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ABSTRACT

In this thesis, after introducing the advantages of
switched cabacitorA(SC) networks, several time-domain analys
- methods of SC networks have been investigated and compared .
,Wifh each other. An efficient method for the solvability pro
lem, which is very important for network analyzers, has also
been given. .

The z-domain analysis of SC networks is givén.by iﬁt-
roducing z-domain equivalent circuits which are very basic
tools for network designers. The z-domain analysis is built

on the time-domain signal processing  mechanism of SC network

Finally, fregquency domain analysis of SC networks and

their filtering properties have been investigated.

The exambles given in the thesis can clarify all the
introduced methods. '



BZETCE

Bu tezde, anahtarli kapasite elemanlaraindan kurulu de
relerin iistiinliikleri sunuiduktan sonra, zaman domeninde anal:
yontemlerinden belli baglilari incelenmis ve karsilastirmala:
yapilmistir. Devre analizcileri’igin 6nemli olan “gézﬁiebili:
1ik" sorunu da ele a11nm1§t1r.

Devre tasarimcilari igin temel araglardan olan: esdege:
devreler yardlmlyla anahtarli kapasite devrelerlnln analizi -
z-doniislikleri cinsinden de sunulmustur. Z-domen analizi anah-
tarli kapasite devrelerlnln zaman domeninde igaret slire¢ me-

kanizmasa ozelllklerlnden hareket edllerek 1ncelenm1§t1r.

Son olarak, frekans domen analizi ele alinmis ve
anahtarli kapasite devrelerinin siizme &zelliklerine dedi-
nilmistir. ’

Tezde verilen Ornekler sunulan ydntemleri agikliga

kavusturabilecek niteliktedir.
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CHAPTER I

INTRODUCTION

I.l. Why SC Networks?

Rapid advances.in MOS integrated'circuit technology
permit an ever increasing circuit density per silicon chipe.
So far this technology has been used malnly by the designers
of digital systems, although MOS technology allows the
implementation of capacitor arrays for use in analog devices
as well. Consequently, interests has recently focused on the
switched capacitor filters (SC) which comprise only capacitors
intérconnected-by'an array of periodically operated switches.
This approach can provide the filter functions previously
obtained with IC or active-RC filters. With the elimination
of resistors (which requlre a large silicon area, have poor .
temperature and linearity characteristics and furthermore
have temperature coefficients difficult to match with that
of capacitors when realized with MOS technology), the use of
this technology for the design of analog active filters may
soon become feasible, | o

MOS switches'arepalready available, also toggle switches
can be obtained by conneéting two MOSFET's as‘shownlin Fig.Is1,

, Contrary to the resistors, MOS capacitors, at this

"moment already have close'to ideal characteristics, temperature
coefficients may be as low as 10 ppm/C or less, and the loss
factor can be kept sufficiently small. Parthermore, the trans-
fer function coefficients of an SC filter are determined by
a highly stable clock frequency and capacitor ratios which
can be held to very tight tolerances (measured errors of less
than 0.2 percent have been achieved). This process of inherent
precision and quality is sufficient to meet many filter and
system spéCifications. By applying MOS processing techniques
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to SC networks, the realization of the "filter on a chip"
may be at hand.
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clock at a frequency W, =

Another technological alternative is the combination
of beam leaded MOS switch arrays with thin-film capacitors
deposited on a ceramic substrate to provide a hybrid 1ntegrated
package resembling presently manufactured hybrid 1ntegrated
RC active filters. The absence of resistors on the subtrate
and the presence of only‘Silicon chips (i.e. switches and
opamps) and thin film (or chip) capacitors may permit filter
packages that are both smaller and less costly than those
manufactured with présent techniques.

Work on the analysis of periodically switched networks
vas stértéd several decades ago and general techniques have
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been presented for the analysis of switched RIC cireuits.

The formulation used in these, however is such that they can
not be directly applied in the analysis of switched capacitive
networks with zero resistances., The including of negligibly
small "dummy" resistances to allow their use leads to
unnecessarily complex formulation and time consuming calculati
Thus these methods are not appropriate for analysis and design
work on switched capacitor filters, where a large amount of
simulation is needed to investigate new configurations, to
assign elements values and to study effects like those of

| parasitic dapacitances and'operationél-amplifiér nénidealitieé

As a result, the need has émerged for efficient
techniques for the analysis of these networks. But traditional
two-port theory can not be directly applied to such circuitse.
However, by introducing:some new concepts it can be shown
that, ultimately, classical two-port theory can indeed be
used to advantage. After the inclusion of switches, it is
demonstrated that in all cases, charge equations similar to
Kirchoff's current equations apply except that the storage
properties of the capacitors must be taken into account.

This thesis is dealing with analysis techniques of SC
networks developed so far and aims to collect all these
techniques“in a single text while comparing them with each
other by using the same notation. In the thesis, some of the
examplesrare from the referred papers while some are new,

I.2. Charge Conservation and Switching

Charge conservatlon principle on which SC networks are
built can be clearly understood by the approach of T31v1dls[i]
‘ Consider a closed surface as in Fig.I.2(a) and let q(t)
be the time function representing the charge enclosed by it
at time t. Assume there are one or more paths through which'
charge can be transferred to or from the outside world. Given
a time reference t', q(t) is defined as the total charge that
has left the surface through these paths, between times ¢!
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and t where i > t', Then charge conservation dictates:

. 3Ct)2q(t)-q(t) | (I.1)

The closed -surfaces considered here will include '
capacitor plates comnected to one or more nodes, .An example
is shown in Fig.I.2(b) for a single node numbered (i), with
the quantities ? and q defined above denoted by q(i) and q(l)
respectively. g 1) includes the charge of all capa01tor plates
enclosed by the surface and will be referred to simply as
"the charge on node i", ’

Ry

- Pig.I.2(a)'A closed'surface Fig.I.2(b) A closed surface contai
‘containing charge q(t). ning capacitor plates connected tc
' node (i), '

Noﬁ, consider a set of m nodes I= iil,iz.oaim} as in
Fig.I.3. And assume that 11 is the smallest element in I. All
nodes in the set are assumed to be 81multaneously connected
through switches, which are initially all open and close at
time t . | |

Fig.I.3. Several nodes connecteéd through switches,
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A charge conservation equation corresponding to
Eq.(I.1) can be written for the greater surface enclosing all
nodes, indicated by the broken line in Fig.l.3. If t indicate:
"the instant immediately before switching" then, u51ng t'—t

we have | _ .
2 i@ 2 .q(i)(t;;),— 2 o)) (1.2)

1€T ' ieI ieX

The above equatlon is valid even if some or all of the
'sw1tches in Fig.I.3 have been closed before t °

The formulatlon (I.2) is equlvalent to the Kirchoff's
charge law which is

2 - §,.(1)=0 | (I.3)
kecut-set ‘ _ : '
Equation (I.3) is in fact an axiom of circuit theory.
Axiom: The Kirchoff's current law (XCL) requires that
the net charge transferred between t; and t to any node should
be zero. . ‘

A.&(t):O - - - (I.4)

where A is the reduced incidence matrix of the SC network and
the vector q(t) consists of the charges in the switches q ’

the charges in the 1ndependent voltage sources qu, the charges
of the charge’ sources gw, the charges of the controlled branche:
of VCVS, QCQS and QCVS's anq the controlling branches of QCQS
ED and the charges of the capacitor ac or explicitly

-

1>
(¢

202
-

(I.5)

a(t)= | g,

t.a>

gQ)

10>

L 3]
where the varlable qk(t) is the net charge which has been
transferred in branch k between .the end t of time 51°tl§m 1
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and the present time instance t of A A(i,‘ L
_ This choice of charge variable may not seem very
straightforward in this sense that it assumes a different time
reference for each time slot. Thus qk(t) will usually have |
Jumps at the switching instances t o This choice however makes
the equations more transparent and does not introduce any loss
of generality.

The closure of the switches will impose & set of equafio
called node voltage equalities, If v(i)(t) denotes the voltage
‘between node i and ground, the m-1 equations are in the form:

(i) (i;) | o -
v (t)-v K (t)_o, ieI, J#1 (I.6)

Before going into analysis techniques some preliminary
assumptions and definitions are needed for the switches.
Assumption: It will be assumed that the switches of the
SC networks are all of the "on-off" type. Any other type of
switch can easily be represented by a combination of approp-
riately timed on-off switches wnioh are closed and opened
in an arbitrary fashion, not necessarily simultaneously. '

_ ‘Definition: A time instant t igs a "switching time" if
jand only if at least one switch in the network changes state
at t=t .

From the above definition it follows that the topology
of the network will be fixed between any two consecutive
switching times, e.g. in the intervals of the form (%, tm+ﬂ°




CHAPTER II

THE TIME DOMAIN ANALYSIS OF LINEAR MULTIPHASE
- SC NETWORKS

In this chapter, the time domain analysis methods of
linear multiphase SC networks will be given., At the end of
this chapter, the same example will be sol#ed by each of these
methods., First, the components of SC networks are introduced.

II.1. SC-Network Componentsv

From a practical point of View a switched capacitor
network is any. network with op-amps, capacitors (C), switches
(S) and voltage sources (VS) where the amplification of the
op-amps is frequency independent; moreover there are no resistor:
nor parasitic resistances in the components Fig.II.1(®). The
switches are controlled by T-periodic Boolean_clock‘signals
¢i(t)’ i060)¢i(t+T)=¢i<t)o If ¢i(t)=0 (respo ¢i(t)=1) all the
switches which are controlled by the clock ¢i are open (resp.
closed) PFig.II.l(a). The time is partitioned into time slots
[3 °(t ’ tm+i] ‘such that the clock signals (and hence the
network) do not vary inA o .

Each period has N tlme slots. The union of the time
slots Ak £>k+N"A}w2N eeees iB called phase k. All time slots
of the phase k have.the same duratlon and the clock values are
the same 1°e01¢ (t)=0. ik for all t in phase k (where @. ik is the
ralue of the i th switch in phase k). Although a major part
»f the realizations only uses two phases [4 5 8:] the deriva-
.ions are for an arbitrary number of N phases. This is not
just for mathematical generality but in order to be able to
Landle design techniques which use many phases,
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FigeIIl.l.b. SC-Network Components.
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I.2, An Introductory Example

In order to illustrate the sighal processing mechanism
hich -occur in SC networks and analysis techniques consider
he simple "RC low pass" circuit below., (x)

) V3
¢ “ ’
___/__-:*_—{e‘&':_:z’_:.‘ﬁ\ , o odd even odd ot
R - mZ '
15 g - Y(*) 1
1, t t b
— 4, —> ’Z—Al——»"é—- Vo e A,r...:’-

T —

ig.IT.2(a) o FigeTI.2(b)
During the odd phase, i.e. for all t in the odd time

1lots AA21+1 i=0,1,2,44.+ the switch controlled by @ is

:losed and that controlled by @ is open. Thus for all times
. in ‘A2i+l the network equations are:

e(t)+v(t)=u(t) (XVL)

(I1.1)

Cle(t)+02v(t)= —Cle(tgi+l)+02v(tgi+l) (KQL for node A)

here t; denotes the time instant just before the switching
nstant t_.

, During the even phase i.e. for all t in A?i’ i=1,24400
he network equations are:

e(t)=0  (KVL) o
(I1.2)
v(t)=v(t5i (KQL for node A)

) It will be clear in later chapters, why: such a'circuit is
called a low pass circuite (See page.77, chapter 1y).
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By elimina%ing e(t) in both equations

| 7V(t)=SV(t£i+l)+2u(t) téA2i+1 (II.Boa)

v(£)=v(t3;) el . (IL3.b)

is obtained. _
~ At this point some impoftant observations can be made-
which extend to general SC circuits. ,

Pirst the response "v(t)" satisfies different equations
accordinig to the phase., Second the equations are linear and
third the response in any time slot depends on its value v(t—)
at the end of the previous time slot and on the actual value
of the input u(t). '

The equations (II.3) contain the sampled data and the
continous I-0 (input-output) coupling effect. The sampled data
effect is presentlin the even and odd phase but the continous
I-0 coupling is only present in the odd phase.
| This follows immediately from the topology of the circuit
jsiﬁce only in odd phase there is a loop of the input and output

PN
.

branch, :
In order to decompose these effects call the value

at the end t 41 Of time slot Ayt
uﬁ?u(t;+l), -vhév(t;+l) ' (1I.4)

v By substituting t= t21+2 in Eq. (II 3.a) and t= t21+1 in
Eqo (II 3.D)

TV214179V24%204 47
(II.5)

- V2iV2i

is obtained.
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After ellmlnatlon of the even values Vois 8 constant
-differance equatlon of values one full period apart..results:

7¥2i+1‘5V21-132ugi+1 . (II.6)

The values of the output at other instants of the time
‘glot Am are characterized in temms of new variables as follows:

D () vy, (4)2 u(t)-um seA (II.7)

m? . m

Sgbstituting IT.4, II.5, II.7 into II.3, the equations
for the continous I-0 coupling between-u* and vf‘are obtained.
" _
Tv(8)=2u”(t), telhy §
. (11.8)

In Fig.II.3, the decomposition (II.7) of the input and
‘output into a part u'(t)éum, v'(t)%vm, teA which is constant
in each time slot and -the remainder u*(t) and v*(t) which is
zero at the end of each time slot; is shown, /

. The equations (II.5-8) give the input-output relation-
ship for the piecewise-constant part and the input—oufput -
continous coupling. The continous I-O0 coupling is only a
periodic scaling of the signals which can be easily computed
and as in this example. this contribution is usually small,

The computation of the sampled data effect requires the
solution of a set of difference equations (II.5) or (II.6),
'which can be solved in timé'domain via discrete time impulse -
responses or in z-domain, This techniques are further explained
in later chapters. (See chapter Tiand ) '
The above equations have been obtained by using the
charge conservation concept explained in chapter I and the KVL,
Any SC network can be analyzied by this concept in mind. But
more complicated SC networks will be solved by the methods
- of II.,3, II.4, II.5 and II.6 built on the charge conservation
principle, |
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IIoBy Tabl eau._M'e'thod

The basic signal processing mechanisms which occur in
a SC network. are first the charge ‘redistribution between two
consecutive phases and second the effects of the varlatlons
of inputs during the phases. :

In order to describe those effects easily the variables
vk(t) and}ak(t) are chosen for each branch. The variable vk(t)
is the voltage in the branch k at the present time instant t
of some time slot A m® ‘The variable qk(t) has been already
explalned on page 5. : N

- The constltutlve equatlons of the uncontrolled components
shown in Flg.II 1(a) at a time instant t-of Z& are then:

c

q(t)-C[y(t)-v(7)] =0

S 5m§§t>+¢m%<t>=0 e _(II;95"

VS: qﬂt)=u(f)
QS: QSt)=W(t)

where X denotes the complement of the Boolean variable x'and
u(t) and w(t) are given source waveforms. By labelling’the'”
variables of the controlling port by v, and ao and those of
the controlled port by v and.a,the constitutive equations of
the controlled sources are: '

VOVS : . § ($)=0 ., . v(t)-Kv_(t)=0

VCQs s ao(t)=o , 'a(t)-Kvo(t);O | (11.10)
Vs = v (t)=0 v(t)-Kao(t)=o

QCes i v (8)=0 .,  d(t)-Kq,(t)=0

OP-amp:  yy=v,, §;= §,= 0
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Three important observations can be made directly from
the above constitutive equations:
1) -411 components are described by linear equations,
2) 6nly the capacitors introduce dynamic actions in the circuit‘
by memorizing in each time slot zxnlthe value of the voltage
at the end t; of the previous time slot,
3) f$he periodic clocking of the switches introduces periodicity
in the circuit.
Now, let's define q(t) and y(t) as the vectors representing
the branch charges and the voltages at time instant t.
' Then the constitutive equations of all the components
~ can be brought together in the matrix form at any instant %
' ofAm as: ‘ |

.....

Mma(t)+PmY5f)—Exft;)=§(t) | (II.11)

‘where s(t) contains all the input voltage or charge waveforms
u(t) and w(t).

Each uncontrolled elements contributes one equation to
(I1.11) and controlled elements contributes two equations to (II.11
(IT.11) is general in that it may include multi-terminal :
elements., o o '

KVL requires that the VOitages v(t) in the branches
are equal to the differance of the node voltages at the terminals
of the branches. or |

ATy (£) =3 (£)=0 (I1.12)

where AT is the transpose of the reduced incidence matrix A :
‘and VN(t) is the node to ground voltages at time t of’A .
~ Then an 1mportant theorem follows:

Thedrem_II.lo- - Given an arbitrary switched canacifor network:
with reduced incidence matrix A and where M , P, R and g(t)
characterize the components and the input waveforms in time
slot A n® the response V. (t), q(t) and v(t) at time 1nstant g
of A satlsfles the tableau equatlons.
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b~
Ut

1

- - - - i - I T
Q A 2 Ty (t) 0 2
M ~ - -
A" 0 -1 a(®) | =| o | vws))+| 9 (I1.13)
0 P . ‘R ;
2 Hy E) [ xX® | | B | 808
or in short —
gmg(t)=§m§(pm)+g(t) o : (I1.14)
L . Q : . S
where ‘s(t)= 0 is input waveform vector and
s()|

R_@
=
N RO 1O

Proof: The equations (II.13) or (II.14) can be obtained
by puting the KQL (I.4), the KVL (II.12) and constltutlve
equations (II.1l1l) into one matrix form,

As stated by Chua and Lin [6] the 1mportance of the
tableau equations is that any general topological method of
circuit analysis (loop, hybrid, modified nodal or state variable
analysis) can be obtained by a preliminary Gauss elimination
‘of certain variables in Eqe (II.13). Unlike other topological
, equation formulation algorithms [1], it is a trivial matter
to program the tableau equations.‘Although, the size of
tableau matrix is considerably larger than that of the matrices
with some variables éliminated, the tableau matrix is much
sparser, Because of this sparsity, the tableau equations with
all variables may be solved much faster than its reduced
versions. ’ |

For computer implementafions a good compromise has to
be chosen between simplicity of formulation of the equations
and the size of the resulting equations. With the mixed-nodal
tableau (Modified Nodal Analysis [2,3] ) formulation, it is
possible to préserve sparsity while eliminating a considerable
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number of variables,
The other reason for deriving tableau equations for a SC
. network, is that the structure of these equations allows
'immediately‘to see how the signals are processed in the network,
It is seen that the input r(t) and the output x(t) are related
by linear equations. Because of the absence of derivatives of
the variables in this equations (II.14), there is no continous-
‘ time dynamic action.in a switched capacitor .circuit. The dynamic
action is however due to a discrete time memorization of the
value of certain voltages at the -end of the_previous timé'slot.
Since the matricéssyhﬁandsgm depend on m but also are
periodic-or‘ym+lmﬁ¥m and P iw=En (wheye-N is the number .of
phases),~the waveforms in SC network can be computed by a
solution of a periodic set of linear difference equations;\
’ Before going into the domain signal processing mechanism
in SC networks, the modified nodal analysis.methods, the
appioach of Lin, will be given in the following sections,

II.4, Modified Nodal Analysis Using Composite Branches.

Before going into the analysis method, it will be
eonvenient, to give the following theorem. : '
Theorem -IT.2s. .. In general SC networks can be considered as
linear resistive circuits for any subinterval of the period T.

Proof: Consider each branch "k" of the circuit as being
_charaoterized:by a voltage-charge relation [vk(t), ak(t)] .
With this characterization, KVL and KQL still hold,i.e.

> v, (t)=0 and C§.(t)=0 - (II.16)
géggép k | ;Z;;;fset k | |

For a capacitor, its branch characteristics is now given
| G, (1)=C [vo(£)=v (t2)] (I1.17)

which is represented by an equivalent composite "resistive"(x)

(x) Here, resistive is . used to mean that_ the charge q (t) is
related to the voltage [vc(t)-vc(tm)] by a constant
multiplier.
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element with conductance equal to C as shown in Fig.II.4(b).
For an 1deal switch when the switch is thrown from
closed to open, '

as(t)=o for t¢ "open" subinterval (11.18)

When the switch is thrown from open to closed ag(t) is
finite and the voltage across the switch is o :

v, (t)=0 for t e"closed" subinterval (II.19)

B The independenf current Js(t) is now represented by a .
"charge" source. ' '

§ ¥=ws) T (11,20

_ Where as the independent voltage source u(t) is the

same as before. | ‘ -
For -the controlled sources and multi-terminal elements,

‘the new branch.Characteristiés and ‘the controlling relations
remain the same with each branch current replaced by the branch
_ charge. ' ,
From the above, it is concluded that the original
~gwitched capacitor Qircuit is transformed into a "resistive"
circuit in voltage-charge domain with the same circuit topology.

(0 | ~ &
o——— —o- >
+ e
| | R-L
V. (t) - . - B (1)
v, (45,)
o To—

Fig.II.4(a) A capacitor, PFig.II.4(b)"Resistive" equivalent,

There exists several efficient analysis methods fox
resistive circuits. The classical nodal method is perhaps the
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simplest and easiest to implement on'computers for solving
linear resistive circuits containing independent current sources
and VCCS as the only sources. For the "resistive" circuit under
consideration, one must convert the independent voltage sources
~ into their Norton equivalent current gsources, and VCVS's and

CCCS's into equivalent VCCS's before the nodal-method can be
applied. This conversion usually involves additional program-
‘ming effort. To overcome this shortcoming, the modified nodal
analysis method [7] is adapted to SC networks by Liou and Kuo
[4] using the concept of composite ‘branch [6] .

.Analysis Procedure:
. Let the SC circuit be connected with (n+l ) nodes and

b composite branches as shown in FigeII.5, Each composite
branch is made of a two-terminal element~bk, a voltage source
Ek(t) and a composite charge source Z&(t)o'Fo? a "resistive"
brapch (corresponding to a capacitor in the original circuit),
q(£)=C, ¥, (t)  where ¥ (t)f, (t)-v_, (t7)|and €, (£)=v, (t7)

For an 1ndependent voltage source branch vk(t) =0 and
£ (t) E (t). For a voltage-controlled voltage source. (t) =0
and.E (t) ig some linear combination of other branch voltagesj

k(t) and independent voltage sources E k(t)'s.

- Independent charge sources W k(1:) may be combined to
form the composite charge source Zk(t). Any charge controlled
charge source can be represented by the composite charge
source Zk(t) and/or the . two-terminal element bk' The two-
terminal element bk can be either a linear resistor with
resistance Rk g‘ or a voltage controlled charge source that

depends llnearlykon the voltage of another resistor., Observe

that a charge controlled charge source which depends linearly

on the charge of another resistor can be replaced by an

equlvalent voltage-controlled charge source. In particular,

if qk ﬁka 3§ is the terminal charge of the controlled charge

source bk’ where qJ is the charge of resistor bJ with resistance
R.=1/C., then one can replace this controlled source with a

voltage controlled charge source with terminal charge qk—gkj

A .

j’
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where ng—PkJ/R - Consequently, the modified nodal analysis
formulation could allow both voltage- -and charge-controlled
charge sources,

Ny . '/\
£
Lo Ww Qb
N; |
+
' k=1,2, ... b
' II v (8 e
Vk“:) - d)Zk({:) - 1= 09,1, 2,....n
JQIAT
NJ'.__&

PigoIIo5. A "resigtive" equlvalent comp051te branch of a sw1tched
' capacitor 01rcu1t element.

Define the charge vectors as:

’—A/- rl\ ] ) r

a3 Q| %] |
eelas| @& |a| 28| % i (I1.21)
CH g |z
| b [P | 7b]
Let §. be partitioned into two subvectors as
| aa
3= A 4
p . : ]

‘where §b corresponds to th? chafgs vector associated with the
charges in the voltage sources, including all the independent
and controlled sourcés apd.ﬁa corresponds to the remaining
charges,
| Define the volfage vectors as:

oA vl.J AL Yi N El
vE| v, vE |V, §= £ (II.22)

¢ .
L]

[o R X))
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Let node o be the datum node, and denote by
= [TNI’ Viorees NéIT the node-to-datum voltage vector and
by A the nxb reduced incidence matrix obtained from the complete
1n01dence matrix by deleting the row correspondnlg to the
- datum node, clearly, v-AT Vare

Then partition all the voltage vectors in. Eq-(II 22) and A
in the same manner as in q. 1°e.,

: v V| £ A
~8 N ~8 -3

v= =1 &=, A= [Aq, &)

P4 v <b

The KQL equation for the circuit is given by

gaéé(g Z)=0 , (II.23)

" With the above described partitioning, (II.23) can be
rewritten as. ‘

ro. qa ‘
[_ﬂa éb] a. |AZ (II.24)

Where qals related to v by the branch—admlttance

~

matrix Y which always exists as the result of the partltlonlng
procedure, le€ay

Safa - (25
"On the other hand, ié_can be expressed as
~a ~a ~a =za~ll ~a

4 v € ATy € (II.26)

Substituting (II.26) and (11.25) into (II.24)
' | 'V'N )
T . -~ - N
AYA éb:] =AY E4A 2 (I1.27)

[Aa’-axa

is obtained.
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Eq.II.27 is a set of n equations in n node-to-datum
voltages yy and the charges §, in all the independent and
'controlled voltage sources., Denote the number of these voltage
sources by bl' The branch relatlons of these b

1 elements are
given by (x) - ‘ .
1 ¥a _ . ;
2 ly | EE om KA l’m H Eg (I.28)

Where E_ (t) (or u(t))ls the 1ndependent voltage source

vector of dlmens:p_on (xD)2 [E (), Bo(t),,.0,E_ (+)]T, K and
H. are real constant matrices of dimensions (b 1xb) and (blx{) T
resp.

" Let W (t) be the independent "charge" source vector of
dimension (mxl), ie e.,W (t)= [W l(t),... (t)] and v, (t )
be the initial capacitor.voltage vector of dimension (MX1),
ieee; ¥, (t )= [Vcl(t ),...,ch(t )] o Without loss of generality,
it is assumed that the "resistive" branches (correspondlng to
the M capa01tors) are numbered f;rst, then(xx)

, I .
£E=1" - 1.29)

~a | o5 Xb(tm) ' (1T

and L
TRAITIANCWE (11.30)

where‘gé is obtained from‘gé’by retsining only the first M
columns. _ - ) _
.Also, since 2 is & 1inear combinationlof Wsk(t)'s, then

A d ) (11.31)

where AwAis a real matrix of dimension (nxm) which is a sort
of reduced incidence matrix involving only the independent
charge source branches,

(x) DNote that all the controlled sources.are voltage controlled,
(xx) I, is the unit matrix of dimension M.
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Combining (II.27) and (II.28) and ﬁsing (1II.30) and (II.31)
one obtains (n+b) modified nodal equations:

T | ~ , | . .

£_¥ éa éb N ..§a¥a Coe 2' éw gs(t}
i = v (t)+ | - (I1.32)

B 011 % 9 - |H O (%)

In (II 32), the submatrix AaYaAg is the node admittances

-matrix excluding the contributions due to all the voltage
gources, .-

‘ Equation"(II.BZ) can be solved (x) to obtain

V) =By (87) 467 5 (%) - (I1.33)
where ‘ :
' E (%)
s(t)="
=T B (1)
Then,

v, (t)_AT (t) RV, (t; )46 8 (t), ted (II1.34)

where A is obtained from A by deleting last b-M columns whlch
do not correspond to the M capacitor branches and F -ATF

~m ~c=m?
T
Em‘écgm"
Equation (II. 34) is the state equatlons of the SC network. -

_ The output equation (the output voltage vector y(t)) is
obtained in a similar manner, ic€ey

z(t)—A v ~@ Yo (b )+ﬁ s(t) for téll | (11.35)

' A .
where A is. the connectlon matrlx relating v, to y, and C % oFn

and D ~§on

(x) See the solvability problem section.
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-Remarks: Eq.(II.35) is the state equation of the circuit,
which doesn't involve theé time derivatives of the state vectors.
The state vector in a subinterval depends linearly on the input
source vector in the same subinterval and on the final value -
of the state vector (which consists of the capa01tor voltages)
in the preceeding subinterval .

The output formulation (II.35) is unique since A, is o
unique (if the circuit is completely solyable). -

Since the circuit is "resistive" and, Y. (t) and s(t)
completely determine gany voltage in the 01rcu1t then the output :
voltage vector can be expressed as. i

g(t)igmgc(t)+ym§jt) for ted (II.36)

‘When Eq.(II.34) is substituted into Eq.(II.36) and the

~ result is compared with Eq.(II.35), 8 =C_F and ﬁ =C_G _+D

=M =m=z=m ~In =m=m =<m
are obtained.,

II.5, Modified Nodal Analysis . - Using Stamps

As explained in page, MNA equations are intermediate to °
the tableau and nodal equations. They are much more compact than
the tableau, but retain its properties'of sparsity, generalityy
and ease of formulation. Liou and Kuo analyzed the SC networks
by adapting MNA method as explained in the previous section,
Their approach requires only to convert the SC network into-
its resistive equivalent in the subinterval., In this case,
obviously some switches are on and the remaining ones are off,

However, in [2], the switches have also been ::
considered as elements which have constitutive equatlons as in
Eq.(II.9). And MNA equations have been obtained by adding some
constitutive equations of the switches and all the voltage
sources, In (2] , the stamps "cqntr;butlonﬂ_ln Fig.II.6 '
of the different components of a SC network to the MNA‘equations
are used for the direct 1link with the computer. implementation.

Now the method in [2] will be described,
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Theorem:TT.3, - A linear T-periodic SC network containing
ideal switches, capacitors, independént voltage and charge _
~.sources (VC and QS) and four type of dependent sources(VCVS,
VCQS, QCQS, QCVS) is descrlbed in tlme domain by the equatlons

Hy ik-] XN?t) | £kYN(?k+1N) W(t) A o
| L = o+ A4y (IT.37)
Me B ] 13 0 u(t)

where vN(t) is the node voltage variables (except the reference
voltage). q(t) con51sts of the charges in the switches qs, the .+
charges in the independent voltage sources au’ the charges of
the controlled branches of VCVS, QCQS and QCVS'S and the cont-
4r0111ng branches of QCQS qD' w(t) consists of the charge gources
and u(t) is the voltage source vector.

Proof: The charges ﬂ(t).lnjected in the nodes between
tk+1N and t€£k+lN is equal to the ‘net charge flowing away from
this node in the other branches.

EkYN(t)—EkYN(t£+1N)ﬁ£k%(t)=ﬂ(t) | (II.38)

The identification of Hk’ Lk Rk’ Mk, Pk matrices is
glven by using the method in [7] o Thé following procedure is
given for the case in which dependent sources are only of VCVS

type. :
Procedure: Partition the KQL equatlons (I 4) as:

- \ X §01
(8, 2 A& & ] 2| -
| | ' q =0 (II1.39)
§,'
L-q'W,4
then
A .s Is A A=O ‘
_ ﬁcgc+é gs+§ugu+§DgD+éwgw ~ - (1I.40)

where Ak.is obtained from the refuced incidence matrix A by
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deleting the columns which do not correspond to the k branches.
With the constitutive equations (II.9) and (II.10) in

mind, assume that the network contairis r dependent voltage

sources and the voltages of the dependent sources can be

expressed as linear combinations -of the controlling node
voltages as ’

D(t) =D ¥y () (II.41)

where V(%)= [vé%)(t) | vﬁz),.....vér)(t)] ! and D, is Trxn
matrix of the controlling node voltage coefficients (n is the .
number of nodes except the reference node) and V( )(t) is the
voltage of the i th dependent source.

'~ Now substitute the constitutive equatlon of the capacitor
in Eq.(II.9) into Eq.(II 40) to obtain

”~

ésgs""zug-u'l'—le‘c% ‘Xc(t)-.écg: «Yc(tm)+£‘DgD(t): —;AWVL(-E) - (II°42)

KVL equations require:

ATy (8)=y () | (II.43:a)
Avp(t)=y () (II.43.b)
ATy () =y, (+) |  (IT.43.0)
Ang(t)=y (+) (II.43.4)

Substltutlng Eq.(II 41) into Egq.(II.43. d) the constitutive
equation of VCVS '

(aZ-D_) 1y ()=0 . (11.44)

'ig obtained.
The constitutive equation of the switch holds iff
Ts =3 gL licitl
g q.=q, & nd ¢ v_=Vg or exp icitly

~ ~ ~

7 as+¢‘ys=oéz>¢.as=aé and ﬁTvs=vS° (II1.45)
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‘The validity of Eq.(II.45) is easily seen by evaluating
the expressions for @=1 and @=0,

The constitutive equation of the switch can be rewritten
byu81ng Eq.(II.43.C) as

B A8 Ay (=0 . (II.46)

- By substituing Eq.(II.45) and Eq;(II°43oa) into Eq. (II.42)

~

A Qs Auqu+A CATY(£) A ALV, (b 1N)+ADqD(t)- -AA(t) (IT. 47)

~

J

is obtained,

The constitutive equation of the independent voltage
source is given by the Eq.(II.43.a) as

., éLEYN(t)ﬂ’u(tFB(t) - (I1.48)

By combining all the equations (TT.44), (11.46), (11.47), (II.48)
in a matrix form:

T 117 - =

T _
LG 42 A Al | ER (tk+1N) AN (%)
iy | -
.:—:As g ’ '9 2 ES’ —~ ‘ ) 9, ot '
i . |= S|+ [ (TT.49)
Au 0 9 02114, 9 u(t)
Alp o o OJ 3 o - o
| D ~e = = = | D1 L ~ 1L <~

By comparlng Eq.(II 37) and (II 49) the f0110w1ng relations are
obtalned :

_p (qT T 4T
PAEAS,  LE[A2 A Ap]
C ol ] =
Py g 9 0 |
_ T _ |
Me= | A R=/0 0 Q (II.50)
) T :
L"‘éD-]:-)'eJA 94 —O,:: 9
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. As stated in [2]-and seen from the above formulation
v (E)+R q(t)-u(t)

are pre01se1y a vector formulatlon of the constitutive equatlons
of the switches, independent voltage sources and VCVS. '
Thus, the proof of the theorem is completed,

"CONSTRUCTION OF THE TIME DOMAIN MNA EQUATIONS

‘1) Set up (I®) with Hy, Mo» R, By I, (%) and W(t) zero.

2) For each component of the circuit identify the stamp of
figure II.6. Observe that the stamp of a switch includes the =77
Boolean variable of the clock which controls the switch, If
the component is connected to the reference node delete the‘
" corresponding row and column in the stamp. Using the indexes
of the rows and columns in the stamp add the contribution to
the appropriate entries in the matrices Ho» Mo By Iy, of the
left~hand side of (r3) and to Py, u(t) and W(t) of the right-
hand side of ([@3%). , L .

Note that the stamps in Fig.II.6 .are only for computer
implementation and should not be taken as constitutive equations.

II.6. General Nodal Ana1y81s of Swltched Capa01t1ve Networks
By Tsidivis' Topologlcal Approach

Tsidivis, in his paper [1] specifles only one network
topology and the switching schedule while opposing to specify
as many topologies as there are switch position combinations.
Tsidivis uses a similar idea as Kurth and Moschytz present

‘1n[5] v

‘ All derivations are based on the concepts stated in
Chapter I and the networks are assumed to consists of capaci-
torg, ideal switches, independent and dependent voltage sources.

We remember from the definition on page 6 that the

topology of the SC network is fixed between any two consecutive
switching times e.g..in the intervals of (%, tm+l] o Then the
_second'definition immediately follows,
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A Definifion: Closed switched'network is the network
resulting from the original one if every element, except the
closed switches is removed. Durlng each interval (t ’ tm+1]
the closed-switch network will in general consist of several
separdate parts (refer to Chapter I). Each such part will
consist of either a set of nodes connected together through
closed switches or of an isolated node. To specify the switching
pattern for each interval (fm, tm+1] an nxn matrix.gm,(the
‘switching matrix) will be defined, where n is the number of
nodes except the reference node, |

The entries Sm,ij of the switching matrix are defined = .7
as follows: X
' 1 If i is the lowest numbered node of a
B .= ' separate part of the closed switch

: (I1.51).
network, and node j belongs to that .
gseparate part.

O~ otherwise

Therefore, if there is a total of 1k separate parts
in the closed switch network, Sk will be a sparse matrix with
1k non-zero rows and total of n non-zero entrles. Following
examples will clearlfy the switching matrlx—concept

Example II.1: If all switches happen to be open,. then
lk—n and S will be the nxn identity matrix.

‘Example II.2: If at t the closed SW1tches of a circuit
with n=6 result in nodes 1 and 2 being connected together, nodes
4,5,6 being connected together, and non-closed switches being
connected to node 3, then the switching matrix for teA_ (tm,tm_l]
will be

o .-

n
=]
|
OO OO0 O M.
OO0 OoOKOO
O O+ O O O

O O O O O+
O O O O O
O O+ O OO

Where node 3 is an isolated node'inAAm.
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Definition: A sequence {Sk} y k=1,2,.....N, and(N is
the number of phases)where each element of {Sk} characterizes
the correspondlng intervals in one perlod, will be called
the "switching schedule". . o

In the majority of cases, %Skl will be periodic, so only
its first N values corresponding to one period,.need be formed.

Network Equations In The Time Domain

For the sake of coincidence in notations, once again
“the definitions of some vectors are given.
_The node voltage vector \

. o . . T
Eﬁ(t)=['v(l)(t)' v(2)(t)...v(n)(t)]

where v(l)(t) is the voltage between node i and ground at tlme
t and n is the number of nodes excluding the grounu.
' The node charge vector

a o .
gp(9)=T ™Mt q(z)(t)...q(n)(t)]

where q(i)(t)vis-the total charge of all capacitor plates
connected permanently i.e.,not through switéhes, to node 1i
-at time t. This is equivalent to considering the SC network
with all switches removed as done by Kurth and quchytz‘[5] .
' Kurth and Moschytz seperate the two-phase SC network

into & simple capacitor network and an array of even and
odd swifches as shown in Fig.II.7.below. Where Se(respectiVely
s°) indicates that the corresponding.switch is closed during
even (resp. odd time) time intervals,

’ Then with the above idea, the node charges in the c-
network can be axpressed as linear combinations of the node
voltages as '

q(6)=Cg ey (8) (II.52)

where C St is a nxn matrix which will be called the capacitance
matrlx and is defined as follows:
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total capacitance permanently connected to
node l' l"‘J .. . T (II 53)

negative .of total capa01tance permanently
connected between nodes i and j; 1#j.

ij

V(J) @)

el N z/_]
7“ L

—J—— Gf‘ounJ GC'OunA
[C] - Network ' _ [87 - Network
. ~ ’ . , -
~ . —
~ o
T
v
$° v®
v i v

[SC] - Ne‘[Work

. . J—I—»Cfcu.\J
Fig.II.7. SC network as a superposition of a C-network and a
switch network, . '

Clearly G . is independent of switching. Subscript “st*
is used to remind the reader that the matrix C in section II.5
is different than C_, and C_, is equal to écgégo
- Define q(l)(t) to be the total charge that leaves node(i)
from a time reference t' to time t, through one or more voltage
gources (dependent or independent) then
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A - ~ A ”. A T
= [aP® 3P w5 ) ]

With the previous definitions and notations in page 24

) o q, (t)
q, ()= [gu ‘ zD] ol o (I1.54)
Iptt -

Once againwéu(resp.éD) is node-to-branch incidence matrix of
the network which is formed by removing all branches except
the 1ndependent voltage sources (resp. dependent voltage
gsources) . '

Notice that Au and AD are the same matrices as in
section II.5 and Au is an nxp matrix and AD is an nxr matrlxo
Equations (II. 41), (II.43) and (IT.44) are stlll valid.

Switched Network Equatlons

Assume that the node voltages of a network are known
at t and that at t some switches change p081t10n, resulting
in a topology descrlbed by a switching matrix S o« ~The problem
is to evaluate the node valtages v(l)(t) for all t (t ’ tm+1]°_
To avoid pathological cases, it is assumed that sw1tch1ng is
such that no oops of voltage sources and/or closed switches
occur, This point will be clearified in the solvability problem
eection, .
| For each set of nodes I_, containing n_ nodes connected
together through switches closed at or before tmg there will
be one charge conservation equation in the form of Eq.(I.2)
and node voltage equalities in the form of EQqe(I.6). Assume
there is a total 1 such node sets (each corresponding to one
of the seperate parts of the "closed switch network' To each
such node set there corresponds one non-zero row of matrix ‘
Sp» defined in qu(II 51). It is easily seen from Eq,(II.51)
that the 1 charge conservation equations, each corresponding
~to one node set, will be given by the 1 non-zero rows of ‘

5, ay (8)45, &, 3, ()- =5 0, (t7) o aess)
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Using qu(II 52) and Eq.(IIo54) in Eq.(II 55), one
obtains:
RC

I , - Crey
‘s CstvN(t)+S [fu : éD] =§m§stzﬁ(tm) (II.56)

| | ap ()
The total. number of node voltage eq&glltles 1mposed
by the closed switches in 1 sets will be z:i (n -1)=n-1%,

- If .each of these equatlons is asgsumed to be in the form of -
Eq.(I.6), it is easily seen from qu(II 51) that these n-1
equations will be given by the n-l1 non-zero rows of

[§£5gj];yN(t?=o | ~(IL.5T)

where I is the nxn identity matrix.
F'The unknown variables are as follows:
a) The n node voltages '
b) The p charges through the p 1ndependent voltage sources.,
c) The r charges through the r dependent sources.

. ~ These unknows.can be solved for, usihg'l charge conser-
vation equations (II.56), the (n-1l) .equations (II.57) imposed
by the clogsed switches, the p KVL -equations (II.48) imposed
by the p independent sources and the r KVL equations (II 44)
imposed by the r dependent sources. A

.Noticed.that because of the way Sy was defined in

.EqQ.(II,51), Eq. (II.56) has zero.rows exactly where Eq. (II°57)
has non-<zero rows and vice-versas Thus, two equations can be
added to yield a matrix equation with n non-zero rows:

, T bl : §u(t) o ’ »
[0ertshz ] (048, | Ay | Sp] [ | =SuesTu(tp) (XT058)
| - - () .
FinallyLcombipingEq.(II,44),.Eq.(II 48) and Eq.(II.58) y1elds~
T ' 1 F . 1
f_ A T gﬁf?} rg wu(t) [P :
iy | ~ _ g T
T éD—ze | 2 . ) gu(t) = . 9 r (11059)
n _Emgst+sz£ : §méh.! §szJ _ED<t)J St N(t )J n
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This equation can be obtained from Eq.(II.49) by
eliminating q (t) for a .certain phase whlle no charge sources
exist in the clrcult° :

' For any tE(tm, tm+1] the solution of qu(IIa59) will
provide all the unknown variables. In particular the node
voltages at t-tm+1 can be evaluated and used as the new

initial node voltages in the solution for the next interval.
(tp.q9 tm+2] , after sWitching at t . has resulted in a new
topology, associated with § m+1° For a complete solution of

~ the network for all t>0, therefore, the following is required:
1) The waveforms of the independent voltage sources for t > 0;
2) The initial node voltages;

3) The switching schedule {5 _} .

Let ¢ represent the (n+p+r)x(n+p+r) matrix which
premultlplles the unknown.vector in Eq.(II.59) and consider
its inverse ¢ o Let (¢"1)L be the upper left nxp submatrix

,of Q -1 and 1et (Qm )R be the upper right nxn submatrix of
¢;;. (It is assumed that ¢ matrix is- non~51ngular). Ir

Eqo (IX.59) is solved for v (t), then
N(t) Amu(t)+B v (tn)  te(ts ] (II.60)
where 511:(5;1% and ..(¢ l)Rs c,

The above equation is already the one obtained by the
- method of Lioy and Kuo introduced on page 22, Equation (II.33).

REMARKS _

_ In this method, the capacitance matrix -9st and the
~incidence matrices éu and}éD are formed only. once, and are
independent of switch positions. The switch position sequence
' is conveniently defined by the sequence ggm’}, Every time one
or more switches change position, the corresponding new:§m
is substituted in Eq.(II.59) and the network equations result
automatically without having to respecify the’topology. I
the switching sequence were not done, the.topology of the
network would have to be reepecified every time a new switch
poeition eombination occurred, the nodee possibly renumbex:ed..
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"and new network matrices (in general of different dimensions
from the previous ones) would have to be formed.

II.7o - Illustrative Examples

" In this sectlon all methods developed so far w111 be
applled to the circuit of Flg.II 8(a).

n, RN @ ¢

w{t)

Fig.II.8(a)

The ‘switch in Fig.I1I.8(a) moves periodically back and
forth, The above circuit is equivalent to that in Fig.II.8(b)

in which the two position switch has been replaced by two
on-off sw1tches.

C, A

: s |
(2) %ﬁ [ () p

(3)

& D — 4—-.Az——-r

- ;aV(Z)

— T ——»

 Fig.II.8(b)



-37~

Examplé'II 3 :

In this example, the method explained in section II.4
w1ll be applied to the circuit of Fig,II.8(a).

The circuit in FlgOII 8(b) can be transformed into its

resistive equivalent as in Fig.II.9(a) for tééh.where m=1,3,5,e0
which corresponds to phase 1.

Ve, (t3)

nh @

u) C*_) '

v, 40)

Resistive circuit Its corresponding graph

Figo IIo 9 (a)

‘Define the voltage vectors according to Eq.(II.22) as

r.
- — -

_ 5 r T
Vel Vel £cl
v v €
va| % g2| %2 |  ga| c® (II.61)
Vu Va ' £ '
| VD | | Vp | €p |
and the charge vectors as
.A';/ 1 . [ - N} ) ]
( Q1) ' el ['ch
Aé q A;~ a 2 | Ze2
'g: A?2 g: Ac Zé .
Iy | % Zu
1 qD_J. L £ 1 5 %D J

- The explanatlon of the comp051te branch on page 18 -
implies the following relatlons-
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v : | » {vcl(t;)
) ) 1 o ‘ ;
~.z=‘c~> and V= s =0 and §£=|¥,(t)) (11.63)
.D u(t)
;5a(y62(t)+vbgtyj
Also, - ,
q Cl1/@ o ||¥ » ‘ :
%2 0 1/62 Ve2
- From Eq.(II.64), the branch-admittance matrix is
| '1/63L 0 .
= (II.65)
® 0 l/C2
The reduced incidehce matrix of the circuit is
Cq Co u D
1 1 0 1 0 )
A=3 | 0 1 0 o (II.66)
4 0 -1 0 1 :
. Then
1 0 , 1 0 _
,;ﬁzf o 1 ib= O O (IT.67)
o -1 0 1
. The branch relations for the voltage sources are given
by v . , r .
' 0 o 1 0 Vel 1
Voo o
0O a/l+a 0 1 Vi =| o | ult) (11.68)
-vD_- |
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Then i ‘ _
0 0 1 0 - 1 .
k= | 4 and H=| (11.69)
~ 0] 'I?-'E 0 1 = 0

, Since there is no indepéndent charge sources and the
voltage controlled charge sources in this circuit

Yo=Yty and  AwQ - (I1.70)
Then |
' 1701 o 0 S 1 0 O
. o T— T -
Ag¥hg= | 0 1/C -MCp | ana EA=| a2 (I1.71)
' 0 —1/02 1/02 T+a 1+a
Also ,
, 1/C4 0 o o
/ _ ‘
A= | O /G| (I1.72)
o  -1/C,

‘Substituting Egs.(II.71), (II.72) and (II1.67) into
. Eq.(II.32) yields

- B [ -

e, o o ‘1 of v | 1/6v, G
0o 1/0, -_,p-1/c2 : o of |vP®Pw| | 1/eyvtn)
0 __-1/(52 /el 00 1 v ()] | -1/0,v, () (I1.73)
T o o “:_o o _éu?t)— | Ta®) |
| 0 a/l+a 1/l+al O O L ap(t) | | O |

Eq;(II°73) can be solved to obtain
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YWl Jo o Jp,e0] [2 |
v(3) (1) 0 1/l+a || |+ |0 u(h) (II.74)
Lv(4)(t) 0 -a/1+R| o2 n! -

‘Then by Eqe(II.34)

- | + u(t) tehd m=1,3,5 (II.75)
veo(8) | [0 1] |[v(t)] Lo |

is obtalned.

, Indeed Eq.(II 75) could.be obtained by 1nspect10n
from the circuit of Fig.II.9(b). '

Now, the circuit 1n,F1g.II.8(b) is solved for te%n'
where m=2,4,6,.. which corresponds to phase 2. ’

W @ ap MW
(3) Ve

2 Vcl #2)
2 Ve, B N ¢ ¥
ul®) B -a¥
v, (&)
Resistive circuit S ‘Its corresponding graph

Flg.II 9(b).

Eqs.(II.63), (II.65) and (II.69) are still valid for
the circuit of Rig.II.9(b),
The reduced incidence matrlx of the above 01rcu1t is

: 1 Cq Co u D
1/f0 0 1 O :
A= 311 -1 0O -0 (1I1.76)
T 4]0 =2 0 1



Then

and

R
n

—~

)

where

Partition'é as

o-

a/l+a'.1/l+a ‘

o
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and

R

0

1/0,+1/0,
1/C

-1/¢y

l/qﬂ

.—l/C

(IT.77)

(1I.78)

(II.79)

. .Substituting Eqs (II 78), (1T, 79) and (II 77) into
Eq.(II.32) yields

0.
1/Ol+1/02
-1/02
0

‘a/1+a'

v (1)

‘l/cz
1/C,

1(1+a

V‘4)(t)

G5

0
A

—~-g A

(*4a)01+02

. 5.
and .(I+a)Cl+62

o] [v@ ¢4y
o| |+ (1)

1| v (1) =
of |

QJ’_ aD

. Eq.(II.80) can be solved to obtain

vcl(tm)
+

0]
v o {(t )
__.ap c2 m
C‘1

0

u(t)

0

1
O |u(%)
0

- g _
| 1/01vcl(tm)+6§vc2(tm)

(t;) (I1.80)

(1I.81)
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Then by Eqo.(II.34)

@] [ % 2 Y vaep)] [o -
= | . + u(t) ted m=2,4,6..(I1.82)
V()] |X(T+a) p(lsa)] v, (4] Lo |

is obtained.

Eka@ple IT.4.

Now, :the circuit of Pig.II.8 is solved us1ng stamps by
the method given in section II.5. S :

The reduced incidence matrix to F1g°II 8(b) is found
from the following graph of Fig.II.8(b).

(., Sty S B G, . u Sl €1 S?- 2 D
« 11 1 o o o0 o

g A 2]0 -1 1 1 0 O

b 310 0 0 -1 1 O

' £ o o 0o 0 -1 0

- o) : o ,
Using stamps of FigeII.b6., the following equation is
immediately obtained,

1 4 S84 S5 u D _
1o o 01 #q, 0 11 ol [+
210 1 ° O 1-Pson  Poom! O O v(z)(t)
310 0 C, =Cy( O Psom1 © O | v(B)(t)
4o o w0 oo _o o 1|y
S| Peam O 0 0 l-¢slm 0 | 0 0 Qg7 (1)

S2 Q__ g§2m :g§2m4_9 !_9_ _ ggém:__o__ 9_ 'ﬁsgft)
‘ull o0 0 0( 0 0 10 0f|g,®)
Lb—_ o a -1'0 o | o of |3y




_ ) ) T
o o o o1lv@ s ]
o 0 0 o Fv(é)(tm+lN)
o ¢ 0 0 v (t;+1N)
~1 1% 0 % -G V(B)(tﬁ+1N) '(11'83)
§ v (@) 4- G
[0 0 =G, Gy |V (tm+1N{»
0 teh
_ % _  _ |
u(t)
0

.-where m=1,2 ~and N=2 .

‘The entries for the switch S; in the coefficient
matrix of Eq.(II.83) are found using Fig.IT.6 as follows:

The switch Sl is connected between node 1 and-node
2. Therefore, gslm is placed to the positions (1, Sl)
and (81, 1); ‘ o |
fgslm is ‘placed to the positions (2, Sl) and (Slf 2);

P

glm 1S placed +to the position (Sl’ Sl).

The*capacitor(a is connected between datum node and
and node 2. Therefore, C1 is placed to the position (2,2).
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Comparing Eq.(II.83) with Eq.(II.49) yi ds the following
relations

, o o o o]
: . AT [0 C. 0 0
gstféc%'éc” 0 Ol c c
- | 2 ~C2
¢slm 0 0 0
g A= |
0 ¢s2m ‘¢s2m O.
| ]
A-D.=|0 0 & 1
T [1 o A]
£u~ | 0 0
where | _
[ -
¢slm ,O
p-| =
L0 ¢82m

Example IT.53 - _ . : 4

| In this example, the circuit.in Fig.II.8 is solved by
the proceduvye given in section II.6. ‘ ‘

‘ From Eq.(II.53) the bapaéitance matrix is

-C _ | 1 0 0
~8t |
0 0 G Ty

We have



and

0O O = O O M-
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If at ty, the switch S, closes, then the other is open

o
S.=

#1119

0

TheI'efOI‘e, qu (11059)
o 0o 0 0-0] [v(Pep)
0 a 1 0 o |[v@) )
c;0 0 1 o] v
-1 0 0 0 o |+

0 €, =C,0 O |3 (f)

0 -C, C,0 S ap(t)

1 0 0]
0O 0 0o
0 1 o
0 O 1_
becomes
] [ u(t) ]

0

(2)
(+7)

0 - (11.84)

| —sz(s)(tl)+02v(4j(t )

The above algebraic equation can be verified by

inspection from the circuit.,.

and

If now at t2 the switch So closes and Sl is open then

o © © O o .

1 0
o 12
S25lo o
0O O
qu(II 59) becomes
0o 0 o o0 ol [v (1)(45)-r
0 a 1 0 of |v@®
00 0 1 of [+
, ‘ (4) .
Cp- G0y 0 Of [ v ()
1-1 0 0 O q,, (%)
0 C, Cy 0 1] [ ap(t) |

o

0 0
1 0
0] Q
0 1
[ “u(t) ]
0
o (II 85)
Clv(z)(t2)+02v( )(t )~02v(4)(t )

0

;~02v(3)(t5)+92v(%j(t5)‘
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If in Eq.(II.83) 1 is substituted for @ o1m &nd 0 for
¢82m and the charges in the switches are eliminated Eg.(II. 84)
is obtained.,

Eq.(II.85) is obtained from qu(II 83) when @

slm 0,
# - =1 (i.e.,phase 2),
s2m }

11.8, 'Solvability Problem

In the previous chapters, different analysis techniques

have been given for the solution of the SC networks, It has
been observed that it is possible to obtain these different
éqﬁations from each other.,

. But there .may be some.cases that the solutions for
Eqs.(II1.32), (II.49) and (II.59) do not exist (i.e.,those
equations may not be linearly independent and the inverse of
the coefficient matrices may not exist). In these cases, the
unknown variables can not be found uniquely in terms of the
known values or there may be inconsistencies depending upon
" the valués of the controlling coefficients of the dependent
sources,

In order to‘give'more ingight to the solvability
problem, the following example will be analyzed by the method
given in section II.5, B

Example.IIOG:

- S—’-
/
- ()
@ c,
{2)
= v
3 1/

FigoIIo10,
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The sw:tch Sl is controlled by the clock ¢1 and the
sw1tch S, is controlled by the clock ¢ .

The MNA equations (II 49) for the c1rcu1t in Plg.II 10
are:

2 3 5 5 D
o o g0 o
0

]
-

[ (1)] Y

V(z) C (v(2)(t"') v(3)(t"‘))

© O O O O O H g

3. <, ¢ 0 g, -1 oW o (v@)(t )-v(3)(s7))
~ =1. (II 86) .
» im 0 qsl O
Sp Pom Pom O Pop O g2 0
D 1 0 0] 0. dy 0
u | 0 0] 0] 0 ’O N9y | u(t) |
R P T
A=det =619 1o ? 1P ont C1MP 1o PonP 1n
M B S
Foﬁr cases can be considered for this example.
Case B Bor é} A _
1) ‘ 1 1 0 (no solution if M# -1)
2) 1 0 -1 Solvable
3) 0 1 -i-/M (no unique solution if f=-1)
4) 0 0 ¢ (l+/4)(no " " if p==1)

Case 1: FlgoII 10 is equlvalent to the following .

if p=-1 v (5)av® (6)2v ) () =ut)

q ‘ |
5 =?au=aD: infinitely many solutions for
- the source charges,
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. 1
if /(¢—1 ( )(t) v(z)(t)—v(B)(t) u(t)—— u(t). (Incon81stency)
. . If/ﬂ# -1, the circuit in Flg.II 10 is not solvable (no solutlon)
Case 2:’ o
' (,_ | (3
@y !

" ﬂv“"

Eq. (II.86) yields following equations:.

v (6)2v @ (1) u b,
v3) ()=- u(t),
qu(’c) =0,
qD(t) (t)—~qsl(’c)—-0 (L+p)u(t)+Cq (1+/‘)u(t )o
If /‘--—1—> c;sl qu(’c) qD(’c) =0 .
., The circuit in Fig.II.10 is solvable‘in case 2,

(1) 3]
2)

uw : }ﬂvm

Again, the following equations are obbained from . (IT.86)-
3_,=8=4_ (1)=4,(1)=0 , v (8)=u(t),

| §(2?(£)=#(3)(t) ,  'v(3)¥-ﬂ§(2?(t);
I pel = v(2)(tj;v(3)(t)=o |

if /1=_1 = v(2)(t)=v(3)(t)_ S, infinitely many solutions for
' the voltages of node 2 and 3,



Case 4:

0}
8 I
utt) - '

From qu(II.86)

(t) qsl(t) qSE(t) O
(t)_u(t),-
(3)(t) v(2)(t)—v(3)(t ) v(z)(t )’

(3)(t) ﬂv(2)(t),

if ﬂ%_; (2)(t) %H(v(z)(t ) V(B)(t;»,
if p=-1 ' v(3)(t)=v(2)(t) o infinitely'mény solutions. for -

- the node 2 and 3 voltages.

II.9., Hybrid Matrix Approach and Constraint Matrix:

‘Since any SC network with MNA equations (iI.32); (11.49)
or (II.59) corresponds to a linear resistive circuit in'any
subinterval or_phasé, the problem of existence and uniqueness
of the solutions is exactly the samc ag for linear resistive
circuits. For passive networks there are topologlc condltlons.
In the case that the independent voltage and charge sources _
are.the only active components, it can be shown that Egs.(II.32),
V(II.49).and (II1.59) are always solvable if in time slot.k
- there exists no cut-set of charge souyrces and open switches'
and no loop of voltage sources'and closed switches, The proof
is available in [15] o .Otherwise, the network is either incon-
gistant i{ev it has no unique solution, '

This topological condition is trivially satisfied by
any practical circuit since this condition is violated if the
excitation is unacéeptable.



-50-

It is dlfflcult to give topological conditions for the
solvability of sc circuits if all four types of controlled
gources are allowed. But the hybrid matrix approach to switched
. capacitor circuit analysis will clearify this question. _

.In general, any SC circuit corresponds to a linear
resistive circuit durlng any phase as explained section II 4,
Then all the arguments on hybrid linear resistive n-port
formulations (Ghapter 6 of [6] ) are valid for SC circuits.

A resistive'equivalent n-port Fig.II.ll.will consist of
poéitiVe linear résistors (R.= J‘), independent voltage and
charge sources and all four type% of controlled sources with
constant real controlling coefficients, -

qn,-&l :

4 ,
- . ’ . -+
Y, C§ | n-pert N ' ~@ Vi1
| .
) .

Linear - resistors ,

i

!

TAJCPEAJCA{ SoutCC.S' !
' '

. :an. conltrolled sources, | qn”n,_
' +
V"n, . . _‘ \Ir\,-t-r\‘1
= \/oltmae Porii: N » . ) . > C-\'\o.rse Po(*.b ) .
o Pig.II.1ll.

Now, define the following port voltage and charge vectors:
‘(Note that n=n,#n,)

Known vectors are Unknown vectors are
r N n » T ' (A - -v 9
Yul Yynl+l U1 niyl
. ' - ' . ' o o .
2 a 2| ! S 2l (II.87)
V.= = q..= = R
u ! Ew | ~u \ oW : _
| { . A} 1
[ VRl | | Gwn | | Gunl | | Ywn |

A Letﬁ be the vector representing the independent sources
inside N. (Note that these sources are only the inital capacitor
voltages before the switching instant tk’ hence dC sources),
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Then the port voltages and charges may be related by
a hybrid matrix.g and the source vector s as follows:

.}:»Q)
]
o

= H|" |[+M 4  (II.88)
w | -
where s=M Q.

‘The matrices H, M and 8 can be‘partitioned according
_to the dlmen31ons of'g and Yy, as follows:

R

o o
(lu 15111 Euw Vu ,’Illu

- - -

Yl B

The elements of H and g are real constants and the source
vector g is constant vegfor. EFach element of H can be found by
first setting all the dc sources inside N to zero, so that
8=0 and then obtaining hjk by the ratio

(II.89)

1

1

+
Tt

gm
L0
=
3!
S

h. | response at port J
Jk excitation at port )3

(I1.90)

‘Under the following conditions:.

'1) Except for port k all voltage ports are short circuited and
all charge ports are open circuited, _

'2) The excitation at port k is an independent
a) Voltage source if port k is a voltage port,
b) Charge " " n " nw w charge n

3) The response at port J is considered to be. .

7 a) The charge of port j if port j is a voltage port.

b) The voltage of port j if pot j is a charge port.

.Such. a procedure may be reasonable if Ny 0, is a small
number However, for n >5 the computational efforts become
'exces31vé. Explicit topological formulas can be found at page

240 of [6] .
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Theorem IX.4: The necessary and sufficient conditions for
an n-ports N consisting of positive -linear resistors and
1ndependent sources to posses a hybrid matrix H as defined
in Eq.(II.88) are that

1. the branches corresponding to voltage ports should forvm no
loops and

2. the branches corresponding to charge ports should form no
cut-sets (proof is available at page 239 of[6ﬂ

When an n—port contalns controlled sources, the hybrid
matrix may not exist for a glven ‘port combination. In this
case, the methods for formulatlng hybrid matrix will abort
at some step where an attempt is made to invert a singular
,matrlxo In such i, cases, the hybrld matrix can be made non-

81ngular by perturbing some element parameters within the
 tolerance of t the element or use a different oomblnatlon of
: voltage ports and- current ports. But then the solution is
only approximate and to try other port combination is clearly
very inefficient, because for each port combination, a complete
analys1s of the network has to be.done.

The above discussion wag made for a certain phase
(i,eo'sw1tches were either off or on). To overcome the above
difficulties the following method is introduced [6] . But
first the follwing definitions are needed [8] . |

Definition: An uncommitted independent source is an

”independent.source whose nature (voltage or charge source)
is not specified, Similarly, an uncommitved port is a port
whose nature (voltage or charge port) is not specified.

Definition: An open switch can be considered as a
charge source whose value is zero (i.e. q(t) =0, tel ).

closed switch can be con51dered as a voltage source w1th
"zero" value (i.e. v(%)=0, teﬁh).

Method* Let all the p ports‘(switches are considered
as uncommitted ports) be unoommitted ports. Instead of seeking
thelhybrid matrix H, which may not exist for a particular
port combination, Et is tried to find a maximum number m of
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independent equatiohs reléting the port variables in the form

] -
Cela =0 (I1.91)
] gp ’ . ,

Whexre gt is of dimension_mep and is called a constraint matrix
for the p-port. Normally, the number of constraint equations
for a p-port as given by Eq.(91) is the same as the number

of ports. However, both m»p "and m{p are-also possible,.

Well-known examples are nullators for the former and norators .=

for the latter, :

.To facilitate. the formulation of gto Choose an arbitrary
tree T, Assume that the graph is connected and has n nodes, A
tree is constructed by picking n-1 branches, paying attention
to the rule that they form no loop. With respect to this tree
7 , the network branches can be divided into four categories
" distinguished by the following subscript notations:

a= port branches in the tree,
b= port branches -in the co-tiree.
z= nonport branches in the tree,

y= nonport branches in the co-tree, :
The fundamental cut-set equations (KQL) can be written
as: : - A -

a Z Yy b ﬁa
gaa ~832 an. Dab 4z ; 2 (II.92)
| q
Sza r,;?rzz sz Dov | | ~¥ 9
tree’ Cotree . L_Sb .
where D is the fundamental cut—sef matrix.
“The fundamental-loop equations are
—- T . T
Doy oy Ly 2 Yal. [o] .
. o vz | = (IT.93)
, : : ~y
T T 0]
Dz Dz 2 Inpl [ %

-
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The nonport branches may be characterized by

qu3z+Fvy~y+quqy+szvz+anqa+Fvb Ypti b*ab+EVaVa~Q (II°94)

Now, write Eqs.(II 70), (II 71) and (II. 72) as a single

matrix equation in the tableau form:

ﬁ
RO
RO
1
R
>

N
«

o o

o a0

W0 WO A

D | _ o
e =0  (II.95)

RO Y RO uY
()
bd
x

O O 1+
o)
<
3
Ny

o

N
R
Ry Q-

Q
e

]

<

w
R

O
N
.
>

L

~

. The vectors g, and yy can be eliminated from Eq.(II.95)

~

by solving from the first two equations and substituting into
the last equation to yield the following: '

I

b

1< LoD
N
I}
10

(II.96)

N
N
U’hj :
n
Ly
o)

L0
o

a& and.v may.be eliminated from qu(II 96) by row
reduction as follows. Apply elementary row operations to
reduce: [Fb f Fp] to row echelon form. In the resulting matrix

those rows in the right block (originally Fp) whose correspon-'

ding rows in the left block (originally ;b) are zero rows
- form the constraint matrix C.. '
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Schematically, it looks as follows:

,elementarj » [ - 5% o Ep ]-
row-operations . Row echelon | ... . _.x-] B )
|
0. 0---1 X.-4 X ....-XI
{
-0 . Constraint
. matrix

Linearly independent cdlumné of the constraint matrix
- determines the port nature (voltage port or closed sw1tch
charge port or opened switch).

The digital computer program (e.g., page 270 of [6] )
will find the constraint matrix and immediately solve the
hybrid matrix"frdm the constraint equation.

Example IT.7: Let's return to the example given on
page k6 . By this examﬁle; the above algorithm will be clearified.

The switches will be considered as uncommitted ports;
then Fige.(II.10) can be redrawn as follows:

4, v
—O
* WV 1y 3-port network containi
_ Ve ) pol ng
v, (4) 4 / Ve (&) _,/0/' . . o L
it q,|- linear resistor R= 5,.voltage
. , :] 51<$%W ~ controlled voltage source
'““)Ciﬁg_ : v and dc-voltage source,
e eyl | .
. RS ‘
Fig.IT.11{e) -

For simpiicity, let's consider initial capaciter voltage
to be zero and‘hence-dc—voltage source has zero value,
The following tree is.chosen with the ideas given on

page 53,



v, =56~

Cotoset 3

Col-set 2
) N S

Coﬂ'tb?o'\ding

. 3ra?h. ' " o : - ) F-A
. N ot R N At omy
where qg= El %b=9 95=0 3y= X (I1.98) |

The fundamental cut-set equations (KQL) can be written

as: | _ T
o F
ci{1 o oo -1 [q |
2|0 1 010 1 g (I1.99)
c;[00 0 1,1 1 3, '
w k’_‘,__/ ~
I - d,
aa Day A
The non-port branches may be characterized by:
V.= & § and V.= (u-v,) | (11'100)
¢ T % v 1 .
The fundamental-loop equations are
v T
u
o o -1l1 o vy -
' e (I1.101)
1 -1 -1!'o0o 1 2 B
S e
v
T T ¢
-D
“Yay Yy vy

The above equations may be collected in a single mat-

rix as the tableau\form:
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| : | Ve

(1 0 0 0 0o 0 0 0 0 -1|w

o 1 0 0 0 0 0 I -1 =-1]{3,
o 0 o -1 1 0o-0 0o o olf|§] | |
00 0 1 0-1 0 o o of|d|=0 (Ir.102)

0o 0 1 1 0 o0 1 0 0 0]]|q

1 0-1/¢ 0 0 0 0 0 0 o0}]a

0 1 0 0 0 0 0 - H Oflv

Vl A
V2

N . v ! P ‘
After the elimination of the vector X&= [ c] y Eg.(II.102)
is reduced to the folldwing equation: ‘

. G |
0 -1 1 0 0 0 . O ol |43,
o 1 0 1 0 0 o o & o
1 1 0 0 1 0 o 0|3 [=2 (I1.103)°
1/c 0 0 0 0 © o. -1 | |4, |
0 0.0 0 0 (L) ~(1y) -1 | | ¥,
! | o
| V2 ]

~ Applying elemantary row bperations Eq.(II.103) is reduced
to row echelon form (see the algorlthm for reducing a rectangular
matrix to an echelon form on page 157 of [6]).
Correspondlng row echelon form of Eq.(II.103) is:

. [,
4 -1 1 -1 1 0 0 0 [|q
o 1 0 1 0 0 0 0 [|laq, |
o o 1 =2 -1 0 o offh|=¥ (II.104)
0 o O 1 -1 0 0 -C 92 . .
o v
8 | X
V2 ]
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- | 12 -1 0 0 o0
The constraint matrix C,=10 1 -1° 0 0 -C -(I1.105)

0 0 0 (u+1)-(u+1)-1

and the constraint equation for the three-port is;

| (Eu;

11 2 fl 0 0 0 q :
01 -1 0 0 -C a, | =0 (II.106)
O 0 o© (Iu+l)-(/7+1) -1 Vi ' '

. vy
| V2 |

From Eq,(II.106) it is immediately clear that port 1
can be considered as voltage portlwhile port 2 as charge '
 source since the columns correspondlng to (qu’ ql’ Vo ) are
linearly 1ndependent. Therefore, q ’ ql’ Vo can be found in

terms of Vor V1 and q2 as:

12 0 Su 7o 0 1] v
0O 1 -C al = 0 0 -1 V1
0 0-1] |vy| |(l)-(u+1) O] |Gy
and' - , .
q, ] [y —2c(u+1) 17 [v,] |
al = fc(ﬂ+l) C(ﬂ+l) -1 Vq : (11.107)
Ve —(pM+1) (ﬂ“) © l,ﬁ; '

From Eq,(II.107), it may be concluded that port 1
(switch 1) can be considered as voltage source (resp. closed)
and port 2 (switch 2) as charge source (resp. open). In this
. case hybrid matrix exists and the network is solvable which
is consistent with result on page 47 . o

‘From Eq.(II.106), it can be said that port 1 (resp°
sw1tch 1) can be considered as charge source (resp. open)
while port 2 (resp. switch 2) as voltage source (resp. closed)
since columns corresponding to (qu’ q2, v ) are linearly
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independent if/{#—l;and hence hybrid matrix exists,

The last possible port combination is that switch 1
_and switch 2 are as charge sources since the columns correspon-
ding to au, vy and v, are linearly independent if u#-1 and
hence the hybrid matrix exists as in the following form:

Wl [

1= Ela

Y2 |2

-where . ‘ N =q. = -
| 4;=9,=0 and  v.=u(t).

Conclusion: » ,
~With the present method, using uncommitted ports, the
congstraint matrix can always'be obfained° The task of deter-.
mining & proper port combination (naturé of the switches ioe;/
closed or open and nature of sources) and the corresponding
hybrid matrix from the constraint equations is.simplee As it

is seen from the previous example, linearly independent columns
will determine the port nature. Consequently, it can easily

be determined in which phases an arbitrary SC network poésesses
'a hybrid matrix and all of its variables are solvable, -



CHAPTER III
SIGNAL PROCESSING MECHANISM IN TIME DOMAIN

In the time domain the signal processing effects of a -
~switched capacitor network can be immediatély understood when
considering some special input waveforms., The following
corollaries can be glven to the theorem on page 14, in
Chapter IT.

Corollary 1l: If a sw1tched cap301tor network is ex01ted
by an input z(t) which is constant r, in each time slot A
then the response x(t) is also a constant . in each tlme slot
(Flg.III lea,b)e. '

_ Proof By setting. r(t)_r in Eq.(II 14) for.all % 1n:ﬁ
the right-hapdside of qu(IIol4) is constant in A ge Thus also
' the solution x(t) is a constant X, in A or

F X

Fu ™15 (111.2)

Coxoilary 2: If a SC network has zero initial voltage
at t; and is excited by an input z(t) which is zero at the end
t; of each time slot lkm then the response x(t) is also zero
at the end t_ of each time slot A (Fig.III.1,a,c).

Proof: Startlng from x(tl) =0 it follows inductively .
from the property of the 1nput and Eq.(II 14) that

Fx(t)=x(t) . - (I11.2)

is obtained.
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Fig, IIX.1,

Remarks: The“underiying reason for.the'absence of
transients in Corollary 1 is the fact that there are no poles
in the op-amps and no resistors in the circuit.
h Corollary 2 implies that inputs which are zero at the
_end of each time slot are only subject to a linear static
operation which can be different in each phase (no fllterlnﬂ
only some amplification or scaling).
These two corollaries motivate 1mmed1ate1y a computatlon
of the response x(t) to an input r(t) with zero initial condltlon
_.via a decomposition of the waveforms (Fig.III.2).

Computation Procedure:
tep 1: Decompose the input r(t) into a waveform r(t) which
is constant in each time slot and a Waveform I (t) which is
zero at the end of each time slot; ieeo,for t in A .
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z (t)-r(tm+1)

t;-_Am=(t (I_II.B)

m;tm+1]
*(t) r(t)—r (t) .

tep 2 Compute the response of Eq.(II 14) to each 1nput 1.e.,
solve x(t) and xm from

‘,gmg"(t);;“(t) - (III;{l.a)
‘and A
- §h§m=§m§m—l+€ (III.4.b)
teE Combine the‘ results for t 1nA
x(t)—x (t)+x (t)—xm+x (t) | (iII;5)

The linear static equatlon (III.4°a) which relates
5“(t) and r” (t) takes into occount the effect of the continuous
coupling between the input. and the output. Eq.(III.4.b) is an
N-periodic time-varying linear difference'equation which needs
only one computation for each time slot. The computatlon of .
for m=1,2,0e0e by Gauss elimination from Eq. (III.4.b) is the
' basis for the time domain analysis in the program DIANA [13 14]
An important 1nsens1t1v1ty property which follows
- immediately from the theorem on page 14 is that the voltage
transfer in a SC network is not modified by a scaling of all
capacitors with the same factor « . This is very impbrtant-
since the IC téchnology canbrarely control the absolute values
- of capac1tors better than 20%, while ratios of caﬁacitors can
be controlled to within 1%.

- Corollary 3: By multlplylng all cap301tances and all
controlling factors of VCQS by & and by multiplying all
controlling factors of QCVS by 1/« , all charges of a SC network
are miltiplied by e and all voltages remain unchanged,
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Computation ©f The Discrete Time Input-Outp'ut Effects (FigsIII.3)

Given In the computatlon of En can be done as for time-
“1nvar1ant systems (x). For a time-invariant discrete-time
system ene computes first the response to an 1mpulse (xx) and
then the response to an arbltrary input can be computed by
“taking its convolution with the impulse response, As for
discrete-time signals, the values at the end of each time slot
for the input (5h) and for the output (gm) are considered. The
derivation makes use of the periaedicity and of equations (IIT.4).

' In order to make.this periodicity more explicit the following
equation is written for time instances t£41N+1 in“Ak+1N which
corresponds to phase k,

.

I 18 8 F e 1N-1 1 E k4 1N , (IIT.6)

tep 1: For k=1 2,.;.N-compute'the sequence of N imﬁulse
regsponses hk o In other words for zero 1n1t1a1 condition
X, —O compute the discrete time response xm—hm I on an 1mpulse
in phase k, rk-l r,=0 mfk (different 1mpulses on all 1nputs
if there are more 1nputs).

p : Decompose the discrete time values of any arbitrary
1nput T into N 31gnals r1+1N, £2+1N""”r(1+1)N’ one for
each phase,

Step 3: Theiresponse1§i+1N in phase i is then the combination
- of the effects of the inputs in each of the N phases

| ~1+kN 2;1 g_: ~1+nN, 3Ty + (o)W (I1L.7)

Observe that each of the square brackets is a discrete
time convolutlon between the input values T4 Lkl in phase i and -
impulse response hl+kN i in phase 1 for an impulse in phase ie
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- Additional Notes:

(x) In.the following flgure a discrete system governed
by 11near, time-invariant difference equatlon is shown.

.y
x(k)

—_—
. r(k)
inpvt

.Seo‘ vence

k=o eee JZT,'—T,O,T,QT, O ; .
OU{?U{ .

seoluer\ce.'

Fig.III.4,

Where h(k) is the 1mpulse response (weighting sequence)

of the discrete system [10] and

‘x(k)=§§: h(k-m)r(m)

m==—o0

‘which is described in‘the z—-domain by

X(z)=H(z)R(2).

(xx) In discrete systems, sequences of numbers are

considered rather than functions of continous-time;

therefore

the Kronecker Delta Sequence is used as the xmpulse function

which is

1 k=j

& (k)= o
J {0 XA,



CHAPTER IV

ANALYSIS AND SIGNAL PROCESSINGiMECHANISM OF LINEAR.
MULTIPHASE SC NETWORKS IN THE Z~DOMAIN

In this chapter,the ana1y81s and slgnal processing meCha’
nism of linear multi-phase SC networks in the z—domaln will be glve
Since Eq.(II.14). is time Varying, the z-transform.

techniques are not readily applicable. Fortunately Eq.(II.14)
is periodic and a method of Jury can be adapted~[11, page 57]'0
Partition the sequence of values at the end of each-
time 810t Xys Xps eee Xys Epgprecce (¥ESPe Ty, rz,l.o Iy 2 N+1°')
into N different sequences each having the same phase: :

zfi,v ;}EN_*_l, §2N+1’ eecoee phasel
. 3(2’ ZCN+2’ 2:2N+2, cocoees phase 2

'ZCN" §2N, ZCBN’ ooo‘ofo.; phase N

Then : . :
Zi(2)% Zi"mm} y 7—_0351{+1N'Z - v

‘where k=1 2,.°N (Flg.IV.l) and z=e J T. (T is the sampling

period).

Ry (2)= Zi k+1Nz Zrmm - )

Theorem IV.1l: The linear T —periodic SC network described by
Eq.(II.14) is described in the z-domain by :

ENE R -t REACY RENO)

G, B O e | ke |
0 -Gy Iy o 3(‘3(2) = R3(2) - (IVe3)
S | \ .

,g 0 =Gy Py {Eg(@) ] [By(2)]
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Proof: Multiply the time equations (III.6) by zflr

and take the sum for 1 with.§°=0

' -1 . | a0
Ek.,lgo X4l 2 =% 1Z=o Fy-141m % * Z Trean 2 (IV.4)
z—transfor? of if k> 1% 4(2) z-transform of sequence
sequence o )
phase k Xk(z) if k=1:>z—1§N(z)(x) of phase k’Bk(z)

. By plugging the Eqs.(IV.4) for k=1,2,..N into one
matrix equatlon EQ.(IV.3) is obtained, T
It is seen from Eq.(IV.B) that the z- transforms of
the N phases of input and output are related by linear
. equations with many zero submatrices and that z -1 only entexrs
in the upper right submatrix,
" The signal processing mechanism exhibited by the
matrix in Eq.(IV.3) is a combined effect of linear combinations
in each phase and & transportatlon from one phase to the
next and so on until the last phase influences the first
(c1rcu1at10n effect)., 4 )
" The N phases of the output can now be easily obtained
by inverting the matrix in Eg.(IV.3). This inverse matrix is
called the z-domain transfer matrix, ‘

Corollary;lv;lz.;ThejN z-transforms gk(z) of the outputs are
given in terms of the z-transforms of the inputs

(?51(?); (Hy 1(2)  Hy p(2) --. Hy y(z) | R, (2) | -

(Ee(@) | =B a (@) o p(@) - B y(2) ) Ba(2) (1V.5)
., = , .
| | Ba@ e e | L)

where the matrix in Eq.(IV.5).is the inverse of that in EQ.(IVOB)
and is a rational matrix 1n 7. Moreover H1 k(z) is the z—trans-

P . - —
(x): 2 {§k+(1—1)N} =7 gk(z) }f x,=0 ,1£0
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form of the 1mpulse response matrices h +1N,k °

Proof: Eq.(IV.5) follows from Eq.(IV.3). In fact,
the ‘z-transform coverts the convolutlon in Eq.(III.7) 1nto~
a product (IV.5).

N | |
Fper1n™ gaﬁ‘kﬂum,i * E‘i+11v}

N '.
2 ] =l Z §2k+11\r,i * E’igrm}

- X ’ ‘ . S
2‘1:(2)::'1:_}:1 Hy,;(2)eBi(2) (IV.6)

The submatrices H k of the z- domaln transfer matrlx,v
_allow a very simple 1nterpretat10n° UP to this point, the SC
network ‘was con31dered as a discrete dev1ce which transforms
““the input sequences of samples at +t_ m? m=1,2,... 0Of the voltage
sources and charge sources into the output sequences of samples
of voltages or charges at T m=1,2,400..If only nonzero
sources are applied during time slots k, k+N, k+2N,... and
if the outputs are only observed during time slots i, i+N,
i42N,0.e0 then H k(z) relates the z-transform of this dinput
sequence to thls output sequence, i.e. X (z)--H:L k(z) (z)
and it relates inputs at phase k to outputs at phase i.

In other words H k(z) 'is the z-transform of h1+1N X
1=0,1l0e. ioe, the responses observed during time slots i, 1+N
T42N, eeee to unit input applied during time slot k,

Gorollary IV.2: The z-domain transfer matrix completely
characterlzes the behavior of a SC circuit. The response to
the p1ecew1se constant part of the input is given by Eq.(IV.5)
in the z-domain, The continuous 1nput—output coupling is given

for t 1n7 Ak+1N by

£ (8)=H 1 )= (%) (17.7)
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,.Proof:_By,setting z=ooin (IV.3) gkégilkﬁn) is found.
Then Eqs (IV.7) follows from Eqe(ITT.4.a),
' One can wonder whether there exists a time-invariant
network of impedences which is described by .Eds.(IV.3) and
(IV.5) and whether such a network can be derived immediately
from(the SC network., The key ideal in obtaining such an equi-
valent network is to convert the N phases of one branch into
N different branches. This converts the different instances |
of time into different locations in space. The following

intrinsic N-port called a generalized~circu1ator with constant
G is defined by

Toa@] [ o - el | [y ()
|e@| |- o vy (2) ,

[ ¢ 0 _ [ v @v.s)
log@ | | Y= o | (e

Construction of The Equivalent Circuit of a SC Network:

Step 1: For each of the N phases (i.e. N time slots in one
period) a network is drawn with the switches in the correct
position for this time slot.. o

Step .2: The N-networks are interconnected by generalized cir-
culators as follows, For each capacitor Ci in the original
circuit, a circulator constant is Ci. Port 1 of this circula-
tor is connected to the corresponding capacitor of the first
circuit, port 2 to_that of the second circuit and so on.

L x
N o~ \INU—)

.A/ ¥

e

Fig.IV.2. Generalized circulator with constant G.
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It is edsy to cheqk that the.resulting network is described
by qu(IV.B) (See the example (IV.l»

For 2-phase SC networks this equivalent circuit corres-
ponds to the gyrator of the 11nk two port in [9]

Example IV.,l: Consider the circuit in Flg.II 8(b) on
page 36, Its equivalent circuit using circulators is

V(2] v, (#)

V.(2)
' 5a(>)
E\?u(z) QD’:(Z]

Figo IV. lo

" . where V (z) is the z-transform of the i-th-node voltage values
at the end of each time slot of phase k according to Eq.(IVol)

which is .
o0

Vik(z)g %;% V. (tk+1N+1)Z ,‘.k§1,2. ' - (IV.9)

and Q k(z) (resp. QDk(z)) is the z-transform of the voltage.
source charges (resp. .dependent voltage source) for phase k.
After the above deflnltlons, the z-domain equations
can be obtained as follows.
KQL for node 1 in phase 1 and its z~ transform yields:

6c11(Z)-‘-""dlvzi(zi)’i'éul(z)o (IVolO)\
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Using the definition of the circulator Cy

_acll(z)=clz"1.V22(z) A (IV.11)
“in Eg. (IV,10) |
Qu1(2)==C1Vpy (2)Cyz ™ pp(2) (IV.12)

'is obtained. _ \ .
KQL for node 4 in phase 1 and its z-transform yields:

Qep1(2)=0, [V3l(2)-v41(z)]'—6Di(z)' | (17.13)

By the definition of the circulator C,

8y (2)==Cpz™t [ﬁ32(z>-v42(zﬂ (IV.14)

.Combining,”'Eqso(IV.13) and (IV.14)
~Qp (2) 48,57 (2) =0y V4 (2) 40,27 Vo5 (2) 02 1V 5(2)=0  (IV.15)

results, » B .
KQL for node 3 in phase 1 and its z-transform yields,

Bopa(#)=0y V31 (2)-Vyy (2)] (IV.16)
éomﬁinihg Eqs;(iv;16).and'(lv;l4) ﬁields:
CpV3q (2) =0y Ty (2)4C52 V35 (2) ~Coz ™ 5 (2)=0 (17.17)
The nodé voltégé eéuality in phgse 1 yields:
| Vli(Z)=V2i(Z) L B (IV;iB)

KVL requires that for phase 1 and 2
V13 (2)=U; (2) (IV.19)
\ V12(3)=U2(z) ‘ _ (IV.20)
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yields:
Vjp (a)=-a V31(2)
Vyo(2) =-a Vs, ()

The node &olﬁage eéﬁality for phase 2 yields
PREEae

The KQL for node 2 in phase 2 yields

ché (Z) =01V32'( Z,) +C2‘ [VBZI(Z) "V42 (Z) ] '*"Q\c.za(z) .

From the definition of the circulator
Qg2 (2)=C7 [V41<Z)‘ 51(2)]
Go12(2)=C1Vp; (2)

Eqo(IV.24),Eq.(IV.25) and Eq.(IV.26) yields:

y C1V21(2)~Civz2(Z)—Ce‘.[v22(Z)— 42(2)] ';-02 [v4i(Z)" 31(2)1 =0

T he KQL for node 4 in phase 2 yields
"Eqo(IV.28) and Eq,(xv.25) yields:
02V41(z)—02V31(g)—02V42(z)+02V32(z)—QD2(z)=O
KQL for node 1 in phase 2 requires

auz(z) =0

The constitutive equation for VCVS in phase 1 and 2

(IV.21)

(IV.22)

(IV.23)

(IV.24)

- (IV.25)

(Iv;26)1
(Iv;27)
(17.28)
(Iv;29)

(IV.30)



. -1
0 0 Cyz
0 0 0
0 0 0
1 .0 O
0o 0 0
0 -(0+C,)0

0 0
o 0O
-1
02? 0
-1
0 0
0 0
0 0
0] 1
02’ 0
0 0
10

.aDl(Z)

V21(2)
V31(2)
T1(2)|

Qﬁl(z)

I

T35 (2)
Vap(2)
V3 (2)
"

Qo (2)

1 §p0 (2)

«d

Vi (2) |

U, (2z)

(IV.31)

:9pTO IL xtxqpm

sT8uts B Ut ALxedoxd (OE'Ai) pue (6Z°AI)"(LZ°AI) ¢ (£2°AT)

$(LT°AI) ‘(ST°AI) *(2T°AI)°sby.Sututqumoo £TTeUT

-.QL_
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Example IV.2: ©Now, consider the circuit of ﬁig.II.Z(&)
on page 9. Its equivalent. circuit using circulators is

U

™ o - T ' FigoIV.2.

g

where superscripts o and e denote odd and even respectively.
Even and odd phases have already been explained on -page 9.
‘KQL for node A in odd phase yields

clo(Z)—C [U{“-O(Z'_)-‘-VO(Z)] ¢,V (2)Q oy (2) | (Iv;32)
| Using the defimition of the circulator G
c10(2) =0 | | (IV.33)
KQL fdr noae A in even phase gives’
cze(z) =C,V (2) (Iv;34.)
From the definition of the circulator ,C, ‘
c2e(z) OV (2) (IV.35)

020(z) =C,, Ve(z) : - (IV.36)
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Eq. (IV,.34) and Eqo (IV.35) yields:

RAGIE A (V.37
Combining Egs.(IV.32), (IV.33), (IV;36) and (IV.37)
yields: ' ' : : '
clvo(z)=(c1+02)v6(z)+czzf1ve(z) ~ . (Iv.Bé)
Therefore
vV (z) - ' -
H  (z)& U%I‘ZT = 021 o 1 | - (IV.39)
C (1.+.U—)—(E~)Z- '
1 1 :
and
v (z) ' '
oe(z) E—T_T'— Hoo( z) (IV.40)

Now, it can be answered that why this cxrcult is called
as’' the low pass circuit. ‘

_The Fuler approx1mation (see page 525, [12] ) implies
z"1=1—sT ~for wTLL1l, where s=jw,
‘then the correspondlng analog filter can be found from H,,(2)
by the Euler approx1mat10n as:
(e e - L
(1+5—)( )(1 sT) 1+s(5-)T

whlch corresponds to analog 1ow-pass filter,

Remarks: The low-pass digital filter obtained by the Eiler
'mapplng procedure from a low-pass analog filter will have
- about the same pass-band frequency characteristics as that .
ofethe original low-pass analog filter, provided that the
sampling period T is sufficiently small.

For more information, see the appendix,



CHAPTER V

TWO—PORT ANALYSIS OF SWITCHED CAPACITOR NETWORKS (x)
USING. “FOUR-PORT EQUIVALENT CIRCUITS IN THE  Z-DOMAIN A

After the z-domain analysis of multiphase SC networks
and the general equivalent circuit, two port analysis of SC
networks using Four Port Equivalent Circuits [9] in the 2*-do-
main will be given in this chapter, Throughout this . chapter,
the switches are assumed to change position perlodlcally
at even and odd switching times®¥.With the four port equivalent
circuit representation, the traditional two port analysis -
tools, such as the’ transmission matrix and two-port transfar
functions can be used conveniently. Throughout this chapter
~only pieceWiseéconsﬁant inputs are considered and it is assumed
that the-capacitors of the network are not charged continuously
but instantaneousiy at the switching instants. Since no resistors
‘are assumed in the network there is no dispersion of the char- -
ging process and the capacitor voltages can be assumed to
change instantenously in stepso ' o

‘e

Vol° : Building Block Analysis of SC~-Networks

Any passive SC network can be constructed with .the
: 91x basic building block showa in Fig.V.1l.

The nonswitched shunt capac1tor and its dual are the

bnly-storage elements in SC network, Periodically switched
capacitors act. like resistors, Ssince their memory is destroyed

(x) Through out this chapter z is defined to be equal to erTﬁ'

JWT/2) .

(1.89 Z =€

(xxﬂ The deflnltlons for “the odd and even phases have been
given on page S.
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-FigoVole The six basic components (building blocks) in SC networs;

during the closing period of the sw1tch. Thls can be demonstrated

‘using Flg.IV.2 as follows: '

: —;s/o—-— S Lopen
. cles
a, e Vao - |
€0 R
Fig.V.2,

vn=v(tﬁ+l); infdh?(fn7tn+l] the_switchris open.,
1§ =q(sa+1) 790 | (Vol)
q,,=C [ "n~Vn- 1] where vh_1=0 since the swit?h is closed inA ..

qn=Cvn

It is seen that in voltage-charge domain a capacitor with a
sw1tch across it, as in Fig.V.2 behaves exaotly like an

equlvalent resistor whose value 1s

Ron]=5 | (V.2)
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The ideal sw1tches can be considered as zero-valued
capacltors with a switch in parallel, By connecting this
building blocks in tandem or by combining parallel, gserial
and tandem connections of the building blocks, arbitrary
hlgher order passive SC networks can be obtalned. '

Volo Four-Port Equlvalent Circuits of Passive.- SC Bulldnlg ,
Blocks

Shunt Capacitor

The shunt capacitor shown in Fig.V.3 can be described .
as a two-port-in‘thc time domain by applying the nodal'chargé

- equations as Follows: A a({»
. _ . | Q,
.:-—O-’—‘_——F"OA g . *cf » »——o +
) .qln qln
e o V, {(2)
N e % o 3 e
"o > - o~

" FigoV.3. Shunt capacitor.and its two-port equivalent 01rcu1t
in the Z-domain,

_n=o,1,2,....

| V1h=“f2n .
e (Vo3)
Cvln“qln-qz?n”wVl(n—l)- '
or in the z-domain in matrix form
G A 1 \ 0| |Vy(2) -
= (V.4)

G| |ea-2h 1] (6

The matrix in Eq.(V.4) can be. inferpreted as an
equivalent two-port as shown in FlgoV.Bo It consists of two
' components namely, a conductance

¢®=0 ' | (Ve5.a)
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and a storage element
G°=—C é-l ‘ . (VoSob)

The storage element G or "storistor" has the property
of delaying the charge flowing throush it by one_ delay unit %—1
with respect to a voltage sample applied across the element.,.

* Eqe(Ve4) can be re-written by using Eq.(V.5) as
follows:

: vi(z*) 1 0 | |vy()

- | 6wy

G (2| 6% 1| |G,
By.observing that - - |
x°(z)Y°(£);we(£), xe(é)ye(ijéwe(év, x%(£)¥°(£)=w°(2) and with
ﬁi(i)=6§(ﬁ)+§g(£) and vi(£)=v§(£)+vg(zj (x) thé four-port

transmission matrix for a shunf capacitor is obtained from
Eqo(Veb.a), namely

-Vie(i)- ‘Fl Q 0 0 rVzeczﬁ)_

V., (2) 0 1 0O O V, (2) .o

.610 e . o 620 (Va6.D)

Qe (%) ¢ e® 1 0| |82 :
" §1o(H] [6° @ o 1] |4, (]

The remaining task is to find an equivalent four-port
circuit for Eqe.(V.6.b). The input and output voltages in the
even as well as in the odd path of this four-port must be

% ’ —2 x.’44
Vle(z)fvio+vi2z V502 Heoooe

. Y] . _
Vlo(z)=vi1£ TV 32 3+vi55 5+...o

(x) By definition

- and as.a result of the definition of z-transform given in
Eq.(IVol), the follow1ng relations hold
10 (8)=V, (2)

where z= 22
Lo (2 )-Z"l/zvloQZ) -



=82~

equal, (i.e., Vle=~2e’ V1 o=Vag)e -
Furthermore, from Bq.(V.6.b), the even and odd parts
are related as follows:

Qo] [o° @] [we] 1 o],
= +
Gio G° G® | Voo 0 1 620
or L A.H | . - | (Vo7).
Qle—Q2e ' Qe '[G G Voe
“510'620 N 6o | le® e V20

) qu(V.7),Can now be interpreted as the two-port shown
in FigoV.4, the Tl -configuration was chosen for convenience,
since it yields simple expressions for the elements. By
redrawing the equivalent circuit shown in Fig.V.5 one obtains
the final four-port equivalent circuit for the shunt capacitor
as shown in Fig.V.5, and Table 1,

A
e o

au
| Qe | 77777 e
/{

-G »
U o
¢ :
L o . :
G~ ° e
VeV 36 < Vor by

L O

- - . P .

Fig.V.4. Two-port equivalent circuit for Egq.(V.6)., Link
between even and odd.path for shunt capacitor,
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éla A
o f £%° o
oo -
V’O G ~  odd ?mlL\ \/20
- c° _
~ L .
" -~
o E;e ¢ t G° Q&e
, > Po, , S
. . evtn e
V, (f\_:;> pakh _ G Ve

oy
O

- Fig.V.5. Four-port equivalent circuit for shunt capacitor.

Other equivalent circuits flor the basic components
in.Table Vol .can be easily obtained by using the above
procedure (i.e., taking_z*;transforms of the nodal charge

equations). ]
_ =0 o
- ~ =€
: ' " . NS
: ! |

(4 —) O —)

i

e

[
(
(
|

- Fig.V.;Go Gyrator equivalent circuit for the 1link two-port (ITP)
‘ in storage elementse

Active Elements and Sources:

Contralled Sources: The simplest active element in SC nefwork_
is a voltage-controlled voltage source., It has no storage
property. Its four-port equivalent circuit in z*- domain is

shown in Fig.V.7T.
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L - TABLE V.l. |
Equivalent Circuits for Six Basic Elements In SC Filters.
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Fig.V.7. Four-port equivalent circuit of VCVS,

o A charge-controlled voltage source in an SC network is
more complex, since it must have the property of a capa01tor,
namely that of building up a voltage in response to a charge
surge qno It must therefore follow the equation :

If the memory is periodically'erased by a switch

(similar to an SG) then above equation reduces to

I -
Vy= § 903 Vn-170
where n is either only even or only odde.
”\
A . Q|
,;_‘q‘n _! "_ ) » :’C.
+ c + 1 -
\I - 'v Vgn = \/Ie—KVze TE_T V1€
n K in ) - r:‘ ©
= o . \ - s
(a) : é\.o =
—_—
—’- ——
_
\/IU- -K_Vlu CAP V'ZC
<

Fig.V.8(a)., CCVS with storage.
(b), Its four-port equivalent ‘circuite



. -86-

Dr1v1ng Voltage Sources:

Throughout this ana1y81s, 1t has been assumed that an
SC network must be driven from a sampled voltage or charge .
source, This is achieved by sampllng a continous source by a
periodically operated switche } ,

The .impedance of a voltage source must be -very small,
- that of a charge source very large in order to guarantee an
'1nstantaneous voltage buildup across the capa01tor of the SC
network,

If the source is to have. a finite source resmstance
this can be 51mu1ated by an SC combination of Table Vel (fourth -
figure). :

Driving Charge Sources- .
Thevenin's theorem is appllcable to SC networks, The
charge gsource corresponding to vo(t) with source resistance

_ 1
Rye= ¢
S . v .
A n
q "_R— —Vn.Cs
Cq S
s€ —

V&) | Vo 40 TC’ S

- PFig.V.9. Thevenin's equivalence for SC network sources.

.Fig.V.9(a) is equivalent to the ‘Fig.V.10(a) - by using
‘Table V.1, ’

Yeq

Metwork

Figo.V.10.
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FigoV.9(b) is equivalent to the Fig.V.10(b) .

o L ‘*‘("7
.e . q <.
' Y
a @ J o Networ |
N | ﬁ f l
g‘Lh ’
Flg.V.lO(b).

Applying Thevenin'theorem to both circuits it is seen

1 : . ’ o
uha't Rth— G for the even peth and 'R$h= ©© for the odd path.

V3. Cascadihg SC'.",Bu‘,i;l,diris_\.BlPCkS

The four-port equlvalent circuits for the basic. SC
building blocks can be connected in cascade. A cascade of shunt
or series capacitors, i.e., storage elements, merely leads to
a pérallel (oxr series) connection of LTP's without providing
any filtering effect., However, alternating the tamdem connection
of storage elements with switched elements results in SC net-
works that are.suitable for filtering purposes.

In Fig.V.1ll., the cascade connection of m alternating
shunt capacitors and series switches and its four-port equi-
valent circuit is shown. Notice that the timing of the
switches alternates along the chain. This leads to the alternas+
ting position of R, 's (R_,1is an open circuit) in the even and
odd path. Since, the charges, through the R, 's are zero the
Signal alternates between eveniand odd paths, The network
therefore corresponds to a straight tandem connection of all
“I,MP's which can be unfolded into a regular two-port network.

Other topologies can be obtained.by cascading storage
capacitors with SC's as shown in PFigs. V.12(a) and V.13(b).
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Fig.V.11(a). Cascade of alternating series'switches and shunt

capacitors,
(b)e Four—port equlvalent circuit.
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' Fig.V.1l2(a). Cascade of shunt capacitors and switched series

capacitorsc(b). Four-port equivalent circuit,
(c). Final ladder equivalent circuit.
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o ;
Fig.V.13.(a). Cascade of series capacitors and switched shunt |
capacitors.(b). Foﬁr—port equivalent.circuit. - !
(¢). Final ladder equivalent circuit, {

Vodo Two-Port Analysis of SC-Networks

- Cascade Analysis of Building Blocks

As it has been observed that, the SC network in Fig.V.ll(a
‘can be reduced to an equivalent two-port which resembles the tan—

‘dem connection of LTP{s as shown in.Fig.V.l4(a).
The two-port equlvalent circuits for the SC networks

in Fig.V.12(a) and V.13(a) can be reduced to the ones shown
in Fig.V.14(b) and V.14(c) respectively., By expressing the
open circuit input impedance of the LTP's in texms of their
elements, the analysis of'the.two—ports in Fig.V,l4(b) and
V.1l4(c) reduces to that of a simple ladder structure. Using
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. LT?, L7, L1p
”n
(a) - T T
o ANNA MM - — ANA —
L o Ria L R?\-! R(:--u ~ &
Lte, : L7e, - LTp
r , r—' [ r ™ f—o
0 | . (k)
R’-'S %g‘“")’“

-0

O~
[

(a) Corresponding to Fig.V.1ll. (b). Corresponding

- T e)
Fig.V.1l4,. Two-port equlvalent circuits of SC ladder networks

to- Fig.V.12. (c¢). Qorresponding to Fig.V.13,

the gyrator repreéentatioh for the LTP as in Fig.V.6, its

open.circuit input impedance can be derived (see Fig.V.1l5).

~G®°
—_>

)

(I G

N

GD

- ’Gde __G°
T

ce 5' (

Fig.V.15. Open circuit input impedance of LTP derived via
gyrator eguivalent circuite..

By ihspection the following is obtained

<

1

Ge .
Zin= 7 T gl gor = 0 T2

-1

c é ~-C zrz'
- (V.8)

The final two-port equivalent circuits for the SC ladder

networks shown in Figs.V. 12(a) and V.13(a

Figs. (V.12 (c) and V.13(c))

) are shown in
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In ordgr to continue the cascade analysis of LTP's
- as shown in Fig.V.14(a) it is necessary to derive the trans—

mission matrix for one ILTP,: This can be achieved by obtaining
~the ABCD matrix from the y-matrix in Eq.(V.T7)e

G T o) A
- (Vo9)
Q o ‘Gez [t B
1 G "'Go - EE Qo
and with Eqs,. (V.5)
A B ‘ Z z/C . :
- | (V.10)
C D Jigp 50(1-5"2) '

The transmission métrix of an entire chain of m LTP's
is now obtained by multiplying the transmission matrices of
the m individual LTP's, thus

A B C Z z/Ci )
= T |- - (Vo11)
' i=1 - ‘_2 -

For m=2 Eq.(V.1ll) yields

A B - z*g 1+ Eg(l-zx—z) zfz(éL + éL)
. _ 1 : : 1 2
_ _ e
2 < =2 %2 1 % g
cC D (2% 0L 40, (1-2" TF) z¥ 1+ x=(1-z %)
_ 2 | 1702 (1 | . g )

This matrix representsfthe“ﬂaconfiguratibn'shoﬁn in Fig;Vol6.'

° _ *-1 C'CL
T e
’l"c, TC:L = ‘3‘%] [>3_l.-.(l-z"mz)c2

FigoV.1l6, WM-equivalent circuit-cascade of two LTP's.
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General Two-Port Transfer Function

The previmusly described two-port analysis was restricted
to cases where building blocks are cascaded by tracing the sig-
nal flow through the four-port equivalent circuit. This is pds-
sible only if the signal is transmitted along either the odd -or
even path, or if it alternates from one péth to the other. Vhen
the signal is transmitted through the even and odd path and
when LTP's are present, a more general approach should be used.

For the general case the two-phase SC network may be .
considered as a two-port with an.input sighal and an oufput
signal in the time domain (Fig.V°i7(a»,

| peen

S(H-np1) S(t-n,v)
-~ Sampled data - .
Sustem ) ) L S/ H —0
s Qt;bu;valen*{ P » . / ’ Vl({) l
. V,H:) : 5({—noz) to Sc e wfrk S({-net) SGN?"/\\-IJ .

Circuit

;. FigeVolT7(a). :Time domain equivalent system.

vﬁf? - [AS
(3 . 1s .
& ‘ ° O /H —
- . P) . V,.(w)
“°§£::::: —~—— 1N Flw) L
= e Hoo —'——j : =

FigeV.17(8). Frequency domain equivalent system.

Thé_sample and hold circuit in Fig.V.l7 restores the
 finite pulsewidth for each discrete value coming out of the )
sampled-data system [10] oThen by Fig.VsIT, the output voltage
_Vz(i) can be expressed in terms of the even and odd part of
‘sampled input function'vl(i) as

| ’ A e [;8€e, ;€0 Ol.;00 _.O€ . '
_V2(£)_=V§(£)+V2(Z)=V1[H +H +V1[H +H . (v.12)
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For a unlformly sampled sinusoidal 1nput signal V,e Jent®

the z*-transformed function is glVen by 1,
o0 V. 2*
. z )
V. (2)= pdWnT f-n_ L
1) éi_c; et R e )

The even and odd part can be determined as follows [5]

ze .
| 2;2 (Vol4oa)
- ,Vl Z% 2_831“’01 i
and o _— :
. O, % 1 [ 1 . Zx - *
Vi (z)= & [V (Z')—V (-—z)] = ~ - 2 .
1 ' 2 1 1 -g_ Z‘ _._e,]“’o?- —Z'_e-.’w‘.(' .
‘ (Vol4.b)
F 'jwol’. :
"Vl St ?Jw T
'Substltutlng Vi and Vi 1nto Eq.(V.lz)
- (*)-—V .,zﬁ2 N .
5 (2)=V; ST JeT o Hee(z)+Heo(z)+ |
(V.15)

jwot % ._1 % x
+e }z [Hoo(z)+Hoe(zﬂ
is obtalned
After dividing Eq.(V.15) by (V013), the overall trans-

fer function of the sampled-data system in the z-domain is:
£y gy Jug x-1 .
v, (2) | HogtHgg+el™ [Ho o+ ] (V 16)
VT ST e T .16)

Finally, multlplylng this frequency response w1th the
response of the sample and hold device [9]

F(UJ)"" (V017)
wy

the overall transfer function can be established



ees Jjwt eo -jw.z Jjwt
HT (uO zé (e J+H " (e )+Eﬁoo(e )+
otal J(w -w)T
l+e T
S 3(w—u)z) (V.18)
e s» ‘

a(w DT
l+e

°F<w>

s

Vo o RC Analogies of SC Networks

A frequently used SC network is a shunt capacitor with

a toggle switch, It is the basic.two-port associated with one~'~

ILTP as can be seen from Fig.V,11. Its RC Analogy can be
demonstrated by substituting the Eqsév.S(a) and V.5(b) into
the.elements of the circuit in Fig.V.6. As demonstrated in
Fig.V.18 the circuit can be interpreted as a capacitor for
C=large and as a resistor for C=small, In both cases it is
required that um<K1. Which allows the approx1mat10n z"~ 1 Jwi,
~ 1-jwt to be made . |

—i
. N

n

[a}

W

Ueﬁ‘“t,

[3]]

Fig.V.18(a).



. if C is large = CY~ O then Fig.V.18(a) is equivalent to

o —0

'lwt‘l. [] J.;‘"Ct

"y

e

g —0

Fig,V.18(b),

if C is sufficiently small and since wt« 1 then Cwt -0 and
1/jwer —> © results-

e AM- —
R.c

L e

Fig.V.18(c).

A far more accurafe low-pass filter approximation can
be obtained by using the SC network structure shown in .

r1g°V.12(a) with its equivalent ladder circuit in FlgoV°12(c),

' This is demonstrated in Fig.V.19 for one section.

. (o0
o _/ 7/ r—“-—__o , o M/\’;\

©

n
79
Q
1)
n
]
0
Nl
1
P

—0

R -1

/ -For 2wr Ll

‘F1g°V°19. RC low-pass(x) approximatien for shunt capacitor and

SWltched gseries capa01tor.

(x) See the appendix. -
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. Letting

A2 —jwy .- .
2 2=e Jv lg; 1-jowr , 2wr¢cl (Vo19)

the conductive part in the shunt branch can be eliminated and
. a capacitive component, relatedfto the imaginary part in
Eq.(V.19) remains. The only condition for the approximation
is 2cu2441; regar@less of .the size of the element values, .

| Finally, in Fig.V.20, an RC analogy for the circuit
‘shown in Fig.V.16. is presented. It is again based on the
“approximation made in Egqe(V.19) and is independént of the
capacitor values, In conclusion, it can be said that passive
SC networks with two-phase switches have properties similar to
those of passive RC circuits. ' '

ce,
.ZC,I ¢

S

Fig.V.20, Analogy for circuit shown in Fig.V.16.

Example Vols: _
' Return to the example on page 9 and solve it by using
"ILTP's and Table V.1. ’

| ~ T
: V()
ut) _ ]:
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The equivalent LTP circult is

Uo(z*)( %) ) Vc’b\\czz"" v, (zﬁ)

-Ve (Zx)

o

¥
1o

FigeV.Zl_(b)

Finally Fig.V.21(b) is reduced to the following figure

o AANA o —— : -
C( ’ ' sz*" .
»
Uo(zx) G -¢, >~ Cy Velz )
L~ 1L L
Pig.Vo22.
H (z*). V (Z) ‘ 1 e
b C
(?o U, (Z) (1+ .......)._ .._2_ X =2 _
1' l . )
and 7 | (V.20)
v (2) 21 |
% e
H Z)= —
oe( ) U (é‘) C2 x—2

(1+ 6—-)—
These are exactly the same results as in page 77 where

L &2
Vo(z)=Vo(z);. 7=2

2"/2y_(2)=V,(2)
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Example Vo2: Second-order SC Network With Operational Amplifier

- The follow1ng example shown in Fig.V.23(a) was chosen
’to‘demonstrate how the descrlbedranaly51s method of cascaded -
SC networks .can be used for the analysis of a second-order
SC network with one active element, The purpose of this example
is to illustrate how to synthesize filter networks using the

four~port equivalent circuits of the building blocks introduced

- in the previous sections,
The first step in the analysis of the circuit shown in
Fig.V.23(a) is to convert it.into a four-port equivalent cir-

cuit, This is shown in Pig.Ve20(b), The gignal flows through the.’

cascade of LTP's in the form of a meander. In terms of charges
and the link two-ports the signal flow can be described
symbolically as follows:

VZ.-;"Q~§|+

The desired transfer function is

(V.21)

~For a simple derivation of Eq.(V.21) the four-port
equivalent circuit can be reduced to a two-port equivalent
circuit with feedback as shown in Fig.V.23(e). The internal

two-port.ABCD thereby consists of the cascade of the four LTP's

_in Fig.V.23(b). The operational amplifier has been redrawn

as a charge controlled voltage source, where g=Cg s Thus
e e 1 . A€ .1 '
V6 <5 5= s

g

: A0 PN - A0 gy =] e

(TN




| ..
st [ fon
el N

; —d O
Y55 BQen| s%
)VS(O NVgln) - e, T '

4 .

Fig.V.2 B(b') Four-port equivalent circuit.

Cr
AMN—
A .
yaF
=C ‘
' = -0 L@ ~ Vg =- 5 —
Ve . \116 m...[f . \/5__0. \ S Cg
S 5 5
~lc ‘Dl

' Fig'y,23(c) Two-port eguivalent circuit
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. - The transmission matrix ABCD can be obtained from
Eqo(V.11l) for m=2, It is more convenient to.calculate the
product of two matrices, therefore, with Eq,(V.ll) and letting
p=1-z"

‘ - C c, = . B ' C. - C

A B [(L455D) (ko) + (sl 20) (- +

- ol? .~+63g)+(02_Cl)(93f04)p4(1 Clp)(q )+(1 C4p)(Cl
. . A c, Cy
c D4 (Cl+02)(1+5—p)+(0 +C4)(1+—ep) (15
n=

Before con81der1ng the feedback loop, the follow1ng mat—

rix. relatlon can be derived from the clrcult 1n Flg.V.23(c)

o~

v A - BTo o vl [-BC, O Vg

=4

- ®
]

1

n

(V.23)

Q1

o]
Q

A e | |- o
D] |-Cg 0 Q6 -DC, O | | Qg

The second matrix factor multiplying the ABCD matrix
represents-the charge controlled voltage source..The equation
above yield two simple relations:

e 'é '
, - (Ve24)

N

. ~ e.
Q= -DO4Vg

With‘this, the overall transfer function of the network
in Fig.V.23(c) results in ' ‘ ‘

¢ 1

‘Ve : . B » )
...‘.g. =T(Z* = - 'C—s‘ C ' (V°25)
Vg ‘8 B(C4C_)4D+ = '

- Ftlg o

and after substituting the terms for B and D from Ego(V.22)

. T(Z*)z - C ) (Vo26)
p +pa1+ao+ T zZ. '
. . g X

€3 1
p)(l'C p)+( 557 )(01+02)
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where

Q

c.C, ©

_ 274 8

oL = K= —ok =2

0163 Cg

aq= 0\[((} +C ) E?_(-:.I:_. +’._}._.)+ ?..:.3_(1 & 1 )}+ 9_]_' + ?_3_ + Cl + Ci‘ + 02 +
Fsc:10304c46i'6‘2' 0204633';650

101 1 1 '
a,= OL[(CF-*‘CS) (EJ-- + CT'Z- + T + -C-z)-i-lJ °

3

. As ‘can be observed in Eq.(V.26), the transfer function o
T(2) is actually a function.of 272, since no terms of 2~% occur.
The fransfer function in Eq.(V.26) can be written with the -
relation in Eq.(V.20) z=zf2 as Tollows.

S -
T(Z):". §] : ~ (V627) ,
z—z(l— —2“)—2"1(2+a )+l+a.+a '

Cg, 1 170

Eq, (V.27) corresponds to the response of the sampled-
data-low-pass filter shown in Fig.V.23(a). This circuit has
already been build in the laboratory by Kurth and Moschytz
using discrete capacitors and discrete FET switches[9.T°
Although all elements were non-ideal (i.eo, on-resistors of the
-switches RanZEOOHJ, a relatively good match between the measured

and the predicted response was achieved as shown in Fig.V.24,
IQ‘ .Cﬁ-OJJSGFF_
€1: 4,524 ,F
C3-0,183 pMF
S Cyz 4.S17 BF
solid \Me-—ga\m:\o.‘\e.‘ . ‘ CS - [,,Sog_ nr,

~4o

T

X - measvred

Ce- l{.ﬂg nF

0.,{ wi 4 . l‘é.(_ ,-[(KH-L) C3 = 136 pF

Fig.V.24,. Measured and calculated response of a laboratory model.
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, The overall rolloff towards higher fiequencies is due
to a 222X response related to the finite pulsewidth at the
output of the network., - v . S

Remarks: An SC network can be considered as a sampled-data .
gystem described by a set of difference equétions with perio-
dically time-varying coefficients. If the SC network has the -
complexity generally encountered in practice, the nodal charge
‘ equations leads to unwidely analytical expressions, A building
block analysis based on six passive two-ports which are most
commonly used in SC networks avoid this complexity and repfe—
sents a systematic method of analyzing genéral SC networks,
Using this analysis the pefformance of various practical circu-.
‘its can be evaluated and a design classification may be derived.



CHAPTER VI _
FREQUENCY DOMAIN SOLUTIONS OF TWO-PHASE SC NETWORKS

- In this chapter, “frequency domain solutions of two-

phase SC networks due to arbitrary inputs will be derived
and w111 be -illustrated on the.circuit of Fig.IT.8.
v _ The state equations (II.34) on page 22 can be obtained.
by any of the methods 1n Chapter II, If the capacitor voltage
vectors are called as gl(t)vand 52(t) (respectively for phase
1 and phase 2) then the state equations are :

xq (£)=F; %, (nT7) 4G, 8(t) for t€(nT,nT+7, | .
(VI.1)
152(t)=§2§1(nT+21)f§2§(t) for te(nT+zi;(n+l)T]

Phase 1 corresponds to the intervals (nT ,nT+7,] and
phase 2 corresponds to the intervals (nT+Zl,(n+l)T:] where
n=0,1,2,0.. ‘:The dimension of gl(t) and 52(%) is equal to the
‘ number of capacitors. . .

According to Eq,(II 35) the output equations are

,‘gi(t)=§1§2(nT-)+§1§(t)4for te(nTlnT+zi] .
. ' (VIO2)
: gé(t)égggz(nT+zi)+§2§(t)»for te(nTttl:(n+l)T]

| Now, define the following window functions [16]

(1 0<44t£¢C
Wt(t)= R ’ .
0] elsewhere



where T+T,

riQ47

oo

Wy (8= 3w (o)

R DO

Wz('t)- z WZ (t-nT-2 1)

==

=T

Then from (VI,1)

x, ()

xz(t)-Fz 5; i(nT+zl)w (t_nm-zi§+52§;t)w2(tj

- +on

Fl Z x2(nT w, ('b-—nT)+G s(t)wl(t)

“for all +

+®

The Fourier transforms of (VI.4.a) and (VI.4.b), are

respectively,

where

—J“’z

1 |
1“”) Flizé“) S 5 @)

. -3“1
' - 1l-e
.526”)7§2§1(”) 7 +22§2(”)
e men )

£, w)=3 3, (nr7)e It
" T

-‘we . "
§2(FQ"E£02,n§03~n s

- where W= %- is the sampllng frequency and

~jnw Ty

- _ 1-e 8 .
el,n— Jnw T ngo,

(VI:.5.a)

(VI.5.b)

(VI.5.c)

(VI.504)

(VI.50€)

(VI.5.%)

(VIe5.8)
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| . -jnwr, -jnwt
© | = 8 2 1"e 8
2yn

Snw T n#@; 92'0'—' 'r]-_.‘z" (VI°5°h)
8- . ) ~ :

The X (w)'s in the above equations.may be solved from

the dlfference equations derived from (VI.1), From (VI.1,. a),‘
leting t-—n’l‘+z1

l(nT+21)—F x2(nT )+G s(nT+Zl) (VI.6.a)

and from (VI.1l. b), Lleting t=nT+T"

L tpee
..

- §2(nT+Tf)=§2§1(nT+TZ)+qujnT+Tf) (VI 6.b)

are obtalned.

Increasing the index n in (VI, 6 a) by 1 and then subs-
tltutlng (VI.6,b) into (VI.6.a) yields

3’{1(nT+T+‘L1)=zFlng§1(nT+ll)+§1g2§(nT+$ )+§l§_(nT+T+zl) (VIo7oa§

Substituting (VI.6.a2) into (VI.6.b) gives |

52(nT+T )=£221§2(nT )ﬁfzgiﬁ(nT¥11)ﬁ§2§(nT+T ) (YI°7bb),
Applying the 2Z-transform to the above: equations yields:

2% (2)=F Fo%y (2)+F; G528, (2) 48,25, (2)

”‘952(Z)=§2§1§2(z)+§2§1§1(z)+§2252(2)
wheXre o o ' SRR |
El(zﬁ;jz xl(nT+zi)z"n | (VI.8,a)

n':o ) y
X,(2)52 x,(nT7)z | (VIe8.b)

-1

§,(2)22 s(n+z])z (VI.8.c)
n:=o
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§2 <z>ézn_§_<nzr>z-n (VI..B;d)

| The above definitions are in coincidence with the z-:
transform definition on page (51).

Thus - o R
%;(z)=22(z)‘:§1§22§2(z)+glz§1(z£] .
I o (VI.9)
%, (2)=P, (2) | Bpy8; (2)46,28,(2) ]
where ~ : ;
Br(2)=(a1-F0) o
(VI.10.8)

- _ -1
Z5(2)=(21-11 1)
and I is the identity matrlxo
¢1(z) and ¢2(z) may be viewed as the characterlstlc

matrices of a switched capacitor circuit and they are related
by the following equations:

I (2)Fp=Fof (2) I
o (VI.10.b)

22(2)£1=£121(z)
~ Let s(t) be continuous at t=nT and t-nT+zl, then with

the relationship z= =T ang. using Poisson's formula [4] the
gm(z) in (V1.8.c) and (VI.8.d) can be expressed as:

84 (e 3Ty ;Z S(nT+21)e Jn”T
, N-=0
oD _ z . .
= 7 2 S(w-nw, yed (“=Bepdfl (v1,11.0)
N=o
; - .
- |
(eJ‘”T> > s(n17)e I 13 seonw) (VI.11.b)
D=o N=0
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By comparing (VI 8°a »b) with (VI. 5.a b) the follow1ng
are obtalned-

ﬁ GAD—X (e T) }U) - (VI.12.a)
£, (w)=E, (e3*T) ' (VI.12.b)

Substituting (VI.1ll.a,b) into (VI.9) then into (VI.12)
we obtain:

w _ 1 oo .' ..“."’:
gl(w)— T Zn.-g_fz’n(w)S(w—nw ) (VI.13.3)
1, '
)= 5 PR INCLICEEN o (VI.13.D)
where .
E1,nW)=F1 (677 (Fry e +8,6%™) e
(VI.14)

- - Jwt jwt, Jw-nw)t |
gé,nc”)?gz(erT)(Elgze 2+§1e %e = o

Note that ¢ (e‘-J wT) and ¢ (e ), are periodic functions
of w with perlodtus. : _ |
From the output equat01n (1II. 36) ‘j

ym(t)igmzm(t)+Qm§(t)wm(t) m=1,2 for all %

~

Its Fourier transforms is obtained as.
.Xm(w) =gm:&n(w)+‘:]_)m§m(w) m=1,2 | (VLlS.a)‘i

| Substituting the results obtained in (VI.13.a,b).into
(VI.15.a,b) and then into (VI,15.a) together with (VI 5.€) and

(VI.5.f) yields,

Y @) %;Tm,n(“’)§(“"n“"s) m=1,2 - (VI.15.b)
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where .
| S =jwt
l-e : '
T w )= .. =
m,n( ) T gmfmgm,n(w)+§%,n(9m§mf9m) m=1,2 (VI.15.c)
or . -"j-w'lm o
T (w)= _T_l-e‘ ¢ p (w) 9 ﬁ =1,2
'_N_m,n Jw ...m'_n] n + m=1, (VIol5od)
The total output is
Y(w)=Y; W)+, Mz% Tn(w)§(w-nw) (VI.16.2)
where
:Tn(‘“’)=2 (w)+T2 nt) (VI.16.D)

The above expression (VI.1l6) gives the Fourier transform
of the output due to an arbitrary input whose Fourier transform
is-8(w)e Iniw) is the transfer function which relates the
shifted input spectrum at nw, to the output. It is important
to point out that - Tn(cu) in general consists of a constant
component due to feedthrough and a component whose envelope's
magnitude is inversely proportional to the frequency.

" When the input is a cisoidal function

o w ta
s(t)=e ° %

where 8 is a complex vector, then
"~ . - . -

S(w)=2T6 (w-w.)8.

Thus the transfer function in (VI. 16) should be
- evaluated at W=w +nw 1c€ay Tn(w) Tn(w +nw)

Since an arbltrary 1nput can be v1ewed as a continuum -
of' cisoidal components in the frequency domain, using the
superposition prenciple, the result for a cisoidal input can
also be extended to an arbitrary input.
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Fifty-Percent Duty Cycle

When a switched capacitor circéuit is operated at 50-
percent duty cycle more interesting results can be derived

from the.general expressions obtained earlier, With 2 =7, =T/2

from (VI.16.b) and (VI.15) toe
| emIwT/2 Z
n ()= —E?W""[glgl,n(“’)““ngz n(“’] ":‘{n‘;L(ﬁ ~Dp)s n#0 (VI.17.a
.r- 9 J I =
. 1_g=3w1/2 |
Fo)= o [ 0B 0@)3EoRe, o(“’)]+ 3 (Byd,) (viarwy”
Where ‘
F1,n® )=gl(éij) [ (“1)n§2§193wT/2-+§2eM] (VI.17.c)
B, . (w)=P,(ed" D) [F1Gpe /2, (c1)n G e T] (VI.18)
Fo ,n=Ls 182° §1°° 7 °

Notice that the P Qu)'s given above are rational func-
tions of e*T/2 1¢ there 1s no feedthrough from the input to
the output, i.e., @17§2-O, (VI.17.a) and (VI.17.b). reduce to

_gmdwr/2
T
1/2_

gnﬁu)= En(z) (VI.19,.a)

@n(z)—a rational function of z .
églgl(z) [(-1) Folqz +G2z] +62¢2(z)[F g z1/2+(-1)n§lz}(v1019;

‘The factor,(i—eij/z)/ng in (VI.19°a) is a zero-order
hold function of magnitude 1/T and duration T/2. In many
practical applications this factor is nearly a constant of
1/2 when the switching frequency is much higher than the signal
frequency. Consequently the behaviour of a switched capacitor
- circuit can be conveniently analyzed in the rational zl/2
domain. B

If in addition the input is sampled only once over a

switching period T, say G;=0Q, the Qn(Z) in (VI.19.b) by using
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the relations @ =C F and ﬁ =G g +D obtained in page 23,

_ ~1/2 : |
| gh(z)—(gl+z. Lo85)0, (2) B 6z (VI.20.a)
or when G,=0 :

B (2)=(-1)"(a72g B 40 ) (B0 - (VI.20.0)

It is 1nterest1ng to note that the T (z) in (VI 20, a) is .
jdentical for all n and the @ (z) in (VI. 20 b) differs only in
sign for différs only in 51gn for different n since the relati-~
on (VI,10.b) holds.

The i (z) in (VI.20, a) or (VI 20, b) is a rational func-
tion of. z1 2. The . topological constraint Cl—C2F2 in (VI.20.8)
or Clglfgz in (VI.20.b) eliminates the dependence on zl/2
Under these constraints the factor (1+z 1/2 ) in (VI.20.4) ox

(vI.20, b) can be. combined with the zero-order hold function

St eme
“ e

(1-e —jwT 2)/ng when (VI.20, a) or (VI.20.b) is substltuted into
(VIi. 19 a)e
Thus we have ,
: ~jwT - : -
T (W)= 1:§;§r“9 o (2) Py Gp | (VI.21.2)
or |

7, (W)= (-1)P 1“*

T 2ﬂl(z) (VI.21.1)

~ The factor l-e"ij/ij which can also be expressed as
e—j?T/Z(gig%%ég ) in the above two equations is a zero-order
hold function of magnitude 1/T and duration T. It reduces to
unity when the sw1tch1ng frequency Wy is much higher than the
signal frequency (i.e., uJﬂ3<<]) Under this condition the
transfer function T (w) can be approximated and convenlently
analyzed in the ratlonal 'z domain.

Example VI.1l: Consider the circuit of Fig.IIl.8(a). In
this example, the VCVS is taken as an operational amplifiero
«Therefore, node 3 is thought as virtval ground and the. input
charge of the op-amp is zero. Then Eqs.(II.75) and (II.82)

become
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T S
Vo1 (B 10 O |v q(ATT)

) _ J
% ( )
vcz(tzf o 1 vcz(nT ) 0]
| Vél(t) ’ .o 0 vdl(tnT+Zl) 0
x, ()= = ' + u(t) for -
.~2 Cl
""cz(J“)J 'Gg 1 ch(—tnmnl)j' 0

thI'e n—O 1 2,0000

1

A
1
\

u(t) for t€(nT, nT+Z.](Vi 22°

Comparlson of Eqso(VI 1) and (VI 22) yields

The output equations are
zi‘(t){o 1]

vc2(t)

22 (t)= [O "'1]

vcl(t)-

vc2(t).

vcl(t)'

+0 Vin(t)

J . ‘ .

9 Vin(®)

Comparing Eq.(Vi024) with Eq,(II°36% |

91;92=[o 1] ena

is obtained.

D;=D=0

-

(VI.22.b)

t€(nT+Zl,(n+1)T]

(VI.23)

(VI.24)

1
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Then . .
91=91§1=[b "?] .
(Vi.25)
,§2 =Colp= [ 6‘ ‘1]
ﬁl-clelwfg
- D,=C,8,+D,=0
From qu (VIolOoa) ) . ‘ -
R o : -1.11 - ‘
_ -1 z T
2, ()=[s1-Fo11] =[ )( )] o D
O Z O~ 1 0." -i:I

If the switches.are.operated at 50-percent duty cycle -
and.since G,=0 then Eq.(VI.20.b) holds. Substitution of Egs.
(VI.23), (VI.25) and (VI.26) into Eq.(VI.20.b) gives

| ' 1/2 | -1 o 77To
o (z)=(-1)2(z" / [b -1]+[O —1]) L o =
" | 1
0 oy -C—z- 2
L (0/0)a(1ez7B) - o
=(=1) ‘ (VI.27)

- (1-2)

Since there is no feedthrough from the input to the
output, i.e., Dl—DZ—O Eqo(VI.27) can be substituted into

Eq.(VI 19, a)

‘ : , . -1/2
oy i 2 on 301/0) AT
£ - Jwl - ¢ ° ' (1-2) -
(1P (e /o)) | '
= T for all n, (vVI.28)

.Thus if we make Clz'I‘/r1 the switched capacitor network

of Fig.II.8 gives.exactly the same {requency response as an

analog integrator,



'CHAPTER VII
CONCLUSION -

As stated in chapter I, filters can be realized by
using switched capacitor circuits. Analysis of switched capa-
citor networks is worthy of investigation since the reallzatlon
of the filter on a chip can be done, '

‘In chapter II, several time-domain methods for fhe_
analysis of SC networks have been given. Among these the approach
in section II.5 is more efficient for computer implementation
and does not require many extra computations as the others do.
And the most important advantage of this.approach is that ény
SC network defined by Eq.(II.14) is complétely characterized
by the z-domain transfer matrix of Eq.(IV.12). In this case
equations for the N phases are put in one 1argé matrix and
problems of describing the relationships among different phases
of the input and the output are avoided. In section II.5,
equivalent circuits for the basic elements of SC'networks have
been derived. But when there are more than two phases, the
- circulator explained in Chapter IV is more convenient_sihce Z
is only used between the first and last phase instead of bet-

-1

-ween any two consecutive phases, .

The hybrid matrix approach described in section II.8
will yield a proper port comblnatlon such that the network
has a solution.

- As explained in Chapter III, discrete time effects on
the values at the end of the ‘time slots as well as continuous
time effects (continuous .coupling) both occur in a SC network
is described by linear»equatiohs which are periodically time
varyihgo The discrete time action is linear, periodic and
dynamic and each phase at the input has an effect to each
phase at the output. This effect is completely characterized
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by the z-domain transfer matrix of (IV.5). The continuous time
action (continqous I-0 coupling) is linear, periodic and not
dynamic, )

In chapter VI, frequency domain solution of two-phase
SC network due to an arbitrary input were given. The results
discussed in Chapter VI can be extended to samplé-and hold
inputs as well, o

For some SC networks the transmission matrix cannot be
‘established., A plausible physical explanation for this is
related to the fact that at even and odd times some of the
‘switches in the network are open, thus, no continmnous transmis—""
gion path exsits. One can overcome this problem, by introducing
~ the paraéitic leakage capacitors of the open switches. These
parasitic leakage capacitors are generally small. The impoxrtant
point is, that by this."practical trick" the transmission mat-
rix can now be derived,



- APPENDIX

Design of IIR, Digital Filters

| Digital filters characterized by trénsfer functions
in the form of a rational function,

M. . | | S
z:r?aiz_l . ( %l A
‘ _i=0 o a A(z” | |
H(z)= {_ — " 5D (k1) M4N
Z L
X=0 X

where B(z'l) is not constant, are called infinite impulse
response (IIR) digital filters. In the IIR filters, the filter
is stable if all poles of H(z) of (1) are within the unit
circle in the z-plane and causal.if bL is the first. nonzero
coefficient in the denominator (i.e., b b1 o'.bL l--0), then
a 0= B T eee=a | 1-O in the numerator. Because, we are concerned
with causal filters (impulse response h(n)=0, n {0) only, it

~ is convenient to assume that b —1 Hence, the general transfer
‘ functions of IIR digital fllters are in the form of

il .
aiz~l
i=0

H Y
1+ ) b, 2

H(z)= "(A, 2)

The design of an IIR digital filter involwes the
following two steps:

Step 1: Design an analog filter by obtaining an appropriate
transfer function f(s) to meet the signal-processing require-
ments. i . ’
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‘Step 2: Construct a mapping procedure to transform fi(s) into
an appropriate transfer function H(z), thus resulting in an.
IIR digital filter design that will meet the specifications.

These steps are illustrated in Fig.A.l.

g«rf: . Hno.\oa Filter R Diqital
’ « Lot L g
. Filter
Specification Design B oty sesign
-Procedures
Pigo.A.l,

- Since IIR filters can be realized by SC networks ~ all
the discussions given for IIR filters are valid for SC networks.
. When we insert eST‘for z in the transfer function of
the digital filter, wé obtain a transfér'function which is a
function of eST. Since an analog filter has a transfer function
which is a polynomial in S not in eST, we can not realize it,
.Therefore we have to make some approximations for eST try to
retain frequency and stability properties,
| Because the analog filters in Step 1 are designed to
- meet the signal processing requirements, we must make sure

that the resulting digital filters retain the desirable proper-

" ties of the analog filters, including the frequency characte-

ristics, the magnitude and phase behaviour of the analog fil-
ters, As a consequence, it is debirable that the imaginary axis
of the s-plane (s=jwfor '~w<UJLoO) is mapped onto the unit
circle of the z-plane (z= ea for -0« whére 8is the dlgltal
- frequency variable .in rad). This condition is needed to preserve
the frequency characterlstlcs of the analog filters.
In order to preserve stability properties of analog fll—

ters, the left hang s-plane (Re.[s] <0) is mapped into the
unit circle of the z-plane ( |z|<1). :

- One method to obtain a digital filter design from an
analog filter design is via numerical integrétion techniques,
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where a derivatiye is approximated by some finite difference,
This action gives rise to a mapping of the complex variable

8 in the transfer function of an analog filter to the complex
variable z in the transfer function of a digital filter

s=f(z) ».(A;B) B

Clearly, different numerical integration techniques will givé
rise to different mapping functions of (3), and, hence the
- resulting digital filters will be different,

. The Euler approx1matlon which is given on page 59
satisfies the stability condition but the frequency characte-
ristics is not satisfied completely. However, for suffiéiently
‘small w T, this mapping will give satisfactory results (ioe./
for low-frequency operations and low-pass filters).

Another transformation is .called the bilinear transfor-
mation defined by. '

’ -1
2 l-3
s=f(z)=
T e
(A.4)
or '
Z-—l= 2-8T
2+sT

_ The frequency requirements are satisfied by the bilinear
“transformation., Also, the stability properties of an - analog

. filter is preserved by this mapping. However, the frequency

" charactesitics of the digital filteérs and that of an analog

:.Vfilter are not identical only the shapes are identical. For

detailed explainitions see the Chapter 12 of [12] .
After designing digital filter as explained above an
‘analog filter can be obtained as in Fig.(A.2).

iv\po‘t

-

Digital O: l:?u'l ’

Alp Filter (sc) D/A

S

A 4

v

An analog.filter°
FigeAo2,



- .REFERENCES

(17 Y.P.TSIVIDIS
"Analysis of Switched Capacitive Hetworks",
IEEE Transactions on Circuits and Systems,
Vol.CAS-26, No.1l, Nov.1979,

':[2] Je VANDAWALLE, H.DE.MAN, J.RABAEY

- "Pime, FreO, and z-Domain Modified Nodal Analy51s
of Sw1tched—Capa01tor Networs",
IEEE Transactions on Circuits and Systems,
Vol.CAS-28, No.3, March 1981,

[3] ' Notes of Summer Switched Capacitor Circuits
,Course.

- [4] M.z, LIOU, Y. L.KUO

"Exact Analysis of Switched Capacitor Clrcults
with Arbitrary Inputs", :
IEEE Transactions on Clrc. and Sys., Vol, CAS—26
No.4, April 1979. '

[5] C. T KURTH, GoSeMOSCHYTZ
"Nodal Analysis- of Switched-Capacitor Networks"
IEEE Trans. Circ., and Sys. Vol.CAS-26, No, 2,'
Febo 1979

- Te6l m.o0. CHUA, P M, LIN
- "Computer-Aided Analysis of Electronic Circuits-
Aigorithms and Computational Techniques", ‘
Englewood Cliffs, NJ:Prentice-Hall, 1975,
[7] J.D.APLEVICH |
) n"Mablean Methods for Analysis and Design of
Linear Systems",
Ontario, Canada, 1977.

[8] P.M,LIN | :
"A Hybrid Matrix Approach to SC Circuit Analysis
Presentation at the International Symposium on
Circuits Systems'",
April, 1981,




-119-~

297 e FoKURTH, GoS.MOSCHYTZ

"Iwo-Port Analysis of Switched Capa01tor Networks
Using Four-Port Equivalent Circuits in the z-
- Domain®, :
IEEE Trans. on. Circ, and Sys. Vol. CAS-26 No°3.
March 1979, ‘

. [10] JamMES A.CADZOW

% Discrete-Time Systems-Prentlce Hall, 1973.
73;,[11] LEIAHU I.JURY

e "Sampled-Data Control Systems",

John Wiley and Sons., Inc., 1958,

[12] HARRY Y.F.LAM
“"Analog and Dlgltal Fllters Design and Reallzatlon"
Prentice-Hall, 1979,

[13] H.DE MANW, J.RABAEY, G.ARNOUT, J,VAWDEVALLE
| "DIANA as mixed-mode Simulator for MOSISI
Sampled Data Circuits", :
' Proc,IEEE Symp. Circuits and Systems, Houston,
SR April, 1980,
- [14]'H.DE MAN, J,RABAEY, G.ARNOUT, and J,VANDEWALLE
N "Practical Implementatlon of a General Computer
Aided Design Technique For Switched Capacitor

Circuits",
IEEE J. Solld—State Circuits, Vol.SC-15, April, 19801



	Tez4133001
	Tez4133002
	Tez4133003
	Tez4133004
	Tez4133005
	Tez4133006
	Tez4133007
	Tez4133008
	Tez4133009
	Tez4133010
	Tez4133011
	Tez4133012
	Tez4133013
	Tez4133014
	Tez4133015
	Tez4133016
	Tez4133017
	Tez4133018
	Tez4133019
	Tez4133020
	Tez4133021
	Tez4133022
	Tez4133023
	Tez4133024
	Tez4133025
	Tez4133026
	Tez4133027
	Tez4133028
	Tez4133029
	Tez4133030
	Tez4133031
	Tez4133032
	Tez4133033
	Tez4133034
	Tez4133035
	Tez4133036
	Tez4133037
	Tez4133038
	Tez4133039
	Tez4133040
	Tez4133041
	Tez4133042
	Tez4133043
	Tez4133044
	Tez4133045
	Tez4133046
	Tez4133047
	Tez4133048
	Tez4133049
	Tez4133050
	Tez4133051
	Tez4133052
	Tez4133053
	Tez4133054
	Tez4133055
	Tez4133056
	Tez4133057
	Tez4133058
	Tez4133059
	Tez4133060
	Tez4133061
	Tez4133062
	Tez4133063
	Tez4133064
	Tez4133065
	Tez4133066
	Tez4133067
	Tez4133068
	Tez4133069
	Tez4133070
	Tez4133071
	Tez4133072
	Tez4133073
	Tez4133074
	Tez4133075
	Tez4133076
	Tez4133077
	Tez4133078
	Tez4133079
	Tez4133080
	Tez4133081
	Tez4133082
	Tez4133083
	Tez4133084
	Tez4133085
	Tez4133086
	Tez4133087
	Tez4133088
	Tez4133089
	Tez4133090
	Tez4133091
	Tez4133092
	Tez4133093
	Tez4133094
	Tez4133095
	Tez4133096
	Tez4133097
	Tez4133098
	Tez4133099
	Tez4133100
	Tez4133101
	Tez4133102
	Tez4133103
	Tez4133104
	Tez4133105
	Tez4133106
	Tez4133107
	Tez4133108
	Tez4133109
	Tez4133110
	Tez4133111
	Tez4133112
	Tez4133113
	Tez4133114
	Tez4133115
	Tez4133116
	Tez4133117
	Tez4133118
	Tez4133119
	Tez4133120
	Tez4133121
	Tez4133122
	Tez4133123
	Tez4133124
	Tez4133125
	Tez4133126
	Tez4133127

