FOR REFERENCE

IOT HABE AKEN FROM THIS SHOW

AUTOMATIC LMS EQUALIZER ALGORITHMS WITH FAST RATE OF CONVERGENCE

by

Nazan HEKIM

Submitted to the Faculty of the School of. Engineering in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

ELECTRICAL ENGINEERING

Boğaziçi University June 1982 This thesis has been approved by:

Doç.Dr.Yorgo Istefanapulos: (Thesis Supervisor)

Prof.Dr.Erdal Panayırcı

Prof.Dr.Cem Göknar

77157

:

:

ACKNOWLEDGEMENT

This thesis has been prepared for the partial fulfillment of the requirements of Boğaziçi University, School of Engineering for the degree of Master of Science in Electrical Engineering and been supported by Electronic Research Department of Marmara Research Institute.

I wish thank to Doç.Dr.Yorgo Istefanapulos, thesis supervisor, for his encouragement and guidance in accomplishment of this work; to Prof.Dr.Erdal Panayırcı and Prof.Dr.Cem Göknar for their useful critiques and helpful suggestions.

I am also indebted to Ms.Talin Taşçıyan for her helps during the presentation of this work.

ABSTRACT

In high speed voiceband modems, as in many other data transmission systems, linear distortion and additive noise are important degrading factors. The tapped-delay-line equalizers designed to minimize the mean-square-error cost function are commonly used to compensate these undesired effects. Among the several algorithms which minimizes the mean-squareerror cost function stochastic gradient algorithm is the most popular because of its simplicity in implementation. However, for highly distorted channels stochastic gradient algorithm converges slowly and, therefore, a long training period which causes a fall in the overall performance of the system is required. Instead, more complicated algorithms with faster rate of convergence have been developed in the last years: Kalman/Godard, Fast Kalman and lattice algorithms.

In this thesis, the rate of convergence of stochastic gradient, Kalman/Godard and Fast Kalman algorithms are analyzed and their computational complexities are examined. The analysis is extended to the complex domain in order to cover equalization of quadrature-amplitude-modulated signals. Furthermore, a computer program package which simulates several telephone channels, a quadrature-amplitude-modulation system and the equalization algorithms is written. Them, the performance of the different equalization algorithms over a wide range of channels are compared.

0 Z E T

Ses bandında çalışan yüksek hızlı veri iletişim sistemlerinde kalite düşürücü etkenlerin báşlıcaları doğrusal bozulma ve gürültüdür. İstenmeyen bu etkenlerin giderilmesinde kullanılan ayarlanabilir bellek katsayılı dengeleyicilerin tasarımında yanılgı-karesi-ortalaması maliyet işlevinin enküçültülmesi amaçlanır. Bu amaca ulaştıran algoritmalar içerisinde uygulama basitliği açısından en yaygın olanı istatistiksel gradyan yöntemidir. Ne var ki çok bozuk kanallar için istatistiksel gradyan yönteminin yakınsama hızı çok düşüktür. Dolayısıyla dengeleyici için sistemin genel davranışı bozucu uzun bir adaptasyon süresi gerekir. Son yıllarda geliştirilen Kalman/Godard, hızlı Kalman ve kafes algoritmalarının, daha karmaşık olmalarına rağmen, yakınsama hızları çok yüksektir.

Bu tez çalışmasında, istatistiksel gradyan, Kalman/ Godaard ve hızlı Kalman algoritmalarının yakınsama hızları ve hesaplama karmaşıklıkları incelendi. Analiz, dikgen-genlik-modülasyonunda dengeleme problemini kapsayacak biçimde kompleks değişkenler kullanılarak yürütüldü. Ayrıca, çeşitli telefon kanallarını, dikgen-genlik modülasyon sistemini ve sözkonusu dengeleyici algoritmalarını gerçekleştiren bir bilgisayar programları paketi hazırlandı. Son olarak her üç dengeleyici algoritma çeşitli telefon kanalları üzerinde sınandı.

TABLE OF CONTENTS

ACKNOWLEDGEMENT	
ABSTRACT	
ÖZET	
TABLE OF CONTENTS	
INTRODUCTION	
CHAPTER I - CHANNEL EQUALIZATION	
1. Interesymbol Interference and Equalization	n
2. Equalization Strategies	
3. Quadrature-Amplitude-Modulation Systems	
CHAPTER II - STOCHASTIC GRADIENT ALGORITHM FOR	
AUTOMATIC CHANNEL EQUALIZATION	
1. TDL Equalizer	
2. Optimum Solution	
3. Stochastic Gradient Algorithm	
CHAPTER III - CONVERGENCE OF THE STOCHASTIC	
GRADIENT ALGORITHM	
1. Convergence of the Tap Coefficient Vector	
2. Convergence of the MSE	
3. Effects of Digital Implementation	
CHAPTER IV - KALMAN/GODARD ALGORITHM	
l. Derivation of the Kalman/Godard Algorithm	
2. Convergence of the Tap Coefficient Vector	
3. Convergence of the MSE	
CHAPTER V - FAST KALMAN EQUALIZER ALGORITHM	
1. Computational Complexity of the Stochasti	с
Gradient and Kalman/Godard Algorithms	
2. Derivation of the Fast Kalman Algorithm	
CHAPTER VI - SIMULATION AND RESULTS	
1. Computer Programs	
2. Simulated Communication System	
3. Results	
4. Conclusion	

Appendix	1:	Correlation Matrices
Appendix	2:	Positive Definiteness of the Input
2000 - 100 -		Corrélation Matrix A
Appendix	3:	Convexity of the MSE Performance
		Function of the Tap Coefficients
Appendix	4 :	Derivation of Kalman/Godard Algorithm (II)
Appendix	5:	User's Manual
Reference	26	

INTRODUCTION

As is well known, data transmission over the existing telephone networks requires equalization to achieve reliable performance in the presence of linear distortion and additive noise. Tapped-delay-line equalizers employing various adjusting algorithms for their taps take place in high speed voice band modems. As will be mentioned in Chapter I these equalization algorithms differ in the operational definition of equalization. However, minimization of the mean-squared-error of the transmission system has been proven to be the best equalization strategy (1-3). The algorithms in this class also show differences in the computational method used. Among the various algorithms the stochastic gradient algorithm is a wide-spread technique. There are several works investigating the performance of the stochastic gradient adaptive equalization algorithm among which Gersho's, Widrow's and Proakis's must be emphasized(1-6).

The stochastic gradient algorithm, although being very popular, has the disadvantage that it has a very slow settling time in some cases. The convergence rate of the stochostic gradient algorithm, as demonstrated by Gittlin and Ungerboeck depends on the eigenvalues of the input correlation matrix, and the number of taps of the equalizer. High distortion causes the eigenvalues of the input correlation matrix to deviate from each other and, as this happens, it becomes more and more difficult to control the convergence rate of the stochastic gradient algorithm. Therefore, a long training period which constitutes a considerable portion of the total transmission time becomes necessary.

2.

If the dependence of the equalization performance on the eigenvalues can be eliminated, then the algorithm can be accelerated. To orthogonalize the eigenvalues the signals sent during the training period can be chosen orthogonal to each other (7). On the other hand, in the so called Kalman/ Godard algorithm estimating the inverse of the correlation matrix in each iteration results in fast convergence. The name of the algorithm is due to its first derivation by Godard with the application of Kalman filtering approach to the equalization problem(15). The Kalman/Godard algorithm uses all the past information available at each step. Thus, it is at least intuitively clear that it is expected to give better performance than the conventional stochastic gradient algorithm which uses only the current information. However, in the recursive estimation of the inverse correlation matrix, an NxN matrix where N is the number of taps must be computed and stored at each recursion. Repeatation of such a large dimensional matrix computation means a considerable complexity in both computer simulation and hardware implementation.

The Fast Kalman algorithm is mathematically equivalent to the Kalman/Godard algorithm. The difference is only in the computation of the inverse correlation matrix. The improvement is based on the fact that at each iteration the number of new samples entering and the old samples leaving the equalizer is not N but only one. Hence, Fast Kalman algorithm gives the same performance as the Kalman/Godard algorithm does while using N-dimensional vectors at most. Consequently the Fast Kalman algorithm with its acceptable computational complexity and very fast rate of convergence is the most efficient one.

In this thesis the three algorithms mentioned above are analyzed under some assumptions. More detailed mathematical treatments of the recursive least squares algorithms can be found in the literature, especially in the work of Ljung (18). The results of both analyses are almost the same. This work also includes a computer simulation to test the theoretical results. Various channels with different attenuation and group delay characteristics are simulated. The modulation scheme used is quadrature-amplitude-modulation which enables two dimensional data transmission.

- 3 -

Chapter I consists of the statement of the equalization problem, classification of commonly used equalization algorithms and the complex domain description of the quadrature-amplitude-modulation system.

In Chapter II the structure of the tapped-delay-line equalizer is introduced. The optimum solution for the tap coefficients can be found by setting the gradient of the mean-square-error performance function to zero with respect to the tap coefficient vector. This chapter also includes the derivation of the stochastic gradient algorithm.

Convergence of the stochastic gradient algorithm is controlled by a parameter called step-size. In Chapter III some bounds on the step-size for the tap coefficients to converge to their optimum values and for the mean-squareerror to attain its minimum value are developed. Then, these bounds are elaborated to obtain the fastest convergence possible. It should be noted that in some cases to chose the best value for step-size is itself a difficult problem.

Derivation of the Kalman/Godard algorithm and its

convergence analysis constitutes the subject of Chapter IV. Another derivation based on Kalman filtering approach is given in Appendix IV. It is seen that as soon as the number of iterations exceeds the number of taps the mean-squareerror falls into a very small value. However the required number of multiplications in the Kalman/Godard algorithm is so large that this may be a big price for fast convergence. But the recursive matrix inversion can be modified in a simplifying manner. This leads to the Fast Kalman algorithm. which is the subject of Chapter V.

In Chapter VI the programs in the simulation package are introduced and the characteristics of the simulated transmisson system is given. This chapter also includes the results of the Stochastic Gradient, Kalman and Fast Kalman adaptive algorithms over seven different telephone channels.

Finally, the discussion about the simulation results takes place in Chapter VII. A manual for computer programs can be found in Appendix 5.

I. CHANNEL EQUALIZATION

One of the main degrading factors in data tranmsmission through the telephone lines is time dispersion caused by the deviation of the channel frequency response from the ideal characteristics of constant amplitude and linear phase. In order to provide reliable transmission these nonideal characteristics must be compensated by additional filtering. Thus, equalization constitutes an important part of the data transmission.

5

I.1. INTERSYMBOL INTERFERENCE AND EQUALIZATION

In Fig.I.l. a data transmission system is illustrated.

Fig (I.1) Data Transmission System

The input bits are encoded and modulated according to a certaion modulation scheme. After they are transmitted through the channel the reverse operation takes place. In efficient digital communication systems the effect of each symbol transmitted over a time dispersive channel extends beyond the time interval used to represent that symbol. The overlap of the received symbols is called intersymbol interference. Although intersymbol interference arises in all pulse modulated systems it is most easily described in the case of pulse amplitude modulation (PAM).

In Fig. I.2. a simple PAM system (except encoder/ decoder section) is shown.

Fig (1.2) Pulse_Amplitude-Modulation System

The transmitting filter/channel/receiving filter cascade (TCR) determines the shape of the information carrying pulses:

$$h(t) = \frac{1}{2} \int_{-\infty}^{\infty} T(\omega)C(\omega)R(\omega)e^{j\omega t} d\omega \qquad (I.1)$$

Then, the output is

i

$$y(t) = \Sigma a(i)h(t-iT) + \eta(t)$$
(I.2)

where T is the sampling time and $\eta(t)$ is the additive noise. At t=kT + t (to is due to the constant delay in TCR) the sampled output at the receiver corresponding to the desired output a(k) is $y(kT + t_{o}) = \sum_{i} a(i)h(kT + t_{o} - iT) + \eta(kT + t_{o})$ (I.3)

Let k denote kT + t, then (1.3) becomes

$$y(k) = \sum_{i=1}^{n} a(i)h(k-i) + \eta(k)$$
 (I.4)

Note that the actual output can also be expressed as:

$$y(k) = h(0) \{ a(k) + \frac{1}{h(0)} \sum_{\substack{i \\ i \neq k}} a(i)h(k-i) + \frac{\eta(k)}{h(0)} \} (1.5)$$

The gain factor h(0) can be adjusted to unity. Then, the first term is the desired output while the second term represents intersymbol interference and the last term is due to noise. Whenever the sum of these two extra terms exceeds the quantization interval an error occurs.

From (I.5) it is seen that the intersymbol interference is zero if and only if h(k) = 0 for all $k \neq 0$. This means that the TCR impulse response must have zero crossings at T-spaced intervals. The last requirement is called Nyquist first criterion and is also equivalent to

$$H_{eq}(\omega) = \text{constant for } |f| \leq \frac{1}{2T}$$
 (1.6)

in the frequency domain, where

$$H(\omega) = T(\omega)C(\omega)R(\omega)$$
(1.7)

If the channel transfer function were known a priori, then it would be possible to completely eliminate the intersymbol interference by just realizing its inverse. One method may be to design equalizers based on average channel characteristics. However, the variations in the characteristics within a class of channels is generally large. On the other hand these characteristics may change in time. Therefore, an equalization strategy in which adaptation into the specific channel characteristics is achieved, becomes necessary.

I.2. EQUALIZATION STRATEGIES

The tapped-delay-line (TDL) equalizer, whose structure will be examined in the next chapter can be designed to follow many different strategies.

In the case of zero-forcing equalizer the aim is to force the output of the equalizer/channel combination to zero at all but one of the N T-spaced instants in the span of the equalizer. This equalizer minimizes the peak distortion. However, it neglects the noise effects and operates effectively if the peak distortion before equalization is less than 100 percent.

Least-Mean-Square (LMS) equalizers are designed to minimize the mean-square-error which is due to both intersymbol interference and noise. The LMS equalizers can also be divided into two classes as automotic and adaptive. In automatic equalization a known data sequence is sent prior to data transmission. During such a training period the equalizer's parameters are iteratively adjusted to minimize the mean square of the error between the training sequence synchronously generated at the receiver and the output of the equalizer. As long as the channel characteristics are timeinvariant automotic equalization is adequate. If the channel characteristics are time varying equalizer must continuously adapt it self so as to track these changes. Adaptive LMS equalizer operates in this manner. Here, the desired response is taken to be the output of a decision device operating on the output of the equalizer. In other words, in the so called decision-directed mode of the adaptive equalizers the error is defined between the output of the equalizer and the estimate of the transmitted symbol.

Three types of equalizers mentioned above are all linear. On certain channel characteristics nonlinear decision feedback equalizers give better performance. The decision feedback equalizers consist of a forward path which is a usual TDL equalizer and a backward path along which the decisions made on the equalized signal are fed back. The purpose of the backward part is to eliminate the effects of the past symbols during the next steps.

Finally the tap spacing can be chosen less than the sampling time in linear TDL equalizers. This configuration is called fractionally spaced equalizer and has the advantage of being less sensitive to the sampling phase.

Finnally, equalization can be carried out in either baseband (after demodulation) or in passband (before demodulation). The subject of this work is restricted by the LMS automatic equalization in baseband.

I.3. QUADRATURE-AMPLITUDE-MODULATION (QAM) SYSTEMS

In quadrature-amplitude-modulation (QAM) two independent data sequences are used to separately modulate the inphase and quadrature components of a sinusoidal carrier. Two double-sideband supressed carrier AM signals are superimposed on each other at the transmitter and separated at the receiver. In Fig. I.3. a QAM transmission system is shown:

- 9 -

Fig. (I.3) QAM Transmission System

In the system above the transmitted waveform is

$$s(t) = \sum_{n} a_{1}(n)p(t-nT)cos\omega_{c}t - \sum_{n} a_{2}(n)p(t-nT)sin\omega_{c}t$$

$$n \qquad (1.8)$$

where $\{a_1(n)\}\$ and $\{a_2(n)\}\$ are data sequences to be transmitted, 1/T is the signalling rate, f_c is the carrying frequency and p(t) is the pulse shaped by the transmitting filter. This signal can also be expressed as:

$$s(t) = b_1(t) \cos \omega_c t - b_2(t) \sin \omega_c t$$

(I.9)

where

$$b_{1}(t) = \sum_{n} a_{1}(n)p(t-nT)$$

$$b_2(t) = \sum_{n} a_2(n)p(t-nT)$$

Let g(t) be the impulse response of the channel. Then the output of the channel is

$$z(t) = \int_{-\infty}^{\infty} g(\tau)s(t-\tau)d\tau \qquad (I.10)$$

$$z(t) = -\int_{-\infty}^{\infty} g'(\tau) s'(t-\tau) d\tau$$
(I.11)

where g(t) and s(t) are the Hilbert transforms of g(t) and s(t), respectively. It is also possible to write

$$z(t) = \frac{1}{2} \int_{-\infty}^{\infty} g(\tau)s(t-\tau)d\tau - \frac{1}{2} \int_{-\infty}^{\infty} g(\tau)s(t-\tau)d\tau \qquad (I.12)$$

Since

$$s(t) = b_1(t)sin\omega_c t + b_2(t)cos\omega_c t$$

(I.12) takes the form

$$z(t) = \frac{1}{2} \int_{-\infty}^{\infty} g(\tau) b_1(t-\tau) \cos \omega_c(t-\tau) d\tau$$

$$-\frac{1}{2}\int_{-\infty}^{\infty}g(\tau)b_{1}(t-\tau)\sin\omega_{c}(t-\tau)d\tau$$

$$-\frac{1}{2}\int_{-\infty}^{\infty}g(\tau)b_2(t-\tau)sin\omega_c(t-\tau)d\tau$$

$$-\frac{1}{2}\int_{-\infty}^{\infty}g(\tau)b_{2}(t-\tau)\cos\omega_{c}(t-\tau)d\tau \qquad (1.14)$$

It is convenient to rewrite (I.14) as

$$z(t) = \cos \omega_{c} t \int_{-\infty}^{\infty} \left[b_{1}(t-\tau) \left[g(\tau) \cos \omega_{c} \tau + g(\tau) \sin \omega_{c} \tau \right] \right] \\ + b_{2}(t-\tau) \left[g(\tau) \sin \omega_{c} \tau - g(\tau) \cos \omega_{c} \tau \right] d\tau \\ - \sin \omega_{c} t \int_{-\infty}^{\infty} \left[b_{1}(t-\tau) \left[-g(\tau) \sin \omega_{c} \tau + g(\tau) \cos \omega_{c} \tau \right] \right] \\ + b_{2}(t-\tau) \left[g(\tau) \sin \omega_{c} \tau + g(\tau) \cos \omega_{c} \tau \right] d\tau$$

$$(I.15)$$

(1.13)

After the signal z(t) is demodulated and filtered to remove frequencies greater than f_c the following baseband signals are obtained:

$$in-phase: \int_{-\infty}^{\infty} b_{1}(t-\tau) \left[g(\tau) \cos \omega_{c} \tau + g(\tau) \sin \omega_{c} \tau \right] d\tau$$

$$+ \int_{-\infty}^{\infty} b_{2}(t-\tau) \left[g(\tau) \sin \omega_{c} \tau - g(\tau) \cos \omega_{c} \tau \right] d\tau \quad (I.16)$$

$$quadrature: \int_{-\infty}^{\infty} b_{1}(t-\tau) \left[-g(\tau) \sin \omega_{c} \tau + g(\tau) \cos \omega_{c} \tau \right] d\tau$$

$$\int_{-\infty}^{\infty} b_{2}(t-\tau) \left[g(\tau) \sin \omega_{c} \tau + g(\tau) \cos \omega_{c} \tau \right] d\tau$$

$$(I.17)$$

The two signals to be equalized are those given by (I.16) and (I.17). At this point it will be helpfull to use complex notation. Let

$$a(n) = a_1(n) + ja_2(n)$$
 (1.18)

and

$$s(t) = s(t) + j\dot{s}(t)$$
 (I.18)
and also
 $b(t) = b_1(t) + jb_2(t)$ (I.19)

It is clear from (I.8) and (I.9) that

$$b(t) = \sum_{n} a(n)p(t-nT)$$
 (1.20)

Let $x_1(t)$ denote the in-phase signal and $x_2(t)$ denote the quadrature signal at the output of the receiver. The complex signal x(t) is defined by

$$x(t) = x_1(t) + jx_2(t)$$
 (1.21)

Then, if $g_1(t)$ and $g_2(t)$ are chosen such that

$$g_1(t) = g(t) \cos \omega_c t + \dot{g}(t) \sin \omega_c t$$
 (1.22)

$$g_2(t) = -g(t) \sin \omega_c t + \tilde{g}(t) \cos \omega_c t \qquad (1.23)$$

x(t) becomes

$$x(t) = \tilde{g}(t) * b(t)$$
 (1.24)

where

$$\tilde{g}(t) = g_1(t) + jg_2(t)$$
 (I.25)

Thus, although the signals are real using complex notation a complex representation of the QAM system is obtained. Now the sampled complex input signal x(t) can be equalized by a complex equalizer. Then the real equalizer coefficients help to eliminate the intersymbol interference in each part of the transmission system while the imaginery coefficients counteract the cross interference between two parts, caused by assymmetry in the channel characteristics, around the carrier frequency.

II. STOCHASTIC GRADIENT ALGORITHM FOR AUTOMATIC CHANNEL EQUALIZATION

II.1. TDL EQUALIZER

The tapped-delay-line (TDL) equalizer, illustrated in Fig. II.1. consists of a delay line, (2N+1)-taps and a summer. The equalizer input sequence $\{\underline{x}(n)\}$ is delayed through the line by an amount T and each step, where 1/T is the signalling rate. Then each such delayed sample x(n-m) is multiplied by a corresponding weighting coefficient c(m). Finally, these terms are summed to form the equalizer output sequence $\{y(n)\}$.

The output of the Equalizer is

$$y(n) = \sum_{i=-N}^{N} c_{i}^{*} x(n-i)$$
 (II.1)

In matrix notation y(n) can be expressed as

$$y(n) = \underline{c}^* \underline{x}(n)$$
(II.2)

where c and $\underline{x}(n)$ are the following (2N+1)-vectors:

The problem is to find the coefficient vector \underline{c} of the equalizer in such a way as to minimize the mean-square-error (MSE)

$$\xi^{2}(n) = E\{||e(n)||^{2}\}$$
 (II.3)

where e(n) is the error between the output of the equalizer and the actual data symbol a(n), i.e.,

$$e(n) = a(n) - y(n)$$
 (II.4)

The input to the equalizer, or, in other words, the output of the receiver can be expressed as

$$x(n) = a(n) * h(n) + \omega(n)$$
 (II.5)

(*) * denotes complex-conjugate-transpose.

where $\{a(n)\}$ and $\{\omega(n)\}$ are input data and noise sequences, respectively.

The sequence $\{h(n)\}$ represents the impulse response of the transmitting filter/channel/receiving filter cascade. Throughout this work $\{a(n)\}$ and $\{\omega(n)\}$ are assumed to be stationary, ergodic processes.

<u>Assumption 1</u>: Input data $\{a(n)\}$ and noise $\{\omega(n)\}$ sequences are ergodic, at least wide-sense stationary processes.

II.2. OPTIMUM SOLUTION

Under the assumption of stationarity the MSE does not depend on the time index n, so (II.3) can be rewritten as

$$\xi^{2} = E\{ ||e(n)||^{2} \}$$
 (II.6)

Combining (II.2), (II.4) and (II.6) gives the MSE as

 $\xi^{2} = E\{ ||a(n)||^{2} \} - 2E\{a(n)\underline{x}^{*}(n)\}\underline{c} + \underline{c}^{*}E\{\underline{x}(n)\underline{x}^{*}(n)\}\underline{c}$ (II.7)

(II.8)

or

$$\xi^2 = a^2 - 2b^*c + c^*Ac$$

where \overline{a}^2 stands for $E\{||a(n)||^2\}$ and, \underline{b}^* and \underline{A} are the following (2N+1)-vector and (2N+1)x(2N+1) matrix:

 $\underline{b}^* = E\{a(n)\underline{x}^*(n)\}$ $\underline{A} = E\{x(n)\underline{x}^*(n)\}$

In Appendix 1 these correlation matrices have been related to the impulse sequence $\{h(n)\}$.

The input correlation matrix <u>A</u> is Hermitian symmetric, at least positive semidefinite and Toeplitz. The last property is due to the stationarity of the input sequence $\{x(n)\}$. In Appendix 2 it is shown that <u>A</u> is positive definite unless the channel is identically zero.

The positive definiteness of the input correlation matrix \underline{A} implies that

(i) <u>A</u> can be inverted
(ii) All eigenvalues of <u>A</u> are positive
(iii) The MSE performance function is a convex function of the real and imaginary components of the tap coefficients (See App.3).

The last property is important since it enables us to use the gradient methods in searching the minimum of the MSE performance function. In other words any minimum found by gradient methods will be the absolute minimum of the convex MSE performance function of the tap coefficients.

Therefore, the optimum solution for <u>c</u> can be found by taking the gradient of the MSE ξ^2 with respect to c,

$$\nabla \xi^2 = -2\underline{b} + 2\underline{A} \underline{c}$$
^(*)(II.9)

and setting it to zero. Then, the optimum solution is

$$\underline{c}_{op} = \underline{A}^{-1}\underline{b} \tag{II.10}$$

(*)Here, the MSE is a real valued function of the real and imaginary components of the elements of the tap vector <u>c</u> and gradient is taken with respect to real and imaginary parts of <u>c</u>. However, the result can be expressed by combining these two gradient components in complex notatin as in Eqn (II.9). Otherwise ξ^2 is not an analytic function and complex differentiation is not possible. This is the well-known Wiener-Hopf equation in matrix form. By putting (II.10) into (II.6), the minimum MSE is found as

$$\xi_{\min} = \bar{a}^2 - \underline{b} \underline{c}_{\text{op}}$$
(II.11)

In practice correlation matrices <u>b</u> and <u>A</u> are not known a priori and therefore stochastic gradient methods must be employed by adjusting the tap gains on the basis of measurements that can be made at the receiver.

II.3. STOCHASTIC GRADIENT ALGORITHM

The stochastic gradient algorithm, based on the steepest descent method updates the estimates for the tap vector in the direction negative to that of the gradient at that instant:

$$c(n+1) = c(n) - \alpha(n)\nabla\xi^{2}(n)$$
 (II.12)

The positive scalar $\alpha(n)$ is called step-size, which will be shown later to play an important role in the behavior of the algorithm.

By definition the gradient is

$$\nabla \xi^{2}(n) = \nabla E\{e^{*}(n)e(n)\}$$

Interchanging the gradient and expoctation operator gives

$$\nabla \xi^{2}(n) = E\{-2e^{*}(n)x(n)\}$$
 (II.13)

The above expactation is generally not known apriori and also difficult to calculate. Instead, an unbiased approximation to $\Delta\xi^2(n)$ may be

$$\hat{\nabla}\xi^2(n) = -2e^*(n)x(n)$$
 (II.14)

Hence, the deterministic algorithm in (II.12) takes the following usable form:

 $\underline{c}(n+1) = \underline{c}(n) + 2\alpha(n)e^{*}(n)\underline{x}(n) \qquad (II.15)$

III. CONVERGENCE OF THE STOCHASTIC GRADIENT ALGORITHM

- 20 -

In this section the following points will be examined:

- 1- Convergence of the tap coefficient vector to the optimum value
- 2- Convergence of the MSE to the minimum value
- 3- Quantization effects

II.1. CONVERGENCE OF THE TAP COCFFICIENT VECTOR

Let $\underline{p}(n)$ denote the error between the n th estimate c(n) for the tap vector and its optimum value:

$$\underline{p}(n) = e(n) - \underline{c}_{OP} \qquad (III.1)$$

By combining (II.15) and (III.1)

$$p(n+1) = p(n) + 2\alpha(n)e^{*}(n)x(n)$$
 (III.2)

is obtained. On the other hand the output error

 $e(n) = a(n) - c^{*}(n) x(n)$

can be expressed in terms of the tap error vector:

$$e(n) = e_{0n}(n) - \underline{p}^*(n)\underline{x}(n)$$
 (III.3)

Accordingly, (III.2) becomes

$$\underline{p}(n+1) = \underline{p}(n) + 2\alpha(n) e^{(n)x(n) - 2\alpha(n)x(n)x^{(n)}(n)} (111.4)$$

Now $\underline{q}(n)$ is defined as the expected value of p(n):

$$q(n) = E\{p(n)\}$$

Then, the expoctation of both sides of (III.4) gives

$$\underline{q}(n+1) = \underline{q}(n) + 2\alpha(n) E\{e_{op}^{*}(n) \underline{x}(n)\} - 2\alpha(n) E\{\underline{x}(n) \underline{x}^{*}(n) \underline{p}(n)\}$$
(III.5)

From linear filtering theory(25) it is known that the optimum error is orthogonal to the observation spoce, i.e.,

$$E\{e_{op}^{*}(n) \underline{x}(n)\} = \underline{0}(*)$$

Thus the first term in (III.5) is zero.

The second term can be evaluated as

$$E\{x(n)x^{*}(n)p(n)\} = E\{E\{x(n)x^{*}(n) | p(n)\}p(n)\}$$

where the outer expactation is over all values of p(n).

At this point an assumption that simplifies the problem is to be made:

<u>Assumption 2:</u> The input data vector at different instants are statistically independent of each other. In other words for any vector valued functions \underline{f} and \underline{g}

$$E\{f(x(n))g(x(m))\} = E\{f(x(n))\}E\{g(x(m))\}$$

is valid for $n \neq m$. This assumption implies that the tap coefficient vector $\underline{c}(n)$ and the input vector $\underline{x}(n)$ are also statistically independent of each other. The last statement is based on (II.15). Note that this assumption is not strictly true since every input vector $\underline{x}(n)$ contains elements both from the previous and next ones. However it greatly simplifies the problem and will be used in the sequel.

By Assumption 2 p(n) and x(n) are statistically independent of each other Therefore,

 $E\{\underline{x}(n)\underline{x}(n)\underline{p}(n)\} = E\{\underline{x}(n)\underline{x}(n)\}E\{\underline{p}(n)\}$

= Aq(n)

Hence, (III.5) takes the form

 $\underline{q}(n \ 1) = \{\underline{I} - 2\gamma(n)\underline{A}\}\underline{q}(n)$ (III.6)

The system in (III.6) is stable if the eigenvalues of the matrix $\{\underline{I}-2\alpha(n)\underline{A}\}$ are less than unity in magnitude for each n. Since <u>A</u> is Hermition symmetric it can be expressed as

 $\underline{A} = \underline{M}^* \underline{\Lambda} \underline{M}$ (III.7)

where Λ is the diagonal form of \underline{A} ,

$$\underline{\Lambda} = \text{diag}\{\lambda_1, \lambda_2, \dots, \lambda_{2N+1}\}$$

and M is the unitary modal matrix of \underline{A} ;

(*) Recall that
$$e_{op}^{*}(n) = a^{*}(n) - \underline{x}^{*}(n) \underline{c}_{op}$$
 Then

$$E\{\underline{x}(n)e_{op}^{*}\} = E\{a^{*}(n)\underline{x}(n) - \underline{x}(n)\underline{x}^{*}(n)\underline{c}_{op}\}$$

$$= \underline{b} - \underline{A} \underbrace{C}_{ap}$$

$$= \underline{b} - \underline{A} \underbrace{A}^{-1} \underline{b} = \underline{b} - \underline{b} = \underline{0}$$

$$\underline{M}^{-1} = \underline{M}^*$$

To make a coordinate transformation primed coordinates are defined as

$$\underline{q}'(n) = \underline{M}^* \underline{q}(n)$$
 and $\underline{q}(n) = \underline{M} \underline{q}'(n)$ (III.8)

Then the uncoupled form of (III.6) is

$$\underline{q}'(n+1) = \{\underline{I} - 2\alpha(n)\underline{\Lambda}\}\underline{q}'(n)$$
 (III.9)

and, $\underline{q}'(n)$ converges to zero as n goes to infinity provided that

$$1-2\alpha(n)\lambda_{i} < 1 \quad \forall n, \quad i: 1, 2, ..., 2N+1$$

or

0

$$0 < \alpha(n) < \frac{1}{\lambda_i} \quad \forall n, \quad i: 1, 2, ..., 2N+1$$
 (III.10)

Hence, the stability requirement is

$$< \alpha(n) < \frac{1}{\lambda_{max}} \quad \forall n$$
 (III.11)

where λ_{\max} is the maximum eigenvalue of the input correlation matrix <u>A</u>. If this requirement is satisfied, the solution to (III.9),

$$\underline{q}'(n) = \prod_{i=1}^{n} \{ \underline{1} - 2\alpha(i)\lambda_i \} q'(0)$$
 (III.12)

converges to zero as n goes to infinity whatever the initial tap coefficient vector setting is.Thus, the tap vector estimates are asymptotically unbiased, i.e., $\lim_{n \to \infty} F\{\underline{c}(n)\} = \underline{c}_{op}$

As far as the stability of the algorithm is concerned the choice for the step-size $\alpha(n)$ is limited by the eigenvalues of the input correlation matrix as in (III.11). This means that the performance of the algorithm is affected by the eigenvalue spread of <u>A</u>. To see this consider the mode $\underline{q'}_{m}(n)$ with the minimum eigenvalue λ_{m} . This modes converges with a geometric ratio.

 $r_{m} = 1 - 2\alpha(n)\lambda_{m}$

while the mode $q_{M}^{+}(n)$, with the maximum eigenvalue _M, the geometric convergence ratio is

 $r_{m} = 1 - 2\alpha(n)\lambda_{M}$

When the eigenvalues are close to each other then both extreme modes converge to their optimum values at approximately the same rate. But if the eigenvalue ratio λ_M / λ_m is high, the choice for $\alpha(n)$, as imposed by (III.11) brings a slower rate for $\underline{q}'_m(n)$ than that for $q'_M(n)$, thus degrades the overall performance of the algorithm.

III.2. CONVERGENCE OF THE MSE

As the algorithm adapts toward the optimum values the error e(n) is no more stationary and consequently the MSE depends on time:

$$\xi^{2}(n) = E\{||e(n)||^{2}\}$$

(III.13)

Combination of (III.3) with (III.13) gives

$$\xi^{2}(n) = \xi_{\min}^{2} + E\{\underline{p}^{*}(n)\underline{A} \ \underline{p}(n)\}$$
(III.14)

If the coordinate transformation as in (III.8) is applied to (III.14) it follows that

$$\xi^{2}(n) = \xi_{\min}^{2} + E\{\underline{p}'^{*}(n)\underline{\Lambda} \ \underline{p}'(n)\}$$
 (III.15)

or

$$\xi^{2}(n) = \xi_{\min}^{2} + \sum_{i=1}^{2N+1} \lambda_{i} E\{p_{i}^{!*}(n)p_{i}^{!}(n)\}$$

From the transformed version of (III.4)

$$p'_{i}(n+1) = p'_{i}(n) + 2\alpha(n)e^{*}_{op}(n)x'_{i}(n) - 2 \quad (n)x'_{i}(n) \quad \sum_{j=1}^{2N+1} x'_{j}(n)p'_{j}(n)$$

i: 1, 2,...,2N+1

•

is obtained. Since

$$\underline{x}^{*}(n) = \underline{M}^{*}\underline{x}(n)$$

and M is the diagonalizing transformation it is clear that.

$$E\{x_{i}^{\prime}(n)x_{i}^{\prime}(n)\} = \lambda_{i}\delta(i-j) \quad \forall i,j \qquad (III.1)$$

Then the product $E\{p_i'^*(n)p_i'(n)\}$ evolves according to

$$E\{p_{i}^{*}(n+1)p_{i}^{*}(n+1)\} = T_{1,1}^{+T}2,2^{+T}3,3^{+2T}1,2^{-2T}1,3^{-2T}2,3$$
 (III.1)

for i: 1,2,...,2N+1, where

 $T_{1,1} = E\{p_{i}^{i*}(n)p_{i}^{i}(n)\}$

80GAZIÇI ÜNIVERSITESI KÜTUPHANESI

(III.16)

7)

8)

- 25 -

$$T_{2,2} = 4\alpha^{2}(n) E\{e_{op}^{*}(n)e_{op}(n)x_{i}^{*}(n)x_{i}^{*}(n)\}$$

 $T_{3,3} = 4\alpha^{2}(n)E\{x_{i}^{!}(n)x_{i}^{!}(n) \sum_{\substack{j=1 \ k=1}}^{2N+1} x_{j}^{!}*(n)x_{k}^{!}(n)p_{j}^{!}(n)p_{k}^{!}*(n)\}$

$$T_{1,2} = 2\alpha(n) \dot{E} \{ e_{OP}^{*}(n) x_{i}^{!}(n) p_{i}^{!*}(n) \}$$

$$T_{1,3} = 2\alpha(n) E\{x_{i}'(n)p_{i}'*(n) \sum_{j=1}^{2N+1} x_{j}'*(n)p_{j}'(n)\}$$

 $T_{2,3} = 4\alpha^{2}(n) E\{e_{op}^{*}(n)x_{i}^{*}(n)x_{i}^{**}(n) \sum_{\substack{j=1\\j=1}}^{2N+1} x_{j}^{*}(n)p_{j}^{**}(n)\}$

Assuming $e_{op}(n)$ and $x_i(n)$ (i: 1,2,...,2N 1) are not only uncorrelated but also statistically independent $T_{2,2}$ becomes

$$T_{2,2} = 4\alpha^2(n) \xi_{\min}^2 \lambda_i$$

On the other hand the term $T_{1,2}$ vanishes if the orthogonality principle and Assumption 2 is applied. In $T_{3,3}$ the cross multiplications are zero in the mean, so it is reduced to a single summation and $T_{3,3}$ becomes

$$T_{3,3} = 4\alpha^{2}(n) \lambda_{i} \sum_{j=1}^{2N+1} \lambda_{j} E\{p_{j}^{*}(n)p_{j}^{*}(n)\}$$

Under the same assumptions $T_{2,3}$ also becomes zero. Finally for $T_{1,3}$

$$T_{1,3} = 2\alpha(n)\lambda_i E\{p_i^*(n)p_i^*(n)\}$$

ic found. Then (III.18) can be reexpressed as

$$E\{p_{i}^{!*}(n+1)p_{i}^{!}(n+1)\} = E\{p_{i}^{!*}(n)p_{i}^{!}(n)\} + 4\alpha^{2}(n)\lambda_{i}\sum_{\substack{j=1\\j=1}}^{2N+1} \lambda_{j}E\{p_{j}^{!*}(n)p_{j}^{!}(n)\}$$

 $-4\alpha(n)\lambda_{i}E\{p_{i}^{\prime*}(n)p_{i}^{\prime}(n)\}+4\alpha^{2}(n)\xi_{\min}^{2}\lambda_{i} \qquad (III.19)$

Let $\theta_i(n)$ denote $E\{p_i^{\prime*}(n)p_i^{\prime}(n)\}$. Then for i: 1,2,...,2N+1

$$e_{i}(n+1) = \left| 1-2\alpha(n)\lambda_{i} \right|^{2} e_{i}(n) + 4\alpha^{2}(n)\lambda_{i} \sum_{\substack{j=1\\j\neq i}}^{2N+1} \lambda_{j}e_{j}(n)$$

$$+4\alpha^{2}(n)\xi_{\min}^{2}\lambda_{i} \qquad (III.20a)$$

or

$$\theta_{i}(n+1) = \left| 1-4 (n)\lambda_{i} \right| \theta_{i}(n) + 4\alpha^{2}(n)\lambda_{i} \sum_{j=1}^{2N+1} \lambda_{j}\theta_{j}(n) + 4\alpha^{2}(n)\lambda_{i} \sum_{j=1}^{2N+1} \lambda_{j}\theta_{j}(n) + 4\alpha^{2}(n)\lambda_{i} \sum_{j=1}^{2N+1} \lambda_{j}\theta_{j}(n)$$

The excess MSE in (III.15) can also be written as

$$\xi_{ex}^{2}(n) = \sum_{i=1}^{2N+1} \lambda_{i} \theta_{i}(n)$$

or

$$\xi_{ex}^2$$
 (n) = $\underline{\lambda}^T \underline{\theta}(n)$

(III.21)

(III.20b)

where
$$\underline{\theta}(n) = \begin{cases} \theta_1(n) \\ \vdots \\ \theta_{2N+1}(n) \end{cases}$$

Then, from (III.20) $\theta(n)$ is found to behave as

$$\underline{\theta}(n+1) = \underline{R} \underline{\theta}(n) + 4\alpha^{2}(n) \xi_{\min}^{2} \underline{\lambda} \qquad (III.22)$$

where

assuming constant step-size.

The matrix <u>R</u> is real and symmetric, thus all eigenvalues of <u>R</u> are real. Therefore the transient behavior of the MSE is not oscillatory. It is known that a matrix whose elements are all positive and row sums are less than unity can have only eigenvalues with magnitude less than unity(29). For the matrix R the row sums are

$$1-4\alpha(n)\lambda_{i} + 4\alpha^{2}(n)\lambda_{i} + \sum_{j=1}^{2N+1} \lambda_{j}$$

Then the system in ϵqn . (III.22) is stable if

1-4 $(n)\alpha_i + 4\lambda^2(n)\lambda_i$ Trace A < 1

$$\alpha < \frac{1}{\text{Trace } A}$$

(III.23)

is satisfied. The bound in (III.23) is less than that in (III.11) which is required for the convergence of the tap coefficients Although this bound guarantees the convergence of both the tap coefficients and the MSE to the desired values it does not provide the optimum value for the fastest convergence. To obtain this optimum value for the step-size an upper bound for the excess MSE in (III.20) is to be considered. For λ_m and λ_M being the minimum and maximum eigenvalues of the matrix <u>A</u>, respectively the excess MSE at the (n+1) th instant is bounded by

$$\xi_{ex}^{2}(n+1) \leq \{1 - 4\alpha(n)\lambda_{m} + 4\alpha^{2}(n)\lambda_{M}^{2}(2N+1)\} \xi_{ex}^{2}(n) + 4\alpha^{2}(n)\lambda_{M}^{2}(2N+1)\xi_{min}^{2}(2N+1)\}$$
(III.24)

By minimizing this bound the optimum choice for $\alpha(n)$ can be obtained. Taking the derivative of the right hand side of. (III.24) with respect to $\alpha(n)$ gives

$$-\lambda_{m}\xi_{ex}^{2}(n) + 2\lambda_{M}^{2}(2N+1)\xi_{ex}^{2}(n) + 2\lambda_{M}^{2}(2N+1)\xi_{min}^{2}(n)$$

Thus the optimum value for $\alpha(n)$ is obtained by setting this derivative to zero:

$$\alpha_{\rm op}(n) = \frac{\lambda_{\rm m} \xi_{\rm ex}^2(n)}{2\lambda_{\rm M}^2 (2N+1) \left| \xi_{\rm ex}^2(n) + \xi_{\rm min}^2 \right|}$$
(III.25)

(III.25) shows that the optimum value of $\alpha(n)$ depends on (i) the eigenvalue ratio of the input correlation matrix, (ii) number of taps of the equalizer and (iii) it is a time-varying

- 29 -
scalar. But this expression includes the excess MSE and therefore it is difficult to handle. In order to find a simple bound on $\alpha(n)$ let us express $\xi^2 ex(n)$ in terms of $\alpha(n)$:

$${}^{2}_{ex}(n) = \frac{2\xi_{\min}^{2}\lambda_{M}^{2}(2N+1)\alpha_{op}(n)}{\lambda_{m}^{-2}\lambda_{M}^{2}(2N+1)\alpha_{op}(n)}$$
(III.26)

Since ξ_{ex}^2 (n) is a positive quantity, the denominator of (III.26) must be also positive. Consequently

$$\alpha_{op} (n) \leq \frac{\lambda_{m}}{2\lambda M^{2}(2N+1)}$$
(III.27)

is obtained. In fact as ξ_{ex}^2 (n) is greater than the minimum MSE ξ_{min}^2 (III.25) takes the form

$$\alpha_{op}(n) = \frac{\lambda_{m}}{2\lambda M^{2}(2N+1)}$$
(III.28)

Then as long as $\xi^2 ex(n)$ is large as compared with ξ^2 min the step-size $\alpha(n)$ can be held constant at its maximum value in (III.25). For the optimum step size in (III.25) the excess MSE $\xi^2_{av}(n)$ evolves according to

$$\xi_{ex}^{2}(n+1) \leq \xi_{ex}^{2}(n) - \frac{\{\xi^{2}ex(n)\lambda_{m}\}^{2}}{\left|\xi^{2}ex(n) + \xi^{2}min\right| \lambda_{M}^{2} (2N+1)}$$
(III.29)

or,

$$\xi_{ex}^{2}(n+1) \leq \left| 1 - 2\lambda_{m} \alpha(n) \right| \xi_{ex}^{2}(n) \qquad (III.30)$$

And, for the constant step-size in (3.27) the excess MSE decays at an exponential rate:

$$\xi_{ex}^{2}(n+1) \leq \left| 1 - \frac{\lambda_{m}}{\lambda_{M}^{2}(2N+1)} \right| \xi_{ex}^{2}(n) \qquad (III.31)$$

On the other hand as ξ_{ex}^2 (n) approaches to ξ_{min}^2 constant $\alpha(n)$ will be no more satisfactory. By combining (III.25) and (III.30)

$$\frac{\alpha_{op}(n+1)}{\lambda_{m}^{2} - 2\lambda_{M}^{2}(2N+1)\alpha_{op}(n+1)} \qquad \frac{\left|1-2\alpha_{op}(n)\lambda_{m}\right|\alpha_{op}(n)}{\lambda_{m}^{2} - 2\lambda_{M}^{2}(2N+1)\alpha_{op}(n)}$$

is found. After some manipulations it follows that

$$\alpha_{op}^{(n+1)} \leq \alpha_{op}^{(n)} \frac{1 - 2\lambda_{m}^{\alpha} \alpha_{op}^{(n)}}{\left|1 - 2\lambda_{M}^{(2N+1)} \alpha_{op}^{(n)}\right| \left|1 + 2\lambda_{M}^{(2N+1)} \alpha_{op}^{(n)}\right|}$$
(III.33)

In order for $\xi_{ex}^2(n)$ to monotonically decrease $\alpha_{op}(n)$ must also decrease as imposed by (III.25). Then, for some $n \ge n_o \alpha_{op}(n)$ so decreases that (III.33) takes the form

$$\alpha_{op}^{(n+1)} \leq \alpha_{op}^{(n)} \frac{1}{1 + 2\lambda_{M}^{(2N+1)} \alpha_{op}^{(n)}}$$
 (III.34)

From (III.34) it is found that

$$\alpha_{op}(n) \leq \frac{\alpha(n_o)}{1+2\lambda_M (2N+1) (n-n_o)\alpha(n_o)} \quad n \geq n_o \quad (III.35)$$

Then the excess MSE $\xi_{ex}^2(n)$ also decreases in $\frac{1}{n}$ fashion.

In summary the algorithm attains the maximum rate of convergence if the step-size $\alpha(n)$ is set to the maximum value in (III.28) at the beginning and is decreased according to (III.35) after the excess MSE has been considerably decreased.

- 31 -

For constant α the 2-transform of (III.20) is given by

$$z\theta_{i}(2)-z\theta_{i}(0) = \left|1-2\alpha\lambda_{i}\right|^{2} \theta_{i}(z) \quad 4\alpha^{2}\lambda_{i} \quad \sum_{\substack{j=1\\j\neq i}}^{2N-1} \lambda_{j}\theta_{j}(z)$$

$$+4\alpha^2 \xi_{\min}^2 \lambda_i \frac{z}{z-1}$$
 i: 1,2,...,2N+1

 $N \sim 1$

(111.36)

Then,

$$\theta_{i}(z) = \frac{z \theta_{i}(0)}{z - \left|1 - 2\alpha\lambda_{i}\right|^{2}} + 4\alpha^{2}\lambda_{i} \frac{\sum_{\substack{j=1\\j\neq i}}^{2N+1}\lambda_{j}}{j \neq i} \frac{\theta_{j}(z)}{z - \left|1 - 2\alpha\lambda_{i}\right|^{2}} + 4\alpha^{2} \xi_{\min}^{2} \frac{z}{(z - 1)\left[z - (1 - 2\alpha\lambda_{i})^{2}\right]} \quad i: 1, 2, ... 2$$

Since $\alpha \neq 0$ and $\lambda = 1$ is not an eigenvalue of the matrix R, z=1 is not a pole of any term in the equation above Hence,

$$\lim_{z \to 1} \{(z-1)\theta_{i}(z)\} = \frac{4\alpha^{2}\xi_{\min}^{2}\lambda_{i}}{4\alpha \lambda_{i}(1-\alpha\lambda_{i})}$$

$$=\xi_{\min}^2 \frac{\alpha}{1-\alpha\lambda_i}$$

is the steady-state value of $\theta_i(n)$. (i: 1,2,...,2N 1). Then, it follows that

$$\lim_{n \to \infty} \xi_{\min}^2 = \xi_{\min}^2 + \sum_{i=1}^{2N+1} \frac{\alpha \lambda_i}{1 - \alpha \lambda_i} \xi_{\min}^2$$

- 32 -

Let λ_{ave} be $\frac{1}{2N+1}$ Trace A, then (III.36) becomes

$$\lim_{n \to \infty} \xi^{2}(n) \gtrsim \xi^{2}_{\min} + \frac{(2N+1)\alpha\lambda_{ave}}{1-\alpha\lambda_{ave}} \xi^{2}_{mn} \qquad (III.37)$$

Although (III.37) has been derived for constant α it gives on approximation for the time-varying step-size. At least it indicates that the steady-state excess MSE depends on the number of taps and α . An icrease in either of them causes on increase in the excess MSE at steady-state.

III.3. EFFECTS OF DIGITAL IMPLEMENTATION

Up to that point all the quantities involved are assumed to be anolog. However, adjustable parameters are to be quantized when the equalizer is digitaly implemented.

Consider the algorithm in (II.15) as composed to its real and imaginary components:

$$\frac{c_R(n+1)}{c_R} = \frac{c_R(n)}{c_R} + \frac{2\alpha(n)}{c_R} |e^*(n)| \frac{x(n)}{r_R} |R|$$

$$\frac{c_I(n+1)}{c_I} = \frac{c_I(n)}{r_R} + \frac{2\alpha(n)}{r_R} |e^*(n)| \frac{x(n)}{r_R} |\tilde{r}|$$

where the subscripts <u>R</u> and <u>I</u> denote the real and imaginary. parts, respectively. Since the variables $\underline{c}_{R}(n+1)$ and $\underline{c}_{I}(n+1)$ are to be quantized, whenever the up doing terms are less than the least significant digit (LSD) the adaptation tends to stop. In other words whenever

 $2\alpha(n) |e^{*}(n) \underline{x}(n)|_{R} \leq LSD$

and

 $2\alpha(n) |e^{*}(n) \underline{x}(n)|_{I} \leq LSD$

(III.38)

happens, these terms are truncated consequently, the adaptation stops at an earlier stage. If the equations in (III.38) are combined

$$4\alpha^{2}(n) ||e^{*}(n) \underline{x}(n)||^{2} \leq 2(LSD)^{2}$$
 (III.39)

is found. Then the number of bits and the step-sized must be chosen in such a way that the above in equality does not come into place before the algorithm approaches to the minimum MSE. It is clear from (III.39) that the minimum number of bits required for a satisfactory adaptation performance will be less when the optimum MSE is high.

Now, expected value of (III.39) is approximately

(III.40)

$$\xi^{2}(n) = \frac{(LSD)^{2}}{2\alpha^{2} E\{||\underline{x}(n)||^{2}}$$

As the adaptation goes on the left hand side of (III.40) approaches to

$$\xi_{\min}^{2} \left| 1 + \frac{(2N+1) \alpha \lambda_{ave}}{1 - \alpha \lambda_{ave}} \right|$$

Thus, the algorithm will not be affected by quantization if the relation

$$\xi_{\min}^{2} \left| 1 + \frac{(2N+1)}{1 - \alpha \lambda_{ave}} \right|_{z\alpha^{2}} = \frac{(LSD)^{2}}{2\alpha^{2} E \left\{ \left| \left| \underline{x}(n) \right| \right|^{2} \right\}}$$

holds.

IV. KALMAN/GODARD ALGORITHM

In Chap. III it has been seen that the convergence rate of the stochastic gradient algorithm is highly affected by the eigenvalue spread of the input correlation matrix <u>A</u>. One method to eliminate the effect of the eigenvalue spread may be to use different step-size for each mode. Thus, instead of the algorithm

(IV.1)

$$c(n+1) = c(n) + \alpha(n)x(n)e^{*}(n)$$

that one

$$c(n+1) = c(n) + \pi(n) x(n) e^{*}(n)$$

is suggested. In this case, expected value of the tap coefficient error vector evolves according to

$$\underline{q}(n+1) = \left[\underline{I} - \underline{\pi}(n)\underline{A}\right] \underline{q}(n)$$

under Assumption 2. If the matrix $\underline{\pi}(n)$ could be \underline{A}^{-1} , inverse of the channel correlation matrix, then the algorithm in (IV.1) would converge in a few steps. Although \underline{A}^{-1} is not known a priori, it can be recursively estimated. Then these estimates can be used in updating the tap coefficient vector. This method is also equivalent to construct the algorithm as

$$\underline{A}(n)\underline{c}(n) = \underline{b}(n)$$
(IV.2)

where $\underline{A}(n)$ and $\underline{b}(n)$ are the n th estimates of the correlation matrices \underline{A} and \underline{b} .

IV.1. DERIVATION OF THE KALMAN/GODARD ALGORITHM^(*)

Given the output of the TDL equalizer as

$$y(n) = \underline{c}^{*}(n-1)\underline{x}(n)$$
 (IV:3)

the problem is the same as stated in Chap. II. Let $\underline{A}(n)$ denote the n th estimate of the input correlation matrix \underline{A} . Since the environment is taken stationary/ergodic

$$\underline{A}(n) = \frac{1}{n} \sum_{i=1}^{n} \underline{x}(i) \underline{x}^{*}(i)$$
(IV.4)

is an asymptotically unbiased estimate for <u>A</u>. From (IV.4) it is seen that

$$nA(n) = (n-1)A(n-1) + x(n)x^{*}(n)$$
 (IV.5)

Similarly, the n the estimate of the correlation vector \underline{b} is taken as

$$\underline{b}(n) = \frac{1}{n} \sum_{i=1}^{n} a^{*}(i) \underline{x}(i)$$
(IV.6)

and evolves according to

$$nb(n) = (n-1)b(n-1) + a^{*}(n)x(n)$$
 (IV.7)

Combining (IV.2) and (IV.7) gives

(*) Another derivation of the algorithm based on Kalman filtering is given in Appendix 4.

$$n\underline{A}(n)\underline{c}(n) = (n-1)\underline{b}(n-1) + a^{*}(n)x(n)$$
 (IV.8)

Since the error e(n) is

$$e(n) = a(n) - c^*(n-1)x(n)$$
 (IV.9)

(IV.8) becomes

 $n\underline{A}(n)\underline{c}(n) = (n-1)\underline{b}(n-1) + e^{*}(n)\underline{x}(n) + \underline{x}(n)\underline{x}^{*}(n)\underline{c}(n-1)$ (IV.10)

By putting $\underline{A}(n-1)\underline{c}(n-1)$ instead of $\underline{b}(n-1)$ is (IV.10)

$$\underline{n\underline{A}(n)\underline{c}(n)} = (\underline{n-1})\underline{A}(\underline{n-1})\underline{c}(\underline{n-1}) + \underline{e}^{*}(\underline{n})\underline{x}(\underline{n}) + \underline{x}(\underline{n})\underline{x}^{*}(\underline{n})\underline{c}(\underline{n-1})$$

(IV.11)

is obtained. On the other hand, from (IV.5), it is seen that:

$$(n-1)\underline{A}(n-1) = \underline{n} \underline{A}(n) - \underline{x}(n)\underline{x}^{*}(n)$$
 (IV.12)

Thus,

$$\underline{A}(\underline{n})\underline{c}(\underline{n}) = \underline{n} \underline{A}(\underline{n})\underline{c}(\underline{n-1}) - \underline{x}(\underline{n})\underline{x}^{*}(\underline{n})\underline{c}(\underline{n-1}) + e^{*}(\underline{n})\underline{x}(\underline{n}) +$$

+
$$x(n)x^{*}(n)c(n-1)$$

or

$$\underline{c}(n) = \underline{c}(n-1) + \left[\underline{nA}(n)\right]^{-1} \underline{x}(n) e^{*}(n) \qquad (IV.13)$$

is found. D(n) is defined as

$$\underline{\mathbf{D}}(\mathbf{n}) = \left[\underline{\mathbf{n}}\underline{\mathbf{A}}(\mathbf{n})\right]^{-1}$$
(IV.14)

Hence, (IV.13) takes the form

$$c(n) = c(n-1) + D(n)x(n)e^{*}(n)$$
 (IV.15)

(IV.5) can be reexpressed as

$$\underline{D}(n)^{-1} = \underline{D}(n-1)^{-1} + \underline{x}(n)\underline{x}^{*}(n)$$

and using matrix inversion lemma $\underline{D}(n)$ can be recursively computed as

$$\underline{D}(n) = \underline{D}(n-1) - \frac{\underline{D}(n-1)\underline{x}(n)\underline{x}^{*}(n)\underline{D}(n-1)}{1+\underline{x}^{*}(n)\underline{D}(n-1)\underline{x}(n)}$$
(IV.16)

Now, the term D(n)x(n), which is called Kalman gain, is

$$\underline{D}(n)\underline{x}(n) = \underline{D}(n-1)\underline{x}(n) \left[1 - \frac{\underline{x}^{*}(n)\underline{D}(n-1)\underline{x}(n)}{1 + \underline{x}^{*}(n)\underline{D}(n-1)\underline{x}(n)} \right]$$
$$= \underline{D}(n-1)\underline{x}(n) / \left[1 + \underline{x}^{*}(n)\underline{D}(n-1)\underline{x}(n) \right]$$
(IV.17)

Consequently, the algorithm can be operated as

$$\underline{g}(n) = \underline{D}(n-1) \underline{x}(n) / \left[1 + \underline{x}^*(n) \underline{D}(n-1) \underline{x}(n) \right]$$
(IV.18)

$$\underline{D}(n) = \underline{D}(n-1) - \frac{D(n-1)\underline{x}(n)\underline{x}^*(n)\underline{D}(n-1)}{1 + x^*(n)\underline{D}(n-1)\underline{x}(n)}$$
(IV.16)

$$y(n) = \underline{c}^{*}(n-1)\underline{x}(n)$$
(IV.3)

$$e(n) = a(n) - y(n)$$
(IV.9)

$$\underline{c}(n) = \underline{c}(n-1) + \underline{g}(n) e^{*}(n)$$
(IV.19)

However, the algorithm has the danger that $\underline{A}(n)$ can be singular at the beginning of the iteration, but this danger can be eliminated by slightly modifying the expression for A(n) as

$$\underline{A}(n) = \frac{1}{n} \sum_{i=1}^{n} \underline{x}(i) \underline{x}(i)^{*} + \delta \underline{I}$$

(IV.20)

where δ is a small positive constant. In this case <u>D</u>(o) is initialized as

$$\underline{\mathbf{D}}(\mathbf{o}) = \frac{1}{\delta} \underline{\mathbf{I}}$$
(1V.21)

and nothing changes in the algorithm.

IV.2. CONVERGENCE OF THE TAP COEFFICIENT VECTOR

According to Eqn. (IV.15) the tap coefficient error vector behaves as

$$\underline{p}(n) = \underline{p}(n-1) + \underline{D}(n)\underline{x}(n)e^{*}(n)$$
 (IV.22)

It is convenient to write Eqn. (IV.22) as

$$\underline{p}(n) = \underline{p}(n-1) + \underline{D}(n)\underline{x}(n) \left[e^*_{op}(n) - x^*(n)\underline{p}(n-1) \right] \quad (IV.23)$$

Since $e_{op}(n)$ and $\underline{x}(n)$ are orthogonal and input sample vector at different instants are independent (by Assumption 2).

 $E\{\underline{D}(n)\underline{x}(n)e_{op}^{*}(n)\} = \underline{0}$

By the same reasoning

$$E\{\underline{D}(n)\underline{x}(n)\underline{x}^{*}(n)\underline{p}(n-1)\} = \begin{bmatrix} n \\ \Sigma & E\{\underline{x}(i)\underline{x}^{*}(i)\} \end{bmatrix}^{-1} & E\{\underline{x}(n)\underline{x}^{*}(n)\} \\ .E\{\underline{p}(n-1)\} \\ = \begin{bmatrix} n\underline{A} \end{bmatrix}^{-1} & \underline{q}(n-1) \\ = \frac{1}{n} & \underline{q}(n-1) \end{bmatrix}$$

Then, it follows that

$$\underline{q}(n) = \left[1 - \frac{1}{n}\right] \underline{q}(n-1)$$
(IV.24)

As n goes to infinity $\underline{q}(n)$ reaches a steady-state, i.e.,

$$\lim_{n \to \infty} \underline{q}(n) = \lim_{n \to \infty} (1 - \frac{1}{n}) \underline{q}(n-1)$$
$$= \lim_{n \to \infty} \underline{q}(n-1)$$

The solution for q(n) is then

$$\underline{q}(n) = \frac{(n-1)!}{n!} \underline{q}(2)$$

 $=\frac{1}{n} \underline{q}(2)$

Thus,

$$\lim_{n \to \infty} \underline{q}(n) = \lim_{n \to \infty} \frac{1}{n} \underline{q}(2)$$
$$= \underline{0}$$

that is, the estimates for the tap coefficients are asymptotically unbiased for all finite initial settings. But the convergence of the MSE has not been examined yet. This is the subject of the following section.

IV.3. CONVERGENCE OF THE MSE

The MSE, as seen in Chap. III consists of the minimum value and the excess MSE:

$$\xi^{2}(n) = \xi_{\min}^{2} + E\{\underline{p}^{*}(n)\underline{A} \ \underline{p}(n)\}$$

The Hermitian form in the expoctation is

$$\underline{p}^{*}(n)\underline{A} \ \underline{p}(n) = \underline{p}^{*}(n-1)\underline{A} \ \underline{p}(n-1) + e_{op}(n)e_{op}^{*}(n)\underline{x}^{*}(n)\underline{D}(n)\underline{A} \ \underline{D}(n)\underline{x}(n)$$

$$+ p^{*}(n-1)\underline{x}(n)\underline{x}^{*}(n)\underline{D}(n)\underline{A} \ \underline{D}(n)\underline{x}(n)\underline{x}^{*}(n)\underline{p}(n-1)$$

$$+ 2 \ e_{op}^{*}(n)\underline{x}^{*}(n)\underline{D}(n)\underline{A} \ \underline{p}(n-1)$$

$$- 2 \ p^{*}(n-1)\underline{x}(n)\underline{x}^{*}(n)\underline{D}(n)\underline{A} \ \underline{D}(n)\underline{x}^{*}(n)\underline{p}(n-1)$$

$$- 2 \ e_{op}(n)\underline{x}^{*}(n)\underline{D}(n)\underline{A} \ \underline{D}(n)\underline{x}^{*}(n)\underline{p}(n-1)$$

The expactation of the above expression transformed into primed coordinates is

$$E\{\underline{p}'*(n)\underline{\Lambda} \ \underline{p}'(n)\} = T_{1,1}^{+T}2, 2^{+T}3, 3^{+2T}1, 2^{-T}1, 3^{-2T}2, 3$$

where

$$T_{1,1} = E\{\underline{p}^{*}(n-1)\underline{A} \underline{p}^{*}(n-1)\}$$

$$T_{2,2} = E\{e_{op}(n)e_{op}^{*}(n)\underline{x}^{*}(n)\underline{D}^{*}(n)\underline{A} \underline{D}^{*}(n)\underline{x}^{*}(n)\}$$

$$T_{3,3} = E\{\underline{p}^{*}(n-1)\underline{x}^{*}(n)\underline{x}^{*}(n)\underline{D}^{*}(n)\underline{A} \underline{D}^{*}(n)\underline{x}^{*}(n)\underline{p}^{*}(n-1)\}$$

$$T_{1,2} = E\{e_{op}^{*}(n)\underline{x}^{*}(n)\underline{D}^{*}(n)\underline{A} \underline{p}^{*}(n-1)\}$$

$$T_{1,3} = E\{\underline{p}^{*}(n-1)\underline{x}^{*}(n)\underline{D}^{*}(n)\underline{A} \underline{p}^{*}(n-1)\}$$

$$T_{2,3} = E\{e_{op}(n)\underline{x}^{*}(n)\underline{D}^{*}(n)\underline{A} \underline{D}^{*}(n)\underline{x}^{*}(n)\underline{p}^{*}(n-1)\}$$

$$T_{2,3} = E\{e_{op}(n)\underline{x}^{*}(n)\underline{D}^{*}(n)\underline{A} \underline{D}^{*}(n)\underline{x}^{*}(n)\underline{p}^{*}(n-1)\}$$

$$The first term is the excess MSE at the (n-1) st instant:$$

$$\xi_{ex}^{2}(n-1) = T_{1,1} = \sum_{i=1}^{2N+1} \lambda_{i} E\{p_{i}^{*}(n-1)p_{i}^{i}(n-1)\}$$

For the second term, applying Assumption 2

$$T_{2,2} = E\{e_{op}^{*}(n)e_{op}(n)\} \quad E\{\underline{x}^{*}(n) \ \frac{1}{n} \ \underline{\Lambda}^{-1}\underline{\Lambda} \ \underline{\Lambda}^{-1} \ \frac{1}{n} \ \underline{x}^{*}(n)\}$$
$$= \frac{1}{n^{2}} \xi_{\min}^{2} \ \frac{\sum_{i=1}^{2N+1} \frac{1}{\lambda_{i}}}{i=1} E\{x_{i}^{*}(n)x_{i}^{*}(n)\}$$
$$= \frac{1}{n^{2}} \xi_{\min}^{2} \ (2N+1)$$

is obtained. With the same reasoning \sim

Т

$$T_{3,3} = E\{\underline{p}^{*}(n-1)\underline{x}^{*}(n)\underline{x}^{*}(n)\underline{\Lambda}^{-1}\underline{\Lambda} \underline{\Lambda}^{-1} \underline{x}^{*}(n)\underline{x}^{*}(n)\underline{p}^{*}(n-1)\}$$
$$= \frac{1}{n^{2}} E\{\underline{p}^{*}(n-1)\underline{x}^{*}(n)\underline{x}^{*}(n)\underline{\Lambda}^{-1}\underline{x}^{*}(n)\underline{x}^{*}(n)\underline{p}^{*}(n-1)\}$$

$$= \frac{1}{n^{2}} E \left\{ \sum_{i=1}^{2N+1} \frac{1}{\lambda_{i}} x_{i}^{i*}(n) x_{i}^{i}(n) \sum_{j=1}^{2N+1} x_{j}^{i*}(n) p_{j}^{i}(n-1) \sum_{k=1}^{2N+1} x_{k}^{i}(n) p_{j}^{i}(n-1) \sum_{k=1}^{2N+1} x_{k}^{i}(n) p_{j}^{i}(n-1) \sum_{k=1}^{2N+1} p_{j}^{i}(n-1) p_{j}^{i}(n$$

$$p_{k}^{\prime*(n-1)}$$

is found. Unless j = k, the terms $x_j^{\prime *}(n) x_k^{\prime}(n)$ in expactation vanish. Thus

$$3,3 = \frac{1}{n^2} \sum_{i=1}^{2N+1} \sum_{j=1}^{2N+1} \frac{1}{i} E\{x_i'(n)x_i'^*(n)\}E\{x_j'^*(n)x_j'(n)\}$$
$$\cdot E\{p_j'^*(n-1)p_j'(n-1)\}$$

$$= \frac{(2N+1)}{n^2} \sum_{i=1}^{2N+1} \lambda_i E p_i^{*}(n-1)p_i^{*}(n-1) \}$$

By means of orthogonality principle $T_{1,2}$ and $T_{2,3}$ are zero. Finally,

$$T_{1,3} = \frac{1}{n} \sum_{i=1}^{2N+1} \lambda_i E\{p_i^{*}(n-1)p_i^{*}(n-1)\}$$

Therefore the excess MSE adapts as

$$\xi_{ex}^{2}(n) = \{1 - \frac{2}{n} + \frac{(2N+1)}{n^{2}}\}\xi_{ex}^{2}(n-1) + \frac{(2N+1)}{n^{2}}\xi_{min}^{2}$$
(IV.25)

Take the limits of both sides of this equation as n goes to infinity

$$\lim_{n \to \infty} \xi_{ex}^{2}(n) = \lim_{n \to \infty} \{1 - \frac{2}{n} + \frac{(2N+1)}{n^{2}}\} \xi_{ex}^{2}(n-1) + \lim_{n \to \infty} \frac{(2N+1)}{n^{2}} \xi_{min}^{2}$$

$$= \lim_{n \to \infty} \xi^2_{ex}(n-1)$$

In other words the system in (IV.25) reaches to a steady state value, which is

$$\frac{1}{n} \left[2 - \frac{2N+1}{n} \right] \xi_{ex}^{2}(n) = \frac{1}{n^{2}} (2N+1) \xi_{min}^{2}$$

 $\xi_{ex}^{2}(n) = \frac{(2N+1)}{2n - (2N+1)} \xi_{min}^{2}$ (IV.26)

Then, the algorithm would converge to the minimum MSE in approximately 2 x (2N+1) steps.

V, FAST KALMAN EQUALIZER ALGORITHM

V.1. COMPUTATIONAL COMPLEXITY OF THE STOCHASTIC GRADIENT AND KALMAN/GODAD ALGORITHMS ,

- 44 -

The stochastic gradient algorithm requires 2M complex multiplications where M is the number of taps, i.e., M=2N+1. Although having very fast rate of convergence Kalman/Codard algorithm is computationally complex. Utilizing the Hermitian property of the matrix D(n) one needs 3/2 M²+3M complex multiplications in this case. Obviously this is a considerable increase in computational complexity. However, in the formulation of the Kalman/Godard algorithm the property that every input vector $\underline{x}(n)$ contains only one element different than those in the previous one was not used. It is that property which enables us to develop a new computation method for the Kadman/Godard algorithm, as will be done in the following section.

V.2. DERIVATION OF THE FAST KALMAN ALGORITHM

The Kalman gain in (IV.8) is

g(n) = D(n)x(n)

(V.1)

Let $\underline{W}(n)$ denote $n\underline{A}(n)$, i.e.,

$$\underline{\underline{W}}(n) = \sum_{i=1}^{n} \underline{\underline{x}}(i) \underline{\underline{x}}^{*}(i)$$

Then, $\underline{D}(n) = \underline{W}(\overline{n})$ and (V.1) can be rewritten as

$$\underline{W}(n)\underline{g}(n) = \underline{x}(n) \qquad (V.3)$$

(V.2)

(v.4)

Let $\mu(n)$ be x(n+N+1) and $\mu(n-M)$ be x(n-N),

$$\underline{\mathbf{x}}(\mathbf{n}) = \begin{bmatrix} \mu(\mathbf{n}-1) \\ \vdots \\ \mu(\mathbf{n}-M) \end{bmatrix} : \underline{\mathbf{x}}(\mathbf{n}+1) = \begin{bmatrix} \mu(\mathbf{n}) \\ \vdots \\ \mu(\mathbf{n}-M+1) \end{bmatrix}$$

The extended input vector $\frac{x}{-ex}(n)$ is defined as

$$\underline{\mathbf{x}}_{e \mathbf{x}}(\mathbf{n}) = \begin{bmatrix} \mu(\mathbf{n}) \\ \vdots \\ \underline{\mathbf{x}}(\mathbf{n}) \end{bmatrix} = \begin{bmatrix} \underline{\mathbf{x}}(\mathbf{n}+1) \\ \vdots \\ \mu(\mathbf{n}-M) \end{bmatrix}$$

Similarly, the extended correlation matrix $\frac{W}{-ex}(n)$ is

$$\frac{W}{e_x}(n) = \sum_{i=1}^{n} \frac{x_{e_x}(i)}{\sum_{i=1}^{n} \frac{x_{e_x}}{e_x}(n)}$$
(V.5)

 $\frac{W}{ex}$ (n) can also be expressed in the following ways:

$$\underline{W}_{ex}(n) = \begin{bmatrix} n & i & n \\ \Sigma & \mu(i)\mu(i)^{*} & i & \Sigma & \mu(i)\underline{x}^{*}(i) \\ i=1 & i & i=1 \\ & & & \\ n & & & \\ \Sigma & \mu(i)^{*}\underline{x}(i) & i & \Sigma & \underline{x}(i)\underline{x}^{*}(i) \\ i=1 & i=1 \end{bmatrix} = \begin{bmatrix} \eta(n) & \underline{z}^{*}(n) \\ & & \\ \vdots \\ \vdots \\ \mu(n) & \mu(n) \\ \vdots \\ \mu(n) & \mu(n) \end{bmatrix}$$
(V.6)

Now, assume that the gain vector $\underline{g}(n)$ is known. Then the problem is to find $\underline{g}(n+1)$ satisfying

 $\underline{W}(n+1)\underline{g}(n+1) = \underline{x}(n+1)$

As a first step assume that some vector $\underline{f}(n)$ and Scalar $\Sigma(n)$ are known such that

$$\frac{M_{ex}(n)}{f(n)} \begin{bmatrix} 1\\ ----\\ \underline{f}(n) \end{bmatrix} = \begin{bmatrix} \Sigma(n)\\ ----\\ \underline{0} \end{bmatrix}$$

and form the extended gain vector as

Then it follows that

$$\underline{\underline{W}}_{ex}(n)\underline{\underline{g}}_{ex}(n) = \underline{\underline{W}}_{ex}(n) \left[\underbrace{\underline{0}}_{\underline{\underline{s}}(n)}^{-} - \underline{\underline{W}}_{ex}(n) \left[\underbrace{\underline{1}}_{\underline{\underline{f}}(n)}^{-} \sum_{\underline{\underline{f}}(n)}^{-} \underline{\underline{t}}_{\underline{z}}^{*}(n)\underline{\underline{g}}(n) - \mu(n) \right]$$

(V.8)

(V.9)

$$= \underline{W}_{ex}(n) \begin{bmatrix} 0 \\ ---- \\ \underline{g}(n) \end{bmatrix} - \begin{bmatrix} \Sigma(n) \\ ---- \\ \underline{0} \end{bmatrix} \underline{\Sigma}(n) | \underline{z}^{*}(n)\underline{g}(n) - \mu(n) |$$

$$= \underline{W}_{ex}(n) \begin{bmatrix} 0\\ ---\\ \underline{g}(n) \end{bmatrix} - \begin{bmatrix} \underline{z}^*(n)\underline{g}(n) - \mu(n)\\ ----\\ \underline{0} \end{bmatrix}$$

On the other hand from (V.6)

$$\underbrace{W}_{ex}(n) \begin{bmatrix} 0 \\ ---- \\ \underline{g}(n) \end{bmatrix} = \begin{bmatrix} n(n), & \underline{z}^{*}(n) \\ ----- \\ \underline{z}(n), & \underline{W}(n) \end{bmatrix} \begin{bmatrix} 0 \\ ---- \\ \underline{g}(n) \end{bmatrix}$$

$$= \begin{bmatrix} \underline{z}^{*}(n) \underline{g}(n) \\ ----- \\ \underline{x}(n) \end{bmatrix}$$

Thus, combining (V.10) and (V.11)

$$\frac{W}{ex}(n)\underline{g}_{ex}(n) = \underline{x}_{ex}(n)$$

is obtained.

Secondly, partion $\underline{g}_{ex}(n)$ such that $\underline{g}_{ex}(n) = \begin{bmatrix} \underline{h}(n) \\ ---- \\ s(n) \end{bmatrix}$ (0.10)

(V.11)

(V.12)

(V.13),

and assume that there exist $\underline{k}(n)$ and Y(n) such that

$$\underline{W}_{ex}(n) = \begin{bmatrix} \underline{k}(n) \\ --- \\ Y(n) \end{bmatrix} = \begin{bmatrix} \underline{0} \\ -- \\ 1 \end{bmatrix}$$

Note that if (V.7) is used

$$\frac{W_{ex}(n)g_{ex}(n)}{t^{*}(n)} = \begin{bmatrix} W(n+1) & I & I \\ I & I & I \\ t^{*}(n) & I & \beta(n) \end{bmatrix} \begin{bmatrix} h(n) \\ I & I \\ s(n) \end{bmatrix}$$

$$\frac{\underline{W}(n+1)\underline{h}(n) + \underline{t}(n) s(n)}{\underline{t}^{*}(n)\underline{h}(n) + \beta(n)s(n)}$$

From Eqn.(V.12) is found a different expression for $\underline{W}_{ex}(n)$ $\underline{g}_{ex}(n)$ is

$$\frac{W_{ex}(n)g_{ex}(n)}{\mu(n-M)} = \begin{bmatrix} \frac{x(n+1)}{----} \\ \mu(n-M) \end{bmatrix}$$
(V.16)

Thus, equating (V.15) and (V.16)

$$W(n+1)h(n) + t(n)s(n) = x(n+1)$$

is obtained. From (V.14) it is seen that

$$W(n+1)k(n) + t(n)Y(n) = 0$$
 (V.18)

Thus $\underline{t}(n) = -Y^{-1}(n)\underline{W}(n+1)\underline{k}(n)$, and putting this value into (V.17) gives

(V.14)

(v.15)

(V.17)

 $\underline{W}(n+1)\underline{h}(n) - \underline{W}(n+1)\underline{k}(n)\underline{Y}^{-1}(n)\underline{s}(n) = \underline{x}(n+1)$

or,

$$\underline{W}(n+1) |\underline{h}(n) - \underline{k}(n)Y^{-1}(n)s(n)| = \underline{x}(n+1)$$
 (V.19)

But then by definition

$$\underline{g}(n+1) = \underline{h}(n) - \underline{k}(n)Y^{-1}(n)s(n)$$
 (V.20)

Then it remains to update the variables f(n), $\Sigma(n)$, k(n) and Y(n).

From (V.6) and (V.8) it is seen that

$$\underline{z(n)} + \underline{W(n)}\underline{f(n)} = 0$$

Since

$$z(n) = z(n-1) + \mu^{*}(n)x(n)$$

it follows that

$$z(n-1) + \mu^*(n)x(n) + W(n)f(n) = 0$$

On the other hand

$$z(n-1) = -W(n-1)f(n-1)$$

and thus

 $-\underline{W}(n-1)\underline{f}(n-1) + \mu^{*}(n)\underline{x}(n) + \underline{W}(n)\underline{f}(n) = \underline{0}$

Using

$$W(n-1) = W(n) - x(n)x^{*}(n)$$

and $\underline{W}(n)\underline{g}(n) = \underline{x}(n)$

$$\underline{W}(n) = \underline{f}(n-1) + \underline{g}(n)\underline{x}^{*}(n)\underline{f}(n-1) + \underline{g}(n)\underline{u}^{*}(n) + \underline{f}(n) = 0$$

is obtained. $\underline{W}(n)$ is nonsingular, then $\underline{f}(n)$ can be updated as

$$\underline{f}(n) = \underline{f}(n-1) - \underline{g}(n) | \mu^{*}(n) + \underline{x}^{*}(n)\underline{f}(n-1) | \qquad (V.21)$$

For $\Sigma(n)$, note that

 $\eta(n) + \underline{z}^*(n)\underline{f}(n) = \Sigma(n)$

from (V.6) and (V.8). Since

$$\eta(n) = \eta(n-1) + \mu(n)\mu^{*}(n)$$

and

$$n(n-1) = \Sigma(n-1) - z^*(n-1) f(n-1)$$

 $\Sigma(n)$ becomes,

$$\Sigma(n) = \Sigma(n-1) - z^*(n-1) \underline{f}(n-1) + z^*(n) \underline{f}(n) + \mu(n) \mu^*(n)$$

or

$$\Sigma(n) = \Sigma(n-1) - z^{*}(n)f(n-1) + \mu(n)x^{*}(n)f(n-1) + z^{*}(n)f(n) + \mu(n)\mu^{*}(n)$$

Using (V.21) gives

$$\Sigma(n) = \Sigma(n-1) + \mu(n)\mu^{*}(n) + \mu(n)\underline{x}^{*}(n)\underline{f}(n-1) - \underline{z}^{*}(n)\underline{g}(n) + \mu^{*}(n) + \underline{x}^{*}(n)\underline{f}(n-1)$$

Thus $\Sigma(n)$ is updated as

$$\Sigma(n) = \Sigma(n-1) + |\mu(n) - \underline{z}^{*}(n)\underline{g}(n)| |\mu^{*}(n) + \underline{x}^{*}(n)\underline{f}(n-1)| \quad (V.22)$$

The remaining variables to be updated are $\underline{k}(n)$ and Y(n) in (V.14). It is clear that

$$\frac{W}{ex}(n) \begin{bmatrix} \underline{k}(n) \\ ---- \\ Y(n) \end{bmatrix} = \frac{W}{ex}(n-1) \begin{bmatrix} \underline{k}(n-1) \\ ----- \\ Y(n-1) \end{bmatrix}$$

Then it follows that

$$\frac{W}{e_{x}}(n) \begin{bmatrix} k(n) \\ ---- \\ Y(n) \end{bmatrix} = \frac{W}{e_{x}}(n) \begin{bmatrix} \underline{k}(n-1) \\ ----- \\ Y(n-1) \end{bmatrix} - \frac{x}{e_{x}}(n) \frac{x^{*}}{e_{x}}(n) \begin{bmatrix} \underline{k}(n-1) \\ ----- \\ Y(n-1) \end{bmatrix}$$

Consequently using (V.12)

$$\begin{bmatrix} \underline{k}(n) \\ ---- \\ Y(n) \end{bmatrix} = |\underline{I} - \underline{g}_{ex}(n) | \frac{x^*}{ex}(n)| \begin{bmatrix} \underline{k}(n-1) \\ ----- \\ Y(n-1) \end{bmatrix}$$
(V.23)

is obtained.

as

It may be convenient to modify

$$\frac{\underline{k}(n)}{\underline{Y}(n)}$$

Where $\underline{m}(n) = Y^{-1}(n)\underline{k}(n)$. Then (V.14) becomes

$$\underline{W}_{ex}(n) = \begin{bmatrix} \underline{m}(n) \\ - - - \\ 1 \end{bmatrix} = \begin{bmatrix} \underline{0} \\ - - - \\ Y^{-1}(n) \end{bmatrix}$$

From (V.23),

$$Y(n) = Y(n-1)-s(n) \{ \underline{x}^{*}(n+1)\underline{k}(n-1) + \mu^{*}(n-M)Y(n-1) \}$$
(V.25)

It is also possible to write

$$Y(n) = Y(n-1) | 1-s(n) x^* (n+1) m(n-1) - s(n) \mu^* (n-M) |$$

n an Anna an A Anna an
Then, $Y^{-1}(n)$ is updated using

$$Y^{-1}(n) = Y^{-1}(n-1) |1-s(n)\underline{x}^{*}(n+1)\underline{m}(n-1)-s(n)\mu^{*}(n-M)|^{-1} \quad (V.26)$$

For $\underline{k}(n)$,

$$\underline{k}(n) = \underline{k}(n-1) - \underline{h}(n) \underline{x}^{*}(n+1) \underline{k}(n-1) - \underline{h}^{*}(n) \mu^{*}(n-M) Y(n-1) \qquad (V.27)$$
is obtain from (V.23). Multiplying both sides by $Y^{-1}(n)$ gives
$$\underline{m}(n) = |\underline{k}(n-1) - \underline{h}(n) \underline{x}^{*}(n+1) \underline{k}(n-1) - \underline{h}^{*}(n) \mu^{*}(n-M) Y(n-1) | Y^{-1}(n)$$
(V.28)
Combining (V.26) and (V.28),

$$\underline{\mathbf{m}}(\mathbf{n}) = |\underline{\mathbf{k}}(\mathbf{n}-1)-\underline{\mathbf{h}}(\mathbf{n})\underline{\mathbf{x}}^{*}(\mathbf{n}+1)\underline{\mathbf{k}}(\mathbf{n}-1)-\underline{\mathbf{h}}^{*}(\mathbf{n})\mu^{*}(\mathbf{n}-\mathbf{M})\Upsilon(\mathbf{n}-1)|$$

$$\cdot \Upsilon^{-1}(\mathbf{n}-1) |1-s(\mathbf{n})\underline{\mathbf{x}}^{*}(\mathbf{n}+1)\underline{\mathbf{m}}(\mathbf{n}-1)-s(\mathbf{n})\mu^{*}(\mathbf{n}-\mathbf{M})|^{-1}$$

(V.24)

$$\underline{\mathbf{m}}(\mathbf{n}) = \left| \underline{\mathbf{m}}(\mathbf{n}-1) - \underline{\mathbf{h}}(\mathbf{n}) \underline{\mathbf{x}}^{*}(\mathbf{n}+1) \underline{\mathbf{m}}(\mathbf{n}-1) - \underline{\mathbf{h}}^{*}(\mathbf{n}) \boldsymbol{\mu}^{*}(\mathbf{n}-\mathbf{M}) \right|$$

$$|1-s(n)x^*(n+1)m(n-1)-s(n)\mu^*(n-M)|^{-1}$$

Now, at the n th instant $\underline{x}(n)$, $\underline{x}(n+1)$, $\underline{f}(n-1)$, $\Sigma(n-1)$ and $\underline{g}(n)$ are known. The first step is to determine $g_{ex}(n)$ and this requires $\underline{f}(n)$ and $\Sigma(n-1)$. Let $\varepsilon_1(n)$ be defined by

$$\varepsilon_1(n) = \mu(n) + f^*(n-1)x(n)$$
 (V.30)

Then by (V.21)

$$\underline{f}(n) = \underline{f}(n-1) - \underline{g}(n) \varepsilon_1^*(n) \qquad (V.31)$$

Also let $\epsilon_2(n)$ defined by

$$\varepsilon_2(n) = \mu(n) + \underline{f}^*(n)\underline{x}(n)$$

It is seen that

$$\varepsilon_2(n) = \mu(n) + \underline{f}^*(n) \underline{W}(n) \underline{g}(n)$$

And

$$\varepsilon_{\alpha}(n) = \mu(n) - z^{*}(n)g(n)$$

Than, by (V.22)

 $\Sigma(n) = \Sigma(n-1) + \varepsilon_2(n)\varepsilon_1^*(n)$

(V.29)

(V.32)

(v.33)

Accordingly the extended gain vector becomes

$$\underline{g}_{ex}(n) = \begin{bmatrix} \Sigma^{-1}(n)\varepsilon_2(n) \\ -----\\ \underline{g}(n) + \underline{f}(n) \Sigma^{-1}(n)\varepsilon_2(n) \end{bmatrix}$$

Partion $g_{ex}(n)$ as

$$\underline{g}_{ex}(n) = \begin{bmatrix} \underline{h}(n) \\ --- \\ s(n) \end{bmatrix}.$$
 (V.35)

(V.34)

To update $\underline{g}(n) \underline{m}(n)$ is required. Since $\underline{m}(n-1)$ and $Y^{-1}(n-1)$ are known from the previous iteration let

$$\underline{d}(n) = \mu(n-M) + \underline{m}^{*}(n-1)\underline{x}(n+1)$$
 (V.36)

Then
$$\underline{m}(n-1)-\underline{h}(n)|\underline{x}^{*}(n+1)\underline{m}(n-1)+\mu^{*}(n-M)| = \underline{m}(n-1)-\underline{h}(n)d^{*}(n)$$

and
$$1-s(n)|x^*(n+1)m(n-1)-\mu^*(n-M)| = 1-s(n)d^*(n)$$

Thus, from (V.29) it follows that

$$m(n) = |m(n-1) - h(n)d^{*}(n)| |1-s(n)d^{*}(n)| \qquad (V.37)$$

-1

Finally using (V.20) gives

$$g(n+1) = h(n) - m(n)s(n)$$
 (V.38)

and, of course,

$$y(n+1) = c^{*}(n)x(n)$$
(V.39)

$$e(n+1) = a(n)-y(n)$$
(V.40)

$$c(n+1) = c(n) + g(n+1)e^{*}(n+1)$$
(V.41)

The performance of the fast Kalman algorithm is excetly the same as Kalman/Godard algorithm since they differs only in computation. However, if equations from (V.30) to (V.38) are examined, it is seen that only 10M+3 complex multiplications are necessary. Therefore, the computational complexity of Kalman/Godard algorithm is considerably decreased. For example for a 15-taps TDL equalizer required number of complex multiplications are in the following orders:

Stochastic	gradient	:	30
Kalman/Goda	ard	:	385
Fast Kalman	n .	:	150

VI, SIMULATION AND RESULTS

VI.1. COMPUTER PROGRAMS

The simulation package consists of the following computer programs:

- 1- Polyf.Ftn: Simulates telephone channels with different attenuation and group delay characteristics(*).
- 2- Del.Ftn: Simulates a QAM system with specified characteristics(*).
- 3- Opt.Ftn: Calculates the optimum tap coefficients and the minimum MSE.
- 4- Help.Ftn: Calculates the eigenvalues and the trace of the input correlation matrix.
- 5- Dstoc.Ftn: Realizes the stochastic gradient algorithm.
- 6- Dkalman.Ftn: Realizes the Kalman/Godard algorithm.
- 7- Dfast.Ftn: Realizes the fast Kalman algorithm.

In Appendix 5 detailed explanation to use these programs is given.

(*) These two programs are supplied from the MODEM Project carried out in Electronic Research department of Marmara Research Institute.

VI.2. SIMULATED COMMUNICATION SYSTEM

A qam transmission system with a signalling rate of 1600 baud and 2 bits per symbol is simulated. The carrier frequency is placed at 1800 Hz. The transmitter consists of a raised-cosine filter with an excess bandwidth of 25 percent. The binary bits for both quadrature and in-phase components are provided from a pseudo random binary sequence. Additive noise of variance 0.001 is supplied from a gaussian noise generator. The equivalent baseband impulse response of the combined transmitter and channel is used to generate the input data for the equalizer. It is assumed that the carrier phase used for demodulation at the receiver is that of a pilot carrier transmitted through the channel.

The simulation results presented are averages over ten different training sequences and gaussian noise sequences. In the Kalman and Fast Kalman algorithms the initial error covariance matrix is set to 0.01 times the identity matrix. Since both of them give the same performance only one of the outputs is illustrated throughout the work. The initial value for all tap coefficients in all of the equalization algorithms are chosen as zero. The simulated TDL equalizer has 15 complex taps. VI.3. RESULTS

A. Channel A

For this nearly perfect channel the three algorithms are tested with both noisy and noisless data.

When there is no noise, the optimum tap coefficients and the minimum MSE are:

> REAL TAP COEFFICIENTS, IMAGINARY TAP COEFFICIENTS. -0.6764426614915032D-04 0.1101299723561884D-03 0.1238748514371620D-03 -0.4293756861847678D-03 -0.2286396954809717D-03 0.9692642596640687D-03 0.3983265033319855D-03 -0.1883136429397953D-02 -0.8354119154621916D-03 0.3463356227646182D-02 0.2668949433495415D-02 -0.7453312858927695D-02 -0.1475407491806941D-01 -0.4547521087120434D-02 0.9989985475894537D+00 0.1905480836957972D-01 0.1494450710794966D-01 -0.3721070832814822D-02 -0.2170329247547206D-02 -0.7791840404899667D-02 0.5693159458682711D-03 0.3357577515153634D-02 -0.1808895768409438D-02 -0.3430506547778394D-03 0.9228012214495684D-03 0.2396066665030081D-03 -0.1646275143091066D-03 -0.3990609982682001D-03 0.9054933849355621D-04 0.1131275109071906D-03

minimum achieveable MSE = 0.67×10^{-9} or -91.72 dB

Since the distortion is low minimum and maximum eigenvalues are identical:

TRACE=15.0150371772758799

MIN.EIG.=0.1000671523563891D+01 MAX.EIG.=0.1001082570684720D+01 RATIO=0.1000410771278236D+01

The best choice for the step-size is found to be

0.033.

From Fig. VI.A.3. it is seen that the stochastic gradient algorithm reaches to -60 dB MSE in 200 iterations, while the Fast Kalman (and Kalman) algorithm, as indicated in Fig. (VI.A.6) converges to the same value in 25 steps.

The minimum MSE for this channel is so small that the stochastic gradient algorithm is expected to be very sensitive to truncation errors. When 8-bits are used to store the tap coefficients adaptation stops at -45 dB MSE (Fig. VI.A.4). Unfortunately Kalman and Fast Kalman algorithms are also sensitive to quantization erros (Fig. VI.A.7). However with 12 bit all the algorithms gives results identical to the infinite precision case (Fig. VI.A.8, Fig. VI.A.5.).

When there exists White Gaussian Noise of variance 0.001 the optimum solutions are as follows:

REAL TAP COEFFICIENTS, IMAGINARY TAP COEFFICIENTS.

-0.6760847034655162D-04	0.1100210877971589D-03
0.1237828851520331D-03	-0.4289525585507458D-03
-0.2284328115194653D-03	0.9683075743067766D-03
0.3979333926012845D-03	-0.1881271805270125D-02
-0.8345621856710175D-03	0.3459915822913236D-02
0.2666250343944570D-02	-0.7445888346929172D-02
-0.1473930155780100D-01	-0.4542974971599689D-02
0.9980015454804431D+00	0.1903579210794066D-01
0.1492964232116146D-01	-0.3717364334468852D-02
-0.2168198050344665D-02	-0.7784051660062102D-02
0.5687626865028461D-03	0.3354211047625316D-02
-0.3427027944007074D-03	-0.1807075442822463D-02
0.2393454056153765D-03	0.9218687488595717D-03
-0.1644312813012852D-03	-0.3986561198781168D-03
0.1129832776907964D-03	0.9045733361495049D-04
MINIMUM ACHIEVEABLE MSE=	
0 00 000 220000 354840-03	-0.3000868497433080D 02DB

TRACE=15.0300371772758807

MIN.EIG.=0.1000799786862956D+01 MAX.EIG.=0.1003080582856481D+01 RATIO=0.1002278973300618D+81 Noise addition changes only the minimum achieveable MSE. The step-size can be still set to 0.033. Then the stochastic gradient algorithm converges in 150 steps, but with a small bias as imposed by Fig. VI.A.9. However, the Fast Kalman algorithm attains a MSE of -27.5 dB in 25 iterations and converges to the exact minimum MSE in 60 iterations (Fig. VI. A.10). Since the minimum MSE is about 0.001 truncation errors do not occurs and 8 bit quantization does not changes the performance in either case (Fig. VI.A.11, Fig. VI.A.12).

Fig. (VI.Al)-	Frequency Response
Fig. (VI.A2)-	Impulse Response
Fig. (VI.A3)-	Stochastic Gradient Algorithm Infinite Precision $\alpha = 0.033$
Fig. (VI.A4)-	Stochastic Gradient Algorithm No.of tap coefficient bits = $8 \alpha = 0.033$
Fig. (VI.A5)-	Stochastic Gradient Algorithm No.of tap coefficient bits =12 α =0.033
Fig. (VI.A6)-	Fast Kalman Algorithm Infinite Precision
Fig. (VI.A7)-	Fast Kalman Algorithm No.of top coefficient bits = 8
Fig. (VI.A8)-	Fast Kalman Algorithm No.of top coefficient bits =12
Fig. (VI.A9)-	Stochastic Gradient Algorithm Infinite Precision $\alpha = 0.033$, $\delta^2 = 0.001$
Fig.(VI.A10)-	Fast Kalman Algorithm Infinite Precision, $\delta^2 = 0.001$
Fig.(VI.A11)-	Stochastic Gradient Algorithm No. of tap Coefficient bits = 8, δ^2 = 0.001 α = 0.033
Fig.(VI.A12)-	Fast Kalman Algorithm No.of tap coefficient bits = 8, δ^2 = 0.001

60 -

9 • -..-60. o. Fig. (VI.A6)--à. (AB) MSE 600. 1.1 i state Ĺ ٠. 100.00 ł 1 0. Fig. (VI.A5)ł o

- 65 -

. . .

Fig.(VI.A8)
٠. Fig. (VI.10) ţ --60. (db) MSE 600. Ú. Fig.(VI.A9)-0 - 60. L s. T

2 ٠. Fig. (VI. A12) -101: • _____ MSE (**J**B) 1 and the second Fig. (VI. A11) 10 હ

B. Channel B

Channel B has a considerable amount of phase distortion as seen from Fig. (VI.B1). In the presence of white Gaussion noise with variance 0.001 the optimum values for the tap coefficients are

REAL TAP COEFFICIENTS, IMAGINARY TAP COEFFICIENTS.

-0.1317478670436228D-01 -0.1672873586137986D-01 0.2000786483036919D-01 0.2098693450905405D-01 -0.5451056618375947D-01-0.2170674695771306D-01 0.1004871895560473D+00 0.3093180899305903D-02 -0.1527122724658671D+000.8140008836708339D-01 0.8785502168761486D-01 -0.2673254901208278D+00 0.2090951291875917D+00 0.2324757257778729D+00 0.3950745046185402D+000.5686060139069349D-01 0.1408563014909430D-01 -0.1076625183795648D+00 0.2755989029344683D-02 0.2053382264988014D-01 0.8142711099165590D-03 -0.1624908884499413D-01 -0.7065435480992304D-02 0.1401531861257554D-01 0.7294822889385953D-02 -0.1218286486892295D-010,3717275318306364D-02 -0.6358914165685750D-02 0.1168063526757725D-01 0.9697935803837195D-03 MINIMUM ACHIEVEABLE MSE = 0.1500713621621325D-02 -0.2823702175455418D 02dB NOISE VARIANCE =38.0697948062263903 TRACE MIN, EIG. = 0.2150350359488008D-01MAX.EIG. = 0.2680005184413795D-01 = 0.1246310943046460D-01 RATIO

The eigenvalue ratio is still not much deviated from unity, but the best step-size is 0.013 in this case. From Figs (VI.B3) and (VI.B4) it is observed that the stochastic gradient algorithm converges in 150 iterations while the Fast Kalman in 30 iterations. Fig. (VI.B1)- Frequency Response

Fig. (VI.B2)- Impulse Response

Fig. (VI.B3)- Stochastic Gradient Algorithm Infinite Precision $\alpha = 0.013$, $\delta^2 = 0.001$

.).

Fig. (VI.B4)- Fast Kalman Algorithm Infinite Precision $\delta^2 = 0.001$

Fig. (VI.B2) - Impulse Response.

and the second s					ا میں کار اور اور اور اور اور اور اور اور اور ا		Ψ.					دی بر کسیا کار این ایل دار جمهوری مربوبا بر ایر به ایل
										-		
							A THE REAL PROPERTY OF THE PARTY OF THE PART		į			
r i T							·					
												3)
												UL B
												5
				1 								ч. Ч.
		3										
		*					, 					
		مربع بی میں میں ایک می	2. 	ی اور						2) 		
			ā 	· ·								
14 4			*									
					, <u>بر المتحمد من المتر</u>				R 			1
										*	<u></u>	
									-			
	· · · · ·	• 					- <u>`</u>				•	
									-			[.B4
												[Λ]
			****			R						Fig
					100							
	-							• • • • • • • • • • • • • • • • •	1. E. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	 • • 		
				2		1 1			1			
												and the second descent of the second descent of the second descent of the second descent descent descent descent

C. Channel C

In Figs. (VI.Cl) and (VI.C2) frequency response and the impulse response characteristics for this considerably distorted channels are shown.

REAL	TAP	COEF	FICIE	ENTS,	IMA	GIN	ARY	TAP	COE	FFIC	CIE	NTS.
0.22 -0.22 0.38 -0.52 0.56 0.42 -0.93 0.88 0.16	L 9 9 7 4 7 3 7 5 2 3 5 6 0 3 2 3 1 6 5 5 2 9 1 1 2 6 7 2 1 3 4 6 2 3 3 6 0 1 9 5 1 4 2 4	48614 24883 39656 54967 17711 15549 33785 98920 47210	37474 62223 44136 24966 15041 42860 07467 025806	45D - 02 33D - 02 56D - 02 53D - 02 53D - 02 53D - 02 53D - 02 77D - 01 56D + 00 05D + 00	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.1 0.4 0.9 0.1 0.3 0.6 0.1 0.1	2 3 1 2 4 3 3 3 5 3 5 1 7 7 6 7 2 5 0 8 4 3 6 0 2 9 4 2 6 9 9 2 1 2 9 2	2122 3063 459 7948 3819 0800 2535 2783 2181	0084 2267 8184 0470 4417 1791 2192 6153 8405	9068 5832 1520 1473 4183 4547 7656 7856 8295	3D- 2D- 3D- 3D- 7D- 5D+ 5D+ 5D+	02 02 01 01 01 00 00 00
-0.34 0.20 -0.13 0.86 -0.54 0.27	43773 02661 31200 57738 43828 79010	3 5 9 4 3 L 4 8 3 4 D 5 4 7 9 B 6 3 9 5 B 7 8 4 0 D 1 7 1 9	89269 95562 00068 32017 60073 947227	990-01 220-01 330-01 730-02 320-02 720-02		0.4 0.1 0.9 0.2 0.5 0.2	1657 8844 0022 9629 7064 1474	7826 772 2276 731 4066 4272	4598 2571 4447 8657 9324 5286	3911 7751 6268 6366 7695 9720	LD- LD- 3D- 5D- 5D- 0D-	01 01 02 02 03 02
MININ	1UM <i>A</i>	ACHIE	EVEABI	LE MSE	2 =		•					
0.899	91309	91935	510100	JD-03	-	0.3	0461	[//0	6/54	1409	J D	0208
NOISI	E VAF	RIANC	E		=	0.0	0100	000	0000	000		
TRACI	E) 				=	16.	9064	4403	1466	1262	26	•
MIN.H MAX.H RATIO	EIG. EIG. D		1		-	0.1 0.1 0.1	0288 1960 1624	3570)353 \892	8767 1321 5875	227 6241 8179	5 D 1 D 9 D	01 01 01

The eigenvalues of the input correlation matrix are close to unity and the minimum achieveable MSE is about -30 dB. With the best value for the step-size (0.033) the performance in Fig. (VI.C3) is obtained. As compared with the performance of the Fast Kolman algorithm in Fig. (VI.C4) the stochastic gradient converges approximately 3 times slower than the later. Fig. (VI.C1)- Frequency Response

Fig. (VI.C2)- Impulse Response

```
Fig. (VI.C3)- Stochastic Gradient Algorithm
Infinite Precision
= 0.033, = 0.001
```

Fig. (VI.C4)- Fast Kalman Algorithm Infinite Precision, $\delta^2 = 0.001$

- 76 -

D. Channel D

Channel D whose amplitude and phase distortion is high has on eigenvalue ratio of 5.49:

	REAL	TAP	C 0	EFF	ICI	EN	TS	IM	AGI	NA	RY	T	AP	Ċ	OE	FF1	CI	EN	rs.	
	0.87	7169	106	197	488	32	D-C	2	- (().3	09	54	90 72	39 4 5	15	682 452	212	D-(01	
	-0.6	3416	560	590	677	54	D-C)1	- ().5	55	30	47	43	32	432	273	D-0	01	
	0.13	3300	211	190	608	85	D+C	0	C).3	20	61	05	27	56	242	206	D-1	01	
	-0.21	1321	128	500	526	61	D+C	00	0). 8	08	20	70	10	24	676	532	D-1	01	
	0.12	2564	345	841	455	15	D+C	00	-0).3	353	51	17	86	70	624	+51	D +(00	
	0.40	0227	092	314	046	64	<u></u>	0	. ().2	93	55	4.8	42	81	249	993	D+1	00	
	0.2	7702	252	124	359	13	D+C)0	().1	. 4 3	94	73	37	12	9 5 5	534	D-0	01	
	-0.8	3698	274	147	417	23	D∸C)2	- (),4	13	68	21	64	01	394	+09	D-1	01	
	0.10	0651	309	026	232	.07	D-C)1	. ().1	.28	59	09	45	07	721	21	D-1	0.3	
	-0.6	7243	452	670	608	02	D-C)2	().2	.70)44	50	81	86	328	386	D-	02	
	0.1	3881	084	116	159	49	D-()2	·-().1	.01	.56	41	05	27	157	/29	D-	02	
	-0.24	+667	280	743	160	72	D-C)3	-().2	99	42	37	4.2	09	238	316	D-	02	
	0.20	1392	143	089	1/9	121	D = 0)2	().2	12	10	101	19	93	698	398	ע– ת		
	0.10	5143	863	693	108	59	D-C	52	-(1.5	135	080	95	05	11	315	515	D-	0.3	
	MINI	MUM	ACH	IEV	EAB	LE	MS	SE=							. •		÷			
	0.20	5770	537	134	306	88	D-0) 2	- ().2	257	23	42	91	48	748	381	D+	02 E	B
	NOISI	EVA	RIA	NCE	=.															
	TRACI	E = 1		36.	584	52	901	L 3 0 (54:	323	35				 •	,				
	MIN.I	EIG.	=	σ.	8 3 8	62	387	7,70	12:	353	30İ)+0	0							
	MAX.I	EÍG.	=	Ο.	4 6 C	5.9	742	2859	980	99	91)+Ç)1							
	RATIO	D=		0.	549	23	004	436	7.4 (551	21)+C)1					14		
	h e l' e							e e e e e e e e e e e e e e e e e e e				1.00	•							
	Alth	nugh	th	e e	ioe	nv	ลไป	10	rat	- ic	, i	s	hi	σh		the	a a	่ ล ร	t K	(a 1
1	thm co	onve	TPE	s t	- ~~ o t	he	m	in ju	ກນ	n	1S F	t T	n	a 1	. , m0	st	50	 i	ter	at
- '			- 62		~ •					* *					·		- 0	· •		

Although the eigenvalue ratio is high, the Fast Kalman algorithm converges to the minimum MSE in almost 50 iterations without being affected by truncation errors (Fig.(VI.D3), Fig.(VI,D4)). The stochastic gradient algorithm is operated for three different step-sizes. If the step-size is taken to be inversly proportional to the number of taps, that is α =0.033, then the behavior in Fig.(VI.D5) is observed. With this stepsize a considerable bias occurs. On the other hand if α is set to 0.014 which is inversly proportional to the trace of the input correlation matrix convergence rate decreases (Fig. (VI.D6).

Fig.	(VI.D1)-	Frequency Response
Fig.	(VI.D2)-	Impulse Response
Fig.	(VI.D3)-	Fast Kalman Algorithm, Infinite Precision,
Fig.	(VI.D4)-	Fast Kalman Algorithm, No.of top coefficient bits = 8
Fig.	(VI.D5)-	Stochastic Gradient Algorithm, Infinite Precision, $\alpha=0.033$.
Fig.	(VI.D6)-	Stochastic Gradient Algorithm, Infinite, Precision 9-0 014

- 82 -

E. Channel E

This channel has a nearly ideal amplitude characteristics and a parabolic group delay characteristic. In Fig. (VI.E1) and (VI.E2) the frequency response and the impulse response is seen.

REAL TAP COEFFICIENTS. IMAGINARY TAP COEFFICIENTS.

0.5500468471424333D-02 0.1569672447388412D-02 0.9516383624429828D-02 -0.4602266745783003D-02 -0.1576618034280010D-01 0.1072220037754939D-010.2470477551565770D-01 -0.2578642792629241D-01 -0.2830437489280395D-01 0.6791875978822463D-01 -0.3475758521194567D-01-0.1664770837478370D+000.3048338670102445D+00 0.1779206406981214D+00 0.2007265545216539D+00 -0.4253037313820738D-01 -0.2014545460346599D-01-0.2028639372586198D-02 -0.7171373200642465D-02 -0.2896074857690417D-02 0.2948534093497227D-02 0.3261878313721546D-02 -0.8699856433437282D-04 -0.4072283076334833D-02 -0.4589004771896555D-03 0.3804017644342893D-020.2261684645152325D-02 -0.1200456415223284D-03

MINIMUM ACHIEVEABLE MSE= 0.2790752050254169D-03 NOISE VARIANCE=

-0.3554278747527823D+02DB 0.001000000000000

TRACE = 73.6379536567414422

MIN.EIG.= 0.4461689570635415D+01 MAX.EIG.= 0.5081751170597266D+01 RATIO= 0.1138974617159110D+01

In Figs. (VI.E3) and (VI.E4) the performance of the stochastic gradient algorithm with different step-sizes are shown. In the first one the step-size α is chosen to be 0.033 as usual. For this value algorithm converges in approximately 300 iterations. The second experiment is with α =0.0066 which is 0.5 1/Trace A. In this case the algorithm converges in 50 steps. Since the minimum MSE is low trurication highly affects the algorithm and, as show in Fig. (VI.E5) adaptation stops at-32. 5 dB MSE if 8 bits for the tap coefficients are used. However 12 bit quantization gives the same performance as in the enfinite precision (Fig. (VI.E6)). The Fast Kalman algorithm has very fast rate of convergence (approximately 50 iterations (Fig. (VI.E8) and (VI.E8).

Fig. (VI.E1)- Frequency Response Fig. (VI.E2)- Impulse Response Fig. (VI.E3)- Stochastic Gradient Algorithm Infinite Precision $\alpha = 0.033$, $\delta^2 = 0.001$ Fig. (VI.E4)- S.G.A. I.P. $\alpha = 0.0066$, $\delta^2 = 0.001$ Fig. (VI.E5)- S.G.A. No.of top coefficient bits = 8 $\alpha = 0.0066$, $\delta^2 = 0.001$ Fig. (VI.E6)- S.G.A. N.T.C.B = 12 $\alpha = 0.0066$, $\delta^2 = 0.001$ Fig. (VI.E7)- Fast Kalman algorithm Inf.Pre. $\delta^2 = 0.001$ Fig. (VI.E8)- Fast Kalman Algorithm No. of top coeff.bits = 8, $\delta^2 = 0.001$ Fig. (VI.E9)- Fast Kalman Algorithm No.of top coefficient bits = 12, $\delta^2 = 0.001$

N. . Ę ŀ • . ٩, . ; Ś . . Fig. (VI.E2) . ; , Ō • ŗ • . . La provinsi da da Contractor of the second 1 ÷ Ó

- 87 -

ò

F. Channel F

Among all the channels studied on this has the maximum eigenvalue ratio (11.9) due to both high amplitude and phase distortion.

> REAL TAP COEFFICIENTS, IMAGINARY TAP COEFFICIENTS. 0.1327085793978889D-01 -0.7695480577590565D-02-0.6574662480936086D-02-0.2489452416636523D-010.3175954240556126D-01 0.2520084511469102D-01 -0.6526151791584818D-01 -0,7889414416471895D-02 0.1035302134629024D+00 -0.4004758824918638D-01 0.1523622511711665D+00 -0.1300093414700421D+00 -0.3032831664057979D-02 -0.4259968937919133D+00 0.1003063076765069D+01 0.2252695766768203D+00 0.1376676126360804D+00 0.5199881029608651D-01 -0.1230323941831160D-01 -0.7432413784449582D-01 0.1929627404654420D-01 0.2908433035521674D-01 -0.1709467940237070D-01-0.6319908618583793D-02 0.1013738963793820D-01 -0.4785529849189438D-02 0.7256976778185230D-02 -0.2634769586924890D-02-0.3581318069921975D-02 -0.2105537324462474D-02 MINIMUM ACHIEVEABLE MSE= 0.1527231853620983D-02 -0.2816095026398338D+02DB

NOISE VARIANCE=0.001000000000000

TRACE=21.1058086375025565

MIN.EIG.=0.2757488863108780D+00 MAX.EIG.=0.3286875561588741D+01 RATIO=0.1191981445714030D+02

The stochastic gradient algorithm, with the usual value 0.033 for α convages in 150 iterations but to a biased final MSE (VI.F3).

If the best value of $\alpha = 0.025$ for this channel is used settling time falls to 225 iterations but to the desired MSE. As expected Fast Kalman reaches to -28 dB MSE in approximately 50 iterations. Fig. (VI.F1)- Frequency Response

Fig. (VI.F2)- Impulse Response

Fig. (VI.F3)-Stochastic Gradient Algorithm. Infinite Precision $\alpha = 0.033, \ \delta^2 = 0.001$

Fig. (VI.F4)- Stochastic Gradient Algorithm Infinite Precision $\alpha = 0.025, \delta^2 = 0.001$

Fig. (VI.F5)- Fast Kalman Algorithm Infinite Precision, $\delta^2 = 0.001$

Fig. (VI.F5).

VI.4. CONCLUSION

In this work three LMS algorithms for automatic baseband equalizers are compared through analysis and simulation. The tap coefficients of the TDL automatic equalizers are adapted to minimize the MSE during a traing period and then kept constant in the rest of the data transmission. The length of this training period is an important factor and it is desired to be as short as possible. Stochastic gradient equalization algorithms, although being very simple, may require long training sequences. On the other hand Kalman/Godard algorithm whose start-up is faster is computationally complex. Fortunately, with some modification in computation a relatively simple algorithm which converges very rapidly can be obtained: Fast Kalman Algorithm.

The algorithms have been investigated using various statistical assumptions. However, the simulation results were found to be in accordance with the theoretical implications.

For all type channels the Fast Kalman algorithm gives much better performance than the stochastic gradient algorithm does. Especially for highly distorted channels this superiority increases since the step-size in the stochastic gradient algorithm can be no more related to the number of taps. Thus, the best rate of convergence of the stochastic gradient algorithm can be hardly achieved in highly distorted channels. Even in the case where the best step-size is chosen the Fast Kalman Algorithm is still much faster than the stochastic gradient algorithm. Consequently, as long as the particular application at hand requires fast convergence and the current technology is sufficient for implementation Fast Kalman algorithm can be used in practical systems. In the simulation it has been observed that all the algorithms are sensitive to truncation errors when the minimum achieveable MSE is too small. However, if the additive noise of variance 0.001 exists, then the algorithms are not affected by the errors arising from digital implementation.

The computer programs in the package have been developed in such a way that they can be separately used. Although the equalization programs have been written for OAM transmission system it is possible to use them in other type of modulation schemes setting the imaginary components of the complex variables to zero.

Finally, I hope that this work will be a stating point for further studies in the field of channel equalization.

- 99 -

APPENDIX I

CORRELATION MATRICES

To derive more explicit formulas for \underline{b}^* and \underline{A} the following assumptions for data and noise sequences are to be made:

(i) Input symbols at different instants are uncorrelated,i.e.,

 $E\{a(n)a^*(m)\} = a^{-2}\delta(n-m) \quad \forall n,m$

(ii) Input data and noise sequences are uncorrelated, i.e.,

 $E\{a(n)w^{*}(m)\} = E\{a(n)\}E\{w^{*}(m)\} Vn, m$

(iii) Noise is zero mean, i.e.,

 $E\{w(n)\} = 0 \quad \forall n$

(iv) Noise is white, i.e.,

 $E\{w(n)w^*(m)\} = \delta_w^2 \delta(n-m) \quad \forall n, m$

The correlation matrix \underline{b}^* consists of elements

 $b_{i}^{*} = E\{a(n)\underline{x}^{*}(i)\}$ i:n N,...,n,...,n-N

Then, from Eqn (II.5)

 $b_{i}^{*} = E\{a(n) | \Sigma a(m)h(i-m) + w(i) | *\}$

is obtained, Taking the expectation into the summation gives

$$b_{i}^{*} = \Sigma E\{a(n)a^{*}(m)\}h^{*}(i-m) + E\{a(m)w^{*}(i)\}$$

The second term is zero as a result of (ii) and (iii) Applying (i) to the first term gives

$$b_{i}^{*} = a^{-2} \sum_{m} \delta(n-m)h^{*}(i-m)$$
$$= \overline{a^{2}} h^{*}(i-n)$$

Then <u>b</u>* becomes

$$\underline{b}^{*} = a^{-2} \begin{bmatrix} \underline{h}^{*}(N) \\ h^{*}(0) \\ \underline{h}^{*}(-N) \end{bmatrix}$$

The input correlation matrix \underline{A} has elements of the form

$$A_{ij} = E\{|\Sigma_a(m)h(i-m)+w(i)||\Sigma_a(k)h(j-k)+w(j)|*\}$$

m

By assumptions (ii) and (iii) the cross terms are zero and it follows that

$$A_{ij} = \sum_{m k} \sum_{k=1}^{\infty} E\{a(m)a^{*}(k)\}h(i-m)h^{*}(j-k) E\{w(1)w^{*}(j)\}$$

$$= a^{-2} \sum_{m k} \delta(m-k)h(i-m)h^{*}(j-k) + \delta_{w}^{2}\delta(i-j)$$

$$= a^{-2} \sum_{m k} h(i-m)h^{*}(j-m) + \delta_{w}^{2}\delta(i-j)$$
APPENDIX 2

POSITIVE DEFINITENESS OF THE INPUT CORRELATION MATRIX A

Let \underline{u} be a (2N+1) complex -valued vector which is different then zero

 $\underline{u} \neq \underline{0}$

The elements of \underline{u} can be numbered as

$$\underline{\mathbf{u}} = \begin{bmatrix} \mathbf{u}_{-\mathbf{N}} \\ \mathbf{u}_{\mathbf{O}} \\ \mathbf{u}_{\mathbf{N}} \end{bmatrix}$$

Then,

$$\underline{\mathbf{u}}^* \underline{\mathbf{A}} \underline{\mathbf{u}} = \underline{\mathbf{u}}^* \mathbf{E} \{ \underline{\mathbf{x}}(\mathbf{n}) \underline{\mathbf{x}}^*(\mathbf{n}) \} \underline{\mathbf{u}}$$
$$= \mathbf{E} \{ | | \underline{\mathbf{x}}^*(\mathbf{n}) | \underline{\mathbf{u}} | |^2$$

Let Y(n) be $||\underline{x}^*(n) \underline{u}||$, thus the Hermitian form is

$$\underline{\mathbf{u}}^{*} \quad \underline{\mathbf{A}} \quad \underline{\mathbf{u}} = \mathbf{E} \{ \mathbf{Y}(\mathbf{n})^{2} \}$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathbf{P}_{\mathbf{Y}\mathbf{Y}}(\mathbf{w}) d\mathbf{v}$$

where $P_{yy}(w)$ is the power spectrum of Y(n)

The sequence Y(n) can be expressed as a convolution as

$$Y(n) = \sum_{i=-N}^{N} u(i)x^{*}(n-i)$$

and this implies that

$$P_{YY}(w) = P_{XX}(w) ||u(w)||^2$$

where

$$U(w) = \sum_{i=-N}^{N} u(i)e^{-jwi}$$

Since U(w) is not zero then the Hermitian form vanishes if and only if $P_{xx}(w)$, the power spectrum of the equalizer input signal is identically zero. But

 $P_{xx}(w) = P_{aa}(w) ||H(w)||^2$

where $P_{aa}(w)$ is the power spectrum of the input symbols. Therefore the Hermitian form $\underline{u}^* \underline{A} \underline{u}$ is different than zero for $\underline{u} \neq 0$, or , in other word \underline{A} is positive definite unless the channel impulse response is identically zero.

APPENDIX 3

CONVEXITY OF THE MSE PERFORMANCE FUNCTION OF THE TAP COEFFICIENTS

The MSE performance function of the tap coefficients is $\xi^2(\underline{c}) = a^{-2} - 2 \underline{b}^* \underline{c} + \underline{c}^* \underline{A} \underline{c}$

Let $\underline{c_1}$ and $\underline{c_2}$ be two (2N+1) complex-valued vectors and $0 < \lambda < 1$ be a real scalar. Then,

$$\xi^{2} | \lambda \underline{c}_{1} + (1 - \lambda) \underline{c}_{2} | = a^{-2} - 2 \underline{b}^{*} | \lambda \underline{c}_{1} + (1 - \lambda) \underline{c}_{2} | + | \lambda \underline{c}_{1} + (1 - \lambda) \underline{c}_{2} |^{*} \underline{A} | \lambda \underline{c}_{1} + (1 - \lambda) \underline{c}_{2} | = \lambda | a^{-2} - 2 \underline{b}^{*} \underline{c}_{1} + \underline{c}_{1}^{*} \underline{A} \underline{c}_{1} | + (1 - \lambda) | a^{-2} - 2 \underline{b}^{*} \underline{c}_{2} + \underline{c}_{2}^{*} \underline{A} \underline{c}_{2} - \lambda (1 - \lambda) | \underline{c}_{1} + \underline{c}_{2} |^{*} \underline{A} | \underline{c}_{1} + \underline{c}_{2} |$$

That is,

$$\xi^{2} |\lambda \underline{\mathbf{c}}_{1} + (1-\lambda)\underline{\mathbf{c}}_{2}| = \lambda \xi^{2}(\underline{\mathbf{c}}_{1}) + (1-\lambda)\xi^{2}(\underline{\mathbf{c}}_{2})$$
$$- \lambda (1-\lambda) |\underline{\mathbf{c}}_{1} + \underline{\mathbf{c}}_{2}| * \underline{\mathbf{A}} |\underline{\mathbf{c}}_{1} + \underline{\mathbf{c}}_{2}$$

Since A is positive definite and $0 < \lambda < 1$

$$\xi^{2} |\lambda \underline{c}_{1} + (1-\lambda)\underline{c}_{2}| \geq \lambda \xi^{2} (\underline{c}_{1}) + (1-\lambda)\xi^{2} (\underline{c}_{2})$$

Therefore, $\xi^2(\underline{c})$ is a convex function of the top coefficients.

- 104

APPENDIX 4

DERIVATION OF KALMAN/GODARD ALGORITHM (II)

Given the discrete linear stochastic system

$$x(k+1) = \Phi(k,k-1)x(k) + W(k)$$

and the observation system

$$y(k) = M(k)x(k) + U(k)$$

Where

```
Where;
```

 $\underline{x}(k)$: n-dim, state vector $\Phi(k,k-1)$: nxn state transition matrix $\underline{W}(k)$: n-dim white Gaussion noise $\sim N(\underline{0},\underline{Q}(k))$ $\underline{y}(k)$: m-dim observation vector $\underline{M}(k)$: mxn observation matrix $\underline{U}(k)$: m-dim white Gaussion noise $\sim N(\underline{0},\underline{s}(k))$

and $\underline{x}(0)$, $\{\underline{W}(k)\}$, $\{\underline{U}(k)\}$ are assumed statistically independent.

Then the minimum variance filter for this system consists of the following equations

$$\hat{\mathbf{x}}(k+1,k) = \Phi(k+1,k)\hat{\mathbf{x}}(k,k)$$
(3)

$$P(k+1,k) = \Phi(k+1,k)P(k,k)\Phi^{*}(k+1,k)+Q(k)$$

between observations, and

 $\underline{\hat{\mathbf{x}}}(\mathbf{k},\mathbf{k}) = \underline{\hat{\mathbf{x}}}(\mathbf{k},\mathbf{k}-1) + \underline{\mathbf{K}}(\mathbf{k}) |\underline{\mathbf{y}}(\mathbf{k})-\underline{\mathbf{M}}(\mathbf{k})\underline{\hat{\mathbf{x}}}(\mathbf{k},\mathbf{k}-1)|$ (5)

 $\underline{P}(k,k) = \underline{P}(k,k-1) - \underline{K}(k) \underline{M}(k)\underline{P}(k,k-1)$ (6)

(2)

(4)

(1)

 $\underline{K}(k) = \underline{P}(k,k-1)\underline{M}^{*}(k) |\underline{M}(k)\underline{P}(k,k-1)\underline{M}^{*}(k)+\underline{S}(k)|^{-1}$ (7)

at the observations, where

$$\underline{P}(k) = E\{|\underline{x}(k) - \underline{\hat{x}}(k,k)| |\underline{x}(k) - \underline{\hat{x}}(k,k)|^*\}$$
(8)

$$\underline{P}(k+1,k) = E\{|\underline{x}(k+1) - \underline{\hat{x}}(k+1,k)| |\underline{x}(k+1) - \underline{\hat{x}}(k+1,k)|^{\frac{1}{2}} |\underline{Y}(k)|$$
(9)

$$\underline{Y}(k) = \{\underline{y}(k), \underline{y}(k-1), \dots, \underline{y}(0)\}$$

It is also known that as long as the system is uniformly completely controllable and uniformly completely observable and $\underline{P}(0)$ is positive semidefinite the algorithm is stable.

Now, in the equalization problem, assuming a stationary environment, the vectorid quality to be estimated \underline{c}_{op} , and,

$$\frac{c_{op}(k+1)}{c_{op}(k)} = \frac{c_{op}(k)}{c_{op}(k)}$$

Thus $\Phi(k,k-1) \rightarrow I$ and $W(k) \rightarrow 0$. From Eqn. (IV.3) and (IV.10)

$$e_{0D}(k) = a(k) - \frac{c^*}{c_{0D}} x(k)$$

or, equivalently

$$a^{*}(k) = \underline{x}^{*}(k) \underline{c}_{op} + e_{op}(k)$$

Since a(k) is known during the training period, (2') can be taken as the observation system. Then

$$\underline{M}(k) \rightarrow \underline{x}^{*}(k)$$

y(k) → a^{*}(k)
v(k) → e_{op}(k)

(2')

In order to apply the Kalman Filtering to the system described by (1') and (2') $e_{op}(n)$ musk be white Gaussian sequence. Since $e_{op}(n)$ is too small its can be assumed white Gaussian. Under this assumption

$$\underline{S}(k) \rightarrow \xi_{\min}^2$$

Therefore, using D(k) instead of P(k) in the Kalman filtering system to be consistent with the notation of Ch.IV, the filtering equations of the system (1')-(2'), corresponding to (3)-(9) are

$$c(k+1,k) = c(k,k)$$

 $\underline{c}(k+1) = \underline{c}(k) \tag{3'}$

$$\underline{D}(k+1,k) = \underline{D}(k,k)$$
(4')

$$\underline{C}(k) = \underline{c}(k-1) + \underline{K}(k) |a^*(k) - \underline{x}^*(k)\underline{c}(k-1)|$$
(5')

$$D(k,k) = D(k,k-1) - K(k)x^{*}(k)D(k,k-1)$$
(6')

$$\underline{K}(k) = \underline{D}(k,k-1)\underline{x}(k) | \underline{x}^{*}(k)\underline{D}(k,k-1)\underline{x}(k) + \xi_{mn}^{2} |^{-1}$$
(7')

which are the same as those in Ch.IV except that ξ^2 min takes place instead of unity in the second one.

APPENDIX 5

USER'S MANUAL

This simulation package has been developed in Electronics Research Department of Marmara Research Institute. One copy is also preserved in the Computer Center of Boğaziçi University. The programs are only compatible to PDP11/45 System(8ϕ K) and the graphics display processor Tektronix 4ϕ 1 ϕ -1 connected to it. However, they can be adapted to any computer system by changing a few statements and the graphing programs in the package.

108 -

1.Program: POLYF.FTN

Simulates a telephone channel with specified degree of impairments of seven type.

Task: Seven type of linear distortion are defined. The attenuation and group delay polynomials related to these type of impairments are stored in data file POLY.DAT. the program reads these coefficents from the data file and the cor responding degree of impairments are supplied by the user. By multiplying the coefficients with the specified degrees forms the attenuation and group delay characteristics of the channel and stores them in data files POLY1.DAT and POLY2.DAT. Respectively.

Data Files Used: POLY.DAT.

Data Files Opened: POLY1.DAT., POLY2.DAT.

2. Program: DEL.FTN

Simulates a QAM transmission system. The user must supply the following quantities:

N= The number of decimation points in FFTZ= The number of signalling elements spanned.S= The number of samples required per signalling element.

Q2- Carrier frequency.

Q4= Nyquist frequency of the shaping filter (Half the signalling rate)

Q5= Roll-of factor.

Task: Reads the attenuation and group delay coefficients from files POLY1.DAT. and POLY2.DAT. generates the complex frequency response of the combined transmit ting filter (Raisedcosine filter with the specified roll-of factor) and the channel and takes the inverse Fourier transform of the frequency response seguence using a FFT technique. The impulse response samples for the quadrature and inphase components are expressed in complex notation as explained in chapter 1. These impulse response samples are then recorded into the data file FFT1.DAT. DEL.FTN also has routines to display the frequency response and the impulse response characteristics of the transmission system.

> Data Files Used: POLY1.DAT,POLY2.DAT. Data Files Opened: FFT1.DAT. Related Subroutines: GRID.FTN.

3. Program: OPT.FTN.

Finds the optimum tap coefficients and the minimum MSE for a TDL equalizer with given number of taps.

Task: Reads the impulse response samples of the transmission system from the data file FFT1.DAT. number of taps and the variance of the white Gaussian noise must be supplied by the user. Then, the program calculates the input correlation matrix A correlation vector B. Takes the inverse of the input correlation matrix and finds the optimum tap coefficient and the minimum MSE of the equalizer.

Data Files Used: FFT1.DAT

Related Subroutine: MINV.FTN.

4. Program: HELP.FTN.

Calculates the minimum and maximum eigenvalues and the

109 -

trace of the input correlation matrix.

Task: Reads the impulse response samples of the transmission system from the data file FFT1.DAT. number of taps of the TDL equalizer and the variance of the white Gaussian noise must be supplied by the user.

Data Files Used: FFT1.DAT.

Related Subroutines: EIGEN.FTN

5. Program: DSTOC.FTN.

Realizes and equalizer algorithm based on the stochastic gradient method.

Task: Reads the impulse response samples of the transmission system from the data file FFT1.DAT. Generates a pseudo random binary sequence. Encodes the binary seque nce for four point QAM to form the training analog signals. Convolves them with the impulse response sequence. As each input sequence is generated it is used to update the tap coefficients.

User must specify the number of taps. The variance of the white Gaussian noise and the step-size.

In desired, the tap coefficient can be stored as quantized.

Program also displays the MSE during the adaptation process.

Data files used: FFT1.DAT.

Related Subroutines: GRID.FTN.

GANOS.FTN.

6. Program: DKALMAN.FTN.

Realizes an equalization algorithm based on the Kalman/ Godard method.

Task: The same as DSTOC.FTN. does except that with a different method.

User must specify the number of taps. The variance of the white gaussian noise and the initial value for the error covariance matrix. Data Files Used: FFT1.DAT. Related Subroutines: GRID.FTN. GANOS.FTN.

8. Subroutine: GRID.FTN.

Scales the displaying area.

9. Subroutine: GANOS.FTN.

Generates Gaussian noise of desired length with specified mean and variance.

10. Subroutine: MINV.FTN (From scientific subroutines package of PDP-11 System).

Calculates the inverse of a real matrix of given dimension.

11. Subroutine: EIGEN.FTN. (From scientific subroutines package
 of PDP-11 System).

Calculates the eigenvalues of a real symmetric matrix of given dimension.

```
1.1
                                                                   1. 1. P. L. S. L
      DIMENSION A(2,10),B(2,10),C(2,10),D(2,10),E(2,10),G(6,10),H(4,10)
                                                      DIMENSION P(11), RE(11), XI(11)
      DOUBLE PRECISION A.B.C.D.E.G.H.RE.XI
     INTEGER P
                                                             建物系统
      CALL ASSIGN(3, DK1:POLY.DAT')
      CALL ASSIGN(1. DK1:POLY1.DAT')
      CALL ASSIGN(2, DK1:POLY2.DAT')
     . URITE(6,100)
  100 FORMAT(10%, READ IN THE DEGREE OF EACH OF THE IMPAIRMENTS GIVEN .....
     D.10X, BELOW: A.B.C.D.E. ,/)
      READ(6,110)(P(J), J=1,5)
 110 FORMAT(51)
                                         WRITE(6,120)
                                120 FORMAT(10X, 'ENTER 1 FOR G1, OTHERWISE 0.', /)
                                                                            READ(6,130) P(6)
  130 FORMAT(I)
      WRITE(6,140)
                                                                               140 FORMAT(10X, ENTER 1 FOR G2, DTHERWISE 0. ....
                                                                     行为大学人物的
                                    READ(6,130) P(7)
                                                                     WRITE(6,150)
  150 FORMAT(10X, ENTER 1 FOR G3, OTHERWISE 0. //)
      READ(6,130)P(8)
      WRITE(6,160)
  160 FORMAT(10X, ENTER 1 FOR H1. OTHERWISE 0. ....)
      READ(6,130) P(9)
      URITE(6,170)
  170 FORMAT(10X, ENTER 1 FOR H2, OTHERWISE 0. //)
      READ(6,130) P(10)
      WRITE(5,172) (P(I), I=1,10)
  172 FORMAT(7.6X, A B C D E G1 G2 G3 H1 H21775X, 12, 1X, 12, 1X, 12, 1X,
     DI2, 1X, I2, 1X, I2, 1X, I2, 1X, I2, 1X, I2, 1X, I2, //)
      READ(3,180)((A(I,J),J=1,10),I=1,2)
      READ(3,180)((B(I,J),J=1,10),I=1,2)
      READ(3,180)((C(1,J),J=1,10),I=1,2)
      READ(3,180)((D(I,J),J=1,10),I=1,2)
      READ(3,180)((E(I,J),J=1,10),I=1,2)
      READ(3,180)((G(I,J),J=1,10),I=1,6)
      READ(3,180)((H(I,J),J=1,10),I=1,4)
  180 FORMAT(5D)
C MULTIPLY THE COEFFICIENTS BY THE RESPECTIVE DEGREES OF IMPAIRMENT.
      DO 30 J=1,10
      DO 10 K=1,2
      A(K,J) = P(1) \times A(K,J)
      B(K,J) = P(2) \times B(K,J)
      C(K,J) = P(3) \times C(K,J)
      D(K, J) = P(4) * D(K, J)
      E(K, J) = P(5) * E(K, J)
      G(K, J) = P(G) * G(K, J)
   10 H(K,J)=P(9)*H(K,J)
      DO 20 K=3,4
      G(K,J)=P(7)*G(K,J)
                               والاستهادية والمتحاط وأسترج وترجي المتلاط أسترتج والمجارية الجاكية والمستخلط والمتحا
                                                          and a second second second second second second second second second second second second second second second
   20 H(K,J) = P(10) * H(K,J)
      G(5, J) = P(8) * G(5, J)
   30 G(6, J) = P(8) * G(6, J)
      DO 49 J=1.10
      RE(J) = A(1, J) + B(1, J) + C(1, J) + D(1, J) + E(1, J) + G(1, J) + G(3, J) + G(5, J) + H(1, J)
     DJ) + H(3, J)
      XI(J) = A(2, J) + B(2, J) + C(2, J) + D(2, J) + E(2, J) + G(2, J) + G(4, J) + G(6, J) + H(2, J)
     DJ)+H(4, J)
                                                                    A Stranger P
   40 CONTINUE
                                                                RE(11)=0.0
                                                                    计时间代编辑
      XI(11)=0.0
      WRITE(1,190)(RE(I),I=1,11)
                                                                WRITE(2,190)(XI(I),I=1,11)
  190 FORMAT(D)
      WRITE(5,200)((I.RE(I),XI(I)),I=1,10)
```

```
DEL.FTN
     DOUBLE PRECISION AT, GD, 02, 04, 05, H
      DIMENSION PLOT(320)
      DIMENSION SS(128), W(128), A(128), R(128), X(128), PP(1000)
      DIMENSION QQ(1000).B(128).T(128).H(2.20).AT(11).GD(11)
      CALL ASSIGN(1.'DK1:POLY1.DAT')
      CALL ASSIGN(2, 'DK1:POLY2.DAT')
      CALL ASSIGN(3. DK1:FFT1.DAT')
      PI=3.1415926535898932384626433832795028841972
      WRITE(6, 1000)
 1000 FORMAT(10X, 'N=NUMBER OF TIME AND FREQUENCY SAMPLES', 10X, Z=TOTAL
    D ELEMENT DURATION OF IMPULSE RESPONSE . . . 10X. S=NUMBER OF SAMPLES
    DPER ELEMENT INTERVAL', 10X, 'Q2=CARRIER FREQUENCY', 10X, 'Q4=NYQUI
    DST FREQUENCY (HALF THE MODULATION RATE) . . . 10x, . Q5=SPECTRUM SHAPIN
     DG ROLL-OFF FACTOR'
      WRITE(6, 1100)
 1100 FORMAT(5X, ATTENTION, ..., Z, S=INTEGERS, // 17X, 02,04,05=REALS, //
      READ(6,1200)N, IZ, IS, 02, 04, 05
 1200 FORMAT(31.3D)
      URITE(5,1225)N, IZ, IS, 02, 04, 05
 1225 FORMAT(//, 10X, N=NUMBER OF TIME AND FREQUENCY SAMPLES
                                                                 =1,14./
     D. 10%, Z=TOTAL ELEMENT DURATION OF IMPULSE RESPONSE=1, 14, / 10%, S=N
     DUMBER OF SAMPLES PER ELEMENT INTERVAL =',I4,/,10X,'Q2=CARRIER F
                                     =',F7.2,/,10X,'Q5=NYQUIST FREQUENCY
     DREQUENCY
     D
                              =',F7.2,/,10X,'SPECTRUM SHAPING ROLL-OFF F
                      =',F7,2,///)
     DACTOR
      03=4.*04
      Q6=Q4*(1.+Q5)
      07 = 04 \times (1. - 05)
      C1 = 02 + 04
      C2 = 02 - 04
      09=05*04
      IS=IS/2
      XN=N
      XS=IS
      XZ = IZ
     N1=N
     N2=N*2
     N3=N×3
     N4=N*4
     READ IN ATTENUATION CONSTANTS (DB).
С
     READ(1,1250)(AT(I),I=1,11)
1250 FORMAT(D)
     READ IN GROUP DELAY COEFFICIENTS (MS).
С
      READ(2,1250) (GD(I), I=1,11)
      WRITE(6,1252)
 1252 FORMAT(5X, 'PRINT-OUT OF ATT. AND GR.DELAY COEFF. 1-8', /)
      READ(6, 1254) IP
 1254 FURMAT(I)
      IF(IP.EQ.0) GO TO 45
      WRITE(5,1260)
 1260 FORMAT(//,2X, ATTENUATION(DB) AND GROUP DELAY(MS) COEFFICIENTS //)
      DO 4 I=1.11
    4 WRITE(5,1270) I,AT(I),GD(I)
 1270 FORMAT(1,2D)
      SPECIFY FREQUENCY SAMPLES.
£
   45 Q9=Q3/N
      DO 50 J=1,N
   50 SS(J) = 09 * (J-1)
```

```
្រា
       CALCULATE GROUP DELAY OF CHANNEL
       DO 6 I=1.N
       A1=GD(1)
       DC 5 J=2.10
     5 A1=A1+GD(J)*SS(I)**(J-1)
       A1=A1+GD(11)*SS(I)**(10)
       NP4=N4+I
       PLOT(NP4) = A1
     6 CONTINUE
 С
       CALCULATE PHASE RESPONSE OF CHANNEL.
       DUM=-2.*PI/(10.**3.)
       DO 10 JJ=1,10
       J=11-JJ
       XJ=J
    10 GD(J+1) = GD(J) \times DUM/XJ
       CALCULATE AND CORRECT FOR PHASE AT CARRIER FREQUENCY.
 С
       GD(1)=0.
      DO 20 J=1.10
    20 GD(1)=GD(1)-GD(J+1)*(Q2**J)
 C
       ADJUST PHASE RESPONSE TO OBTAIN NYQUIST TIMING SAMPLES.
       F1=0.
       F2=0.
       DO 30 J=2,11
       F1=F1+GD(J)*(C1**(J-1))
   30 F2=F2+GD(J)*(C2**(J-1))
       P = (F_1 - F_2) / (2. *P_1)
       IF(P.EQ.0.) GO TO 40
       PABS=ABS(P)
       P=PA95/P*(PABS-INT(PA95))
    40 GD(1)=GD(1)+P*2.*PI*02/(2.*04)
       GD(2) = GD(2) - P \times 2 \times PI / (2 \times 04)
 £
       SPECIFY SHAPING FILTER.
       DO 60 I=1.N
       A(I)=0.
       D1=02-05
       D2=02+05
       D3=02-07
       D4=02+07
       IF(SS(I).LE.D1) R(I)=0.
       IF(SS(I).GE.D2) R(I)=0.
       IF((SS(I).GE.D3).AND.(SS(I).LE.D4)) R(I)=1.
       IF((SS(I),GT.D1).AND.(SS(I).LT.D3)) R(I)=1./2.*(1.+SIN(PI/2.*(SS(I
      D)-C2)/Q8))
       IF((SS(I).GT.D4).AND.(SS(I).LT.D2)) R(I)=1./2.*(1.-SIN(PI/2.*(SS(I
      D) - C2) / OB))
    60 CONTINUE
 £
       SPECIFY IMPAIRMENT.
       DO 89 I=1:N
       R1=AT(1)
       A1=GD(1)
       DO 70 J=2,10
       R_{1}=R_{1}+A_{J}(J)*SS(I)**(J-1)
    70 A1=A1+GD(J)*SS(I)**(J-1)
       A1=A1+GD(11)*SS(I)**(10.)
       CONVERT DB TO GAIN AND CASCADE IMPAIRMENT AND FILTER.
 C
       R(I)=10.%*(-R1/20)*R(I)
       NP3=N3+I
       IF(R(I).LE.0.0) GO TO 75
       PLOT(NP3)=20,*ALOG10(R(I))
       CO TO 73
    75 PLOT(NP3) =-50.
    76 CONTINUE
```

带 金属 化

```
A(I) = A(I) + AI
      IF(SS(I).GT.4000.) A(I)=0.
      IF(SS(I).GT.4000.) R(I)=0.
  80 CONTINUE
C
      PRINT OUT CHANNEL FREQUENCY RESPONSE.
      WRITE(6,1300)
 1300 FORMAT(10X, ENTER (1.) TO OBTAIN FREQUENCY RESPONSE, OTHERWISE (0.)
     D.?./)
      READ(6,1400) U7
                                                           1400 FORMAT(F)
      DO 90 K=1.N
      X(K) = R(K) * SIN(A(K))
   90 W(K) = R(K) * COS(A(K))
      IF(W7.E0.0.0) GO TO 100
      WRITE(5,101)
  101 FORMAT(//,2X, 'FREQUENCY(HZ), MAGNITUDE, PHASE, ATTENUATION(DB), DELAY(
     DMS). / , /)
  100 CONTINUE
      DO 102 I=1.N
      NP1=N1+I
      NP2=N2+I
      NP4=N4+I
      NP3=N3+I
      PLOT(I) = SS(I)
      PLOT(NP1) = R(I)
      PLOT(NP2) = A(I)
      IF(W7.E0.0.) GO TO 102
      WRITE(5,103)PLOT(I),PLOT(NP1),PLOT(NP2),PLOT(NP3),PLOT(NP4)
  102 CONTINUE
  103 FORMAT(5F14.8)
      URITE(5,104)
      URITE(5,104)
  CALL INITT(950)
      IPL=1
  91 GO TO(92,93,94,95,98), IPL
   92 XMTH-3.
      XMAX=4000.
      DX=500.
      YMIN=0.
      YMAX=2.
      DY=0.2
      NP1=N1+1
      NP=N1
      CALL TWINDO(0,475,490,750)
      GO TO 96
   93. YMIN=-5.
      YMAX=+5.
      DY=1.
                            وأراطيهم أحاجر وجوافك تعريا فأرأتهما المحاجاتها وفعاد فتيسع فالعابيد وتترجو الاورياري
      NP1=N2+1
      NP = N2
      CALL TWINDO (525, 1000, 400, 750)
      GO TO 96
   94 YMIN=-50.
      YMAX=0.
      DY=5.
      CALL TWINDO(0,475,0,350)
      NP1=N3+1
      NP=N3
      GO TO 96
   95 YMIN=0.
```

```
YMAX=8.
       DY=1.
       CALL TWINDO (525, 1000, 0, 350)
      NP1=N4+1
       NP=N4
   95 CALL DWINDO(XMIN, XMAX, YMIN, YMAX)
       CALL GRID (XMIN, XMAX, DX, YMIN, YMAX, DY)
       CALL MOVEA(SS(1), PLOT(NP1))
       DO 97 I=2.N
   97 CALL DRAWA(SS(I), PLOT(NP+I))
                                                                             IPL=IPL+1
       GO TO 91 --
   98 CONTINUE
       READ(6,1450) DR
 1450 FORMAT(F)
C
       ADD ARBITRARY PHASE SHIFT TO CHANNEL.
                                                                            na sang ing pagangan
       DO 200 IO=1.IS
       XO = IO
       DUM=(XN/2.+1.-(XQ-1.)/XS)*2.*PI/Q3
       DO 110 I=1,N
  110 B(I)=A(I)-DUM*(SS(I)-02)
C
       CALCULATE REAL AND IMAGINARY PARTS OF FREQUENCY RESPON
       DO 120 J=1.N
       X(J) = R(J) * SIN(B(J))
  120 W(J) = R(J) * COS(B(J))
С
       FAST FOURIER TRANSFORM.
       IG=ALOG10(XN)/ALOG10(2.)+0.5
       P=2.*PI/XN
       DO 160 LL=1.IG
       L=LL-1
       IG1=2.***(IG-L-1)
       M=0
       L2=2%%
       DO 150 I=1.L2
       D1=M/IG1
       D2=0.
       DO 130 K=1, IG
       D3 = INT(D1/2.)
       D2=2.*(D2-D3)+D1
  130 D1=D3
       D4=COS(P*D2)
       D5=SIN(P*D2)
       DO 140 J=1.IG1
       D6=U(M+IG1+1)*D4-X(M+IG1+1)*D5
       D7=U(M+IG1+1)*D5+X(M+IG1+1)*D4
       U(M+IG1+1) = U(M+1) - D5
       X(M+IG1+1) = X(M+1) - D7
       X(M+1) = X(M+1) + D7
      (M+1)=W(M+1)+D6
                                  ne i elekterizaten eta kari eta bareketen barteta barteta barteta barteta barteta barteta barteta irre erende b
                                                                               والم يعيد ترارا المولك والمرجون وجاله المركو تع
  140 M=M+1
  150 M=M+IG1
  160 CONTINUE
                                                                              \mathbb{E}_{\mathbb{R}} \in \mathbb{R}^{n} \times \mathbb{R}^{n}
       DO 180 IN=1.N
       I = IN - 1
       D1 = I
       D2=0.
       DO 170 K=1, IG
       D3=INT(D1/2.)
       D2=2.*(D2-D3)+D1
  170 D1=D3
       ID2=D2
       IF(ID2.GE.I) GO TO 180
```

```
200
         -0017111
      U(I+1) = U(ID2+1)
      ₩(ID2+1)=D3
      D3=X(I+1)
      X(I+1) = X(ID2+1)
      X(ID2+1) = D3
 180 CONTINUE
      CALCULATE REAL AND IMAGINARY PARTS OF IMPULSE RESPONSE.
C
      DO 190 IN=1.N
      I = IN - 1
                                                                             U=I*2.*PI*02/03
                                                                         T(I+1)=2.*U(I+1)*COS(U)+2.*X(I+1)*SIN(U)
                                                                         190 B(I+1)=2,*W(I+1)*SIN(U)-2,*X(I+1)*CDS(U)
                                                                        C
      INTERLEAVE IMPULSE RESPONSE SAMPLES.
                                                                      د آمریکی در معدر در انداز از معدر در ایند.
وروایی معدر محمد محمد در اینده در اینده
      JS=IS*N-IS+IQ
      DO 200 I=I0.JS.IS
     IK=(I-IQ+IS)/IS
      PP(I) = T(IK)
      QQ(I)=B(IK)
  200 CONTINUE
                                                                               111
      I1=XS/2.*XN+XS-XZ*XS
      I2=XS/2.*XN+XS+XZ*XS
      CALL INITT(950)
      XMIN=-7.
      XMAX=+7.
      DX=1.
      YMIN=-1.
      YMAX=+1.
     .DY=0.2
      CALL TWINDO(150,1000,50,700)
      CALL DUINDO (XMIN, XMAX, YMIN, YMAX)
      CALL GRID (XMIN, XMAX, DX, YMIN, YMAX, DY)
      IR=0
      X2=IS*2
      ID=XS/2.*XN+XS
      DO 210 I=I1.I2
      X1=I-ID-
      XK1=X1/X2
      XL1=PP(I+1)/PP(ID+1)
      IF(IR.LT.1) CALL MOVEA(XK1,XL1)
      IR=2
      CALL DRAWA(XK1, XL1)
  210 CONTINUE
      IR=0
     DO 220 I=I1.I2
      X1 = I - ID
      XK1=X1/X2
      XM1=QQ(I+1)/PP(ID+1)
      IF(IR.LT.1) CALL MOVEA(XK1,XM1)
      IR=2
      CALL PDINTA(XK1,XM1)
                                      والمراجع والمعيد وموالي ومجمع محمد فالتقيم المراج
220 CONTINUE
      READ(6,1450) DR
      URITE(6,1500)
 1500 FORMAT(10X, DO YOU WANT A PRINT OUT OF IMPULSE RESPONSE SAMPLES.
     D/,10X, 'ENTER (1.) OR (0.).'./)
      READ(6,1400) W3
      PRINT OUT OF IMPULSE RESPONSE.
С
  230 DO 250 I=I1,I2
      X1 = I - ID
     XK1=X1/X2
      XL1=PP(I+1)/PP(ID+1)
      XM1=QQ(I+1)/PP(ID+1)
```

.

نيور، در در در محيق ته،		an an an an an an an an an an an an an a		
	IF(W8.EQ.0.) GO TO 240			
	WRITE(5,1700) XK1,XL1,XM1			일 수 가격 같은
240	IF(INT(XK1).NE.XK1) GD TD 250			
	K1P8=XK1+8,		말 집 같은 것 같이 있는 것 같아?	
	H(1.K1P8)=XL1		an an an an an an an an an an an an an a	y .
	H(2,K1P8)=XM1			
250	CONTINUE			
	DO 260 J=16,20			
	H(1, J)=0.			7 ÷
260	H(2, J) = 0.			
	WRITE(5,1600)			
1600	FURMATCION, THE COMPLEX IMPULSE RE	ESPONSE SAMPLES	ARE 12X, T	,24
	IX PERI 14X IMPLINDRY ZI			
1,200	FORMATICH BELL ON			
1700	FORMAT(5X, 3F14.8)			
1700	FORMAT(5%, 3F14.8) WRITE(3, 1800) ((H(I,J),J=1,20),I=1)	L-2)		
1700 1800	FORMAT(5%, 3F14.8) WRITE(3,1800) ((H(I,J),J=1,20),I= FORMAT(5D) DD 370 J=1 30	1-2)		
1700 1800 270	FORMAT(5x,3F14.3) WRITE(3,1800) ((H(I,J),J=1,20),I=1 FORMAT(5D) DO 270 J=1,20 UNITE(5,1900) (H(1,1),H(2,1)	L-2)		
1700 1800 270	FORMAT(5X,3F14.9) WRITE(3,1800) ((H(I,J),J=1,20),I=1 FORMAT(5D) DO 270 J=1.20 WRITE(5,1900)J,H(1,J),H(2,J) FORMAT(10X,15,2D)	l.2)		
1700 1800 270 1900	FORMAT(5X, 3F14.9) WRITE(3,1800) ((H(I,J),J=1,20),I=1 FORMAT(5D) DO 270 J=1,20 WRITE(5,1900)J.H(1,J).H(2,J) FORMAT(10X, 15,2D) END FILE 1	1.2)		
1700 1800 270 1900	FORMAT(5X,3F14.9) WRITE(3,1800) ((H(I,J),J=1.20),I=) FORMAT(5D) DO 270 J=1.20 WRITE(5,1900)J.H(1.J).H(2.J) FORMAT(10X, I5.2D) END FILE 1 END FILE 2	1.2)		
1700 1800 270 1900	FORMAT(5X, 3F14.9) WRITE(3,1800) ((H(I,J),J=1.20),I=1 FORMAT(5D) DO 270 J=1.20 WRITE(5,1900)J,H(1.J),H(2.J) FORMAT(10X,I5.2D) END FILE 1 END FILE 2 END FILE 3	L-2)		
1700 1800 270 1900	FORMAT(5X, 3F14.9) WRITE(3, 1800) ((H(I,J),J=1,20),I=) FORMAT(5D) DO 270 J=1,20 WRITE(5,1900)J,H(1,J),H(2,J) FORMAT(10X,I5,2D) END FILE 1 END FILE 2 END FILE 3 CALL FINITT(0,757)	L-2)		
1700 1800 270 1900	FORMAT(5X, 3F14.9) WRITE(3,1800) ((H(I,J),J=1.20),I=) FORMAT(5D) DO 270 J=1.20 WRITE(5,1900)J.H(1,J).H(2,J) FORMAT(10X,I5,2D) END FILE 1 END FILE 2 END FILE 3 CALL FINITT(0.767) CALL EXIT	L-2)		
1700 1800 270 1900	FORMAT(5%, 3F14.9) WRITE(3,1800) ((H(I,J),J=1.20),I=) FORMAT(5D) DO 270 J=1.20 WRITE(5,1900)J.H(1.J).H(2.J) FORMAT(10%,I5.2D) END FILE 1 END FILE 2 END FILE 3 CALL FINITT(0.767) CALL EXIT END	L.2)		

***************************************	kolok
*	*
* CALCULATES THE OPTIMUM TAP COEFFICIENTS	ж
* AND THE MINIMUM MEAN-SQUARE-ERROR FOR	ж
* AN ADAPTIVE TOL EQUALIZER.	ж
*	*
* MODULATION:QAM	*
*	*
* SUBROUTINES USED:MINV	×K
*	*
* NOTE: DIMENSION STATEMENTS IS TO BE CHANGED	*
* ACCORDING TO THE DIMENSION OF THE PROBLEM.	*
*	ж
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***
IMPLICIT DOUBLE PRECISION (H-H), (U-Z)	ur de la la
DIMENSION R(15,15),X1(15,15),H(2,15),H(30,30),B(2,15)	•
DIMENSION L(2,15), Y(2,30), HUINI(30), HUINZ(30)	
LHLL HSSIGN(I, DKI:FFII.DHI ,12,1EK)	
11=10 FID=0	
FINED, DEADACK INCCLUTE IN I-1 200 I-1 20	
ERDMATTIRY INDISE VARIANCEI)	
PEAD(5 Z)CICMO	
UPITE (6. 4) STGMA	
EDRMOTING ANDISE VARIANCE=1.E)	

C

```
חיו=ר כ חת
         I1=1+MAXO(I,J)
         I2=M+MINØ(I,J)
         DO 5 N=I1, I2
         R(I, J) = R(I, J) + H(1, N-I) + H(1, N-J) + H(2, N-I) + H(2, N-J)
         XI(I, J) = XI(I, J) + H(1, N-I) + H(2, N-J) - H(2, N-I) + H(1, N-J)
         CONTINUE
         DO 5 I=1.M
         R(I,I)=R(I,I)+SIGMA
         DO 7 I=1,20
         FIR=FIR+R(I,I)
         WRITE(6,18)
         WRITE(6,8)FIR
         FORMAT(5X, 'TRACE=',F,/)
         INVERT MATRIX R
         DO 9 1=1.M
         12=1*2
         12M1=1*2-1
         DO 9 J=1,M
         J2=J*2
         J2i11=J*2-1
         A(12M1; J2M1) = R(1, J)
         A(12M1, J2) =XI(1, J).
         A(12, J2M1) =-XI(1, J)
         A(12, J2) = R(1, J)
         CALL MINV(0,12, DUM, AMIN1, AMIN2)
         DO 10 I=1.M
         12/11=1*2-1
         DO 10 J=1.M
         J2i11=J*2-1
         J2=J*2
         R(1, J) = A(12M1, J2M1)
         MI(J,J) = A(I2MI,J2)
         CALCULATE MATRIX B.
         DO 11 I=1.M
         ☆??!!=!?+!~!
         B(1, D=H(1, P1HD)
         B(2, I) = -H(2, MP1MI)
         CALCULATE OPTIMUM TAP COEFFICIENTS.
         WRITE(6,18)
         URITE(6,12)
         FORMAT(5%, REAL TAP COEFFICIENTS, IMAGINARY TAP COEFFICIENTS. *, /
         DO 14 I=1.M
         DO 13 J=1.M
         C(1, I) = R(I, J) * B(1, J) - XI(I, J) * B(2, J) + C(1, I)
                                                                                بالأيطاقي ويداعنني الأوجليات وجلجته المأور وأرجاني وحريا المرار
         C(2, I) = -R(I, J) *B(2, J) - XI(I, J) *B(1, J) + C(2, I)
13
         CONTINUE
         WRITE(6,15) C(1,1),C(2,1)
         CONTINUE
         FORMAT(SX, 2D)
         CALCULATE MINIMUM MSE.
         WRITE(6,18)
         DO 16 I=1.M
         E1=E1-B(1, I)*C(1, I)+B(2, I)*C(2, I)
         E1=1.+E1
         E2=10.*DL0G10(E1)
         URITE(6,17) E1.E2
         FORMAT(5X, 'MINIMUM ACHIEVEABLE MSE=', /, D, 5X, D, 'DB')
```

5

6

7

8

C C

£

9

10

C C

С

11

C Ĉ

C

12

14

15 С Ć

£

16

17

C	*	MATRIX.	*	
C C	*	ETHIC THE DATED DE THE MONTMUM ETCENUOLUE	k .	
C	*	TO THE MINIMUM EICENVALUE	*	
č	*	TO THE THINNIN ETGENTREDE.	;	
C	*	MODULATION: QAM	:- :-	
0	*	SUBROUTINES USED:EIGEN		
L C	*	HOTE DIMENSION STATEMENTS IN TO DE SUGUESD		20-212
L C	*	NUTE: DIMENSION STATEMENTS IS TO BE CHANGED		
C	*	ACCORDING TO THE DITIENSION OF THE PRODLETT.		
Ĉ	xxxxxxxxxx	010105550101055550105550105550105555501010555550101055555010055550100555501005555	okokokok	
С	172 10 44	100100		Anna Anna Anna
	IMPLICI	T DOUBLE PRECISION (A-H), (O-Z)		
	DIMENSI	UN R(15,15),X1(15,15),H(2,15),H(30,30)		
	CALL DE	SIGN(1,'DK1:FET1 DAT', 12, IEP)		and the same to be a series
	M=15			AL ANT -
	FIR=0.			
	WRITE (S	5.1)		
1	FORMAT	10X, 'NOISE VARIANCE=')		たったり
_	READ (5.	2) SIGMA		
2	LIDITE (C	.FJ : 7) CICMO		
3	FRRMATO	TAX, 'HAISE VARIANCE=', F)		
Ŭ	READ(1)	4) ((H(I,J), J=1,20), I=1,2)		
4	FORMAT	50)		
C	CALCULA	TE MATRIX R.		
	DO 5 I=	1.11		
	11-1-1-11	2.11 ALTE GAUSSIAN WITH ZERD-MORE		
	12=M+M*	NA(1.D		
	DO 5 N=	11,12		
	R(1.J)=	R(I,J)+H(1,N-I)*H(1,N-J)+H(2,N-I)*H(2,N-J)		
	XI(L.J)	=XI(I,J)+H(1,N-I)*H(2,N-J)-H(2,N-I)*H(1,N-J)		
5	CONTINU	Engine versates		
-	DO 6 1=	I.N		·
Ð	$\frac{1}{107} = \frac{1}{7}$			
7	FIR=FIR	24R(1.1)		
	WRITE (G	, 17)		
	LIRITE (6	S.B)FIR		
8	FORMAT	18X; TRACE=', F, /)		
	DO 9 I=	·1. M		
	12=1#2	2 (BADCLEFFTL.DET")		
		1.M		. The parties
	J2=J*2			
	J2M1=J*	2-1		·
	A(12M1.	J2M1) =R(I,J)		and a second second
	A(12M1,	J2)=XI(I,J)		
	A(12, J2	$  11\rangle = -X1(1, J)$		
3	DO 10 I	=1.15		
	DG 10 1	=1,15		
	SOR(I,J	)=R(I,J)		
	SOR(I,J	(+15)=XI(I,J)		
	SOR(I+1	5, J) =-XI(I, J)		
	SOR(I+1	5, J+15) =R(I, J)		
10	LUNTINU MM-DWM			
	DO 11 T	=1.NN	and the second	
	DO 11 1	=1. I		
	K=I*(I-	1)/2		
	EIG(K+J	)=SOR(J,I)		and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
11	CONTINU	E		- Survey and

			· · · ·
32	EMAX=DMAX1(EMAX_EIG(D)		
	DO 13 I=1.465		
	IF(EIG(I), IT, 0, 0001)EIG(I) = 100.		
13	CONTINUE		
	EMIN=FIG(1)		_
	Dn 14 1=1.455		
14	EMIN=DMIN1 (EMIN.FIG(I))	<b>大学生的现在分词</b>	
	URITE(6,17)		
	LIRITE (6, 15) FMIN, FMAX		1. A
15	FORMAT(10X, 'MIN, EIG, =', D, /, 10X, 'MAX, FIG, =', D)		
	RATIO=EMAX/EMIN		
	WRITE(6,16)RATIO		
16	FORMAT(10X, 'RATIO=', D)		
17	FORMAT(10X, ' ***********************************		•
	END FILE 1		
	CALL EXIT		
	- END 이 이 것이 그 그는 것 같이 있는 것 못 하락하는 것 같은 것이 같다.		an an Stait
b Alar	이 그는 데이가 한 것 같아요? 말에 나는 그의 상품에서 가지? 정말을 보여.		
	a da anti-anti-anti-anti-anti-anti-anti-anti-		
~		delatate.	
	ᠵᡯ᠋ᡯᡊᡔ᠋ᡧᡯᡧᡘᡊ᠕ᡩᢋᡘᡊᡊᡊᡊᡊᡊᡊᡊᡊᡊᡊᡊᡊᡊᡊᡊᡊᡊᡊᡊᡊᡊᡊᡊᡊᡊᡊᡊᡊᡊᡊᡊᡊᡊ	ጥጥጥኞች ህ	
		* •	<b></b> :
ւ Ր		an an an an an an an an an an an an an a	1. j.
L C	*         CHELUEHIES INE IMF CUEFFICIENTS HND INE           *         MINIMUM MEANLEDUADE_EDDAD DE ON ODOPTIVE EDUALIZED		
		• *	į.
	* PULSE SOMPLES OPE EDAM DOTO FILE FETT DOT	and a state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the	
r r	* TOLDE ONNIELO NALTIKON DATH TILL TITT.DAT	*	1
	* NOISE: WHITE GOUSSION WITH ZERD-MEAN	*	
r		*	1
Č .	* INPUTS:	*	
Č	* N:NO OF TAPS	* *	
Ē.	* H: IMPULSE RESPONSE SAMPLES	*	
Ū.	* ALPHA:STEP-SIZE	*	
С	* SIGMA:NOISE VARIANCE	*	
С	*	*	•
C .	* OUTPUTS:	*	
C	* C:TAP COEFFICIENTS	*	• ,
0	$\sim lpha$ , which is a second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the se	*	
C	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	***	
	DIMENSION H(2,20),X(2,20),C(2,20),J(18),D(2,20),YP(1200),	DD(2)	
	DIMENSION G(2,4), GUR(608)		
	DOUBLE PRECISION H	이는 것이 있는 것이 있는 것이 있는 것이다. 이는 것이 있는 것이 있는 것이 있는 것이 없다.	
	CALL ASSIGN(3, DK1:FFT1.DAT)		
•	DATA J/1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0		) 1
	UHIA 6/3,-1,-1,-3,1,3,-3,1/		
	WEITE(0, 1)		:
1		an an an an an an an an an an an an an a	
<b>.</b>	KEHU(J)/2/N)ALFOH		
2	HOTTERS ZIN ALPHA		
7.1	ENPMOT (10X 'NO OF TAPS=1, 12, 2, 10X, 101 PHA=1, F10 4, 2)	المحقق أحقق في علي أحدث أحدث من المحدث المرجب المرجب. المحقق المحقق المحقق المحدث المحدث المحدث المحدث المحت المحت المحت المحت المحت المحت المحت المحت المحت المحت ال	
5			i e
1	ENPMAT(10%, 10VE   IM.1./)		
-	READ(5.5)1 IM		
5	FORMAT(I)		
•	UR1TE(5.30)		1
	READ(5,31)SEED,SIGMA		
	WRITE(6,32)SIGMA		1.
	SIGMA=SORT(SIGMA)	an an an an an an an an an an an an an a	
	WRITE(5.6)	م کار وکار در در میشون از میتواند میرو	. N
6	FORMAT(10X. DO YOU INCLUDE QUANTIZATION ERRORS? )		:
	WRITE (5,7)	net i station de la company. La sectorio de la companye de la companye de la companye de la companye de la companye de la companye de la com	
7	FORMAT(10X, 'YES=1 NO=0')	전 가운 관습 것이 있는 것이 있다. 전문 사람은 것이 있는 것이 있는 것이 있다.	
	READ(5,8)IQ		
	TODWOT(I)	(1) A. A. A. A. A. A. A. A. A. A. A. A. A.	

```
م
منها بوسینه کرد.
ویکی بوسینه کرد معرف از ا
12
         CONTINUE
         M=INT(8.+(N-1.)/2.)
C
          GAUSSIAN NOISE GENERATION
          GUR(1) = SEED
          CALL GANOS(GUR, 600, 0., SIGMA)
          READ(3,13)((H(I,L),L=1,20),I=1,2)
13
          FORMAT(5D)
          BNN1=2**N1
С
C
          IMPULSE RESPONSE
С
         DO 14 I=1.N
          X(1, I)=0.
          X(2, I)=0.
          C(1, I) = 0.
          C(2, I) = 0.
          D(1, I)=0.
          D(2, I) = 0.
14
         CONTINUE
          P=0.
         L=0
          JK=0
         CALL INITT(950)
          YMIN=-60.
         YMAX=0.
         XMIN=0.
         XMAX=600.
         DX=50.
         DY=5.
         CALL TWINDO(0,500,0,750)
         CALL DUINDO (XMIN, XMAX, YMIN, YMAX)
         CALL GRID (XMIN, XMAX, DX, YMIN, YMAX, DY)
С
C
         MAIN LOOP
C
         DO 1000 K=1,600
C
         PRBS GENERATION
         DO 15 I=1.2
          J(1) = 1
          IF((J(6)+J(10)).NE.1)J(1)=0
          DO 15 IT=1,9
          ITT=10-IT
          J(ITT+1) = J(ITT)
15
         CONTINUE
15
         DD(I) = J(I)
          INX=DD(2)+DD(1)*2+1
         D(1,1)=G(1,INX)/3.
         D(2,1) = G(2, INX)/3.
         X(1,1)=0.
         X(2,1)=0.
                                                             وأوعادها والمحاج والمتحاج والمرابع والمراجع المراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع
C
С
         CONVOLUTION
С
                                                                                        . . . . .
         DO 17 I=1,20
         X(1,1)=X(1,1)+H(1,I)*D(1,I)-H(2,I)*D(2,I)
         X(2,1)=X(2,1)+H(1,I)*D(2,I)+H(2,I)*D(1,I)
17
C
С
         NOISE ADDITION
С.
         X(1,1) = X(1,1) + (GUR(K)/1,41421356)
         X(2,1)=X(2,1)+(GUR(K)/1,41421356)
          IF(K.LT.M)G0 TO 22
         Y1=0.
         Y2=0.
          OUTPUT
С
          DO 20 I=1,N
```

----

IF(IQ.EQ.0)GO TO 18

. . . .

فيعانية بالمحصر بيدانية التراوي المراجع	
18 19	A1=INT(C(1, I)*BNN1+0.5)/BNN1 A2=INT(C(2, I)*BNN1+0.5)/BNN1 GO TO 19 A1=C(1, I) A2=C(2, I) CONTINUE
20 C	Y1=Y1+A1*X(1, I)+A2*X(2, I) Y2=Y2+A1*X(2, I)-A2*X(1, I)
C C	ERROR
	E1=D(1.M)-Y1 E2=D(2.M)-Y2 P=P+E1*E1+E2*E2 E1=E1*ALPHA E2=E2*ALPHA
C C	EQUALIZATION
21	DO 21 I=1,N C(1,I)=C(1,I)+E1*X(1,I)+E2*X(2,I) C(2,I)=C(2,I)+E1*X(2,I)-E2*X(1,I)
C	SHIFTING
22	DO 23 IS=1.N ISS=N+1-IS X(1.ISS+1)=X(1.ISS) X(2.ISS+1)=X(2.ISS)
23	CONTINUE DO 24 IS=1.N
24	ISS=N+1-IS D(1.ISS+1)=D(1.ISS) D(2.ISS+1)=D(2.ISS) IF(K.LT.M)G0 TO 25 IF(L.LT.LIM)G0 TO 25 JK=JK+1 XL=L YP(JK)=10.*ALD210(P/XL) P1=YP(JK)
25	P=0. L=0
25 1080	L=L+1 CONTINUE CALL MOVEA(0.,YP(1)) DO 27 I=1.JK
27	CALL DRAWA(XP,YP(I))
28 29	FORMAT(40X, 'TAP COEFFICIENTS', /) URITE(6,29)(C(1,I),C(2,I),I=1,N) FORMAT(40X,F12.8,10X,F12.8,/)
38 31 32 ₽	FORMAT(10%, SEED, NOISE VARIANCE") FORMAT(2F) FORMAT(10%, NOISE VARIANCE=",F) CALL FINITT(0.767) END

÷, i

L C	* KAIMAN/GODARD ALGORITHM
Č.	
Ç	* CALCULATES THE TAP COEFFICIENTS *
	* AND THE MINIMUM MEAN-SQUARE- *
	* ERRUR FUR HN HDHFIIVE EQUHLIZER. *
	* NOISE: WHITE GAUSSIAN WITH ZERD-MEAN *
Ĉ	*
C	* MODULATION:QAM *
Ç	
د. ا <b>ل</b> ار الم	* IMPULSE KESFUNSE SHMPLES HKE . *
č	
C	* INPUTS:
С	* H: IMPULSE RESPONSE SAMPLES *
	* N:ND, OF TAPS
	* SIGNH:NUISE VHRIHNLE * OLPHO:ESTIMOTED MSE
č	*
C	* OUTPUTS: *
C	* C:TAP COEFFICIENTS *
C	* *
<b>b</b>	**************************************
	DIMENSION G(2.4), GUR(609)
	DIMENSION GAIN(2,20),T(2,20),VAR1(20,20),VAR2(20,23)
	DOUBLE PRECISION H
	CALL ASSIGN(3, DK1:FFT1.DAT')
	DATA 6/3113.1.33.1/
	WRITE (5.1)
1	FORMAT(10X, NO OF TAPS, ALPHA=?', /)
<b>•</b>	READ(5,2)N.ALPHA
2	
3	FORMAT(10%, 'NO OF TAPS=', 12, /, 10%, 'ALPHA=', F10,4, /)
	WRITE(5,4)
4	FORMAT(10X. AVE LIM. / /)
=	
J	- URITE (5.37)
	READ (5.38) SEED, SIGMA
	WRITE(5.39)SIGMA
	SIGM9=SORT(SIGMA)
6	ERRNAT(10X,"DO YOU INCLUDE DUENTIZATION ERPORS?")
	WRITE(5.7)
7	FORMAT(10X, 'YES=1 NO=0')
	READ(5,8) IQ
n an the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	ΑΝΤΕΥΤΟ ΕΟ ΜΙΩΟΥΤΟ 12 3 10 10 10 10 10 10 10 10 10 10 10 10 10
	URITE(5,9)
- <b>9</b>	FORMAT(10X, 'NO OF TAP BITS?')
	READ(5,10)H1
10	FURMAT(1)
11	FORMAT(10%,'NO.OF TAP BITS=1.12)
12	
	M=INT(3.+(N-1.)/2.)
<u>C</u>	COUCE TON HEATER CENERATION
	GHUSSIAN NUISE GENERHTIUN
L	GUR(1)=SEED
	CALL GANDS(GUR, 600, 0., SIGMA)
	READ(3,13)((H(I,L),L=1,28),I=1,2)
13	FURMA ((5D)

	C(1, 1)=R
	C(2, 1) = A
	D(1, I)=0.
	D(2, I)=0.
- 14	CONTINUE
영영 영화 문화 문화 문화	DO 15 I=1, N
	T(1, D=0.
	·ˈT(2, I)=9: 이번 사이지는 이번 동안에는 실험한 것은 것이 가지는 것이 가지 않는 것을 수 있는 것을 수 있는 것을 하는 것이 하는 것이 하는 것이 같다.
	GAIN(1.1)=0.
	GAIN(2.I)=0.
15	CONTINUE
	DO 16 I=1.N SERVICE AND AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A SERVICE AND A
	DO 16 JJ=1.N
	VAR1(I,JJ) ≠0.
. 16	VAR2(I,JJ)=0.
	DU 1/: I=I.N
17	
	HEU. The first of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second
	L=U talen in the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second
	MINCO
$\sim$	HTTTT OC. STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE
	- Manna Oy - Manna Oy
	. X119X=688.
	TDX=50.
	DY=5: A state of the state of the state of the state of the state of the state of the state of the state of the
	CALL TWINDO(0,500,0,750)
	CALL DUINDO (XMIN, XMAX, YMIN, YMAX)
	CALL GRID (XMIN, XMAX, DX, YMIN, YMAX, DY)
C	이는 것 같은 것 같은 것 같은 것 같은 것 같이 같이 같이 같이 같이 많이
C	- YAN LODP - A CLARKE State of A CLARKE STATE AND A CLARKED A CLARKED A CLARKED A CLARKED A CLARKED A CLARKED A
C	
	*D0+1089 K=1,\$93
<b>C</b>	승규는 사람이 가슴 가지? 정말 것 같은 것 같은 것 같은 것 같은 것이 같을 것이 같을 것 같아.
C C	PR3S GENERATION CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRAC
C	
	. DU 19. 1=1.2. Alter a fail international and fail for a line build a second statement of the Statement of the A second statement of the second statement of the second statement of the second statement of the second statem
	IF((J(b)+J(10)).NE.IJJ(1)=0
	・2011月1日(1月11月))。 「「「「「「「」」」、「「」」、A、A、A、A、A、A、A、A、A、A、A、A、
	n Li Li⊐ 10⊤ Li. Na transmissione de la seconda de la seconda de la seconda de la seconda de la seconda de la seconda de la seco
10	
10	
	INY=DD(2)+DD(1)*2+1
	D(1, 1) = F(1, INX)/3
	D(2, 1) = G(2, INX)/3
	X(1, 1)=0.
مىرىيى بىرىيىتى ئىرىيىتى ئىرىيى بى يىچى بىرى بىرىيى مەرىيىيە ئىرىيىتى ئىرىيىتى ئىرىيى	X(2,1)=0.
C	그렇는 그 것은 것은 물건을 많은 것이 없는 것은 것을 알 알려야 할 것이다. 이 것은 것이 가지 않는 것이다.
C	CONVOLUTION
C	이는 그는 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같
	DO 20 1=1,20
	X(1, 1)=X(1, 1)+H(1, D*D(1, D-H(2, D*D(2, I)
20	X(2,1)=X(2,1)+H(1,1)*D(2,1)+H(2,1)*D(1,1)
C	
Ç	NUTE HUNTLINU SEE STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET ST
L.	
	-X(1,1)-X(1,1)T(66K(N/1,41421006) -V(0-1)-V(0-1)T(66K(N/1,41421006)
	-χ(ζ) [J-Λ(ζ) [J-Λ(ζ) [J-Λ(ΔΟΚ(Κ)/ ], 4]4ζ[J-ΔΟ] [J/2] ΤΕ(ν   Τ΄ΜΊΩΠ, ΤΟ 29
	u μαντικό ματαγραφικά του από του από του του του του ματάγειο του του του του του του του του του το
	e Marten, esta lubera de la constante de la forma de la constante de la constante de la constante de la constante A γρ₂β
r	에 1~ 1997년 1월 2017년 1월 2017년 1월 2017년 1월 2017년 1월 2018년 1월 2017년 1월 2017년 1월 2017년 1월 2017년 1월 2017년 1월 2017년 1 1917년 1월 2017년 1월 201
	OUTPUT

		GO TO 22	
	21		
		92=F(2,T)	
	22	CONTINUE	
	<b>6</b> <u></u>	CONTINUE	
		Y1=Y1+H1*X(1,1)+H2*X(2,1)	
	23	Y2=Y2+A1*X(2, I)-A2*X(1, I)	
	<b>C</b> (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	그는 것 같은 것이 그는 것 같은 것이 없는 것이 가 많아요. 것은 것이 없는 것이 같은 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 같이 않는 것이 없는 것이 같이 없는 것이 이 않이	
	C	ERROR。在这些新闻的问题,我们就能够了了。如此是来能够的我们就能够能够。在我们的是我们的	
	C	성기는 것 같아요. 전 사람이 가지 않고 있는 것이 같은 것이 같아? 가지 않는 것이 많이	방송에 다.
	-	F1=D(1-M)-Y1	
	•	r=r+E1*E1+E2*E2	
	L A	<u>한 승규는 바라에 있는 것</u> 이 아니라 같은 것은 것이 같은 것이 것을 가지 않는 것이 같이 있는 것이 같이 있다. 가지 않는 것이 가지 않는 것이 가지 않는 것이 있는 것이 있다. 가지 않는 것이 있는 것이 있는 것이 있다. 가지 않는 것이 있는 것이 있다. 가지 않는 것이 있는 것이 있는 것이 있는 것이 있다. 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 가지 않는 것이 있는 것이 있는 것이 있는 것이 있다. 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 것이 있는 것이 있는 것이 있는 것이 없는 것이 없다. 것이 있는 것이 있는 것이 없는 것이 없는 것이 없다. 같은 것이 없는 것이 없는 것이 없는 것이 없다. 것이 있는 것이 있는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 있는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 있 것이 없는 것이 있 않는 것이 없는 것이 않은 않이 않이 않이 않아. 않은 것이 없는 것이 없는 것이 없는 것이 있 않이 않아. 않아, 것이 않아, 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 않아, 것이 않아, 것이 않아, 것이 않아, 것이 않아, 것이 않아, 것이 않아, 것이 않아, 것이 않아, 않아, 것이 않아, 것이 않아, 것이 않아, 않아, 것이 않아, 것이 않아, 않아, 않아, 않아, 않아, 않아, 않아, 않아, 않아, 않아,	
	C	EQUAL IZATION AND AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A ST	
	С	그 이번 것 같은 것 같은 것 같은 것이 가지? 그 것은 것이 같아? 정말 물건이 있는 것은 것이 것 같아.	
		D0 24 [I=1:N], 11:11:11:11:11:11:12:12:12:12:12:12:12:1	
		T(1)D=0. 전문 등에서는 전문에 가지만 좋겠다. 중소의 동네가지 것은 문화되는 지원을 하는	
		T(2, D=8, 1993) 1000 1000 144 4.4 2003 2007 2007 2007 2007 2007 2007 2007	
		DN 24 11=1.N	
		T(1, 1) = T(1, 1) + YOP1(1, 1) + X(1, 1) - YOP2(1, 1) + X(2, 1)	
	34	T(2,1) - T(2,1) + V(2,1) + V	
	<b>2</b> 4	1(2) []-1(2) [] TTHRI([])JJ) #A(2) JJ) TTRZ([])J) #A(1) JJ)	
		· 21 - 2 · · · · · · · · · · · · · · · · · ·	
		DO 25. I=1-N model that the state of the end of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state o	
a Henry Law		S1=S1+X(1, I) *T(1, I) +X(2, I) *T(2, I)	
	25	S2=S2+X(1, I)*T(2, I)-X(2, I)*T(1, I)	
	a di sa si s	S1=1.+S1	
		BDM=S1*S1+S2*S2	
		C1=C1_/ROM	
1997 - 1997 B. 1997			
	e l'est de la composition		
		DU 26 1=1-N	
		GAIN(1, 1) = 1(1, 1)*51-1(2, 1)*52	
	26	GAIN(2, I)=T(1, I)*S2+T(2, I)*S1	
		DB 27 (I=1)N setting of the set which the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the se	
$ \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  \mathcal{F}_{i}  =  $	an an an an Ar	DO:27 JJ=1.N selections address the contract of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selec	
		551=59IN(1,1)*T(1,JJ)+69IN(2,I)*T(2,JJ)	
		SS2=EQIN(2, I) *T(1, II) -EQIN(1, I) *T(2, II)	
		$V_{0} = (1, 1) - V_{0} = (1, 1) - C_{0}	
	07	YEAR (1,33) TYER (1,33) T31	
	21	YHK2(1;JJ)=YHK2(1;JJ)=552	
		DU 28 IFIN	
		$C(1, D = C(1, D) + GHIN(1, D) \times E1 + GHIN(2, D) \times E2$	
	28	C(2, I) = C(2, I) + GAIN(2, I) * E1 - GAIN(1, I) * E2	
	C	그는 그는 것 같아요. 그는 것 같은 것 같아요. 정말 가지 않는 것 같아요. 그는 것 말 하는 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 이 것 같아요. 이 것 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 . 이 있 않아요. 이 않 않아요. 이 않아요. 이 있 않아요. 이 있 않 않아요. 이 않아요. 이 있 않아요.	
en forski se	<b>C</b>	SHIFTING A MULTICAL AND AND A COMPACT MADE AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT AND A COMPACT A	
	С	그는 것은 것은 것 같은 것은 것은 것은 것은 것은 것은 것은 것은 것은 것을 가지고 못했는지?	
	29	DO 30 IS=1.N	
		TSS=N+1-TS	
		Y(1) ISC+1)= $Y(1)$ ISC)	
	70		에 남승 한 날에
	30	CUNTINCE .	
etar en la seconda de la seconda de la seconda de la seconda de la seconda de la seconda de la seconda de la s La seconda de la seconda de	ومعرفيته وهمه والانتخاب فحر وتر	DU 31 15=1.N	
		ISS=N+1+IS 전문 제가 사람을 했다. 한편 문제를 통했게 물건을 가지 않았다. 이 바라 가지 않는 것 같아.	
	31	D(1, ISS+1)=D(1, ISS)	
		D(2, ISS+1)=D(2, ISS)	
		IF (K.LT.M) GO TO 32	나라 관련하는 문
		IFULT IM GO TO 33	
		$\Delta L = L$	
		Trust - IV. Arlugiv(r/AL)	
		PIETP(JK)	and La Ala
	32	P=0 . The equation of the transformation of the transformation of the transformation $T$	
		L=8 shows a state state state state in the state	
	33		and the second second
	1000	CONTINUE CONTRACTOR AND A CONTRACTOR OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPANTE A DESCRIPTION OF A DESCRIPANTE A DESCRIPANTE A DESCRIP	
		CALL MOVEA (0., YP(1))	
المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحم المحمد المحمد		nn 34 f=1.1K	et al

37 38 39	FORMAT(10%, SEED, NOISE VARIANCE') FORMAT(2F) FORMAT(10%, NDISE VARIANCE=',F) CALL FINITT(0.767) END		
C	workerstworkerstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstander	***	
Ç	* FAST KALMAN ALGORITHM	*	
с Г	* CALCULATES THE TRY CUEFFICTENTS HND * MEAN-SOUGPE-ERROR FOR AN ADAPTIVE	* *	
Č	* EQUALIZER.	*	
C		*	
L C	* NUISE: WHITE GAUSSIAN WITH ZERU MEAN	*	
Č C	* IMPULSE RESPONSE SAMPLES ARE FROM DATA * FILE FFT1.DAT	* *	
C C	* * MODULATION QAM	* *	
C C	* * INPUTS:	*	
Ċ	* H: IMPULSE RESPONSE SAMPLES	*	1
C	* N:NO.OF TAPS	* -	n an An Ant
L C	* SIGHA: NUISE VHRIHNUE * ALPHA:ESTIMATED MSE	*	
Ĉ	*	*	1.
C	* OUTPUTS:	*	
C C	x × x L; IHF: LUEFFILIENTS	*	
C	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	***	
	DIMENSION H(2,28),X(2,20),C(2,20),J(18),D(2,20),Y	P(1200).DD	(2)
	DIMENSION G(2.40,GOR(800) DIMENSION GAIN(2.20),F(2.20),B(2.20),GEX(2.20),XO	LD(2,20)	
	DOUBLE PRECISION H	e più serie dalla dalla dalla dalla dalla dalla dalla dalla dalla dalla dalla dalla dalla dalla dalla dalla da Nationale dalla dalla dalla dalla dalla dalla dalla dalla dalla dalla dalla dalla dalla dalla dalla dalla dalla d	
	CALL ASSIEN(3, DK1:FFT1,DAT')		
	DATA 6/3,-1,-1,-3,1,3,-3,1/		
	URITE(5.1)		
1	FORMAT(10X,'NO OF TAPS,ALPHA=?',/)		
2	FORMAT(1.F)		
	URITE(6.3)N.ALPHA.		
3	FORMAT(10X, NO OF TAPS=1, 12,7,10X,1ALPHA=1,F10.4, UPITE(5.4)	/)	
4	FORMATCIEX, AVE LIM.		
	READ(5,5)LIM		
<b>)</b>	FURPHICT).		
	READ (5,40) SEED, SIGMA		
موسوسة موموية تادمه ايلة	URITE(6,41)SIGMA	بيدويه المراجع والمترجع والمحيو	
	516161-5081 (51616)		
5	FORMAT(10%, 100 YOU INCLUDE QUANTIZATION ERRORS? )		
	URITE(5.7)		
	READ (5, 8) IO		
8	FORMATCD		
	IF(IQ.EQ.0)GO TO 12		
9	FORMAT(10X, 'ND OF TAP BITS?')		
	READ(5,10)N1		
10	FORMAT(I)		
11	FORMAT(10%, NO.OF TAP BITS=', 12)		
12	CONTINUE		
<b>,</b>	M=INT(8.+(N-1,)∕2.)		
. <b>L</b>	1. 이 사람이 있는 것이 같이 있는 것은 것을 하는 것 같은 가격을 가지 않는 것이 있는 것이 가지 않는 것이 바람이다.		

```
BNN1=2***N1
          DO 14 I=1.N
          X(1,I)=0.
          X(2, I)=0.
          C(1, I) = 0.
          C(2, I)=0.
          D(1.1)=0.
          D(2.I)=0.
14
          CONTINUE
          DO 15 I=1.N
          F(1, I) = 0.
          F(2, I) = 0.
          GAIN(1.I)=0.
          GAIN(2.1)=0.
          B(1, I)=0.
          B(2.1)=0.
          GEX(1, D=0.
          GEX(2, 1) = 0.
          XOLD(1.I)=0.
15
          XOLD(2, I) = 0.
          RES1=ALPHA
          RES2=0.
          P=0.
          L=0
          JK=0
          CALL INITT(950)
          YMIN=-50.
          YMAX=0.
          XMIN=0.
          XMAX=630.
          DX=50:
          DY=5.
          CALL TWINDO (0, 500, 0, 750)
          CALL DWINDO (XMIN, XMAX, YMIN, YMAX)
          CAEL GRID (XMIN, XMAX, DX, YMIN, YMAX, DY)
С
С
          MAIN LOOP
C
          DO 1883 K=1.609
С
C
          PRBS GENERATION
C
          DO 17 I=1.2
          J(1) = 1
           IF((J(6)+J(10)).NE.1)J(1)=0
          DO 16 IT=1.9
           ITT=10-IT
           J(ITT+1) = J(ITT)
          CONTINUE
16
17
          DD(I) = J(1)
                                                   مورسه المفاجعة والماج والمحافظ والمعالية والمعالية والمعالية والمعالية والمعالية والمعالية والمعالية والمعالية
           INX=DD(2)+DD(1)*2+1
                                                         D(1,1)=G(1,INX)/3.
          D(2,1)=G(2,INX)/3,
          X(1,1)=0.
          X(2,1)=0.
С
C
          CONVOLUTION
£.
          DO 18 I=1.20
          X(1,1)=X(1,1)+H(1,I)*D(1,I)-H(2,I)*D(2,I)
          X(2,1)=X(2,1)+H(1,I)*D(2,I)+H(2,I)*D(1,I)
18
C
С
          NOISE ADDITION
С
          X(1,1) = X(1,1) + (GUR(K)/1,41421356)
          X(2,1) =X(2,1)+(GUR(K)/1.41421356)
                                                                                        مراجع
مرجعه من مرجع مرجع المرجع الم
           FOR1=X(1,1)
```

```
DO 20 I - I N
         F(1, I) = F(1, I) + GAIN(1, I) * FOR1+GAIN(2, I) * FOR2
         F(2, I) = F(2, I) + GAIN(2, I) * FOR1-GAIN(1, I) * FOR2
20
         PFOR1=1.
         PFOR2=0.
         DO 21 I=1.N
         PFOR1=PFOR1-GAIN(1,1)*X0LD(1,1)-GAIN(2,1)*X0LD(2,1)
21
         PFOR2=FFOR2-GAIN(1, I) *XDLD(2, I) +GAIN(2, I) *XDLD(1, I)
         DUM1=PFOR1
         DUM2=PFOR2
         PFOR1=DUM1*FOR1-DUM2*FOR2
         PF0R2=DUM1*F0R2+DUM2*F0R1
         RES1=RES1+PFOR1*FOR1+PFOR2*FOR2
         RES2=RES2+PF0R2*F0R1-PF0R1*F0R2
         S1=RES1*RES1+RES2*RES2
         SS1=RES1/S1
         SS2=-RES2/S1
         GEX(1,1)=PFOR1*SS1-PFOR2*SS2
         GEX(2, 1) = PFOR1*SS2+PFOR2*SS1
         DO 22 I=2,N+1
         GEX(1, I) = GAIN(1, I-1) - F(1, I-1) *GEX(1, 1) + F(2, I-1) *GEX(2, 1)
         GEX(2, I) = GAIN(2, I-1) - F(1, I-1) *GEX(2, 1) - F(2, I-1) *GEX(1, 1)
22
         BAC1=XOLD(1.N)
         BAC2=XOLD(2,N)
         DO 23 I=1.N
         BAC1=EAC1-B(1, D'*X(1, I)-B(2, I)*X(2, I)
:23
         BAC2=BAC2-B(1,I)*X(2,I)+B(2,I)*X(1,I)
         V1=1.-GEX(1,H+1)*SAC1-GEX(2,N+1)*SAC2
         V2=-GEX(2,N+1)*8AC1+GEX(1,N+1)*BAC2
         VV=V1*V1+V2*V2
         V1=V1ZVV
         V2=-V2/VV
         DO 24 I=1, N
         B(1, I)=B(1, I)+GEX(1, I)*BAC1+GEX(2, I)*BAC2
         B(2, I) = 5(2, I) + GEX(2, I) * BAC1 + GEX(1, I) * BAC2
         U1=B(1,I)*V1-B(2,I)*V2
         U2=B(1.I)*V2+B(2.I)*V1
         B(1, I) = U1
         B(2, I) = U2
24
         CONTINUE
         DO 25 I=1,N
         GAIN(1, D)=GEX(1, D)+B(1, D)*GEX(1, N+1)-B(2, D)*GEX(2, N+1)
25
         GAIN(2, I)=GEX(2, I)+B(1, I)*GEX(2,N+I)+B(2, I)*GEX(1,N+1)
         Y1=0.
         Y2=0.
C
C
         OUTPUT
С
         DO 28 I=1.N
         IF(I0.E0.0)G0 TO 26
C
         فيفعدنه فعدده لارتذأ سأجاب أرامان الجابا المحا
C
         QUANTIZATION OF TAP VALUES
С
         A1=INT(C(1.I)*BNN1+0.5)/BNN1
         A2=INT(C(2, I)*BNN1+0.5)/BNN1
         GO TO 27
26
         A1=C(1, I)
         A2=C(2, I)
27
         CONTINUE
         Y_1 = Y_1 + A_1 \times X(1, I) + A_2 \times X(2, I)
         Y2=Y2+A1*X(2; I)-A2*X(1, I)
28
С
C
         ERROR
£
         E1=D(1,M)-Y1
         E2=D(2.M)-Y2
```

P=P+E1*E1+E2*E2

) C		EQUALIZATION
		DO 29 I=1.N
		C(1, I) = C(1, I) + E1*GAIN(1, I) + E2*GAIN(2, I)
2	29	C(2, I) = C(2, I) + E1*GAIN(2, I) - E2*GAIN(1, I)
. L		
L C		() SHIFFI ING THE ATTENDED TO A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A SECOND AND A S A second a second and a second
L.		DO ZO Ι=1 Ν
	.**	$x_{0} = 0.01 + 10 + 10 + 10 + 10 + 10 + 10 + 10$
7	R R	X(1, 1) = X(2, 1)
3	31	D0 32 IS=1,N
		ISS=N+1-IS
		X(1, ISS+1) =X(1, ISS)
	e da ser estas de	X(2, ISS+1) =X(2, ISS)
3	32	
-: <u>.</u>		DO 33 IS=1.N
		ISS=N+1-IS
		D(1.ISS+1)=D(1.ISS)
		D(2,155+1)=D(2,155)
<u>ک</u>	55	LUNIINUE
		SKASK∓I strategie state state strategie strategie strategie strategie strategie strategie strategie strategie s SKASK∓I strategie strategie strategie strategie strategie strategie strategie strategie strategie strategie stra
	•	YP(JK) = +0. *0! DG10(P/X!)
		P1=YP(JK)
ं उ	54	P=0.
		l L=0 set en la set en la set en la set en la set en la set en la set en la set en la set en la set en la set e
3	35	·L=L+1 → Control (Control (Control (Contro) (Co
1	000	CONTINUE
		CALL MOVEA(0., YP(1))
÷		DO 35 I=1, JK called a second second second second second second second second second second second second second
• 77		
· . . ~	, r	CHLL DKHWH(XF, TF(I))
-	00	LUNIINUE
	27	ENPMOT (ARX 'TOP CHEFFICIENTS' /)
-		IRITE(6.38)(C(1,1),C(2,1),I=1.N)
Ξ	38	FORMAT(40X,F12.8,10X,F12.8,/)
. 3	39	FORMAT(10X, 'SEED, NOISE VARIANCE')
4	40	FORMAT(2F)
2	11	FORMAT(10X, 'NDISE VARIANCE=', F)
et i sitt Ni i sitt		CALL FINITT(9.767)
		END subtle set of the set of t

```
SUBROUTINE GRID (XMIN, XMAX, DX, YMIN, YMAX, DY)
  Y=YMIN
  IY=655(YM6X-YMJN)/0Y+1
  DG 1 T=1. TY
  CALL MOVEA(XMIN, Y)
  CALE DRAWS (XMAX, 4)
1 4=4+14
  X=XMIN
  IX=ABS(XMAX-XMIN)/DX+1
  00 2 I=1, IX
                    CALL MOVEACX, YMIN)
  CALL DRAWAXX, YMAX)
2 X=X+DX
  RETURN
  END
```

*********** GAUSSIAN NOISE GENERATOR

والمتحج والمنافقة فالمتحد والمتحافة والمشترك

SUBROUTINE GANDS (X, N, XORT, SIGMA) DIMENSION X(1) IU=X(1) JU=-8(3) DO 1 I=1.10 XX=RBN(IU.JU) 00 2 T=1.W X(I)=FRN(IU,JU) PIKI=2 *3 14159 XA=SIGMA*SORT<2 5 D0 3 1=1.N.2 *F=XA*SORT(-ALOG(1.-XC1555) QM=X(I+1)*FIKI X(I)=XR*SIN(OM)+XORT X(I+1)=XR+COS(QM)+XQRT M=N/2 IF(N. EQ. 2*M)G0 TO 4 X(N)=(X(1)+X(2))/2 RETURN

END

2

3

# REFERENCES

- 1- R.W.Lucky, "Techniques For Adaptive Equalization of Digital Communication Systems", BSTJ, Vol 45, Feb.1966, pp.255-86.
- 2- R.W.Lucky, "Automatic Equalization For Digital Communication", BSTJ, Vol.44, Apr.1965, pp.547-88.
- 3- A.Gersho, "Adaptive Equalization of Highly Dispersive Channels For Data Transmission", BSTJ, Vol.48, Jan.1969, pp.55-70.
- 4- J.G.Proakis and J.H.Miller, "An Adaptive Receiver For Digital Signalling Through Channels With Intersymbol Interference", IEEE Trans. Inform Theory, Vol.IT-15, July 1969. pp.484-97.
- 5- J.M.McCool and B.Windrow, "Principles and Applications of Adaptive Filters: A Tutorial Review", Standford University, Rep. IEEE Sept.1976.
- 6- B.Widrow, J.M.McCool, M.G.Larimore, C.R.Johnson, "Stationary and Nonstationary Learning Characteristics of the LMS Adaptive Filter", Proc.IEEE, Vol.64, Aug.1976, pp.1151-1162.

- 7- R.W.Chang, "A New Equalizer Structure For Fast Start-up Digital Communication", BSTJ, Vol.50, July-August 1971, pp.1969-2013.
- 8- G.Ungerboeck, "Theory on the Speed of Convergence in Adaptive Equalizers For Digital Communication", IBM, IBM Res-Develop., Vol.16, Nov.1972, pp.546-55.
- 9- R.D.Gittlin and F.R.Mogee, "Self-Orthogonalizing Adaptive Equalization Algorithms", IEEE Trans. on Communications Vol.COM-25, July 1977, pp.666-72.
- 10- R.D.Gittlin, J.E.Mazo and M.G.Taylor, "On the Design of Gradient Algorithms For Digitally Implemented Adjustment Filters", IEEE Trans. on Circuit Theory, Vol. CT-20, March 1973, pp.125-36.
- 11- R.D.Gittlin, and S.B.Weinstein, "On the Required Tap Weight Precision For Digitally Implemented. Mean Squared Equalizers", BSTJ, Vol.58, Feb.1979, pp.301-21.
- 12- D.D.Falconer and L.Ljung, "Application of Fast Kalman Estimation to Adaptive Equalization", IEEE Trans. on Communications, Vol.COM-26, Oct. 1978, pp.1439-46.
- 13- M.S.Mueller, "Least-Squares Algorithms For Adaptive Equalizers", B.S.T.J., Vol.60, Oct.1981, pp.1905-25.
- 14- L.Ljung, M.Morf and D.D.Falconer, "WastCalculation of Gain Matrices For Recursive Estimation Schemes", Int.J.Control, Vol.27, Jan.1978, pp.1-19.
- 15- D.Godard, "Channel Equalization Using a Kalman Filter For Fast Data Transmission", IBM Res. Develop., May 1974, pp.267-73.

- 16- R.D.Gittlin and S.B.Weinstein, "Fractionally-Spaced Equalization: An Improved Transversal Equalizer", BSTJ, Vol.
  60, Feb. 1981, pp.275-96.
- 17- S.Qureshi, "Adaptive Equalization", IEEE Comm.Mag., March 1982, pp.9-16.
- 18- L.Ljung, "Analysis of Recursive Stochastic Algorithms", IEEE Trans. Automat. Contr., Vol.AC-22, Aug.1977, pp.551-75.
- 19- D.C.Forden, "Stochastic Approximation With Correlated Data", IEEE Trans.on Inform Theory. Vol.IT-27, Jan. 1981, pp.105-13.
- 20- P.Butter and A.Cantoni, "Noniterative Automatic Equalization", IEEE Trans. on Communications, Vol.COM-23, June 1975, pp.621-33.
- 21- E.H.Satorius and S.T.Alexander, "Channel Equalization Using Adaptive Lattice Algorithms", IEEE Trans. on Communications. Vol.COM-27, June 1979, pp.899-905.
- 22- L.Frank, Signal Theory, Prentice-Hall, New Jersey 1969.
- 23- J.M.Mendel, <u>Discrete Techniques of Parameter Estimation</u>, Marcel Dekker, New York, 1973.
- 24- A.P.Sage and J.L.Melsa, <u>System Identification</u>, Academic Press, New York 1971.
- 25- A.H.Jazwinski, <u>Stochastic Processes and Filtering Theory</u>, Academic Press, New York, 1970.

- 26- R.W.Lucky, J.Salz and E.J.Weldon, <u>Principles of Data</u> Communication, McGraw-Hi-1, New York, 1968.
- 27- J.Istefonopulos, <u>State Variables and Linear Control</u> <u>Systems</u>, Boğaziçi University Publications, İstanbul 1981.
- 28- A.V.Oppenheim and R.W.Schafer, <u>Digital Signal Processing</u>, Prentice-Hall, New Jersey, 1975.
- 29- F.J.Gantmacher, <u>The Theory of Matrices</u>, Chelsea Publishing Co., New York, 1964.