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ABSTRACT

In the past years many developments have been observed and
s0 many devices have been invented. The design of new systems using
these devices are becoming more and more important. Moreover non-
linear behaviours of these devices and systems necessitate knowledgeﬁ

of nonlinear circuit theory.

In this thesis, memristor which is introduced as the fourth
basic circuit element into nonlinear circuit theory, and memristive
systems which are the genefalization of memristors into a special
class!of dynamical systems have been considered. And examples of
applications are also given. Finally a new model of bipolar
Junction transistors is presehted apd the theoretic proof the model

has also been given. -



OZETGE

Gegtigimiz yallarda Elektrik Muhendisligi Biliminde birgok
gelismeler gozlenmis; ve birgok yeni devre elemani icat edilmistir.
Bu elemenlar, yeni sistemlerin tasariminda yaygin olarak kullanlimaya
baslanm1$t1r; Ayrica bu ygni icat edilen devre elemanlarlnlnvbirgogu-
nun davranislari dogrusal degildir. Dolayasaiyla bu sistemlerin in-

celenmesi dogrusal olmiyan devre teorisini glindeme getirmektedir.

Bu tezde dogrusai olmiyan devre teorisine dardﬁncﬁ temel
eleman olarak giren hafiza-direngler, bunlarin bir genellemesi
olan hafiza-direngsel sistemler gozden gegirildi ve uygulama ornek-
leri sunuldu;'Son olarakta bu eleman kullanilarak yeni bir transistor
modeli gelistirildi ve modelin ispati yapalda.
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CHAPTER I

INTRODUC TION-

In the recent years, many new developments have been observed
in the field of Electrical Engineefing Science, and many new deviées
have been invented. These devices are becoming more and more important.
in the design of new systems. The analysis and the synthesis of these
systems and the modeling of the newly invented devices bring the tools
of nonlinear circuit theory into consideration, since the behaviours

of most of these devices are nonlinear.

This thesis is going to deal with the new born, basic, two-
terminal element of the nonlinear cifcuit theory, namely the memristor.
In Chapter II, the definition and basic properties of memristors are
given. The electromagnetic interpretation of the element and its
mechanical analogy is also presented. In Chapter III the realization
of the memristor is considered. Though it is postulated as a two terminél
basic circuit element, the memristor is realized using mutator, a two-
port element, which in turn requires active elements for its reélization.
In Chapter IV, the memristive systems which are a generalization of
the memristor concept are studied. The properties which distinguish
them from the other systems are given. Several existing memristive

systems such as termistors, discharge tubes are also presented.

Applications of the memristor to device modeling -is the subject
of'Chaptérs V and VI. The junction diode model ysing memristor is the
main subject of Chapter V, whereas the model of a bipolar junction
transistor presented in Chapter VI is new. First, necessary preliminary
studies are carried on and then the model is constructed and justified

in Chapter VI.



CHAPTER II

"MEMRISTOR -

ITI.1- DEFINITION AND BASIC PROPERTIES . R

Let's consider four basic electrical N ”
variables, namely flux, charge, voltage and 1 N
current. Out of six possible binary - AN

_relationships of these four variables five < s

lead to well known relationships. Three of 0 z 5

them are the axiomatic definition of

¢lassical circuit element. i.e. They are the Figure 11,1

definitions of resistor (fp (i.v)—O) ,capacitor ‘

(f (v,q)= O)and inductor (f ( 9 i)=0). The other two are operational i.e.
@(t)—fv(z)dz and q(t) 4£1(z)dz

From a logical point of view there is a missing relationship -
between flux and charge. In 1971 Chua postulated a fourth basic two-

terminal circuit element for the completeness of the figure [1] .

The name memristor is given to this
new circuit element, which ié a contraction
from "memory resistor". And the proposed
rsymbdl is shown in figure II.2. Although \Y M.
we don't have a memristor in the form of
a passive physical device yet, there are
some active circuit realizations of_the
device. This will be covered in the .
chapter III. y o Figure 1;02

Now let's see the basic properties of the memristor.

By definition a memristor is charecterized by a relation. of the
type g( w,q) =0; it is said to be charge (flux controlled if this

relation can be expfessed as a single-valued function of charge q



(flux ¢). Then the voltage (current) developed across the device can be

written as

v(t)= M (q(t)) i(t) or 2 gi(f)_=. ddg(ﬂ) . dgit) (II.1)
( ;i(t}: W(p(£)) v(t) or dgit) = dgéf) . gf‘ ) (11.2)

Since M(q)(W(yY)) has the unit of resistance (conductance) it's
called incremental memristance (menductance). We also see from equation
II.1 that the value of the incrermentel memristance at any time t déepends
on q(t) and since q(t):_gii(é)df, it depends upon the integral of '
memristor current form t= - o0 to t, we observe that the value of the
memristance depends on the complete past history of its current (yoitage)
and this is why the name memory-resistor is given to the element. Note
also that onée the voltage of a memristor is specified it behaves like
a linear time-varying resistor. In the special case when the Y-q curve
is a straight line the memristor reduces to a linear time-invariant
resistor. Hence there is no need of introducing the memristor into linear

network theory.

What was said before was that, there was no memristor in the
form of a passive physical device. The following theorem may be thought
as a criterion for the class of memristors which may be discovered in a

pure device form without internal pover supply,.

Theorem II,1l: Passivity Criterion.

A memrister charecterized by a differentiable charge-cohtrolled
Y-q curve is passive if and only if, its incremental memristance M(q)

is nonnegative i.e. M(q) = O.
Proof:

The instantaneous power dissipated by a memristor is given by .

p(t) = v().i(%) = M(q(t)),,(i(t))2 (11.3)

if M(q(t))=0 then p(t)=0 and memristor is obviously passive.

T



Suppose there is a point q, on Y-q curve such that M(q°)<:0
Then the differentiability of the P-q curve implies that there exists an
€ >0 such that M(qo+ 8q) <0, |agq|<€. Now if we drive the memristor
with a current source i(t) which is zero for t<${ and such that
q(t)=qo+ aq(t) for tZt >t,then since for this current M(q + Aq)<O
and since p(t)= M(q(t))(i(t)) <0 and fp(r)dz < 0 for suff1c1ently

large t,then memristor is active. Hence the conclusion follows.

- This criterion shows that only memristors which have monotonically

increasing U -q curves can exist in the form of a passive device.

Theorem II.2: Closure Theorem.

A one-port containing only memristors is equivalent to a memristor.

Proof:

Let ij,vj,qj
linkage of the j'th memristor. Where j=1, ....b and i and v denote the

andw% denote the current voltage, charge and flux-

port current and voltages. We can write (n-1) linearly independent
Kirchhoff current law equations wherevn is the total number of nodes and

b is the total number of memristors. More explicitly KCL eq's are

ajol + Zajklk"' §=1,2,.0., n-1 C(II.W)

Similarly we can write (b-n+2) linearly independent Kirchhoff voltage

law equations.

BJoV + z Bikk =0 j=1,2,¢e..,b-n+2 (I1.5)

where ajk’ Bk are either 1, -13 or 0.

Now let's integrate these equations with respect to time

ofl(t)dt + f( Eaak k(t))cui =0 | to obtaix‘l

| b - , o
2,2 + kgl I _—.Q]- » j=1,2,...n-1 (11.6)

S t + ' |
' 7 . b ’ 4
and Bjofv( t)ydt +. f( kz1 pjkvk(t))d'(: =0 to obtain



b N ' . | .
Bio P+ %Bjk‘?f‘b,‘ j=1,2,... b-n+2 (11.7)

if we also assume that memristors are charge~-controlled then

B0 + 3 BicBa0 = | . ' (11.8)
These equations (II.6) and (II1.8) constitute a system of (b+l)
independent nonlinear functional equation in (b+2) unknowns,solwing for

Y we obtain a relation f(q,y )=0

Theorem II1.%: Existance and Uniqueness Theorem.

Any network containing only memristors with positive increméntal
memristances has one, and only one solution. The proof of the theorem

will not be given here. See [11] .

Theorem II.4: Principlé of Stationary Action (Coaction).

_ A vector q; =QL ((p:,:@g) is a solution of a network N containing
only charge-controlled (flux-controlled) memristor,if and only if it is
a stationary point of the total action R (qr_ ) associated with N. i.e.

the gradient of (R(q:.) (é(\Pg) ) evaluated at QL(QD) » is zero.

9R@..) l =0 ( oR(y,) l =0 ) (11.9)
891'. - - A a\—P'J LP ::'@
95'91 7 7

Before the proof of the theorem let's define the necessary concept

Definition IX1.1:

The action (coaction) associated with a charge (flux-controlled)

memristor is defiﬁed to be the integral
' q 9 ‘ | -
ACq) = Sy(x)ax (A(Y) =  fa(x)ax ) (11.10)
o . _ O , ,

Let's now consider a pure memristor network N containing n

nodes and b branches. Let 7] be a tree and [, its associated cotree

Let's label the branches consecutively starting with the tree elements

and define.



_ t _ t
"g— ( \p" ‘pz ’ ® e 00 ‘pb) ' g —‘ (ql’qz...... qb)
_ t _ t
?5- (? ,e . ....\pn_l) and SL~(qn,"" qb)
We know also that @9 or qL - constitutes a coﬁplete set of

variables in the sense * that Y Dt¢g and q:BtQ& where D and B

are the fundamental cut-set matrix and the fundamental loop matrix ,
respectively.

Definition 1I1.2:

Total action (coaction) associated with a network contalnlng only
charge-controlled (flux-controlled) ‘memristors is defined to be the

scalar function

(R(ga )= Ao (BtgL ) ( é(yq): fo (Dtkpg)' ) . (11.11)
b 9 | |
A = A(q) = g A(q.) = 2> j’ (q )dq (11.12)
- =039 =1 o¢ J ‘
~ i b . : b J
A = () = A(Y.) =
( ! =R RV e Jade )

" and o denotes the composition operation. Now we have the mathematical

tools to prove the theorem.

Proof of Theorem II.k:

+ +
aa?a(ga - 2ho(Ba) =B—a—§§9—) . = Byo(Bq)
% 99 T geBg, ~ . (I1.13)

- But as qu(ch ) is nothing but KVL in terms of [, , any vector Q

is a solution of N if, and only if it is a stationary point of G?(q ).

The above theorems are concerned with the networks composed of
only memristors. Now a more general theorem for networks containing
resistors, capacitors, inductors and memristors will be given. In wost
cases the governing equations of this kind of networks take the form of

a system of m-first order nonlinear differential equation in the form
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x = f(x, t) where x is an mxl vector whose components are called state

variables. The number m is called the "order of complexity" and is

equal to the maximum number of independent initial conditions that can

be specified arbitrarily.

¢

Theorem I1.5: Order of Complexity:

Let N be a network containing resistors, inductors, capacitor,
memristors, independent voltage sources and in dependent.current sources.
An upper bound. for .the order of complexity m of N is given by

m= (b +b+b,) - (n,+n ) -« ) (I1.14)

M e LM

nM+nLJ+nCM

where'bL,bC,bM are total number of inductors, capacitors and memristors
respectively ; ny is the number of independent loops containing only
memristors, Nop is the number of independent loops containing only
capacitors and voltage sources, Niu is the number of independent loops

containing only inductors and memristors, n_ is the number of independent

m
cut sets containing only memristors,ﬁLJ is the number of independent cut

sets containipg - only inducters and current sources, is the number of

n
CM
independent cut sets containing only capacitors and memristors. -

Proof:

The order of complexity of an RLC network is given by m:(bL+bC»—

(nCE)-(ﬁLJ).lFor an RLC-Memristor network with n =0 each

M= PLMTMTTeM
memristor introduces a new state variable and we have m= (bL+bC+bM)—
BeE™ LI

Observe next that a constraint among the state variables Occurs
whenever an independent loop~consisting of elements corresponding to

those Specified in the definitionof n apd n is present in the network.

And similarly there will be a constraiﬁt amonEMthé state variables
whenever én ihdependent cut—setconsistingof the elements correspending
to those specifijed in the definition of ﬁM and ﬁCM is present in the
network. Since each constraint removes one degree of freedom the order

complexity must be reduced by one.

il

1
..



II.2- AN ELECTROMAGNETIC INTERPRETATION OF MEMRISTOR DEFINITION.

We know that the 01rcu1t theory is a special case of electromag-
netic field theory. Partlculary the three classical circuit elements
(re51stor, capacitor, inductor) can be given a good electromagnetic
interpretation in terms of the quasi-static exp=2nsion of,Maxwell
equations. Now we will give an electromagnetic field interpretation of
memristor analogous to that of other basic circuit elements. First, )

Let's write down the Maxwell equations.

Curl ® = - ——%‘2—-' ' - (II.15)
c H=4d h)
url H=J + -——aE— . (11.16)

where E H are the electric and magnetlc f1e1d 1nten51ty, D B are the

magnetic field den51ty and J is the current density.

Defining T=Xt as the family time where X is called the time-

rate parameter, the Maxwell equations become

Curl E = -o<———aé%- ' (I1.17)
Curl H = J+d—20B_ (11.18)

oz

E, ﬁ; EL g’and J in these equations are functions of both the position
(x, y, z) and of «,c . Let's expand the vector quantities in power
series ih & and substitute them into the equations. Upon equating the
coefficients of «" obtain the nth order Maxwell's equations where n=0,
1,2500000 '
-

e n -z e g _ .
For example if E= & En+(x En_l+...+cXEl + Eo’ then zero, first,

second order Maxwell equations can be written as follows.

Zero-order Maxwell equations:

Curl i’o =0 ’ ' ' (I1.19)
Curl H =7 ' | (1I.20)
X o] (o] R



First-order Maxwell equations :

- . oB -
Curl E, = - —°2_ (11.21)
1 ot
. -
e - aDo B :
Curl H, = J, + 2 (11.22)
1 1 ot
Second-order Maxwell equations :
Curl B = - By (II.23)
ceuar = > — °
Coe oz _, |
‘ Curl HZ = J2 + —'—a—t—- (II,,ZII') e

and s0 on.

Many electromagnetic phenomena and systems can be analyzed
satisfacfory by using only the zero-order and first order Maxwell
equations. The corres ponding solutions are called quasi-static Maxwell
equations [2]. Forexample a resistor can be idenfified as an éiectro—
magnetic system whose first-order fields are negligible as compared
with the zero-order fields. So the resistor is interpreted as an
instantaneous reletionship between E; and Hd When only the first-order
magnetic field is negligible the electromagnetic system can be interpreted
as an inductor in series with a resistor. Similary when only the first-
order electric field is negﬁgiblé the system caﬂ be interpreted as a
capacitor in parallel with a resistor. But the case that both first-
order fields are not negligible has been omitted in the studies as

having no correspondance in circuit theory.

It is suggested, that this case is precisely the one that gives
rise to the charecterization of a memristor. Under appropriate conditions
the instantaneous value of the first-order electric flux-density D.

1

(surface integral of Dl is propartional to q(t)) is related to the

T
instantoneons value of the first-order magnetic flux-density Bl

(surface integral of Bl is prOportional to Y(t)). This would the
case if we postulate the existance of a two-terminal device with

the following propertres. a) zero-order fields are negligible as

compared to first-order fields.i.e. J=J,, EsE;, H=H, B=E,, D=D
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b) The material from which the device is made is nonlinear.. More

generally we have the following nonlinear relationships

g, = JED | (I1.25)

B, = @m) _ : (11.26)

D, = O(E)) (11.27)
3

where J(.), ®(.),0(.)) are one-to-one continyous functions from R’ to

RB.Under these assumptions the equations II.22 and II.25 can be combined

to give.

Cur‘]f ﬁ’l = j(ﬁbl) | | (11.28)

Observe that I1.28 does not contain any time derivative. Hence, under any

—

specified bounddary condition appropriate for the device,El,is related to
ﬁi by a functional relation némely :
B, = f£(H,) (1I1.29)
if we substitute into 5i=GD(E1) and using B, = Gg(Hl)
we obtain
- > -

= Qofo [ @B (Bl)_'] =g (Bl)) (1I1.30)

This specifies the instantaneous relationship between D1 and g; which

can be 1nterpreted as the quasi-static represantatlon of the memristor

in terms of electromagnetic quantities.iIf we summarize the aboVe inter-
pretation of the memristor, the physical mechanism charecterizing the
dévice must come frem the inst?ntaneous‘interaction between the first-
order electric_fieldand.ﬁhe first-order magnetic field. We sece from the
interpretation thet the physical memristor device must essentially

" be an ac. device otherwise its associated dc electromagnetic fields

give rise to nonnegligible zero-order fields. This is consistent with the
circuit-theoretic properties of the mehristor,a dc current source would

give rise to an infinite charge q(q(t)— 00 as t—e co )
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and a dc voltage source would give rise to an infinite flux (W(t)——» 0
as t-——v-OO)

II.3- MECHANICAL ANALOGUE OF MEMRISTOR

What we considered so far is the memristor as an electrical
device. But as in the case of other circuit elements the memristor

also has analagues from other systems. [3]

Now let's consider the mechanical systems. In this case, what
we have as basic variables are the velocity(e), displacement(q),
force(f) and momentum(p). Again we can relate these variables to each

other in 6 :ways as in the case of electrical variables,

e

f

Figure I1I1.3
explicitlj two of these 6 relations are the definitions of displacement,
t
q(t) = q(0) + [Se(z)dzr
S [o)
and of momentum

- t
p(t) = p(0) + [f(z)de
(o] .

three of them are the constitutive relations of energy storage and

dissipation elements.

F, (f, q)

o] ‘ - (I1.31)

FLb(e, S) 0 (11.32{
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'FR (e, f)=0 (11.33)

But, there is one missing constitutive relation relating p and g(which

was drawn as hidden line by Paynter in 1961). This fourth constitutive

relation can-be defined as

Fm(q,p)=0, and called as "memristor" i.e. memory resistor since

it remembers both integrated flow(q) and integrated effort(p).

The constifutive relation for a l-port memristor is a curve in
the q-p plane. Depending on whether the memristor is displacement or

momentum controlled the constitutive relation can be exppressed as
p = G(q) or as q=F(p) (11.34)

differentiating with respect to time we obtain-

- 9G(q) dg _ T
D = M - e f = M(q)e (11.35)
. oF(p) ap _ e |
q = a5 .~ e = W(p)f (I1.36)

M(q): is called the incremental memristance.

W(p): is called the incremental memductance.

We see that dynamically the memristor appears as either a displacement
or momentum-modulated resistor. In the case of lineaf constitutive
relation (i.e. M=constant, W=constant) the memristor appears as an
ordinary resistor. So memristors hafe a meaning only for nonlinear

systems.

To distinguish a memristor from a resistor, let's consider
the tapered dashpot shown in the figure II.4. If we attempt to model
thé device on the e-f plane as a resistor we will not obtain a unique

constitutive relation F(é,f):O, but rather some hysteritic behaviour,
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since the'incremantél resistance depends on the instantaneous .piston
displacement. We may attempt .
to model the device as a
.modulated resistor.taking

the state varriable x as

parameter in the constitutive (§ — .
- A - 2
relation. Howover x 1is not F) [L 11 zZ

a defined state variable for

any element in the'system..

What is required is the

displacement of the dashpot. - Figure II.4

But modeling the system as a

memristor eliminates -the cumbersome modulation and permits us to

charecterize the device as a single curve in x~p plane.

Example:

Now. let's study the mechanical system mentioned above in some
detéil. The mechanical system can be considered a crude model of an
automobile suspension using a shock absorber wﬁose charecteristic
depend on displacement. The gchematic diégram of the mechanical
suspension system is shown in figure II.5.

ma
The mass could represent S5

. tapered
Spring dashpot

the mass of the car, the spring

and dashpot iﬁs suspension

system, and the velocity ocit :
velocity source

source the input due to T T
yndulations in the road. : Figure 1I.5

The bond-graph, with the tapered dashpot as a memristor can

be drawn as follows.

I —i1 E
(mass) J (velocity source)
0
v
(spring) \/M

(memristor)
Figure I1.6



=14

Particularly for this system, it is also possible to represent
the tapered dashpot as a modulated resistor since the displacement
of the dashpot is the éame as the displacement of the spring and
pfoportional to the force. in the spring. The bond-graph for this_system

is the following.

/ modulated
_ resistor
1 TF.

Figure 1II.7

.-

But the bond graph with the memristor ﬁses fewer elements and
avoids the necessity of defining a different Rind of bond (dashed bond

for modulation).

Let's define the p-q relation for a dashpot as following and

let's draw it in the p-q plane.

p = sign (q) . (Absolute (g))® C (I1.37)

P

Ay /
/
//;ﬂ y
. 2N
/,
ey
7
//
- 1 ~q

Figure II.8
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The responses of the suspension system to a sinusoidal forcing
velocity taking the tapered dashpot as a memristor that has the p-gq
relation as defined in the above equation II.37 are shown in the

figqure II.9 for different n's.

.
-

Figure 1I.9

It is said that these results are consistent with those'gbtained

using the modulated resistor instead of memristor[37:-

The case n=1 corresponds to an ordinary linear dashjot and its
state-plane trajectory is an ellipse. The other two trajeétories are
non-elliptical, indicating that the nonlinear p-q relation causes
frequencies other than the foréing frequency - to appear in the «
oﬁtput. The presence of these harmonics is typicai of nonlinear systems.
The slopes of the.trajeptories near the velocity axis (for spring
force close to zero) shows the charecteristics of the displacement
modulated dasphot; for n=2 the dashpot is very soft around its center
and {hetrajectory shows this property being nearly horizental. -
On the other hand for n= —%— the-dashpot is very stiff near the center-

and its trajectory is very steep. (Theoretically for n= —%— the slope
is infinite at the origin . Use of finite-difference solution, however

replaces the infinite slope with large but finite slope near the origin,

which is a much more realistic situation.
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CHAPTER III
REALIZATION OF MEMRISTORS

III.1- REALIZABILITY CONDITIONS.

As stated before, a memristor in the form of a physical device
without an internal power supply has not yet been discovered,-butAtherg
are some active circuit realizations. In this section the realization

of a memristor will be investigated.

m I 'R
+ + +
m M = ‘m (M R Vo |2IR

I
<
—

<
=

Figure III.1.
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The passivity theorem II.l shows that only memristors characterized
by a monotonically increasing Y -q curve can exist in a device form
without internal power supplies. But using a mutator a memristor with
any prescribed y-q curve can be realized by connecting an appropriate
nonlinea?.resistor, inductor or capacitor across port-2 of an M-R, M-L

or M-C mutator reSpectiveiy as shown in figure I1II.1.

Now mutators will be defined and discussed in some detail.

III.2- MUTATORS

Mutator is a generic name for a family of linear algebréic
2-ports &J,[SLA type 1 L-R mutator is charecterized by the constitutive .*-

relation %zvz and i =—izif we terminate port-2. by a resistor having

1

Figure III.2

a constitutive relation iRzg(vR) then from figure II1.2 and using the

mutafor constitutive relation we can write the following equations

1 2 R
we can obtain the equation
11 = g( kpl)

In other words, the portml is equivalent to an inductor which

is charecterized by a constitutive relation identical to that of the
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resistor connected to port-2. Conversely, if we terminate port-1l by
an inductor having a constitutive relation f(iz, ¢2)=O then what we
observe from port-2 is a resistor havifig a constitutive relation f(iz,
V2)=0.- |

This shows us that this 2-port transforms one type of element
into another type element, and revéals the.regson why the'Z—porf is

called mutator.

A type-2 LfR mutator is éharecterized by the constitutive
relation %f -i2 and il=vé.AThe same mutation property also holds
in this case, except that the two variables in the resulting element are
interéhanged,i.e. when we connect a resistor charecterized by a -
constitutive relation iR=f(vR) across port-2 of a type 1 L-R mutator
we get an inductor having a constitutive relation i1=f((&) but in the

‘case of type 2 L-R mutator we get \&:f(il).

Similarly we can define other mutators namely L-C, C-R, M-R, M-C,

M-L mutators.

We observe that by using different mutators, it is possible to
synthesize any three of the four basic circuit\elements R,L,C,M given
the fourth element.Since mutators are linear 2-ports, they can be
realized using only linear elements. For example a type 1 L-R mutator
and type 1 C-R mutators can be synthesized by the circuits given in

figure II11.3.

" : i2 1 L 2
+.—.-_—_<J_->_—<_ £ _: ; S ’ —<3 —>-—‘_6v56\—+ -—<—:
Vi : C IC VZ l( 1 v ) VL L
1 lC ::c VZ 'v1 L L 12 v2

Type1 L_R mutator A Typetl (_Rmutator
(a) S (b)

Figure III.3



II1.3- ACTIVE CIRCUIT REALIZATION

A memristor with a pfescribed Lp--q curve can be realized using
a M-R, M-C or M-L mutator. Charecterization and realization of these

mutators are given in table I,

Since it is easier to synthesize a nonlineér resistor with a
prescribed v-i curve, only memristors realized with M-R mutators are
studied. Practical active circuit realization of a type 1 M-R mutator

is given in figure III.4. In order to verity that a memristor is indeed

. +Ege |
o RJ150) ?R,(SIO) |
2] . P i
{2N4236) C A . -y ‘ ;
7T g Q,{2N4236)
R ) s Q WB) |
u).ﬁ (luF ) !
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<+ 0s L Ris +Ps -+ |
) ' S {200)| {(INg728)
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S D] . 1t .
< C .
+ Feon o (0K} o ons4a6a) Yensacs ,m,‘:)g Gul2ns464)
NG (NG9 Q4(2N4239)
g(yv [ - yd ] 0,,(2N4239) ‘
21501 B 2o |
Ecc

Figure III.kL

realized across port 1 of an M-—ﬁ mutator when a nonlinear resistor is
connected across port-2 it will be necessary to use a {y-q cux‘%re

tracer. For more detail of the ,,kp-q curve tracer see [1]. Using this
tracer the \J-q curves of memristors realized by a type 1 M-R mutator
and the corresponding V-I curves of nonlinear resistors are given in.

figure I1l.s5.
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CHARACTERIZATION AND RYALIZATION OF M-R, M L. AND M-C Muraiors

TRANSMISSION “MATRIX

SYMBOL v < v BASIC REALIZATIONS
TYPE . AND el 2 . £s
CHARACTERIZATION L, | -1, ‘USIfNG CONTROLLED SOURC
{q, @) —>lig,vg) REALIZATION | REALIZATION 2
o 2, iy iz | i2
+ + ;—’— dlz |+ ‘5"2 +
v M R vp P o
| AN PO Y 2| ‘2
p - (Ivd!) . . (fi,an -
M-R
MUTATOR  REALIZATION |  REALIZATION 2
it i2 iy i
o » || & M (5) v
f ey
2 MRZ(D)' M . V2 [V ‘2
L rn —f- (ven -
REALIZATION 1 REALIZATION 2
. iy iy i i
+ +}+ A . +
. i-fidt
e e lina Y anl 2% ) Y2
ot ] 2 i o |]- (2 dl) 1= -
+ +
Y M L v Tap, (P)e
i o -
{ p S | | o 4
REALIZATION 3 REALIZATION 4
vy { Igentical to TCRI(p) . ! . i i
12 iy Iz ) ; 2
. of a Type | C-R MUTATOR} . ai
Y ; fv2) | () :
M-L "t dt v vo v v2
MUTATOR .
_ (fijon) . {v) _
>-— e 4 .
{q.¢f) «— (P i) REALIZATION | REALIZATION 2
i T i i i
0 t 2 | . 2
T (o) S ikaawV ¥ (ﬁz) d
Lt P! vz) At
2 1 o v, vo v - v2
- - (lv cx) _1- (i) -
! 5 {Identical to TLRz(p’
of a Type 2 L-R MUTATOR)
Il € V2 o
REALIZATION | REALIZATION 2
i ip i in
A N . + |+ > +
. {q. ¢ «—> (o v! M (%z"’z) Y2 (fyd1-v} va
,_L ‘_‘lg; P 0 _ S -
+ T, (p)=
M
M| M : ¢ va| MG o 1
' REALIZATION 3 REALIZATION 4
dv, {Identical to T g(p)
M of 6 Type I L-R HUTAlTOR) ._..i' dv -3 L ‘2
o b (_5) b i) :
i d (33
M-C - v Yz [ \ 2
MUTATOR _ tiy) e Svan) -
e 1 ——
B (q,¢) «—(ve.acl ' REALIZATION | REALIZATION 2
i i i 1
o | od] B N B dv 2,
* H +| ¢ {-———2)
TugolPt® . h A \ar K '
2 ) v * valv, ‘ Q/ va
. < 1 yan) . ty) -
.- " . > — ~dosts—d .- —
Y 2 {Identical 1o TCRz(“) -

of o Typs 2 C-R MUTATOR)




f s

qlt)= filz)de * *
- 00
t v M R v
Plt)= fv(z)dz
- — | 1 )
(a)
q I
?tP \Y)
{b) . (c)
q 1
9 v
) (e).
q I
N N
T~ / '

g
(f) { ) 

Figure III.5

Now consider the simple memristor-resistor circuit given in .

figure III.6.
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Figure III.6
The oscilloscope tracing of the voltage v(t) and the current
i(t) waveforms generated by this circuit and the corresponding:. (-q

curves are in Figure III.?7,

In fact, it isn'i so much suprising thet the current and voltage
waveforms are somewhat different although the ?-q curve is relatively

smooth, because Tpand q are the integrals of these quantities.

But,it is these unique signal-processing properties which are
not shared by any other of the three circuit elements that have led
to the belief that memristors will play an impartant role in nonlinear
circuit theory, especially in the area of device modeling and
unconventional signal-processing applications. Some examples of these

will be given in the device modeling section.
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CHAPTER. IV

MEMRISTIVE SYSTEMS

IV.1- DEFINITION OF MEMRISTIVE SYSTEMS

The memristor that we have studied before is really a special

case of a much more general class of dynamical systems called memristive

equations.
x = f(x, u, t) . (IvV.1a)
y = g{x, u, tu N (IV.1b)

Where u and y are the input and output of the system and x denotes
the state of the system. The function f:RUsR x R— R = is a
continuous n-dimensional vector function and for one-port g: RanxR — R
is a.scalar continuous function. It is assumed that the state equation
(IV.la) has a unique solution for any initial state x €R™. . The output
equatlon(IV 1b) is such that the output y is equal to the product
between input u and the function g. This special structure of the readout
‘map is what distinguishes a memristive system from an arbitrary dynamical
system, nemely the output y is zero whenever the input u is zero,
reéérdless of. the state x. This propetry manifests itself in the form of

a Lissajous figure which always passes through origin.

In terms of electrical variables an n'th order current-controlled

memristive one-port is represented by

% = f(x, i, t)

(Iv.2)

L]
[t}

R(x, i, t)i

systems [6]. The memristive systems are defined by the following set of -
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and an n'th order voltage-controlled memristive one-port is represented

by

131
I

f(x, v, t)
(IV.3)

i=G(x, v, t)v

where v and i1 denote the port voltage and current, respectively. The

functions f, R, G are defined similar to f, g in equation (IV.1).

Now to motivate the significance of memristive systems, let's

consider two examples below,
Example 1: Termistor.

A negative-temperature coefficient termistor is charecterized

by [7]

v=R (T ) exp [ p(—3 - —%iﬁj.i_ 4 R(m)i (IV.4)

where g 1is the material constant, T is the absolute body temperéture
of the termistor and To is the ambient temperature in Kelvin, and

Ro(To) is the cold temperature resistance at T=T .

The instantaneous temperature T, however, is a function of power
dissipated in the termistor and is governed by the heat transfer
" equation,

dT
dt

p(t) = v(t) i(t) = k(D-T )+ c (1Iv.5)

whére ¢ .is the heatcapacitance and k is the dissipation constant of
the termistor. Substituting (IV.4) into (IV.5) and rearranging the terms

ve get

: | R (T) |
1 1 .2 :
e (7-1,) + —2—2= exp[pl—g— Rk 2e(T,1) (IV.6)

We see from (IV.4) and (IV.6) that a termistor in fact is not

T Y Yo PPt el
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a memoryless, temperature-dependent linear resistor, but rather a

first-order time-invariant current-controlled memristive one-port,

Example 2: Discharge Tubes.

The behavior of a discharge tube is described by the.foliowing

equations_[SJ

n = Xiy - Bn (IV.?@)
v = —§~ 5 .é R(n)i (IV.7b)

where «,p, F are constans depending on the dimensions of the tube and.
the gas filling the tube; n denotes the electron density inside the tube.w
Substituting (IV.7b) into (IV.7a) we get

L 0 2 - .

n = CX—%— i=- pn.é f(n,i) (Iv.7¢c)
Again we see from (IV.7b) and_(IV.?c) that the discharge tube

should be modeled as a first-erder time-invariant current-controlled

memristive one-port.

Thus some systems classified as a certain class of dynamical

systems should really be considered as memristive systems.

Now let's see the generic properties of memristive systems which.
distinguish them from other systems. We will only consider time-invariant

current-controlled memristive one-ports.
IV.2- GENERIC PROPERTIES OF MEMRISTIVE ONE-PORTS.

Property 1. Passivity:

A generalized n-port memristor with the state representation X =u
,'y R(x)u is pa651ve if, and only if R(x) is positive semldeflnlte at

each point xeX [12].

Proof: .
Sufficiency: If R(x) is positive semidefinite, then for any input-output
pair {u( ), y(. )} and any time t > O the power input '<E(t)’l(t)> =

u Te) [R(x(t))] u(t) = |

Hence n—port is passive.

Necessity part will be proved by contradiction. Suppose n-port is
passive, but R(x) is not positive semidefinite everywhere. In other

words, there exists 5 €Z ,156[] such that u [R(x )] U= -a < O.



Since the entries of 5(95) are continous functions, there exists an ¢
such that ||§-;§|| < € which implies E“T ['_g(;g)j g* <-a/2 <0. Let u(.)
be given by a(t) = (E/llg*” Ju" cost, for all t =0, let %(.) be the
trajectory resulting from the input 1:1,(.) with initial state ;5' and let

y(.) be the corresponding output. Then for all t=0

+ )
R ]
1X(e)=xX'l =1 f Ce/ gu'1 ) cost dt Il= e|sint| < ¢
[}
680
=T ~ 3* .
u BRI[x(£)] u <=-a/2 , for all t=0
Furthermore

T T €
-f e, §e) > at= - (W)Z(B*T R(%(£)) ¥) cos“tdt

€
[y

~

T
= ( )? (—;—) . f cosat dt

Then the available energy at the state ;5*

.
E,(x") 2 sup{ -f C&B), §(£) D> dt b=+
X 0 |
T =0

Since, EA(E* )= + 00 we can extract infinite amount energy from the system
which contradicts our assumption that n-port was passive. The proof of
the passivity theorem for the current-controlled memristive one-ports
defined by the equations x = f(x,i), v= R(x, i)i can be found in the

reference [6].

Property 2. No Energy Discharge Property:

If the readout map of a current-controlled memristive one-port
is such that R(x, i)>0, then the instantaneous power entering the -

one-port is always nonnegative.

Proof: It is given that R(x ,i) >0 for any admissible input signal.



p(t) = v(t).i(t) = R(x(t), i()) i%(t)

Therefore, the instantaneous power entering the one-port is always

nonnegative.

Vie see that energy discharge from a memristive one-port satisfying

" the above constraint is never possible.

Property 3. DC Charecteristics :

A time-invariant current-controlled memristive one-port under
dc operation is equivalent to a time-invariant current-controlled
nonlinear resistor if f(x, I)=0 has a unique solution x=X(I) such that
.for each value of I  the equilibrium point x=X(I) is gloﬁally \
asymptotically stable. ‘

25922: Substituting x=X(I) into the output equation in(IV.2)we obtain
V=R[X(I), I]11 & G(I),Since X(I) is globally asymptotically stable,
each value of dc inpuﬁ current 1 gives a stable, hence méasurable dc

voltage V. And the function G(I)can be regarded as the V-1 curve of a

time-invariant nonlinear resistor.

In practical analysis this property is still valid under low
frequency periodic operation so long as the period of the excitation
~source is much larger than the settling time of the associated transient

response.

. It is because of this behaviour that so many memristive devices

are improperly identifed as nonlinear resistors.

PropertyA4. Double-Valued Lissajous Figure Property:

A current-controlled memristive one-port under periodic operation
with i(t)=I coswt always gives rise to a v-i Lissajous figure whose

voltage is at most a double-valued function of i.

Proof: In the time-invariant version of the representation 1IV-2 the
state equation has a unique solution 5(t) for all t>to, given any to,
any x(to) and anj piecewise i(.), moreover x(t) is continuous by the
fundamental theorem of'the.differential equations. It is also given that

the function R(.) is continuous, then the voltage v(t)= R Cx(t), 1(t)3i(t
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for i(t)=Icoswt is also continuous. Hence for any value of the current

iel-1,I] there correspond at most two distinct values of v(t).

v v
— i
A possible Lissajous An impossible Lissajous
Figure Figure

Figure IV.1

Property 5. Symmetric Lissajous Figure Property:

First let's define half-wave symmetric and quarter-wave.

symmetric waveforms.

A periodic waveform x(t) of period T is said to be half-wave
symmetrlc if x(t+ k~——)- x(- t+k———) for k=1,2 for all telO, T/Z] ‘and
it is said to be quarter-wave symmetrlc if x(t+k—E—) = x(- t+k_E—)
for k=1,3 for all te (o,T/41]. :

Now let's state the property.

If the readout map of a time-invariant current-controlled
memristive.one—port is such that'R(g,i)=R(§, -i), then the v-i Lissajous
figure coresponding to the input current i(t)=Icoswt is open (i.e not
a closed 1oop)whénever the state»&(t) is periodic of the same period as
that of the input i(t) and is half-wave symmetric. Morever it is odd
.symmetric with respeét to the origin whenever the state x(t) is periodic

of the same period as that of i(t) and is quarter-wave symmetric.



Proof: If both x(t) and i(t) are half-wave symmetric, thén it fallows

from the output equation v = R(x,i) i that

T
v (t+—§—)

R [x(t+ —g——), iCe+ —%—)] i(t+ ——g—)

R*[?S_(.’t* -%‘1—), i(~-t+ %)] i(-t+ -—g—)

1l

v (-t+ —g— ) for all te[O, —%—]

where T is the period of both x(t) and i(t). Hence the v-i curve
doesn't form a closed loop. If ;(t) is quarter-wave symmetric, then
since  i(t+ —%—): -i(-i+ —%;) for all te Lo, —%—] when i(t)=I coswt
we get '

v(t+ —III‘;-)

i}

R [x(t+ —%—), i(t+ —{—)J i(t+ —{—):

-R [ x(-t+ —%—-)J i(-t+ —E—)

- v(-t+ _E—_) for all te [0, —1T;—J

Hence v-i curve is odd symmetric with respect to the origin.

Property 6. Limiting Linear Charecteristics:

If a time-invariant current-controlled memristive one-port

described by

z = f('}é, i)

v= R(ﬁ)i

is bounded-input bounded-state stable, then under periodic operation
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it degenerates into a linear time-invariant resistor as the excitation

frequency increases toward infinity.

Proof: It is sufficient to show that the state vector §(t)—~§o as the

excitation frequency w-—» c0 where 50 is a constant vector in R,

From bounded-input bounded-~state étability and the continuity
of the function f, for any bounded-input i(t), f(x, i) can be written

as

- k=00 ) - ‘
fx, 1) = + Texp(jhwt) ' . (1v.8)
= -0
kto

Xy ,gkecn (c™ is the space of n-tuples of complex numbers).

Note that the vectors X0

bounded-state stability.

and X are bounded because of bounded-input

From ¥ = f(x, i) and (IV.8) we obtain

t
x(to) + [ flx(x), i(2)] az
~ t

(o]

i

f(t)

t
= x(to) f [t ki exp(jsz)Q%gdt

=-&0
° kzo
: K=o - : i
= z(to)-&- Q(O(t—to) + kzw[-exp(:.]j}l:zto)+exp( lkWt) %k]
k#0

Since g(t) is bounded and periodic by assumption, ¢ =0 and

as w— 00 x(t) — }Ig(to).

Property 7. Small-Signal AC. Charecteristics.

If a time-invariant current-controlled memristive one-port is
globally asymptotically stable for all dc input currents I, then its
small-signal equivalent_circuit'ébout the dc operating point is as

shown in the figure IV.2.
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R(X,1) R,(X,1 ,
. Xﬁ; : AX@wlﬁ____:.“”“. RixL
- — -
(X1 CIXIT]
n

qXJ) %

¥igure IV.2

Proof: Let the. input current i(t) be such that i(t)= I+ 6i(t) where
6i(t)] < |Iland let the time-invariant current-controlled

supy q |
memristive one-port be characterized by

(Iv.9)

f(x, 1)

M.
i}

= R(x, 1)i £ h(x, i)

L]
|

If welinearize (IV.9) about (X, I) where X is the solution of f(x, I)=0,

we will get
21X, 1) ¢, _éiigill i =A(X,I)6x+ b(X,I)6i (IV.10)

ah(’xézii)..&pS . _§2%%1£l 61 = o(X,I)6x+ a(X,I) 61  (IV.11)

Sv=
where - _
- of, (%,T) of, (X,1) o Sof (%,1)
A(x,I) 2
af_(X,1) of (X,I) o of (X,I)
>. axl ax2 o axn
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) of, (X,1)
o c(X I{é oh(X,I) _gh(X,1) oh(X,I)
~9 axl axz scesee axn
. afz(g,l) ]
b().(,sl)é oi
: oh(X,I)
A Sl rhs /7
af (X,1) a(x,1) 2 7 47
oi

Taking Laplace transform of both sides of (IV.10) and IV.11l)
with 6x(0)=Q we obtain

5 AX(s)

A(X,1)AX(s) + b(X,I)AI(s) : (1Iv.12)

AV(s)

I

C(X,I)AX(s) + d(X,I)AI(s) (IV.13)
solwing (IV.12) for AX(s) we get

-1
AX(s) = [sU-A(X,I)] b(X,I) AI(s) and substituting this into
(Iv.13) |

. =L
Av(s) = {c(g,l) [su-A(X,1) ] b(§,1)+d(§,1?}AI(s) (Iv.1h)

_is obtained.

It follows from this equation that the small-signal impedance
about the operating point (X,I) for a time-invariant current-controlled

memristive one-port is given by

P g™ 8. ... .48 .S+
H h ’ n-1

7 (s)= —BY(8)  _ a(x 1)+ - e o (1V.15
© A - s os"The LLLvee S o
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where O ,B.are dependent on (X,I)

ZQ (s) can be written in the form of continued fraction
expansion as

ZQ (s) = a (X,I) + 1

1t © (IV.16)

And the equivalent-circuit follows from the equation (IV.16).

For the case of time-invariant current-controlled memrisfive
one-port described by

x = f(x, i)

v R(gg)i

the associated small-signal equivalent circuit is as shown in.the
figure.(IV.3) Where I appearing in the element values is the operating,
current. The small signal equivalent circuit can easily be obtained by

the procedure that we have applied above.



More explicitly, A(X,I) and b(X,I) are the same as before. c(X,I)
and d(X,I) can be written as:

n

c(;{,I)=[ RN, R, - RGO, ] [aRG) _aRe) | o)
ox, 9%, ox 0%y %5 9%

and d(X I) = —théill = R(X):RO(X). Then the small signal impedance is
given by

[T RS
Zy(s) = R (X)+I . 2 S

--v And 1 3 1
Sn+klsn—l+----......fén nd the small signal

equivaient circuit shown in Figure IV.3 follows from the continued

fraction expansion of ZQ(s). Where ¥ . and éi depends on (X,I);
1

R(X) IR‘(XI) : IRn(>,§I)
. YWWH WW- .____w_
C(X1) (X1) C{X1)
I 1 1

Figure IV,3

When the biasing current I=0 the small-signal input impedance

Z (s) reduces to the linear resistor RO(X).

Q
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As the frequency of the small signal 6i(t) approaches zero

the small-signal impedance of the abdve figure degenerates into

R v _
ZQ(S) = RO(K) +I 2 Ri(E,I ) and this corresponds to the
. ) 1=1
slope of the dc V-I curve at I=IQ. And as the frequency of small

signal 6i(t) approaches to infinity the impedance goes to

ZQ(S) = R_(X)

We see from the above considiration that the small signal .

impedance depends on the biasing point. And this small signal impedance

can either be capacitive or inductive depending again on the value of

biasing.

Property 8. Local Passivity Criteriat

A first-order time-invariant current-controlled memristive

one-port described by

x = f(x, i)

i}

v = R(x) i

is locally passive with respect to an operating point I=IQ if and

only if.

1) 9f(X,T) <o

ox

(. _et(x, D) _3R(X); .
R(X) = GES 0X when Ml— 30

£(X,I) : ox

X
ii) R(x)=0 ﬁ
and

_9f(X,T) BR(X) 1 o ¢ when LI g

ox

T T
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Proof: The small-signal impedance of a first-order time-invariant

current-controlled memristive one-port described above is

of(X,I) _3R(X)
Zq(s) = R(X) + — & 9x

o . _Of(X,1)

ax

Then,in order for %Q (8) to be the impedance of a passive

one-port it is necessary and sufficient that ZQ (s) be positive real..

And the above conditions are equivalent to the positive realness

of ZQ(S).

Remarks On The Generic Properties [6].

The properties derived above can bé used not only to identify
those @emristive devices and systems which have so far been identified
incorrectly, but also to suggest some different applications. For
example by using two termistors one having a positive temperature
coéfficient and the other a negative temperature coefficient and biasing -
them in their locally active regions we can desigp an ultra-low |
frequency oscillator [9] .1t is also interesting that Hodgkin-ﬂuxley
circuit model of the nerve axon membrane is locally active and hence

is capable of firing nerve impulses [10].

We see that many physical and biological systems should be
modeled as memristive one-ports. To identify such devices and systems
we look for the following properties of the one-port 77 under

investigation.

1- The dc¢ charecteristic curve of JJ passes through the origin.

2- The v -i Lissajous figures corresponding to any periodic
excitation having a zero mean always pass through the origin.

3- The one-port ﬁ'béhaves as a linear resistor as thebexcitation

i

frequency w increases toward infinity.
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L- TIts small-signal impedance can be resistive, inductive or
capacitive depending on the aperating point.
5- The order of the  small-signal impedance is invariant with

respect to the dc biasing.

IV.3- A CANONICAL MODEL FOR MEMRISTIVE ONE-FORTS

Our objective in this section is to present a canonical model
which will correctly mimic the steady-state response of memristive
one-ports to the following class of input signals.

- 1- DC or slowly varying waveforms.

2- Sinusoidal signals of arbitrary amplitudes and frequencies.

3- Sinusoidal signals of arbitrary amplitudes and frequncieé

superimposed on top of a dc¢ bias.

s

Let's denote these signals by

qlé-{u(t) 2 pAo+Acoswt I (t,w) €RX [1,00)} | (IV.l?)

where (A5,A) €RXR, , Ry £[0,00) .

Although the lower bound of the frequency range seems to be
- restricted in the. above expression, in fact it is not a strong
restriction because we can always normalize any given set of frequencies

so that the lowest frequency becomes unity.

Our main assumption in the following derivation is that the system
response y(t) tends to a unique steady state for each input u(t)
such that the functionf(t)(y(t)=f(t)u(t)) tends to a periodic waveform
of the same period as that of the input u(t) in the steady state.

Observe that each input signal u(t)e U, is uniquely specified by
three numbers, namely; Ag,A,w. . Hence for each combination of
{AO,A,w'; there corresponds a unique f(t). In other words FKt) is
‘ractually a function of A,,A andw .We may denote it by‘P(t, Ao, A,w).
Let f%(t) to be the steady-state component of f’(t). Since the function
/%(t) is periodic of the same period as that of the input u(t), by

assumption, it admits the following Fourier series representation:



/;(t) = a (A ,A, w)+#£? ak(Ao,A w)coskwt+bi(Ag,4, w)81nkw€}(IV 18)
: 1 .

where N is an arbitrary number which is determined by f%(t). The Fourier

coefficients in (IV.18) are determined as follows

2M/w :
aO(AO,A,w) = (z,A,,A,w)dz (1v.19)
2T/ :
ak(Ao,A,w) ='-%—'_f .ﬂ(Z.AO,A,w) coskwzdz (Iv.20) _-.
(o]
2T/w _
b (A Aw) = —=— [ f(z,A ,A,w)sinkwzdz (1v.21)
0

These coefficients are assumed to be continious functions of Ao
‘and A in the mean-square sense and to be square-integrable functions

of-w- namely

1) for each € >0 and for each (A A)e RXR+ there exists a neighorhood
NS of (AO,A) such that

'||a°(A0,A,w)' - ao(Ao,;,w)_ll <e | (1v.22)

L2

o, (A ,a,w) - b (A,AW ] 2<€ (1v.24)

for all (AO,A)e N, where 1° denotes the space of square-integrable
functions.

2) ao(Ao’A")’ ak(Ao,A,.) and bk(Ao'A") are square-integrable functions
of w.

Before proceeding further let's introduce two families of complete

. 2
orthonormal functions 1in LEUkﬂ»)

These functions will allow a unique decomposition of the Fourier
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coefficients into the product between a frequency-dependent component

and a frequency-independent component which depends only on Ao and A.

The two families of complete ortronormal functions are defined

by
{ -
‘ A A 1/2 4 1 :
:(Pk— { apg (w) 2 mz=1———(kv})2m I w-e L+ 4 00), QGN} (IV.?5)
" a2 d Bem 1
(B_A_ b (W) 2k 2 —_— W € E—"OO)'QEN ? (IV.26)
] ke e Gen)e® I k _

where N dgnotes the set of natural numbers qu and P}m are constants
defined by :

-1

[2(m+n)-17]

&,

- (41-1)/2 n=1 m< (IV.27)

2(m-n)

1/2
P.(’m g (%f+1) / n=l m< ¢ (1v.28)

The families Gi and (B, will be used to construct the readout

map of our state-space model. To model the steady-state response of
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memristive one-ports subject to the input signals u(t)e U  the
following is proposed.

where

State equation:

X, = -a(t)xi + b(t)u

1l
ia = -Xy + U
X, = p(u—x -X )
3 173 (1v.29a)
i4 = p(—xa-xq)
X, é[Xl(O),‘Xz(O), XB(O), xq(O)J = 0 and p(.) is a monotonically

increasing function whose graph is similar to the diode charecteristic

curve and

by

-Kt .
alt)= i-e . blt)= 1 K>>1
t+(1/K)e RE t+(1/K)e * Y
Output equation:
y = glxys %5, Xg1 Xy u)u ' (IV.29b)

The nonlinear map g(.) in the output equation (IV.29b) is defined

A

M o 7. %5
g(xl,xz,XB,xu,u)é Yg;%§xlyx3)al{((1+ —E—) _EZ )
¥ g Ty X5 Uy |
~+;£; [bg 5kéxl,x3)ak( ((1+ =) %, ) } T, ( % ) (IV.30)

v e Ty ke Ty X2, T
+ [@1 FERTRRNIICEE S -xﬁ}(('l* e e LA
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Where M is an integer, and qﬁé.), Kké.) and &«(.) are

scalar nonlinear functions of Xy Xy which are identified via the

following Fourier coefficient expansions.

o0

’\PoQ (A, ,A)= i{ a (A \A,w) aj, (w) dw ' (1v.31)
X ..« [

K¢ Ao’A)= ﬁ{ ak(AO,A,w)ake(w)dw (Iv.32)
S;ke (AO,A)= §£ bk(Ao,A,w)ka(w)dw (IV.33)

The functions ao(.), ak(.) and bk(Q) in these egquations are
themselves Fourier coefficients of f%(t) defined in (IV.18),whilg
ak((°) and bk((') are basis functions defined in (IV.25) and (1v.26).
In (IV.30) N is a fixed integer defined in (Iv.}8) and Tk(.), Uk(')

are Chebyshevpolinomial functions of the first and second kind. Namely:

K-23j

Lk/2] . - ’
T (2) & —g- S (-pd LeiD 5 : (IV.34)
K i=o il (xk-2)!
Lklel : . . ‘
Sy J (k-3)1 -2j
U, (z) 2 2 (-1 T2 )1 (ng (1V.35)

Jco

where [k/2]denotes largest integer less than or equal to k/2.

We observe that in spite of seemingly complicated algebraic
structure of the preceding canonical model the only model parameter
and model functions that need to be identified are the integer M,
nonlinear functions‘¥%?(.), Kke(‘)’ gkq(.) and the nonlinear function
p(.). As we said before the function p(.) may be any strictty

‘monotonically increassing Lipschitz continuous function whose graph is
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similar to the diode curve. However for simplicity it can be choosen

as a piecewise linear function defined by

pe) 2 e+ (1/ot - K)r(e) o (1V.36)

where ©€(0,1) and r(.) is a unit ramp function i.e.

e for e>=0
r(e) 2 ‘ (IV.37)
o for e<O :

Hence only the parameter X has to be determined to uniquely

specify the function p(.).

Now we will present an algorithm that will determine the
model parametres %X, M and the nonlinear functions. Before stating the
algorithm let's first define the following stopping rule. Given any

k

. S _ A .
set qf input signal Wiof-{uijk(t) = Aoi +Ajcosw t.? where the subscripts
i,j,k' range from 1 to NAO’NA’NW respectively, the performance index

of the model with respect to these input signals is defined to be

N N N 2/ Wy
Ao WA Nw w
n= 2 2 2 -2—;}—{

i=1. J=1 k=1

fo{zang 5= é(z,uijk) %4 (1V.38)

where jg(t u, ) denotes the steady-state component ofj’(t) in the
0r1g1na1 sysfem and fJ(t, ulJ ) denotes the steady-state component of
AP (t) in the model subject to the input u, (t)€1l Another error

1ndex to be used is

z
&
=
=z
3

' M
c & S la (A . A.w)- > (A .,A)a

o oi™ k" g5 ot Toi' jT 1R

(wk) ‘

<
1
.
n
i

2
M
!a (& Aw)- 2 B (A a8 (wk)’

n ol j’wk 1=1

-+
IMZ
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M : _
+ |bn(Aoi,Aj,wk)- (; Sm(Aoi'Aj)bnf (w, ) (1v.39)

where ao(.), an(.) and bn(.)‘are the Fourier coefficients of

. f’s(t,uijk) defined in (IV.18)~ (IV.21),a  (.),by (.) are defined in(IV.25)

The error index ehdis used to ensure that the model parameter

M and the nonlinear model functions QP(.), ¥ (.) and & (.) are

. of m n!
determined properly.so that the Fourier coefficients ao(.), an(.) and
bh(') can be approximated closely for the given components Aoi’Aj and

Wk.

1y

initial guess on the iterative parameter X €(0,1)

To initiate the algorithm we need to prescribe an upper bound

ax_E(O,l) for the performance index /. We also need to assume an

The algorithm is as follows:

Step O: Select an(X§(O,1) and 7max§(0,l) set {=1

Step 1: Compute onngi,Aj), YS_n? (A 44A;) and gm(Aoi,Aj)

a4
from (IV.31)-(IV.33) for n=1,2,.....,N for each i,j ranging from 1 to

NAo and NA respectively..

Step 2: Set M={ and compute Gh4using (Iv.39)
- Step 3: If ehﬂ:>,2max/3 set ?4#; and go to step 1.
Step 4: Compute the performance index i? using (IV.38)

Step 5: If )?>]7max,set o(=0</2_ and go to step k.

Otherwise 'stop.

The convergende'of the iterative process is guaranteed by the

following theorem.

Theorem: If the Fourier series representation of ao(Ao,A;.)
relative to the basis functions in @& ,ak(Ao,A,.) relative to the
basis functions in Gi and bk(Ab’A") relative to the basis functions
in (@B, converge uniformly over the se; of testing signal components

{(Aoi’Aj)} for i,j ranging from 1 to NAo and NA respectively
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and for k=1,2,....N then for each ?nmx:>o the preceding algorithm

terminates in a finite number of iterations.

The proof will not be given here.

The model is canonical in the sense that given any memristive
one-pért satitsfying the téchnical assumptions described earlier, we
can construct a dynamical system model having the same structure given
in (IV.29). The state equation (IV.29a) is fixed (independent of the
devicé or system being modeled) except for the parameter ot defining
the nonlinear function p (.) which has to be chosen properly so that
the time constant of the model is much smaller than the period of the
input singals. To iilustrate the implementation  and the validity
of the preceding algorith an hypothetical memristive system and its

associated model is presented.

Example: Let's consider a- fifth-~order memristive one-port

charecterized by

X, = —2xl + 2x21

5(:—5{ + i
2

2
#3 = -4x3 + 2x;+i2
i4_= -2x) + i2
X. = 1 - x

5 5
2 2 N .
v= (xl+x2+x3+x4+x5)1 = Ile,xz,gs,x4,x5)1.
The steady-state component R(x(t)) of the zero-state solution

x(t) due to the input current i(t)=A0+Acoswt has been found

analytically and is given by

A)E R (x(1))

4 B
—a (A Aw+ = {a (A ,A,wlcosnwt
o o' n n o

+ bn(Ao,A,w)Asinnwtg
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where
2.1 4 1 2.2 1 L4 p°
a (A ,A,w)= 1+2A° + —=— A" + —=— AS A® 4 Aty
o o o 2 o 2 o 8 ‘
w +1
A Aw A A 4
+ (22416 (—52—)? + —A
wo+h w +4 16(w"+1)
A A o o A AOA3(w2+2)
a (A ,A,w) = b —F—— + MRS +8%) —— + 25 5
W, +1 wo+h (wo+1) (wo+4)
2 2.2 2
. 2 -
22(1-w2) AL, a2 2R AT(h-wT)
gt W) = =Tt () 5 s
(w"+1) W+l (w+h)
A°A3(2-w2)
a (A ,A,W) =
3 o (w2+1)(w2+4)
A*(1-v2)
ay(hoohow) = —— "5 3
o 16(wS+1)
li’Ako 2 2) . Ako A°A3w
b. (A JA,w) = + (LA +2A + :
170 worl ° wlsls (wor1) (wo+ls)
: 2 2
: 6A
DA Ay o AW 2, a2y w o, PR A
27" w2+1 ° 2 w2+l (w-.2+l+)2
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38 Adw
bB(Ao,A,w) = — o
(wo4+1) (wosls)
4
b, (A A,w) = —A ¥
4 h(w41)2

The model parameters and model functions were identified from
the above data and from the system response to the input testing .

signals

U,= {i(t): A+ Ajcoswkt Aoi’Aj € (1,2,3,4,5)

Wy € (1,2,3,104) }

The model parameters determined by the algorithm subject to
Q =0,5 is found to be
max

: 1
M = a: —————
3 5T
»and the nonlinear model functions f#%e (.), Bne(') and g;((.) are
also identified using the algorithm and the nonlinear map g(.) is

.constructed using the above results.

Then to verify that the model can indeed simulate the original
system for the above class of input signals, the results obtained for '
- :
the steady-state response (L(t) given by the model and f;(t) exact

steady-state response of the system are cbmpéred. These are given in the

- Figures. 1y, 4, IV.5, IV.6.



memristance (£2)

~48-

steady state

response
151 200
— sysfem ’
----- model
100
0 dc
excitafion
-100
6 3z wamefsec) 200
The Steady-state model and The dc charecteristics of
system response, for i(t)= the system and the model.
A°+Acoswt where
(AO,A,w) = (1,1,1) ' Figure IV.5
Figure IV.k
_ response
‘| response —system
—system [ model
----model A : . . :
: —t—r — excitation
_ - excitation K£5537

|

Frequency=1

a)

Frequency=3

b)



response
——system
-+« -+ model

éﬁﬁ’ﬁﬂ’ —=excitation

Frequency dependance of
Frequency=10 _ Lissajous figures for the

system and the model.

c)

Figure 1IV.6

We see from the above figures that the waveformé of the
model énd those of the original system are very similar and we also
 see that Lissajous figures of both the model and the system shrink and
tend to a straight line passing through the origin. The model is also.
tested under the triangular input signal which is not a member of the
above mentioned class of signals but the results are again close to

each other.

In this section we have considered an interesting class‘of
nohlinear systems called memristive systems. One of the most important
feature of .these kind of systems is the zero-crossing property. In
other words the output is zero whenever the input is‘zero and this
corresponds to a Lissajous figure which always passes through the
origin. And among the varios properties of the memristive systems the
frequency response.of. Lissajous figure is interesting. As the frequency
increases toward i;finity the Lissajoug figure shrink and tends to a
straigth line passing through the origin. The physical interpretation
of this phenomenon is that the system has a certain intertia and can
not respond as rapidly to the fast variation in the excitation
waveform and therefore must settle to some equilibrium state. This

implies that the hysteritic effect of the memristive system decreases



-50-

as the frequency increases and eventually degenerates into a pure
resistive system. Another property is the behaviour of the system

either as inductive or capacitive depending on the bias point.

The model presented above is useful for simulating dynamic
behaviour of the system properly, once it is identified as amemristive
system [61]. '
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CHAPTER V

DEVICE MODELING USING MEMRISTORS AND EXAMPLES

-

. In this chapter, the applications of memristor to device
modeling will be discussed and examples will be given. But first let's

consider the nonlinear device modeling problem in general.

Device modeling is more of an art than science. Although no
general theory of device modeling is presently available, most existing
circuit models of devices have been derived mainly by two basic

approaches: a) the physical épproach, b) black-box approach.

The physical approach constists of four basic steps: l)device
physics analysis, 2) physical equation formulation, 2) equation

simplification and solution, 4) nonlinear network synthesis.

Theiblackaox:aPProaCh also consists of four basic steps.
1) experimental observations 2) mathematical modeling, 3) model
validation, 4) nonlinear network synthesis. In either approach a
mathematical description which approximates the behavior of a device is

first derived. This crucial step is where most of the art is involved.

Once the mathematical description has been obtained, systematic
methods from nonlinear network synthesis can be applied to arrive to

a suitable circuit model made of some prescribed set of nonlinear

circuit eleme’ntsv[ZOJ.

Now we will give the examples of some systems or devices modeled

by making use of the memristor concept.

1- An Amorphous Ovonic Threshold Switch Model

An amorphous wvonic threshold switch is a two-terminal device

- which uses amorphous-glaés rather than the more common crystalline

Srere
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semiconductor material used in most so0lid-state devices. To show

that the memristor provides a reasonable model for some types of

amorphous devices, let's consider the memristor circuit shown in the

Figure V.1.

q

AW ) .
Ry + .
v(t) -0
M
v(t)
+ 0 .
gﬁ) ;)
Ry % ‘ slope=W=—L-
. _ 1M,
, (a) (b)
¥§H
| -]
Ef-- where
El=[(l~12+R2)/(M2+Rl+R2).]E
" §fo o t E,= [(M3+R2)/(M3+R1+R2?23E
: OFF ON I,= E/(M2+R1+R2)
Ty
Eq [ I,= E/(I‘13+.R»1+R2)
E ........ - °
2 _[®
Td_[ o+(R1+R2)Q° 1/E
. -t
it RS
i(f) :° ol
12 - ? -
I1 ....... .
__f.
t, T
(c)

Figure V.1
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Then

(R +R +M(q)) -3-— =V (t) qa¢+Q

- [o]

Integrating both sides with respect to time from t to
- o

t t
d .
Jc{(R1+Rz+l“1(q)) fag— Jdz = {{ Vs(z)dz

and

. | %
(Ry+R,) Lalt)-alt,) T + @lalt)) ={[Vs(2)dz + plalt)))

are obtained.

Definipg

h(q) 2 (R +R ) (q-q ) + w(q)

(v.1)

(v.2)

(Vv.3)

and observ1ng that h(q) is a strictly monotonically 1ncrea51ng function

of q |, 1o always exists and
. . 4
a(t) = h "o ( {f V. (2)de+ 9 (alto)))
. o
Then the output voltage.is given by

_ dg(t)
Vo(t) vs(t} - Rl( ~at )

(V.l)

(V.5)

Let V (t) be a square-wave pulse as shown in Figure V.lc with

q(t )=0; then the waveforms V (t) and i(t) for the memristor q-

curve shown in Figure V-1b can bg drawn using equations (V.1)-(V.5).

These waveforms are shown in Figure V.lc. The expression for the time

delay Ty shows that for a given memristor, Ty increases with decreasing.

E. The comparison of the results obtained from the above analysis with
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those obtained for an amorphous threshold switch reveals an interesting
resemblance [13]. Thus the memristor seems to simulate well not only

the shape of thg waveforms but also the variation of T4 with E.

2- Modeling An Electrolytic E-Cell.

An E-cell (also known as Coul Cell) is an electrochemical
two-terminal device capable of producing time delays ranging from
seconds to months. An E-cell is a small electrolytic plating tank
consisting of three‘basic components namely an anode, a cathode and
an electrolyte. The anode, usually made of gold, is immersed in the
electrolyte solution which in turn is housed within a silver tank can
that also serve as the cathode. The time delay is controlled by the
initial quanfity of silver that has been previously plated from the
cathode onto anode and the operating current. During the specified
.timing interval silver ions will be transferred from anode to the
cathode, and E-cell behaves like a linear resistor with a 1dw resisfance.
The end of timing interval corresponds to the time in whicﬁ all of the
silver has been plated off the anode, then the E-cell behaves like a .
linear resistor with a high resistance. We will now show that this
behaviour of the device can be precisely modeled by a memristor with

a \-q curve as shown in Figure V.2b. Let's consider the'Figure V.2a,

S Ri i)
jﬁ jAMA

1
\slope=W3-—M—3

: 1
+ slope=W =—-
: 2 M

: . -9, : z
Eae , M @ h - 5 —
. B I !

sbpe=vq=—l-

M

(a) v ' . (v)
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ve(t) -
El -
;% . -t ( M2 )
vo(f)‘ . 1 MR,
Ez E, =(—w5x ) E
Tq 371
Eq - d + goRl
: ¢ da - E
to f°+Td
(d)
Figure V.2
where the E-cell has been replaced bj a memristor. The.output

vaveform is almost identical to the corresponding waveform measured
from an E-cell timing circuit. The only discrepancy between this
waveform and that actually measured with an E-cell timing circuit is
that in practice, the rise time is not zero. It always takes a nonzero
but small time intervel for an E-cell to SWifch completely from a low
resistance to high resistance. The step jump in the Figure V.2d is
due to the piecewise-linear shape of the assumed {-q curve. Hence
even the finite switchihg time can be accurately modeled by replacing
the -q curve with a curve having a continuous derivafive that

essentially approximates the piecewise-linear curve.
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3~ A Model Forvp-n Junction Diodes.

Consider the one-dimensional pP-n junction diode shown in figure

V.3a with an n-type region width Wh and junction area A.

+ ' L=l i .V dvy. .
| : A Y=l e Citvy) Yj

im=d,

.
' - - <‘> Izzlz(qm) Rm(qm) Ym

{a)
. (b)
7 Figure V.3

Assume that the p-type region is much more heavily doped than
the n-typé region. Hence, the hole current at the junction is
approximately equal to tﬁe total diode current. It is known from diode
physics that there exists a thin transition layer at the Jjunction

~and that the resistance in the neutral region depends on the carriers

available there.

Observe that as carriers flow through the diqde,,they either
flow into the transition layer and change the amount of charge stored
there, or leak through the layer into the neutral regions (actually
these two mechanisms occur simultaneousl&) where they are'recombined_
or stored. In the latter case, the carrier concentration in the

neutral regions may change, therby inducing a corresponding change in
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conductance. These basic diode operating mechanisms are incorporated
in the mgdel shown in Figure V.3b, where Cj is used to represent the
effect of the transition layer, il is used to simulate the leakagé of
- carriers through the layer, Rm is used to simulate the conductance

- of the neutral regions, and i2 is used to represent the recombination
of carriers. The charecterizing functions for these four elements are

derived from basic physical principles [14].

The nonlinear junction capacitance C.(v.):

For simplicity we choose the standard exprossion for Cj(v.) 
derived from the depletion approximation for a one-dimensional diode.

This expression is given as follows [15]

1/2 1

6 (v )= A[Z;qNDJ Cygpmvy) /2 | (V.6)
where

Yy, = Built-in voltage

€ = Dielectric permitivity of the semiconductor

q = Charge of electron

ND = Donor concentration in the n~-type region.

A = Junction area of the diode.

The memristor R (q )t
m—m=

The memristor is a two-terminal circuit element defined by
vm=Rm(qm)im, where Rm(qm) is a linear resistance whose va}ue depends
on the charge q, passing through its terminals.

W,
R (q) = -1 (8% _. - (V.7)
m %’ T A g— T(x,q_) ; :

m
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where T(X,qm) is the conductivity of the semiconductor. Therefore

a memristor can be considered as a charge-controlled linear resistor.

Now let's derive the expression for the conductivity V(X,qm)-
If NA is the acceptors concentration in the p-type region, the resistance
of the diode is mainly contributed by the n-type region (base region),

since NA2>ND. The conductivity T(x) of the base region under low
injection condition is '

T(x) = q( H\nné + }épn(x)) : | (v.8).

where_pn(x) is the hole concentration at x (x is measured from the
junction into the base region). The expression for pn(§) is found from
the solution of the steady-state diffusion equation under appropriate

boundary conditions.

2' H ]

apn(x) pn(x)
' - = 0 (V.9)
2 2

ox Lp.

' . "
where py (x) = pn(_x)—pn0 is the excess hole concentration at x; and
L is the hole diffusion length.

The solution of (V.9) is given by the exppression

' W
p.(x) = p'(O) cosh(iz—)-coth (—ig)sinh (—%—)J (v.10)
" t p p p
where
v - Vs ’
pn(0)= Pro [ exp (—Vi)- } ] (v.11)

1 ]
The stored excess minority charge gp, is given by
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W,
n ' . cosh(W_/L )-1 ' :
a, = J Aqp (x)dx = Agp (O)L_ [ o p J= q (v.12)
° ' : sinh(Wn/Lp) m

Solving thls equation for p (0) and substituting it into (v.10), we
obtain P, (x) in terms of Q- Then again substltutlng the expre551on

for p_ (x) into (V.8) (where we also used p_ (x)*p (x)+p )

T(x,q )= qpn_ _+qu <{p_ + “m ( Sinh(wn/Lp) )[bosh(—z—)—coth(—yg)s' h(Z-
m " no K no Agl cosh(wn/Lp)-l Lp ) Lp in Lp
(V.13)
is obtained; in (V.13)
b = electrbn mobility
, = hole mobility
no = equilibrium electron concentration in n-type region
Pro = equiiibrium holescéncentrafion in n-type region.
Wn = width of the n-type region (base-width)
Lp =/Dpzp = hole diffusion length.
Dp = Hole diffusion constant

Tp = hole recombination léfe time



-60-

R{gn,),ohm

40
0 3 L ¢ a0 1z <10, coulomb

Figure V.4

A typical relation ship for memristor Rm(qm) as a function of

charge 4. is shown in Figure V.4,

The controlled current source iailaggmlg

From equation (V.12)

cosh(wn/Lp)-l

[to]
1

]
Agp (O)L_ [
2 P sinh(¥ /L )

1)
AgD_p. (0) W w ‘
- C 4 pPn coth (—=2)]{[1l-sech (=3)]z (v.ib)
I, v Lp _ Lp P
p .

where the identity Li = Dp% was used.
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On the other hand the diode current is-given by

. D ap;(x) . .
S N % , : (V.15)
x=0
From (valu) and (V,.15)
' A
AgD_p (0) Vi A
i= o coth ( Ln ) , (V.16)
p P
or . qm w’n )
i=—= where 7= Zb[l—sech(—i—)J (v.17)
. o '

and 7 1s called the effective hole life time.

The controlled current source 11?;1(34}j’yj19ml3

The source il can be described by

Il(i,ij,vj,gm) = IlfU(i) + Ilru(’i) (v.18)

where U(,) is the unit step function and

A 13_ . Cd(V.)
a - i, V.
I; 81, [exp(VT )-17+ Cj v, i (V.19)

. kT . :
where I is the diode saturation current and Vg = e 5 the thermal
8 .

voltage
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' A v, .
Cd(vj) = exp (-;l) is the diode (V.20)
T

diffusion capacitance and Cj(Vj) is as defined in (V.6)

I is defined by

ar
Ilr 4 i-Cj(vj)méx (Bas &) - (V.Zl)_
where
¥, = L | (v.22)
la_|+I_T
C (v.{1l+a|—B— 5 __ly(-v.)
39 { [(Ii|+1 ) ] '3
S
U2 -max (Y HY) | | (V.23
v,
1 (—)-1] -1
3 = S[exp,__V% I+ (V.24)
Cd(_vj)+cj(vj-)
V_sinh(W /L ) :
I L. }'q (V.25);
AgL [cosh(W /L )-11 m : .
6 A P n p
d v, ~ Iqm|+ IS'C B
Pno l+exp( . ! ) 0,25t l:_—_—:,

(il + 1 )¢
5

[l—O,Sij(—vj)]VT
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All the parameters in the abo&é equations are the physical

parameters except & and #. dand /3 are the empirical parameters whose
values have to be choosen to obtain accurate predictions for the

storage time ts and fall time tf.

In the definition of the controlled current source il, we didn't
give the explicit derivation of the quantities appearing in the
expression of il; but only the results are given [14] . In fact, our

main purpose is to emphasize the use of memristor in the modeling of

" the device.

The model is tested using the following circuits and the computer

simulated results are also given.

a) Reverse Transient:

R S R
¥ P
- i{f) —E
B2 . 1
vi) ¥
?igure V.5

It is’éssumed that switch S is thrown from right to left at -
t=t =0 and that before t=0 the diode is at steady state with current
o .

i=I =10mA. E

£ is taken to be 10V. X is chosen to be unity and £ to

2

be 1.5. For this case, the computer simulated results are shown in Figure

V.6,




ﬂf)voUs -6l

0 t/c
-5
-10
; L (2)
itf),ma :
—10 P
S 1 1010 015 020
0 : — ' - ; ‘ : —t f/z

JrR=025k 0
-40] \ (b)

Figure V.6

b) Forward Transient:

i(t)

. igr) () o ¥ vit)

Figure V.7
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Different current steps are applied and the computed voltage

transient waveforms are shown in Figure V.8
v{t) , volfs

09§

08

0.7},

061

0.5

041

— /7

Figure V.8

These computed waveforms are very similar to those obtained

from real observations [16]-[18].

vit)
. vit) v(t)
)
vit)
viit) vif)
vl 1) i i
; -t : t
{b) (c) '

Figure V.9
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The qualitative forward transient waveforms of voltages v(t),
v, (t) and vm(t) across the memristive diode model, the junction
capacitor C, and the memristor Rm respectively are shown in Figure V.9

for a) high input current, b) intermediate input current and c¢) low
jnput current.

¢) Rectifying Circuits:

The circuits shown in Figures V.10a and V.lla are also simulated

in the computer and the calculated waveforms are plotted in Figures
V.10b and V.11lb.

2k
W

' : i(t)
0sinwt b
' : A v(f)ﬂ!
2volts — '

tps
: voltage s: 2v per div. current- s: Zma per div
(a) (b)
Figure V.10
~ selt)
'I \‘/ /I \“ |1(f)
{ ‘ / \
-,' ‘\ 1 / N 20
- 9‘ — t.ps
i \s 1 B
Z i(f
| 1)
_ volfages: Zv  per div.
ReZkE current s:2ma per div

(b)
@) .
' Figure V.11l



Again the computed results agree remarkably well with real

observations [19].

d) Small Signal Impedance of The Model:

Assuming that the junction diode is under forward bias (i>0),

the memristive diode model reduces to the model shown-in Figure V.12

-1

AT, -1 [ _V;;-
r. = (—Ldv.. ) = [GT- {ISEexp ( VT)"ljg

J 3
6= T8 axp (=)
a~ TV, P Vi
12(qm)=—jzm—-
W
R (q )= i 5r T(ifqup

Figure V.12
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Since Cd§>Cj under forward bias, C. can be neglected, and a dc
current source I, upon which a small signal i, ,(t) is superimposed

~as shown in the Figure V.13 is applied to the diode.

o Lt =T #i (t) -
(t)=14i. d
1) 1J+IJ(H s d'd

r§ VilH=V;+ wlt) IC

>

d

Li=Leith) 4 T D=l (g

—h’ v f)—\) i (1) R

Figure V.13

The impedance Z1 of the parallel connection of rj with Cd as

shown in Figﬁre V.13 is given by:

7. - 1 - b (V.26)
1/rjfijd l+3werd




Where the incremental resistance fj and capacitance Cd are given by:

— -1 -

a1, -1 v, 1 v I +I.
r. = (_l..)- - [.._d__ {I Eexp(—-l)-lj? - exp ( A Y = 5
vy v, s - P Vo [ Vs

(v.27)

. and

(v.28)

A
exp ( ) =
0 Vop Vg

about the dc operating boint. Substituting equations (V.27) and (V.28)

into (V.26) we obtain

vT(l-jwz> ,
(v.29)

7. =
1 (1 +1.)(w%e®)
5 J

Now let's calculate the impedance Z2 of the parallel coﬁneétion

of the controlled current source Ié(qm) with the memristor Rm(qm).

From the Kirchoff's current law we can write

‘ q (t)
I, +i, ()= q (¢) + —& . If we solve this equation under
in Tin m C

the initial condition qﬁ(O):O, we obtain

t

l ] . 1 1 ]
qm(t) = Tt [1l-exp(- —%—)]Iin-r g [exp (- —f—(t—t: )3 lin(t )at  fort>0

(v.30)
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The first term in the expression of qm(t) goes to I, as t

goes to infinity. Since Ia(qm)= —fﬂ , then at the steady state the dc
component of the current passing through the controlled source

I,(q )=I,(t) will be equal to the I, ,i.e. it is equal to the dec
component of the input current soyrce and the dc component of the
current passing through the memristor is equal to zero at steady

state. Then at the steady state
1,00 = 1,08 + 4 (%) (V.31)

And, by the definition of IZ(qm) we can write

t ' ' » :
Im(t )dt dIz(t)' 4

— ° 3 1 3 T ————— —
Ia(t)_ —= or in differential form 4 T _Im(t).

At steady state this equation gives

di,(£) 4 : :
—_— = 3 : V.
T—x i (1) | (v.32)
. : _ diz(t)
combining equations (V.31) and (V.32) we obtain iin(t)=iz(t)+?f——a¥———
and taking the Laplace transformation of both sides with 12(0)=0
we can write
i (s) = i.(s) +Tsi,(8) which gives

in ‘ 2 2 '

i (s) : .

.2 ( ) = 1 (v°33)

*in'® l+ts

On the other hand
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7, £ '—ﬁ—r‘f‘“(S) but v (8)=R i (). From (V.32) it
] 1in 5 m mm 5/ rom . we can write
zsi,(s)=i (s) " Then

vV (s) R i i
2, - _m : i mlm(s) i} cRm512(s) (v.31)
’ lin S) lin(s> 1in(s) .
Substituting equation (V.33) into (v.34) we obtain
cRms , -
Z, = —— (V.35)
1+ Ts
jwzR R (jwz+w232)
In jw-domain Z2= 1+'w? = a >
' J l+w’'z
Finally, the total impedance can be obtained as
. tVT
v+ (I .+I$)w2c2Rm ' Jw|cRm - I_+T, .
Z = Zl+Z2= - 55 + > > J (V036)
(IS+Ij)(1+w T l+w ¢

If we consider this expression we see that when Ij is small so

§ Vi
L
that Rm Toils

‘then the reactive component of Z is negative agd the
impedance is capacitive. Similarly if Ij is large so that Rm>>

S
IS+I.
then the impedance is inductive. J
We again observe that this property of the model well coincidesA

with the real physical behaviour of the device.

Another conclusion is that if the applied current is pure d.c.

having no a.c signal superimposed on.it then at steady state, the model
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reduces to a nonlinear resistor obeying the diode junction law.

L. Use of The Memristor in Siéﬁal Processing.

.Memristors can also be used to process many types of  signals
‘and generate various types of waveforms. Here we will present a typical

application that uses .a memristor to generate a staircase waveform.

Let's consider the design of a four step staircase waveform
generator. If we drive the circuit in Figure V.lhka symmetrical
square-wave voltage source then the output voltage is.a four step

staircase waveform, provided that the memristor q)—q curve is as shown
in Figure V.1lhb.

R=tk{L

v (h) 9_) i) @ v(t)

(a) ' ‘ (b)

Figure V.1h

The input and output waveforms are as shown in Figure V.15
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|

vgit)

ﬁﬁ)

I
]
-t -
r_

_____ ] |

Figure V.15

- The memristor with the \P-q curve given in Figure V.1li4b can be
synthesized by the methods peresented in the realization section. The
memristor for the above circuit can be synthesized by connecting a
nonlinear resistor across port-2 of a type-2 M-R mutators, and the
" nonlinear resistor can be realized by two back-to-back zener diodes

in parallel with a linear resistor. This realization is shown in the

Figure V.16.

— L
+ +
v M R \'
:___.. YA ]
(a) _ (b)

Figure V.16
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In this chapter we have studied the device modeling problem
using memristors by giving examples and we have also given an example
on the application of memristor to signal processing. These examples
show that the memristor is a new and powerful tool in the device . -
modeling. Indeed a new model of bipolar junction transistors that I

will give just below somehow justifies this idea.



CHAPTER VI

A MODEL OF THE BIPOLAR JUNCTION TRANSISTOR USING MEMRISTORS

In this chapter, a new model of the bipolar junction transistor

using memristors will be given; this model will also illustrate the

use of memristors in device modeling.

" - First, some preliminafy studies of the device physics will be

presented, then the new model will be given and justified.

VI.l- PRELIMINARY STUDIES.

~ Let us consider a one-dimensional p-n-p transistor with uniform

equilibrium hole density concentration P, in the base region. Further

B C
+ .
e
)
%é _
P
Io(t)
Bt | |
P
VEBH)
Igf)
E

Figure VI-1.

t '
0 p

(p-p.) -
_a.E.;___f_.I.)_L+D

=

.x:o

ap

let's assume that the hole
diffusion current is large in
comparison with the hole drift
current in the base region (low-
injection level case). In that
case the hole density concentra- .
tion p in the base region satis-
fies hole diffusion equation
which may be written as follows
[21].

(vi.1)

Where ¢ is the hole lifetime, D 1is the hole diffusion constant and
. P. : D
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2
Lp = Dp Zp is the hole diffusion length in the base region.

The hole density concentrations at x=0 and at x=W are as
follows

evEB(t)'
p(x,t) =.p(0,t) = P, €Xp [__-ET—__—] (vi,2)
x=0
' » e eVCB(t)
plx,t) | = p(W,t) = p;exp [ — 7] - (V1.3)

x=W

where e is the charge of eleciron, k is the Boltzmann's constant, T

is absolute temperature in Kelvin, VT = iT is the thermal voltage

and W is the width of the base region.

Ve also have the followings as the emitter and the éollector

currents.
I.(¢) = - erA —i%;i't—)— (VI. %)
x=0
I,(t) = eD A _&ﬁ_:;_,_;_)__ (VI.5)
» x=W

where A is the cross sectional area of the base region, IE(t)'flows

into the emitter and Ic(t) into the collector.
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Case 1:

jwt

Now. let's apply a voltage VEB(%) =V e to the base-

+v
_ X EB "eb
emitter junction and VCB(t) is such that the base-collector junction

is reverse biased i.e p(W,t)=0 then for p(0,t) we have

SV (%) v v
v . EB EB eb jwt
p(0,t) = p expli 1 = p_exp [ + e ]
-n Vo n Vo Vo
v v .
= p exp (—#ﬁg). exp| Ve ¥t ]
} ] 7

if Veb is taken to be small compared to.VT then we have

. v . v
‘ EB b Jjwt
p(O't) =. pnexp ( VT ). (1+ —v-eT—' ej )

V. v \'j .
= p_exp ( EB) + p -gb_ exp (——EE). edWt (VI.6)
n VT— n VT VT

Whereexpx=l4x was used for small x.

Under these boundary conditions the solution of the equation

(VI.1) can be written as follows [ 21]

- W-x
v sinh( g ) v v sinh( ) -
' EB “p eb EB pl jwt
p(x,t)= pn[exP( T, )-11] " +P T, exp( v, ) e
» sinh "—""L o sinh \;i
P pl
sinh ——
- -_— P
P +p, (VI.7)
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where L = (D 7) = —P P
P PP and L, = ( Trjwe )

Indeed, as p(x,t) satisfies both initial conditions and the

differential equation then it is the solutlon.

Now, let's find the currents I.(t) and I (t). From (Vi.h)

v cosh( W.-;Jx ) v oy
Ig(6)=-eD A (F)p [ exp (2-)-1] T+ (55 exp (525 22
P T sinh —— pl Vp 0V
’ b
cosh('—u—) p_ cosh =
L . n L
pl = jwt P
W € - W
sinh 5 Lp sinh I .
pl P
x=0
v v
EB EB
erApn [ exp (T)—l] erApn(veb/vT)exP ( VT ) -
IE(‘b)= + - — eIVl
' W L . tanh ——
—_— L
P .
eD_Ap
+ p_n (vi.8)
. W
L _sinh I
P P
.and from (VI.5)
. v o \'
EB EB :
- D Ap (v _ /V.)exp(—~—)
erAPn[eXP( VT ) l] e D Pn eb/ T p VT th
IC(t)= - - e
. \‘l 0 . {
L sinh — . L sinh —
P L, pl Loy
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.. eD Ap
- L (VI.9)
L tanh —
P L
p
From Kirchhoff's current law
: A . v
. EB
eD Ap  exp( )-1 o eD Ap (v __/V )exp(—gg)

P n VT - p n eo T v W -
~I_(t)= (cosh 1)+ (cosh ——a
B 1, . W L . W o L
P sinh I P L 1 sinh I ‘ Pl

P P pl
R eD _Ap ‘
e L —P B (cosn 4 -1) (VI.10)
L sinh T P )
- p

These are the steady state and periodical components of currents
which are obtained from the semiconductor theory in the case, the

voltage V... (t)=V_ _+v éJWt is applied to the base-emitter junction, the
€¢ g EB" ' eb y

base-collector junction is reverse biased and veb<K.VT.

Case 2:

Now let

_ jwt
VEB(t) =V, +v . e

A + v eJZWteJ¢

Veg(®) cB ¥ Veb

CB

it

and again assume that vegz:vT and vc§§ VT

-

3
i




T RN

Then . .

: V. (t)
p(0,t) = p_expl 5
n )
R
\J v
EB eb jwt Yeb Jwt
= p exp [ —— + e 1=p exp(—; )exp( )
n VT VT n T T
V b jwt
= p_exp (————) (1+ Ve e"") (VI.11)
T T
Similarly
v v . .
p(W,t) = p_exp ( VCB)(1+ V°bc3wat 5 (VI.12)

T T

And the solution of the time-dependent diffusion equation (VI.1) subject

to these conditions is

. X
N—x ,
: 51nh(Li—) VCB sinh Lp
... - :
p(x,t)= P [exp( ) 1] m + pn[exp(_v )-11 W
sinh —— _ T sinh
L L
-P P
sinh(—=X )
Ve Lai’ gt
+ p exp ( ) (V /V e
i nh - W
s1n b L

pl
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V 8inh X

)(v o/ Vp) ———— B IV 30, ‘ (VI.13)

+ p_exp (

D
where Lp (D Z)l/a,L ..(ﬁ_L_E__)l/E’ L = ( EZE )1/2

The emitter current from (VI.4)

o Vo Vig
eD_Ap_ [exp( )-11 eD Ap [ exp(—=—)-1 ]
P n Vo P °n Vi
IE(t)= m - -
L tanh —f— L sinh I
p p P p (VI.14)
V VCB
eD_Ap exp( (v /V ) eD Apnexp(—v—)(v b/VT) .
, P Vo jwt P T °© jawt 3o
W e - ) W - e e
L 1 tanh I L > SInh~—i—
? pl » P p2
and the collector current form (VI.15)
. Vv v
EB : B
- A -1] .
erApn[exp( VT-) 1] er pn[exp( 7 )-1] '
Ic(t)= = W + W
Lp sinh I Lp tanh T : (VI.15)
~ P | P _
V - V
eD Ap exp( )(v /VT) eD Ap exp( )(v /V )
P jwt j2wt_jp
- e + - e e
. W . ‘ - W
L sinh —— L > tanh I~

pl



Case 3:

Now the following more general case will be considered.

jw,t
VEB(t) EB T Vep & 1 * v et 2

1}
<3

V.o (t) = V. + v .ed¥3bt . vczej‘"ut

CB CB c1®

Where the conditions v <<VT, v

o < Ve v KV and vV don't hold.

e2 cl T c2 T

Thén

V. . (t)
p(0,t) = p expl EE ]
- T
: v v v
t
= p expl —VEE + VEl_ let + ve2 ed¥2 ]
n . T T
el JW -t Jw t
= p ex ( )exp[ ] xp[ 2]
. pn P A T | VT
v v . v 5 32w
EB el jw.t, 1 el 2 j2w.t e2 jw t 1 ( 2
= p_exp ( I{1+—e=ed"1 " (=) "e" L+ (1t 2 €2y, .2
Pp&*P VT{ Voo 21V, vT Vo



R

Vg . nﬁ 2 1 Vel K1 Ve2 ¥o  j(kow.+kw.)t S (VI.16)
= pnexp(—'V % z_ TR ( v ) (%) ed 11 R0 :
T K0 ke0'% 0 K0 - Vg T

and similarly

R v m M v..r., v._or., :
- CB T . : ] .
p(W,t)=p exp(—=) 2> - .1r — (=) ! (-g8) 2 3Ty Wytrowy ) 8o (V117)
| R sty T i T

are obtained, where nl,na,ml,m2 must in fact be infinite .and WiaWs

wB‘,wvl\L are not restricted but positive.

Then the steady-state, periodic solution of the equation (VI.1l)

subject to the above conditions

R hl
' VEB 2 1 Vo1, X1 Ven Ko
(x,t)=p exp(—<=) 2 - (=)~ (=5)
PAX,BI=POXPATY k.? k.8 .V v
L M- T T
We-x X v o 12
sinh[—= J[1+j(k. w. +k_ w_ )T ]
L 171 7272° Ik wy Hh ) b
172 ¢
. W : z
sinh —— [ 1+,](klwl+k2w2) p]
mom; v.T1v T2
* ppexpl—~—) 2 e, v
T Te | =0 =0 1T T2 T T
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. X .
sinh —— ( 1+3(»rlw3+r2w4) Zp] )
P jlr w_+r wu)t
sinh I [l+3(r1w37"r2w1+) 'Zp ]
P
sinh g—x sinh —F-
-p B -p ns +p : (v1.18)
s v sinh —— n o -
sinh 1 L
p b

is obtained. Then the emitter curcent

n n
v 1 2 v k v .,k
EB : 1l ., ely1 ,_e2
IE(t)zerApnexp(—‘T;) { ) z: IR (.V ) ( v )
) 2

[1+5(k w +k w,) T_] .
171 722" "p . e;(klwl+k2w2)t
'w 1/2
Lptanh —E—[_l+3(klw1+k2w2)2£]
. m m r I
V: 1 2 v 1l v 2
' CB 1 cl c2
-eD Ap exp(——) Z Z — () (—==)
p Pn P Vi M0 r,=0 _rl'.rz'. Vep Vi
1/2
s { - s W \)Z .
[ 1+3(mywgteovy iG] 732 oA (r1VgtTam)

. W : 7
Lps:.nh _L; [1+3(rlw3+r2wl*) P ]



eD A
L oo W + eDPApn
~ tanh
p camh L_sinh —— -
bl L.
P
and similarly the collector current
n
o ' M 2 v.k, v._k
I(8)= ~eD ap exp(2){ 5 3 (-gh) 1 (-g&) 2
T k1=0 k2=o 1°2’ T ™
1/2
i T
[1+3(klwl+k2w2) 5 50w +k_w_ )t
: - 73 e 1122
Lp51nh[1+j(klwl+k2w2) éﬂ |
\' m, m, v.,r v.,r
2
+ D Ap exp(—D){ 3 3 A (¢ (B2
p-a T | f=0 r=0 1772° T T
1/2
[ 1"‘3(1'1“73'*1'2“4) Zp] jlr w +r_w, )t
73 e 1% 274

; W .
L tanh —L;'[ 1+3(r1w3+r2w4) Zp]

eD A
erA P, D P,

+

Vi
L sinh —/— L tanh —
p

(VI.19)

(Vi.20)
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What is done so far is finding the theoretic, steady-state,
periodic currents for different applied voltages.

Now the model for a p-n-p transistor will be given. The

inspiration for this choice of the model is explained in the séction

Vi-2.

C
Iéﬂ
R
ijc .
4
Erc Cjc(vjc) %c(vjc)B vjc
VCB(’r) - <
, > Byl oKe0 )
} I-_Q_C_ -
T T
I -
'mc™ ¢
-.—IB(H
i i 8,
A}
me
<31 8 E;J"E
yAlS + %'
EB = . +
) 5 PRl )
gr clT| Cov )E Y
€ je Je je Je
+ lje *
IE(H

Figure VI.1l

1



VI.2- CONSTRUCTION OF THE MODEL.

“While constructing the model in Figure VI.1 a) the memristive
circuit .model for p-n junction diodes given by Leon O. Chua and Chong-
Wei Tseng[lk], b) the charge controlled transistor model given by Randal
W.Jensen[22], ¢) the Ebers-Moll model of the transistor[23]have been a

source of inspiration and motivation,

By considering the first two models and thinking that there
exist two p-n junctions in a transistor,base—emittér and base-collector
parts have been éonstructed based on the Ebers-Moll model. In the
definition of the dependeht current sources placed between collecfor
and émitter the second and the third models and the previous theoretic

study have been used.

In the model, the memristors MC and ME are used to simulate the
conductivity modulation phenomena; Cje, Cjc represent the junction
capacitances of base-emitter and base-collector junctions respectively;
'Cde’ Cdc represent the diffusion capacitances of the emitter and.collect
regions; the dependent current sources Il and 12 represent the recombi-

nation of the carriers.

Now the parameters and the quantities used in the model will be

defined.

QT(t) is the total excess hole chafgq stored in the base region.

' W, : S
Qp(t)= eA of p (x,t)dx (Vvi.21)

QE(t) is the total excess hole charge stored in the base when
AVCB(t)zo and Qc(t) is the total excess hole charge stored in the base
when VEB(t)=O. When both voltages are different from zero, total

excess hole charge stored in the base is

Q)= Qg (t) + Qy(8) | - (e
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As seen from the previous study in section VI.1, p(x,t)

contains some frequency components.

Thus ,the same frequency componehts will come into the expression
for QT(t), i.e 4 :

m n
Qp(t) go Qs (£) +- kz Qi (1)

or -

: n : .
Qg(t) ig Qp; (t) and Q (t)= EO Qg (£) _ (V1.23)

‘The vP's appearing in the expression of the dependent current sources

I and'I4 are defined as follows,

3

1

1
BF. = — ey _ | (vi.2h)
cosh —[1l+jw.C 1 =1 ‘
Lp ip

where w. is the frequency of QEi(t) and

1
?Rk = " 1/2
- cosh ——[1+jw, T ] -1 o (v1.25)
. Lp k'p -7

W, is the‘frequency of QCK(t).

The memristor ME ahdIMC may be defined as follows. The conductivi

of the base region is

T(x) = e [ Yoo * M p(x) ]' ' (VI.26)



-89-

W W
ME _ i j‘ dx - 1 ax
o [Tx) l ] A 0 - e[Vnnn°+y p(x) | ]
Vep=0 P Ver=0
, W W
1 dx 1l ax
M = j’ =
c A o [T(x) | 1 A gﬁ ely nn°+Ppp(x) |

The other circuit

elements are defined as follows [23],[21]

c

-1/2

v,
. (1- —12
Jjeo ¢E )
v -1/2

(- =19
Jeo B¢

C v

. F l . 3
1 7 52 exp (—%E)
T

. I v,

R s2 c
. ——-

T T

v.
e
I_, lexp (~%;)-1]

(V1.27)

(VI.29)

(vi.30)

(vi.z1),

(vi,32)

(VI.33)

(VI.3h)
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VI.3- JUSTIFICATION OF THE MODEL.

As a first confirmation of the model it will be shown that the

base current givenvby the model is the same as the one obtained
theoretically.

The base current given by the model is

Q " Q . :
I = - = m g Rl (v1.35)
P Zp )
Since QE+QC=QT
Q.
IB(t) = - Z, Q (V1i.36)

is obtained.

Now let's consider the diffusion equation (VI.1l). The excess hole
concentration is.p'(x,t)ép(x,t)—pn and using this definition, equation
(VIi.l) becomes

| ap';,w mﬁ D __p_&z_tl (VI.37)
: _ ax

" Multiplying both sides with the constant eA and 1ntegrat1ng from O to

W with respect to x

eA f E (x,t dx= —eA . f __uigl)_ dx +el f Dp ___R.&!l)_ dx
0 x>



o -

A

J- eAp (x,t)dx= R  ; er.QX,t)dx+eADp _ﬁﬁj;ﬁ;ﬁl_ (vI.38)

at <p

: W , )
results; but the term j'eAp (x,t)dx is the total excess stored hole

charge QT(t) in the base region and hence

L t
0 1 ' (x,t) _ - op (x,t)
R —gp ix,t) ~eAD, SR X1
—5;—QT(t) Zp QT(t)+eADp 5% eAlL —ox
ox=W x=0
(vi.39)
On the other hand, as eAD —QngziEl = I.(t) and -eAD —QE—SEiEl =
P ox c P ax
x=W x=0
IE(t) it follows from equation (VI.39) that
9 Q (t) + = Q. (t) =1 (t) + I_(¢t) (VI.40)
t Y Zp T T E ° '
Since IB(t)+IC(t)+IE(t)=O by KCL, then
I (t) = —2— 9_ o ()= = Q. (t)= -0 (t) - —— Q. (t) (VI L1)
=TTt Y Cp “T 077 T Zp °T °

which is as given by the model.



Now the expressions of collector and emitter currents given by
the model for different applied voltages will be written.

-

Let's considér case 1 studied'in_section VI.l. Yor this case
p(x,t) is given by the equation (VI,?) as

sinh(ﬂ:z)
- VgB L Veb VEB
p(x,t)= P, lexp(—v—)-l] Tt P, o exp(—v—
' ' ) T sinh I T T
b
. o Wex
sinh( ) L
, Ppl jut . sinh %5
e =P +p
W n v n
sinh L sinh I
pl p

Then from equation (VI.21) the total excess stored hole charge will
be found as follows

w .
) .
QT(t) =eA [p Fx,t)dx
0
Vv : .
eAp Dexp(—gg)-l] L (cosh " -1)
‘ n VT P Lp
Qpt)= _
sinh ;%—
p
' VEB v
eA(veb/VT)pnexp(—v;)Lpl(cosh i—; jl) -
. _ | p 3
sigh )g '

pl-



eAanp(cosh —%— -1)

= TRen ) _ (VI.L2)
sinh I
Y
Then
eAp L (cosh LD
np Lp )
' sinh —f— ‘
P
eAp [exp(———) -1 ]L (cosh — -1)
Qpo = _Pf (VI.b4)
sinh . .
L
' P
V W
eA(v /V )p exp( )L (cosh I -1)
Qpy = - pl eJ¥E (VI.45)
' sinh Z
pl
. L .
where L _= R "« On the other hand, the emitter current can
1 1/2
- (l+J .z )
be obtalned from the model as
Q : Q Qg -
B El CO
Ig= . S+ FF & ’QEo) Prlop = *% " P ro zp *Qco)

(VI 46)
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where
1 ' - 1
= = - and =
‘PFO- ?RO cosh —%— -1 PFI cosh —%—(l+jwl’)l/§l
- p
P b

Arranging the terms of eqﬁation (VI.46) we find

I= (1+P_) —%—9 + (1+P )(—1—+4 ﬁQ - -—%& (VIi.47) |

E- FO' T F1'' " p IR Fro <3 N

And calculating the parameters (FFO+1) and (PF1+1)

cosﬁ‘—ﬂ—
1l Lp
?Fo-i-l = W +1 = » -
cosh '_L— -1 cosh W -1
P ‘ L
p —
‘ cosh —%w(l+jw2 )1/2
1 : ' D p
PFl-l-l = +1 =
cosh—ﬂ—(1+jw2')L/2-l cosh —— (1+3jwZ )1/2-1
L - P L P

b b

' are‘obtained. Substitution of these parameter into equation (VI.4?)

yield

vV

eAp [exp(—gg)-l] L - cosh —— ,
n VT e LP
Z£Sinh I . . i
. p
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VEB | W
eApn(veb/VT)exp(—v—)(1+3wzb)Lplcosh < . eAp L
: T _pl jwt
* - et W
. Z . L
T _sinh —e— pSinh
P ol _ P

. : D Tp
. 2 _ 2 _ P . . .
Using now Lp _Dpr and Lpl = iz the final expression for IE is.
obtained as P
-V : \'
EB e (EB
eADppn[exp(—VE)-l ] eADppn(veb/VT)exP(‘VT) . eAD p
I.= + - QW pn
E W ' W L sinh——
L tanh —i— . Lpl tanh —i— P Lp
P p ' pl .
(VI.49)

which agrees with eqpression (VI.8) for IE as developed from- the
diffusion equation (VI.1). '

- Similarly, the collector current IC calculated from the model
agrees with equation (VI.9) as shown below. The collector current from

the model can be written as -

. Q . Q Q
_ c co EO - £l -
Te= Z, HQ* Pro < Qo)™ ot Z, Qg0 )= Ppq ¢ z, Q)

. Q ) .
= _Cco Q (1+3wT )
= (1+ Ppo) <, - Pro- f '

0
P —Ppl p QEIL

(VI.s0)
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Substituting the expressions of Ppo, Pry. PfL and Q_, Qgys Q, into
(V1.50) yield

-

VeB
Vi

eApthcosh I, eApn[exp(

Ic=- 2 - W
c <p sinh —%— C_sinh —ﬁ—
S P p

)-1] Lp

VEB
(1+jw p)eApn(veb/VT)exp(—v;)Lpl -
- - eV (VI.51)
Zp sinh T
pl

: - DT
: 2_ 2 ___pp
and'u51ng Lp_ Dpzﬁ and Lpl = l+ij§

VEB
eAanp ' eApﬁDp[exp(—V;)-l]

L_tan h —%— _ ._Lp sinh —%—
P P | p

| VEB
eAD p (v _/V_Ddexp( )
) p'n eb T VT ejwt
' W
L sinh ——
rl ALpl

(VI.52)

is,obtained.

For case 2, p(x,t) is given in equation (VI.13). Then, the total

excess hole stored charge in the base region becomes



w t
Qp = eA _f p'(x,t)dx

v v :
eAp [exp(—gg)-l] L (cosh M -1) eAp [exp(—gg)—l]L (cosh M -1)
n v P L n N P L
T bo} T P
Q= +

T W W

inh — sinh —
sinfl =g L

p Y

eAp exp( )(v o VgL ; (cosh S

L . .
+ pL Jwt (VI.53)
sinh EE— '
pl
V W
eAp exp( )(v /V )L (cosh T -1)
. Tp2 jewt jo
+ m P e .e
sinh I
p2
The components of QT are as follows.
V
eAp [exp(———) 1] L (cosh L -1)
Q= ‘e S _P (VI.54)
' T h W
sinh —§—
P
V \/|
eAp exp( )(v /V )JL_.(cosh -1)
T7pl : L 1 jwt ' :
Qpy = . . = e (VI.55)
: ginh ——

”pl
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v . .
eApn[exp(—%E)-l]'Lchosh —%— -1)
Qo= = R (VI.56)
, W
sinh I
p
Ve W jewt 39
eApnexp(—v;)(vcb/VT)Lpz(cosh —E—Z—l) e e (VI.57)
Q= ' .
W.
sinh I
p2
Now let's find the currents.
Q - Q Q '
E o EO . El -
Ig = "E;""* W + PFU(—E;_ + Qpo)+ P gy ( > +Qy)
Q i Q
CO Cl .
Frols * o) Pral5= + 4y)
- p
Q ; Q Q Q
EO . El CO . Cl
= (1+FFO) Zp +(l+JWZp)(1+ﬁF1)—§- - P,RO <y ~(1+j2w Zp)FRl <o
(v1i.58)

Substituting the equations (VI.24), (VI.25),(VI.54)~(VI.57) into the

equation (VI.58) and making necessary algebraic manipulations we get



\' v
EB CB
eAD exp( )-1] cosh —— eAD exp(——)-1
. pPp [6¥PL ] I pPnl €XP V, ]
E W . W
Lp sinh < L sinh 5
P . P P
V W
eAD oP exp( )(v /V Jcosh L
+ pl ert
. W
L sinh
pl Lpl
V
eAD p exp( )(v /V )
- eJZWt'eJ¢'
- W A
L sinh
p2 Lp2
L, 5 Dz 5 D T
Where L_=D =, L, = —E2P | L 5 = — PP
P »p P .p (1+jw25) P (1+j2wlp)
Similarly,
- Q Qo Q
% X1
Ic = Zy +Qg+ PRO 2, —= (‘co)“’ FRI( %, o1’

Q Qpy -
20 | ¢ . Qg
- FFO(-E; + Qpg)- Py ?*Qm)

(VI.59)
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Q : Q Q Q
CO . ) El EO _E1l
= (1+F%Q) ,f(1+23w25)(1ﬁ3R1) ﬁ} ~-(1+jwe )PFl =
(V1.60)
and going through the same algebra as for IE we get the following
expression for Ic.
) )
’ CB W EB
- eADan[exP(VT—)‘ll cosh Tp EADan[eXP('VT) -1]
c .
L_ sinh —— L sinh ——
P 'p P P
V
eAD p exp( )(v /V Jcosh —
L 2 ji2wt _J¢
+ D e’ e
L 5 sinh '2
b p2’
V .
. EB .
eADppnexp( VT)(vé_b/VT/ swit
- . e’ " . (VI 61)
| L . sinh —- |
Y : 'pl

‘Again we see that the eipressions (VI.59) and (VI.61) are
identical with expressions (VI.1l4) and (VI.15).

Here, it should be observed that when the applied voltages are
pure dc voltages (i.e veb=0 and vcb=0) equations (VI,.59) and (VI.61)



reduces to the well-known Ebers-Moll eqﬁations.

model will again be identical with %hg theoretical results.
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If the more general case 3 is considered the results

Now the following transient case will be examined.

of the

Let a step voltage be applied to the emittef-basé junction at

t=0 and let the collector-base voltage be zero, and let the excess hole

concentration at t=0" be zero. Then we have the following

]
using the definition p (x,t)ép(x,t)—pn we obtain

where

VEB(t)=.ciU(t) , Vop(t)=0

vEB(t)

p(0,t) = p exp [—FF—]
Yo

c
p(0,t)=p exp(——l) for t>0
n VT

' (o]
p (0,t)=p(0,t)=p =p [ exp(=—)-1] for t>0
. n “n VT

pf(o,t) = klU(t)

ky = p, [exp(—v;)-l]

. Voo (t)
p (W,£)= p  exp [(—F—)-1] =0

T

or

(VI.62)

(VI.63)

(vi.6h)
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p (x,07) = o (VI.65)

For these boundary and initial conditions the Laplace transform of -

the solution of

52 .
dp 5: ) = - P ;? t) ——E—Lzéil can be found as [ 24]
p' ax -

| I .
p (x,8) = —= P (VI.66)
) sinh —1—- Y 1+s Zp :
P

Then the Laplace transform of total excess hole charge stored in the

base is

W
p (x s) dx

1}

QT(éf
sinh . W-x VissZ

J
0
W k L
P
= eA f L= dx
0 8 sinh —-vi':'—-\/ 1+s Zp
) P

- eAL k) (cosh —%—Jiiszb -1 )
Qp(s)= -2 - (VI.67)
le+s;b sinh —%—V 1+s Tp .
P

Before proceeding further consider the currents which are given

as



ap'(x,s)
Jx

IE(s)= -eADp

eADpkl Vl+sZp cosh H V1+szp

I(s)= Lp (VI.68)
L .sss5inh —E— Vitsz
P L P
P
| p (x,5)
_ _Op \Xy56/)
IC(s) = eADp o
x=W »
eD Ak_Vl+s<
p 1 P
IC(s) = - (VI.69)

L s sinh ——Vl+sz
P Lp P

Now, going back to the model again, QT(S)=QE(S),'since the

collector-base junction voltage is zero implying Qc(s)=0

If  Pp= m L - is defined, then the model
cosh —f—Vl+st -1 '

y
again gives the same results as shown below.

From the model
o L% Q-

taking the Laplace transform of both sides, assuming QE(O+)%O
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Q.(8) Q‘(s)
I:(s) = -—i:— + 8Qg(s) + FF [—%— +8Qp(5) ].
Q.(s) Q.(8)
= (l+s7 ) E +(1+8C )PF B
p P P Zp
: 1+8C ‘
I(s) = (1+FFI.(—7;5—B) Qg (s) (vI.70)

is obtained. Subtituting the above equation which is defined for ? F

and equation (VI.67) into (VI.70) we get

W

eAk_ L (1+sC ) cosh — V1l+szZ
1'p p L P

IE(s)= ‘ﬁ
s l+szIJ sin h T \/1+sZp

P

and using L2 =D T
’ p PP

eAD k V1l+sz cosh.—ﬂ— Vltsz
pl P L P

Ig(s)= - P - (VI.71)
L s sinh —— {15z
P : Lp P

is obtained.
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Similarly'for Ic we have

. QE .
Ic = - FF_( = + QE) or
Qg(s)  Be)
Io(s)= - ?F(——TC-I—J— +sQE(s))= -(1+sZp) -—Ep—— Qg(s)

and going through the same algebra as for IE(s)

eAD k_V l+s¢Z
p 1 P (VI.72)

I (8)= -
c W
L

Vl+sZ

L s sinhb
p .

is found.,

VI.4- REMARKS ON THE MODEL

The model is valid as long as the diffusion equation (Vi.1) is
 satisfied and the collector and emitter currents are given as in
‘équations (VI.4) and (VI.5); otherwise it must be modified. For example,
if there exists a contribution of electrons to the collector and

emitter currents then the'necéssary modifications must be done to take

into account the charge storage effects due to electrons.

The model is Jjustified by comparing the terminal currents giveﬂ
by model with those given by the diffusion equation (VI.l). Further
confirmation of the model has to be done by applying current sources
and observing the reSulting voltage waveforms. Computer simulated

results must be compared with those obtained experimentally.
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Another important point is that the small-signal input impedance seen
from base-emitter terminals is inductive when the biasing current is

relatively high. This behaviour must also be justified.

The model seems to be complex for analytical purposes, but it

can be used in computer analysis.

Finally, the model emphasizes the use of memristors in the

area of device modeling.
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CHAPTER VII

CONCLUSION

A newly introduced  two-terminal nonlinear circuit element, the
memristor has been defined, its'properties investigated, its realizatior
presented and its use in modeling emphasized. Although the memristor |
seems to be an hypothetical element, the passivity theorem and the
electromagnetic interpretation given in Chapter IIX have led to the
belief that memristors with monotonicaliy increasing\péq curves may

be produced in a passive physical device form.

In Chapter III the realizafion of memristors. by active circuit
elements is considered. The active circuit realization techniques may
be used in studies conberning general nonlinear RICM networks. For
example, circuit-theoretic properties of RLCM networks may be justified

experimentally using active circuit realization of memristors.

Then,the generalization of memristor into a new class of dynamicas
systems, namely memristive systems is considered in Chaptér IV. Most
important charecteristics of memristive systems is the zero-crossing
property i.e. the output is zero whenever the input is zero. Another
- one is the dependency of Lissajous figures on the freguency. At low
vrfrequencies they behave like nonlinear resistors but at high frequencie:
they reduce to linear resistors. So, special attention must be paid
to the classification of the dissipative systems. Moreover memristive
systems exibit a capacitive or inductive small-signal impedance dependi
on the operating point which caused some authors to name this property

as the anomalous impedance phenomenon [25].

In Chapter V, applications of the memristor -is considered. The

most important one of these applications is the model given for p—n
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junction diodes. The success of this is due mainly to the use of
memristor:which accounts for the charge storage and conductivity
modulation effects. In Chapter VI, “a new model for bipolar junction
transistor which uses memristors is given to émphasize the use of
memristors in the area of device modeling. If we consider this model,
first, it seems to be unusual to seperate the total excess stored
charge into its components. But, once the input voltage is given the
components of charge is completely determined and the coefficients
are also determined when the input is given. Moreover Ebers-Moll model

-of transistor is a special case of this model.
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