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ABSTRACT

vIn'this thesis, the deterministic, stochastic and

. stochastic adaptive déntroiupossibilities'Based on the
meihpd,of récedingihor;ion_ié'examined. vThe_rgceding hori—
qzoﬁ~ﬁethod_§ésumes'a f}#QA“hQﬁizéﬁ}lengrﬁ‘fér'feedback law
célcuiation_at each sfep._,fhérgfbre; the feedback law is

’ é’feedback‘gain is

7 :
not having to choose

optimal in one-step-ahead manner and th
‘constant. The other advantageédare.df
the state penalization matrix and of replacing the solution

of Riccati equation by a linear one. We alleviated some

problems associated with the'practical use of this method,

such as calculation time and singular state transition ma-

trices by some fast algorithms and non-zero set points by

modification of the basic_equations.

Modelling the system'in state'space innovations re-
presentation or transforming it to this form if it‘is not
modelied in innovations form'originaliy, solyes the problem
of state reconstrdbtionrunder noise effects. The overall
design enjoys the separatiQn property, that is, of having a
séParate.deéign for control‘andbes£imation parts.

In the case of somé unknoén parameters in the system

equations, our controller works using the state estimates,

found by utilizing the parameter estimates, in the control

law, and parameter estimates, found by using the state esti-



mates, in the,feedback gain caighlation. This controller
with'this'enforcgd-Certainty~equiv§lence property enjoys many
 favorable éharacteristic;léuCh‘as refraining from the use
of Riccati equafion'in‘contr012 matrix update equations for
“state and'pa?ameter,eétimation uncertainties, exterhal per -
turﬁation signéls fdbseﬁure-ééability, énd'trial and error
procedufes in the choice of state peﬁélization matrices.
,MoreoVer, the_methgq ig'generalAenngh to'control with any
prescribedicontrblfétréng%h;‘muiti;input, multi-;utput sys-
tems under noisé»effécts,umodelied in difference equafion.

- form with multifparamefer.uncertainty.
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INTRODUCTION

" We may ?oughiy distingﬁighfthfee;thSésfin the histbry'

of automatic control;w'

vin the deterministi¢;phaéé;fthe,sys%emrequétiops;
syétém inputs_which‘areTeither dééigned by the control spe-
cialist and/or disturbance effecég of»thé environmen{ were
assuméd to be_knOWn. This asﬁumption,.with the additional -
assuﬁption'of iinearify of equations describing the behavior
Of'fhe,system resultskin a hugg'number of.effective féchni—
gues- of control known uﬁdér the némes classicé;;(s—doﬁain)r
and modern (state-space) methéds. Even the systems.thét
could not be modelled as ;inear, were each fitted with
specific techniques 6f confrbl, s§me.of which were the direcf'
axtentions of the ones in linear fheory. |

Then control specialists realized that it is movre
realistic to model some external disturbances or some unknown
parameters of the system as random variables because they

did not yield to easy deterministic eqUations for their be-

havior. The probability theory and the theory of stochastic

R



probesses weré ready to userénd thé control specialists
made good use of them by;adopting them to their néeds. So
became popular-the‘thebry‘of stochastic control. But the
 problém was not Cmeleteiy'sblv§d yet;vbécausé'toruse the
theory of ﬁanddmfproéeSSég,5§néiﬁéa;tb‘kﬁ?w;ih édvanCe,,fhe
statistical charactériSficé Sf;thé.fandom'v;¥iébiesfénd
then the remaining‘work wés to use the fechniques of detér—
ministic system desigh’and Place the designed fixed struc-

tures in the appropriate places afterwards.

The fast growfh in the capabilities of digitél com-
puting instrumepts,fthe popularity of ﬁCybernetics">led the
control specialists to think of machines that tune themselves
according toAthe control needs, that is, adapt their beha-
vior when a parameter of the system or an externai distur-
bance on the system changes., VInrthis continuing phase of
adapti&ity, all the e#isting édaptive controllers can be
placed ;bmewhere in—bétweenfthe stochastic control and the
truly adaptive control mechanisms, since there ié no method
that controls -a systemiwhile‘fhe'Systém operétes without

any a-priori information. about that system.

In this work, our approach will follow the main trend
in the history of automatic control. We take up a control

‘method for deterministic systems (Chaptef 1). First, we



design ‘.several algorithﬁs to;rénder'the method easily im-
plementable, exteﬁd its use”tossome.éituatiéns fhat may
afise,iﬁ pbactice;(Chapter 2).» We-next:place the system in
a s;ochastic'settingbaﬁd eXteﬂakoﬁr ﬁethothé allow for. the
'Ease'where_randoﬁ'di?ﬁufbé@pg§ ﬁﬁthfknowq étatistics7aéé
acting onftﬁe s&étemg(éhap£§£i¢5{f fhén Qé.modify §ﬁr:algo—‘
rithm (Chéptef 6) attaéhihg to it the qﬁality of Fdaptibility
so that it can control stochastic éySfems with unknown ééra—-
metéfs. In eacﬁ case; sﬁffidientvéupfoffiﬁg~theory-and pfac—
‘tical simulations are pdeided torvefifybthe workability of

the method.

Ih Cﬁépter 1, we hé&g intréﬁuced our.deterministic
‘control.problem: Ha?ing'aylinéaf;}tiheQinvariaht; sampled-
daté éystem with some/reiat;on betwgéh the states of the
system and the input to the systém, find the best input
which alters the statesiwﬂiléVSatisfying some other opera-
ting economy requirement specific to the type of the control-
ler used. The contrbilis closed-loop such that we design
our control action to be'ﬁéééd’bﬂiéyStem States:t Confine;
‘ment to discrete-time is favored by digital computer imple-

mentations,

In Chapter 2, the existing computational technique is

given and our novel approaches are presented with justifi-



-

cations.“ The apbroaches we-propoée combine computational
simplicity and improveavrate of convérgence. Moreover, the
exténsion to the control of systems with singular transi-
tion matrices of étatesVand—noqféero set po;nté for the con-
"%tréiledyvariablés ié‘méde.f;fb% ﬁhe'¢oﬁtroliwith singulan-“
state'fransition:ﬁéféixfﬁéﬁﬁévé‘&é#glapédwéﬁbthér:faséHal—

gorithm. These results afe utilized’in Chapter 6.

In Chapter.3, we devél;p_stOChastickstateAmodels which .
we use in the following chapters.;-Devélbbiné sound models
~is necessary for effective anélysis and synthesisAof sto-
éhastic systems. v o | -

In Chapter‘ﬁ, Ehe étate estimation and the stochastic
version of our controller.are intrbduced. The noise effects
on the system and the measureﬁents are pfesenf, but knowing
the statistics of theée hoiséé,'we find the best estimate
of the states and base our control action on these estimates

instead of the true but unknown states.

In Chapter 5, we make an introductory tréatment of
identificatioﬁ methods which estimate certain system'para—
meters using the knowledge of system.structure, determinis-
tic input, measured output and noise statistics. Next, iden-

tifiability of systems operating (inherently or forcefully)



under closed—lopp is'examiﬁed to be used in the next chap-
ter. Then we make an introduction to adaptive control pro-

blem in z-domain.

‘In Chaptef 6;)stété‘space~édaptive gontrol techniques
are mentioned and Qﬁr‘ﬁSvel?é§é¥§aéﬁ.is preseﬁféd with f
{ﬁeoretical verificafibns and»Simﬁlatéd examples. Given
the system structure, the statisticé of the noisé actiné
on thelsystem and input/outpﬁt measurements,'we wi$h to

control a stochastic system ' whose some parameters are

unknown. ‘ ]

In Chapter 7, some other adaptiﬁe estimatibn-schemes/

are introduced which are not used in this work because of
their impracticality as experienced by the author, but pre-
sent possibilities of use. Some on-line techniques for

estimation of noise characteristics are also given.



CHAWPTER 1

DETERMINISTIC PROBLEM °

1.1. INTRODUCTION

In this chapter,_we’will staff out ‘with thé'formulation
and the éolution of the éontrol problem for linear disérete
time systems with q#adratic cpiterioh. ‘This method invol-
ves a trial and error Procedure cfite¥ion selection. To sys-
tematize and simplify ﬁhe procgdﬁrés of linear quadratic
formulation, we—Wiii;thén.présgnt the reéeding horizon
control'conceptvandvheufistiéally show that its solution
- can be obtained by cqnsidering~a épécial limiting case of
the general linear quadratic probiem‘ Then a mathematically
rigorous derivation of the solution is given and existence

conditions for the solution are proved.
1.2. LINEAR QUADRATIC CONTROL
Let us consider the linear discrete~time system

x(k+1) = A(k)=x(k) + B(k)u(k), =x(o) known— k=0,...,N (1.1)

6




which can be contrélled via the variable
z(k) = D(k)x(k) . (1.2)

ufheﬁ the problem of defermingfthe‘input seQuence_u(k),

k=0,...,N-1, suéh'thai an arﬁfioriAchosén eriterion of per-
.formance
o [z27(k+1)Q (kt+1)z(k+l) + u (KRUDu(k)] +
k=0 : ' , ' ' -

+'xT(N)QFx(N) o (1.3)

is minimized isfcalled the discréte time determin{étic op-
timal control problem. Here'Qz-is a'posifive semi;definite
matrix'tb penalize the déviation in the controlledlvariable,
R is the positive definite control energy penalization ma-
trix, and QF is a pos;tive semi—definite matrix used to
penalize.the final state déviation from-the desired value.
If a1l the matrices in the above formulation .are constant,
then the problem is called the time-invariant discrete—time

linear optimal regulator,pféblem.

For the general case where the matrices are allowed

to be time-varying, the optimal input choice is given by

u(k) = -FUOx(k), k=0,...,N-1 (1.4)

N



and the gain sequence is given by

F(k) = {R(K) + B (k) [, (k+2) + P(k+1) ]800} 18T (k)

. [Qx(k},l) ";‘"P(k+1"),]‘°f.(k) (1.5)

In the above equality; thé invéréé?alwayé exiéts and

Q (k) = DT(K)Q (K)D(K) (1.6)

P(k) is found by
AT [o, (e+1) + PO+ [AGK) - BOOFGO)] (1.7)

"P(k) =

Sfarting with the terminal condition P(N) = Qp and rumning

backwafds.

7 From now on, we will only consider the case of time-
invariant matrices since this helps to reduce the size of
our problem and besides it is a good model approximation to

most phenomena we encounter in practice.

If the system is both stabilizable and -detectable,

"then we have the solution of Eguation 1.7 converging to a
steady-state solution P as N > o forp any initial P(N). The



)

resulting steady—sfate optimal control gain is constant
and when applied to the system, it stabilizes the system
asymptotically. This control also minimizes the criterion

for all-inifial’P(N);~

»biffereﬁt éhoices of'Qé, R énd Qp wiil mean differing
degrees of importance attachment to'the‘value of control
and the value éf déviationé from £he desired state through-
out the time ‘of bperation. ‘Theféforé, the choice of these
quanfities is a éubjective matter-and by no means a simple
problem. Selecfion is based on the designef‘s experience
and a trial and error approach. Some rules éf thumb in

selecting these weighting{matrices'are,QSLfollows'[l]:

[

Generally,'QZ,'R and Q. are all chosen as diagonal
matrices. This facilitates the penalization of
thg specific compbnents’of.fhe state and ocontrol
vectors individuélly among themselves ‘and the re-
iative penalization'of the state and control
Qeétors. |

¥

2. -The larger the value of QF chosen, the larger
will be the resultant feedback gains near the
terminal time.

3. The larger Qz’ the larger will be the feedback

gain and faster the time the state perturbations



- 10 -

are reduced to smaii values.

4. The larger R, the smaller the gain matrix and
slower the syéteg.

5. Penalization éf time derivatives of state vari-
”ablés éan‘bé‘dbné to feduée overshoot.

6. Tﬂe weighting ﬁétfiéésvéan‘be'éelected'aé an
Aupper bound to the effects of second derivative
matrices if the linear éystem to be’controlled‘
is obtained*vié lineariiation of a nonlinear

model.

To systematize fhe procedure of linear quadratic-
control design, Thomas ;nd Barraud_[?] have proposed "thé
‘receaing horizon control" method té c§mpute the state feed-
back optimal controls withOuﬁ specifying the . state penali-
zation matrices. This methodrentails the éolution of a
linear difference gquation.éiﬁplér to solve ‘than Equation
i.5 over a pre-selected horizon timef

1.3. RECEDING HORIZON CONTROL

In -this section, we will only deal with the discrete-

time version, continuous formulation is given in Appendix A.

Given the discrete-time linear time-invariant system

rd




described by

x(k+1) = Ax(k) + Bu(k), A is non-singular (1.8) /

the performance index

g=2% 3 wToru) (1.9)
2 - / A
k=0 . . \
and the equality constraint
x(N) =0 o - , (1.10)

‘if the system is controllable and N (which is called the

“horizon time) is bounded-below‘by N =n-rtl

dimension of the state

oo}
it

then the control vector at the initial stage that minimizes
the performance index in Equation 1.9, satisfying the con-
straints in Equations 1.8 and 1.10 are given by

w(o) = R 'BTa" T Y (o) (o) ‘ S (1.11)

and W(o) is the matrix which is the solution to

y - - - T ,
r yr7 AT T, wen = 0 (1.12)

Wik) = A“TW(x+1)a"" + (A
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at the instant k=0, or W(o) can be written- in the explicit

form

T
pTa~K (1.13)

- Nk Lo-1
W(o) = 'L . A " BR
oy N

We apply the constant gaih~found above for the zeroth

stage, throughout the horizon length, so
w(k) = -RIBAT Ty (o) x(k) (1.1n)

Validity of therabOQe_equations can easily be demon-
strated in the following manner. In- the-usual quadratic

criterion for constant weighting matrices,

. T T ) :
[2°(k+1)Q_z(k+D + u (k)Ru(k)]

+ox (N)QpxR(N)  (1.15)

If we let QF to take arbitrarily largé values and not pena-
iize the state throughout the stages,-Equétion 1.15 becomes
Equation 1.9 and the corfespondfng Riccatli equation is

1

p(k) = aAT{P(k+1) - POer1)B[BTR(k+1)B+E] PBTR(k+1) Ja

(1.16)

vhich should be initialized with large values of P(N).

—



If we assume invertibility of P(k) and using matrix

inversion lemma
(A + BCDy~Y = A"" - AT B(CT

we obtain

“lpyr a7,

P l(k) = Ww(k) = ATYW(k+1)ATT + (a

W(N) = 0 (1.12)

A property of prime impbrtance is that the closed-
loop system that results from the application of the rece-

ding horizon control law_is_asymptotically'stable; see_[3].

Let us now prove more rigorously what we have propo-
sed.

one can write

’

0 = x(n) = aVx(o) + [AN“lB,,.;,AB,B]i

fu(N-1)] (1.17)

so-let
T (1.18)

Using the state eQuation and the equality constraint,



where
/

-1

1"

-[a7'8,...,a"%B], dimension F = nx(Nxm)
[uT(o), .f;,~uT(N—l)]T

dimension u

= A 5 ]
(1]

Using the positi?e definite R, we form (Nxm)=x(lNxm) matrix'

{ A
{ R 00
Ry = | (1.19)
{ - '
L0 R
which is also positive definite.
RN can be factored as
R = L. L.+ | | ‘(1.2’0)'
N N "N
where Ly is non-~singular.
Let
- T - ~ -7 ,
S e 1.
u Ly'u, F FLy (1.21)
éo that we can Wwrite
x(0) = Fu (1.22)

The unique sclution in least squares sense of this
equation is given by

s (F) (o) _ (1.23)



- o
P14

B + : - 3 'A
where (.) denotes the pseudo-inverse of a matrix. u is

the vector which secures the minimum value of Ilﬁllzbthat
also minimizes ||x(o) = F ﬁIIQ;

‘In the case we‘are'intéreétéd~in, Equation 1.22 pro-
~vides the advantage that‘foh Nﬁzp, we haveIIIX(o) - ?ﬁli = 0.

Moreover,

WJOoReG) 0 (1.2w)

R = w"Rgu = 2

Sé, in this way, we have’satisfiéd all three constraints
corresponding to the state ;quation and the equality con-
straint which we use@ in Equation 1.17 and the performance
criterion in,Equation l.Zﬁ; 'Thus4ﬁe conclude'that Equation
1.23 constitutes the solution to our problém.
A casé of particular interest to us is when F is of

maximum rank, because fhen the pseudo-iﬁverse is known ex-
plicitly.m This correspondé to the case where (A,B) is con-

trollable and N>n-r+1., In such a situation, the pseudo-

inverse becomes

“T- _ _ -T. =13T,% . -T. -1zT,-1 )
LN = LN Ly F(F LY Ly» Y "x(o) =

21~ o~ —7~T - » 1. -

R l.‘" Pz LFT) lx(o) ( 25)



defining

g u(o) g [ ~-F(o0) ]
f . : ~
; o ! = . x(0) (1.286)
!u(N-l)J{ liF(N—l)

B - . Cg

' : N T _
u(o) = -R7H(a™ )T [z aT® erTHBTATR ] k(o) (1:27)
k=1 : :
So for every k,
’ Sl -1 T o N Lk a1T,-kT o
u(k) = -R"7(A™™B)- [ £ AT"BR BA " ]  =x(k)
: k=1 |
. : 7/— .
= -r7HaTi T W o) k(1)
which- is Equation 1.14. Instead of summing, one may recur-

sively compute W(o) which can be found by Equation 1.12.

Existence of W_l(o) for controllable systems and R
N>n-r+l can be guaranteed by showing that W(o) is positive de-

finite. Let us invert the direction of iteration as we do

in computer programming.

"R LaTis T

B)R , W(o) = 0 (1.28)

W(kkl) = A”lw(k)AfT + (A

from Equation 1.13, we obtain

)




- 17 -

. n—f+l R
W(n-r+1) = L (a ¥Byr"t(a ke T (1.29)
k=1
factoring out A-(nfr+l)
. L , ) -:_7'(n—r-‘{-i) - " o n—r/\ 1 r . T - '.‘-(n_r+l)'1.‘
W(n-r+1) = A "7 "7 [B,AB, ., .. A BJRy | B A -
| (aB)’
(A" 7))

(1.30)

Since A is invertible, and the system is controllable with

Ry Positive definite, W(n-r+l) is positive definite.

] For
irl Konm1, skt Yk 1, -k, \T
Ww(i+1) = L (A "B)R (A "B) = y (A "B)R “(A "B)
k=1 : k=1
po(am Ty g (4105,
= W(i) + A"(i+l)BRfl(A“i+l)B)T (1.31)

Thé rightmost term . is bosifiVe semidefinife, therefére
~W(i+1) > W(i) which was positive definite by the above -rea-
soning for i=n-r+l, the?efofe W(i) ZgW(n¥r+l) > 0, which

was to be proved. Since W(i) is positive definite for

i>n-r+1l, so is P(i) positive definite for N-i>n-r+1.



1.4, COMMENT

In this chapter,‘We startedkwith genérai linear qua-
aratic"confrol prbb;ém‘and shbwed thé,diffiqulty associated .
FIQifhrchobsing the ééé%:;fiféfi&ﬁj »T§ éiié;%§£e,this7diffi; :
culty, we have'prééénted reéeding,hdfizon control methqdf
In the néxt chépfer, we will béviﬁfrqducing oﬁrknovel

approaches and extensions.



CHAPTER 2

 COMPUTATIONAL TECHNIQUES, NOVELTIES
© AND EXTENSIONS

2.1. INTRODUCTION

In‘this chépter, we will pfesent‘the existing éomputa—v
tional'techniques for fhe disdfete receding horizon control
" problem and present our simplerdaﬁd faster algérithms.
Then, we will extend the use of thié éontrol method to’sinf

gular state transition matrices and non-zero set points.

After intréduétion of tﬁe existing most effective
ﬁethod of Thbmas and Bafraﬁé,;baséd'on sgccessive matrix_
decompositions, we propose two fast algorithms to calculate
_the feedback gains for the receding horizon control: method.
This controller hasvbeeniiqtroducéd fovsygtematize and sim-
plify'the procedures’pf’linear‘éuadrafic control problemn.

To maintain this spirit of the method we will propose faster

and simpler algorithms. = —

Then we will extend the results of the previous chapter

19
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by removing the constraint that tﬁe state transitioh matrix
should bé invertible. This is made possiblé by reconsi-
dering the original Riccati equation in the problem solu- )
~tion, which leads to another faét computationalischeme that
.does not'réquire the’invertibilify'of the state transitibn

matrix but another regularity condition which we will prove-

to hold true in all cases.

The last part consists of the extension of the re-
sults. to non-zero equality constraints on the final state

which is the case mos+% frequently met in practice.

2.2. THE FEEDBACK GAIN CALCULATION

It is guite possiblevté éaléuiate'the gain métrix by
using Equation l,lé iﬁ a reéUréiQe manner.fof a,}ixed hori-
zon‘leng%h:chosen by the'desigﬁer. Gr cne.can éum up the
terms as in Equation 1.13.  To conéerve symmetry and positive
definitenéss of W(k) in the course of itérations, while
using ‘lower precision arithmetic; Thcmas and Barraud'[Q]

proposed the following algorithm:

1) Determine the lower triaﬁgular F' by Cholesky
factorization, such that

prpr T 2 R , (2.1)




2)

'3)

4)

5)

Determine a V such that

Determine the lower triangular L' and upper

triangular U such that

L'U = A | (2.2)

the next two steps avre devoted to calcula

t

C' matrix such that

crett = aTler"Y(aTtEyT _ (2.3)

T _ -1

1]
o>
w
’;UI

cre!

it}
o~
s

lav]

(L'U)V = B n ‘ (2.4)
without explicit matrix inversion but by solving

two linear algebraic equations successively. Note

that‘V,Qerésponds'to<Ale;

Determine a C' so that

P'C‘T = y! : (2.5)

the following steps are repeated for all k,

Solve for D' as in Step 3, for
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(L'U)D' = S(k) (2.6)

S(k). corresponds to the square root of W(k).

' 6) Determine T byvthe Householder transformation,

-

so fhat
T CaTey :
1 : :
T 2oan| = (DL i s(n=0 (2.7)
- , - | |
7) ° Find X' in
(prerTyxr = vl | (2.8)

8) Find F(o) which is &he feddback gain, as a solu-
“tion to linear algebraié equation
sasTan) Toy = x0T (2.9)

It is-the‘authorfs belief that the reéeding horizoﬂ
cbﬁtrdl should be given.thé emphasis it_deéerves as a sub-
optimal control law mainly to be used together with para-
.meter adébtive'methods of.syhthesis, therefqrefthis specific
controller]should benéfit ﬁore’frgm!the teghﬁiques of nume-
rical analysis. We will, hénce, propose two doublihg algo~
rithms which not only solve our problemiin a quickér mannevy

but much easier to understand and implement than the other

technigues.



To compute the value of W(o) in Equation 1.12, one

can either use

ALGORITHM I.

a(k+1) ='52(k),v a(o) = A ;
b(k+1) = a(k)b(k)a (k) + b(k), b(o) = BR™IBT
W(o) = a'l(L)b(L)a'T(L) where_ZL <N (2.10)

or

ALGORITHM II.

-1

a(k+l) = 32,(k); a(é) = A
b(k+1) = a(k)b(k)a (k) + b(k), B(o) = (a7 B)R1(a™'m)T
W(o) = b(L), .2L;i N ;' . (2.11) /
. o ‘ | | | | |
VERIFICATION. It is a simplevexercise to iterate simulta- 2

neously with the algorithms described here |

Vand_with.EquAtion 1.28 comparing the results |

| |
|

'2s one continues.
DERIVATION OF THE ALGORITHMS . .

Let us consider the forward iteration of Equation 1.28,

which for convenience is rewritten below
/

S | |

W(kt1) = A7) + BRTIBT]ATT, w(o) = 0 (2.12)

|

We will
|

50 sur objective is to find W(Y) knowing W(o).



decompose W(k) in"such a marnner that

1

OO = x0) vTrao (2.13)

so. rw”.W(kfl)'ﬁ X(kfi)Y_;(k}l); :Qﬁe,¢an eésily verify

that, partitioning W(k) in this fashion such that

. T _ T o .

K(k+1) | ™t atlerieT x| X (k) Co
R R EONES! A S B (2.14)
iY(k+l)3 o . A Y(k) Y(k)
with X(o) = 0 and Y(o) = 1, is equivalent to using Equation'
2.12. _

A special property of matrix ﬂﬂ ‘will be given to

aid in our derivation:

SYMPLECTICITY_{M];[S]: A 2nx2n matrix Z is sympléctic if

)

[SN]

Ca

aN]
i

J where J =

Ip is the n dimensional identity matrix. Any power of a
symplectic matrix is symplectic which easily follows from
the definition. Anothér property is that if the matrix is

written as -



wherelzll is assumed to be néhésingular for the time being,

' _ -T -1, _
Z,, = 2 Lt Z Zio o .(2.15)

‘Whén we_apply this new concept tquur;problem, we.

see that M. is symplectic and if it is written as

o la e a Yooy | T
m= 1 oo E e - (2.18)
i 0 ' a“ (o) .
then | |
' aTloo  aTrooboo
M(k) = | o (2.17)
{, 0 a (k)

We next use the fact that W (k+l) = R{Q(k), since by

squaring one can calculate in a recursive manner for inte
ger powers of 2, to obtain Algofithm’I.‘ Taking X(o) = 0,
and Y(o) = 1,

Y

-

;X(zkjf _ 1 X(0) 2 ga ;(k)b(k)g
ok T MO S ? (2.18)
RERET xo) | eTwo ] )
and finally
WSy = x2S = aTroob 0T (k) (2.19)

To- obtain the second algorithm, form ' as

poGazicl (NIVERSITESH KOTUPHANES!



. lato)  1(5)a™ (o) | -
= | e = (o)  (2.20)
| o a T(o) W ,
"then
o alk) - bla Tk | |
WA = b oo(2.21)
Since
Mkt = W 2K
we obtain Algorithm II_with‘initial conditions:
Pk ’ S . T =T, ]
[x(2%)| | %(o) b(k)a”" (k) »
| owl = }H?(k)’ o= r (2.22)
Y29 PR {E)) SLoaTy
SO )
H(2X) = k(25772 = bex) O (2.23)

COMMENTS

1. “Since R is choseﬁ as a diagonal matrix in prac;
tice, tge only matrix inversions take place in the last
step of the first algorithm‘when calcﬁlating the feedback
gainé. This prevents propagation of errors due to inver-
sion in the first step as in Algorithm II. However, it may

be desirable to work with the inverse of the state transi-

tion matrix rather than itself angd Algorithm II provides



this flexibility. Algorithm™I is similar to Kleinman's

algorithm, but his is defined in a different context and

no derivation is given [6].

2.0 If the;syStemfﬁé,Bé*ébhtﬁdlledkis'continﬁoﬁs, one

can -try one of the following alternatives as arise in the

Riccati equation solution:

a)

b)

c)

d)

possible

accuracy

One may'disérépize the'sysfemvat the outset

aﬁd then proceéd to find4the oﬁ%imal feedback
gain. ‘ . _ : ~

One can calculate exp( ch) where tHc is the
continuousktime:Hamiltonian matrix and use the
discrete doubling algprifhm.

Pose a discrete-time probi%m by.using a bilinear
transformation and then use the above algorithms.
T?y the method based on the sigﬁ of the Hamilto-

nian [u].

~8quare root forms of the a@bove algorithms are
+to maintain positive definiteness and numerical

but with the price of more computations.



2.3. THE EXAMPLE OF DIGITAL POSITION CONTROLLER AND
DISCUSSIONS '
Let us consider the digitalrpositioning.system des—
cribed in Kwakernaak and Sivan [7]. The discfeté—fimefétafé

and measurement equations are

1 .08 ﬁoos] o R
. 0 631 1,063 | : .
L i 1
z(k) = [1 0] x(k)
with tﬁé performance index
N-lo - ) | .
r [29(k+1) + ou(k)] . (2.25)
k=0 S :

Qhere p = 2xlO_5. This system is to be controlled by

means of a digital computer. If we find the receding hori-
zon control feedback gains for this example and compare
with the corresponding gains found via the solutions of

Riccati eqﬁation or the solutions of the deadbeat control

problem we arrive at the following results:

1. The optimal/feedback gains as found by Riccati

equation comes to a steady state value after 6,7 stages.




If'we use the constant feeaback géins féﬁhd by reééding
horizon and linear quadratic approaches, the:following
closed-loop eigenvalues for the twd controllers are respeé—_
tively:.57‘_'l; j.06 and .23 % j.~32..k One can deduce that - :
'fﬁe'c;ogedflOOP'SYSteﬁ a§ fégﬁiaﬁédrby the febeﬁingjhofizbnt"
controllef aéVcomﬁéred_Qithfliné$; é£édra§ié“opfiﬁéi‘régﬁf’
lator is slbwer but much leés 6s¢illatofy; This is due |
to jhe cohétant penalization‘bf the state along'the:tfa— -
jecfory in linear quadratic regulétor wﬁich>results in é )
larger feedback gain matrix and faster'response timé of

tﬁe closéd loop system. Since in receding horizon control
cosf criterion, the state is not penalized at all for the
intermediate étages,ffor lopg hofiZOnjlengths, it seems as
if we had heavy penalization 6f thé iﬁput energy with |
respedt‘to state and this results in a smailer'fééﬁbaCk'
gain matrix, slower closed-loop system with much less

control energy spent.

2. For short horizon lgngthsras represenféd by thase
near the minimum-Qalue Nb=n—f+l; the terminal time is.al—
ways very near and so the feedback matrix is always large:_
Co%parison of receding horizon for N=2 with a deadbéat,
éontroller shows that the feedback gains are identical

F = (158.75,17.35). Hence for short horizon lengths, the-

receding horizon controller acts like a deadbeat controller.



2.4, SINGULAR STATE TRANSITION MATRICES

In»this section, we extend our results to the case
where the state transitioh‘métrix'of theAsystem to be con-
 ‘trolled is SingulaPEv~$ingular tran§itiqn matriées.canff

‘naturally arise in practice as can be the case, for. example,
with the "blood pfeSSure:regulator" system of Chéptef 6, 7
which is originally modelled as'a sfochastic difference
equation [8] or with sampled continuous time s&s;ems with
time delays [9].

Let us consider Equation 1.16 and rewrite it here'

with order of indices changed:

p(x+1) = aAT{P(x) - p(x)B[BTP(x)B + R]TTBTR(K) A (2.26)

where

P(o) = %im BI

B

by using matrix inversion lemma,. one can write

. ~ 1 T+~
p(k+1) = AT[P Y(k) + BR a1 ta (2.27)
multiplying by P(k) together with its inverse gives

1

p(x+1) = ATPCO (T + BR7IBT RG] A (2.28)



where the expression in the brackets is obviously positive

definite hence invertible. Since we have P(o) = 2imBI,
using Equation. 2.28,

P(1) = 2im A".B Ift+ BR™IBT 1) 1A = AT(BR71B A

5+oo

(2.29)
which'coiﬁcides with the solution of Equation 1.12, and-’
the invertibility is guaranteea in the casés given in
Chapter l.. Since P(1) is,bounded; P(2),P(3),..., etc. are
bounded. We do not'uséAP(o) in our calculations, siﬁce
Nmin=n—r+1 = l\for‘n=l~§nd r;l. Hence all P(k) for k>1

are defined properly.

Let us now partition P(k) as

P(k) = ¥(k)X 1(k)  (2.30)
and
xerry o att st kG
E = T 1 [ with X_=0,Y =I
Y (k+1) © 0 A LY (k)
I d i - . - i L , e
X(k)
= Ho i (2.31)
“Y(k): L
we obtain
-1 _ AT -1, T -1
P(k+1) = Y(k+1)X ~(k+1) = A ¥Y(k)[X(k) + BR "B Y(k)| ~A

(2.32)
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we right multiply inside and left mﬁltiply outside of the
brackets with X 1(k) to obtain Equation 2.28. Use of this

#H matrix will give us the first fast algorithm

a(k+l) = a’(k), a(o) = A L

e g LT, v am=lnT

b(k+1l) = b(k) + a(k)b(k)a (k), b(o) = BR 7B
for the discrete Riccati equation in 2.28. ° The feedbaqk

gain is found as

r = t8Ta Te ()

Wwhere

L'

P(N) = a (LUb HLYa(L'), 2" <N (2.33)

" l2t us write P(N) in terms of P(N-1) from Equation. 2.28

P(N) = ATP(N-1)[I-+ Bg’lBT?(N-L)]‘lA - (2.3u)

and substituting into Equation 2.33

1 -1

N ) : TR .
ro= -r teTa TaTe -1 [1 4 BR7IB R (N-1)]
- ; 1 o1 i
- R L Te(n-1) [T+ BRTIBTR(N-1)] A (2.35)
= -R’lBT{P‘l(N-l) + BR—lBT]'lA - (2.36)



Wwriting

P(N-1) = a’(L)a Y(L)a(L) for 2% < N1

and substituting into Equation 2.36

T ;R'lBT[afl(L)b(L);‘T(L)'+ ER;;BT]”IA'7(2.37)”7‘f

manipulating a bit to get

F = -R‘lBTaT(L>[b(L) +wa(L)b(O)aT(L)] Ya(nya (2.38)

so the algorithm becomes.

ALGORITHM III..

a(k+1) = a(x) a(o) = & .

b(x+1) = b(k) + a(k)b(k)a (k), blo) = BR BT

poe -k 1BTaT(L) [b(L) + a(L)b(o)aT(1)] ta(1)a,
2% < n-1

Since this last algorithm does not involve the inverse

of A, weAcén effectively use it fof’singular state transi-
tion matrices.‘ Let us novarove for the séke of compiete_
ness that the inverse of the‘expression in thé brackets
exists. To do that,“we will first.show b(L) is positive

definite for QL > n-r+l, and then show that the following
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b(k)'s are all greater than or equal to b(L) hencelpoéitive
definite also. Since the other expréssion in the brackets
is positive semi-definite, posifive“defihiteness.of b(L)

ensures invertibility. Use of 2L

< N-1 in the expreséions'f
will oblige the minimum choice of N to Nﬁin+l; to secure.
invertibility. This does not restridt the-apﬁlibation of

the '‘algorithm, since it is designed for high'N.anyway}

Let us first write explicitely what b(k) are:

b(o) = BR BT
b(1) = BR BT + aBr"'BTAT N
b(2) = R AT + ...+ a%er718TA%
v o R T
5(3) = BR TBT + + aTsr"18TA7
sc the general expression for b(i) is
l 1 -
ST -1 K k
pei) = £ a 3R TBT(a e (2.39)
k=0

' .. . i - -
We are interested in b(i) for 2= > n-r+l, so Tirst let

27 = n-r+l,

b(i) = % A pr - 1pTaK (2.40)




- n-r+l

. ->
times
b(i) = [8,a8,...,A" 7] [r7* s !
: + t * AB ! .
n-r+1 | . 0 . Po(2.41)
‘times % 0 S S
L S W T f

Due to controllability of the syétem and positive defini-

“teness of R_l, b(i) > 0. Consider
: i+l . T i T
bei+1) = 1t AKsr™IBTAK - 3 akpr71pTak
k=0 k=0
: i+l -1.T i+lT
+ A BR "B A

A ) (2.42)

Since the right-most term is positive semi-definite and
b(i) > 0, we obtain b(i+l) > b(i) > 0 for 2% > n-r+l. We

will use this algorithm in Chapter 6 with system 4.
2.5. NON-ZERO SET -POINTS

Reconsider the linear time-invariant discrete time

system

x(k+1) = Ax(k)r+ Bu(k) ' , (1}1)_

z(k) = Dx(k) ’ (2.1)

Let it be desired that the system is operated about

the constant point Z(k) = Z_.



Define ' ’ p

the shifted input

UN(k) = u(k) - U

X'(k) = x(k) - X_ = the shifted state (2.43)

»Z‘(k) =_Z(k) - Zo
minimization of

L

k=0

in the act of steering the System states from any initial

condition to set point requires the control

Ut(k) = -F x'(k) (2.45)

where F is the steady state feedback gain. Writing Equa=

tion 2.46.using.original system variab;és.

u(k) :7—?X(k)_+ Uo?.. V(z.ue)
’so the closed-loop equafions become .
x (k+1) = Aé(k) + BU'
Z(k) = Dx{k) (2.17)
/ | Assume fhat the closed~loo0op sSystem becomes

where A = A-BF.

. the shifted controlJvariable' :

»[Z'T(k)QZZ}(k)_+ UFT(k)Rp'(k)] (2;uu).w



asymptotically stable at the steady state, the variable

which is controlled .is

%im Z(k) =H (1)u_* : C - (2.u8)
C koo ) C °© . L s
where
H,(z) = D(zI - A%+ BF) 1B (2.49)
is the closed-loop transfer matrix. This implies that zero

error in s{eady state can be achieved with
-1 L o
U,' = H (12, (2.50)

provided that-tﬁe inverée‘existé'whiCh requires that, first,
dimeﬁsion L = dimension Z, seéond, the non-zero detérmi—
nant of Hc(l)L But‘the,determinantfof Hc(z) can be shown

- to be equal to thg natio’of:open—loop‘zerosvto closéd—ldop‘
?oles, sovthaf the transfer function should have noanero

numerator with no zeros at z=1. ©So the following theorem

results:

THEOREM 2.1 [7]:
| ~Consider the systemiin Equations 1.1 and 1.2, with

7(k) being the controlled variable and dimu=dimd. Assume

any asymptotically stable time-invariant control law as in



- 38 -

Equation 2.46. Let the open loop transfer function be

D(zI - A) '8 4 (2.51)
and;Hc(z) be the closediloop'transfer matpix in Equation
2,149, Then Hc(l) is ndn-singula? and thé-contfoliéd«vari—
able Z(k) can under, steady state éonditions, be maintained

at any constant set point Zo by choosing

(2.50j

if and only if open loop transfer matrix has a non-zero

numerator polynomial that has no zeros at z=1.

EXAMPLE:
We will apply this result to the system U4 in -Chapter

8. Since the discrete receding horizon control law is one.

which is time-invariant and makes the system aéymptotically
stable, applying theorem 2.1 to our case where

gé b -0 2 ~
‘ 5 ' : , and F-= -[a /b,a]

A

Choosing D as (1,0) since our major aim will be to control

Xy, We obtain



where Zo is the desired state. Applying this control will

yield in the steady state the desired Zo for Z=Xl.

2.6.  CONCLUDING REMARKS

This chapter extends the available results on the re-

ceding hofizoh controller. We éimplify and quickén the
design prdcedures by our algorithmé,'éxtend the use of the
controller to singular state ffénsition matriceé and non-
zero set points. New reéults are supported with theére—

tical verifications and simulated examples.



CHAPTER - 3

STOCHASTIC MODELS FOR
DYNAMIC SYSTEMS

3.1. INTRODUCTION

Our purposé is to apply the receding horizon control
procedures described in-éhe Previoué chapters to the de-
'sign of suboptimal control o% stochastic and paraﬁeter
adaptive stochastic systems. So, in this éhapfer, Qe will

- describe various stochastic models that will be suitable

for our purposes. First, we scan the deterministic models,

next we describe their stochastic counterparts and then

we introduce the prediction-error formulation that encom-

passes these and many other stochastic models. We will

mainly follow [ll] in our treatment.

’

'3.2. DETERMINISTIC MODELS

Ope form of model that we have been using to describdbe

linear time-invariant discrete-time causal dynamic systems

.
1 o=

Lo

40

+he state space model where the output is related to the

. . . .o



input by

z(k+1) Ax(k) + Bu(k)

y(k) = cx(k) + Eu(k) (3.1)

~If the initial state iSHZero,‘then the z-transform of

the output is related to the z-transform of the input by

Y4(z) = H*(2)U%(z) (3.2)
where |
H(z) = c(2I - A) YB + E (3.3)

Another alternative is to use, the difference equa-

tion formulation

d! dl ) .
y{k) + & f{d)y(k=-d) = I g(d)u(k-4d) (3.u4)
d=1 o d=0 ’ |
~introducing the unit delay operator
) : \
-1 K o ‘
q “x(k) = x(k-1) (3.5)
so represent Egquation 3.4 by
F(q)y(k) = g(gq)ulk) . (3.6)
where f(g) and g(a) have obvious definitions. If the sys-

tems originally at rest, then the z-transform of y(k) is
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related to the z-transform of u(k) by

CFE(2)Y¥(z) = G%(z)U%(z) o (3.7)
where‘ | | |
5 A
Fi(z) = ¢ £(a)zd'~d
d=0
ar .
Gi(z) = & g(a)z® 794 (3.8)
. . d=0 o

are matrix polynomials in z. To secure unique representa-
tion of the output by the input, we assume detF*(z) % 0,

so Equation 3.7 can be written as

1]

Yi(z) H*(z)uﬁ(z) ' (3.9)

where

H:‘:(Z)

H

[F(2)]) teu(2) . (3.10)

H%(z) will be called the matrix transfer function of the
system and the representation in Equation 3.10 as left
matrix fraction description (MFD) for H*(z). It follows

that

Fi(z) = z"#(z) and G¥(z) = ng(z) : (3.11)
SO we have

He(gz) = {F*(z)]TlG*(Z)F £ (2)g(z) (3.12)
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and Equation 3.10 is represented as
£(2)Y*(z) = g(2)U%(2) (3.13)

We conclude that the relation between the output and
the input is the same whether we use q-l or z-l, and through-

out the text, we use them interchangeably to denote unit

delay operators.

3.3. COVARIANCE STATIONARY STOCHASTIC - MODELS

In this section, we introduce the randomness for the
fiprst time. We will associate stochastic processes with

arbitrary speciral densities with linear systems driven by
TEVE

'3

y

white noise. he following two results will establish <his:

Let ¢ (z) be an nxn discrete rational spectral density
matrix having full normal rank. Then there exists a uni-

que nxn rational matrix H%(z) and a unique positive definite

;

real symmetric matrix @n satisfying

T, -
1) 0 (z) =ui(z)e HE (z™ %y

1) H%(z) is analytic.outside and on the unit circle,

that is fTor lzl > 1.
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< e w1 . ' . . . .
iii) H% “(z) is analytic outside the unit circle,
i.e., for |z] > .1

iv) fim H%(z) = I
‘ s

For proof see [10]. o

THEOREM 3.2

The oufput ﬁower dépsityvspectrum Qy(z) of an aysmpto-
tically stab;é.linear'systém with transfer function Hﬁ(z)
driven b& a zZero mean widé sense Stationaryxproceés with
péwer density spectrum @n(z) is

-1

0,(2) = Hi(2)e, ()H" (27 )

wherpe z ™. ror proof see [ll}.

If we combine these two results, we conclude that a
Zero mean stochasFié procéss with spectral density,@y(z)
may be modellea és the oufput'qf a linear’system driven by
whité noise. So the inclusion of randomness in this way,
will entail the possibility of representing the output of

a system as

:'y(k) = y(k) + n(k) C(3.118)

where y(k)} is the cutput due to the deterministic input and
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n{k) is the output of the linear filter with transfer func-

tion H%*(z) driven by white noise with covariance @ng so

we may model n{k) by:

1) MFD form:

-

H#(z) = [F#(z)] Y6%*(2) (3.15)
with %imH%(z)=I and detG%(z) 2 0 - ¥ |z| > 1
7300 e . ‘
2) State Space form (SSF):
Hi#(z) = c(zI - A) " YB + E C(2.16)

where E = I and H'-"_l is stable.

Combining both the deterministic and stochastic parts,

we have:

1) HFD: ’ ‘
Sy = 7 HEIE ()UK ¢ BT H(2)6,(2)e(x)
| o (3.17)
or
A(z)y(k) = B(z)U(Xx) + c(z)e(k) (3.18)

. . -1
lere 4,B,0,F ,F,,0; and G, are polynomials }n z ~ and {e(k)}



is a white noise sequence with covariance Z. The model

described by Equation 3.18 is also known under the name
ARMAX (aﬁto—regressiye-moviﬂg average-exogeneous variable).

4

2) SSF:

0

Xl(k+1) Alxl(k)-+ Blu(k)

X2§k+1) = A X, (k) + B e(k)

y (k) clxi(k) + D u(k) + (k)

1l

nk) = ¢ X, (k) + e(k) - (3.19)

or 7 )
x{k+1) = Ax(k) + Bu(k) + Ke(k)
y(k) = cx(k) + Eu(k) + e(k) (3.20)
Ali the above models may be written in the general form

gk = B (2ulk) * HyeG T (3.21)

7 and {e(k)} is a white noise sequence

23
()]
'J
[V
I
f1e
=}
=5
Cant
3
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i

with cowvariance L.

3.4. PREDICTION ERROR MODELS (PEM):

AN

In this section, we will describe prediction error

models which contain most other stochastic models as sub-



classes, They will be of use to us when we deal with para-
; meter identification problem. They have the general form:
y(k) = f[Yk_l,Uk,k] + e(k) (3.22)

- where Yk—l'é {yk—l’yk-Q""} and Uy =_{uk’uk—l"”} and

€(k) is an innovations sequence with the property

e

EE(k)lYk-l?Uk [etx)] = o (3}.23)

where E[.J denotes expectation.

We can now show how the other stochastic models can
be represented by PEM's. Let us consider the linear sys-
tem having covarlance stationary disturbance

y (k) = H (2)uk) + Hy(z)e(k) C(3.24)

with H, and HQ are stable .rational transfer functions.

1
H, % stable, Lim Hy(z) = I, and {e(k)} is a white noise
2 Z o0 )
sequence with covariance X. The properties of Hz(z) allow

us to represent y(k) as

ylk) = Ll(z)y(k-l)l‘r Lz(z)u(k) + e(k) (3.25)



- ug -

where L. (z) = z [I - H _l(z)] L (z) = H “1{z)8.(z) ana
1 o > Mo 2 1

Ll,L2 are stable transfer functions. Cémpariéon of Equa-
tion 3.25 with 3.22 reveals that Equation 3.25 is in PEM
form. Let us now consider the linear time-invariant sto-
~chastic system
x(k+1) = Ax(k) + Bu(k) + W(k)

y(k) = Cx(k) + Du(k) + v(k) ‘ (3.26)

with A stable, (A,C) observable, {W(k)} and {V(k)} are two

uncorrelated white noise sequences with covariances Qw;and
QV respectively. The output‘in two components is
y(k) = §(k) + n(k)
v({k) is modelled as
x(x+1) = Ax(k) + Bu(k) i
y(k) = cx(k) + Eu(k) (3.27)

cand n(k)nis'a zero mean stochastic process having spectral

density '
’

2 (2) = c(zl - e (2 - A



-

Let us now determine a Spectral factorization of

2, (2):
¢n(z) = H%(z)L H*T(z_l) ©(3.29)
wWhere '
H¥#(z) = c(zI - A)flx_+'1 R © . (8.30)
K = APCT(cpe’ + QV)‘l - (3.31)
Z ) T ) . . ~
= CPCT + Qy (3.32)

P is the unique pdsitive definite symmetric solution of
the algebraié Riccati equation: -

p = apaT - arcT(cre” + g tera’ + q - (3.33)
This spectral factorization is verified by substitution in
Appendix B. Collecting all.these equations, we arrive at

“the conclusicn that y{(k) has a representation of the form

)

1l

x(k+1) Ax(k) + Bg(k)

AR(k) + XKe(k)

2(k+1l)

J(k) = CR(K) + CR(k) + Du(k) + e(k) (3.34)

x(k) + %(k),

L

This model is writtenrletting\i(k)



AR(Xx) + Bu(k) + Ke(k)

1)

(k+1)

y(k) = c®(k) +Eu(k) + e(k) (3.35)

The above model which is called the "state space in-
novations form" is Veryvuéeful from the viewpoint of con-
trol designer, because once this formulation is achieved,

estimator design problem becomes trivial. Rearranging,

R(k+1) = AR(k) + Bu(k) + K[y(k) - c&(k)] (3.36)

‘Moreover, Equation 8.35 can be expressed as

Ly = H (Dul) + Hy(2)e()  (8.37)

where
) L -1 -
- Hi(z) = C(zI - &) "B + %

HQ(;) = C(zI —’A)_l

K + I

S50, one can easily arrive at the PEM form.

3.5. COMMENTS

In this chapter, which has a transitional character,

we h

tic one. We have introduced important concepts such as

representation of a stochastic process, covariance station-

ave passed from the deterministic realm to the stochas-



. ary and PEM forms for stochastic models, and innovations
representation which we will extensively use in the fol-

lowing chapters.

\



CHAPTER 4

- STOCHASTIC RECEDING HORIZON
CONTROLLERS

 4.1. INTRODUCTION

This chapter treats the suboptimal terminal control
of linear discrete fiﬁe stochastic systems. ‘Discrete re-
ceding‘horizon concept is used to obtain the solution tpk

“the case where perfept;measurements of tﬁe state arg‘avail—
able, and the innova{ions representation is used to con-
vert the stochastic control problem into one in which per-

fecf measurements of the staté are available. The resul-

ting properties of the closed~loop scheme is discussed and

+he simulations are reported.

4.2 STOCHASTTC RECEDING HORIZON'CONTROLLERS~

Let us consider the noise corrupted linear time-

~invariant discrete-time system

x{k+1) = Ax{k) + Bu(k}+Kv(k), k >0 (4.1)

52



and x(o) is a random vector with mean x(o) and covariance
matrix Qd' The observed variable is defined as

!

y(k) = cx(k) + v(k) ; (u.2)

The noise sequence is Gaussian distributed, uncorrelated

~ ° .
with X(o) has zero mean and covariance matrix Qy- We as-

sume that the system is controlléble and observable.

We present the stochastic linear discrete-time output
feedback receding horizon.fegulator problem aé finding
the control vect?r sequence u{k) in terms of observed va- -
riables of the‘system'up to the time instant k-1, . such |

that tHe criterion

N-1

[ng]

J = E{ uT{k}Ru(k)} is minimized - {(u.3)

e
1}
[aw]

subject to the systew dynamics, the measurement conditions

and the equality constraint
E {x(N)} =0 ‘ (4.4)

Here R is positive definite and N is the horizon time lower

bounded by N _=dimensionx - ranku + 1. As in the case of
O .




linear quadratic Gaussian problem, the certainty equiva-
lence principle [12] which is a kind of superposition of
the cbntrol and estimafion parts, will be valid since we
pose herela subclaséAof‘the general linear—quadrétic—
Géussian prpbiem. The sélufiéﬁ pfytﬁé,stochéstié'linear
discréte-time output feedbéck receding hofizon controllér;

problem is as follows:

The constant gain control sequence is given by -
u(k) = Fx(k), k >0 - (u.5)

where F is the constant feedbaqk gain matrix for the deter-

ministic controller as given by

ro= R [(o)aT] ! ‘ (4.6)

)
o) is +the solution at the zeroth instant of the linear

d{

gguation

1, -1,Tq,-T ,
Wek) = ATH[W(k+1) + BRTIBTIATT, W(N) =0 (u.7)

Moreover, %(k) is the minimum mean square linear estimator

of x(k).found by utilizing {he obéervations, y(3), 0<j<k-1,

- N s
such-tnat,



R(k+1) = AR(K)

VERIFICATION

55 -

+ Bu(k) + K{y(x) - cR(x)] <(u.8)

‘Since the certainty equivalence is valid for the

general case where the estimator has the equivalent struc-

ture and the. controller is designed to minimize the cost

criterion in Equation 1.15 which is more general, it is-

still valid for the case where Qp is arbitrarily large

d

pe

4]

nd Qz is

mics of the estimator can be obtained very easily since

(]
[
et
‘_‘
O
)
}._l
‘,..I
L
[0}
el
[
ot}
)

to the zero matrix. The dyna-

the system to be controlled is in innovations state space

form, so holds ‘Equation 4.8.

Y

[na}
o=
o]
=
192

1. The orginal stochastic modelling may be done in

discrete-time state space form in which

transform to an innovations state space

the previous chapter.

]

o

[

2.. Since W

States, we cannot szati

- instead suppose zero terminal

of accuracy, which is
stochastic controlier

ways lower bounded DY

the inherent characteristics of

sfy the final condition exactly.

state in the mean.  The

is that the terminal errors are

the estimation errors.

case 1t 1s easy to

form as given in

nave uncertainty in the values of the

Ve,
limit
any

al-



3. The results relating to the asymptotic stability
of the deterministic discrete controcller can be found in
[3]. For the observer, we ére using a form that is one-
to-one with a §teadylstate'Kalman estimator-whichvis‘asymp—
tOtically-stab;e under some weak regularityicqnditioné'[7].
Because we‘have an iﬁferconnection'of an asymptotically
stable observer and a system which is made asymptotically
-stable by a feedback law; the resultant closéd-léop system
is as&mptotically stable.

k.3. SIMULATION RESULTS AND DISCUSSION

To evaluate this proposed stochastic -control algorithm,
3 series of simulation experiments on several different
systems have been performed. The following four systems

are considered:

1) x(k+1) = 2x(k) + u(k) + 1.5v(k)

g(k) = x(x) + v(K)

2)  x(k+1) = l.1ix(k) + u(k) + 2v(k)

y(k) = x(k) + v(k)

3)  x(k+1l) = 0.8x(k) + 0.8u(k) + 1.5v(k)

y (k) = x(k) + v(k)




- - .
5 0] {1; 2]
) x(k+l) = - x(k) = Lo u(k) + | i v(k)
L0 .25) (1 i.2! ’
Lo i Z
y(k) = [.5  .5] x(k) + v(x)
‘ Theisystems may be'obtaiﬁedvfrom;the ARMAX model:
y(k) = a;y(k-1) + a,y(k-2) + b u(k-1)
T+ b2u(k—2) + v(k) +~clV(k—l) + c2v(k—2)
respectively by:
1) al=2, azfo, bl?l, b2=0, cl=—.5, c2=0
2) al=l L, a2=0, bl=l, b2=0, cl=0 g, c2=0
3) a;=0.8, a,=0, b;=0.8, b,=0, ¢,30.7,  c,=0
u) a,= 75, a2:.125, bl:l’ b,=-.375, c1:—.55,

We took the noises to be white Gaussian with zero mean and
variance .25. Changing the'varianée throughout a certain
range did'ﬁot affect the results much; nor did the change
in the initial state estimates. - It/is evident that the
fiprst two describe unstable systems. The experimentg are

done to test the gquality of control and estimation'Schemes;

EXPERIMENT 1. Efficacy of Estimation: In order to evaluate



.

théﬁrelative‘effectivenéss of estimation, three digit
estimation accuracy region (the difference between the
true state and its estimate is less than .00l) is assumed.
The first System enters this region in 12, the second. 80
and the third in 22, the fourth in 10 steps, never leaving
the region. To equalize the effect éf feedback as much
as possible, the systems are controlled with the same hopi—
~zon length but of course the résponse of the closed—loop‘

J ‘ . « R .
system depends also on the system structure. The rela-
tively slow cbnvergence of the second system wifh respect

to the others is attributed to its noise transfer function

being closest to-a non-minimum phase transfer function.

EXPERIMENT 2. Accuracy of Control: For the first three

systems, we assumed an accuracy of conirol criterion as

‘ 50
the average state accuracy (1/50) I  R(k) < .01. Al1l
‘ : k=1

three systems.conéroiled with l-step ahead (N=1) pontrol—
lers, and they all kéep under this value. . The aécuraéy
“gain is infinite in *the first two unstable systems, be-
cause if uncontrolled they will diverge to véry large va-

In the third system, the average state accuracy is

lues.
four times that of the uncontrolled case. For the fourth
system, we used a four-step ahead (N=L) controller and we

_took an average of the first thousand estimates. For the



first state .variable, we got .0082, for the second .0052.
Even though, the gain in accuracy was not substantial for
this system, this was due,td‘the3long operating time aﬂd
the"stéble eigenvalues of the open-loop system. v‘
. . V &
EXPERIMENT 3.  Economy of Cost: Whénrthe systems are . ..

controlled in one—stepfahead‘manner,~the average control

energy spent at each step as measured by (1/50) L - u2(k)
: , A . k=0

are respectively'given by: 2.392, 1.901 and .u426. This
is, as one can see, cioseiy.related to whether or not and

how much the state transition matrix is unstable.

EXPERIMENT 4. Tunability by the Choice of Horizon Length:

The choice cf horizon length is a variable which supplies

the desigﬁer the flexibility of being able to determine
the strength of control and the rise time of the closed-

,loop system. Evidently, as the value of horizon length

is dincreased, one obtains a lazier controller which results

t- o

n a closed-loop system with higher rise time. For the
surpose of comparison, the first system is simulated with
2 four-step-ahead (N=4) controller which resulted in less

"accurate control with less effort.  Another possibility of

tuning that remains, is the choice of sampling rate, of

course.,



%.4%. - CONCLUSIONS

In this chapter, we have described a stochastic ver-
sion of the recedingbhorizon,controller. As it is suffi-
cient to be a ﬁOYéltY\vaiféelfg:wéiha;ebréthér doﬁevitvv
forlthe‘purpose qfiusiﬁg'it'in a st§chastic adaptivé éitua—
tion. The choice ofrthe\reéediﬁg horizon_contfol concept
‘in a multitude of many'others is not arbitrapy:butVBased
on its relative siﬁplicity in the choice of penalization
matrices and subsequent>calculations, flekibility of being
able to choose the pise time -and strength of cohtrol; the
favorable“féature of securing-the’aéjmptotic stébilifyfbf"
the closéd-laop‘system, but yet the-genuine éharacter in
the semse'of maintaining the necessary tréde;off betyeén

perfection and cost.




CHAPTER 5

AN INTRODUCTION TO THE TECHNIQUES OF -
- IDENTIFICATION AND AN
PARAMETER ADAPTIVE CONTROL v *

/
5.1. INTRODUCTION

As our ultimate aim is to use our controller in an
adaptive setting, it is well w0rth'fo try to scan the main
>themeé in tﬁe theories of identifiéation and adapti&e‘con—
. trol. Much has been done in both of these.fieldé for the
purposes of (i) to monitor‘sysfems to knowvwhen'a failuré
occurs; (ii) to sum up what is knogn about'a*System inté
a compéct set of knowledge; and (ii&) tO'oh—line'cogtrol i
systems with minimum possibie cost. Since mucﬁ has been
done, there is much té'considef,.understand'and synthesize.

-

Since this is impossible to accomplish in a chapter, we
will try to sketch the main trend of researchers in these
fields, perhaps in a biased way so as to allow for our.

immediate use of these results in the following discussion.

. The first part is a short introduction to identifica-

61




tion and an attempt to gather the seemingly unrelated tech-
niques of parameter estimation in dynamic.systemssunder
recursive prediction error identification concept. The.

second part contains some'results on clbsed-loop,identi—

flcatlon ‘of systems, whlch we w1ll make use of ‘in the next e

chapter. In the thlrd part the 51mple z- doﬁasn adaptlve
technlque of minimum variance control is mentloned ) This
constltutes an lntroductlon to adaptlve control technlques

. to which, 1n the follow1ng chapter; we slllvadd the corre- -
sponding state space‘technlques and our novel'approach.

We will present someﬁremainipgVparameter—adaptive control

approaches and possibilities in the iast-chapter;
5.2. PREDICTION ERROR IDENTIFICATION

Mathematically speaking, any identificafien ﬁfocedufe
is a traasforaation of measurable sequeﬁces of data to a
model that‘mOS* pfobably geserated these data; Phy81cally,
one uses the observed inputs and outputs of a system to
uniquely identlfy the system stracture. It is desirable
to do this on;line, that is, as the processfgses Aﬁ, sihee
“our major aiﬁ is adaptive control, which is‘controlling a
system by 1dent1fy1ng 1ts structure at the»same tlme‘ ASo‘
we will axclusively deal w1th time domain recursive iden-

tification techniques. Recursive because we do not want




' to load our computer with old and redundant data. . The
. , .
would be user has to choose among. different alternativés.

being in the field of identification much explored. - For

example, he has to choose:

l)"Thé:model set togetﬁériwifh i;s 6rdéf, bethééﬁ
éeveral alfernatives such as linear vs nbn—linear
models, inpﬁt/outpﬁt vs state épace models, efq.

-2) ,The>prope£ design of input to~the system,wﬁich
constitutes a favorable condifion for proper
identification.

3) Which criterion' to use for identification.-iéome
criterié naturally corféspond.tg iﬁnovation dis-
tributions [13]. |

4) Proper search direction and which gain sequences
to use, both affecting the cqhvergence and‘thév
convergence rate of the algorithm. -

5) Any approximations in the algorithm bésed on:thé
basic compromise between convergence rate and
cbmputational simplicity.

&) Initial‘conditions to start the algorithm. Actual-

ly these do not influence the results very much .

Since there are good references to show how to decide
> : : N

on the above choices, we will not be pursuing this matter

any further, but the interested may refer to [14 = 18].




In the following, we will briefly summarize some of

the ideas in the theory of prediction error identification.

Let us consider the general ARMAX model.

S AGTDy0 = Bla™Hut) + cla™v) | (5.1)

where q—l is the backward shift opefator, A, B and C are

polynomial operators, such that

-1 -1 -~n
A(g 7) = 1 +ajqg  + ... tagq
-1, _ . -1 -2 -n
B(q ™) = b,q t byq f +ev + b g
iy -1 -n B 5y
C(q ™) =1 + ciq + ...t cpd (5.2)
V(k) is the disturbance term. If we take
ol = (a,,a a ,b.,...,b) | (5.3)
-7 12722 p’ 1> n . ;
and |
‘ »
WT(k) = (—y(k—l),.;.,-y(k—n),u(k—l),...,u(k—n))
(5.4)
with C(q—l) = 1. FEquation 5.1 becomes
g(k) = 07¥(Kk) + v (k) (5.5)

which is called the least squares model. Assuming a least

'\ squares criterion
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K SR ‘ |
min I [y(i) - 07¥(i)] (5.6)
e i=1 ,

along with the corresponding model,‘minimizationVresults

in
Coo ke - N T EREE A
8k) = [£ & wHY(DH]TT £ I ¥y (5.7)
S i=1 T i=l ,
Let us define
Lk s | ,
Rp(k) = = E YOi)YT (L) 7 (5.8)

i=1

which is nothing more than the correlations of the data

nHm~M R

Bk) = R7T0O £ OB ¥(idy(d) - (5.9

i=1

3

Writing the equations for B(k) and 6(x-1) and manipulating
them along with Equation 5.8, we obtain

@(k—l)v+ % Rp"l(k)W(k)[y(k) - @T(k-l)W(k)] (5.10)

1]

B(k)

o 1 T )
R, (X) Rpgk—l) o [YOo ¥ - Rp(k—l)] (5.11)

It is also possible to obtain a recursive form by

using the matrix inversion lemma for -

P. (k) = % R 7(k) (5.12)




as . ’ . e

P, (k-1)¥(k)¥ (k)P (k-1)
(5.13)

P.(k) = P, (k-1) - =
1+ ¥ (k) P (k-1)¥(k)

b

~to refrain from taking matrix inverses. The above. also
constitutes a simple example to obtain a recursive iden-

tification algorithm out of an off-line method.

Now introducing the. linear finite dimensional predic-

tor model

' . {y(k)}
¥(k+1,0) = F(O)¥(k,0) + G(O) i‘ g
o | ulid] L
y(x|0) = H(OI¥(k,0) ' , © o (5.1W)
defining
a o R g

where € is the prediction error. One can differentiate Y

and augment to the state equations to get

<
—
~
~—

£(k+1,0) = ACO)E(K,0) + B(O) .

Ty
c
~—~
~
~
| IO

- T

b = c(®)E(k,0) (5.15)
; coly(k ,0) '

-



where col(.) denotes transforming a matrix into a column

‘vector. Let us now minimize the quadratic criterion
1 . 2, any oo R ‘
5 E {e“(x,0)} =v(O) (5.16)

N

in terms of the‘predictioﬁ'error by differentiating with
i . L .

respect to ©. The minimizing © can-.be found by the recur-

sion

<

8(x) = B(k-1) + YOOR, W [x,8(k-1)]e[x,8(k-1)] (5.17)

to calculate RP as an approximation of the second deriva-
tive of the criterion function, we let

k
z

=

R (k) 2 widy (i) (5.18)

i=1

and written recursively as
. T . . :
R, (k) = R (k-1) # Yy (k) Wiy (k) - R (k-1)]  (5.19)
this choice is called the stochastic Gauss-Newton algorithm.
We could also choose RP as identity. This would lead to a

stochastic gradient algorithm.

Several types of algorithms can be classified as re-




cursive prediction errér;mefhods, such as maximum likeli-
hood [20,21], genevralized leést squareé [22], finstrumenfal
‘variables‘[QS], modified.extended Kalman‘filter [24], and
pseudo linear_regreésibn}métﬁods;'.We will’bé_dealing.with‘
modified,exténdedvkalman filtér in Chapter 7. In tﬁe fol— 
loﬁihg, we will deal a litfle Bitvwith pseudo linear regres-—
sion methods as theY;hepreéeﬁtiapproxiﬁations to the re-
cursive prediction erroh methods, rather than direct appli-
cationsfas.inibtheffélé0rithmé. We é?art with iinearvpre— 

diction. model

Y(k+1,0) = F(O)Y¥(k,0) + G(O)-
CFkle) = eTw(x,0) | 3 . (5.20)
Let us,assﬁmenfor a moment as if ¥ were not dependent

upon ©, ‘and so'nqt donsider 0 dépendancy of ¥ when taking .

derivatives. Therefore,

y(k) = 0 ¥(k) + e(k) - (5.21)

and- the estimator becomes

B = BU-1) + YUOR T (O¥(R)E ()

e(k) = y(k) - 8" (k-1)¥(k) ) i

, e o - |y (k)

Y(1+1) = P8GO J¥(k) + 6{0(i)] | ; (5.22)

: ,%u(k)g



This class of parametergeétimation schemes, which
includes exténdéd least squares [25,26];-extendea matrix.
method [27], modified reference method of'Landau‘[28] can
>bé seéh.as abproXimationé toftherpredictith errOr‘identi—

fication‘méthdds,

Anélysis bfvfecuréive prediction error methods leads |
to certain interesting fesults, onekof which 1s that théSe
algorithms convefge/wifh probability one to a local minimum
of the exﬁected value of the chosenicriterion.”’That means |
their convergence properties,#re the'séme as.off-1line pre-
diction error methods. Anothér point is that the asympto-
tic distribution'of'theée aigorithmé are the same aé‘the~
asyﬁptdtic distribﬁtion of offéliné methods. A third p§int
is that the cgnvergehce of pseudo—linear‘regression methods
requires the positive realneﬁs of certain trénSfer functions -
_relétéd to the ﬁnknown\systém} So the convergence cannot

bé ascértained'beforehand [13]7

5.3. CLOSED-LOOP IDENTIFIABILITY

In some cases, identification of systems cannot be
done open-loop due either to'séCurity reasons as in indus-
trial processes or that the system is inherently closed-

loop as 'in biological or economic systems. To extend the



identifiability concept to g;oéed—loop systems, we will
present the féllowing discussion which appearé at ldngth
in [29}. We will use these closed-loop identifiability
»besults iﬁ_the next chapter in pro§ing the convergenCerof.

our algorithm.
Let us assume that»fhe true system.is given by

y(o) = 6 (¢ Hull) + H_(a"He(k) (5.23)
{e(k)} is a sequénce 6f independent random vectors with
zero means and covariance L.- Let us also assume that,
without loss of generality, e(k) has the same dimension as
y(k)} Let Hs(o) = I and dexIHS(z)]vhas zeros outside the

1 o

unit circle. This assumption is for securing Hs—l(q
be a well-defined stable filter. To ensure that this

puts no restriction, see the representation theorems in

Chapter 3. Consider,

|

(k) = F,(q My (k) +~Li(q_l)V(k) (5.21)

1 <i<h

Notice that the feedback law and the térm consisting of

the outside disturbances and set point effects are allowed

~

to change between: h different cases.



A model for a certain yalue of O is
: _ -1 ' -1
y(k) = 6 (q ulk) + H (q ")e(k) (5.25)

ffé(k)}'i;,a}seqhéh¢§~bf'iﬁdepenﬁent panddm vectors with
zefo‘méan'values and éovariances.E..’We’assume that we use
a prediction error identification method. In direct iden-
tification; inputé,and outputs ‘are processed as if they
were obtained ffdmian~bpeh loép system, whereas in indirvect
idéntifiéatién, in the»first step; the closedeldop éystem
is identified, then we solvg for the open-loop system uéing

knowledge of Fi and Li' Let us define
DT(S,M)>= {QJGM(Z) = GS(Z) énd HM(Z) = HS(z) a.e.z}

which is the set of‘pérameter values which result in the
modéels having the same system and noise transfer matrices
as the true system. Let us present two handy definitions

of identifiabilifyt

DEFINITION 1v
The system S is said to be system identifiable if

@N+DT(S,M) with probability one as N-w.

DEFINITION 2: .

AN
The system S is said to be strongly system identifiable

P



if it is system identifiable and DT(S,M) is non-empty.

The main theorem for identifiability analysis is the

following{-

THEOREM 5.1:

N

Consider the system in Equation 5.23, with the condi-

tion in Equatién 5.24; and identification with the model

in Equation 5.25 with either the -direct or indirect method.

Other assumptions avre:

o
{

‘1)

2)

3)

4)

There is at least one delay in the system and/or

in the_.feedback law.

The cloéed—loop'sysfém_is-asymptqticaLly stable.

'DT(S,M) is non-empty, which means that the system

is iﬁcluded in the considered class of models.
The possible correlation of v(k) and e(k) is

described by

1

v =K (g D etk) + () O (5.27)

where Ki.is a causal asymptotically stable filter,

v(k) is independent of e(k) and persistently ex-

' citing of any finite order [SO]Q

‘There is a delay from e(k) to Gsfq—l)u(k).

Then the necessary and sufficient condition for strong



system identifiability is, that

‘rank Ry dimy %;dimu (5.28)

where

I "v" I | 0 "- .. v 0 S
L e ([ (5.29)
L?;(z)_f.f Fn(z)‘ Ly(2) e Ln(z)‘ 

The proof is given in [29].

SPECIAL CASE:
In the case of pure linear feedback law with L; 20
~ . .

Rh reduces to

(5.30)

a necessary condition for strong system identifiability is
that hzho = smallest integer > 1 +‘dimu|dimy._»Prdof is |

givén'in Appeﬁdix C. In the next chaptér; we will utilize

this special case. -
5.4. AN INTRODUCTION TO PARAMETER ADAPTIVE CONTROL

In this léstrseéfibn‘of this chapter, we make a brief

introduction to the simplest type of adaptive controllers

which make use of parameter estimation, némely self-tuning’




- algorithms., In the next chapter, we will mention alterna-

tive ‘design techniques in state space.

It is éhstomary to classify the adaptive control tech-

'ff niqﬁes'as7paésiVey(non%dﬁélt0r¢féedbéck) and_actiVev(dualv"

or closed-loop). .What makes the difference is the infor-
mation amount available to the céntfolling‘meéhanism‘and
this,"in:turn, dépends on“the'étructure of the performan;e

" index. If»the‘perférmanCe'index is one-step ahéad'as in b
non—dual cbnffolleré, the controller then takes into account
only the previoué measurements and assume no further infof—
mation will be available. Minimization of a loss”function
of several steps aHéad,thWever; as’in‘fhe céée of dual
controlleré, means that the loop will reméin closed in,the
future and will lead to a depenaeﬁ;y on the future obser-
'vafiqns, but we doyﬁotvgean the vio%ation of causality.

The dual controlléfs; in genefél; enéure befter compromisé
between control and estimation but are more complex in
sfructure. - The non—dua;~éontfollers can also be classified
as certainty-equivalent and cautious’ccntrollers. The cer-
tainty equivalent‘cqntro;lers do not take into considera-
tion that estiﬁated_pafameters are not always equal to the
true'ones} but use these estimates whefever parameters are\
needed to form the control iaw; Cautious controllers are

designed according to separétion.principle which allows the



)

use of the parameter estimate in the control law with its
associated uncertainty, 'so these controllers are more
~"cautious" as the name implies. More on these classifica-
tions and pe;atiQe‘merité of each fyﬁe:of controilef can
~be féuﬂalin [31] and [3215§gqgg_dthers.‘-Wé'shall'deal'in
this and the next‘chaptér with passiyé contfollers and in
the last chapter wifh acti;e.controllers whicb entail extra
computational fequirements. Lef us; for‘the moment, ré-

strict ourselves to the self-tuning algorithm;of’Xstrém [33}l

Let us consider the system

D(z2)

: _ B(2z) . Lo , R
y(k) = m\u(k), + c(2) E(k)“» » (5.31)
where
B(z) = bga ¢ +b_z "
a(z) #‘l + a z_l + ... +azt

- A . _.n .
Let us, for the moment, assume that B¥(z)=z B(z) with-
out any vroots outside %he unit circle. Then the control

sequente which minimizes

} (5.32)

J :’E{yz(k+d)|Yk s U]

5o

where

Y T vy (-1, d, 0 = fubo,ulk-1), .03
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is given'by o ‘ .

u(x) = -[a(2)6(2)|2%8(2)c(z)F(2) ]y (k)  (5.33)
where F and G are found by = .
- D(z)|c(z) =;F(z)'+‘z3dG(z)|C(z) (5.3u)

- -1 -(d-1)
F(z) = 1+ flz + .. fd—lz (5.3?)

PROOF:

'Substitute Equation 5.34 into'Equation'S.Si

4 . ‘
G
y(k+d) = ZfA—(Ei(z—;-.)-’g(k) + FG)elked) ¥ ng; e (k)
;‘ZdB(Z)ﬁ(k) ' f(‘)e(£+d) B
) = E U + (z
G(z) :C(z) B(z)
ol 3 v _ [B(z) d  G6(z) G(z) -2
Et (k+d) { Uyl = A7) (z D(z))u(k) +,5TET y (k)|
+ (1 + f + £ 2) z
1 d-L

E{y2(k+d}}_is minimized when u(k) is.chosen to satisfy

G(z)

r.d G(z)]
D(z)

y(k) =0 (5.38)

(£5.+

Manipulation gives Equation 5.33.

)



For >models in least squares structure

ACz)y(K) = B(z)u(k) + (k) (5.39)
T .
. TA(z) =1 4 2,2 T4 ... +oa s
; ‘B(z) = b.z % 4 o+ b o2 ‘(S.Ao)
T 1 n ‘
Let B
gl = (bl,GT) ‘ (5.41)
-where
ol = (bé,bs,...,bn, al;aQ,...,an) (5.42)
then | ' ; » B o . .
y(k) = gT(k)fo,blﬁ(k—i)_+ e(k)¢ . (5.43)
£T (k) = [ulk-2), ... ,ulken), -y(k-1),...,-y(k-n)] (5.u4)

‘The minimum- variance controller is derived using the fact

that the particular u(k) which minimizes E{y2(k+1)} is

u(k) = gT(k+1)e[bl (5.45)
‘To be .able to use'the‘minimhm vafiance controller, one
needs to know the parametér values. Since the true values
are not always known, then they are replaced by their cur-~

rent estimates which results in a certainty equivalent




non-dual controller. A common paraméter estimation schemen
used with minimum variance’controller is the fecursiv;
least squares idehtification method. The resulting self-
tuhingfregulafor hés fﬁe unexpected property that the’
échemé may]c§h§ergefto'the‘ééfﬁectrcchfro;ler é&en though”
the original system ié.hét\in:iéést squares class [33].

5.5. CONCLUDING REMARKS

In this chaptef, we have introduced the problems of
open-loop éﬁd”closed—loop‘identification of systems and
édaptive control, The'subjéct matters we touched upon
ﬁéréHCOmplétely Heféfmihediffom'a ufiliianién{viewpoint,
 sin¢e we will be'ﬁsing'and extendihg tﬁe toncepts involved.
in the following chapters. We will be using the recursive
predictiqn‘error’identification me thod presénted in this
chapter in°a.éértéiﬁty equiYalent control structure and
the results in the section oﬂ'closed—lOOp identifiability
‘will be héed.iﬁ'pfbving'the'COnvéfgehce/of the overall

resulting scheme.



CHAPTER 6

| }STOCHASTIC ADAPTIVE RECEDING
HORIZON CONTROLLERS

6.1. ,INTRODUCTiON

A suboptimal adaptive ééntrol élgorithm forvstochas-v
tic systeméfwith unknownvparaméteré is propésed,in this
chapter. >The lineéh controiﬂlaw is certa%nt; equivalent
in the sense .that it is linear in the estimate;yof the
states -and that;the feedback gainkmatrix is calculated
using the‘eétimates of the“unknown parameters. In the
sequel, the control scheme is separated into ;n adaptive
vestimatop,wﬁich siﬁﬁlténeéuéiy estimates the states and
identifies the parémeteré Qf'the system, and a certainty-
equivalenf.controller.which makes ﬁse of the state and.
parametef estimates as if they weve the trué values. For
the estimation,part;'the adaptivg estimator of qupg [3&]
is‘employéd éna'for tﬁe‘COntrolﬂstage, the receding horizon
concept is hadebuSQZOf. Wé ailowygomé of the péramefers

in the system and measurement equations to be unknown. The

system dynamics and measurement equations. are given by

N
~—

79




i

x(k+1) = A(O)x(k) + Bu(k) + Ky(k) - i(6.1)

Y(k) = 0C x(k) + v(k) \ (6.2)
‘where x(k) is the nxl“staté/vector at the kth timg:instant,
(k) ié?fhe,ﬁx;_dete?ménisficiipput vebfqrgﬁy(k)~is_thehl
kéorresponding pufput;véctér of dimensions“pxl and v(k) is
“the noisé sequénce whose-sfatistics are known. The noise-
sequence is agsuméd to be zero méan thte Gaussian with
covariance E{V(k)VT(j)}"= QV5(k,j),' In this formulation,
the pxs mgtrix @ contains all thefupknowﬁ pafaméters in
thevmodel. Theréfore, the systemrmatrig A(65 $nd fhe out-
put matrix OC are completely determinedvif the parameter

: maf?iX,O iskknoﬁﬁ; Furtﬁérmore, in this formUlation, a
pértiéuiar ﬁarémétérizatioﬁ éuggested by -Lijung [34] is
‘adopted and_thé‘sysﬁemAmatrix is‘assumed;tp be in the form
A(0) = A + GGC.. ?his fofmﬁlatién is generai’encugh,to
contaip sféchastic‘differenéé equations with random paréQ

meter [su].

The problem is %o .obtain ‘the control sequence u(k) for

kZ0,1,...,N-1, which minimizes
-1 | - |
E{z u (k)Ru(k)} (6.3)
k=0 |

subject to the system dynamics of Equation 6.1 and also to



the constraint

E (0D} =0 (6.u)

where R is a posifive définite mafrix and N:is the Pfede-
téfﬁinéé'hpfiébn‘iengfh;  For tHé oVerailié§nffoiiéf~stfuc—
ture to be'implementable;/we require the control at the
kth instant to be a function of the iﬁformatioﬁ state
{Yk’Uk—l};Whéré Y, = {y(o),y(i),..,,y(k)}, and U, _, =
{u(o),ﬁ(l),...,u(k—i)}. IfitheAParémetef matrix is known,
“the resuits age‘the éxtension~of Thomas' recediﬁg horizon |
controller to the stochastic-case aé demonstrated in Chap- j
ter . Buf with unkﬁown baraméfers; the cqntfdller struc- %
 ture must“bé iﬁpfoved*té'iﬁcludé'adapfat%onffo the parameter ;
idéntificatioh proceés. ‘The configuratioﬂ\of the control- }

ler to be used is shown in Figure 1. - ‘ B s

e S, .
| : R - v |
o i Paramgtgr-gwﬁ.uﬁu e v Cont?ol |
; Identifier: - : Gain |
. .; :> F ’: : ’ i |
TmTE L T . - |
System o <, 1
P Eo f |
o i H . i |
RN g v v —t i .: i - -~ {
! ! i -State . . |
L - o . : : - .
; Le--bm Estimator g omoe——e
i i ’ . .
; R

FIGURE 1. Stochastic Adaptive Controller Structure.




As can be noticed from the figure,‘thé controller
does nqtbtake into éccount.the uncertainty/associated with
“the identificatioﬂ.of the'parémetérs,vbut aCcepfs the para-
me ter estimafes as if they‘wéné the true values of the
' p§rame£ers;’that>ié,“inithéitérﬁé defined‘by Wiftenmark
[32], the cbntréller ié‘hbf'"continudus“ but simply "éer_

tainty equivalent".

- . .
- S

Siﬁilér'éontroller configurations in state spacé have
been implemehted/so‘féf’With différent realiZations'for
the constituent sdgsystems. ~The parameter-adaptive self
organizing controller of Saridis [35], for example, is

-

.realized~with.a'fifét,ofdgr stochastic approximation algo-
Fithmkfof béramétér'identificatidﬁ, a Kalmaﬁ filtef for
state estimation, wheféas the control gains are\computed

b§ either the steady state dynéﬁic_bfogramming equations

or by "one—stép—ahead";apprdgimafions (called per-interval
control). Alag and Kauféan7[361 have designed a compensa-
tor which.isicOmboSed‘6f¥én”on;liné weighted least squares
parameter identifier, a Kalman state estiﬁator and a model-
following qfntrol lAW‘making use of é'single;Step pérfor—
mance index. KreiSselméief [37] suggesfs a bontroller,cbn—
~figuration where the feedhaﬁk laws arekcomputed based on

the current estimates of the parameters and states. Cao [8]

has used the '"per-interval" controller of Saridis in con-



junction with a first order stochastic approximation type
parameter estimator and a steady state Kalman filter for

state estimation. But the bias in the parameter estimates

led to control inconsistencies.

In the sequel, a new SUBOPtimal‘COhtrol algorithm/is
suggested for the same controller configuration,; which we

think has the advantages of simplicity‘of implementation,

generality offapplipation and good performance qualities. -

6.2. THE ALGORITHM

Let us first consider the case :where the parameter
matrix is known.: fheirésultsiof this certainty-about-.
parameters (CAP) control problem are given in Chapter Uu.

The optimal control vector u¥# is obtained by -

et (k) = FR(K) k=0,1,... (6.5)

with the controller gain matrix F, as in the deterministic

case Dbeing calculated as
F o= -RTIBT[W(o0)aT]? (6.6)

where W(o) is the zeroth index solution of the backward

iteration




W(N) = bv (6.7)

I

AT [weiv1) + BR7IBT

N -1, Ty,~-T"
W(i) Ja™%,
provided that the system is controllable and N>n-m+l.

The state vector estimate is obtained by

C R(k+1) .= AR(k) + Bu(k) + Ky(k) = (6.8)
or equivalently, upon substitution of Equation 6.5 into

Equation 6.8 by
S %(k+1) = (A + BE)R(k) + Ky(k) " (6.9)

when there exist some unknown parametefs either in the
system equation or in the*measurement‘equation, the 'state
vector can be augmentéd'té include.tﬁe unknéwn<parameters
.and'the augmented‘vector can -be estimated;‘ Hdwever,.this
oprocedure would lead to estimation énd subsequenct éontrol
of systems with nonlineaf dynamics which we shalivtreat in
the next chapter. To avoid tﬁis noﬁlinear control problem,
'a certainty- equivalence is imposed béth-with.respect to
state estimates as well as therparameter estimates ensuring
ease of implementation and realizébil;ty of the control

scheme for high order systems .

As a result of this.enforced certainty-equivalence

the stochastic adaptive control algorithm becomes
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(k) = FOORGO = RTIBTG0R 0] RO (6.10)

~

where K(k)ﬁA+G6(k)C-and W(k,o) is the zeroth index solution

of the backward iteration

M(k,i) = A0 YWk, i+1) + BR7IBT]ATT(x), W(k,N) = 0 (6.11)
If the chosen horizon length N is large, then doubling
élgorithms may be employed as demonstrated in Chapter 25
thus avoiding matrix inversion at everyvstep of this back-

ward iteration.

Notice that the controller gain Equation 6.10 depends

on A whichfchanges:as,the’pafameter estimates are changed

at. every stage along with parameter identification.

The estimates for the states and‘the‘parémeﬁers are

computed by

R(k+1) = [A(x) + BF(K)]R(K) + Ky(k) (6.12)"
67(k) = 8 (k-1) + [y(k) [r(k)]eR(K) [y (k)
- 8(x-1)ck00)] © (8.13)

r(k) = p(k-1) + vy [|]egG |12 - v(k-1) + 6] (6.14)

In this algorithm, Y(k) is an arbitrary scalar gain




séQuence which satisfies Dvoretzky's conditions [39]. The
- arbitrary constant Y is a éﬁéll positive term used to pre-
vent r(k) from taking anthé null value. it can also be
'noficed'that thé ﬁarametér iéentifier‘is of a stochastic
'apprQXimation ty§e-wheré'r(k) is the trace of the un¢er—

tainty matfix.asséciated with. the parameteb identification.

The algorithm is started with an arbitrary 6(0) for

any given %(o).

6.3. CONVERGENCE CONDITIONS

The convergence of the proposed algorithm is closely
~related to the conditions of identifiability for systems’
operatihg under feedback. These conditions have been

established by §éderstr6m et.at. [29] and in the previous

chapter, for multi-variable systems in a feedback loop.
Here, we will demonstrate that the propcsed algorithm meets

the conditidhs for’CIOéed—loop idéntifiability.

Figure .2 depicts the configuration of the adaptive
stochastic controller together with the system’whqsé
closed-loop identifiability will be examined. Subsfituting

Equation 6.2 into Equation 6.1, we get
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FIGURE 2. System Operating Under Feedback.

x(k+l) = [A + (6+K)0CTx(K) + Bu(k) + Kv(k)

RCOYx(K) + Bu(k) + Kv(k) (6.15)

the transfer matrix HS fromv to y is found to be
- - R , Loy .
‘ Ho(z) = 0C(zI - A) 'K + 1 ‘ (6.16)

Considering the estimator of Equation 6.12, the transfer
matrix from y to % is obtained as [zI - (K+B§)j_lK and

thus the transfer matrix- from y to u becomes
S .~
o F; o= FleI - (a+BF)] K (6.17)

Finally using Equation 6.15 again, we find the trans-

fer matrix from u to x to be

Gg(z) = 0c(zl - &) 'B (6.18)



Thé Subscript i in the feedback matrix of Equation 6.17
denotes the different values of F(z) due to tuning by the
pafameter identifier.  That is, the feedback law shifts
between h aifferént caseé,AWhere each pgSé is to be used

= ing;'nonfneglible?part~of the - total control period.

: 'ﬁxamination~of the transfer matrices.gi&en above
will show compliande with the idéntifiability conditions
of Cﬁaﬁter 5,’.0n¢’¢ahi§bsérﬁé fromﬂEquation 6.17 that the
feedback{l@op4coﬁfains the necessary time delay for closed-
ﬂlobp-identifiability.‘ Also, it is assumed that the para-
‘meter eétimates do not éhange drastical;y,'aﬁd that they
éonétitﬁte a éét‘of pseudo-statipnary poipts of 0per;tion
""each taking‘sufficiently,long”dhrafion to'ehéure’an h-shift
in.feedback laws; where‘h is the émallest integer such
that hil + dimuj{dimy. This assumptidn is strongiy baéked
up b& si@ulations.r If these weak conditiOns'ére satisfiéd'
then the only remaining condition for identifiability is
thé théofem‘in~cﬁap£er 5. :Thelasymptotic»staﬁility is,
in tufn, secureé by the identifiabilify. That is, in the
limit, if the true valﬁés of the parameters are known,
then fhe proposed~stochaéfi¢,rec;ding horizén controiler
“is sufficienf fo render the System‘asymptotically stéble
’(Chapteryu). This means that, in this case, aéymptotic

stability implieé and is, in turn, implied by the identifi-.

e



ability of the closed-loop system.

6.4.  SIMULATION RESULTS

- " Several systems have been éimulatedjand the proposed 2
- algorithm converged in allkéases. -~ Some of the Simulated

systems ‘and the~achi9ved results are reported, below:
SYSTEM 1) x(k+1) = (.5 + 1.50)x(k) + u(k) + 1.5v(k)
| y(k) = Ox(k) + v(k) with v(k):N(0,.25), 0 = 1

Clearly, this system is unstable but controllable.

SYSTEM’Q) x(k+l) = (-,7 + l.SG)X(k) + u(k)‘+ 1.5v(k)
y(k) =_@x(k) + v(k) with v(k):N(0,.25)y O = 1
This system is the fivrst standard example reported in

Séderstrdm [HO}.'

SYSTEM 3) x(k+1).= (.83 + .150)x(k) + .lu(k) + .15v(k)
| Cy(k) = @x(k) + v(k) with v(k):N(0,.25), © = 1

This system is obtained from the same continuous time sys-

tem that System 2 was obtained, but with one tenth the

sampling period.



SYSTEM 4)

y(k) = [a" b] x(k) + v(k) T .y

with v(k):N(0,1), a = .95, b = -.05
This.éyétém‘repfesentsﬁthe dynamics of the pharmacodynamical
application'reported'by Koivo [44], who studied the con-
- trol of infusion rate of a drug for bilood preSsufe regula-
tion. In his paper, Koivo used a minimum variance regu-
- ‘ - ’ (
lator not penalizing the cost of input energy to comply
with microprocessor requirements. The proposed algorithm
penalizes the input energy meaning that it restricts the

infusion vpate of the drug while regulating the blood pres-

sure.
{

ALl systems considered above are obtained from an

ARMAX model of the type-
y(k) = ay(k-1) + bu(k-1) + v(k) + cv(k-1)

‘with the following constants:

1l
N
v
o
"
-
w
[¢]
1
i
o

System 1) a

I}
a0}
-
o
H
[}
-
o
u
~J

System 2) a



.98, b = .1, ¢ = -.83

Sjstem 3) a

n

o

]

!
o
v

.
0

I

o

System 4) a .95,

:The»simulatipn_¢ffthese systeméfexhibited the following
';~geheral'propertiésrbf the proposed algorithm:
1. -Effectivé'fégulafion‘to“Zevo:‘ System 1 and Sys-
tem'2'were.contrblled by the proposed adaptive receding -
horizon schémé}v In 50 iterations, the following results

were obtained for the avérage-value of the estimate

507 :
(1/50) © ®(k)r
k=1
System -1 with l-step ahead controller: -00586
System 1 with 4-step abéad coﬂtfqller: .0109
System 2 with l-step ahead cohtrbiler: '.0316
2. 'Regulation to Non-zero.Set Points: For System ﬂ,.

we applied the concept of regulation to non-zero set points

'mentidned in Chapter-éd The 'desired final state for7-x1

was 50 mm Hg—belbw that of the bperating‘one. In a few
iterations, wé had 1.64’percent;érror in control and zero
percent error iﬁrstate-estimatidh:. As can be seen, the
non-singularity of thé transition matrix is well taken

care of by the method prppoéed‘in Chapter 2.



3. ‘Success of Adaptation: Jacobs et,al.,tHQ],suggests
) ; .
that the incremental coéts dfter many stages of operation
can be used as a measure to evaluate the asymptotic pro-
“perties of controllers. _Sméll;inqrgmgnta; gdsts as com- .
 péred“with the inqréméhtalldosﬁSﬂbfathe geffgihiy_aﬁouﬁ
parametefs,case_woﬁldvsuggés{,suqcé%sfql'édgpiatién.vvihé
perfbrmanée for Systéh,l of‘fheﬁi—ste§<ahead_adaptive
controller waé_comparédkwith’théf of thé.lFstep éhead CAP
,controller using the iﬁcrEmenfal cost 2(1000) + u2(999).
These costs differ from each other by 2x10—4’which~means

very good adaptation.

4. Iunability by the Choice of Horizon Léngth: Bet-
ter performance was obsepved With,feweréstep~ahead‘control-
ler. The table below gives a comparison of the performance

-

of l-step ahead and 4-step ahead cbntrollers for System i

at k=3000.
, _ ok k-1
r(k) 18-0] |R-x] T £ &(i) X £ P4y
X .° X :
l—l ) l:'l_
l-step ahead .5571 .0080 - .0000 L0207 - 2.718
4-step ahead .7446 .0028 .0000 -~ .0415 2.561

This behavior is‘éttfibuted to the lazy character of the

4-step ahead controller sihpe it is given the information



that it has U4-steps before it to achieve the control.

P

§. Tunability by the Choice of Sampling Period:

,Systemf?;éndiSYstem"élare”bbtainedAfrbm‘thé-same continu--

- ous-. time systen. iHbWévér;rSysfém.S'hés a sampling period '~
‘equal to one tenth of that used for System 2.  The accuracy
of control as measured by 1/k - £ ®(i) is .023 for System

i=1
2 and .0065 for System 3 with k=3000, which indicates

_that, in general, shortening the sampling interval results
in a better qontroller."The original continuous time sys-

tem- was

Q1) = -.2x(t) + .Bu(t) + 1.5v(t)

Y0 = x(H) + v(e)

and a first-order approximation has been used for discre-
. ;

tization.
5.5. DISCUSSION SR :

As can be noticed from the above presentation, the
\ .

algorithm has séveral distinct features to be emphasized.

1. Due to the inherent property of recéding horizon
controllers, the désignér does not have to choose any state

penalization matrix whose choice of relative magnitude



. . \
with respect to the input penalization matrix is more or

less a trial and error‘procédupe as.mentioned in Chapter 1.
For single input systems, one does not even have to choose
théiihput'penaiizatién:conétéﬁt,abecéﬁse"it e&enfuaily caﬁ;,-.
vvcels‘iﬁ?the~calculafibnsJifH6ﬁévéf{‘fﬁé pecéssaby'tradqu
off between the input.energy»and the system“behévior quali-
ty is alwéys conser&ed. | |

0y

2. The choice of horizon length adds a flexibility
to design. Stronger control is associated with less number
desteps before the controller. If the choice of N is

large, one caniuse the ‘doubling algofithms of Chapter 2.

3. Even thugh thiskgﬁposition includes multidimén—
sional systems with multi-parameter uncertainty; no use
isvmade of matrix update_equatipps for state and parameter
eStimatién gnéertainties whose ﬁresence consfitute most of

the computational burden of other methods.
4, The chosen parametrizatioq is general enough to
contain the ARMAX model
y(k) + Aly,,,(k—l) t .+ Any;(k"n'a) = .Bl,u(k-l) +
+'Bmu(k'nb)-+~v(k>_+ Clv(k-l) +

+ va(k—nc)



(with

x(k) = [yT(k—l)b... yT(k—na)uT(k—l)

1
|
1
uT(k—nb)VT(kfl)'...'VT(krn )]T. : :
R MR ,, Te s I j
and proper choices of coefficient matrices and veCtors'[Su])

5. All thé'abovevéimulatidné and thg-convéfgence |
Naﬁélysis is doné witﬁout,reéértifo an>eXternalhperturbéfiQn
signal.: Pfesencé ofvsueh é éufficiéhtly:exciting signal
is considered to be a ﬁust by magy authors such as-[34, 35,
37; etc]; OUr‘éimﬁlatiéﬁé yéfifiéa'thétrthe idenfifier
‘;ﬁfficiently’tuneé the ﬁéramefefs of tﬂe controller to
provide the neceséary shifts_in gontrdl law, needed for

closed loop iden%ifiability.
6.6. CONCLUSIONS

An adaptiye céntrollér'for linear Stochasfic‘systems
with paraﬁéfer ﬁncerfainty\ﬁaé been iptroduced. The.cﬁn—
troller is‘certainty equivalent in'both the parameters and
the states in the sense thatvitAused'the parametef estimates
‘which depend on the state éstiﬁates instead,of the true

|
\
parameters in the controller gain calculation and makes use i
\
of the state estimates depending on the parameter estimates |

|



instead of the true states in the feedback law. Another
way to pose the situation is that the identifier tunes
the parameters of both ‘the constant deterministic feedback

‘gain and state estimator.

The propbsed‘ccﬁfrdikalgérithm_fepréséhfsian impro#ee,
ment 6vér;thévse;f?tqﬁing fégulators-which do not penalize
the enérgy spent in ¢bntrol,’thusfachieving fheir aim by
. using invSOme—caséé unacéeptably high éﬁergy; The proposed
coptroller is aflso an eXtention of the popular controllers
using linea£ quadratic cost,;riterié, but thch‘consider
only one—steﬁ—ahead‘effects."This algori{hm givés_the
designer'the'possibilify.of penalizing the amount of energy
sbent and the fiéxibilft& of tuning with différeht.horizon
lehgths.‘.This confroller with the enfofééd certainty
equivalenée with respéct to both thé stéte estimates and
the parameter-estimates is 5y far simpler to implement
aS-compared with the control law using the on-line solution

of the matrix Riccati equation.



CHAPTER‘ 7
 SOME OTHER POSSIBILITIES OF
DESIGNING STOCHASTIC ADAPTIVE
CONTROLLERS

7.1. INTRODUCTION =~ o

Up to'now, we have been Q§ing a very'simplé but ef-"
fective identificatién schéﬁe to find the unknown cons-~
;stanf parameters in fhe‘signal‘model.‘ Actuélly, neither
this séheme nér'the1ofher‘idéntification,schemesnexhauat
the possibilifiéé to.search for the unknown parameters.
For example, other mé%hods such as time-series analysis
exists to be uséd'wifh'ready test data.caléulating off4
line .the signal model output covariance and the problem
then'is‘toimafch~a'prbpér;signalwmodel'to this output co-
variance. If bne is suppoéed\to find the parameters on= ‘
line,.aé in the case of an adaptive control situation, an

Qb?ious péésibilitj is to use non-linear filtgrs to accom- |
modafé"for'augmentétioh of the parametérs'to the state i
‘équation‘so'as to eSfimate‘thm as states. Another\possibl%
approach is a parallei processing scheme in which for all |

98



possible values of parameters, one uses Kalman filters

operating in parallel, each designed using a discrete

value out of that possible parameter set.

Eviééhti},,tbe%é mé?héasngdﬁidygﬁgéfiy'iﬁcféésé:tﬂek
'cdmpufafiohéi‘feqtireméhf§ $ﬁ§hfﬁ;f;féré'ﬁofJﬁégbptea t§ 
in this woranH§Se hain buf?déénis fq desigﬁ>eaéily iﬁble—
mentable schemes. Héwe&er, we sﬂéil'bfiefly ﬁenfion them
hére, first‘fo”indicate»fﬂe ébssibilitiés they'presént‘in
stoéhastié adaptive coqtrol and,_seéond, té,éxcite fur#her
research work in adaptive estimation, for adaptive estima-
tion by itsélfbstands aéva Qést'aréa/fof fdffher research.
It is demanded from the reseawvch workers to try to reduce
the éomputatiénal compléxity}ofgthe adap?ng methqu,;so
that they can be uséd‘mofe effectively in- a.real situation,
perhaps with sﬁall—size digitalvcoﬁputing facilities.

Anothep‘éxtension in stb;hastic adaptive control
might be to estimate the charactgristi;s ofithe random
disturbanceé actihg on the system. Actually one'iaealizeé
the situation a bit saying‘that.the ;haracteristicé of the
noise acting on the prbcess is known éxactly from the
start. It may be that the disturbances are too obsgure to
yield to easy formulas and one may -be obliéed to estimate

the characteristics as the process goes on.
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In the first section we deal with extended Kalman
filtering for simultaneous on-line state and parameter
estimation. Receéent convefgence results of Ljung will

. ~also be includedf” In”thé'next section, pafallelAprdces—

Asing=ﬁethdds‘fhafzmake'use5of parameter detection are in-

troduced. Lastly, sdmefhighlightSffrom among the techni-

ques of adaptive noise estimation or of determining the

filter gain without knowing the noise covariances are in-

cluded.

7.2.  SIMULTANEOUS STATE AND PARAMETER ESTIMATION OF
EXTENDED KALMAN FILTERING

Let us suppose that'fhe,model of the system ﬁhosé

states and parameters are to be estimated, is as follows:

K(k+1) = ACO)x(K) + B(OIu(k) + v(k)

y(x) = c(@x(k) + wl(k) (7.1)
~where | |
ElvOov ()] = Q 80,2, E[wGOw (0] = Q 80k,80)
_B[v(k)wT(z)J = QCS(k,Q)? E[x(0)]
| CE[x(o)xT(0)] = X, (0) - (7.2)

He assume'differéﬁtiability with respect to O of the

parameter dependent matrices. Notice that in the above
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equations, we suppose fhet‘the noise covariances to be
independent of the unknown RarametersQ 'Iﬁ the last sec-l
tion of this ehapter, we will take up the converse appreach
' thefrthevoﬁlj”unkneﬁﬁe efe:tﬂevneiée_ceveriances."Te
;Simuifaﬁeqqslyfest;metegthe stafes;and‘paremefers of the
eystem5 we augment the pareme%ef‘vectof.to>fhe state vec—

tor, considering the parameters as constant states. There-

fore,
(% () ]
z(k) = | (7.3)
Lo(x) ] |
and )
' o o (v(k)l
z(K+1) = flz(k),u(k)] + | ‘
| @l |
S = n(z(k)) o+ ow() (7w
where
A x(K) + B(@)ulk) |
flz(x),u(k)] = ¢ i (7.5)

0

v o |
and

h(z(k)) = Cc(O®)yx(k)

So now. the problem is to estlmate the states of a non-

linear system.' Applying the well-known extended Kalman

filter equations, we obtain,
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2(k1) = £[200),u00] + NGO [y - h(2(kN], 2(o) = B

- | (7.8)

AY

NGO = {F (200,000 ]BG0RT(200) + 3}
HH(200)B00RT(00) + )Y

Bx+1) = FLE(0),u(kJFOOFT[200),u00] + Q,

- NGO [HEZ(0)IPOORT (2(k)) + @] N (X), B(o) = B_
CP[E00,u00] = gz |
: : z=%(k)
a8 L5 aeR + BlO)]
{0 . I I '
HIZ(k)| = g— hz)| = [c(Bx)) g@ C(O)§ N
| - z 2=2(k) - |e=0
Q. o N %] " x(0 )
Q. 0 ~ QL x| B L x
B N R LT I S DOl B S
Tojo of % to. ° e, ° 10 -z
L B L L0y i

ZO is an arbitrarily assumed value for the initial para-

meter uncertainty.

‘Although it appears that the problém is posed in a

good setting and the solution can be found in a straight

/
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“forward manner,lin some cases and‘most often wheﬁ the re-
éidualé‘are large (which'mgans that the uncertainty in
the'parametef estimate is large) and/or the input to the
éystem‘is small, theﬁfiltgr may diverge [2&].- This is
attribute@_to,the‘in@ependenqe=ofvthe filter_gain*of the 
ﬁncertainfyvin fﬁévﬁarametéf estigatgé}b,be déférminiStié
’modeis, where the steady stafe filter>gain‘doéé not iﬁyolve
the unknown pérameter‘inva natural‘fash;on, good doﬁvér—
gence is obtained. The convergencé’ana1ysis of Ljung\[24]
resulted in both an un&erstanaing Qf'the convérgence pro-
pérties of the filter and a remedial modification of the
algorithm which involved the inclusion of a term in the
élgorithm to obtain global convergence.. Extended Kalman
filter ié used in conjunction with dynamic,pfogramming in
control situations, for:e£aﬁple, by Bar Shalom [31}; and
presents a more exact answef than other suboptimal control-
lers, but it isfSO'cémpu%étioﬁaiiy'cbmplex"thatvit‘éan’bﬁt

be used with very.simple examples.

7.3.  ADAPTIVE ESTIMATION BY COMBINED DETECTION/
ESTIMATION APPROACH

In thisvapproach, ‘the unknown parameter vector O is
assumed known to belong to a discrete set Gi, which is
attached to an afbitrary probability distribution at the

outset. Next, Kalman filters are built to estimate the
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states of the systém.with,parameters Gi; They operate in.‘
paraliél, each producing outputs ;kle’ thch are the con-
ditional state estimates based bn‘their knowledge of the
sstem paramétefs.-fTﬁe meén estiﬁatezgf'the state is
found either as a;weighted SVW‘Qf'thé cbndifiqnél state
estimates, the Weights being‘the a—édstériori probébiii-:
ties of the parameters. Or the estimate can be found as
one that maximizes' the a—ppsteriori probabilities. The
update of paraméyér probaﬁilities is based on a likeli-
hood ratio approach ﬁtilizing conditional~Kalman1filtér
innovations énd theirp aésoc?ated‘covarianceé. The a-
ppsterioriiprogabilifiés p(GilYk), after some simple mani-
pulations; can be written in terms of likelihQOd functions
p(Yklei) recursivélyras [5]:

.p(y(k)lYk_l @i)p(eilyk_l)

PO Y, ) = , et — (7.8)
) p(y(x) ¥, _1,0,0p(0;|Y, )

o

-
L

i=1

where the choice of a—pridri pfobaﬁiiitieS'is immaterial
and thé denominator of thé expression is just a normali-
zation cdnstant. We assume, there are M different para-
méters in the set; For Gaussian‘signal models,‘using'éon;
ditional Kalﬁan filter innovations §i(k) and covariances

ELy,00F; G0 = o,k
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(0 VI‘YF ) = cle, T | Zex -5 7, (k)g vo ;
PER I = ociy UKL expLmm Y (k)yi(k)]p(OiIYk_l

(7.9)

Therefdre,ﬁkalman filters éonsfrucfed”fdr all.é., driven
. by y(k), produce at’eécﬁ stage,;the 1nn§vat10ns sééuenéeé
(k) which are nof tfue ones if 9 =0 that correspoﬁdlfo
the true 81gnal model. So if Oi,#vG, the sequence is not
whité._.Notice that the éovariancésjﬂi(k) can be computed
off-Tine. We will élso mention.a'condition'fof distin-
guishing the true one amoﬁg’others: For diffefent para-
meters, either the innovations are not equal or their co-
variances are ndf équal or both as time processes. This |
Provides a uni@uenesé conditioﬁ‘of the true parameter
'value‘asbthat which, §500ides:the»smallest‘covariance¥ If
y(k) are Gaussiah, the éonvergence is almost sure but the

method is not constrained either by Gaussianity or ‘ergo-

dicity.assumpfion. It is possible to.include'non—Gaussian,b

)

asymptotically stationary or some non-stationary situations.

We assumed at the outset that the unknown parameter
is a member of a finite"set{k If the reality 1s that the
unknown parameter is just a point in a compact region,

) .

then some representative points @i in that region are

selected built on the compromise between finer approxima-

tion of the region and the complexity of the resultiﬁg cal-
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culation. The following theorem will illustrate the con-
vergencé properties. of the scheme:
° THEOREM 7.1:

 Suppose thét the_innofati6hs are as&mptotidéil& ergo-"-
dic in ;he'autocorrelatiOn'function, Qi(k).+‘ﬂiv> 0 as -
ke and. show that the limiting covariance of the filter
ihnovations Zilsuch,that
£. = 2im a .Z 7 yi(J)yi(j) (7.10)
- 3=k : ,
Assume a-priori pseudo-probabilities for the parameters,

and realize the update of these probabilities by Equation

7.8. When one has for some B
, B < Bj o - (7..11)
for -
. ' l -1 o
B, = nja,| +_tg(9i L) - (7.12)

then the probability for the parameter théh ié closést,

in the senée that it minimizes Kullback information measure
"to. the true one, will‘approaéhxl and_the probabilities of
ofher parameters will appfoach Zero asymptqtically; For

an infinite measurement seéuence, we_have»asymptofic»per

sample Kullback information function as
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_ » -1 p(YkIOS)
J(0_,0 ) = &im k ~ E{%n ———— Jo_} (7.13)
ST ke = p(y ley ®
; k!'"r
Cohvergence of the scheme‘is exponentially fast. Such a

scheme can also be useful for tlme varylng‘parameters ae
well. Deshpande et. al. 43} used this. scheme together
with dynamic programming in control 81tuatlons; But both
"the curse ofUdimensionelityv-of}dynamic programmingrand

also of the method renders‘the overall scheme quite in-

volved from a computatioﬁal standpoint.

7.%." ADAPTIVE NOISE COVARIANCE AND FILTER GAIN
DETERMINATION '

In some practical'eituations, where the statistics
of the eeises acting on the sYstem are notvknown before-
hand, the use oflKalman_filters for dptimaL state estima-
tion does not give good results, since Kalmae filters need
exact e—priorirknowledge of the noise statistics. Also
it is possible to fermulate the problem so that the errors
associated ﬁith the modelling of the parameters occuring
in the various system metrices are censidered as unknown
' additive disturbances. Then one!has to resort to some
specilal techniques\which help to find the unknown statis-
ties. In the followingwbrief sketch, we will only consi—

‘der, whenever possible, techniques to find the unknown gain
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matrix of‘the filter without explicitly finding the un-

known noise covariances. .

1. Maximum Likelihood~Apprbaéhi[44 5ku7];

Thé'idea iS'td-eétima%éﬁthe unkhbwn parameters
in such a way és to maximize either (a) fhe joint densify-
of the:stétes and the parameférs cOnditioﬁal on thevpre—
vious'measureméntsvor'(b)‘the marginal density of the
pérameferes, or (c) thé margiﬁéi dehsity.of the state,
thch results in the techniques of Section 7.3. (a) and
(b) result in similar eéuatipns which we shall present
below. Direct maximization of the densiﬁies leads to
equations non-linear in the estimate of the unknown para-
meters and Newtgn—Raphégnviterafions can be used but_thé

N

computation of the derivatives presents a major problenm.

For systems with:
i) - time-invariant state transition and input

matrices, , -

controllability and observability conditions

[
[
S~

‘guaranteed;
iii)  the gfeady étate condition is reached so that
the filterwgain and'fhe covariances associated
- with the uncertainty iﬁ the state»estimafe are

constant,
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iv) no a-priori information on the parameters is
available it can be shown that [48], the sub-
optimal maximum likelihood adaptive filter has

‘the describing equations:

k §(E+15.=>A§(k) ¥<Ai(k)e(k),. i(o)‘ChosenA

e(k) = y(k) - CX(k) , ; o (7.14)
Ox(krl) o a1 - Raaoe) EED) Lo o)
axIm - ' : ax 1™ im
2x(0) . (7.15)
oK 1™
where j=l,...,n, n=1l,...,r, and K(k) is updafed according
to
Mk+1) = A(k) + tr [o i) 3x(krd) o0y (7.16)
| I DR A oK™ R
g(k+1) = g(k) + tr [e(k+1) X&KH) (T - (7.17)
- o™ - ‘
% (k+1) = 9™y + AN (ks (k1) (7.18)
Ejm(k+l) is the unique estimate of the filter gain
based on the measurements up to time k. Under steady state

filtering conditions, the input and output noise covariance

can be found easily. The details of relevant optimization
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and subsequent approximation'can be found in [@8].\

\

2. Correlation Methods

In the correlation,methods, we utilize equations
that relate the unknown param§tep$ and the»auto§erelation
function of obéer?ations.‘.The unknowh'péramétérs'are' |
solved in terms of autocorrelations. ' Either the auto-
'correlafiohs of the output or fhevinnovations can bé used.
We assume the system is compietely dontrollable and ob-

/

servable.

a) Output Autocorrelation Method:
Thig‘mefhod is only applicable in the cases where

the output is a stationary process and the staté transi-’
tion matrix ié‘éfable. Assume that a(i)!bé-the d'thrlég

autocorrelation of the output y(k):

~ o i T :
c(d) = El{y(k)y (k-d)} ' S (7.219)
Since the outpué is stafionary, autocorrelation is only a
L ' . AN . ,
function of the lag d. Estimate of C (d) is obtained
recursively . from

~N-1

My = ) ¢ oy - - 2] (7.20)
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where N is the sample size. Defining £ as

L= E{x(k)x (k)} : (7.21)

~which can.ﬁe shown to satisfy

\ ~
T T, |- 1 ‘
st o= (¢Tg) LT [N (7.22)
, v C ‘ .
Lo
where
T T
o = [aTc’, . ..,a"eT) (7.23)
Using Equation 7.22, one can solve
m=afl+ (z-mect(ECor-cne’) te(z-m]a’ (7.24)
. ™ -
and substitute in
| T, -1 A
K = (z-c (c(o) - cme’) (7.25)
to find an éétimate‘bf the filter gain. Complete deriva-

tions are giVen\in [48]. e

b) Innovation ‘Correlation Method:

Optimal Kalman filtering requires that the inno-

vations sequence be a zero mean Gaussian white noise se-

quence. But for a suboptimal filter, this is not so, and
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I

Mehra in [52] developed a scheme which makes use of this

property. Namely, innovations are tested for zero corre-

lation. Using MlCT from

o .| D(1)+CcAK_T(o)
S| eI
T T »l¢T‘

I

lrl’(‘n) +CAI_(»01":(Tn-1) RN ,CAKOI‘( o)_

where T(d): = E{V(k)vT(k—&)}
One sclves for 6M in

su = afsu - (m.c’ o+ sucT)H(E(o) + comcT) (e

1 1

T T Ty, T
+uc go - KT (0)K, ]a

+ cou) + K CMy

)]
I.J
o
[aW
o

and then substitutes in the following eguation o

) b/ ~ _l
K = (u,cT + sMCT)(C(o) + comeT)

As can'be notﬁced, one has to start the procedure,
either by<choosing a KO or juse output correlation method

"for starting.

Ohab and Stubberud/[53] developed a method also based
on uncorrelating the innovations. They first measure the

correlation in the innovations. If the innovations are
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correlated, theh thg gain matrix will be s0 adjusted that
the innovations are less corfelatedf This goes on until
the innovations are ganrrelatedi The method of steepest
descent is used_tdlfihd.the filter.gain that:securés'the

"innovations being uncorrelated. .

3. CoVariance,Matching Techniques [54,55]:7

In this classificatiqn.are,the:techniques which
equate the measured and theoretical (as obtained from the
Kalman filter) covariances df the innovations; As an éx—
ample, one ﬁay,have the measured,sample covariance be
larger than that calculated‘gyrthe'filter, then increasing
the input c0variance which inéréases the uncertainty in
the State,estiméte"resulféAin'an,incfeasé ih:iﬁnbvétidns

rrance.,

il

[GYChis:

§

One case in which success® has been achieved is when
the input noise covariance is known but the output noise

covariance is not known. It can then be estimated by

, N .
Q, = % T v(k-§)vi(k-j) - cpcl

]j=1

where N is the samplevsizé and P(k) is obtained from the

Kalman filter.
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7.5. CONCLUDING REMARKS
/ o -

Iﬂ'this chapter, wé»hévevpresented §ther ways.of ob-
taining'stochastic adaptiveACOntrollers which aré based'\~
anédaptiVékééfihaéiéﬁ‘éﬁd ééferminiétic cdﬁtpbiler blocks
uéed in series‘configﬁrétion. ‘Thesé'techniques are not
effectiyeiy used because of the computétional load asso-
ciated with them. :So 6uf:Pr6PoSed teéhniQue is evidently
'supefior ﬁo theh. VIn the last section of this chapter;

we have mentioned the work on adaptivély estimating the

noise statistics and filter gains.



APPENDIX A
~ CONTINUOUS RECEDING HORIZON
' ~ CONTROLLER
For the linear'time-invariant continuous‘systemv

% = Ax + Bu, x(o0) = x ' ‘ ’ (A.1)

the performance criterion

- ' B

1 ot |
,J(xo,u(,)) =3 S u Rudt , R >0 (A.2)
. ' : » o] ’ ’
and the equality constraint : .
Cx(Ty) =0 o T (A.3) -

- if the system (A,B) is controllable.

The optimal control minimizing Equation A.2 and satisfying -

Equation A.l and Equation A.3 is given by

‘u*(x(t))vZ —R_lBTﬁ_lX(t) . (A.4)

where M is the solution at instant 0 of the equation
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A

0 -
o= oan o+ MaT - BR7IBT, mM(T)) = 0 (A.5)
or in an explicit form
T
1 ' 4T _
M= S e—A‘TB‘RTlBT fe__-A, T ar S (A.6)

And the application of this feedback results in a systenm
which is asymptotically stable. To prove what we have

stated, let us apply variational calculu$ to form the

canonical equations:

% = aAx + Bu, x(o) ;.XO
o o
Y= -ATA , x(T.) = 0
AN |
~1_T. _
u = -R g A (A.5)

where XA and x. are related by
M) o= ®(o)yx(t) " ‘ (A.6)

with K being the sclution of

o} R - »
-K = KA + ATK - kBR 'BTK » (A.7)
. %x(k) ‘has the solution"
,, t T
" x(t) = My o AT g ipTeTA Ty ar (4l

(¢]
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with x(Tl) =0, it'gives’

T .
-AT - -
x = (5 e pr T T 4y = w o (A.9)
. O. o 0O

If M is invértibl§, énd;usingﬂEquation_A.G
, RS A S A
T .
1 ’ T
| SAT. - -A -
K(o) = (f e ATr 187 Tar)~t (A.10)

SO

i= k(o) (A.11)

‘Next we prove that ﬁ‘is‘invertible. The term
“At,.-1.T -ATt —_ o
e BR "Ble is at least positive semi-definite due to
positive definiteness of R. So let us establish strict

positiveness of M. 1If it were semi-definite there exists
N L - N T

5 T -At_,=-1_T -A ¢

a constant vector x#0 such that x e BR "B e ®=0

o

or
. . . . T -At_ _

te[O,Tl]. This is impossible since x e B=0 for te[O,Tll, :

which contradicts *the hypothesis of the controllability

of the pair (A,B). So M > 0.

Let us now prove that the resulting closed loop sys-
tem is asymptotically stable. That is,
pTg=1)

2 = (A - BRT x = Ax - (A.12)

is asymptotically stable. It is the same as proving the
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asymptotic stability of the adjoint system

/A Tx"., : (A.13)

xO
"o

we first establish that
T . '
V(x) = x Mx (A.14)
is - a Lyapunov function for the system in Equation A.13.

i) V(x) > 0 since M > 0

o - ] ) o
ii) V(x) = x (af + 6aT - 28BT)x (A.15)
after Equations A.10 and A.11 -
T
‘ 1 T L
aaT soam o= 5 0L (e—ATBBTe A Tyatr ~
v ~ at
(V)
T
l m T N )
= —e® TgBT oA Tiy ppT (A.16)
and
AT T ~ .
o T -A : ~
Vix) = -x"[e TBBT ¢ TlipaTlx <o (A.17)

So Equation A.1l4 describes a Lyapunov function for the
system in Equation A.13. For asymptotic stability, it is

O ~ .
sufficient to have V(x(t)) Z 0 for x(to) Z 0, Equation A.13

-

gives



x(t) =e | x(t,) (A.18)

and

By a similar reasoning to thé one we have giveh for posiQ'
‘ . = ‘ S AO . - o

tive definiteness of M, to have V=0 would contradict the

hypothesis of contrallability, so V- # 0 and the system is

asymptotically stable.
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'APPENDIX B

 SPECTRAL FACTORIZATION OF o,

'We,briefly indicate the main steps leaVing aside the

intermediate calculations. One has to first establish

1

H(Z)ZHT(Z_ ) =

Matrix Riccati

1

t

H(z)ZHT(z' )

T

cez1-a) tapcT(cre TQV)'lCPAT(z'lI—AT)'lcT

c(z1-8) "tapcT + cPaT(z1-aT) 1T

chT tQ (B.1)
equation can be used to show
c(z1-a)"t{apaT _ P 4 Qw}(z'lI—AT)’lcT
_c(zIeA)"lAPcT + CPAT(ZI—AL)—;CT

T .
CPC™ + Q (B.2)

v

The first three terms are collected to give
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lHT( Z—l

H(z)L )

Factorizing the

T

1 (=

H(z)Z tul(z"t)

121

%
C(z2I-A4) T{-P + Qp 2 TAP + zPAT - aAPAT}
x(z—lI-AT)_lCTf + CPCT +Q, (B.sj
;fi’rét‘ term glves B
= c(zI-_A)'l{Qw - ‘(zI—A)P(z'lI—AT)}
(z t1-aT) e’ 4 cret & Q,
= 9 (z)
n L

(B.4)



APPENDIX C

~ PROOF OF CloSED-Looe
IDENTIFIABILITY RESULT

Let ué»neglect‘the initial value effects, so

‘lGMu(k) ‘(C.l)

- , o -1
F(k|k-13M) = (I - Hy )y(k),+ Hy

Denoting

-1 | A ~ -3 :
G = G6.(q T), G =.6,]a "), ete . - . (C.2)
-] -
L. = (1 - 5~ + a tar,
1 ] 1
- _ Aj‘l ~=-1lx '
L, = (I = H ) + H GF, (¢.3)

Then since 3

C Fklk-1,8) = [T - BTNy + HTteuo)

(1 - w7t v u7her, lyo = Ly (c.w)

the set when using direct identification with a prediction

error method is
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o h
p;(s,M) = {0 Z v,Ef(L

i=1 * : * .
= {o|L; = L,, i=1, ..., n} - (c.5)

Since y is filtered white noise, collecting Equations C.3 -

‘and C.5,

A -l wle - 8713)R, = [o ... 0] (C.s)

Mt ... 1]
R = | I (c.7)
h F F, |
1 hj
rahk Rh = dim y + dim wu.
So k
~— - ) -1 ~—]
A7t -7t -0, wte - 716 = 0 (c.8)
l.e.,

DI(S,M) = DT(S,M)”and system identifiability is
satisfied. Notice that it is only a condition on regula-
tors which implies thaf;.it is a sufficilent condition for .-

strong system identifiability. A necessary condition is

dim v + dim u -
dim y

" h dim y > dim y + dim u > h-> (c.9)

iF
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so we can choose h_  to have strong system identifiability.
If dim u = dim y, you choose two regulators. (proportional

ones will suffice) such that

det[F (2) - Ey()] 20 (c.10)

s




10.

11.

- A

M.

Y.

REFERENCES

Athans, "The Role and Use of the Sfoéﬁasflé‘ﬁlnear—v'
Quadratic-Gaussian Problem in Control Systems De31gn"
IEEE Trans Aut. Cont., No. 6, Dec 1971.

Thomas, A.\ﬁarroud, "Commande Optlmal a Horizon

.Fuyant, Rev. RAIRO, April 1977, pp. 146-150.

A.

B.

B

D

H.

T.

.L

Barraud, "Un Aigdrithme pour la Stabilisation des
Systemes Discrets, Annales ENSM, 2% trimestre 1973,
CRAS t. 278, January 1974.

D.O. Aﬁdefson, "Second Order Convérgent Algorithms
for the Steady State Riccati Equation, Int. J. Con-
trol, 1978, Vol. 28, No. 2, pp. 295-306.

.D.O, Aﬁderédn/and J;B.’Moore,.Optimal Filtering,

Prentice Hall, N.J., 1979.

. Kleinman, "An Easy Way to Stablize a-Linear Con-
tant System, IEEE Trans. on Aut. Cont., 1970,
AC-15, p. 692 ' .

Kwakernaak, R. Sivan, Linear Optimal .Control Systems,
Wiley, 1972.

.J. Koivo, "Microprocessor-based Controller for

Pharmacodynamical Applications, IEEE Trans. Aut.
Cont., No. 5, Oct. .1981. ‘ ’

Pappas,’A{J.’Laub, N.R., Sandell, Jr., "On the Nume-
rical Solution .of the Discrete-time Algebraic Riccati
Equation, IEEE Trans. Aut. Cont., AC-25, Aug. 1980,
p. 631, o : : A

Y.” Rozanov, Statiohary Random'Processes,'Holdén Day,

G

San Francisco, 1967.

.C. Goeodwin, R.L. Payne, Dynamic System Identification,

Academic Press, 1977.

125



12.
13.

lﬂ;
1.

16.
L7,

18.
19.
20,

21.
22.
23.

24,

A

L.

- 126 -

.E. Bryson, Y.C. Ho, Applied Optimal Control, Halstead

Press, 1975.

-~

Ljung, "Recursive Idehtification% Internal Report,

Linképing University, Sweden, 1980.

L.

L.

T.

R.

L.

A,

J.

J.

P,

L.

Ljung,;T.FSSderstrém, "Theory and Practice of Re-
cursive Identlflcatloﬂ' MIT Press, Cambridge, Mass.

'f.1982.3.

L]ung "Fréquehcy Domain: vs., Time-Domain Methods in
System Identlflcatlod' ‘Automatica, Vol. 17, pp- 71-
867 1981. S ~ :

‘Séderstdm, "On Model Struéture Testing in System
Identificatiod', Int. J. Cont., Vol. 26, pp. 1-18,
1977.: :

Guidorzi, "Canonical Structures in the Identifica-
tion of Multi-variable Systems', Automatica, Vol.
, pPp. 361-374, 1975.

Ljung and J. Rissanen, '"On Canonical Forms, Para-
meter Identifiability and the Concept of Complex1ty
Proc. 4th IFAC Symp. on Identlflcatlon and System-
Parameter Estimation, Tbilisi, USSR, pp. 58-69.

J.M, Overbeek, L. Ljung, "On-Line Structure Selec-
tion for Multivariable State Space Models, 5th IFAC
Symposium on Iden. and Sys. Param. Est., Darmstadt,
PP 387-396. S ' '

o . _ o o e
J, Astrdm, P, Eykhoff, "System Identification -~ a
Survey", Automatica 7, pp.. 123-162.

‘Gertler, C.S.,Banyasz,‘“A Recursive (onlline)
Maximum Likelihood Identification Method", IEEE"
Trans., AC-19, pp. 816-820.

R, Haétings,’M.w.,Sage, "Recursive Generalized Least
Squares Procedure for On-line Identification of
Process Parameters", IEE Proc., 116, pp. 2057-2062.

C, YoUng, A. ‘Jakeman, “Reflned Instrumental Variable
Methods of.. Recursive Time-Series Analy31s Int. J.
Control, Vol. 24 PP 1-30.

Ljung, "The Extendéd K. Fllter as -a Parameter
Estimator for Linear Systems, IEEE Trans., AC-24,
pp. 36-50.




25,
26 .
27,

28.

29,

30.

32.
33

34,

35.

36.

P.

- 127 -

C, Young, "The Use of Llnear Regression and Related
Procedure for the Identification of Dynamic Proces-
ses'", Proc.” 7th IEEE Symposium on Adaptive Processes,
UCLA. ‘ »

Panuska, ”AvStochastic Approximation Method for
Identlflcatlon of Llnear ‘Systems Using Adaptlve
Fllterlng' Proc. JACC 1968 -

’L, Talmon, A J W Vanden Boom, "on- the Estlmatlon

. of Transfer Functlon Parameters of Process and Noise

Dynamics’ u81ng a Single Stage Estimator Proc. 3rd"
IFAC Symp. on Iden. and’ System Param. Estim., The
Hague/Delft : » :

D. Landau, "Unbiased Recursive Identification Using
MRAS Techniques', IEEE Trans., AC-21, pp. 1su-202.

Séderstrdm, L. Ljung, I. Gustavsson, "Identifiabi- .
lity -Conditions for Linear Multivariable Systems
Operating under Feedback"' IEEE Trans. Aut. Cont.,
Dec. 1976.

Gustavssoﬁ, L. Ljung, T. Séderstrom, "Identifica-
tion of Processes in Closed-Loop - Identifiability
and Accuracy Aspects", Automatica, Vol. 13, No. 1,
1977. ‘

Bar Shalorn, E. Tse, "Dual Effect, Certainty Equi-
valence, ‘and Separatlon in Stochastlc Control' IEEE

Trans., AC-19, 1974

.'Wittenmark, ”Stochastlc Adaptlve Control Methods
a Survey'" Int. J. Cont., Vol. 21, No. pp. 705-
730." N Ceen -

o
J, Astrom, Introductlon to StOChaSth Control Theory,
Academic Press 1970

Ljung, "Convergence of an:Adaptive Filter Algorithm,

~Int. J. Cont., 1978, Vol. 27, No. 5, pp. 673-693.

®

N, Saridis, R,N, Lobbia, "Pérameter Identification

‘and Control of Linear Discrete-Time Systems, IEEE

Trans. Aut. Cont., No. 1, Feb. 1972.

Alag, H. Kaufman, ITEEE Trans. Aut. Cont., No. 5,
Oct. 1977. o



37.

38.
39.
10,
41,

42,

53,
Bl
s,

b6,

4=
~3

Lg.,

50.

P

G.

- 128 -

Kreisselmeier,~IEEE-Trans. Aut. Cont.,;NoL b,
Aug. 1980.

Cao, "A Simple Adaptive Concept for the Control of an

A.
T,

A.

0]

Jd.

K

R.

R.

R,

W

R'

Industrial Robot", Proc., of Ruhr Symposium on Adap-
tive Systems, March 1980. :

Dvoretzky, "On Stochastlc Approx1matlon" Proc. 3idk

Berkeley - Symp Mathematlcal Statlstlcs, 1965 DD~
35-55., T e ‘

S6derstrom, L.,Ljuﬁg;~I;,GustaVSson,l"A,Theoretical

Analysis of Recursive Identification Methods",
Automatica, Vol. 14, pp. 231-24l,

J. Koivo, "An Automated Continuous Time-Blood Pres-
‘sure Control in- Dogs by Means of Hypotensive DKQG‘
Injection', IEEE Trans. Biom. Eng., Oct. 1980,

+L.R, Jacobs, P.. Saratchandran, "Comparison of Adap-

tive Controllers', Automatica, Vol. 16, pp. 97.

.G. Despande, T,N, Upadhyay, D,G, Lainiotis, "Adap-
‘tive Control of Linear Stochastlc Systems", '
Atuomatica, Vol. _9,vpp 107-115.

o .. . s L Spe
.J. Astrom, S. Wenmark, "Numerical Identification of

Stationary Time Series'", 6th Int. Instruments and
Meas.s Congr., Sept. 1964, " :

ﬁ; Kashyap, "Max1mum Likelihood TIdentification of
Stochastic Linear Systems'", IEEE Trans., AC-15,
pp. 25-34, Feb. 1970.

K. Mehra, "Identification of Systems Using Kalman
Filter Representatlon" S AIAA J., Oct 1970

. D, Abramsqn, "Slmultaneous Estlmat1on of the State
and Noise Statistics", MIT Rep. TE-25, May 10, 1968.

K, Mehra, '"Approaches to Adaptive Filtering", IEEE
Trans. Aut. Cont., Oct. 1972.

N, Andefsbn, et.al, "Consistent Estimates of the

Parameters of _.a Llnear System', Ann., Math. Statist.,

Dec. 1969.

K, Mehra, ”On—Line"Identificatioﬁ of Dynamic Systems

with Applications to Kalman Filtering", IEEE Trans.
AC-16, pp. 12-21, Feb. 1971. /



. .~ 129 -
N

51. P. Faurre, J.P, Maumarét, "Une Algorithme ‘de Realiza-
tion Stochastique", C.R. Acad. Sci., Vol. 268,
April 28, 1969. 3
52. R.K. Mehra, IEEE Trans. Aut. Cont., pp. 175-184, ..
: April 1970.

.53, R. Ohab, R. Stubberud,;CohtrOl and Dghamic,Sgstems,
‘ ~ Vol. 12, 1976.. ~ o ~ : ‘

VS#; J.C.ishellenbargéf,f"Estimation of Covariaﬁce'Parae
meters for an Adaptive Kalman Filter", Proc. Nat.
Electronics Conf., 1966, p. 698. :

's5. A,P. Sage, G.W, Husa, "Adaptive Filtefing with Unknown
"Prior Statistics™, 1969 Proc. JACC, pp. 760-769.

56.. ‘E. Yaz;'Y; Istefanopulos, "Adaptive Receding Horizon '
Controllers for Discrete Stochastic Systems' Preprints
of Algarve Conf. on Nonlinear Stochastic Problems,

May 16/28, 1982.

57. E. Yaz, "Two Fast Algorithms to Compute the Receding
Horizon Control Gains', Electron. Lett., Vol. 18,
No. 12, June 1982. ‘

—
/



	Tez4136001
	Tez4136002
	Tez4136003
	Tez4136004
	Tez4136005
	Tez4136006
	Tez4136007
	Tez4136008
	Tez4137001
	Tez4137002
	Tez4137003
	Tez4137004
	Tez4137005
	Tez4137006
	Tez4137007
	Tez4137008
	Tez4137009
	Tez4137010
	Tez4137011
	Tez4137012
	Tez4137013
	Tez4137014
	Tez4137015
	Tez4137016
	Tez4137017
	Tez4137018
	Tez4137019
	Tez4137020
	Tez4137021
	Tez4137022
	Tez4137023
	Tez4137024
	Tez4137025
	Tez4137026
	Tez4137027
	Tez4137028
	Tez4137029
	Tez4137030
	Tez4137031
	Tez4137032
	Tez4137033
	Tez4137034
	Tez4137035
	Tez4137036
	Tez4137037
	Tez4137038
	Tez4137039
	Tez4137040
	Tez4137041
	Tez4137042
	Tez4137043
	Tez4137044
	Tez4137045
	Tez4137046
	Tez4137047
	Tez4137048
	Tez4137049
	Tez4137050
	Tez4137051
	Tez4137052
	Tez4137053
	Tez4137054
	Tez4137055
	Tez4137056
	Tez4137057
	Tez4137058
	Tez4137059
	Tez4137060
	Tez4137061
	Tez4137062
	Tez4137063
	Tez4137064
	Tez4137065
	Tez4137066
	Tez4137067
	Tez4137068
	Tez4137069
	Tez4137070
	Tez4137071
	Tez4137072
	Tez4137073
	Tez4137074
	Tez4137075
	Tez4137076
	Tez4137077
	Tez4137078
	Tez4137079
	Tez4137080
	Tez4137081
	Tez4137082
	Tez4137083
	Tez4137084
	Tez4137085
	Tez4137086
	Tez4137087
	Tez4137088
	Tez4137089
	Tez4137090
	Tez4137091
	Tez4137092
	Tez4137093
	Tez4137094
	Tez4137095
	Tez4137096
	Tez4137097
	Tez4137098
	Tez4137099
	Tez4137100
	Tez4137101
	Tez4137102
	Tez4137103
	Tez4137104
	Tez4137105
	Tez4137106
	Tez4137107
	Tez4137108
	Tez4137109
	Tez4137110
	Tez4137111
	Tez4137112
	Tez4137113
	Tez4137114
	Tez4137115
	Tez4137116
	Tez4137117
	Tez4137118
	Tez4137119
	Tez4137120
	Tez4137121
	Tez4137122
	Tez4137123
	Tez4137124
	Tez4137125
	Tez4137126
	Tez4137127
	Tez4137128

