.54)-(VI.57) into the 

equation (VIo58) and making necessary algebraic manipulations we get 



-99-

VEB W 
eAD p [exp(y-)-l] cosh L ~. 

P n T P 
I E= ------------------------------

• h W. 

+ 

L 
P 

S1n T 
P 

. h W 
S1n -L-

pl 

VCB 

VeB 
eAD P [exp(-V )-1 ] 

p n T 

jwt 
e 

L . h W. S1n -
p. L 

P 

eAD p exp(---V )(v·b/VT) 
p n T. c j2wt jcp 

e e 
. VI 
sinh -L-

p2 

D Z 
L 2 = ---p",--,p~ 

p2 (1+j2wCp) 

Similarly, 
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(vI.60) 

and going through the same algebra as for IE we get the following 

expression for I • 
c 

VCB W 
eAD p [exp(~)-l] cosh ~ 

I = ____ ~p_=n~ ________________ ~~p-
c 

L 
p 

. h W. 
s~n L 

p 

eAD p exp(VCvB)(v b/VT)cosh W. 
p n T c L 2 

+ ------------------------------~p~ 
. h VI. 

s~n ---
Lp2 

V~ , 
eAD p exp( -V ) ( v,-b/VT' 

p n .T e jwt 
e 

L . h VI 
pl s~n L 

pl 

VEB 
eAD p [exp(-vmT) -1] 

p n 

L 
P 

. h W 
s~n L 

p 

Again we see that the expressions (VI.59) and (VI.6l) are 

identical with expressions (VI.14) and (VI.15). 

Here, it should be observed that when the applied voltages are 

pure dc voltages (i.e veb=O and vcb=O) equations (VI.59) and (vI.6l) 
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reduces to the well-known Ebers-Moll equations. 

If the more general case 3 is considered the results of the 

model will again be identical w~th ~he theoretical results. 

Now the following transient case will be examined. . 

Let a step voltage be applied to the emitter-base junction at 

t=O and let the collector-base voltage be zero, and let the excess hole 

concentration at t=O+ be zero. Then we have the following 

I A 
using the definition p (x,t)=p(x,t)-p we obtain 

n 

where 

I c l p (O,t)=p(O,t)-p =p [exp(-V )-1] for t>0 or 
. n n T 

VCB ( t~ 
exp [(. V )-1] =0 

T 
(vI.64) 
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, + 
p (x,o ) = 0 

.For these boundary and initial conditions the Laplace transform of· 

the solution of 

, 
ap (x,t) = 

at 

, 
p (x,s) = 

, a2 " 
p tx,t) +w p (x~t) can be found as [24] 

Lp P ax 

sinh W-'X. Il+s"C 
L p 

P 

sinh ~. .J l+s L 
P P 

Then the Laplace transform of total excess hole charge stored in the 

base is 

as 

w 
~(s) = eA 

( , 
.J Ii (x,s) dx 
0 

w W-x sinh .Jl+sC: 

J 
k L P 

eA 1 p = 
0 

s 
sinh ..!LJ1+s ~ 

L P 
P 

Vl 
eAL kl(cosh L1l+sc -1 

p P p 
QT(s)= ------~-------

sinh ..!L if l+s c::: sJl+s i 
p Lp P 

dx 

(vI.67) 

Before proceeding further cqnsider the currents which are given 
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, 
ap (x, s) 

ax f· 
x=O 

eAD k .I P 1 v l+sC:-
P 

cosh 

L • s.; sinh ~ ..J 1+ s ?; 
p p p 

eAD 
p 

, 
dp (x,s) 

ax 
x=\'l. 

eD Akl
l l+sL 

p p 

L s sinh ~ /l+sr 
P P P 

(VI.69) 

Now, going back to the model again, QT(s)=QE(s)," since the 

collector-base junction voltage is zero implying QC(s)=O 

PF= ·----w-;l:;:::==_~ . is defined, then the model r W .1 cosh T rl+sZ' -1 
p P 

If 

again gives the same ~esults as shown below. 

From the model 

taking the Laplace transform of both sides, assuming QE(O+Y:O 
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l+sZ 
IE(s) = (l+FF ): ( <:p p) QE(s) (VI.70) 

is obtained. Subtituting the above equation which is defined for P F 

and equation (VI.67) into (VI.70) we get 

and using L2 =D L 
p p p 

W 
eAD k

1
11+si cosh L 11+57: 

( ) 
P P p P 

IE 5 = ----~--------------~~----
• VI ./ 1 s~nh L v +sZ: 

p p 
L 5 

P 

is obtained. 



Similarly for I we have 
c 

or 
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and going through the same algebra as for IE(s) 

eAD k J l+s £:' 
I (s)= ___ P.t:......:1=--__ :...p_-_ 

c W ,----
L s sinh -r-vl+sZ 

p - p p 

is found. 

VI.4- REI-lARKS ON THE HODEL 

T~e model is valid as long as the diffusion equation (VI.l) is 

satisfied and the collector and emitter currents are given as in 

equations (VI.4) and (VI.5); otherwise it must be modified. For example, 

if there exists a contribution of electrons to the collector and 

emitter currents then the necessary modifications must be done to take 

into account the charge storage effects due to electrons. 

The model is justified by comparing the terminal currents given 

by model with those given by the diffusion equation (VI.l). Further 

confirmation of the model has to be done by applying current sources 

and observing the resulting voltage, waveforms. Computer simulated 

results must be compared with those obtained experimentally. 
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Another important point is that the small-signal input impedance seen 

from" base-emitter terminals is inductive when the biasing current is 

z.-elatively high. Thfs behaviour must also be justified. 

The model seems to be complex for analytical purposes, but it 

can be used in computer analysis. 

Finally, the model emphasizes the use of memristors in the 

area of device modeling. 
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C HAP T E R VII 

CONCLUSION 

A newly introduced· two-terminal nonlinear circuit element, the 

memristor has been defined, its properties investigated, its realization 

presented and its use in modeling emphasized. Although the memristor ~ 

seems to be an hypothetical element, the passivity theorem and the 

electromagnetic interpretation given in Chapter II have led to the 

belief that memristors with monotonically increasing ~~q curves may 

be produced in a passive physical device form. 

In Chapter III the realization of memristors by active circuit 

elements is considered. The active circuit realization techniques may 

be used in studies concerning general nonlinear RLCM networks. For 

example, circuit-theoretic properties of RLCM networks may be justified 

experimentally using active circuit realization of memristors. 

Then,the generalization of memristor into a new class of dynamica 

systems, namely memristive systems is considered in Chapter IV. Most 

important charecteristics of memristive systems is the zero-crossing 

property i.e. the output is zero whenever the input is zero. Another 

one is the dependency of Lissajous figures on the freguency. At low 

frequencies they. behave like nonlinear resistors but at high frequenciel 

they reduce to linear resistors. So, special attention must be paid 

to the classification of the dissipative systems. Moreover memristive 

systems exibit a capacitive or inAuctive small-signal impedance depend~ 

on the operating point which caused some authors to name this property 

as the anomalous impedance.phenomenon [25]. 

In Chapter V, applications of the memristor·is considered. The 

most important one of these applications is the model given for p-n 
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junction diodes. The success of this is due mainly to the use of 

memristorwhich accounts for the charge storage and conductivity 

modulation effec~s. In Chapter VI,~ new model for bipolar junction 

transistor which uses memristors is given to emphasize the use of 

memristors in the area of device modeling. If we consider thi~ model, 

first, it seems to be unusual to seperate the total excess stored 

charge into iti components. But, once the input voltage is given the 

.components of charge is completely determined and the coefficients 

are also determined when the input is given. Moreover Ebers-Moll model 

of transistor is a special case of this model • 

• 
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