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ABSTRACT 

In this thesis, after introducing the advantages of 

switched capacitor. (SC) networks, several time-domain analys 

methods of SC networks have been investigated and compared. 

with each other. An efficient method for the solvability pro 

lem, which is very important for network analyzers, has also 

been given. 

The z-domain analysis of SC networks is given.by int­

roducing z-domain equivalent circuits which are very basic 

tools for network designers. The z-domain analysis is built 

on the time-domain signal processing. mechanism of SC network 

Finally, frequency domain analysis of SC networks and 

their filtering properties have been investigated. 

The examples given in the thesis cari clarify all the 

introquced methods. 



Bu tezde, anahtar11 kapasite elemanlar1ndan kurulu de' 

relerin listlinliikleri sunulduktan sonra, zaman domeninde anal: 

yontemlerinden belli ba9l1lar1 incelenmi9 ve ka-r91la9t1rmalaJ 

yap1lm19tir. Devre analizcileri i~in onemli olan "~oziilebiliJ 

lik" sorunu da ele a11nm19t1r. 

Devre tasar1mc1lar1i~in temel ara~lardan olan-e9degeJ 

devreler yard1m1yla anahtar11 kapasite devrelerinin analizi . 
- -

z-donii9likleri cinsinden de sunulmu9tur. Z-domen analizi anah· 

tar11 kapasite devrelerinin zaman domeninde i 9aret siire~ me­

kanizmas1 ozelliklerinden hareket edilerek incelenmi9tir. 

Son olarak, frekans domen analizi ele a11nm19 ve 

anahtar11 kapasite devrelerinin siizme ozelliklerine degi­

nilmi9tir. 

Tezde verilen ornekler sunulan yontemleri a91k11ga 

kavu9turabilecek niteliktedir. 
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C H A P'T E R I 

INTRODUCTION 

1.1. W.hy ·SC Networks?, 

Rapid advances, in MOS integrated circuit technology 
permit an ever increasing circuit density per silicon chip. 
So far this t,echnology has been used mainly by the designers 
o,f digital systems, although MOS technology allows ~he 

, . 
implementation of capacitor arrays for use in analog devices 
as well. Consequently, interests has recently fOcused on the 
switched capacitor filters (SC) which comprise only' capacitors 
interconnected-by' an array of periodically operated switcheso 
This approach~an provide the filter functions previously 
obtained with, LC or active-RC filterso With the elimination 
of resistors (which require a large silicon area, have poor 
temperature and linearity characteristics and furthermore 
have temperature coefficients difficult to match with that 
of capacitors when realiz~d with MOS technology), the use of 
this technology for the design of analog active filters may 
soon becomefeasible o 

MOS switches are.already available, also toggle switches 
can be obtained by connecting two MOSFET's as'shown' in Fig.I.l o 

Con~rary to the resistors, MOS capacitors, at this 
'moment already have close to ideal characteristics, temperature 
coefficients may be as low as 10 ppm/C or less, and the loss 
factor can be kept sufficiently small. FUrthermore, the trans­
fer function coefficients" of an SC filter are determined by 
a highly stable clock frequency and capacitor ratios which 
can be held" to very tight tolerances (measured errors of less 
than 0.2 percent have been ?chieved)o This process of inherel1t 
precision an'dquality is sufficient to meet'many filter and 
system specifications. By applying MOS processing techniques 
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to SC networks, the realization of the "filter on a chip" 
may be at' hand. 

o~--------~--------~ 
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The two gates shown are pulsed with a two phase nonoverlapping 
clock at a frequency wc= ;If . 

Another technological alternative is the combination 
of beam leaded MOS switch arrays with thin-film capacitors 
deposited on a ceramic substrate to provide a hybrid integrated 
package resembling presently manufactured hybrid integrated 
RC active filters. The absence of resistorson'the subtrate 
and the presence of only silicon chips (i.e. switches and 
opamps) and thin film (or chip) capacitors may permit filter 
packages that are both smaller and less costly than those 
manufactured with present techniques. 

Work on the analysis of' periodically switched networks 
Nas started several decades ago and general techniques have 
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. 
been presente_d for the' analysis of, switched RLC circuitso 
The formulation used in these, however is such that they can 
not, be directly applied ~n the analysis of switched c'apacitive 
networks with ~ero resistances. The including of negligibly 
small "dummy" resistances to "allow their use leads to 
unnecessarily complex formulation and time 'consuming calculati 
Thus these methods are not appropriate for analysis and design 
work on switched capacitor filters, where a large amount of 
simulation is needed to investigate new configurations, to 

, assign element,s values and to study effects like those of 
, '( , ' 

paraSitic capacitances and operational'amplifier nonidealities, 
As a result, the need has emerged for efficient 

techniques for the analysis of these networks. But traditional 
two-port theory can not be directly applied to such circuits. 
However, by introducing some new concepts it can be shown 
that, ultimately, classical two-port theory can indeed be 
used to advantage. After the inclusion of switches, it is 
demonstrated that in all cases, charge equations similar to 
Kirchoff's current equations apply except that the storage 
properties of the capacitors must be taken into account. 

This thesis is dealing with analysis techniques of SC 
networks developed so tar and aims to collect,all these 
techniques'in a single'text while comparing them with each 
other by using the same notation. In the thesis, some of the 

r 

examples are from the referred papers while some are newo 

1.2. Charge Conservation and switching 

Charge conservation principle on which SC networks are 
built can be clearly understood by the approach of Tsividfs[l]. 

Consider a closed surface as in FigoIo2(a) and let q(t) 
>" 

be the time function representing the charge enclosed by it ' 
, ' 

at time t. Assume there .are one or more paths through which 
charge can be transferred to or' from the outside world. Given 
a time 'reference t', q(t) is defined as the total charge that 
has left the surface through these paths, between times t' 
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and t where t_> t'. Then charge conservation dictates: 

'(1.1) I 

The closed·surfaces considered here will include 
capacito-r plates connected to one or more nodeso .An example 
is shown in Fig.I.2(b) for a single node numbered (i), with 
the quantities ( and q defined above denoted by q(i) arid q(i) 
respectively. q i) includes the charge of all capacitor plates 
enclosed by the surface and will be referred to simply as 
"the charge on node i". 

Fig~I.2(a) 'A closed surface 
·containing charge q(-t). 

Fig.I.2(b) A closed surface contai 
ning ,capacitor plates connected to 
node (i). 

Now, consider a 'set of m nodesI= ~il,i2.~oim1 as in 
Fig.Io3. And assume that i l is the smallest element in I. All 
nodes in. the. set are assumed to be simultaneously connected 
through s~itches, which are' initially all ~pen and close at 

time t m• 

- - - -
---

/ 

t ..... ~9ti2.) ______ ~ 
. (~) . ---1 .- -'- -----T ~L\1\ - - - T 

Fig.Io3. Several nodes connected through switches. 
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A charge conservation equation corresponding to 
Eqo{I.l) can be written for the greater surface enclosing all 
nodes,indicated by the ~roken line in Fig.l.3. If t; indicatel 
"the instant immediately before switching" then, using t'=t-, 

m 
we have 

(I.2) 

The above equation is valid ~ven if some or all of the 
switches in Fig o I.3 have been closed before t ~ .. .. m 

The fo~ulation (I.2) is equivalent to the Kirchoff's 
charge law which is 

(1.3) 

Equation (1.3) i~ in fact an axiom of circuit theo~. 
Axiom: The. Kirchofft_s current law (KCL) requires "that 

the net charge transferred between t; and t to any node should 
be zero. 

(I04) 

where A is the reduced incidence matrix of the SO network and 
~. 

the vector q(t) consists of the charges in the awitchesq , .,.., ...... . ...,s 
the charges in the independent voltage sources ~, the charges 

.... ~ 

of the charge· sources Sw' the charges of the controlled branches 
of VCVS, QCQS and QCVS ',s an~ the controlling branches of QCQS 
§n and the charges of the capacitor qc or explicitly 

-v 

.... 
q. _c 
.... 
q-' 
"'s 

q(t):: 
.... 
qu 

tV 
(1.5) 

.... 
gn 
.... 
~w 

where the variable qk(t) is the net charge which has been . 

transferred in branch k between ·the endt; o~ time slot.L\n_l 
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and the presen_t time instance t of .6m$(:~' -\:.""+1] • 
This choice of charge variable may not seem very 

straightforward in this sense that it assumes a different time 
~eference for each time slot. Thus qk(t) will usually have 
jumps at the switching instances t • This choice howeve'r makes - m ' 
the equations more transparent and does not introduce any loss 
of generality. 

The closure of the switches will impose a set of equatio 
~alled node voltage equalities o If v(i)(t) denotes the voltage 
'between node i and ground, the m~l equa~ions are in the form: 

(i ) (i.) 
v 1 (t)-v J (t)=O, ij£I, j#l 

Before going into analysis techniques some preliminary 
assumptions and definitions are needed for the switches. 

Assumption': It will be assUmed that the sV/~ tches of the 
SC networks are all of the non-off" type. Any other type cjf 
switch can easily be represented by a combination ofapprop­
rj,ately timed on-off switches which are closed and opened 
in an arbitrary fashion, not necessarily simultaneously. 

Definition: A time instant tm is a "switching time" if 
and only if at least one switch in the network changes state 
at t=t • m 

From the abo,ve definition it follows that the topology 
of the network will be fixed between any two consecutive 

switching times, e.g. in the intervals of the form (tm' tm+~o 



C HAP T E R II 

THE TIME DOMAIN ANALYSIS OF LINEAR MULTIPHASE' 
SC NErWORKS 

, In this chapter, the time domain analysis methods of 
linear multiphase SC networks will be giveno At the end of 
this chapter, the same example will be solved by each of these 
methods. First, the components of se networks are introduced. ',. 

II.l. SC-Network Components 

From a practical poi~t of view a switched capacitor 
network is any network with op-amps, capacitors (C), switches 
(S) and voltage sources (VB) where the amplification of th~ 
op-amps is frequency independent; moreover there are no resistorl 
nor parasitic resistances in the components,Fig.II.l(b)o The 
switches are controlled by T-periodic Boolean_clock signals 
¢i(t), ioeO)¢i(t+T)=¢i(t)o If ~i(t)=O (respo ¢i(t)=l) all the 
switches which are controlled by the clock ¢i are jopen (resp. ' 
closed) Fig.II.I(Q). The time is partitioned into time slots 
6m~(tm' tm+lJ such that the clock signals (and hence the 
network) do not vary in ~mo ' . . 

Each period has N time slots. The union of the time 
slots.~, D.. k+N, ~+2N ••••• is ~a~led phase k. All time slots 
~f the phase k have. the same duration and the clock values are 
Ghe same ioeoj~o(t)=¢ok for all t in phase k (where ¢ok is the 

.J. J. _ .J. 

talue of the i th switch in phase k). Aithough a major part 
)f the realizations only uses two phases I4,5,8 J, the deriva­
;ions are for an arbitrary number of N phases. This is not 
just for mathematical generality but'in order to be able to 
Landle design techniques which use many phases o 
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11020 An Introductory Example 

In order to illustrate the signal processing mechanism 
which·occur in SC networks and analysis techniques consider 
the simple "RC low pass'.' circuit belowo. (x) 

¢ 
¢ 1 

¢~,~~ A 
0 oJJ e lit." oJJ 

of - + 
e. 

d> • 
yet) i .. 

..... 
cl, :5" 

+-4--T • 
~ig.II.2 (a) FigoII.2(b) 

During the odd phase, i.e o for all t in the odd time 
,lots Ll2i+l i=0,1,2, •••• th: switch controlled by ¢ is 
~losed and that controlled by ¢ is open. Thus for all times 
; in ~2i+l the network equations are: 

e(t)+v(t)=u(t) (KVL) 
(11.1) 

here t- denotes the time instant just before the switching m . 
nstant tm. 

DUring the even phase i.e. for alIt in ~i' i=1,2,.00 
he network equations are: 

e(t)=O (KVL ) 

(11.2) 
(KQL for node A) 

It will be clear in later chapters, whY.i such a circuit is 
called a low pass circuito (See page .. 77, chapter IV)o 
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By eliminating e(t) in both equations 

(II.3.b) 

is obtained. 
At this point some important observations can be made· 

which extend to general SC circuits. 
First the response "V(t)1I satisfies different equations 

according to the phase. Second the equations are linear and 
third the response in any time slot depends on its value v(t-) . . m 
at the end of the previous time slot and on the actual v~lue 
of the input u(t). 

The equations (11.3) contain the sampled data and the 
continous 1-0 (input-output) coupling effect. The sampled data 
effect is present in the even and odd phase but the cohtinous 
1-0 coupling is only present in the odd phase. 

This follows immediately from the topology of the circuit 
since only in odd phase there is a loop of the input and output 
branch. 

In order to decompose these effects call the value 
at the end t~+l of time slot Llm: 

(1104) 

By substituting t=t2i+2 in Eq. (II.3 oa) and t=t2i+1 in 
Eqo (IIo3.b) 

(11.5) 

is obtainedo 
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After elimination of the even values v2i ' a constant 
-differance equation of values one full period apart.:results: 

(11.6) 

The values of the output at, other instants of the time 
slot ~m are characterized in terms of new variables as follows: 

* A . * A v ,(i)=.v(t)-vm" u (t)=u(t)-~ (11.7) 

Substituting 1104, II.5, 11.7 into II.3, the equations 
for the continous 1-0 coupling between·u* and v~ are obtained. 

* * A 7v (t)=2u (t), tELl2i+l 

v*(t)=o, 
(11 0 8) 

In Fig.llo3, the decomposition (11.7) of the input and 
output into a p~rt u'(t)~~, v'(t)~Vm' tE~m which is co~stant 
in each time slot and ·the remainder u*(t) and v~(t) which is 
zero at the end of each time slot, is shown 0 

~ The equations (II.5-8) give the input-output relation­
ship' for the piecewise-constant part and the input-output _ . 
continous coupling. The continous I-O coupling is only a 
periodic scaling of the signals which can be easily computed 
and as in this example. this contribution is usually small. 
The computation of the sampled data effect requires the 
solution of a set of difference equations (II.5) or (1106), 
which can be solved in time 'domain via discrete time impulse' 
responses or in z-domain. This techniques are further explained 
in later chapters. (See chapter IITand bL) 

The above equations have been obtained by using the 
charge conservation concept explained in chapter I and the KVLo 

Any SC network can be analyzied by this concept in mindo But 
more complicated SC networks will be solved by the methods 
of II03, II04, II.5 and II06 built on the charge conservation 
principle o 

" 
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. . , 
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IIo3~ Tableau Method 

The basic signal processing mechanisms which occur in 
a SC network are first the charge (redistribution between' two 
consecutive phases and secondth€ effects of the variations 
of inputs during the phases. 

In order to describe those effects easily the variables 
vk(t) and <lk(t) are chosen for each branch. The variable vk(t) 
is.the voltage in the branch k at the present t±me instant t 
of some time' slot .6 m.The variable qk(t) has been already 
explained on page 5. '.~. 

'The constitutive equations of the uncontrolled components 
shown in Fig.II.l(a) at a time inst'ant t· of Ll m are then: 

C : q(t)-C[v(t)-v(t-)l =0 
c:: C C . m'J 

S : ¢ q(t)+~mv(t)=o m .$ .s (1109) 

VS: 'tie t ) =u ( t ) 

QS: q{t)=w(t) 
w 

where x denotes the complement of the Boolean variable x and 
u(t) and wet) .are given source waveforms. By labelling the' 
variables of the controlling port by Vo and qo and those of 

'" the controlled port by v and q the constitutive equations of 
the controlled sources are: 

. VCVS · Clo (t)=9 t . 'v(t) -Kv (t) =0 • 0 

VCQS · qo(t)=o 'q(t)-Kv (t)=O (11.10) • , 
0 

QCVS · v (t)=O , v(t)-Kq (t)=O · 0 0 

QCQS · v (t)=O . , q(t)-Kq (t)=O · 0 0 

oP-amp: Y"i:::. v2' . ql = q2= 0 
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Three important observations can be made directly f~om 
the above constitutive equations: 
1) ~all components are described by linear equations, 
2) 6nly the capacitors introduce dynamic actions in the circuit 

by memorizing in each time slot ~m the value of ·the voltage 
at the end t; of the previous time slot, 

3) :p~he periodic clocking of the switches introduces periodicity 
in the circuit. 

Now t let's define q(t) and vet) as the vectors representing 
~ ,.J 

the branch charges and the voltages at time instant t. 
Then the· constitutive equations of all the components 

can be brought ·together in the matrix form at any instant t 
of Am as: 

~~t(t)+Pm~(t)-~~(t;)=~(t) 
.0;::::: ;::::;' 

(II.ll) . 

where set) contains all the input voltage or charge waveforms ,.., 
u(t) and w(t)o ..., ~ 

Each uncontrolled elements contributes one equation to 
(II.ll) anc? controlled elem~nts contributes two, equations to (II.l1 
(IIoll) is general in that it may include. multi-terminal 
elements. 

KVL requires that the voltages L(t)' in the branches 
are equal to the differance of.the node voltages at the terminals 
of the branches. or 

where AT is the transpose of the reduced incidence matrix A 
~ =-

and vN(t) is the node to ground voltages at time t of Am. 
~ Then an important theorem follows: . . 

Theorem_II.l o . Given an arbitrary switched capacitor network 

with reduced inc~dence matrix!;; and where .wm, !m' g and ~(t) 
characterize the components and the input waveforms in time 
slot /j , the response vN(t) , .q(t) and vet) at time instant t m ,.., rJ ,v. 

of ~ satisfies the tableau equations: 
m 
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0 A Q '~N(t) 0 0 
"" ;>::: ::;:. -AT 0 -I (j(t) = 0 !(t;)+ 0 .""'" "'" -:00 ,.., 0;:::: ,-v 

0 !:Jm 
p vet) R set) = zm .- .<::: ..-J 

or in short 

;m!(t)=~m~(t;)+£(t) 

whereE(t)= :(tj is input waveform vector and 

• 

(11013) 

(11.14) 

Proof: The equations (1101.3) 'or (11.14) can be obtained 
~y puting the,KQL (104), the KVL (11.12) and constitutive 
equations (11.11) into one matrix form o 

As stated by Chua and Lin (6J the importance of the 
tableau equation~ is that any general topological method of 
circ:uit analysis (loop, hybrid, modified nodal or state ,variable 
analysis) can be obtained by a preliminary Gauss elimination 
of certain variables in Eq.(II.l.3). Unlike other topological 
equation formulation algorithms r IJ , it is a trivial matter 
to program the tableau equations. Although, the size of 
tableau matrix is conside!ably larger than that of the matrices 
with some variables eliminated, the tableau matrix is much 
sparser. Because of this sparsity, the tableau equa:t;ions with 
all variables may be solved much faster than its reduced 
versionso 

For computer implementations a good compromise has to 
be chosen between simplicity of formulation of the equations 

, ' 

and the size of the resulting equations. With the mixed-nodal 
tableau (Modified Nodal Analysis T2,.31 ) formulation, it is 
possible to preserve sparsity while ej.iminating a considerable 

.: ..... 
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number of variables o 
The other reason forderiving-ta~leau equations for a SC 

.network, is that the structure of these equations allows 
immediately to see how the signals are processed ~n the network. 
It is seen that the ,input ~(t) ,and the output 3(t) are re~ated 
PY linear equations. Because of the absence of derivatives of 
the variables in this equations (II.14), there is no continous­
time d~namic action,in a switched ca~acitor,circuit. The dynamic 
action is however due to a discrete time memorization of the 
value of certain voltages at the end of the previous time. slot. 

Since the matrices ~"and !m depend on m but also are 
periodic or M+IN=M and P IN=P (where N is the number ,of s&:1n ~1n' ~m+ ~m 

phases),the waveforms in SC network ca~ be computed by a 
solution of a periodic set of linear difference equations.' 

Before going into the domain signal processing mechanism 
in SC networks, the modified nodal analysis methods, the 
approach of L~n, will be given in .the following sectionso 

II04. Modified Nodal Analysis Using Composite Branches. 

Before going into the analysis method, it will be 
nonvenient. to give the following theorem. 

Theorem -11.2... In general SC networks can be considered as 
linear resistive circuits for a~y subinterval of the period T. 

Proof: Consider each branch "k" of the circuit as being 
characterized 'by a voltage-charge relation [vk(t), ~k(t)J • 

With this characterization, KVL and KQL still hold,i.e o 

and ~ q (t)=O 
kfcut-set k 

(II.16) 

For a capacitor, its branch characteristics is now given 

by 
(II.17) 

which is represented by an equivalent composite IIresist:l.ve"(x) 

(x) Here, resistive is .used to mean that the charge',qc(t) is 
related to the voltage [vc(t)-vc(t;)] by a constant 
multiplier. 

": ... 
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element with conductance equal to C as shown in Fig.11.4(b). 
Foran ideal switch when the switch is thrown from 

closed to open, 

for t f. ,."open" subinterval (11.18) 

When the switch is thrown from open to closed qs(t) is 
f~nite and the voltage across the switch is 

for t E "closed" subinterval (11.19) 

The independent current Js(t) is now represented by a 
"charge" source. 

q Ct}:,~ WI ft) 
w. . . 

(11020) 

Where as the independent voltage source u(t) is the 
same as before. 

..... ~ ... :-

For ·the controlled sources and multi-terminal elements, 
the new branch.characteristics and the controlling relations 
remain the same with each branch ,current replaced by the branch 
charge. 

From the above, it is concluded that the original 
. switched capacitor circuit is transformed into a "resistive" 
circuit in voltage-charge domain with the same circuit topology. 

(c.(i) 

+ 0 .. 

1 
4-

.-

\Ie (i) Ve (!) 

Fig.I1.4(a) A capacitoro Fig.11.4(b)"Resistive" equivalent. 

There exists several efficient analysis methods for 
resistive circuitso The classical-nodal method is perhaps the 
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simplest and easiest to implement on computers for solving 
linear resis~ive circuits containing independent current sources 
and vees as the only sources. For the "resistive" circuit under 
consideration, one must convert the independent voltage sources 
into their Norton equivalent current sources, and vevs's and 
eees's into equivalent vees's before the nodal-method can be 
applied. This conversion usually involves additional program­
ming efforto To overcome this,shortcoming, the modified nodal 
analysis method [7J is adapted to se networks by Liou and Kuo 
[4] using the concept of composite branch [6J • 

_Analysis'Procedure: 
Let the se circuit be connected with (n+l ) nodes and 

b composite branches as shown in Fig.II~5o Each' composite " 
branch is made of a two-terminal element'bk , a voltage source 
tk(t) and a composite charge source ~(t)o' Fo: a "resistive" 
branch (corresponding to a capacitor in the original circuit), 

. A 

For an independent voltage source branch vk(t)=O and 
tk(t)=Esk(t). For a vo+tage-controlled voltage source. vk(t)=~_ 
and Ek(t) is some linear combination of ~ther branch voltages' 
vk(t) and independent voltage sources ~sk(t)'s • 

. Independent charge 'sources ~sk(t) may be combined to 
form the composite charge source Zk(t). Any charge controlled 
charge source can be represented by the composite charge 
source Zk(t) and/or the two-terminal element bk• The two­
terminal element bk can be either a linear resistor with 
resistance ~= J . or a voltage controlled charge source that 
depends lineariykon,the voltage of another·resistor. Observe 
that a charge controlled charge source which depends linearly 
on the charge of a~other resistor can be replaced by an 
equivalent voltage-controlled charge source o In particular, 
if qk=~jqj is the terminal charge of the controlled charge 
source bk , where Clj is the ch§.rge of resistor b j with resistance 
R.=l/e., then'one can replace this controlled source with a 

J J . . ".... . 
voltage controlled charge source ~2th term2nal charge qk=gkjvj , 

-. 

, .' 
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wh"ere gkj =Pkj/Rj .- Conse'quently, the modified nodal analysis 
formulation cou14 allow both voltage-and charge-controlled 
charge sources o 

k~ 1 ,2., _____ b 

L I j ':. 0, f " 2. , _ " __ n 

N: J_,o-_____ -L ______ ~ 

Fig o 1105. A "resistive" equivalent composite branch of a switched 
capacitor circuit element. 

Define the charge vectors as: 

At '" ql ql Zl 
.... / .0. A/ Ab. ... 

Z~ q = q2 q= q2 Z2 ,v 
,-

" 

(1I.21) 

• • o . 

• 0 • 
"'I 
qb 

.... 
qb Zb 

Let '" be partitioned q, into two subvectors as ,.., 

~= [!:] 
where gb corresponds to th? charge ve'ctor associated wi ththe 
charges in the voltage sources,. including all the independent 
and controlled sourc~s arq.,~a corresponds to the remaining 
charges o 

Define the voltage vectors as: 
... 

t.l vl VI 
t::. "b. " f.~ V= v2 V= v2 [2 (1I.22) "..., - ,-

• .. • . " . £' Vb Vb b 



-20-

Let node obe the datum node, and denote by 

!N=~NI' vN2 ,··,vNn]T the node-to-datum voltage vector and 
by A.the nxb reduced incidence matrix obtained from the complete 

~ 

incidence matrix by deleting the row correspond:ing to the 
T datum node, clear~y, X=~ YN. 

Then partition all the voltag,3· vectors in .. Eq·. (1.r.22) and A 
in the same manner as in q. ioe., ~ 

<OJ 

[
!a] V= 

"' .. Yb 

The KQL equation for the circuit is giyen by 

A/ A ). Aq=A(q-Z =Q 
::: ....... s:::: _-

(11.23) 

With the above described partitioning, (11.23) can be 
rewritten as· 

(11.24) 

A • " -' Where ga~s.rel~ted to Ya by the branch-admittance 
matrix Ja which always exists as the result of the partitioning 
proc·edure, i. e. , 

.... ... 
q =y. v _a ... a -a 

" On the other hand, !a can be expressed as 

Substituting (11.26) and (11.25) into (I1.24) 

[~a¥a~~' ~b ] [:N] =Aa~§a+~ ~ 
.~ - q ::::::- . 

...,b 

is obtained. 

(11.25) 

(11026) . 

(11.27) 
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Eq.ll.27 is a. set of' n equat.ions in n node-to-datum 
voltages XN and the charges ~b in al~ the independent and 
controlled voltage sources o Denote the 'number of' these voltage 
so~rces by b l • The branch relations of' these bl elements are 
given by (J:C) 

1$ [~:] =!j .?S or 15l~lr~ ~s (II.28) 

Where ~s(t) (or ~(t»)is the independent voltage source 
vector of' dimension (txi)~ [EsI,( t), Es2 (t) , , •• ,Est (t) ] T, ! and. 
Jl are real constant matrices of' dimensions (bl xb) and (b1x{) 
respo 

, Let' ~ (t) be the independent "charge" source vector of' 

dimension (~l), i.e.,l?s(t):;;l\~sl (t), ••• '\¥sm(t) JT and ~c(.t~j , 
be the initial capacitor.voltage vector of' dimension (M0c2), 
i.e.J!c(t;)= [vcl(t;), ••• ,vcM(t;)] T • Without los~ of' generality, 
it is assumed that the "resistive" branches (corresponding to 
the 11'1 capacitors) are numbered f'irst,- t.hen(xx) 

(lI~29) 

and 
(lIo30) 

where !~ is 
columns. 

,Also, 

obtained f'rom Y . by retaining only the f'irst M za .. . 

since Z is a linear combination of' Wsk(t)'s, then 

(lIo31) 

where ~'is a real matrix of'dimension (nxm) which is a sort 
of' reduced incidence matrix involving only the independent 

, ' 

charge source branches o 

(x) Note that all the controlled sources are voltage controlledo 

(xx) JMis the unit matrix of' dimension M. 
,.., 

, .' 
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Combining (II.27) and (II.28) and using (II. 30) and (II031) 
one obtains (n+b) modified nodal equations: 

In (11.32), the submatrix ~a¥a~~ is the node admittances 
matrix excluding the contributions due to all the voltage 
sources. 

Equation··(II.32) can be solved (x) to obtain 

(11.33) 

where 

[ ~s(t)] ~(t)= ~s(t) 

Then, 

(II.34) 

where A is obtained from A by deleting last b-M columns which 
do notZ~orrespond'Xo the M=capacitor branches and F ~TF/~ ;::::m ::::c::m 

. ~ T / 
;m=tc~m· . 

Equation (11.34) is the state equations of the SC network.' .' 
The output equation (the. output voltage vector yet»~ is ,.., 

obtained in a similar manner, i.e., 

(II.35) 

;.. 

where Ao is. the connection matrix relating Yn to X, and 0 ~A F 
J". t::f .- - zm ~o .... m 

and Em~~o~m • ...., 

(x) See the solvability problem sectiono . 
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- Remarks: -Eq;(11.35) is the state equation of the circuit, 
which doesn't involve the time derivatives of the state vectors. 
The state vector in a sublnterval depends linearly on the input 
source vector in the'samesubinterval and on-the final value 
of the state vector (which consi~ts of the capacitor voltages) 
in the,preceeding subinterval. 

The output formulation ,(11.35) is unique since A is 
- -0 

unique (if the circuit is completely solyable). -
Since the circuit is "resistive" and, .!c(t) and ,§(t) 

comple~ely determine &ny voltage in the circuit then the output 
~oltage vector can be expres~ed as. 

for (11.36) 

When Eq.(II.34) is substituted into Eq.(11.36) and the 
result is compared with Eq.(II035), ~m=~m~m and ~m=~mgm+Em 
are obtained. 

II050 Modified Nodal Analysis ," Using Stamps 

As explained in page, MNA equations are intermediate to . 
the tableau and nodal equations. They are much more compact than 
the tableau, but retain its properties of sparsity; g~n~rality . . 
and ease of formulation. Liou and Kuo analyzed the SO networks 
by adapting MNA method as explained in the pr~vious section. 
Their approach requires only to convert the SO network into" 
its resistive equivalent in the subinterval. In this case, 
obviously some switches are on and the remaining ones are offo 

However, in [2] , the switches have als,? b~~}l;~ 

considered as elements which have constitutive equations as in 
Eq.(II.9). And MNA equations have been obtained by adding some 
constitutive equations of the switches and all the voltage 
sources. In [2] , ,the stamps. Ifcontri~ution'l in Fig.II.6 

of the different components of a SO 'network to the MNA-equations 
are used for the direct link with the computer. implementation. 

Now the method in [2] will be describedo 
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Theorem'II.3. - A linear T-periodic SC network containing 
ideal switches, capacitors, independent voltage and charge _ , . . 
sources (VC and QS) and four type of dependent sources(VqVS! 
VCQS, QCQS, QCVS) is described in time domain by the equations 

(II.37) 

where XN(t) is the node voltage variables (except the reference 
voltage).. q(t)'c.onsists of the charges in the switches q , the' ',-,. . - _s 
charges in the independent -voltage sources q , the charges of _u 
the controlled branches of VCVS, QCQS and QCVS':s and the cont-

. ~ . 

rolling branches of QCQS 3D. ~(t) consists of the charge sources 
and ~(t) is the voltage source vector. 

Proof: The charges }y(t). injected in the nodes between 
tk+lN and t~~+lN is equal to the 'net charge flowing away from 
this node in the other branches. 

(II.38) 

The identification of .~k' l'k' .!tk' l:Jk' !k matric-es is 
given by using the method in (7J 0 The following procedure is 
given for the case in which depehdent sources are only of VCVS 
type. 

then 

Procedure: Partition the KQL equations (I.4) as: 

[ A 
~c ~D ~J 

~ A ~. ~ ~ 0 
A q +A q +A q +A q +A a = =c-c ~s-s zu-u %D-D ~w-~ ~ 

(II.39) 

(II o 40) 

where Ak is obtained from the ~e(luced incidence matrix ! by 
~ 
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deleting the columns which do not correspond to the k branches. 
With the constitutive equatiol1s (II.9) and (II.IO) in 

mind, assume that the network contailis r dependent voltage 
sources and the ,voltages of the dependent sources can be 
expressed as linear combinations "of the controlling' node 
voltages as 

.:Yn(t)=ReYN(t) (II041) 

where !D(t)= [ v~~) (t) v~2) •••• • v~r) (t) ] T and Ee is rxn 
matrix of the controlling node voltage coefficients (n is the, 
numbe; of nodes 'except the reference node) and v~i)(t) is the 
voltage of the i th dependent source. 

Now, substitute the constitutive equation of the capacitor 
in Eq.(II.9) into' Eq.(1Io40) to obtain 

KVL equations require: 

~~YN(t)=!C (t) 

~Y N (t) =!u (t ) 

~;!N(t)=YS(t) 

~~!N(t)=YD(t) 

(1I042) 

(1I043.c) 

(11.43.d) 

substituting Eq.(11.41) into Eqo(1I.43.d) the constitutive 

equation of VCVS 

is obtained. 
The constitutive equation of 

~Tq =q and ¢Tv =v or expli~itlY 
~ _s _s ,-.- s s 

¢ "q +~ V =0~0Tq =q' s s s s 

(II.44) , 

the switch holds iff 

(1I.4,5) 
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The validi_ty of Eqo (II045) is easily seen by evaluating 
the expressions for ¢=l and ¢=Oo 

-
The constitutive equation of the switch can be rewritten 

by.using Eq.(II.43.c) as 

(II.46) 

.By substituing Eq.(II.45) and Eqo(11043 0a) into Eq.(II042) 
. . 

·ts~T§s +tu§U +~c2~~YN( t) -~cg~~!N( t k+IN) +:DgD ~ t) = -~/!.J t) (IIo 47) 

is obtained. 
The constitutive equation of the independent voltage 

source is given by the Eqo(II.430a) as 

(11.48) 

": ... 

By combining all the' equations (11044), (11.46), lrI.47), (II048) 
in a matrix form: 

A CAT ts~T . ~ ~D v. ~C~~!N( t k+IN) -~V!Jt) 
~c%"::::c -N 

¢A~ ¢ 0 '" 0 0 0 ~s ","<=:8 ,;: '-'= "-
,.J -' 

= + (II049) 

~~ '" u(t) 0 0 0 ~u 0 
';=:: '= -::::. /V 

T 0 0 0 
.... 

0 0 ~D-~e -::::.. -;::; % ~ ,- ...-

By comparing Eq.(I1.37) and (11049) the following relations are 

obtained 
T 

~k=!!k=~cQ%c 
r . T 

~k= !s~ ~ ~D] 

!pAT 
-
~ 0 0 -",s :::> 

~k= ~ Rk = 0 0 0 (II. 50) - :: -
T 0 ~ 0 ~D-~e ~ :::::: 
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. As stated in [2 J a.nd seen from the above formulation 

are precisely a vector formulation of the constitutive equations 
of the switches, independent voltage sources and VCVS. 

Thus, the proof of the th~orem is completedo 

'CONSTRUCTION OF THE TIME D01vTAIN MNA EQUATIONS 

1) Set up (rr.~7-) with ~k' ~k' ~, ~k' #k' u(t) and !(t) zeroo 

2) For each component of the circuit identifY the stamp of 
figure !II.6 0 Observe· that the stamp of a switch incl'l:!-.d~.s th~ 

Boolean variable of the clock which controls the switcho If 
the component is connected to the reference node delete the 
corresponding row and column in the stamp. Using the indexes 
of the rows and columns in the stamp add the contribution to 

the appropriate entries in the matrices ~k' ~k' ~k' ~k' of. the 
left-hand side of (lUt) ap.d to !k' u(t) ~nd y!'(t) of the right­
hand side of (:n.~1-). 

Note that the stamps in Fig.II. 6 .are only for computer 
implementation and should not be taken as constitutive equations. 

II.6 0 General Nodal Analysis Of Switched Capacitive Networks 
By Tsidivis' Topological Approach 

Tsidi vis, in his paper [lJ specifi.es only one network 
topology and the switching schedule while opposing to specify 
a.s many topologies as there are m/itch position combinations o 

Tsidivis uses a similar idea as ~urth and Moschytz present 

in [ 5] .' 
All derivations are based on the concepts stated in 

Chapter I and the net\vorks are assumed to consists of capaci­
tors, ideal SWitches, independent and dependent voltage sources. 

We remember from the definition on page 6 that the· 
topology of the SC network is fixed between any two consecutive 
switching times e.g •. in the intervals of (tm, tm+lJ 0 Then the 
second definition immediately follows. 
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Definition: Closed switched network is the network 
resulting from the original one if every element, except the 
closed switches is removed. During each interval (t ,t 1] . . m m+ 
the closed-switch network·will in general consist of several 
separate parts (refer to Chapter I). Each such part'will 
consist of either a set of nodes connected together through 
~losed switches or of an isolated node. To specify the switching 
pattern for each interval (tm, tm+lJ an nxn matrix ~}(the 
switching matrix) will ,be defined, where n is the ·number of 
nodes except the reference node o 

The entries s .. of the switching matrix are defined . m,l.J 
as follows: 

1 node of a 

0: .... 

If i is the lowest numbered 
separate part .~f the closed 
network, and node j belongs 
separate. part. 

switch 
to that 

(II.51) . 

o otherwise 

Therefore, if there is a total of lk separate p.arts 
in the closed switch network, ~k will be a sparse matrix with 
lk non-zero rows and total of n non-zero entries. Following 
examples will clearif.y the switching matrix-concept. 

Example II.l: If all switches happen to be open, then 
lk=n and ~k will be the nxn identity matrix. 

Example II.2: If at t the closed switches of a circuit 
with n=6 result in nodes 1 and 2 being connected together, nodes 

switches.being 

for t~Am~(tm'tm+l] 
4,5,6 being\connected together, and non-closed 
connected to node 3, then the. switching matrix 

will be 
1 1 0 0 0 0 

0 0 0 0 0 0 

s = 0 0 1 0 0 0 
~m b 0 0 1 1 1 

, 

0 0 0 0 0 0 

0 0 0 0 0 0 

Where node 3 is an isolated node in ~m. 
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Definition: A sequence tSk1 ' k~1,2, ••••• N, and(N is 
the number of phases)where each element of 1Sk} characterizes 
the corresponding intervals in one period, will be called 
the "switching schedule". . 

In the majority of cases: iSk1 will be periodic, so only 
its first N values corresponding to one period9 ;.need be formed. 

Network Equations In The Time Domain 
For the sake of coincidence in notations, once again 

. the definitions of some vectors are given. 
The node voltage vector 

where v(i)(t) is the voltage be~veen node i and ground at time 
t and n is the number of nodes excluding the ground. 

The node charge vector 
.. . T 

q(2:)(t) •• oq(n)(t) ] 

where q(i)'(t) is the total charge of all capacitor plates 
connected permanently i.e.Jnot thro~gh switches, to node i 

. at time t. This is equivalent to considering the SC network 
with allswitches'removed as done by Kurth and M~schytz [5] • 

Kurth and Moschytz seperate the two-phase SC network 
into a simple capacitor network and an array of even and 
odd switches as shown in Fig.II.7.belowo Where Se(respectively 
So) indicates that the corresponding. switch is closed during 
even (respo odd time) time intervals. 

Then with the above idea, the node charges in the C­
network can be. axpressed as linear combinations of the node 
vol tages' as 

qN(t )=C t·v.N(t) 
N ~s -v 

(II. 52) 

where ~st is a nxn matrix which will be called the capacitance 
matrix and is defined as follows: 
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total capacitance permanently connected to 

node i; i=j (11.53) 
negative.of total c~paciiance permanently~' 
conn~cted betweep nodes i and j; i#j. 

JIJ~_--I 

T 
[C.] - Network (S1 - Network 

........ -

Fig. II. 7 •. SC network as a superposition of a G-network and a 
switch network. 

Clearly C t is independent of switching. Subscript "st" -s 
is used to remind the reader that the matrix C in section 1105 -
is different tha~~st and Est is equal to ~cg~~o 

Define q~2)(t) to be the total charge that leaves node(i) 
from a time reference t' to time t, through one or more voltage 
sources (dependent or independent) then 
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q (t)= [q (1) (t) 
-.Jv v 

With the previous' definitions and notations in page 24 

(11.54) 

On'ce again ~ (resp.~D) is node-to-branch incidence matrix of 
the network which is formed by removing all branches except 
the independent' voltage ~ources (resp. dependent voltage 
sources). 

Notice that ku and ~D are the same matrices as in 
section 11.5 and~' is an nxp matrix and~D is an nxr matrixo 
Equations (11.41), (11043) and· (11.44) are still valid. 

. . 

Swi tched Network" Equations 
Assume that the node voltages of a network are known 

, ": ... 

at t;. and that at t; some switches change position, resulting 
in a topology described by a swi tch~ng matr1.xBm• :·.The problem 
is to evaluate the node valtages v~~) (t) fO.r all t (tm, t m+l ] o. 
To avoid pathological cases, it is assumed that switching is 
such that ~o loops of voltage sources and/or closed switches 
occur. This point will be clearified in the solvability problem 
section, 

For each set of nodes Ig' containing n nodes connected 
. g 

together through switches closed at or before tm9 there will 
be one charge conservation equation in the form of Eqo(I.2) 
and node voltage equalities in the form of Eq.(I.6)o Assume 
there is a total I such node sets (each corresponding to one 
of the seperate parts of the "closed switch network'Vo To each 
such node set there corresponds one non-zero row of matrix 
~m' defined.in Eqo(1I.51). It is easily seen from Eq.(I1.51) 
that the 1 charge conservation equations, each corresponding 
to one· node set, will be given by the I non-zero rows of 

(11055) 
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Using Eq-o (11052) and Eq. (11054) in Eq. (11.55), one· 
obtains: 

~m:stYN(t)+~m [k : ~D ][1:::~] (11.56) 

The total number o~ node voltage equalities imposed 
by the closed switches in 1 sets will be i~l (ng-l)=n-t • 

. If. each of these equations is assumed to be in the form of 
Eqo(I.6), it is easily seen from Eqo(II.51) that these n-l 
equations. will be given by the n-l non-zero rows of 

(11.57) 

where' I is the nxn identity matrixo ,... 

'The unknown variables are as fO.llows: 
a) The n node voltages 
b) The p charges through the p independent voltage sources. 
c) The r charges through the r dependent sources. 

These unknows.can be solved for, using-l charge' conser­
vation equati'ons (11.56), the (n-l) .equations (II~57) imposed 
by the closed switches, the p KVL·equations (11048) imposed 
by the p independent sources and the r KVL equations (11.44) 
imposed by the r dependent sources • 

. Noticed-that because of the way ~m was defined in 
.Eqo(II051), Eqo (11056) has zero.rows exactly where Eq.(II057) 
has non~zero rows and vice-vensa~ Thus, two equations can be 
added to yield a matrix equation ~ith n non-zero rows: 

P AT 
-u .YN(t) v (t) -u 

p 
- T - - - - - - - -

r ~D-Ee 0 qu(t) - 0 r (11.59) 
~ - ,.., ... 

- - - - - - - - - -
s C +sT_I 1 S A 

r 
S A §D(t) §m2stYN( t;) n I n 

"""m::::st zm =- I ""'m~u , ::::m""D 
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This ~quation can be obtained from Eq.(IIo49) by 

eliminating'~s(t) for a.certain phase while no charge sources 
exist in the circuito 

For any t~(tm' t m+l ] the solution of Eqo(IIo59) will 
provide all the unknown variables o . In particular the node 
voltages at t=t;+l can be evaluated and used as the new 
initial node voltages in the solution for the next interval. 
(tm+l , t m+2 ] , after switching at tm+l has resulted in a new 
topology, associated with S 10 For a complete solution of . ~m+ ' 
the network for all. t >0, :therefore, the following is 'required: 
1) The waveforms of t;he' indep.endent voltage sources for t> 0;" 

2) The initi~lnode voltagesi 
3) The sw~tching schedule f§m1 • 

Let ~m represent the (n+p+r)x(n+p+r) matrix which 
premultiplies the unknown. vector in Eq.(IIo59) and consider 
its inverse ~;lo Let (~;l)L be the upper left.nx~ submatrix' 

. of ~;l and let (~;l)R be the upper rightnxn submatrix of 
!;~. (It is assumed that lm matrix is non-singular). If 
Eqo(II.59) is solved forYN(t), then 

(11.60) 

where and 

The above' equation is already the one obtained by the 
method of LioU and .Ruo introduced on page 22, Equation (II.33). 

REMARKS 

In this method, the capacitance matrix 2st and the 
"incidence matrices ~u and.~ are formed only, once, and are 

independent of switch positions. The switch position sequence 
, is, conveniently defined by the sequence ~ §m } 0 Every time one 
or more switches change position, the corresponding new S , zm 
is substituted in Eq.(II.59) and the network equations result 
automatically without having to respecify the topology. If 
the switching sequence were not done, the,topology of the 
network would have to ?e respec~fied every time a new Switch 

., 

position combination occurred, the nodes possibly renumber.ed .. 
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and new netwo~k matrices (in general of different dimensions 
from the previous ones) wquld have to be formed. 

11.70 Illustrative Examples 

." In this section all methods developed so far" will "be 
applied to the circuit of Fig~II.8(a). 

(n (3) C%.. 

of 
Te

, 
(41 

1 
Fig.II.8(a) 

The "switch in Fig.II.8(a) moves periodically back and 
forth. The above circuit is equivalent to that in Fig.II.8(b) 
in which the two position- switch has been replaced by two 
on-off switches. 

5, 5.2-
¢r, 

(n C:z... 
(2.) 

~ 
(If J I 

0 
l:- i::l., -- i.-- -A.z. _" 

u. (£) :- re

, 
~;t 

T " , 0 

• T • 

Fig.Il 0 8(b) 
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ExampleIIo3 

In this example, the method explained in,section II.4 
will be applied ~o the circuit of FigoII.8(a). 

The circuit in FigoII.8(b).can be tr~nsformed into its 
resistive equivalent as in Fig.II.9(a) for tf'\n where m=1,3,5, •• 
which corresponds to phase 1. 

(IJ 
t-----1' 

.. 
"~ 

u(-l) +' 

-:: -= (0) 

Resistive circuit Its corresponding graph" 

Fig.II.9(a) 

Define the voltage vectors according to Eqo(IIo22) as 

'" fcl vcl vcl 
... 

v~ 
vc2 ....... vc2 

E~ 
£c2 

(11.61) V= ...., ... 
Vu Vu Eu 

.... 
vD vD ED 

and the charge vectors as 

- q 1 
A 

qcl . zcl cl 
"'I " 

.......... qc2 "".0' qc2 Z ,~ zc2 
q= ", q= 

" 
,.... 

,.J 

qu qu Zu 
"I '" 
qD qD zD 

The explann.tion of -the composite branch on page 18 

implies the following relations: 



Also, 

Then 

by 

and 

'-)8-

Vcl(t;) 

and E ~ v 2(t-) 
-v c m 

u(t) 

, -a(vc2 (t)+vn(t») 

(II.6) 

From Eq.(II o 64), the branch-amuittance matrix is 

The reduced incidence matrix of the circuit is 

c1 c2 

1 [1~ 0 A= 3 1 
~ 

4 -1 

, 

u 

1 

o 
o 

n 

(II~65) 

(IIo 66) 

(II.67) 

The branch relations for the voltage sources are given 

[ : o 1 

a/l+a 0 

, 
'i) 

(II.6S) 

... :~-, 



Then 

K= 
t:j 

-

[
00' 
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o 1 
(11.69) 

a 
l+a 0 

Since there is no independent charge sour~es .a~d the 
voltage controlled charge sources in this circuit 

Then 

Also ) 

and 

o 0 

1/C2 -1/C2 
-1/C2 1/C2 

l/Cl 
I 

~a;a= 0 

0 

(11.70) 

: :l (lI.7l) 

o l+a l+a:j , 

1 

and 

0 

l/C . 
2 

(11.72) 

-1/C2 

. Substituting EqsG (11071), (11.72) and (11.67) 'into 

Eq.(II.32 ) yields 

1/C 0 1 

o I/C2 

o 11 

I 
-:1/C2 I 0 

o 

o 

o -1/C2 1/C2 I O' 1 
-\-

1 0 0 0 0 

o a/1+a l/l+al 0 0 

v(l)(t) 

v(3)(t) 

v(4)(t) 

1/C1vcl (t;) 

1/C2vc2 (t;) 

-1/C2vc2(t~) (11.73) 

u(t) 

o 

Eq.(II073) can be solved to obtain 



V(l)(~) 
v(3) (t) _ 

v(4)(t) 

is obtained. 
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I 

o u(t) 

o 

(11.74) 

Indeed"Eq.(II.75) could.be obtained by inspection 
from the circuit of Fig.II.9(b) •. 

Now, the circuit in Fig.II.8(b) is solved for 
where m:2,4,6 ••• which cor.responds to phase 2. 

(0 

tEA· 
m 

r----_(lt) 

.Resistive circuit 

.. y(:~) 
-0. 

(0) 

Its corresponding graph 

Fig.11.9(b)o 

Eqs.(11.63), (I1.65) and .(11.69) are still valid for 
the circuit of Fig.1109(b)o 

The reduced incidence matrix of the above circuit is 

A= 
~ 

I [~l. ~2 
3 I - I 

4 0 ~l 

u 

I 

o 
o 

(II.7~) 
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Partition-A as 
F:: 

A = [~ ~l" ~a 
o -1 

and _ ~= n ~] (11077) 

Then 
o o o 

AaYa~= 0 1/01+1/02 -1/01 
~ ~ - (1;1:.78) " 

o 1/02 1/02 

and 

1 '0"··0 0 0 0 

KA
T= , ~a~~= 1/°1 1/°2 %~ -- -

(11079) 

0 a/l+a 1/1+ 0 -1/°2 

.Substituting Eqs.(tl078), (11.79) and (11.77) into 
Eqo(II.32) yields 

0 '0 " 0 1 0 v(l)(t) 
/ 0 (_) 1 1 "_) 

1/°1+1/°2 -1/°2 0 0 v(3)(t) 0 1 G1ve1 tm ~ve2(tm 
2 

0 -1/°2 1/°2 0 1 ;(4) (t) - -1/02 v 02 (t; (11.80) . -

0 O' 0 0 '" ~(t) 1 qu 

a/l+a 1/1+a 0 0 '" 0 qD 0 . 

. Eq.(II.80) ean be solved to obtain 

v(l)(t) "0 0 reI (t;;;) 1 + 
1 

v(3) (t) = 01. (J 0 u(t) (11081) 

v(4)(t) -ad.. -.afJ 
ve2 (t;) 

0 

°2 °1 13-where 0<.- and - .(1+a)C1+C2 (1+a)C1+C2 
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fo J [VC1 (t;)] [0] . + u(t) t~~ m=2,4,6 •• (II082) m 
. fl(1+a)vc2(t~) 0 . 

is obtained. 

Example 11.4. 
Now,.the circuit of Fig.II.8 is solved using stamps by 

the method given in section 11.50 
The reduced incidence matrix to Fig o II.8(b) is found 

from the following graph of Fig.II.8(b). 

S, h.) .5 ... (~J 
u Sl c1 S2 c2 (J) • (It ) 

1 1 1 0 0 0 

·A= 2 0 -1 1 1 0 

3 0 0 0 -1 1 

4 0 0 O· 0 -1 

D 
0 

0 

0 

0 

stamps of Fig.ll06., the following equation is 
imm~diately obtainedo 

1 2 3 4 Sl S2 u 'D 

1 0 0 0 0 ~slm 0 1 0 v(l)(t) 

2 0 Cl 0 0 r -~s2m ~s2m I 0 0 v(2) (t) 

3 0 0 C2 -C2 1 ·0 -~'2 I s m 0 0 v(3)(t) 

4 0 0 -C2_ C2 t- ~- 0 0 1 v(4)(t) 
- - - -

~slm 
-

-0 I~slm . .qsl(t) Sl O· 0 0 0 0 

82 0 ~s2m -~s2m 0, 0 rzs2m 1 0 0 Qs2(t) 
- - -I - - 1- -

qu{t)-. u 1 0 0 01 0 0 , 0 0 
- -

D 0 0 a ' 1 1 0 0 I O· 0 qD(t) 

--
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d is· placed to -'Pslm the positions 

~, is placed to the position (81 , 81 ). 'Pslm 
-

The- capaci tor Cl is conne cte d between datum no de and 
and node 2. Therefore, Cl is placed to the position (2,2). 
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Oompari~ Eq.(II.8J) with Eq.(II 0 49) yi ds the following 
relations 

0 0 0 0 

'0 =A ° AT= ,0 
Q'1 0 0 

~st, ~c I" zC 
0 0 °2 -°2 
0 0 -°2 °2 

r ¢slm 
0 0 

:1 !lJ AT= 
~ '.:¥s ' 0 

¢s2m -¢s2m 

~~-Pe~ [ 0 0 a 11 
o 

where 

o ,] 

¢s2m 

Example II.5 :' 
In this example, the circuit.in Fig.II~8 is s'olved by 

~he procedure given in section 11 0 6. 
From Eqo(II.53) the capacitance matrix is 

0 0 0 

Cl 0 0 

0 C2 -C2 " 

o 0 -C2 C 2 

We have 

D = [ 0 0; , -a oJ 
~e i 

A = [1 0 0 0] T 
;.::u 

~D= [0 0 0 O]T 

·r .. •· .' . 
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If at t1" -the switch 81 closes, then the other is open 
and 

1 1 0 0 

S1= 
0 0 0 0 

tJ . 0 0 1 0 

0 0 0 1 

Therefore, Eqo (II·. 59) becomes 

1 0 0 0 o "0 v(l)(t) u(t) 

0 0 a 1 O. 0 v(2) (t) 0 

0 c1 0 0 1 0 v(3)(t) C1V(2) (ti) 
-

v(4)(t) - (II.B4) 1 -1 0 0 O. 0 0 

0 0 C2 ~C20 0 qu(t) c v(3)(t-) c v(4)(t-) 2 1 - 2 1 
0 o -C2 C20 1 qD(t). ~C v(3)(t-)+c v(4) (t-) 

2 1. 2 J 1 

The above algebraic equation can be verified by 

inspection from the circuit. 
If now at t2 the switch S2 closes and SI is open then 

1 0 0 0 
0 1 1 0 

S = 
~2 0 0 0 0 

0 0 0 1 

and Eqo(IIo59) becomes 

·1 0 0 0 0 0 v(~)(t) , u(t) 

0 0 a 1 0 0 v(2)(t) 0 

0 0 0 0 1 0 v(3)(t) 0 ': (:[:r.85) 

'.--~ ...... -

v(4) (t) 
-

C v(2)(t-)+c v(3)(t~) cv(4)(t-) -
0 C1' O2-C2 0 0 122 2 ~ 2 2 
0 1 -1 0 0 0 qu(t) 0 I 
0 0 C2 C2 0 1 qD(t) -c v(3) (t-)+C v(4)(t-) 

,2 2 ,2 J 2 
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If in Eqo(II.83) 1 is substituted for ~slm and 0 for 
~s2m and the charges in the switches are eliminated Eq.(II084) 
is obtained. 

Eqo(II 085) is obtained from Eqo(II 083) when ~slm=O' 
~s2m=1 (i.eo,phase 2)0 

11.80 Solvability Problem 

In the previous chapters, different analysis techniques 
have been given for the solution of the SO networks o It has 
been observed that it is possible to obtain these different 
equations from each other. 

But there.may be some.cases that the solutions ~or 
Eqs.(II.32), (11.49) and (11.59) do not exist (i.eo,those 
equations may not be :)..inearly independent and the inverse of 
t~e coefficient matrices may not exist). In these cases, the 
unknown variables can:not be found uniquely ~n terms of the 
known values or there may be inconsistencies depending upon 
the values of the controlling coefficients of the dependent 
sources o 

In order to ·give more insight to the solvability 
problem, the following example will be analyzed by the method 
given in section 11.50 . 

Example 11 0 6: 

III s, ~ 
f---- (2-) ~I (~) 

.:~.­
. ..... 
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The sw?tch Sl is controlled by the clock ¢l and the 
s~itch S2 is controlled by the clocK ¢2-

The MNA equations (11049) for t~e circuit in Fig. 11.10 
are: 

1 .2 3 ·S 
·1 S2 D u 

1 0 0 0 ¢lm b 0 1 vel) .. 0 l. 
2 o· C1 -Cl -¢lm f62m 0 .. 0 v(2) Cl(v(2)(t-)-v(3)(t-~ 

3 0 -Cl Cl 0 ·-¢2 -1 0 v(3) -Cl(ve2)(t-)_v(~)(t-») , m 

Sl ¢lm -f6lm 0 ~lm 0 0 0 " = 0 (II.86) , 
qsl 

..... -.' . 

S2 0 ¢2m -¢2m. 0 ~2m 0 0 " 0 Qs2 

0 1 '0 0 0 0 
... 

0 D qD 

1 0 0 0 0 0 0 " u(t) u Qu 

Four cases can be considered for this example. 

Casp. ¢lm ¢2m A -
1) 1 1 0 (no solution if f:J: -1) 

2) 1 0 -1 Solvable 

3) 0 1 -l-Jf (no unique so~ution if /=-1) 
4) 0 0 Cl (l+f) (no " It if f=-l) 

Case 1: Figo II.10 is equivalent to the following 

if f=-l v(1)(t)=V(2)(t)=v(3)(t)=u(t) ) 

q l=q 2=-qj· . s s " ... 
~'''' ~q =q : infinitely many solutions for 
q =-q 1 u D 
u s - the source charges. 
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• 
, • If f#-l, the circuit in Fig.II.lO is not solvable (no solution). 

Case 2: 

Eqo(II.86) yields following equations:. 

y(1)(t)~V(2)(t)=U(t), 
0: ... -

. . 

y(3)(t)=_ u(t), 

Qs2(t)=O, 

'qn(t,>=qu (t)=-qsl (t)=-Cl (l+l)u(t)+Cl (l+f)u(t~) 0 

. ' . The circuit in Fig.II.lO is solvable in case 2 • 

Case 3: 

U{l~T (l~J>J 
Again, the following equations are obtained from Etr. (11086)" 

. 
v(2~(t)=~(3)(t) . v(3)=-rv(2) (t)o 

. .' 

If f #-1 ~ y(2) (t)=v(3) (t)=O 

i-f f =-1 :> v(2) (t)=v(3) (t) . ,', infinitely many solutions for 
the volt~ges of node 2 and 30 
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Case 4: 
(0 c, 

l;:,--! 

. -::-

From Eqo(II.86) 

VI (t) =u ( t) , . 

V(3) (t)_v(2) (t)=v(3) (t;)_v(2) (t;) , 

v(3) (t)=-fv (2) (t), 
, . 

if N#-l v(2)(t)= 1 (v(~)(t-)-v(3)(t-~ 
/' l+f m m'l' 

if f=-l v(3)(t)=v(2)(t).: infinitely many solutions,for 
the node 2 and 3 voltages. 

II09. ;H,ybrld Matrix Approach and Co.nstraiiIt Matrix: 

Slnce any SC network with I~A equations (11.32), (11049) 
or (11059) corresponds to a linear resistive circuit in any 
subinterval or. phase, the problem of existence and uniqueness 

. .... ·r .. :· 

of the solutions is exactly the samu as for' linear resistive . " 
circuits. For passive networks there are topologic conditions. 
In the case that the independent voltage and charge sources 
are.the .onlyactive components, it can be shown that Eqs.(II032), 
(II.49) and (11.59) are always solv.able if'in time slot.k 

,there exists no cut-set of charge sources and open switches 
and no loop of voltage. sources 'and closed switches o The proof 
is available in [15] 0' Otherwise, the network is' ~i ther incon­
sistent i .• 'e o) it has no unique solution. 

This topological condition is trivially satisfied by 

any p~actical circuit since this condition is violated if the 
excitation is unacceptable. 
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It is di~~icult to give topological conditions for the 
solvability of sa circuits i~ all four types of controlled 
sources are allow~d~ But the hybrid~matrix approach to switched 
capacitor circuit analysis will clearify this question • 

. In general, any sa circui~ corresponds to a line~r ' . 
resistive ~ircuit during any. p~aseas explained s~ction 11.4. 
Then all the arguments on hybrid linear resistive n-port 
formulations (Chapter 6 of [6J ) are valid for sa circuits. 

A resistive·equivalent.n-port Fig.II.ll.will consist of 
pos:itive linear resistors (R.= al ), independent voltage and J. . 
charge sources and all four type~ of controlled sources with ' 
constant real controlling coefficients. 

f'I- port N 

Li1\eo..r . re~·ls-lor.5 
. J 

1 "Je pe"Je '" { So u.rc. e,!, I 
I" 

t q~1 co,,\.'oHeJ .sourc~f,. ~-+-.:.:.;. 

Fig.II.ll. 

Now, define the following port voltage and charge vectors: 

(Note that n=nl~~) 

Known vectors are 

.6 
V = 
"'u 

V'ul 

I 

I 

I 

v)ltl 

... 'A 
q = 
rJw 

Unknown vectors are 
"., 

quI vn:t-l 
1 

A A 6 (11.87) q = v = .... u /\IW 

"., 

qunl vwn 

Letg be the vector representing the independent sources 
inside N. (Note that th€se sources are only the inital capacitor 
voltages 'before the switching instant t k , hence dc sources)o 
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Then the port voltages and charges may be related by 
a hybrid matrix H and the source vec~tor s as follows: 

~ 

[~l = 
(II.88) 

A 

where s=M u. - ~ ....., 

The matrices H, M and s can be partitioned according 
to the dimensions o~~ ~and ~ as ~ollows: 
·~u -w 

The elements of Hand M are real constants and 
~ ~ 

vector s is constant vector. Each element of H can be . ,...., :::: 

first setting all thedc sources inside N to zero, so 
~=Q and then obta~ning hjk by the ratio 

_ res~onse at ~ort j 
hjk- excltation at port k 

.. , Under the following conditions:. 

(II.89) 

the source 
found by 
that 

(II 0 90) 

i) Except for port k all voltage,ports are short circuited and 
all charge ports are open·circuitedo 

2) The excitation at port k is an independent 
a) 'Voltage source if port k is a voltage porto 

b) Charge II II " " "" charge " • 
3) The response at port J lS considered to be 

a) The charge of port j if port j is a. voltage port. 
b) The voltage of port j if pot j is a charge port • 

. Suchaprocedure·may be reasonable if n1+n2 is a small 
number. However, for n >5 the computational efforts become 
excessive. Explicit topological formulas can be found at page 

240 of [61 0 

", 
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Theorem 1104: The necessary and sufficient conditions for 
an n-ports N consis'ting of posi tive ~linear resistors and 
independent sources to posses a hybrid matrix H as defined 
in Eqo(IIo~a) are that· ~ 
1. the branches corresponding' to voltage ports s~ould f0~ no 

loops arid 

2. tpe branches corresponding to ch~rge ports should form no 
cut-sets (pr.oof 'is available at page 239 of [6)). 

When a~ n-port contains controlled sources, the hybrid 
matrix may not exist for a given port combination. In this 
case, the methods for formulating hybrid matrix will abort 
at some step where an attempt is made to invert a singular 
matrixo ·In such 1., cases,. the hybrid matrix can be made p-.on­
singular by perturbing some element parameters within the 
tolerance of t the element or use a· different combination of 
voltage ports and current ports. But then the solution is 
only approximate and to try other port combination is clearly 
very inefficient, because for each port combination, a complete 
analysis of the network has to be. done. 

. . 
The above discussion was made for a certain phase 

(ioe o switches were either off or on)~ To overcome the above 
difficulties the following method is introduced [6] 0 But 
first the follwing' definitions are needed [a] • 

Definition: An uncommitted independent source is an 
independent. source whose nature (voltage or charge source) 
is not specified. Similarly, an uncommit~ed port is a port 
whose nature (voltage or charge port) is not specified. 

Definition: An open switch can be considered as a 
charge source whose value is zero (i.e. q(t)=O, tE.~m). A 
closed switch can be considered.as a voltage source with 

"zero" value (i.e. v(t)=O, ttb.). m 

Methodf Let all the p ports (switches are considered 

as uncommitted ports) be unc_ommitted ports. Instead of seeking 
the hybrid matrix H, which may not exist for a particular 

~ 

port combination, it is tried to find a maximum number m of 
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independent equations relating the port variables in the form 

(II.9l) 

Where ~t is of dimension mx2p and is called a constraint matrix 
for the p-porto Normally, the number of constraint equations 
for a p-port as given by Eq.(9l) is the same as the number 
of ports. However, both m > p . and m <. pare -also possible o 

Well-known examples are nullators for the former and norators' 
for the latter~ 

.To facilitate. the formulation of ~tO Choose an arbitrar,y 
tree To Assume that the graph is connected. .and has n nodes~ A 
tree is constructed by picking n-l branches, paying attention 
to the rule that they form no loop. With respect to this tree 
T , the network branches can be divided into four categories 
distinguished by the following subscript notations: 
a= port branches in the tree o 

b= port branches ·in the co-tree. 
Z= nonport branches in the tree. 
Y= nonport branches in the co-tree~ 

The fundamental cut-set equations (KQL) can be written 

as: A 

a z Y b 

[ ~aa .9z a 

9.0-
A 

=[:1 ~ay :ab] ~z 
A 

D 
q 

~zy zzb ' ,."y 

2az ,... 

~zz 
A 

tree Cotree gb 
" 

where D is the fundamental cut-set matrixo 
~ 

The fundamental~loop equations 

T T 
lyy 0 -Eay -~zy % 

T T 
-D b -D b 0 ~bb .c-a e-Z ".. 

are 

!a 
v -z v -y 

Yb 

= [: 1 

(II.92) 

(I1093) 

...... . . 
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The nonport branches may be characterized by 

(11 0 94) 

Now, write Bqs.(II070) , (11.71) and (II072) as a single 
matrix equation in the tableau form: 

I 0 pzy 0 0 0 0 A 

~ ~ = f:;: ':::: "'" gz 
0 I 0 ' _DT 0 0 _DT v -:::f :::: ~ :=zy % <:: "",ay ~y (11095) =0 
0 0 D 0 I 0 0 

,.. 

~y % -::::.s :cay "" ~ ~ "::: 

Q 0 0 T 
~ I T -D b -~ab v '= '= cz ~ ,....z 

!qz ~vy ~qy F F F' !va 
,.. 

,-;::;vz' %qa "..vb Sa 

Yb ,.. 
~b 

v ,...a 

,The vectors qz and v can be eliminated from Eq.(II095) - -y 
by solving from the first two equations and substituting into 
the last equation to yield the following: 

A 

3y 
v -z (11.96) 

§y and!z may,be .~liminated from Eqo(II096) by row 
reduction as follows. Apply elementary row operations to 
reduce [Fb : Fp] to row echelon form. In the, resul tmg matriX, 
those rows in the right block (originally lp) whose,correspon-' 
ding rows in the left block (originally !b) are zero rows 
form the constraint matrix ~tO 

", "r-:· 
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Schematically, it looks as follows: 

.elementary 
row-operations 

[ 
Row echelon 

form 

I 

]. 
·x - ____ . x ' 

o 0---1 x--.~ x _____ x:: ----------------------------
o I 

I 
I' 

Constraint 
matrix 

(II.97) 

Linearly independent columns of the constra~nt matrix 
determines.the port nature (voltage port or closed switch, 
charge port or opened switch)o 

The digital computer program (eog O ) page 270 of [6] ) 
will find the Gonstraint matrix and immediately solve the' 
hybrid matrix '·from the constraint equation. 

Example II07: Let's return to the example given o~ 
page 46. J?Y this examp'le, the above algori thIn will be' clearified. 

The switches will be considered as uncommitted ports; 
then Fig. (IIoIO) can be redrawn as follows: 

\r,H.) 

I,lU: ) 

Fig.IIollio.) , 

3-port network containing 
linear resistor ·R= ~,.voltage 
controlled voltage source 
and dc-voltage source. 

For simplicity, let's consider initial capacitervoltage 
to be zero and'hencedc-voltage source has zero value o . 

. ' 

The following tree is· chosen with the ideas given on 

page 530 



where 

as: 

~ 

q = ",a qb=O 
N '" 
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'" qZ=O 
'" IV 

,. 
q = 
;Jf 

(11098) 

The fundamental cut-set equations (KQL) can be written 

o o o -1 

010 1 

1 I 1 1 
.J ~ 

Day 

The non-port branches may be characterized by: 

and 

The fundamental-loop equations are 

v 
u 

(11.99) 

(11.100) 

(110101) 

The above equations may be collected in a single mat­

rix as the tableau form: 



1 0 0 0 

0 1 0 0 

0 '0 0 -1 

0 -0 0 1 

0 0 1 1 

1 0 -l/e 0 

0 1 0 0 

0 0 

0 0 

1 0 

0 1 

0 0 

0 0 

0 0 
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o 0' 0 -1 

o i -1 -1 

000 

000 

100 

000 

o -ff 

o 

o 

o 

o 

o 

A 

~ =Q (11 0 102) 

VI 

v2 

After the.elimination of the vector 

is reduced to the following equation: 

V = [Vc] , Eqo(II.102) 
..,y Vv 

A 

qc 

0 -1 1 0 0 '0 0 0 "-

qv 

0 1 0 1 0 0 0 0 " qu 

I' 1 0 0 1 0 0 0 
,.. 

=0 ql "" 
(11 0 103) -

l/C 0 0 0 0 0 0 -1 
"-

q2 

0 0 0 0 0 (1+1') -(l+f) ,-I _ v u 

~1 
v2 

Applying elemantar,y row operations Eq.(IIo 103) is reduced 

to row echelon form (see the algorithm for reducing a rectangular 

matrix to an echelon form on page 157 'of [6])0 
Corresponding row echelon form of Eq.(IIol03) is: ,.. 

qc 

1 -1 1 -1 1 0 0 0 
... 
qv ... 

0 1 0 1 0 0 0 0 qu 
A 

0 1 2 -1 0 0 0 ql = 0 (11.104) 0 
,..., 

" 
0 0 0 1 -1 0 0 -c q2 

0 0 0 '0 O(r-l)-(r+l)~1 Vu 

vI 
v2 
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I' 2 -1 0 0 0 

The constraint matrix 0t= 0 1 -1 0 0 -0 -(II.10S) 
~ 

0 0 0 'I-HI) -(f+l )-l 

and the constraint equation for the three-port is; 

'" q-

n 2 -1 0 0 

-~ ] 
",u 
ql 

1 -1 0 0 '" =0 (II.106) q2 .-J 

0 0 (f+l)-Cf+l) -1 Vu 
VI' 
v2 

From Eqo(II.106) it is immediately clear that port 1 
can be considered as voltage port while port 2 as charge 
source since the 'columns corresponding, to (qu' Q1' v2 )' are 
linearly independent. The;refore" qu' q1' v2 can be found in 

,. 
terms of vu ' VI and q2 as: 

1 2 0 
... 
qu 

0 1 -0 " ql = 

0 0 -1 v2 

and 

0 0 

0 0 

(/+1) -(f+l) 

-20 (f+l) 

C(f+l ) 

(f-l-') 

-1 Vu 

-1 VI 

0 
,. 
q2 

(II.I01) 

From Eq,(II ol01), it may be concluded that port 1 
(switch 1) can be considered as voltage source (resp. closed) 
and port 2 (switch 2) as charge source (resp. open). In this 
case hybrid matrix exists and the network is solvable which 
is consistent .with result 0n page 410 

From Eq. (II.I06), it can be said that port 1 'Crespo 
switch 1) can', be considered as charge source (respo open) 
while port 2 (resp. s\vitch 2) as voltage source (resp. closed) 

since columns correspond:ing tb '((Ju' Q2' VI) are linearly 

.: .... -...... 
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independent if Jl #-1 r and hence hybrid matrix exists o 

The l,ast possible port combination is that switch 1 
and switch 2 are as charge sources since the columns correspon-

A ' -

ding to qu' vl and, v2 are linearly independent if 1<#-"1:- and 
hence the hybrid matrix exists as in the following form: 

,., 
qu Vu 

H 
A 

VI = ql 
~ ,., 

V2 q2 

-where ,.. '" v-=u(t). ql=q2=O and u 

Conclusion: 
With the present method, using,uncommitted ports, the 

constraint matrix'can always be obtainedo The task of deter-. 
mining a proper port combi~ation (nature of the switches ~oeoJ 
closed or ,open and nature of sources) and the corresponding 
hybrid matrix from the constraint equations is simple o As it 
is seen from the previous example, linearly independent columns 
will determine the port nature. Consequently, it can easily 
be determined in which phases an arbitrary SC network possesses 
'a ,hybrid matrix and all of its variables are solvable.' 

.:~: 



C HAP T E,R III 
, , 

SIGNAL ,PROCESSING MECHANISM IN TIME DOMAIN 

In the time domain the signal' processing effects of a 
. . 

switched capacitor network ca~ be immediately understood when 
considering some special input waveforms. The following 
corollaries can be given to the theorem on page 14, in 
Chapter II. 

Corollary 1: If a switched capacitor network is excited 
by ~n input ~(t) which is ~onstant ~m in each time slot ~m' 
then the response ,~(t) is also a constant ~ in each time slot, 
11m", ,(Fig.III.l.a,b). 

Proof: By setting.r(t)=r in Eqo(II o 14) for, all t in6.m, ,., -m 
the right-hahdside of Eq.(IIo14) is constant in '~mo Thus also 
the solution !(t) is a constant ~ in 6m or 

F x =G x +r 
~m-m ~m-m-l "'m (111.1) 

at t: 
:L 

t- of 
m 

Co2-mIlan 2: If a SC network has zero initial voltage 
and i's excited by an input .r(t) v/hich is zero at the end 
each time slot ~ then the response x(t) is also zero m ..-

at the end t; of each time slott\m (Fig.III.l.a,c). 

Proof: Starting'from ~(t~)=O it follows inductively, 
from the property. of the input and Eq.(II.~4) ~hat 

9=~(t2)=~~t3)= 0 •••• •• Plugging this in Eq.(II.14 

F x(t)=r(t) 
~m....... '" 

. (111.2) 

is obtained. 
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Figo 111.1. 

Remarks: The underlying reason for the' absence of 
transients in Coroll~ry 1 is the fact that there are rio poles 
in the op-amps and no resistors in the circuito 

Corollary 2 implies that inputs which are zero at the 
end of each time slot are only subject to a linear static 
operation which can be different in each phase (no ~ilterin9 
only some amplification or scalipg). 

These two corollaries motivate immediately a computation 
of the response ~(t) to an input £(t) with zero 1nitial condition 
via a d~composition of the waveforms (Fig o III.2).· 

Computation Procedure: 
step 1: Decompose the input ~(t) into a wavef~rm ~lt) which 
is constant in each time slot and a waveform r~(t) which is ,.... 
zero at the end of each time slot; i.eo)for t in6mo 
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step 2: Compute the response of Eq.(II.14) to each input i.e., 
Jt 

solve ~(t) and ~ from 

and 
F x =G x +r p-m::tm ::::m""IIl-l ..... m 

step 3: Combine the results for t in6 
. . m 

ft • 41 . 

~(t)=~/(t)+~.(t)=~+; (t) 

(III04.a) 

(IIIo4 0b) 

(111 0 5) 

The linear static equation (III.40a) which relates 
x~(t) and r~(t) takes into occount the effect of the continuOus - - . 

coupling between the input. and the output. Eqo(III~4ob) is an 
N-periodic time-varying linear difference equation which needs· 
only one computation for each time slot. The computation of ~ 
for m=1,2,o ••• by Gauss elimination from Eq.(II:j:.4.b) is the 
basis for the tiIDe domain analysis in the .program DIANA [lJ,14] • 

An important insensitivity property which. follows 
immediately £rom the theorem on page 14 is that the voltage 
transfer in a SC network is not modified by a scaling of all 
capaci tors with the same factor 0'.. • Thi~ is very important 
since the IC technology can rarely ·control the absolute values 

.. 
of capacitors better than 20%, while ratios of capacitors can 
be c·ontrolled to within 1%. 

0: ... ;-

Corolla27 J: By multiplying all capacitances and all 
controlling factors of VCQS by 0( and by multiplying all 
controlling £actors of QCVS. by 1/ rJ... ,. all charges of a SC netv'lork 
are nnil tiplied by of... and all voltages remain unchanged. 
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computation Pf The Discrete Time Input-Output Effects (FigQIII.3) 

Given r the computation of x can'be done as for time-Nm ~m. 

-invariant systems (x)o For a time-invariant discrete-time 
system ene computes first the response to an impulse (xx) and -.. 
then the response to an arbitrary input can be·c~mp~ted by· 

. taking its convolution with the impulse response. As for 
discrete-time signals, the values at the end of each time slot 
for the input (!m) and for the output (~) are consideredo The 
derivation makes use of the periedicity and of equations (III.4)o I 

In order to make . this periodicity more explicit the ·following _,~ .. 

equation is written for time instances tk~IN+I in~k+IN which 
corresponds to phase k. 

F, x =G x +:1;' 
~K~k+1N ~k~k+IN-l -k+IN (111 0 6) 

step 1·: For k=l, 2, ••• N ·comput~ the sequence of N impulse 
responses Ek,mo In other words for zero· initial condition 
x =0 compute the d-iscrete time response x =h k on an impulse -' 0 -' . ~m Nln, 
in phase k, ~k=!' Em=Q m~k (different impulses on all inputs 
if there are more inputs). 

Step 2: Decompose the discrete time values of any arbitrary 

~nput Em into N signals El+IN' E2+IN' ••••• £(I+I)N' one. for 
each phase. 

Step 3: Tb:e~:response.!i+IN in phase i is then the combination 
of the ef~ects of the inputs in each of the N phases 

N I 
xl kN= ~ L hI nN; .~.+(k-n)N 
~ + . 1 0 ~ + ,1 1 1= n= 

(111 0 7) 

Observe that each of the square brackets is a discrete 
tim~ convolution between the input values Ei+kN in phase i and 
impulse response ~1+kN,i in phase I for an impulse in phase i. 
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Additional Notes: 

(x) In.the following .figure a discrete system governed 
by linear, time-invariant difference equation is shown. 

k=o •••• 2T,-T,0,T,2T, ••• 

Fig.III.4o 

Wh~re·h(k) is the impulse response (weighting sequence) 
of the discrete system [lOJ and 

X(k)=~ h(k-m)r(m) 
m=-cO 

. which is described in the z-domain by 

X( z)=H(z)R(z) 0 

(~) In discrete systems, sequences of nUmbers are 
considered rather than functions of continous-time; therefore 
the Kronecker Delta Sequence is used as the impulse function 
which is 

b. (k)= 
J 

k=j 



a HAP T E R IV 

ANALYsis AliID SIGNAL PROCESSING'MECHANISM OF LINEAR· 
MULTIPHASE SC.NETWORKS IN THE Z-DOMAIN 

In this chapter, the analysis and signal processing mecha­
nism of linear multi~phase sa networks in the z~domain will ~e give 

Since Eq.(II.14). is time ~arying, the z-transform. 
techniques are not readily ap~licable. Fortunately Eq.(II.14) 
is periodic and a method of jury can be adapted [11, page 51J 0 

Parti tion the sequence of values at the end of each .,.'-; 

time slot ~1' ~, 0.0 !N' .!N+l'···· (resp. El' E2,.'·oEN .!'N+lo.) 
into N different sequences each having the same p~ase:' . 

Then 

where k=1,2,.oN 
period) 0 

~l' ~N+I' ~N+l' •• 0 0 •• phase 1 

. ~, ~N+2' ~N+2' 000 • • • phase 2 

~, ~2N' ~)N' • • • • • • • • phase N 

00 

~k(z)~Z i "k+lN 1 ~ to ~k+lNz-l. 
(Fig.IV.l) and z=e jWT• (T is the sampling 

00 . 

!!k(z)~Z \ .'!'k+lN 1 !l f=o 3'k+lN"Z-l 

(IVol) 

(IV.2) 

Theorem IVol: The linear T -periodic SC network described by 
Eqo(II.14) is -described in the.z-domain by 

~l 
31(z) El(z) 

$1 0 0 - - - - -21z 
~ ~ 

-g2 !2 0 ~(z) ~(z) 

0 -$) '!) :)(z) = B)(z) (IVo )) 
~ 

, , F 
\><N-l 

I 

~N(z) .8N(z) .0 0 "':'G !N ';:! 1:' ,c::'N 
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Proof: Multiply the time equations (III.6) by z-l 
and take the sum for 1 with x =0 

tV 0 ,.., 

F L x z-l=G Lx' z-l + L'r z-l 
~k:_l:::0 ""k+1N ~k 1=0 ,... k-I+1N 1=0 .., k+IN 
\.. .-/ .... ../,'" .J ·Y "'----__ ..r----- ~ -..,r----

(IVo4) 

z-transform of if k) l~~k_l (z) z-transform of sequence 
sequence of ( ) ( ) 
phase k:2Ck(z) if k=l ~z-I~N(z) ,x of phase kiBk z 

By plugging the Eqso(IV.4) for k=I,2,o.N into one 
matrix equation E,Ch (IV.3) is obtained. ',~., 

It is seen from Eq.(IV.3) that the z-transforms of 
the N phase~ of input and output are related by linear 
equations with many zero submatrices and that z-l only enters 
in the upper right' submatrix • 

. The signal processing mechanism exhibited by the 
matrix in Eqo(IVo3) is a combined effect of linear combinations 
in each phase ,and ~ transportation from one phase to the 
next and so on until the last phase influences the first , ' 

(circulation eff~ct). 
The N phases of the output can now be easily obtained 

by inverting the matrix in EQo(IV.3)o This inverse matrix is 
called the z-domain transfer matrixo 

Corollary , IV~ 1:, . Tl;J.e. ~ z-transforms ~k (z) of the outputs are 
given in terms of thez-transforms of the inputs 

~l(z) ~l,l (z) ~1,2(z) ~l'-N(z) gl(z) 

.!2(z) = ~2 ,1(z) , ~,2(z) - - - !!2 ,N(z)' ~(,z) (IVo5) 

, 
~~,l (z) 

, , 
~N(z) ~N,2(z) l!H,N(z) gN'(z) 

where the matrix in Eqo(IV.5),is the inverse of that in Eq.(IVo), 
and is a rational matrix in Zo Moreover ~i,k(z) is the z-trans-

if x.=O J i 6 0 ' 
"'~ 
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form of the impulse response matrices h 
~i+lN,k 0 

Proof: Eqo(IV.5) follow~ from Eq.(IVo3). in fact, 
the 'z-transform coverts the convolution in Eqo(III o7) into' 
a product· (IV~5). 

h+1N= k1\!:k+1N,i *'. ;:i+1N 1 
Z 1~k+1NJ = ;':1 z ~ ~k+1N,i * 3i+lN] 

N 
'Xk(Z)=L Hk i (z) oBi (z) 
,.., i=l;::' .,." 

(IVo 6) 

The submatrices H. k of the z-domain .transfer ma~rix, 
t::: ~, 

allow a very simple interpretationo Up to this point, the SC 
network'was considered as a discrete device which transforms 
·the input sequences of samples at t;, m=I,2, ••• of the voltage 
sources and charge sources into ~he output sequences of samples 
of voltages o~ charges at t-, m=i,2, ••••• If only nonzer~ . m 
sources are applied during time slots k, k+N, k+2N, ••• and 
if the.outputs are only observed during time slots i, i+N, 
i+2N,o •• o then Ii. k(z) relates the z-transform of this input 

~~, 

sequence to this output sequence, i.e.)';i(z).=Jji,k(z)Bk(z) . 
and it relates inputs at phase k to outputs at phase i • 

.. In other words H. k(z) 'is the z-transform of h~+lN~k 
:::~, . ~, 

l=O,lo~. ioe, the responses ~bserved during time slots i, i+N, 
i+2N, •••• t~ unit input applied during time· slot ko 

Corollary IVo2: The z-domain transfer matrix completely 
characterizes the behavior of a SC circuit. The response to . 
the pi~cewise constan~ part of the input is given by Eqo(IV.5) 
in the z-domain.The continuous input-output coupling is given 

for t in d k+IN by 

. " 
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", 

. " Proof: By _ setting z=co in (IV 03) Fk=H-lk(cO) is foundo . . ~ ',!!k, 
Then Eq~(IVo7) follows from Eqo(IIIo4.a). 

One c~n wonder whether there exists a time-invariant 
ne~work of impedenc~s which. is describ~d by,Eqs.(IV.3) and 
(IVo5) and whether such a network .. can be derived immediately 
from the SC network. The key ideal' in obtaining such an equi~ 
valent network is to convert the N phases of one branch into 
N differ~nt branches o .This converts the different instances 
of time into different locations in space. The following 
irttrinsic N-port called a generalized circulator with constant 
G is defined by 

Sl(z) 

92 (z) 

I 

9N(z) 

0 

-G 

-

0 

-G 0 .. 
.... .... 

G -1 - z vl(z) 

v2 (z) 

.... v3 (z) (IV.B) 
... I ... I 

-G '0 "N(z) 

Construction of The Equivalent Circuit of a SC Network' 

step 1 : .. For -each of the N phases (ioe. N time slots in one 
period) a net\vork is drawn with the switches in the correct 
position for this time slot. 

Step.2: The N-net\vorks'are interconnected by generalized cir­
culators as follows. For each capacitor Ci in the original 
circuit, a circulator constant is c .• Port 1 of this c{rcula-

. ~ 

tor is connected to the corresponding capacitor o~ the first 
circuit, port 2 to that of the second circuit and so on. 

F " IV 2 Generalized circulator with constant G. ~g. o. 

.:- ... 
..... . 
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~t is easy to cheqh that the.resulting network is described 
by Eqo(IV.3) (See the example (IV.l»)o . 

For 2-~hase SC networks this equivalent circuit corres­
ponds to the gyrator of the link.two port in [91 0 

Example IV.I: Consider the circuit in Fig.II.8(b) on 
page 36. Its equivalent circuit using circulators is 

V
4t 

(z..) 

-: ~QD,(2-) 

VII ('2.} V'l,(z) V12.l .... ) 

A l ,+ C, 
Q. b.) -

l{, . 

::-

.. 

. where V ik (z) is the z-transform of the i-th,~node voltage values 
at the end of each time slot of phase k according to Eq.(IVol) 
which is . 

00 

,A ~ (- )'-1 
Vik(z.)= to vi tk+IN+l z , k=1,2. (IV.9) 

and Quk(z) (resp. QDk(z» is the z-tranSfOl"IIl of the voltage. 
source charges "(resp. ,dependent voltage source) for phase ko 

After the above definitions, the z-domain equations 
can be obtained as follpws • 

. KQL for node 1 in phase I and its z-transform yields: 

(IVolO) 

0:,.. 
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Using the definition of the circulator C
l 

(IVoll) 

(IVo 12) 

·is obtainedo 

KQL for node 4 in phase 1 and its z-transform yields: 

By the definition of the circulator C2 

(IVo 14) 

Combining Eqso(IV.13) and (IV.14). 

(IVo 15) 

results o 

KQL for node 3 in phase 1 and its z-transform yields o 

Combining Eqs.(IVo 16) and (IVo 14) yields: 

The. node voltage equality in phase 1 yields: 

KVL requires that for phase 1 and 2 

VI1(z)=V1(z) 

VI2 (z)::U2 (z) 

(IVo 16) 

(IVo I7) 

(IV.18) 

(IVo I9) 

(IV.20) 
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The constitutive equation for VCVS in phase 1 and 2 
yields: 

V4l (z)=-a V3l (z) 

V42 (z) =-a V32 (z) 

The node voltage equality for phase 2 yields 

The KQL for node 2 in phase 2 yields 

(IVo 2l) 

(IV.22) 

(IV.23) 

QCl~(z)=Cl V32 (z)+C2 [ V32 (z)-V42 (z) J +Qc~2(z). (IVo24) 

From the definition of the circulator 

QC22'(Z)~C2 [ V41(z)-V3~(z)] 

Qc12(z)=Cl V2l (z) 

Eqo(IVo24),Eq.(IV.25) and Eq.(IV.26) yields: 

(IVo25) 

(IVo26) 

01 V21 (z) -c~ V22 (z) -C2 h2 (z) -v 42 (z)] -C2 [v 41 (z) -V31 (z)l =0 (IV.27) 

T he KQL for node 4 in phase 2 yields 

Qc22 (z) =QD2 (z)+C2 h2 (z) -V32 (Z)] (IVo 28) 

Eqo(IVo 28) and Eqo(IV.25) yields: 

C2V41(z)-C2V3l(~)-C2V42(z)+C2V32(z)-QD2(z)=O (IVo 29) 

KQL for node 1 in phase 2 requires 

(IVo 30) 



1 0 0 0 0 

0 C1 0 0 1 

0 0 C2 -C2 0 

0 o -C2 C2 0 

1 -1 0 0 0 

0 0 a 1 0 

- - -

0 0 0 0 0 

010 0 0 0 

0 C1 C2 -C2 0 

~ 

10 ~~ o -C2 C2 0 

o 0 0 0 0 

0 0 0 0 0 

o ( 0 0 0 0 0 

-1 o 0 -C1z 0 0 0 
I . -1 -1 

0 0 o -C2z C2z 0 
. I 

C2Z-1-C2Z-1 O' 1 0 0 
I 

0 0 0 0 .0 0 

0 1 0 0 0 0 0 

_I' - -

01 1 0 0 0 0 

0 1 0 0 0 0 1 

0, 0 -(C1+C2)0 C2 0 

01 0 0 C2 -C2 0 

1 
0 1 0 l' .... 1· 0 0 

1 
01 0 0 a 1 0 

0 V11 (z) 

0 V21 (z) 

0 V31 (z) 

0 V41 (z) 

0 Gitl(z) 

01 'I QD1(z) 

- I 1- - - ;. 
:-

01= IV12 (z)l-

01 1 V22 (z) I 
0 V32 (z) 

-1 V42 (z) 

0 Qu2(z) 

oj l QD2 (z) J l 

U1 (z) 

0 

0 

0 

0 

0 

.- - --
U2 (z) 

0 

0 

0 

0 

0 

... . : 

(IV.31) 
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Example- IV.2~ Now, consider the circuit of Fig.II.2(a) 
on page 9. Its equivalent. circuit using circulators is 

c, 

U (2) 
. 0 

--------~~--------~~~~(z) 

: 

Fig.IV.2. 
J. 

,. 

where superscripts 0 and e denote odd and even respectively. 
Even and odd phases have already been explained on page 9. 

KQL for node A in odd phase yields 

Using the definition of the circulator 01 

KQL for node A in even phase gives 

Qc2e(z):::c2Ve (z) 

From the definition of the circulator ,C2 

Qc2e(z):::-C2VO(z) 

aC20(z):C2z-lVe(z) 

(IVo )2) 

(IV.))) 

(IVo )4) 

(IVo J5) 

(IVoJ6) 
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Eqo(IVo34) and Eqo(IV.35) yields: 

(IV.37) 

Combining Eqs. (IV.32), (IV.33) , (IV.36) and (IV.37) 
yields: 

(IV.38) 

Therefore 

(IVo39) 

and 

Now~ it can be answered that why this circuit is called 
as: the low pass circuit. 

The Euler approximation (see page 525, [12] ) implies 

-1 z =l-sT for UJT ~Z 1, where s=j w", 

then the correspohding analog filter can be found from Hoo(z) 
by the Ruler approximation as: 

1 
H ( s) = -~C:-2---';;;;"'C~2----~ --~ = 

(1+ ~)-(C-)(l-ST) 
1· 1 

1 
C 

l+E?(ct)T 
.. 1 

vihich corresponds to anatog low-pass filter. 

Remarks: The low-pass digital filter obtained by the &rler 
mapping procedure from a low-pass analog filter will have 
about the same pass-band frequency characteristics as that 
of· the original low-pass ana~og filter, provided that the 
sampling period T is sufficiently small o 

For more informat~on, see the appendix. 



CHApTER V 

TWO-PORT ANALYSIS OF SWlTCHED CAPACITOR NETVlORKS 

USING,-;:'FOUR':'pQRT EQUIVALENT CIRCUITS IN THE' Z~DOMAIN(X) 

After the z-domain analysis of multiphase SC networks 
and the general equivalent circuit, two port analysis of SC 
networks using Four Port EquivalentCircu:Lts [9] in the zY'-do-, 
main will be given in this ~hapter. Throughout this,chap~er, 
the switches are assumed to change position periodically 
at even and odd switching timeSX~·\'lith the four port equivalent 
circuit representation, the traditional two port analysis' 
tools, such as the transmission matrix and two-port transfijr 

" ' 

functions can be used conveniently. Throughout this chapter 

.~~ 
...... 

only piecewise~constant inputs are considered and it is assumed 
that the capacitors of the network are not charged continnouU,ly, 
but ins~antaneously at the switching instants. Since no ,reSistors 
'are assumed in the network there is no dispersion of the char­
ging process and the capacitor voltages can be assumed to 
change instantenously in steps. 

Vol o Building Block Analysis of SO-Networks 

Any passive SC network can b~ constructed with ,the 
six basic building block Showil'in Fig.Vol. 

The nonswitched shunt capacitor and its dual are the 
only,storage elements in SO ~e~vork. Periodically switched 
capacitors act.like resistorsSJ since their memory is destroyed 

() h 1 t th " h t 'Vl ;s d,e4";ned to be equal to e jwTA 
, x T rougl ou 1S c ap e~ z ~ ~~ 

" "jWT/2 . 
(~.e" z =e ,)0 

"(x;i) ~The-' definition~ 'for' 'the odd' and even' phas-es' 'hav~ been 
given on page 9. 
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o----..,~ c . 

o (I 

" Re.~istor.s ." 

.: .... I 

.-Figo Vol. The six basic components (building blocks) in SC networs~ 

during the closing period of the switch. This can be demonstrated 
using Fig.IV.2 as follows: 

~.X:LS 
q ;., ! 

11\ 1+ "t\' -,. 

<..0.) <. b) 

~ =q(tii+l)-q(t~) 
n· . 

qn=C [Vn-~n-~J where. vn_l=O since the switch is closed in Dn_l • 

It is seen that in voltage-charge domain a.capacitor with a 
switch across it, as in Fig.Vo 2 behaves exactly like an 
equivalent resistor whose value is 

.(V.2) 
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The ideal swit9hes can be considered as zero-valued 
capacit~rs with a switch in parallel. By connecting this 
building blocks in tandem or by combining parallel, serial 
and tandem connections of the building blocks, arbitrary 
higher order passive SC networks can be obtained. 

Vo2o Four-Port Equivalent Circuits of,Passive·SC Building. 
Blocks 

Shunt Capacitor 

The shunt capacitor shown in Fig.V.3 can be described, 
as a two-port ·in the time domain by applying the nodal charge 

, equations as !Uollows: ,. 
Q2., (-z1\) Q,l·b 

+. !fIn "- + '+ + 
q~n 

VIr. C. V1.-. V, (z) Ge ~(7.J 

'FigoVo3o Shunt capacitor. and its two-port equivalent circuit 
in the l-domaino 

.n=O,l,2, •••• 

(Vo 3) 
A ... , 

CVln=qln-Q2n+Cvl(n-l) . 

or in the z~domain' in matrix form 

:] . [V2(Z)J. 
Q2 (Z') 

(V.4) 

The matrix in Eqo(V.4) can be ,interpreted as an 
equivalent two-port as shown in FigoV.3o It consists of two 
components namely, a conductance 
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and a storage element 

G
o J!:-l ~ =-c z 

The storage element GO Dr "s toristor" has the property 
o~ delaying the charge flowing through it by one. delay unit ~-l 
with respect to a voltage sample applied across the element •. 

. Eq.(Vo 4) can be re-written by using Eqo(V05) as 
~ollows: 

[:1 (z') J 
[Ge:GO 

0 ] [:2(~) 1 = (V.6.a) 
Ql (r%) 1 Q2(z) 

BY'. observing that 

XO(Z)yo(z)=we(z), Xe(z)ye(z)=We(z), Xe(i')Yo(z)=Vlo(i') ~nd with 

Qi(z)=Q~(z)+Q~(z) and Vi(z)=V~(z)+v~(zj (x) the four-port 

transmission matrix ~or a shunt capacitor is obtained from 
Eqo(V~6.a), namely 

o 

o 

1 

o 

o 

o 

o 

1 

V2e (z) 

V20 (z) 

Q2e (Z') 

Q20(z) 

The remalnlng task is to find an equivalent four-port 
circuit for Eq.(V.6.b). The input and output voltages in the 
even as well as in the odd path of this four-port must be 

(x.) By definition ( II) . .-2 1I-f4 V. z =V. +v· 2z +v~4z +.000. le . lO l ..... . ... 
« ... -1 --3' "'-5 

Vio(z)=vi1z . +vi3z +vi5z + ••• 0 

and as.a result of the definition of z-transform given in 
Eq.(IVol), the following relatiqns hold 

Vie(~)=Vie(z-)' where z=~2 
V. (z)=z-1/2Viotz) 

lO 

.:- .. :~ 
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equal, (i.e., vI =v2 ' v =v ) 
e· e \ 10 20·' 

Furthermore, from Eqo(V.6.b}, the even and odd parts 
are related as follows: 

or 

Eqo(Vo 7) . can now be interpreted as the two-port shown 
in FigoV.4,· the /T-configurationwas chosen for convenience., 
since it yields simple expressions for the elements. By 
redrawirig the equivalent circuit shown in FigoVo 5 one obtains 
the final four-port equivalent circuit for the shunt capacitor 
as shown in FigoVo5, and Table 10 

+ + 

"'0 = ~o 
.~- . 

. ' 

FigcV.4o Two-port equivalent circuit for Eqo(Vo6)o Link· 
between even and odd path for shunt capacitoro 
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" 
~~--1'~----------------______ ~Q~2~O __ ~ -t-

+ 

Ylo 

Fig.Vo5o Four-port equivalent circuit for shunt capacitor. 

other equivalent circuits ~or the basic components 
in Table Vol.can be easily· obtained by using the above 
procedure (i.e., taking.z*~transforms of the nodal charge 
equations). 

~ ..".6° 
I 

. ·0·· .:~ 

Fig.V.6 o Gyrator equivalent circuit for the link two-port (LTP) 
in storage elements o 

Active Elements and Sources: 

Controlled Sources: The simplest active element in SC network 
is a voltage-controlled voltage source. It has no storage 
property. Its four-pori' equivalent circuit in ZiC - domain is 
shown in Fig.Vo 7. 

... ::-;- , 



--84-

0 

I 
0 

~oJJ 

T
C - Ge GO -- -:::--

~e.'o/e". 

t 

GO 

tI c:J 
": ... ~ -

" n 
-.- . 

• D ~ 0 

C ,-,;. .. .IJ 
Ge 

§22 {,. r 
--

0 

,-.:). -eve It"-

e p • " . " 

c 

() I ., JJ 
~ 

C' Ge 
., 

== 

T -

.. r~ ev~" 

0 



·~85-

A 

Q =0 
0 ~ Ie e 
T -t-

V,e '{e"kY,(. 

Q (4):Q 
0 

,. 10 
0 + + 

"'0 V1o" KY.o 
-' 

. "Fig~ V.7. Four-port equivalent· cireui t of VCVSo 

A charge-controlled voltage source in an SC network is 
more complex, since it must have the property of a capacitor, 
namely that of building up a voltage in response to a charge 

... 
surge qn0 It must therefore follow the equation 

If the memory is periodically erased by a swit~h 
(similar to an SC) then above equation reduces to 

where n is either only 
A 

0 
-4-Cf1n ~ 

+ c 

"ll~':: ~ V~fI 
V'J.'/\ 

(al 

1 ... 
vn= C q • n' v 1=0 n-

even or only oddo 
A 

Qle. 
~ 

" n VI~:'l..V. K ~e 

~ "-
Qlo -n -It-

T 

V -.1", 
10- J( 1.0 

-c 

FigoVo8(a). CCVS with storage o 
(b)o Its four-port equivalent "circuito 

(6) 
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Driving Voltage Sources: 

Throughout this analysis, it has been assumed that an 
SC network must be driven from a sampled voltage or charge 
source o This is achieved by sampling a continous source by a 
periodically operated switch. 

The . impedance ·of a voltage source must be·very small, 
that of a charge source very large in order to guarantee an . 
i~stantaneo~s voltage buildup across" the capacitor of the SC 
network. 

If the source is to have.a finite source resfustance 
this can be simulated by an SC" combination of Table V.l (fourth .,."" 
figure). 

Driving Charge Sources: 

charge 
I" 

R =­s Cs 

Thevenin's theorem is applicable to SC networks o The 
source corresponding to vo(t) with source resistance 

--0 

+ 

o 

FigoVo9. Thevenin's equivalence for SC network sources o 

.FigoVo9Ca) is equivalent to the "Fig.V.lOCa) by using 

Table Volo 

Sc 
Meiwork 

FigoV.lO. 
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FigoVo9(b) is equivalent to the Fig.VoIO(b) 

Vc. :s 

~-t: 

Sc.­

Network 

Fig.V.IO(b). 

Applying Thevenin theorem to both circuits it is seen 

+hat Re l.p th 0 ., th= C- .Lor e even path and Rth = 00 for the odd path. 
s 

V.,3o Cascadibg SC':Buflding Blocks 
. .~. . .... -:: .... .. .."" -"'- ... ". - . '-. ~.; .' . 

The four-port . equivalent circuits for the basic SC . 
. . / 

building blocks can be connected in cascade. A cascade of shunt 
or ~e!.ies capacitors, i.e., storage elements, merely leads to 
a parallel (or series) connection of LTpts without providing 

..... . 

any filtering effecto However, alternating the tamdem connection 
of storage elements with switched elements results in SC net­
works that are.suitable for filtering purposes. 

In Fig.V.II., the cascade connection of m alternating 
shunt capacitors and series mvitches and its four-port equi-

. . 

valent circuit is showno Notice that the timing of the 
switches alternates along the chain. This leads to the alterna~ 
ting position of RoO • s (RoO is an open circuit) in the even and 
odd path. Since, the charges, through the RoO's are zero the 
signal alternates between even and odd paths o The network 
therefore corresponds to a straight tandem connec~ion of all 
'LTP's vlhich can be unfolded into a regular two-port networko 

Other topologies can be obtained.by cascading storage 
capacitors withSC's as shown in Figs. V.12(a) and V.13(b)o 



c 

" 
(a.) 

-8.8-

o 

o 

se. - - - - - - _----;:,-=--0--00 
of 

(h) 

v. e ,.. 

+ 

.Fig.V.lI(a). Cascade of alternating series sWitches and shunt 
capacitors. 

(h). Four-port equivalent circuit. 

capacj.tors,,(b)o Four-port equivalent circuit. 
(c). Final ladder equivalent circuit. 



,. , 

(10) 

, 
I 

i , , 

Fig.V.13o(a).Cascade of series ~apacitors and switched shunt 
capacitorso(b). Four-port equivalent.circuit. 
(c). Final ladder e,~uivalent circuit. 

Two-Port Analysis of SC",:"Networks 

Cascade Analysis of Building Blocks 

As it has been observed that, the SC network in Fig. Voll(a: 
. can be reduc'ed to an equivalent two-port which resembles the tan- . 
dem connection of LTP(s as shown in,Fig.VoI4(a). 

The two-port equivalent circuits for the SC networks 
in Fig. V.12 (a) and V.13(a) can be reduce.d to the ones shown 
in Fige>VoI4(b) and V.14(c) respectivelyo By expressing the 
open circuit input impedance of the LTP's in te~s of their 
elements, thS analysis of the two-ports in Fig.V.14(b) and 
V.14(c) ,reduces to that of a simple ladder structure. Using 



-90-

. : __ g,-L_1f1 -:--~--,j'1 ~J--1._Tf'J.. _~_R')..l_-_~_"'_'J=_ &t=LT_P-"" =~ 
(\,) 

.. 

- (e) 

Fig.V.14o Two-port equivalent circuits of SC ladder networks 
(a) Corresponding to Fig.V.II. (b). Corresponding 
to-Fig.V.12. (c). Qorresponding to ~ig.V.13o 

the gyrator representation for the LTP as in Fig.Vo 6, its 
open. circuit input impedance can be derived (see FigoV.15). 

Fig.V.15. Open ~ircuit input impedance of LTP derived via 
gyrator equivalent circuit. 

By inspection the following is obtained 

VI Ge 
C-1 1 

Z. = -= 
Ge2 _Go2 = 11-2 

~n ~ 

Q1 
l-z 

The final two-port equivalent circuits for the SC ladder 
networks shown in Figs oV.12-(a) and Vo13(a) are shown in 

Figs.(VoI2(c) and Vo13(C~. 

(Vo8) 
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In ord~r to continue the cascade analysis of LTP's 
as shown in Fig.Vo14(a) it is necessary to derive the trans­
m;ission matrix for one LTP. ':' This can be achieved by obtaining 
the ABCD matrix from the y-matrix in Eq.(Vo7)o 

VI 
Ge 

_l/Go V2 --
ti° = 

~l GO_ Ge2 Ge 
" - Q2 GO .Go 

(Vo9) 

and with Eqs. (Vo5) 

[: B] [ Z 
z/C 

D LT: Z'C(l:"'z-2) 
It-

z 

(VolO) 

The transmission matrix of an entire chain of m LTP's 
is now obtained by multiplying the transmission matrices of 
the mindividual LTP's, thus 

m 
TT-
i=l 

.,. 
z z/C. 

J.. [ , II ,,-2 
zCi(l-z ) 

c 
Z 

For m=2 Eqo(Voll) yi~lds 

C 
~5 ~(1_zK-2) z -. 1+ v., 

1 
zJ{ 2 (1 + 1) 

TIl C2 
C 

zj(2 1+ tE(l-z~-2) 
2 

(Voll) 

This matrix represents' th,err .... conf±gurati.on· shown in Fig. Vo16.· 
_ 1(-1. C, C;&,. 

9, L - 'Z ---z.:cL 

~o--~, }-r-NVV ~ sA 1_ ~_% ) C. 
o 

LIe V 16 TI-equ';valent circuit, cascade. of two LTP'so ~ ~go 0 0 .l. 
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General Two-Port Transfer Function 

The previmusly described two-port analysis was restricted· 
to cases where building blocks are cascaded by tracing the sig­
nal flow through the four-port equivalent circuit. This is p~s­
sible only if the signal is transmitted along either the odd-or 
even path, or if it alternates from one path to the otharo ¥fuen 
the signal is tr.ansmi tted through the even and odd path and 
when LTP's are present, a more general approach should be used. 

For the. general case the two-phase se net~work may be 
considered as a two-port with an. input signal and an output -,~ .. j 
signal in the- time domain (Fig. Voi7 (a»). 

So.4\eJ Jo:to, 
s'jsie .... 
e9,,;v.:I.!e,,-\. 
~ Sc rie\.work 

Sa .... r1c:/h.IJ . 
Cic-c,,;t 

~ _ Fig~ Vo 11 (a) 0 :Time domain- equivalent system. 

..--.... \+~ ~ 
"e vl I 

~ 
S/H 

tio e. 

·",0 t '1.13 
,.-- :>, .t Flw) 

1-100 b 

. VL i«...> ) 
t. 

Fig.V.17(a). Frequency domain equivalent systemo 

The sample and hold circuit in Fig.V.17 restores the 
finite pulsewidth for each discrete value coming out of the 
sampled-data system [lOJ o Then· by Fig.VoI7, the output voltage 
V

2
(z) can be expressed in terms of the even and odd part of 

sampled input functionVl(Z) as 

" e 'I.. ... ell ee eol VO [HOO oe1 
V2(z}=V2(z)+V2(z)=VILH +H J+ 1 +H • (V.12) 
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~ For a ~niformly sampled sinusoidal input signal vlejWo~t 
the z -transformed function is given by 

. ~ - . ~ 

V ( *)...:. ~ V jwon"'t. If -n VIz 
I z - L a z = ---:r-c--
_ . n=O I z~ -J "'0'1: 

The even and odd part can be determined as follow·s [5) 

and 
-2 .. "" ] 

substituting V~ and V~ into Eq.(V.12) 

~ ,z,,2 
V2 (z) =VI . ,,2 j2w

o
l:.' 

z -e . 
0) Hee(z)+Heo(Z)+ 

l . (V.15) 

is obtained. 

+ejw.~ z" -I[Hoo (l)+Hoe (l11 
After dividing Eq.(V.15) by (VoI3), the overall trans­

fer function of the sampled-data system in the z-domain is: 

(V.16) 

Finally, multiplying this frequency response with, the 
response of the sampl e and hold device [ 9] 

the overall transfer function can be established 
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(Vola) 

Voo RC Analogies of SC Networks 

A frequently used SC network is a· shunt capacitor vii th 
a toggle swi tcho It is the basic. two-port associated with one -.'. 
LTP as can be .seen from Fig.V.II. Its RC Analogy can be 
demonstrated by substituting the EqsoV.5(a) and V.5(b) into 
the. elements of the circuit in Fig.Vo6. As demonstrated in 
FigoVolB the circuit can be interpreted as a. capacitor for 
C=large and as a resistor for C=small o In both cases it. is 
required that wr<:<i. Which allows the appro~imation ztl -l=e-jw~ 

~.l-jt..U1:.. to be made. 

re SO C2 i1 -
1 

0 /y 0 

">f 
~ \ I ~ rc~ - -r -.' 

-_-c..-' -Cz 

IF 0 

-JCwl:. 

~4-______________ ~___O 
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if a is large =? a-I ~ 0 then Fig. VoI8(a) is equivalent to 

0 1 0 

lUl''t. j .... c't. jUll(r. - - .I:?ct.o 
" 

Fig.VoI8(b)o 

if a is sufficiently small and since w'r..~~ I then a w'r.. -'to and 
l/jVJ('"t. ~ 00 results 

.:11----"""'---__ .. 
R"c' 

a 

A far more accurate low-pass filter approximation can 
be obtained by using the SO netvlork structure shown in 
FigoV.12(a) with its equivalent ladder circuit in FigoVoI2(c), 
This is demonstrated in Fig.Vol9 for one section. 

- : c.f ~ -C,2: 
j for 2u't~<-1 

0-0 -l""'---W'---.......:lO 
c- I 

.t 

11 T~cl 

o 

o 

-Fig oVo19. Ra low-pass(x) approximation for shunt capacitor and 
switched series capacitor. 

---=.:.------~------:-----~~ ... --- . ------
(x) See the appendixo 

._ . 
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. Letting 

11-2 -j'W't.2. •. 
z =e ~ I-J1.w"C. , 2 w'l. ~< I 

the conductive part in the shunt branch can be eliminated and' 
. a capacitive component, related to the imaginary part in 

Eqo(V.19) remains. The only condition for the approximation 
is 2 W1:L.(I, regardless of. the size of the element values o , 

Finally, in Fig.Vo20, an Re analogy for the circuit 
shown in Fig.V.16. is~resented. It is again based on the 
approximation made in Eqo(V.19) and is independent of the 
capacitor values. In conclusion, it can be said that passive 
se networks with two-phase switches have properties similar to 
those of passive Re circuits. 

C.-tC.:t 
R.<" c:c 

I .2-

00----.--1 ~---rI-. 0 

"c T2. C
: 

8 .... 'T __ 

FigoVo20, Analogy for circuit shown in Fig.Vo I6. 

Example. Vol;: 
Return to the example on page 9 and solve it by using 

.. LTP' s and Table Vol. 

50. 

c, + 



The equivalent LTP circuit is 

'Ie. , 
v (-z.~) 

o 

Finally Fig.Vo 2l(b) is reduced to the following £igure 

1 

and 

c, 

C 
,,_I 

- :;t"Z 

Fig.Vo 22. 

'I< Vo(~) 1 
Hoo(z)= ----- = --~n~~~n~--~ 

U ( ZIo) \J2 \J2 '" 2 
(·1 ) .~-o +---Z 

D1 01 

II Ve(z) 
Hoe(z)= --.;;-. - = 

Uo(Z) 

«-1 
Z 

l( -2 
Z 

(Vo20) 

These are exactly the same results as in page 77 where 
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Example Vo2: Second-order SC Network With Operational Amplifier 

The following example shown in Fig o V.23(a) was chosen 
to demonstrate how the described analysis method of cascaded 
SC networks;can be used for the analysis of a second-order 
SC network with 'one active element 0 The purpose pf·this example 
is to illustrate how to synthesize filter networks using the 
four-port equivalent circuits of the building blocks introduced 
in the previous sections o 

The first step in the analysis of the circuit shown in 
FigoVo23(a) is to convert it.into a four-port equivalent cir­
cuito This is shown in Fig. V.20·(b) 0 The signal flows through the­
cascade of LTpts in the form of a meandero'In terms of charges 
and the link two-ports the signal flow can be described 
s~bolically as follows: 

.The desired transfer function is 
e If) _ V
6

(z 
T(z)= e If 

Vs(z) 
(Vo2l) 

For a simple derivation of Eq.(Vo2l) the four-port 
equivalent circuit can be reduced to a two-port equivalent 
circuit with feedback as shown in FigoVo23(B). The internal 
two-port.ABCD thereby consists of the cascade of the four LTpts 
in FigoVo23(b). 'The operational amplifier has been redrawn 
as a charge controlled voltage source, where g=Cg , thus 
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~ ________ Sj~: ______ ~ ____ ~C~F __ '~------------~ 
o 

SIS 

Q' 
Fn 

+ 

'Vs(n) 

Figo 23(a) Second order se network with operational amplifier. 
R-..L 
F- CF 

r-------~--~----____________ ~ 
"e 
~F 

D 5":(-° 
Is 

Fig.V.23(b) Four-port equivalent circuit 
c F 

"e qF 

Gs=cs 

+ A 8 + + Qs
e 

e "e e " e 1 
"-Ie m=4 "5 :::0 Qs YG=-Q5 

C~ 
- c ·D -

Fig o Yo 23(c) Two-port e,quivalent circuit 



..:100-' 

The transmission matrix ABCDcan be obtained from 
Eqo(V.ll) for m=2o It is more convenient to.calculate the 
product of two matrices, therefore, with Eqo(V.ll) and letting 

.1/;-2 p=l-z . 

m=4 

Before considering the feedback loop, the following mat..,;;·­
rix relation can be derived from the circuit in Fig.V.23(c):_ 

(V.23) 

The second matrix factor multiplying the ABCD matrix 
represents-the charge controlled voltage sourceo-The equation 
above yield two simple relations: 

(V,,24) 

With.this, the overall transfer function of the network 

in Fig.V.23(c) results in 

Cs 1 
-0 C 
.g B(CF+CS)+D+ ~ 

g. 

(Vo 25) 

and after substituting the terms for Band D f~u.m Eqo(Vo22) 

(Vo26) 



where 

As 'can be observed in Eq.(Vo26), the transfer function 
T(:l) .is actually a ·function.of ~;"'2, since no terms of z-l occur. 
The transfer function' in Eq'o (V.26) can be written with the 
relation in Eq.(V.20) z=zw 2 as follows. 

(V~27) 

Eq.(V.27) corresponds to the response of the sampled­
data'low-pass filter shown in Fig.Vo23(a). This circuit has 
already been builUi in the laboratory by Kurth and IVIoschytz . 
using discrete capacitors and discrete FET S\vi tches [ 9] ., 0 

Although all elements were non-ideal (i.eo, on-resistors of the 
switches Ran~~OO~), a relatively good match be~/een the m~asured 

and the predicted response was achi-eved as 8hown in Fig.Vo24. 

0,( Lt. I . gil 

So\;c\ \: .. e _ c.a.\c.,,\o;lc..1 

l( - ",eQ,~,,(e J 

,Cr = 0,2.1 U, f1 F . 

c,t=4, r2 4",F 

cl ::.. 0 I 11?6 '3 t' F 

c.'1 = ~.r Ii h F 

C5 -:' 't. So~ r'\~ 

CF = t,'sllf ;"IF 

c~ ::. 7-3, {, r F 

": -;-

Fig.V.24o' IVIeasu~ed and calculated response of a laboratory model. 
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The cverall rcllcff tcwards higher frequencies is due 

to. a Si~ x res~cnse related to the finite pulsewidthat the 
cut put cf the netwcrk~ 

Remarks: An Sa'netwcrk can be considered as a sampled-data 
system described by a set cf difference equaticns with perio­
dically time-varying co.efficients. If the sa netwo.rk has the . 
co.mplexi ty generally enco.unteli1ed in practic'e., the no.dal charge 
equaticns leads to. unwidely analytical expressio.ns. A building 
blo.ck analysis based on sixpassive,two-po.rts which are mo.st 
co.mmo.nly used in sa netwo.rks ,avo.id this co.mplexity and repre­
sents a systematic metho.d o.f analyzing general sa netwo.rks o ' 

Using this analysis the perfo.rmance o.f vario.us practical circu-. 
'i t,s can be evaluated and a design classificatio.n may be derived. 

...... 



CHAPTER VI 

F~UENCY DOMAIN SOLUTIONS OF TWO-PHASE SC NETWORKS 

In this chapter, . frequency domain solutions of two­
phase SC networks due to arbitrary inputs will be derived 
and will be ·illustrated on the.circuit of Fig o lI0 8 0 

The state· equations (11 0 34) on page 22 can be obtained· 
by any of the methods in Chapter II. If the capacitor voltage 
vectors are called as ~l(t) and ~(t) (respectively for phase 
1 and phase 2) then the state equations are 

(VIol) 

Phase 1 corresponds to the intervals (nT ,nT+'lJ and 
phase 2 corresponds to the inte~~ls (nT+ll,(n+l)T] where 
n=O,1,2,o •• 'The dimension of !l(t) and ~(t) is equal to the 
number of capacitors. .. 

According to Eqo(II.35) the output equations are 

Now, define the following window functions [16] : 

elsewhere 

• I 



+00 . 
wI (t)= L wt--(t-nT) 

n=-co 1 . 

(VIo) +CIO __ _ 
w2(t)= L viz (t-nT-Z1) 

n=-~ 2 

where t,-+ L,. = T 
Then from (VI.l) 

(VIo4o_a) . 

+00 _. .. 
~(t)~2 ~_oo;l (nT+'ti)Vl'c

2 
(t-nT-tl)+~2~'-t)w2(t) (VIo4.b) 

The Fourier transforms of (VI.4.a) and (VIo4.b), are 
respectively, 

where 

.-. 
-- . t 

-J~l 

~~ (w ) =~l~ (w) 1-; w +gl~1 (t.-') . 

-jw't2 
l2(w)=!2~1(w) l-ej~ +~2§2(w) 

.-. 
_. . co _- . -jnt.o>T _j ...... t.. 

gl(w)=~ ~l(nT+~i)e - e 1 
n:o 

. 

~(w)=£ ~(nT-)e-jnwT 
n:o 

<» 

Sl(w)= ~ Gl S(w-n w ) 
~ ,n~ s 

n=v 

where ~s= ~ is the sampling frequency 
- -jnw 1:1 

e - = l-e s 

and 

e _ ~ 
n;!O; -1,0- T l,n jn':-"sT 

(VI.5 o f) 

I 
-I 

i 
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::jntJJs!.l -jnw T 
e e, -e S 

2 c ---------------
,~ jnw T 

S . 

n#0; e _ 2 
2,0- T 

The ik(w)IS in the above equations.may be solved from 
the difference equations derived from (VIol). From (VIoloa), 
letin,g t=nT+"tl 

~l(nT+~l)=ll~(nT-)+gl~(nT+~l) 

and from (VI.I.b), ~;.leting t=nT+T-

are obtained. 

(VI.6.a) 

Increasing the index n in (VI.6 o a) by I and then subs­
tituting (VI.6.b) into (VI o 6.a) yields 

. - -
;:1 (nT+T+Ll)=!1!2~h (nT+'l.1)+!1~2~(nT+T-)+~1~(nT+Tfl'-1) 

Substituting (VI o 6.a) into (VI o6.b) gives 

(VIo7 ob) 

Applying the z-transform to the above-equations yields: 

where 

(VI o 8.b) 

(VI o 8 o c) 
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,., 00 

~2(z)~~ ~(nT-)z-n (VI.Sod) 
n,::..J 

The above definitions are in coincidence with the z-; 
transform definition on page (51). 

Thus-

(VI o 9) 

where 

and I is the identity matrixo 
~ 

!~(z) and l2 (z) may be viewed as the characteristic 
matrices of a switched capacitor circuit and they are related 
by the following equations: 

-.-

i1 (z)!2=~2~2(z) 

.!2(z)!1=I'1~1(z) 

(VI.10ob 

Let ~(t) be c~ntinuous at. t~nT- and t=nT+Ll; then with 
the relationship z=eJwT and. using Poisson's formula [4J the 
~ . 
s (z) in (VloSoc) and (VI.Sod) can be expressed as: -m . 

= ~ f S(w-nt.O
s

) e j (w-nws ) Zl 
n::o 

00 00 

(Vlo11o §2(ejVlT)=.2 ~(nT-)e-jnllJT= ~LQ.(tp-nuJs) 
n~ ThJ 
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By comparing (VIo8oa,b) with (VI.5.a,b) the following 
are obtained: 

(VI.12 o a) i 
! 

i 
(VI.12.b) : 

substituting (VI.lloa,b) into (VI.9) then into (VIoI2) 
we obtain: 

. 1 

(VI.13o~yi 

I --9- (vJ)= -T 2:. PI (w)S(w-n w ) ~. ~,n'" s n:o ' 
(VI.13.b): 

where 

- . 
(VI.14) 

Note that t~(ejwT) and l2(ejwT), 
wi th period w • 

are periodic functions 
. 01' Lv 

. s 
From the output equatoin (11.36) 

y (t)=C x (t)+D s(t)w (t) ",m ~m-m ~m'" m m=I,2 for· all t 

Its Fourier transforms is obtained as 

Y (w)=CY (w)+D S (w) m=I,2 .... m ~ m~ln ~m-m 
(VI.,15.a) 

Substituting the results obtained in (VIoI3 o a,b) . into 
(VIoI5.a~b) and then into (VI.15.a) together with (VIo5.e). and 
(VI o5.f) yields o 

00 

Y (w)=L. T (w)S(w-nw ) m=1,2 ",m ... m,n..... s n=.?·· 
. (VIoI5.b) 
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w:here 

m=1,2 (VI.15.c) 

or 

(VI.15.d) 

The total output is 

!(W)=Xl (w)+r2 (w)= L J'n(w)~('-"-nv.)s) (VI.16.a) 
n 

where 

T (w)=Tl (w)+T2 ( ..... ) 
~ n x tn =-. ,n (VI.16.b) 

The above expression (VI.16) gives the Fourier transform 
of the output due to an arbitrary input whose Fourier transform 
is· ~ (uJ). TnCIAI) is the trans·fer function which relates the 

. f:;:. 

shifted input spectrum at n~s to the output 0 It is important 
to point out that r':Jn(w) in general consists of a constQI1t 
·component due to feedthrough and a component whose envelope's 
magnitude is inversely proportional to the frequency. 

vVhen the input is a cisoidal function 
jw t ... 

s(t)=e 0 ~ ,., 

... 
where 8 is a complex vector, then 

N 

S (w) =2 Tib (w-w ) s. 
~ _ s ...... 

Thus the transfer function in (VI.16) should be 

evaluated at LU=W +nw ioe., Tn(w)=Tn(wo+nws ) o s ~. ~ 

Since an arbitrary input can be viewed as a continuum 
of cisoidal components in the frequency domain, using the 
superposition prenciple, the result for a cisoidal input can 
also be extended to an arbitrary input. 
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Fifty-Percent Duty Cycle 

When a switched capacitor circuit is operated at 50-
percent duty cycle more interesting results can be derived 

£~om the.general expressions obtained earlie~. With ~1;!2=T/~ 
from (VI o 16.b) and (VI o15) 

1 -jwT/2 [ ] . n 
III () -e 1!'J P f.) 1!'J P () .1-( -1) (~_~~ ) t 
~-n LV = jwT ~l%l,n\W +~2:2,n \AI + j~iT :;1;;2 ntO (VIo17.a 

where 

(VI~17.c) 

(VIo18) 

Notice that the P (w)fS given above are rational func-
. T/2 . ~mtn 

tions of eJw oIf there is no feedthrough from the input to 
the output, i.e., ~1=»2=0, (VIo17oa) and (VIo17.b). reduce to 

l-e -jwT/2 '" ( ) 
~n (w)= jwT ~n z . (VI.19.a) 

~n(z)=a rational function of zl/2= .. ' 

~~ltl (z) [(-1)n12~lZl/2+~2Z] +~2~2(z) [11g2zl/2+(-1)n~1~VIo19o 
The factor (1_e jWT/ 2 )/jWT in (VI.19 oa) is a zero-order 

hold function of magnitude liT and duration T/2. In many 
practical applications this factor is nearly a constant of 

- . 
1/2 when the switching frequency is much higher than the signal 
frequencyo Consequently the behaviour of a switched capacitor 
circuit can be conveniently analyzed in the rational zl/2 

domain. 
If in addition the input is sampled only once over a 

switching period T, s~y ~l=g, the,~n(z) in (VI.19.b) by using 
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the relations. 9 =9 F and D =C Q +D obtained in page 23, __ m _m:::m j:!.m .c=m~m em 

(VI.20. b) 

It ~s in~eresting to ?ote that the In(~) in (VI.20 oa) "is 
identical f'or all n and the ~n (z) in" (VI.20. b) differs only in 
sign for diffE;=irs only in sign for different n since the relati­
on (VIolOob) holds. 

The ~n(z) in (VIo20oa) or (VI.20.b) is a rational func­
tion ofzl/2. The.topological constraint 9l=g2~2 in (VI.20 o a) 
or ~ltl=g2 in (VI.20ob) eliminates the dependence on z~/2o 
Under these constraints the factor (1+z-1/2) in (VIo20oa) or 
(VI o 20.b) can be combined with the zero-order hold function" 
(l_e-jwT/~)/jWT when (VI.20oa) or (VI.20ob) is s~bstituted into 
(VI.19.a). 

Thus we have 
1 -jwT 

J'n(w)= -e g~2 (z)ElQ2z 
jwT 

or . . 1 -jwT 
~n(w)=(-l)n -j~T ~2tl(z)~2~lz . (VIo2l. b) 

The factor l_e-jWT/jwT which can also be expressed as 

e-j~T/2(sin;762 ) in the above ~/o equations is a zero-order 
hold function of magnitude liT and durationT. It reduces to 
unitywhen.the ~itching frequency Ws is much higher than the 
signal frequency (i~ e., tv T ~<. 1). Under this condition the 
transfer function Tn,w).can be approximated and conveniently" 
analyzed in the rational z domain. . 

Example VI.l: Consider the circuit of Fig.II.8(a). In 
this example, the VCVS is taken as an operational amplifiero 
Therefore, node 3 is thought_as virtval ground and the.input 
charge of the op-amp is zero. Then Eq~.(II.75) and (11 0 82) 
become 
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o 
. • i 

"'. 

?(t)= = u(t) for t(nT,nT+zil (Vl022o: 

o 0 o 

= + u(t) for': (VIo22o b) 
o t~(nT+~l,(n+l)T] 

.~ ... 

where n=O, 1,2 '.0000 
Comparison of Eqso(Vlol) and (VI.22) yields 

The output equations are 

v. (t) 
~n 

Comparing Eq.(VI024) with Eqo(IIo36~ 

and Dl =D2=O· 
"., "" '" 

is obtained. 
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Then 

El=21El=[0 -lJ 

. . C 

§2=E.2E2=[- ~ -1] 

(VI.25) 

Dl· =C"lG
1

+Dl =0 
'" "".1.::.' ,.. N 

~2=92g2+P2=0 

0)_ (0 0) ] -1 = [ ~. a ] 
Z 0; 1 0 . 1 

z-l 

(VI.26) 

If the switches.are.operated at 50-percent duty cycle· 
and. since 92=Q then Eqo(VI.20.b) holds. Substitution of Eqs. 
(VI.23), (VI.25) and (VI.26) into Eqo(VIo20.b) gives 

[
Z-l 0 ]-[0 J 
a Z~I~ z = 

(C
l

/C2)Z(1+z-1/2) 
= ( -;-1) n ---:;~ ____ _ 

(l-z) 

Since there is no feedthrough from the input to the 
output, ioe., El=P2=0, Eqo(VIo27) can be substitute4 into 
Eq. (VIo19oa) ,... -

1 
-1/2 z(C1/C2) (1+z':'1/2) 

T: ~«(.V)= -z (_l)n = 
~" jwT· • • (l-z) 

(_l)n+l(C /C ) 
·1 2 = --..,.--,,,,...-"':;"'-";;;-

·jwT 
for all no 

.Thus if we make C1=T/r1 the switched capacitor network 
of FigoII.8 gives. exactly the same frequency response as an 

analog integratoro 

...... :- .. :. 



C HAP T E R VII 

CONCLUSION 

As stated in chapter I, filters can be realized by 
using switched capacitor circuits. Analysis of ~/itched capa-
citor networks is worthy of investigation since the' realizat~on 
of the filter on a chip can be done. 

. ..... :'; 
In chapter II, several time-domain methods for the 

analysis of SC networks have been giveno Among these the approach 
in section 11.5 is more efficient for computer implementation 
and does not require many extra computations as the others do. 
And the most important adv~ntage of this,~pproach is that any 
SC network defined by Eq.(IIoI4) is completely characterized 
by the z-domain transfer matrix of Eq:(IV.12). In this case 
equations for the N phases are put in one large matrix and 
problems of describing the relationships among different phases 
of the input and the output are avoided. In section 11.5, 
equivalent circuits for the basic elements of SC'networks have 
been derived. But when there are more than two phases, the 
circulator explained in Chapter IV is more convenient since z-l 
is only used between the first and last phase instead of bet-

'ween any two consecutive phases. 
The hybrid matrix approach described in section 110 8 

will yield a proper port combination such that the network 
has a solutiono 

As explained in Chapter III, discrete time effects on 
the values at the end of the 'time slots as well as continuous 
time 'effects (continuous, coupling) both occur in a sa network 
is described by linear equations which are periodically time 
varying 0 The discrete time action is linear, periodic and 
dynamic and each phase at the input has an effect to each 
phase at the output. ~l'his'effect is completely characterized 
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by the z-domain transfer matrix of (IV.S). The continuous time 
action (continuous 1-0 coupling) is linear, periodic and nO.t 
dynamic. 

In chapter VI, frequency domain solution of two-phase 
SC network due to an arbitrary ir..put were given. The results 
discussed in Chapter VI can be extended to sample-and hold 
inputs as well. 

For some SC networks the ~ransmission matrix cannot be 
established. A plausible physical explanation for this is 
related to the fact that at even and odd times some of the 
swi tches in the network are open, thus, no continuous transmi8-''':~:' 

sion path exsits. One can overcome this problem, by introducing 
the parasitic leakage capacitors of the open switches. These 
parasitic leakage capacitors are generally small. The important 
point is, that by this."practical trick" the transmission mat­
rix can noV{ be deti ved. 



APPENDIX 

Design of IIR, Digital Filters 

Digital filters characterized by transfer functions 
in the form of a rational function, 

IIi _ • 
L ~a. z-~ 
i=O J... ~ A.~Z-~) N - ~ 
L b z-k B,(z-) 
k=O k 

H(z)= .(.~ .... 1) M.fN 

where B(z-l) is not constant, are called infinite impulse 
response (IIR) digital ~ilters. In the IIR filters, the filter 
is' stable if all poles of H(z) of (1) are within the unit . 
circle in the z-plane and ~ausa1ifbL is thefirst.nonzero 
coefficient in the denqminator (i.e., bo=bl=o •• bL_l=O), then 
ao=al= ••• =aL_l=O in the numerator. Because, we are concerned 
with causal filters (impulse response h(n)=O, n(O) only, it 
is convenient to assume that b =1, Hence, the general transfer 

. . 0 
functions of IIR digital filters are in the form of 

M L a.z- i 

H (z '1:= _i ---0.........r"-~---
~ N 

1+ Lb z-k 
k=l k 

The design of an IIR digital filter invol~es the 
folloViing two steps: 

step 1: Design an analog fil~er by obtaining an appropriate 
transfer'function H(s) to meet the signal-processing require­

ments. 
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step 2: aonstru~t a mapping procedure to transform R(s) into 
an .appropriate transfer function H(z), thus resulting in an, 
IIR digital filter design that will -meet the specification's. 

These steps are illustrated in FigoAo1, 

Gi"'ft't : Rn..,,\o~ f;Her 1)i~~-\.o.\ 
I=":t{er _ .... 

(\C1.s:CJ" E';\ -Qrv;"'~ 
FiUer 

'sfec; ~:co.\.:o .. , 'Sles:i3 n 
~oceJ"'I!S 

- Since IIR filters can be realized by sa networks· all . 
the discussions given for IIR filters are valid for sa networks. 

. When we insert eST for z in the transfer function of 
the digital filter, we obtain a transfer function which· is a 
function of eST. Since an analog filter has a transfer function 
which is a polynomial in S not in eST, we can not realize it. 
Therefore we have to make some approximations for eST try to 
retain frequency and stability properties. 

Because the analog filters in Step 1 are designed to 
meet the signal processing requirements, we must make sure 
·that the resulting digital filters retain the desirable proper­
ties of the analog filters, including the frequency characte­
ristics, the magnitude and phase behaviour of the analog fil­
terso As a consequence, it is deairable that the imaginary axis 
of the s-plane (s=jwfor . -r:lJ~VJL.oo) is mapped onto the unit 

. '9 
circle of the z-p1.ane (z=e~ for -1f~e'-lf wh¢re G is the digital 

.. frequency variable in rad). This condition is needed to preserve 
the frequency characteristics of the analog filterso 

In order to preserve stability properties of analog fil­
ters, the left hang s-plane (Re.[ sJ < 0) is mapped into the 

unit circle' of the z-plane ( I z 1 <.1) • 
'One method to obtain a digital filter design from an 

analog filter design is via numerical integration techniques, 
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where a derivatiye is approximated by some finite difference. 
This action gives rise to a mapping of the complex variable 
s in the transfer function of an analog filter to the complex 
variable z in the 'transfer function of a digital filter 

Clearly, different numerical integration techniques will give 
rise to different mapping functions of (3), and, hence the 
resulting digital filters will be differento 

The Euler approximation which is given on page 59 
satisfies the stability condition but the frequency characte­
ristics is not satisfied completely. However, for sufficiently 
small UlT, this mapping will give satisfactory results (ioe./ 
'for low-frequency operations and low-pass filters). 

Another transformation is called the bilinear transfor-
mation defined by, 

or 

. 2 1 -1 
s=f(z)= T -z.:r 

l+z 

-1 2-sT z =-
2+sT 

(A.4 ) 

The frequency requirements are satisfied by the bilinear 
transformation. Also, the stability properties of an ' analog 
filter is preserved by this mapping. However, the frequency 
charactesitics of the digital filters and that of an analog 
filter are not identical only the shapes are identical. For 
detailed explaini tions see the Chapter 12 of [12] • 

After designing digital filter as explained above an 
analog filter can be obtained as in Fig o (A02)0 

i>'\~"i. 
AID 

Oi~;iQ.\ 
f-+- F: \te .. (~c.) 

An analog.filtero 
Fig.Ao2·~ 

00 

'D/A 
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