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ABSTRACT 

In this thesis, the deterministic, stochastic and 

stochastic adaptive coritrolpossibilities based on the 

m~thod, of receding, horizon is examiried. The receding hori-

,~ori method assumes a fixedhoriz~nlength for feedback law 

calculation at each step. Therefore~ the feedback law is 
~. 

optimal in one-step-'ahead manner and the feedback gain is 

constant. The other adv~ntages" are of not having to cho6se 

the state penalization matrix and of replacing the solution 

of Riccati equation by a linear one. We alleviated some 

problems associated with the 'practical use of this method~ 

such as calculation time and singular state transition ma-

trices by some fast algorithms and non-zero set points by 

modification of the basic equations. 

Modelling the system in state space innovations re-

-
presentat:i:onor transforming it to this form if it is not 

modelled in innovations form originally, solves the problem 

of state reconstr~~tion under noise effects. The overall 

design enjoys the separation property, that is~ of having a 
\ 

separate design for control and estimation parts. 

In the case of some unknozn parameters in the system 

equations, our controller works using the state estimates, 

found by utilizing the parameter estimates, in the control 

law, and parameter estimates, found by using the state esti-



mates, in the _feedback gain calculation. This controller 

with this enforced certainty equiv~lenc~ property enjoys many 

favorable characteristics· such as refraining fr om the use 

of Riccati equa~ion in control} matrix update equations for 

state and parameter est~mation uncertainties, external per-

turbation signals to seriure stability, and trial and error 

procedures in the choice of state penalization matrices. 

Moreover, the method is general enough to control with any 

prescribed control strength, multi-input, multi-output sys-

tems under noise effects, modelled in difference equation 

f6rm with multi-parameter uncertainty . 
./ 
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I NTRODUCT ION 

. We may roughly distinguish three .phases in the history 

of automatic control. 

In the deterministic phase, the system equations, 

system inputs which are either designed by the control spe-

cialist and/or disturbance effects of the environment were 

assumed to be known. This as'sumption, with the additional 

assumption of linearity of equations describing the behavior 

of the system results in a huge numbe.r of effective techni-

ques of control known under the names classical (s-domain) 

and modern (state-space) methods. Even the systems that 

could not be modelled as linear, were each f~tted with 

specific techniques of control,· some of which were the direct 

extentionsof the ones in linear theory. 

"-
Then contr~l specialists realized that it is more 

realistic to model some external disturbances or some unknown 

parameters of the system as random variables because· t_hey 

did not yield to easy determin~stic eq~ations for their be-

havior. The probability theory and the theory of stochastic 

1 
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processes were ready to use and the control specialists 

made good use of them by~adopting them to their needs. So 

became popular the theory of stochastic control. But the 

problem was not completely solved yet; because t6 use the 

theory of random processes,on~ had to know. in advance, the 

statistical characteristics of the random variables and 

then the remaining work was to use the techniques of deter

ministic system design and place the designed fixed struc

tures in the appropriat~ places afterwards. 

The fast growth in the ~apabilities of digital com

puting instruments, the popularity of "cybernetics" led the 

control specialists to think of machines that tune themselves 

according to the control needs, that is, adapt the~rbeha

vibr when a parameter of the system or an external distur-

bance on the system changes~ In this continuing phase of 

adaptivity, all the existing adaptive controllers can be 

placed somewhere in-between- the stochastic control and the 

truly adaptive cont~ol mechanisms, since there is no method 

that controls ·a system while the ·system operates without 

any a-priori information about that system. 

In this work, our approach will follow the main trend 

in the history of automatic control. We take up a control 

method for deterministic systems (Chapter 1). First, we 
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design several algorithms to render the method easily im-

plementable, extend its use to some situations that may 

arise in practice ,(Chapter 2). We next place the system in 

a stochastic setting and extend -our method to allow for the 

~ase where random disturbances ~ith known statistics are 

acting on the system (Chapter' 4)-. Then we modify our algo-

rithm (Chapter 6) attaching to it the quality of adaptibility 

so that it can control stochastic sys'tems with unknown para-

meters. In each case, sufficient supporting theory and prac-

tical simulations are pro~ided to verify the workability of 

the method. 

In Chapter 1 ,we have in tro/duced our. determini s tic 

con trol problem: Having a linear ,time-in varian t, sample d-

data system with some relation betweeri the states of the 

system and the input to the system, find the best input 

which alters the states whlle sat~sfying some other opera-

"' ting economy requirement specific to the type of the control-

ler used. The control is close4-loop such that we design 

our control action to be based on system states. Confine-

ment to discrete-time is favored by digital computer imple-

mentations. 

In Chapter 2, the existing computational technique is 

given and our novel app~oaches ar~ presented with justifi-
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cations. The approaches we propose combine computational 

simplicity and improved rate of convergence. Moreover, the 

extension to the,control of systems with singular transi-

tion matrices of itates and non-zero set points for the con-

trolled va~iables is made.· Fo~ the control with singular 

state transition matrii we.have developed an~th~r fast al-

gori thm. These results are utilized in Chapter 6. 

/ 

In Chapter.3, Me develop stochastic state models which. 

we use in the_following chapters ,Developing sound models 

is necessary for effective an?lysis and synthesis of sto-

chastic systems. 

In Chapter 4, the state estimation and the stochastic 

version of our controller are introduced. The noise effects 

on the system and the measurements are present, but knowing 

the statistics of these nois~s, we find the best estimate 

of the states and base our control action on these estimates 

instead of the true but unknown state~. 

In Chapter 5, we make an introductory treatment of 

identification methods which estimate certain system para-

meters using the knowledge of system structure, determ~nis-

tic input, measured output and noise statistics. Next, iden-

tifiability of systems operating (inherently or forcefully) 
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under closed-loop is examined to be used in the next chap-

ter. Then we make an introduction to adaptive control pro-

blem in z-domain. 

In Chapter 6, st~te space adaptive control techniques 

are mentioned and our novel approach is presented with 

theoretical verifications and ~imulated examples. Given 

the system structure, the statistics of the noise acting 

on the system and input/output measureme~ts, we wish to 

control a stochastic system 

unknown. 

whose some parameters are 

In Chapter 7, some other adaptive estimation schemes 

are introduced which are not used in this work because of 

their impracticality as experienced by the author, but pre-

sent possibilitiei of use. Some on-line techniques for 

estimation of noise characteristics are also given. 



CHAPTER 1 

DETERMINISTIC PROBLEM . 

I NTRODUCTI ON 

In this chapter, we will start out with the formulation 

and the solution of the control problem for linear discrete 

time systems with quadratic criterion. This method invol-

ves a trial and error proceaure triterion selection. To sys-

tematize and simplify the procedures of linear quadratic 

formulation~ we will_then present the rece~ing horizon 

control concept and heuristically show that its solution 

can be obtained by considering a special limiting case of 

the general linear quadratic problem. Then a mathematjcally 

rigorous derivation of the solution is given and existence 

conditions for the solution are proved. 

1. 2. LINEAR QUADRATIC CONTROL 

Let us consider the linear discrete-time system 

x(k+l) = A(k)x(k) + B(k)u(k), x(o) knovm k=O, ... ,N (1.1) 

6 
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which c~n be controlled via the variable 

z(k) = D(k)x(k) (1. 2) 

then the ~rob lem of determing the input sequence u( k), 

k=O, ... ,N-l, such that an a~priori chosen ~riterion of per-

formance 

N-l 
l: 

k=O 

( 1.3) 

is minimized is; called the discrete time deterministic op-

timal control problem. Here Q. ·is a posi~ive semi-definite z 

matrix t6 penalize the deviation in the controlled variable, 

R is the positive definite control energy penalization ma-

trix, and QF is a positive semi-definite matrix used to 

penalize the final state deviation from the desired value. 

If all the matrices in the above formulation are constant, 

then the problem is calied the time-invariant discrete-time 

linear optimal regulator problem. 

For the general case where the mairices are allowed 

to be time-varying, the optimal input choice is given by 

u(k) = -F(k)x(k), k=O, ... ,N-l ( 1.4 ) 
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and the g~in sequence is given by 

[Q (k + 1) +P (k + 1) ] A ( k ) x (1. 5) 

In the above equality, th~ inv~rse always exists and 

Q (k) = DT(k)Q (k)D(k) 
x z (1. 6) 

P(k) is found by 

B(k)F(k)] (1.7) 

Starting with the termin~l condition peN) = Q~ and running 

backwards. 

~ 

From now on, we will only consider the case of time-

invariant matrices since this helps to reduce the size of 

our problem and besides it is a good model approximation to 

most phenomena we enc6unter in prcictice. 

If the system is both stabilizab1e and detectable, 

then we have the solution of Equation 1.7 converging to a 

steady-state solution P as N· + 00 for any initial peN). The 
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resulting steady-state optimal control gain is constant 

and when applied to the system, it stabiliz~s the system 

asympt otically. This control also minimizes the criterion 

for all initial ·P(N);· 

Different choice~ of Qz' Rand QF will mean differing 

degrees of importance attachment to the value of control 

and the value of deviations from the desired state through-

out the time of operation. Therefore, the choice of these 

quantities is a SUbjective matter and by no means a simple 

problem. Selection is based on the designer's experience 

and a trial and error approach. Some rules of thumb in 

selecting these weighting matrices are as ·follows [11: 

1. Generally, Qz' Rand QF are all chosen as diagonal 

matrices. This facilitates the penalization of 

the specific components of the state and oOntrol 

vectors individually among themselves and the re-

lative penalization of the state and control 

vectors. 

2. The larger the value of QF chosen, the larger 

will be the resultant feedback gains near the 

terminal time. 

3. The larger Qz' the larger will be the feedback 

gai~ and faster the time the state perturbations 
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are reduced to small value~. 

4. The larger R, the smaller the gain matrix and 

slower the system. 

5. Penalization of time derivatives of stat~ vari

ables can 'be done to reduce overshoot. 

6. The weighting matrices can be selected as an 

upper bound to the effects of second derivat~ve 

matrices if the linear system to be controlled 

is obtained via linearization of a nonlinear 

model. 

To systematize the procedure of linear quadratic 

control design, Thomas and Barraud[2] have, proposed "the 

receding horizon control" method to compute the state feed

back 8ptimal controls without specifying the state penali-

zation matrices. This method entails the solution of a 

linear difference equation simpler to solve than Equation 

1.5 over a pre-selected horizon time. 

1.3. RECEDING HORiZON CONTROL 

In this section, we will only deal with the discrete

time version, continuous formulation is given in Appendix A. 

Given the discrete-time linear time-invariant system 

/ 
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described by 

xCk+l) = Ax(k) + Bu(k), A is non-singular 

the performance index 

1 
J = "2 

N-l 
L 

k=O 

and the equality constraint 

T . u (k)Ru(k) 
I 

x(N) = 0 

( 1. 8) 

(1. 9) 

( 1. 10 ) 

if the system is controllable and N (which is called the 

horizon time) is bounded below by N =n~r+l 
o 

n = dimension of the state 

r = rank of B 

then the control vector at the initial stage that minimizes 

the performance index in Equation 1.9, satisfying the COD-

straints fu Equations 1.8 and 1.10 ~re given by 

and W(o) is the matrix-which is the solution to 

(l.12). 
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at the instant k=O, or W(o) can be written- in the explicit 

form 

N 
W( 0) = E (1.13 ) 

k=l 

We apply the constant gain found above for the zerotb 

stage, throughout the horizon length" so 

( 1. 14) 

Validity of the above equations can easily be demon-

strated in the following manner. In the usual quadratic 

criterion for constant weighting. matrices, 

N-l 
E [zTCk+l)QzZ(k+] + uT(k)Ru(k)] 

k=O 

( 1. 15 ) 

If we let QF to take arbitrarily large values and not pena

lize the state throughout the stages, Equation 1.15 becomes 

Equation 1.9 and the corresponding Riccati equation is 

( 1. 16 ) 

which should be initialized with large values of peN). 
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If we assume invertibilityof P(k) and using matrix 

inversion lemma 

we obtain 

W(N) = 0 ( 1. 12) 

A property of prime importance is that the closed-

loop system that results from the application of the rece-

ding horizon control law isasymptoti~ally stable, see [3]. 

Let us now prov~ more rigorously what we have propo-

sed. Using the state equation and the equality constraint, 

one can wri te. 

o = x(N) 

so let 

N = A x(o) + 

... 

[ 
N-l ] r A B , ••• , AB , B i 

1 
i 
I 
I 

x(o) = Fu 

.. 
u( 0) Iii 

uC 1) 
i 

(1.17) 

( 1. 18 ) 
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F = _[A-lB, ... ,A-NB], dimension F = n:x.(Nxm) 

u= [ u T ( 0 ), ..., u T ( N -1 ) ] T 

m = dimension u 

Using the positive definite R, we form (Nxm)x(Nxm) matrix 

r , 
I o! R 0 

RN = I 
I 
I 

(1.19) 

0 Ri 
I , J 

which is also positive definite. 

RN can be factored as 

( 1. 20 ) 

wher-e LN lS non-singular. 

Let 

T F = ·F~·LN-T u = LN u, (1.21) 

so that we can write 

x(o) = FU (1.22) 

The unique solut~on in least squares sense of this 

equation is given by 

(1.23) 
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+ where C.) denotes the pseudo-inverse of a matrix. u is 

the vector which secures the minimum value of I lui 12 that 

also minimizes 11};(0) -:- F ii11 2
• 

I~ the case we are" int~restedin, Equation 1 .. 22 pro-

vides the advantage that for Nm>n, we have II x( 0) - Fu II = o. 

Moreover, 

N-l 
2: 

k=O 

T u (k)Ru(k) (1.21+) 

So, in this way., we have sati.sfied all three constraints 

corresponding to !he state equation and the equality con-

straint which we used in Equation 1.17 and the performance 

criterion in Equation 1.24. Thus we conclude that Equation 

1.23 constitutes the solution to our problem. 

A case of particular interest to us is when F is of 

maximum rank, because then the pseudo-inverse is known ex-

plicitly. This corresponds to the case where (A,B) is con-

trollable and N>n-r+l. In such a situation, the pseudo-

inverse becomes 

-1-~' - - i -T -1 ' 
n ~ (r~ -F) () l'-'l' "'T' X 0 l' !'~ 

(1.25) 
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de fining 

u(o) 1 
I 
I , 

U(~-l)j 
= 

r -F(o) 1 , , 
i : 

l-:(~-l) j x(o) 

and combining the above equations to get 

uCo) 

So for every k, 

. -1 

A - k B R -lB T A - k T ] 

(1.26) 

which is Equation 1.14. Instead of summing, one may recur-

sively compute W(o) which can be found by Equation 1.12. 

Existence of H-l(o) for controllable systems and! 

N>n-r+l can be guaranteed by showing that Weo) is positive de-

finite. Lei us invert th~ directi~n of iteration as we do 

in computer programming. 

from Equation 1.13, we obtain 
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n-r+l 
W(n-r+l) = E (A-kB)R-l(A-kB)T 

k=l 

factoring out A-(n-r+l) 

W(n-r+l) BT 

(AB)T 

l(An-~B)TJ 

A 

(1.29) 

. T -(n-r+l) . 

( 1. 30) 

Since A is invertible, and the system is controllable with 

RN positive definite, W(n-r+~) is positive definite: 

For 

H(i+1) = 
i+l 

I 
k=l 

" 

i 

L 
k=l 

(1.31) 

The rightmost term is positive semidefinite, therefore 

W(i+l) > Wei) which was positive definite by the above ~rea-

-
soning for i=n-r+l, therefore Wei) ~ W(n-r+l) > 0, which 

was to be proved. Since Wei) is posi~ive definite for 

i~n-r+l, so is pei) positive' definite for N-i>n-r+l. 
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1. 4- • 

I~ this ch~pter, we started with general linear qua

draticcontrol problem and showed the difficulty associated • 

with choosin~ the cost criterion. To alleviaie this diffi

culty, 'we have presented receding horizon control method. 

In the next c~apter, we .will be introducing our novel 

approaches and extensions. 



2.1. 

CHAPTER 2 

COMPUTATIONAL TECHNIQU~S~NOVELTIES 
AND EXTENSIONS 

INTRODUCTION 

In this chapter, we will present the existing computa-

tional techniques for the discrete receding horizon control 

problem and present our s~mpler,~nd faster algorithms. 

Then, we will extend the use of this control method to sin-

gular state transition matrices and non-zero set points. 

After introduction of the existing most effective 

method of Thomas and Barraud, based on successive matrix 

decomposition~ we propose two fast algorithms to calculate 

the feedback gains for the receding horizon control'method. 

This controller has been'introduced to systematize and sim-

plify the procedures of linear quadratic control problem. 

To maintain this spirit of the method we will propose faster 

and simpler algorithms. 

Then we will extend the results of the previous chapter 

19 
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by removing the constraint that the state transition matrix 

should be invertible. This is made possible by reconsi-

dering the original Riccati equation in the problem solu

tion, which leads to another fast computational scheme that 

does not ~equire tha invertibili~y of the state transition 

matrix but another regularity condition which we will prove 

to hold true in all cases. 

The last part consists of the extension of the re

sults to non-zero equality constraints on the final state 

which is the case most frequently met in practice. 

2 .2 • THE FEEDBACK GAIN CALCULATION 

I~ is quite possible to calculate the gain matrix by 

using Equation 1.12 in a recursive mann~r for a fixed hori-

zon length chosen by the designer. Gr ~DP can sum up the 

terms as in Equation 1.13. To conserve symmetry and positive 

definiteness of W(k) in the co~=se of iterations, while 

using ~ower precision arithmetic, Thcmas and Barraud [2J 

proposed the following algorithm: 

1) DeterTiline the lower triangular F I by Cholesky 

factorization, such that 

pIpIT = R (2.1) 



- 21 -

2) De termine <the lO'n-'er triangular l' and. upper 

triangular U such that 

L'U = A (2.2) 

the next two sTeps are devoted to calculate a 

C' matrix such that 

( 2 . 3) 

which is posi~ive semi-definite, a~d 

3) Determine a V such that 

(L'U)V = B (2.4) 

without explicit matrix inversion but by solving , 

two linear algebraic equations successively. Note 

-1 that V corresponds toA . B; 

4) Determine a C' so that 

the following steps are repeated for all k, 

5) Solve for D' as in Step 3, for 

( 2 .5) 
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(L'U)D' = S(k) (2.6) 

S(k) corresponds to the square root of W(k). 

6) Determine T by the Householder transformation, 

so that 

with S(l)=O (2.7) 

7) F.ind X, in 

( 2.8) 

8) Find FCo) which is the fe~dback gain, as a solu-

tion to linear algebraic equation 

( 2 .9) 

It is the author's belief that the receding horizon 

control should be given the emphasis it deserves as a sub-

optimal control law mainly to be used together with para-

.meter adaptive methods of synthesis, therefore~this specific 

controller should benefit more frgmthe techniques of nume-

rical analysis. We will, hence, propose two doubling algo-

rithms which no~ only solve 6ur problem in a quicker manner 

but much easier to understand and implement than the other 

techniques. 
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To compute the value of W(o) in Equation 1.12, one 

can either use 

ALGORITHM I. 

a(k+l) 2 a(o) = a (k), = A 

b(k+l) = a(k)b(k)aTCk) + b(k), b (0) = BR-1B T 

H(o) = a - 1 ( L ) b ( L) a - T C'L ) where 2L < N (2.10) 

or 

ALGORITHM II. 

a (k + 1) = a 2( k ), a ( 0) = A- 1 

b(k+l) = a(k)bCk)aT(k) + b(k), B(o) = (A- 1 B)R- l (A- l B)T 

11 ( 0) = b( L) , (2.11) 

VERIFICATION. It is a simple exercise t~ iterate simulta-

n~ously with th~ algorithms described here 

and.,. with Equation 1.28 comparing the results 

as one continues. 

DERIVATION OF THE ALGDRITHMS· 

Let us consider the forward iteration of Equation 1.28, 

which for convenience is rewritten below 

(2.12) 

30 oUr' objective is' to find H(N) knoHing 'tI(o). VJe wil 
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decompose W(k) in'such a mariher that 

(2.13) 

so W(k+l)' = X(k+i)y-l(k+l).' One .can easily verify 

that, partitioning W(k) in this fashion such that 

r X( k+l) 1.
! Y(k+l) j 
.. - ~ 

[

X(k)j 

Y(k) 
(2.14) 

with X(o) = 0 and yeo) = 1, is equivalent to using Equation 

2.12. 

A special property of matrix'lHwi11 be given to 

aid in our derivation: 

SYMPLECTICITY [4], [51: A 2nx2n matrix Z is symplectic if 

'1' 
Z-JZ = J Vlhere 

r :0 
I 

J- ! 
I I 
L n 

-I ! 
n! 

I 

o 

I is the n dimensional identity matrix. Any power of a 
n 

symplectic matrix is symplectic which easily follows from 

the definition. Another property is that if the matrix is 

wri t ten as r Zll Z121 
Z = 

Z'21 Z22 i 
:.. 
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where Zll lS assumed to be non-singular for the time being, 

(2.15) 

When we a~ply this new concept to our problem, we 

see that :~_ is symplectic and if it is written as 

then 

If! :: 

r -1 I a ( 0) 

I 0 

r-

I -1 

iH(k) :: 
i a (k) 
i 
I 0 
L 

-1 1 a (o)b(o) 

aT(o)' I 
J 

:: .It! (0) ( 2 • 16 ) 

(2.17) 

He next use the fact that 'ffi(k+l) :.JH 2 (k), s'ince by 

squaring one can calculate in a recursive manner for inte-

ger powers of 2, to obtain Algorithm I. Taking X(o) :: 0, 

and yeo) :: 1, 

., 
IX(2 k yl 
: i 

jY(2 k )'1 
L J 

and finally 

= IH (k) 

-, 
i 

~ ~ 

i -1 ~ la .(k)b(k)j 
= ~ , 

--L a T(k) J 
(2.18) 

! X( 0) 'j 
! t 

i ! Ly ( 0) J 

( 2. 19 ) 

To obtain the second algorithm, form Iff I as 

uOGAZiCi ONiVERSiTESi KOTOPHANES\ 
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r 
i a( 0) 

fHl = ~ 
I 0 

ta'CO) (2.20) 
L 

then 

a(k) 
lH'·(k) _ = (2 . 2~) 

o 

Since 

}H I (k + 1 ) = :m' 2 ( k ) 

we obtain Algorithm It with. initial condit{ons: 

= ltl'(k) 
r X( 0) J l Y( 0)-

= (2.22) 

so 

(2.23) 

CO t-1t1E NT S 

1. 'Since R is chosen as a diagonal matrix. in prac-

tice, the only matrix. inversions take place in the last 

step of the first algorithm when calculating the feedback 

gains. This prevents propagation of errors due to inver-

sion in the-first step as in Algorithm II. However, it may 

be desirable to work with the inverse of the state transi-

tion matrix rather than it,self and Algorithm II provides 
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this flexibility. Algorithm-I is similar to Kleinman'~ 

algorithm, but his is defined in a different context and 

no derivation is given [6 J. 

2. If the systemt6 becontro.iled is continuous, one 

can try one of the following alternatives as arise in the 

Riccati equation solutiori: 

a) One may discretize the system at the outset 

and then proceed to find the optimal feedback 

gain. 

b) One can calculate e~p( iLl ) where 
,IT! c tHc is the 

continuous time Hamiltonian matrix and use the 

discrete doubling algorithm. 

c) Pose a discrete-time problem by using a bilinear 

trarisformation and then use the above al~orithms. 

d) Try the method based on the sign of the Hamilto-

nian rl.;.l. 
c -

3. Square root forms of the above algorithms are 

possible to, maintain positive definiteness and numerical 

accuracy but with the price of more computations. 
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THE EXAMPLE OF DIGITAL POSITION CONTROLLER AND 
DISCUSSIONS 

Let us consider the digitil positioning system des

cribedin Kwakernaak and Si.van [71. The discrete-time state 

and measurement equations are 

= fl .08 '1 x(k+l) x(k) 
.631 ! 

L
O 

J 

z(k) = [1 0] 

with the performance index 

N-l 
E 

k=O 

+ 

x(k) 

r 1 ,.003 
u(k) (2.24) I I 

L. 063 j 

(2.25) 

where p = 2xlO- 5 . This system fs to be controlled by 

means of a digital computer. If we find the receding hori-

zon control feedback gains for this example and compare 

with the corresponding gains found via the solutions of 

Riccati eq~ation or the solutions of the deadbeat control 

problem we arrive at the following results: 

1. The optimal feedback gains as found by Riccati 

equation comes to a steady state value after 6,7 stages. 
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If 'we use the constant feedback gains found by receding 

horizon and linear quadratic approaches, the<following 

closed-loop eigenvalues for the two controllers are respec-

tively .57 ~ j .06 and .23 + j .32. One can deduce that 

the closed-loop system as regulated by the receding horizon 

controller as compared with linear quadratic optimal regu-

lator is slower but much less oscillatory. This is due 

to the constant penalization of the stat~ along"the tra-

jectory in linear quadratic regulator which results in a 

larger feedback gain matrix and faster response time of 

the clos~d loop system. Since in receding horizon control 

cost criterion~ the state i~ not penalized at all for the 

intermediate stages, for long hori~on lengths, it seems as 

if we had heavy penalization of the input energy with 

respect to state and this results in a smaller feedback 

gain matrix, slower closed-loop system with much less 

control energy spent. 

2. For shor~ horizon lengths as represented by those 

near the minimum value N =n-r+l, the terminal time is al
o 

ways very near and so the feedback matrix is always large. 

Comparison of receding horizon for N=2 with a deadbeat 

c ontro ller shows that the fee dback gains are iden tic al 

F = (158. 75 ,17 . 35) . Hence for short horizon lengths, the 

recedin~ horizon controlier acts like a deadbeat controller. 
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2 .4. SINGULAR STATE TRANSITION MATRICES 

In this section, we extend our results to the case 

where the state transition matrix ~f the system to be con-

trolled is singular. Singul~r transition matrices can 

naturally aris~in practice as can be the c~'se" for. exampie, 

with the "blood pressure regulator" system of Chapter 6, 
. . \ . 

which is originally modelled asa stochastic difference 

equation [81 or with sampled continuous time systems with 

time delays [9]. 

Let us consider Equation 1.16 and rewrite it here 

with order of indices changed: 

where 

p(o) = 9,im 131 
p+co 

by using matrix inversion lemma,. one can write 

multiplying by P(k) together with its inverse gives 
I 

T r -1 T }-l P(k+l) = A P(k) I + 8R . B P(k) A 

(2.27) 

(2.28) 
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where the expression in the brackets is obviously positive, 

definite hence inverti~le. Si~ce we have PCo) = ~imBI, 
B~ 

using Equation 2.28, 

-

pel) = ~im AT.~ I~+ BR-lBT.BI]-lA = AT(BR-lBT)-lA 
\3-*"0 

(2.29) 

which coincides with the solution of Equation 1.12, and 

the invertibility is guaranteed in the cases given in 

Chapter 1. Since pel) is bounded, P(2),P(3), ... , etc. are 

bounded. We do not use PCol in our calculations, since 

N . =n-r+l = l_for n=l and r=l. Hence all P(k) for k>l mln . ~ 

are defined properly. 

Let us now partition P(k) as 

and 

X(k+1) i 

,Y(k+1); 
L _i 

we obtain 

= 

= 

- , 
A -

o 

IH 
XCk) 

Y (k ) 

( 2.30) 

:' with X = 0 Y = I ! 0 ., 0 
,iY(k) 

! 
L 

(2.31) 

(2.32) 
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we right multiply inside and left multiply outside of the 

brackets with X-1(k) to obtain Equation 2.28. Use of this 

~ matrix will give us the first fast algorithm 

a(k+l) = a 2 (k), a(o) = A 

b(k+l) = b(k) + a(k)b(k)a TCk), beo)::: BR-lB T 

for the discrete Riccati equation in 2.28. The feedback 

gain is. found as 

where 

(2.33) 

let us write peN) ln terms of P(N-I) from Equation. 2.28 

(2.3'+) 

and substituting into Equation 2.33 

.(2.35) 

(2.36 ) 
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writing 

and substituting into Equation 2.36 

manipulating a bit to get 

so the algorithm becomes 

ALGORITHM ~II. 

2 a(k+l) = a (k) a(o) = A 

(2.38) 

b(k+l) = b(k) + a(k)b(k)aT(k), beo) = BR-1B T 

F = _R-lBTaT(L)~(L) + a(L)b(o)aTCL)]-la(L)A, 

2L < N-l 

Since_this last algorithm does not involve the invers~ 

of A, we can effectively use it for singular state transi-

tion matrices. Let us now prove for the sake of complete-

ness that the inverse of the" expression in the br~ckets 

exists. To do that, we will first, show b(L) is positive 

definite for 2L > n-r+l, ~nd then show that the following 

.. 
i 
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b(k)' s are all greater than or equal to beL) hence ~o~itive 

definite also. Since the other expression in the bra6kets 

is positive semi-definite, positOive definiteness of beL) 

ensures invertibility. Use of 2L < N-I in the expressions 

will oblige the minimum choice of N to N . +l~ to secure 
m~n 

invertibility. This does not rest~idt the appli6ation of 

the algorithm, since it is designed fo~ high N anyway. 

Let us first write expli~itely what b(k) are: 

b ( 0) = BR-lB T 

bel) = BR -IB T t ABRO-IB TAT 

b(2) = BR-IAT t t A3 BR- l BTA3 

b ( 3) = BR -lB T t + A7 BR- I BTA7 

so the general expression for b(i) is 

b ( i) = 

:i_:L 
\" 
'-' 

k=G 

T 

T 

, 

(2.39) 

We are intere~ted in bei) for 2i > n-r+l, so first let 

2 i .= n-rtl, 

n-r 
b(i) = 1: (2.-40) 

-k=O 

and ,oJri te 
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-.. + n-r+l + 
times 

I~ . n-r .'.~.·R-l = ~B,AB, ... ,A B] 

n-r+l 
times 

t 

+ 

I 
1.0 

o 

! , 
; 

I' 
1 
I 
! 

B 1 
i 
i 

(2.41) 

Due to controllability of the system and positive defini

~eness of R- l , b(i) > O~ Consida~ 

i+l 
b(i+!) = E 

k=O 

(2.42) 

Since the right-most term is positive semi-definite and 

i 
b(i) > 0, 'Ile obtain b(i+!) > b(i) > ° for 2 > n-r+1. He 

will use this algorithm in Chapter 6 with system 4. 

2.5. NON-ZERO SET ·POINTS 

Reconsider the linear time-invariant discrete time 

system 

x(k+l) = Ax(k) + Bu(k) 

Z(k) = Dx(k) 

( 1.1) 

. (2.1) 

Let it be desired that the system is operated about 

the constant paine: Z(k) = Z • o 



Define 

U '. (k) = 
X, (k) = 
Z' (k) = 

minimization of 

00 

E 
k=O 

U(k) 

x(k) 

Z (k') 
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U = the shifted input 
0 

X = the 
0 

shifted state (2.4,3) 

Z = the shifted control variable 
0 

(2.44) 

in the act of steering the system states from any initial 

condition to set point requi-res the control 

U'(k) = -F x'(k) (2.45) 

-
\'lhere F is the steady state feedback gain. Writing Equa'-

tion 2.46 using original system variables 

u(k) = -FX(k) + U ' o 

so the clpsed-loop equations become 

x(k+l) = Ax(k) + BU ' o 

Z(k) = Dx(k) 

(2.46) 

(2.47) 

where A = A-BF. Assume that the closed-loop system becomes 
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asymptotically stable at the steady state, the variable 

which is controlled is 

where 

~im Z(k) = 
)<+00 

H (l)U I 
c o. 

(2.48) 

( 2 • 49 ) 

is the closed-loop transfer matrix. This implies that zero 

error in steady state can be achieved with 

U ' = H -l( 1) Z 
o c 0 

(2.50) 

provided that the inverse exists which requires that, first3 

dimension u = dimension Z, second, the non-zero determi-

nan t 0 f H (1). . c But the determinant of H (z) can be shown c 

to be equal to the ratio of open-loop zeros to closed-loop 

poles, so that the transfer function should have non-zero 

numerator with no zeros at z=l. So the following theorem 

results: 

THEOREM 2.1 [7]: 

~Consider the system in Equations 1.1 and 1.2, with 

Z(k) being the controlled variable and dimu=din@ . Assume 

any asymptotically stable time-invariant control law as in 
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Equation 2.46. Let the open loop transfer function be 

-1 D(zI - A) B (2.51) 

and Hc(z) be the closed loop transfer matrix .in Equation 

2.49 . Tpen Hc (1) is non-singular and the con trolle d vari

able Z(k) can under, steady state conditions, be maintained 

at any constant set point Z by choosing 
o 

U I = H -l(l)Z 
o c 0 

(2.50) 

if and only if open loop transfer matrix has a non-zero 

numerator polynomial that has no zeros at z=l. 

EXAMPLE: 

We will apply this result to the system 4 in Chapter 

6. Since th~ discrete receding horizon control law is one 

which is time-invariant and makes the system asymptotically 

stable, applying theorem 2.1 to our case where 

-
T ;a b :0 

2 
A = b = I and F· = - [a Ib ,a] , , 

'0 0 I 1 
, 
I .. - _l 

Choosing D as (1,0) since our major aim will be to' control 

xl' we obtain 

U t =.H -1 ( 1) Z = Z It 
o coO 
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is the desired state. Applying this control will 

the steady state the desired Zo for Z=x
l

. 

2.6. CONCLUDING REMARKS 

This chapter extends the available results on the re-

ceding horizon controller. We simplify and quicken the 

design procedures by our algorithms, extend the use of the 

controller to singular state transition matrices and non-

zero set points. New results are supported with theore-

tical verifications and simulated examples. 



3.1. 

,CHAPTER· 3 

STOCHASTIC MODELS FOR 
DYNAMIC SYSTEMS 

I NTRODUCTI ON 

Our purpose is to apply the receding horizon control 

procedures described in the previous chapters to the de

sign of suboptimal control of stochastic and parameter 

adaptive stochastic systems. So, in this chapter, we will 

describe various stochastic models that will be suitable 

for our purposes. First, we scan the deterministic models, 

next we describe their stochastic counterparts and then 

we introduce the prediction error formulation that encom

passes these and many other stochastic models. We will 

mainly follow [11] in our treatment. 

3.2. DETERMINISTIC MODELS 

One form of model that we have been using to desc~i~e 

linear time-invariant discrete-time causal dynamic systems 

is the state space model where the output is related to the 

40 
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x(k+l) = Ax(k) + BuCk) 

y(k) = Cx(k) + Eu(k) (3.1) 

-If the initial state is zero, then the z-transform of 

the output is related to the z-transform of the input by 

Y*(z) = H*(z)U*(z) ( 3.2 ) 

where 

H*(z) = C(zI - A)-lB + E ( 3.3) 

Another alternative is to use~ the difference equa-

t i on formulation 

d t d' 
y(k) + ~ fld)y(k-d) = E g(d)u(k-d) (3.4-) 

d=l d=O 

introducing the unit delay operator 

-1 q x(k) = x(k-l) ( 3 .5) 

so represent Equation 3.4 by 

f(q)y(k) = g(q)u(k) . (3.6) 

where f(q) and g(q) have obvious definitions. If the sys-

terns originally at rest, ~hen the z-transform of y(k) is 
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related to the z-transform of u(k) by 

F~':( z)y;";( z) = G :': ( Z ) U :'; ( Z ) ( 3.7 ) 

where 

-d' 
f(d)zd'-d F~':(z) = L 

d=O 

d' 
g(d)z.d' -d G~':(z) = L ( 3 . 8) 

d=O 

are matrix polynomials in z. To secure unique representa-

tion of the output by the input, we assume detF*(~) ~ 0, 

so Equation 3.7 can be written as 

y:':(z) = H:':(z)U:';(z) ( 3 .9) 

-"here 

Hi: ( z) = [F :': ( z) J -lG :': ( z) ( 3 . 10 ) 

H*(z) will be called the matrix transfer function of the 

system and the representation in Equation 3.10 as left 

matrix fraction description (MFD) for H*(z). It follows 

that 

and (3.11) 

so we have 

(3.12) 
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and Equation 3.10 is represented as 

f(z)Y*(z) = g(z)U*(z) (3.13) 

We conclude t-hat the relation between the output and 

-1 -1 the input is the same whether we use q or z , and through-

out the text, we use them interchangeably to denote unit 

delay operators. 

3 . 3 . COVARIANCE STATIONARY STOCHASTIC -t'10DELS 

In this section, we introduce the randomness for the 

first time. We will associate Btochastic processes with 

arbitrary spectral densities with linear systems driven by . , 

The following two results will establish ~his: 

THEOREl'-l 3.1: 

Let ¢ (z) be an nxn discrete rational spectral density 
y 

matrix having full normal rank. Then there exists a uni-

que nxn rational matrix H*(z) and a unique prisitive definite 

real symmetric matrix ¢n satisfying 

¢ (z) = H:': ( z ) ¢ H \': T ( z - 1 ) 
Y n 

ii) H~(z) is analytic,outside and on the unit circle, 

that is for Izl ~ 1. 
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iii) H~-1(z) is analytic outside the unit circle, 

i . e ., f or I z I >.1 

iv) lim H*(z) = I 
Z4cO 

For proof see [10]. 

THEOREM 3.2 

The output power density spectrum ~y(z) of an aysmpto

tically stable linear syst~m with transfer function H*(z) 

driven by a zero mean wide sense stationary process with 

power density spectrum ~ (z) is 
n 

iw 
where z = e For pro of see 

If we combine these two results, we conclude that a 

zero mean stochastic process with spectral density~y(z) 

may be modelled as the output of a lin~ar system driven by 

Hhite noise. So the inclusion of randomness in this way, 

will entail the possibility of ~epresenting the output of 

a system as 

y(k) = j(k) + n(k) (3.14) 

where y(k) is the output due to the deterministic input and 
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n(k) is the output of the linear filter ~ith transfer func-

tion H~(z) driven by white noise with covariance ., so 
n 

we may model n(k) by: 

1) HFD form: 

with limH~(z)=I and detG*(~) ~ 0 
z-+<x> 

2) State Space form (SSF): 

H*(z) = C(zI - A)-lB + E 

where E = I and H*-l is stable . 

( 3.15 ) 

v Izi > 1 

(2.16) 

. Combini.ng both the deterministic and stochastic parts, 

He have: 

1) [·1 f D: 

y(k) 
-1 . -1 

= F1 (z)G1(z)U(k) ~ F2 (z)G 2 (Z)E(k) 

(3.17) 

or 

A(z)y(k) = B(z)U(k) + C(z)E(k) (3.18) 
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is a white noise sequence with covariance E. The model 

described by Equation 3.18 is also known under the name 

ARMAX (auto-regressive-movin'g average-exogeneous variable). 

2) SSF: 

or 

Xl(k+l) - A1Xl(k) + Blu(k) 

X
2

(k+l) = A2X
2

(k) + B
2

E(k) 

y(k) = C1Xl(k) + D1u(k) + n(k) 

n(k) = C
2

X2 (k) + E(k) 

x(k+l) = Ax(k). + Bu(k) + Kdk) 

y(k) = Cx(k) + Eu(k) + dk) 

(3.19) 

(3.20) 

All the above models may be written in the general form 

(3.21) 

h r,' H () " ~.ere ~lm ? z = 1 and {s(k)} is a white noise sequence 
z-rco -

Hith cov...a.riance E. 

3.4. PREDICTION ERROR MODELS (PEM): 

In this section, we will describe prediction error 

models which contain most other stochastic models as sub-
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classes. They will be of use to us when we deal with para

meter identification problem. They have the general form: 

( 3.22) 

where Yk - l = {Yk-l'Yk-2" .. } and Uk = {uk,uk _l ' ... } and 

E(k) is an innovations sequence with the property 

(3.23) 

where E[.J denotes expectation. 

We ~an now show how the oth~r stocha~tic'models can 

be represented by PEM's. Let us consider thi linear sys-

teQ having covarIance stationary disturbance 

(3.24) 

with Hl and K2 are stable rational transfer £unctions. 

H
2

- 1 stable~ 1im H
2

(z) = L, and {E(k)} is a white noise 
z-+co 

sequence with covariance E. The properties of H2 (z) allow 

us to represent y(k) as 

= L,(z)y(k-l), + L2 (z)u(k) + ECk) 
-'-

(3.25) 
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Ll ,L 2 are stable transfer functions. 
. . 

Comparison of Equa-

tion 3.25 with 3.22 reveals that Equation 3.25 is in PEM 

form. Let us now consider the linear time-invariant sto-

chastic system 

x ( k + 1) = Ax (k) + B u (k) + W (k ) 

y(k) = Cx(k) + Du(k) + V(k) (3.26) 

with A stable, (A,C) observable, {W(k)} and {V(k)} are two 

uncorrelated white noise sequences with covariances QW and 

QV respectively. The output in two components is 

y(k) = y(k) + n(k) 

~(k) is modelled as 

x(k+l) = A~Ck) + BuCk) 

y(k) = Cx(k) + Eu(k) (3.27) 

and n(k)" is"a zero mean stochastic process having spectral 

density 

cP (z) = CCzI - A)-lQHC:z-1I - AT)-lC T , + QV n 
(3.28) 
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-" 

Let us now determine a spectral factorization of 

(3.29) 

where 

H*(z) = C(zI - A)~lK + I (3.30) 

(3.31) 

E = CPC T + QV (3.32) 

P is the unique positive definite symmetric solution of 

the algebraic Riccati equation: 

(3.33) 

This spectral factorization is verified by substitution in 

Appendix B. Collecting al~these equations, we arrive at 

"the conclusion that y(k) has a representation of the form 

i(k~l) = Ai(k) ~ BuCk) 

x(k~l) = Ax(k) ~ Ks(k) 

y(k) = Ci(k) ~ Cx(k) ~ DuCk) ~ s(k) (3.34) 

This model is written letting x(k) = iCk) ~ x(k), ... 
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i(k+l) = Ai(k) + Bu(k) + KE(k) 

y(k) = Ci(k) +Eu(k) + E(k) (3.35) 

The above model which is called the "state space in-

novations .form" is very useful from the viewpoint of 'con-

trol designer, because once this formulation is achieved, 

estimator design problem becomes trivial. Rearranging, 

i(k+l) = Ai(k) + Bu(k) + K[y(k) - Ci(k)] ( 3 .36 ) 

'Moreover, Equation 3.35 can be expressed as 

.(3.37) 

Hhere 

n , ) 
r11\~:: = C ( zI 1:..)-lu !.. .u '" 

H
2

(z) = C(zI A)-lK + I 

So, one can easily arrlve at the PEM form. 

3.5. COHt1ENTS 

In this chapter, which has a transitional character, 

we have passed from the deterministic realm to the s~ochas-

tic one. We have introduced important concepts such as 

representation of a stochastic process, cov~riance station~ 
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ary and PEM forms for stochastic models, and innovations 

representation which we will extensivelY use in the fol

lowing chapters. 



4- .1. 

CHAPTER 4 

STOCHASTIC RECEDING HORIZON 

CONTROLLERS 

INTRODUCTION 

This chapter treats the suboptimal terminal control 

of linear discrete time stochastic systems. Discrete re

ceding"horizon concept is used to obtain the solution to 

the case where perfect measurements of the state are avail

able, and the innovations representation is used .to con

vert the stochastic control problem into one in which per

fect measurements of the state are available. The resul-

t ing properties of the closed.-loop s,cheme is- discussed and 

the simulations are reported. 

4.2. STOCHASTIC RECEDING HORIZON CONTROLLERS 

Let us consider the noise corrupted linear time

invariant discrete-time system 

x(k+l) = Ax(k) + Bu(k)+Kv(k), k > 0 (4. l) 

52 
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and x(o) is a random vector wit~mean i(o) and covariance 

matrix Q'. 
o The observed variable is defined as 

y(k) = Cx(k) + v(k) ( 4.2) 

The noise sequence is Gaussian distributed, uncorrelated 
, , 

Hith X,( 0) has zero mean and covariance matrix QV' We as-

sume that the system is controllable and observable. 

We present the stochastic linear discrete-time output 

feedback receding horizon regulator problem as finding 

the control vector sequence u(k) in terms of observed va-

riables ~f the system up to the time instant k~l,such 

that the criterion 

N-l 
J = E{ l:: 

k=O 
is minimized ( 4.3) 

subject ~o ~he system dynamics, the measurement conditions 

and the equality constraint 

E {x(N)} = 0 ( 4 .4) 

Here R is positive defi_nite and N is the horizon time lower 

bounded by N =dimensionx - ranku + 1. 
o 

As in the case of 
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linear quadratic Gaussian problem, the certainty equiva

lence principle [12J Vlhich is a kind of superposition of 

the control and estimation parts, will be valid since we 

pose here a subclass of the general linear-quadratic-

Gaussian prDblem. The solution of th~ stochastic linear 

discrete-time output feedback r~ceding horizon controller 

problem is as follows: 

The constant gain control sequence is given by 

u(k) = Fx(k), k > 0 (4.5) 

where F is the constant feedback gain matrix for the deter-

ministic controller as given by 

- R- I BT r- 1( )AT,-l t = - \' 0 J ( 4- • 6 ) 

weo) is the solu~ion at the zeroth instant of the linear 

equation 

-l[ -1 T] -T H(k) = A - H(k+l) + BR B· A , H(N) = 0 ( 4-.7 ) 

Moreover, x(k) is the minimum mean square linear estimator 

of x(k) found by utilizing the observations, y(j), O.::J':'k-l, 

such "that) 
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x(k+l) = Ax(k) + Bu(k) + K[y(k") - Cx(k)] ( 4.8 ) 

VERIFICATION 

Since the certainty equivalence is valid for the 

general case where the estimator has the equivalent struc-

ture and the controller is designed to mini'!llize the cost 

criterion in Equation 1.15 which is more general, itis 

still valid for the case where QF is arbitrarily large 

and Q is identically equal to the zero matrix. -z The dyna-

mics of the estimator can be obtained very easily since 

the system to be controlled is in innovations state space 

form, so holds Equation 4.8. 

RE1<!A?KS 

1. The orginal stochastic modelling may be done In 

discrete-time state space f6rm in which case ..... 
It. is easy to 

l:ransrorm to an innovations sta·te space form as given in 

the previ6us chapter. 

2. Since ~e ~ave uncertainty in the values of the 

st~tes, we cannot satisfy the final condition exactly. We, 

instead iuppose zero terminal state in the mean. The limit 

of accuracy, which is~he inherent characteristics of any 

stochastic controller is that the terminal errors are al-

ways lower bounded by the estimation errors. 
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3. The results relating to the asymptotic stability 

of the deterministic dis~rete controller can be found in 

[3]. For the observer, we are using a form that is ane

ta-one with a steady.state Kalman estimator which isasymp

totically stable under some weak regularity conditions [7]. 

Because we have an interconnection of an asymptotically 

stable observer and a system which is made asymptotically 

stable by a feedback law, the resultant closed-loop system 

is asymptotically stable. 

4.3. SH1ULATION RESULTS AND" DISCUSSION 

To evaluate this proposed stochastic 'control algorithm, 

a series of simulation experiments on several different 

systems have been performed. The following four systems 

are considered: 

1) x(k+l) = 2x(k) ~ u(k) + 1.5v(k) 

y(k) = x(k) + v(k) 

2) x(k+U = l.lx(k) + u(k) + 2v(k) 

y(k) = x(k) + v(k) 

3) x(k+1) = O.8x(k) + O.Su(k) + l.5v(k) 

y(k) = x(k) + v(k) 
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-.. r 
j.5 

° 1 
r 1 .2 -i 

4) x(k+l) x(k) 
I = ~ i uCk) + t 

vCk) I 
0 .25 J ! 1 .2 t 

L 
~ 

y(k) = [.5 .5] x(k) + v(k) -~ 

The systems may be obtained from,the ARMAX model: 

/ 

+ b 2 u(k-2) + v(k) + clV(k-l) + c
2
v(k-2) 

respectively by: 

1) a l =2, a 2 =0, : bl=l, b 2 =0, c 1 =-·5, c =0 2 

2 ) al=l.l, a 2 =0, b l =1, b 2 =0, c 1 =0 .9, c =0 2 

3) a l =0.8, a 2 =0, b l =0.8, b 2 =0) (:1=0.7, c =0 2 

4) a 1 =·75, c
l

=-·55, 

c 2 =·05 

We took the noises to be white Gaussian with zero mean and 

variance .25. Changing the variance throughout a certain 

range did not affect the results much, nor did the change 

in the initial state estimates. It is evident that the 

first two describe unstable systems. The experiments are 

done to test the quality of control and estimation schemes. 

EXPE Ell-IE NT 1. Efficacy of ,Estimation: In order to evaluate 
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the relative effectiveness of estimation, three digit 

estimation accuracy region (the difference between the 

true state and its estimate is less than .001) is assumed. 

The first system enters this region in 12, the second 80 

and the third in 22, the fourth in 10 steps, never leaving 

the region. To equalize the effect of feedback as much 

as possible, the systems are controlled with the same hori-

zon length but of course the response of the closed-loop 
) 

system depends also on the system structure. The rela-

tively slow convergence of the second system with respect 

to the others is attributed to its noise transfer function 

being closest toa non-minimum phase transfer function. 

EXPERH1ENT 2. Accuracy of Control: For the first three 

systems, we assumed an accuracy of control criterion as 

50 
the, average state accuracy (1/50) E x(k) < .01. All 

k=l 

three systems controlled with I-step ahead (N=l) control-

lers, and they all keep under this value. The accuracy 

gain is infinite in the first two unstable systems, be-

cause if uncontrolled they will diverge to very large va-

lues. In the third system, the average state accuracy is 

four times that- of the uncontrolled case. For the- fourth 

system, we used a four-step ahead (N~4) controller and we 

took an average of the first· thousand estimates. For the 

• I 
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first state variable, we got .0082, for the second .0052. 

Even though, the gain in accuracy was nbt substantial for 

this system, this was due to the long operating time and 

the 'stable eigenvalues of the open-loop system. 

~ , 

EXPERIMENT 3. Economy of Cost: When the systems are 

controlled in one-step~ahead ~anner, the average control 

49 
energy spent at each step as measured by (l/SO) E 

k=O 

are respectively given by: 2.392, 1.901 and .426. This 

is, as one can see, closely related to whether or not and 

how much the state transition matrix is unstable. 

EXPERIMENT 4. Tunability by the Choice of Horizon Length: 

The choice of horizon length is a variable which supplies 

the designer the flexibility of being able to determine 

the strength of control and the rise time of the closed-

,loop system. Evidently, as the value of horizon length 

is increased, one obtains a lazier controller which results 

~n a closed-loop system with higher rise time. For the 

purpose of comparison, the first system is simulated with 

a four-step-ahead (N=4) controller which resulted in less 
\ 

accurate control with less effort. Another possibility of 

tuning that remains, is the choice of sampling rate, of 

course. 
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4.4. 'CONCLUSIONS 

In this chapter~ we have described a stochastic ver-

sion of the receding horizon .cohtroller. As it is suffi-

cient to be a novelty by it~elf~we have rather done it 

for the purpose qf using it in a stochastic adaptive situa-
. I 

tion. The choice of the re~eding ho~izon control concept 

in a multitude of many othe~s i~ not arbitrary· but based 

on its relative simplicity in the choice of penalization 

matrices and subsequent calculations~ flexibility of being 

able to choose the .rise time ~nd strength of control, the 
I 

favorable.f~ature of securing the asymptotic stability of 

the closed-loop system~ but yet thegenuin~ characte~ in 

the s~se of maintaining the necessary trade-off between 

perfection and cost. 

I 
I 
! 
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CHAPTER 5 

AN INTRODUCTION TO THE TECHNIQUES OF 
IDENTIFICATION AND 

PARAMETER ADAPTIVE CONTROL 

j 
5 . 1. I NT RODUCTI ON 

As our ultimate aim is to use our .controller in an 

adaptive setting, it is well worth -to try t6 scan ~he main 

themes in the theories of identification and adaptive con-

trol. Much has been done in both of these fields for the 

purposes of (i) to monitor'systems to know when a failure 

. . ( 

occurs; (ii) to sum up what is known about a system 1nto 

a compact set of kno~ledge; and (iii) to on-line control 

systems with minimum possible cost. Since much has been 

done, there is much t6 consider, uriderstand and synthesize. 

Since this is impossible to accomplish in a chapter, we 

will try to sketch the main tren~ of researchers in these 

fields, perhaps in a biased way so as to allow £or our. 

immediate use of these results in the following discussion. 

The first part is a short introduction to identifica-

61 
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tion and an attempt to gathe; the seemingl~ unrelated tech-

niques of parameter estimation in dynamic .systems under 

recursive prediction error identification concept. The 

second part contains Some results on closed~loop identi-

fication of systems, which we will 'make use of in the nex.t 

chapter. In the· third part, the simple z-domain adaptive 

technique of minimum variance control is mentioned. This 

c onst i tutes an introduction to adapt i ve control t echniqu'es 

to which, in the following chapter, we will add the corre-

sponding state space techniques and our novel approach. 

Ive .will present some remainit:lg parameter-adaptive control 

approaches and possibilities in the last chapter. 

5.2. PREDICTION ERROR IDENTIFICATION 

Mathematically speaking, any identification procedure 

is a transformation of measurable sequences of data to a 

model that mo-st probably generated these data. Physically) 

one uses the observed inputs and outputs of a system to 

uniquely identify the system structure. It is desirable 

to do this on-line, that is, as the process goes on, since 

our major aim is adaptive control, which is controlling a 

system by identifying-its structure at the same time. So 
. 

we will exclusively deal with time domain recursive iden-

t i f i cat i on tee h n i que s . Recursive because we do not want 

I 
I 
I 

I 
J 

1 
.j 

! 
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,to load our computer with old and redundant data. The 

would be USer has to choose among different alternatives 

being. in the field of {dent{f{cat{on . h 1 d ~ ~ ~ ~ muc exp ore . For 

example, he has to choose: 

on 

1) The model s~t together with its order, between 

several alternatives such as linear vs no~-linear 

models, input/output vs state space models, etc. 

2) The proper design of input to the system. which 

constitutes a favorable condition for proper 

identification. 

3) Which criterion· to use for identification. Some 

criteri~ naturally correspond to innovation dis-

tributions [13]. 

4) Proper search direction and which gain sequences 

to use, both affecting the convergence and the 

convergence rate of the algorithm. 

5 ) Any approximations in the algorithm based on the 

basic compromise between convergence rate and 

computational simplicity. 

6 ) In{tial conditions to start the algorithm. Actual-

ly these do not influence the results very much. 

Since there are g6bd references to show how to decide 
~ 

the above choices, we will not be pursuing this matter 

any further, but the intereste~ may refer to [14 - 18]. 
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-" In the following, we will briefly summarize some of 

the ideas in the theory of prediction error identifi~ation. 

Let us consider the general ARMAX model. 

(5 .1) 

where q-l is the backward shift ope~ator, A, Band Care 

polynomial operators, such that 

A(q-l) -1 -n 
= 1 + alq + + a 

n
q 

B(q-l) 
. -1 

b 2 q 
-2 b q 

-n 
= bl<l + -I- + .n 

-1 -1 -n 
C(q -) = 1 + clq + .... + cnq ( 5 .2) 

V(k) is the disturbance term. If we take 

(a ,a
2

, .• ·,a ,bl,···,b ) 1 n n 
( 5 . 3) 

and 
I • 

,¥T(k) = (-y(k-l), ... ,-y(k-n),u(k-l), ... ,u(k-n» 

( 5 • 4 ) 

with ceq-I) = 1. Rquation 5.1 becomes 

Y (k) = G T '1'( k) + v (k ) ( 5 .5 ) 

which is called the least squares model. Assuming a least 

, squares criterion 

j 

i 

I 
I 
I 

I 
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k 
min E [y (i ) ~. - 0 T '1' ( i ) J 2 (5 .6) 
o i=l 

along with the corresponding model, minimization results 

in 

I 

- [k
l 

0(k) = 

Let us define 

k 
E ~(i)'I:'T(i)]-l 

1 N 
k E 

i=l i=l 

R (k) = 
p 

1 k T 
E '¥(U'¥ (i) 

k i=l 

'¥(i)y(i) (5 .7) 

( 5 .8) 

which is nothing more than the correlations of th~ data 

k 
§(k) = Rp-l(k) ~ E 'I:'(i)y(i)· 

i=l 
( 5 .9) 

Writing the equations for §(k) and §(k-l) and manipulating 

them along with Equatio~ 5.8, we obtain 

(5.11) 

~t is also possible to obtain a recursive form by 

usi~g the matrix inversion lemma for 

= 1 R -l(k) 
k p 

(5.12) 
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P*(k-l)~(k)~T(k)P*(k-l) 

1 + ~T(k) P*(k-l)~(k) 
(5.13) 

to refrain from taking matrix inverses. The above also 

constitutes a simple example to obtain a recursive iden-

tification algorithci out of'an off-line method. 

Now introducing the linear finite dimensional predic-

tor model 

o/(k+l,S) = F(S)~(k,S) + G(S) 
fy(k)l 
! I 

l u(kd 

~(kI0) = H(0)~(k,0) (5.14) 

defining 

l/J(k,S) 
d -T / = d0 Y (k, 0) = d 

- dS E(k,0) 

/ 

where E is the prediction error~ One can differentiate ~ 

and augment to the state equations to get 

t,:(k+l,S) = A(0)t,:(k,0) + B(0) . 

r y(k,S)' 

: coll/J(k ,S) i L . 

= C(S)t;(k,S) 

,-
Iy(k) 

l u(k) 

(5.15) 
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where col(.) denotes transforming a matrix into a column 

vector. Let us now minimize the quadratic criterion 

(5.16) 

in terms of the prediction error by differentiating with 

respect to e. The minimizing e can be found by the recur-

sion 

= 0 (k -1 ) + y ( k) R:"lljJ [k • §( k -1) ] E [k • e ( k -1) ] (5. 1 7 ) 
P 

to calculate R as an approximation of the second deriva
p 

tive of the criterion function. we let 

R (k) ; 1 
p k 

k 
L: ljJ{i)IjJT(i) 

i=l 

and written recu~sively as 

R (k) 
p 

R (k-l) + y(k) [1jJ(k)IjJT(k) -·R (k-l)j 
p p . 

(5.18) 

(5.19) 

this choice is called the stochastic Gauss-Newton algorithm. 

We could also choose R as identity. This would lead to a p . 

stochastic gradient algorithm. 

Several types of algorithms can be classified as re-
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cursive prediction error· methods, such as maximum likeli-

hood [20,21], generalized least squares ~2J, instrumental 

variables [23}, modified extended Kalman filter [24], .and 

pseudo linear regr~ssion m~thods. We will be dealing with 

modified extended Kalman filter in Chapter 7. In the fol-

lowing, we will deal a little bit with pseudo linear regres~ 

sion methods as they represent approximations to the re-

cursive prediction erro~ methods, rather than direct appli-

cations as in other algorithms. We start with linear pre-

diction model 

'¥ ( k + 1 , 0) = F ( 0 ) '¥ (k ,0 ) + G ( 0 ) .. 

~- I 
iy(k)l 

lU(k)j 
( 5 .2 ° ) 

Let us assume for a moment as if '¥ were not dependent 

upon 0,and so riot consider 0 dependancy of '¥ yhen taking 

derivatives. Therefore, 

and the estimator becomes 

8(k) = 0(k-l) 

E(k) = y(k) -

-1 
+ y(k)R (k)'¥(k)E(k) 

p 

eT(k-l)'¥(k) 

y(k) 

u( k) 

(5.21) 

(5.22) 



- 69 -

This class of parameter-estimation schemes, which 

includes extended least squares [25,26]; extended matrix 

method [27], modified reference method of Landau [28J can 

be seen as approxi~ations to the prediction" errbr identi-

ficationmethods. 

Analysis of recursive prediction error methods leads 

to certain interesting results, one of which is that these 
I 

algDrithms converge with probability one to a local minimum 

of the expected value of the chosen criterion .. That means 

their convergence p~operties.are the same as. off-line pre-

diction error methods. Another point is that the asympto-

tic distribution of these algorithms are the same as the" 

asymptotic distribution of off~line methods. A third point 

is that the converge~ce of pseudo-linear regression methods 

requires the positive realness of certain transfer functions -

related to the unknown. system. So the convergence cannot 

be ascertained beforehand 

5 . 3 . CLOSED-LOOP IDENTIFIABILITY 

In some cases, identification of systems cannot be 

done open-loop due either to security reasons as in indus-

trial processes or that the system is inherently closed-

loop as in biological or economic systems. To extend the 
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identifiability concept to c:losed-Ioop systems, we will 

present the following discussion whi~h appears at l~ngth 

We will use these closed-loop identifiability 

results in the next chapter in proving the convergence of 

o.ur algorithm. 

Let us assume that the true system is given by 

y(k) (5.23) 

{e(k)} is a sequence of independent random vectors with 

zero means and coyariance E.- Let us also assume that, 

without loss of ~enerality, e(k) has the same dimension as 

y(k). L~t Hs(O) = I and de~[Hs(z») has zeros outside the 

unit circle. This assumption is for securing H -l(q-l) to 
s 

be a well-defined stable filter. To ensure that this 

puts no restriction, see the representation ~heorems in 

Chapter 3. Consider, 

u( k) 
1 -1 = F.(q- )y(k) + L.(q )v(k) 

1 1 
( 5·.24-) 

1 < i < h 

Notice that the feedback law and the term consisting of __ 

the outside disturbandes and set point effects are allowed 

to change between h different cases. 
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A model for a ce~tain value of 0 is 

(5.25) 

{~(k)}is a sequence of i~dependent random ve~tors with 
... 

zero mean 'values and covariances E. We assume that we use 

a prediction error identification method . In direct iden-
. 

tification, inputs and outputs are ~r6cessed as if thei 

were obtained from an opeh loop system, whereas in indirect 

identi£ication, in the first step, the closed-loop system 

is identified, then 

knowledge of Fi and 

we solve for the open-loop system using 

L .. Let us ~efine 
]. 

which is the set of Farameter values which result in the 

models having the same system and noise transfer matrices 

as the true syste~. Let us present two handy definitions 

of identifiability': 

DEFINITION 1:' 

The system S is said to be system identifiable if 

GN+DT(S,M) with probability one as N-HX>. 

DEFINITION 2: 

" The system S is said to' be strongly system identifiable 
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if it is system identifiable- and DT(S,M) is non-empty. 

The main theore~ for identifiability analysis is the 

following :. 

THE ORE M 5 .. 1: 

Cons~derthe system in Equation 5.23, with the condi-

tion in Equation 5.24, and identifica~ion with the model 

in Equation 5.25 with either the -direct or indirect method. 

Other assumptions are: 

1) There is at least one delay in the system and/or 

in the_feedback law. 

2) The closed-loop sys.tem is"asympt~tically stable. 

3) DT(S,M) is non-empty, which means that the system 

is included in the considered class of models. 

4). The possible correlation of v(k) and e(k) is 

5) 

described by 

v(k) = K.(q-l)e(k) +v(k) 
J. 

(5.27) 

where K. is a causal asymptotically stable" filter, 
J. 

v(k) is independent of e(k) and persistently ex-

citing of any finite order [30J. 

-1 
Th~re is a delay from e(k) to Gs(q )u(k). 

Then the necessary and sufficient condition for strong 
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system identifiability is. tpat 

rank Rh = dimy + dimu 

where 

The proof is given in [29]. 

SPECIAL CASE: 

I 

F (z) 
n 

o 

(5.28) 

o ] . 
\ .(5.29) 

L (z) 
n 

In the caSe of pure linear feedback law with L. _ 0 
l 

Rh red u c est 0 

Rh ( z) = 
II 
1 F l' 

( 5 • 30 ) 

a necessary condition for strong syst,em identifiability is 

that h>h = smallest intege~ > 1 + dimuldimy. 
- 0 

i 

-
Proof is 

giv~n in Appendix C. In the next chapter, we will utilize 

this special case. 

5.4. AN INTRODUCTION TO PARAMETER ADAPTIVE CONTROL 

In this last section of this chapter, we make a brief 

introduction to th~ simplest type of adaptive controllers 

which make use of parameter estimation, n~mely self-tuning 
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algorithms. In the next ch~pter, we will mention alterna-

tive design techniques in state space. 

It is custom~ry to cilassify the. adaptive control tech-

niq~es as passi~e (rion-dual·br feedback) ~nd active (dual 

or closed-·loop). What makes.the difference is the infor-

mation amount available to the controlling mechanism and 

this,inturn, depends on-the st~ucture of the performance 

index. If the performance index is one-step ahead as in 

non-dual controllers, the controller then takes into account 

only the previous me~surements and assume no further infor-

mation will be available. Minimization of a loss ·Eunction 

of several steps ahead,however, as in the case of dual 

controllers, means that the loop will remain closed in the 

future and vTill lead to a dependency on the future obser-

vat ions, but we do not mean the violation of causality. 
, (: ( . 

The dual controllers, in general, ensure better compromise 

between contr~l and estimation but are more complex in 

structure. The non-dual controllers can also be classified 

as certainty-equivalent and cautious controllers. The cer-

tainty equivalent controllers do not take into cons~dera-

tion that estimated parameters are not always equal to the 

true ones, but USe these estimates wherever parameters are 

needed to form the control law; Cautious controllers are 

designed according to separ~tion principle which allows the 
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use of the parameter estima~~ in the control law with its 

associated uncertainty, so these controllers are more 

"cautious" as the name implies. More on these classifica-

tions and relative merits of each type of controller can 

be found in [31] and [32] ~:ong others. ·We shall· deal in 

this and t·he next chapter with passiye controllers and in 

the last chapter with active controllers which entail extra 

c9mputational requirements. Let us, for the moment, re

strict ourselves to the self-tuning algorithm of Rstr6m [33]. 

Let us consider the sys~em 

Y· (k) = B(z) u(k) D(z) 
A(z) + C(z') 

( 5 .31') 

Hhere 

B(z) bda 
-d b -n 

= + ... + z 
n 

A(z) 1 
-1 

+ 
-n 

= + a1z + ... a z 
n 

Let us, fo~ the moment, assume that B*(z)=znB(z) Hith-

out any roots outside ~he unit circle. Then the control 

sequenbewhich minimizes 

( 5. 32 ) 

Hhere 

Yk = {y(k),y(k-l), ... }, Uk = {u(k),u(k-l), ... } 
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is given by 

u ( k) = - [A ( z ) G ( z) I z dB ( z) C ( z) F ( z) J y ( k ) ( 5 . 33 ) 

where F and G are found by 

d ' 
D(z) IC(z) = F(z) + z- G(z) IC(z) (5.34) 

-1 -(d-l) 
F(z) = 1 +flz + ... +fd_lz (5.35) 

PROOF: 

Substitute Equation 5.34 into Eq~ation 5.31 

d G(z) 
y (k +d) = z B(z) u(k) + F ( z ) e: ( k +d ) + e:(k) 

A(z) C(z) 

= 
zdB(z) 

u(k) + F ( z ) e: (k +d ) 
A(z) 

G(z) {C(Z) (y(k) B(z) u(l--»} 
+ CTZT D( z) - ATZT ., (5.37) 

So 

= rB (z) (z d _ G
D 

« ZZ » ) u ( k) 
~A( z) + 

2 2 
+ (1 + fl t .... f d - l ) E 

E{y2(k+d)} is minimized when u(k) is. chosen to satisfy 

B(z) i d _ G(z)] u(k.) G(z) (k) = 0 
A ( z) I.

Z D ( z) - + D( z) y (5.38) 

Manipulation gives Equation S.33. 
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For'models in least squares structure 

A(z)y(k) = B(z)u(k) + E(k) (5.39) 

A(z) 1 + -1 -n = a z ,+ + .a z 
1 n 

B(z) b
l 

z -1 
b 

-n = + e, •• + z 
n 

(5 .40) 

Let 

(5.41) 

- wh ere 

( 5 .42 ) 

then 

T " 
Y ( k) = E; ( k ) e + b 1 u (k -1) + e: ( k) (5.43) 

E;T(k) = [u(k-2), ... ,u(k-n), -y(k-l), ... ,-y(k-n)] (5.44) 

The minimum variance controller is derived using the fact 

that the particular u(~) whi~h minimizes E{y2(k+l)} is 

(5.45) 

'To be able to use the minimum vari~nce controller, one 

needs to know the parameter values. Since the true ~alues 

are not always ,known , th.en they are replaced by their cur-

rent estimates which results in a certainty equivalent 
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non-dual controller. A common parameter estimation scheme 

used with minimum variance controller is the recursive 

least squares identification method. The resulting self-

tuning regulator has the u~axpected property that the 

scheme may cotiverge to the corre.ct controller ~Ven though-

the original system is not in least squares class [33]. 

5.5. CONCLUDING REMARKS 

In this chapter, we have introduced the probiems of 

open-loop and closed-loop identification of systems and 

adaptive control. The subject matters we touched upon 
. . 

were completely determined from a utilltarian viewpoint, 

since we will be using and extending the boncepts involved 

in the following chapters. We will be using the recursive 

prediction error identification method presented in this 

chapter in ~ certairity equivalent control structure and 

the results in the section o~closed-loop identifiability 

will be used iri proving the convergence of the over~ll 

resulting icheme. 



CHAPTER 6 

STOCHASTI C .ADAPT I VE RECED I NG 
HORIZON CONTROLLERS 

6.1. INTRODUCTION 

A suboptimal adaptive control algorithm for stochas-

~ic systems with unknown param~ters is proposed in this 

chapter. The linear controi law is certainty equivalent 

in the sense that it is linear in the estimates of the 

stat~s and that the f~edback gain matrix is calculated 

using the' estimates of the· unknown parameters. In the 

sequel, the control scheme is separated into an adaptive 

estimaton which simult~neously estimates the states and 

identifies the parameter~ of the system, and a certainty-

equivalent controller which makes use of the state and 

parameter e~timates as if they ~ere the true values. For 

the estimationpart~ the adaptive estimator of Lj~ng[34J 

is employed and for the control stage, the receding horizo,n 

concept is made USe of. We allow some of the parameters 

in the system and measu~ement equations to be unknown. The 

'--
system dynamics and measurement e~uations are given by 

79 
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x ( k +1) = A ( 0) x ( k) + B u ( k) + Ky ( k ) 

Y(k) = 0e x(k) + v(k) 

where x(k) is the nxl-state vector at the kth time instant, 

·u(k) is the. mxl deterministic input vector, y(k) is the 

corresponding output vector of dimensions pxl and v(k) is 

the noise sequence whose statistics are known. The noise 

sequence is assumed to be zero mean white G~ussian with 

covariance E{vCk)vT(j)} = Q 6(k,j). In this formulation, v . 

the pxs m~trix 0 contains all the 'unknown parameters in 

the model. Therefore, the system mat~ix A(0) and the out-

put matrix 0e are completely determined if the parameter 

matrix 0 is kno~n. Furthermore~ in this formulation, a 

particular parameterization suggested by Ljung [34] is 

adopted and th~ system matrix is assumed to be in the form 

A(0) = A + G0e. This formulation is general enough to 

contain stochastic difference equations with random para-

meter [34J. 

The problem is to obtain 'the contl-'ol sequence u(k) for 

.. k~ 0 , 1 , ... ,N - l, w h i c hm i n i m i z e s 

... 

N-l 
E { l: 

k=O 
(6.3) 

subject to the system dynam~cs of Equation 6.1 and also to 
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the constraint 

E heN)} = 0 (.6 • 4) 

where R is i positive definite matrix and N is the pre de-

terminedhorizon length. For the overall controller struc

ture to be' implementable, we require the controi at the 

kth instant to be a function' of the information state 

{ Y k ' Uk -I} w her e Y k = {y( 0) , y ( 1) , ... ,y ( k ) }, an d Uk -1 = 

{u(o),u(l), ... ,u(k-l)}. If the'parameter matrix is known, 

-the results are the extension of Thomas' receding horizon 

controller to the stochastic' case as demonstrated in Chap-

ter 4. But with unknown parameters, the contr611er struc-

ture must be improved to i~clud~ adaptat~on ~o the p~rameter 

identification process. The configuration\of the control-

ler to be uSed is shown in Figure 1. 

;-.,. -,.- .. -.. ~ ..... · .. ·· .. ---1 
~ Parameter· : __ 

:- : Ide n t i fie r; • 
I 

I 

-e Control 
Gain 

• ___ ~ ___ ._' ____ r __ 0 

, ... ' ...... ---.... --.~ ! '-' : -l----' ---' 
i 

, 
Sy s te ill f~ 

i I 
j 

I 
! .. 1 1. ... __ ., 

, 
, ... __ .L. ____ 1 __ ~ .. __ x 
State ! , do 

Esti;ator I'···---·~··-· T, 

V ' '. ___ ~~ ___ ... _______ ....:..-_~~~_ .. , .. _ ... ~ _____ . __ .. ___ ~ ___ . ________ i 

FIGURE 1. Stochastic Adaptive Controller Structure, 
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As can be noticed from the figure, the controller 

does nO.t take into account the uncertainty associated with 

the identification of the parameters, but accepts the para-

meter estima~es as if they were the true values of the 

'paramet~rs; ~hat is, in'the-t~rmsdefin~d by Wittenmark 

[32], the controller is not "continuous" but simply "cer-

tain ty equi valen til. 

Similar controller configurations in state space have 

been implemerited_so far~ith different realizations for 

the constituent subsystems. The parameter-ada~tive self 

organizing controller of Saridis [35], for example, is 

realized with a fir~t order stochastic appro~imation algo-

rithm for parameter identification, a Kalman filter for 
\ 

state estimation, whereas the control gains are computed 
) 

by either the steady stat~ dynamic programming equations 

or by "one-step-ahead" approximations (called per-interval 

control). Alag and Kaufman [36] have designed a compensa-

tor which is co~posed of ~n on~line weighted least squares 

parameter identifier, a Kalman state estimator and a model-

following control law making use of a single-step perfor
\ 

mance inde~. Kreisselmeier [37] suggests a controller. c6n-

figuration where the feedback laws are computed based on 

the current estimates of the parameters and states. Cao [8] 

has used the II per-interval ll controller or Saridis in con-
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junction with a first order stochastic approximation type 

parameter estimator and a steady state Kalman filter for 

siate estimation. But the bias in the parameter estimates 

led to control incbrisistencies. 

In the sequel, a new suboptimal control algorithm is 

suggested for the same controller configuration, which we 

think has the advantages of simplicity of implementation, 

generality of applipation and goo~ performance qualities. 

6.2. l\IE ALGOR I THM 

Let us first consider the case where the parameter 

matrix is knowti~ iheresults of this certainty-abo~t

par~meters (CA~ control pr6blem are given in Chapter 4. 

The 6ptimal control vector u~ is obtained by 

u:':(k) = Fx(k) k=O,l, ... ( 6 . 5 ) 

with the controller gain matrix F, as in the deterministic 

case being calculated as 

(6.6) 

where W(o) is the zeroth index solution of the backward 

iteration 
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( 6 .7) 

provided that.the system is controllable and N>n-m+l. 

The state vector estimate is obtaineA by 

x(k+l) A5{(k) + Bu(k) + Ky(k) ( 6 . 8 ) 

or equivalently,upon substitution of Equation 6.5 ·into 

Equation 6.8 by 

x(k+l) = (A +. BF)5{(k) + Ky(k) ( 6 .9) 

when there exist some unknown parameters either in the 

system equation or in theme as uremen teq uat ion, thes ta te 

vector can be augmented to include the unknown parameters 

and the augmented vector can be estimated. However, this 

procedure would lead to estimation and subsequenct control 

of s~stems with nonlinear dynamics which we shall treat in 

the next chapter. To avoid this nonlinear control problem, 

a certain ty- equivalence is impo·sed bbthw i th respect to 

state estimates as well as the parameter estimates ensuring 

ease of implementation and realizability of the control 

scheme for high order systems~ 

As a result of this enforced certainty-equivalence 

the stochastic adaptive control algorithm becomes 
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( 6 .10 ) 

where ~(k);A+G~(k)C and ~(k,o) is the zeroth index solution 

of the backward iteration 

If the cho~en horizon length N is large, then doubling 

algorithms may be employed as demonstrated in Chapter 2, 

thus avoiding matrix inversion at every step of this back-

ward iteration. 

Notice that the controller gain Equation 6.10 depends 

on A which changes as the parameter estimates are changed 

at every stage along with parameter identification. 

The estimates for the states and the parameters are 

computed by 

( 6 .12) . 

~T ~T o (k) = 0 (k - 1 ) + [ y ( k) 1 r ( k ) ] c 5{( k) [y ( k ) 

- 0Ck-l)Cx(k)] (6.13) 

r(k) = r(k-l) + y(k)[IICx(k) 112 - r(k-l) + 0] (6.14) 

In this algorithm, y(k) is an arbitrary scalar gain 
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sequence which satisfies Dvoretzky's conditions [39]. The 

arbitrary constant y is a small positive term used to pre-

vent r(k) from taking on the null value. I t can also be 

noticed that the parameter identifier is of a stochastic 

approximation type where r(k) is the trace of the uncer-

tainty matrix associated with the parameter identification. 

-The algorithm is started with an arbitrary G(o) for 

any given x( 0). 

6.3. CONVERGENCE CONDITIONS 

The convergence_of the proposed algorithm is closely 

related to the conditions of identifiabi~ity for systems 

operating under feedback. These conditions have been 

established by Soderstrom et .at. [29J and in the previous 

chapter,'--for multi-variable systems in a feedback loop. 

Here, we will demonstrate that the proposed algorithm meets 

the conditions for closed-loop identifiability. , 

Figure ,2 depicts the configuration of the adaptive 

stochastic controller together with the system whose 

closed-loop ideritifiability will be examined. Substituting 

Equation 6.2 into Equation 6.1, we get 
, 
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ctJv 
--1 '. ,---'1' -0-
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!;I i 
:-~ .... ; ---G-a-J.-·~n----,-'}- Estimator r~ 

..-_11-'---' 1_ ( -J 
Identifier and Tuner ! 

FIGURE 2. System Operating Under Feedback. 

x(k+l) = [A + (G+K)8C]xCk) + Bu(k) + Kv(k) 

=/A ( e) x ( k) + B u ( k) + K v ( k ) (6 .15 ) 

the transfer matrix HS from v to y is found to be 

(6 .16 ) 

Considering the estimator of Equation 6.12, the transfer 

matrix from y to x is obtained as [zl - CA+BF)]-lK and 

thus the transfer matrix from y to u becomes 

(6.17) 

Finally using Equation 6.15 again, we find the trans-

__ .... fer matrix from u to x to be 

(6.18) 
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The subscript i in the feedback matrix of Equation 6.17 

denotes the different values- of F(z) due to tuning by the 

parameter identifi~r: That is, the feedback law shifts 

b~tween h different cases, wher~ each ?ase is to be used 

inca non-neglible part-of the total control period. 

Examination of the transfer matrices given above 

will .show compliance with the identifiability conditions 

of Cha~ter 5. One can observe from Equation 6.17 that the 

feedback loop contains the necessary time delay for closed

loop identifiability. Also., it is assumed that the para

meter estimates do not change drastically,-and that they 

constitute a set of pseudo-stationary points of operation 

each taking sufficiently long duration to erisure an h-shift 

ih feedback laws, where h is the smallest integer such 

that h~l + dimuldimy. This assumption is strongly backed 

up by simulations. If these weak conditions are satisfied 

then the only remaining cond~tion for identifiability is 

the theorem in Chapter 5. The asymptotic stability is, 

in turn, se~ured by the identifiability. That is, in the 

limit, if the true valu~s of the parameters are known, 

then the proposed stochastic receding horizon controller 

is s~fficient to render the system asymptoticailY st~ble 

(Chapter 4). This means th~t, in this case, asymptotic 

stability implies and is, in turn, implied by the identifi-
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ability of the closed-loop system. 

6.4. SIMULATION RESULTS 

"Sever~l systems have been simulated and the proposed 

algorithm converged in all cases. Some of the simulated 

systems "and theachi~ved results are reported bel~w: 

SYSTEM 1) x(k+l) = (.5 + 1.S0)x(k) + uCk) + 1.Sv(k) 

y(k) = 0x(k) + v(k) with v(k):N(0,.2S), 0 = 1 

Clearly, this system is unstable but controllable. 

SYSTEM 2) x(k+l) = (-.7 + 1.S0)x(k) + u(k) + 1.Sv(k) 

y(k) = 0x(k) +v(k) wi~h v(k):N(O,.2S). 0 = 1 

This system is the first standard example reported in 

~6derstr6m [40J. 

SYSTEM 3) x(k+l).= (.83 + .iS0)x(k) + .1uCk) + .1Sv(k) 

y(k) = 0x(k) + v(k) with v(k):N(O,.2S), 0 = 1 

\ 

This system is obtained from the same continuous time sys-

t~~ that System 2 was obtained, but with one tenth the 

sampling period. 
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SYSTEM 4) 

x(k+l) = [: :lXCk) + [:] u(k) + [:] v(k) 

y(k.) = [a· ·b] x(k) + v(k) 

with v (k) : N (0 ,1) ,a - .95" b - -.05 

This system represents the dynamics of the pharmacodynamical 

application reported by Koivo [44], who studied the con-

trol of infusion rate of a drug for blood pressure regula-

tion. In his paper, Koivo used a minimum variance regu-
( 

lator not penalizing the cost of input energy to comply 

with mtcroprocessor requirements. The ~roposed algorithm 

penalizes the input energy meaning that it restricts the 

inf~sion rate of the drug while regulating the blood pres-

sure. 

All syst~ms considered above are obtained from .an 

ARMAX model of the typ~· 

yCk) = ay(k-l) t buCk-l) t vCk) + cv(k-l) 

with the followirig constants: 

System 1) a = 2, b = 1, c = -.5 

System 2) a = .8, b = 1, b = .7 



- 92 -

, 
System 3) a = .98, b = .1, c = -.83 

Sys tern 4) a = .95, b = -.05, c = 0 

Thesimulatipn of these systems exhibited the following 

geneI'al pI'opeI'ties of the .pI'oposed algoI'ithm: 

1. Effectiv~ I'egulation to Ze~o: System 1 and Sys-

tem 2 weI'e contI'olled by the pI'oposed adaptive I'eceding 

hOI'izon scheme. In 50 iteI'ations, th~ following I'esults 

weI'e· obtained foI' the aveI'age -value of the estimate 

50 
(1/56) E ~(k): 

k=l 

System 1 with I-step ahead contI'olleI': .0056 

Sys tern 1 with 4-s tep ahead con trqller: .. 0109 

System 2 with l-step ahead controller: .0315 

2. Regulation to Non-zero Set Points: For System 4, 

we applied the concept of reg~lation to non-zero set points 

~entioned in Chapter2~ The desired final state for xl 

was 50 mm Hg below that of the operating one. In a few 

iterations, w~ had 1.64 percent error in control and zero 

percent error in state-estimation. As can be seen, the 

non-singularity of the transition matrix is well taken 

care of by the method proposed in Chapter 2. 
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3. Success of Adaptation: Jacobs et. al. [4-2] suggests 

that the incremental costs €£ter many stages of operation 

can be used as a measure to evaluate the asymptotic pro-

perties of controllers. Small incremental costs as com-, ' 

pared"with the incremental costs, 6f the certainty abou,t 

1 parameters case ,would suggest succe~sfuladap~ation. The 

performance for System 1 of the~l-step ahead adaptive 

controller was compared with that of the l~step ahead CAP 

controller using the incr'emental cost x(lOOO) + u2
(999). 

These cgsts differ Jrom each other by 2xlO- 4 which means 

very good adaptation. 

4- . ~unability by the Choice of Horizon L~ngth: Bet-

ter performance was obse~ved with fewer-step-aheadcontrol-

ler. The table below gives a comparison of the performance 

of I-step ahead and 4--step ahead controllers for System 1 

at k=3000. 

1 
k 

1 k-l 
r(k) \0-01 lx-xl E x(i) E 2 ( . ) 

k k 
u ~ 

i=l i=l 

I-step ahead .5571 .0080 .0000 .0207 2.718 

4-step ahead .7'446 .0028 .0000 .04-15 2.564-

This behavior is attributed to the lazy character of the 

4-step ahead controller sin~e it is given the information 
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that it has 4-steps before it to 'achieve the control. 

5. Tunability by the Choice of Sampling Period: 
. 

System 2 . and System 3 are obtained from the same con tinu-

o'ustime system. H~wever, System 3 has a sampling period 

equal to one tenth of that used for System 2. The accuracy 
k 

of control as measured by 11k E R(i) is .023 for System 
i=l 

2 and .0065 for System 3 with k=3000, which indicates 
I 

that, in general, shortening the sampling interval results 

in a better controller. The original continuous time sys-

tern was 

~(t) = -.2x(t) + .8u(t) + 1.5v(t) 

yet) = x(t) + vet) 

and a first-order approximation has been used for discre-

tization. 

6 .5. DISCUSSION 

As can be noticed from the above pres~ntation, the 

algorithm has several distinct features to be emphasized. 

1. Due to the inherent property of receding horizon 

controllers, the designer does not have to choose any state 

penalization matrix whose choice of relative magnitude 
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with respect to the input penalization matrix is more or 

less a trial and error proc;~ure as mentioned in Chapter 1. 

For single input systems, one does not even have to choose 

the input penalizati~n 'consta~t,because it eventu~lly can-

eels in the calculitions; However, ~he nec~ssa~y trad~- . 

off between the input energy and the system behavior quali-

ty is always conserved. 

2. The choice of horizon length adds a flexibility 

to design. Stronger control is associated with less number 

of.steps before the controll~r. If the choice of N is 

large, one can use the doubling algorithms of Chapter 2. 

3. Even though this exposition includes multidimen-

sienal systems with multi-parameter uncertainty, no use 

is made of matrix update equations for state and parameter 

estimation uncertainties whose presence constitute most of 

the computational burden of ~ther m~thods. 

4. The chosen parametrizatio~ is general enough to 

contain the ARMAX model 

y(k) + A1y(k-l) + . . . + A y(k-n ) = Bly(k-l) + ... n a 

+ Bmu(k-nb ) +_v(k) + Clv(k-l) + 

+ C v(k-n ) p c 
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with 

[ 
T 

x(k) = y (k-l) 

T T 
u (k-nb)v (k-l) T 1 T . .. v (k-n) . 

c 

and proper cholces of coefficient matrices and vectors [34]. 

5. All the above simulations and the convergence 

analysis is done without resort to an external perturbation 

signal. Presence of such a sufficiently exciting signal 

is considered to be a must by many authors such as [34, 35, 

37, etc]. O~r simulations v~rified that the identifier 

sufficiently tunes the parameters of the controller to 

provide the neces~ary sh~fts in control law, needed for 

closed loop identifiability. 

6 .6. CONCLUSIONS 

An adaptive controller for linear stochastic systems 

with parameter uncertainty 'has been introduced. The.con-

troller is certainty equivalent in both the parameters and 

the states iri the sense that it used the parameter estimates 

which depend on the state estimates instead of the true 

parameters in the controller gain calculation and makes use 

of the state estimates depending on the parameter estimates 
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instead of the true states in the feedback law. Another 

way to pose the situa.tion i'8 that the identifier tunes 

\' .. . . 
the parameters of both the constant determ1n1st1c feedb~ck 

gain andstaie estimator. 

The proposed control algorithm ~ep~esents an improve-

ment ov~r th~ self-tuningr~gulators which do not penalize 

the energy spent in control, thus achieving their aim by 

using in some cases unacceptably high energy; The proposed 

controller is aQso an extent ion of the popular controllers 

using linear quadratic cost criteria, but which consider 

only one-step-ahead effects. 'This algorithm gives the 

designer the possibility of penalizing th~ amount of energy 

spent and the flex{bilfty of tuning with different. horizon 

len'gths. This controller with the enforced certainty 

equiv~lenc~ with respect to both the state estimat~i and 

the parameter estimates is bY far simpler to implement 

as compared with the control law using the on-line solution 

of the matrix Riccati equation. 
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. 7.1. 

CHAPTER 7 

SOME OTHER POSSIBILITIES OF 
DESIGNING STOCHASTIC ADAPTIVE 

CONTROLLERS 

INTRODUCTION I 

Up to now, we have been ~sing a very simple but ef-

fective identification scheme to find the unknown cons-

stant parameters in the signal model. Actually, neither 

this scheme nor the other identification schemes exhaust 
I 

the possibilities to search fot the unkiown parameters. 

For example, other methods such as time-series analysis 

exists to be used with ready test data cal6ulating off-

line the signal model ou~put cov~riance and the problem 

then is to match a prbper signal model to this output co-

variance. If bne is supposed to find 'the parameters on-

line, as in the case of an adaptive co~trol situation, an 

obvious possibility is to use non-linear filters to accom-

modat'e for augmen ta tion of the p arame te rS to the s ta te 

equation so as to estimate them as states. Another possibl 

approach is a parallel processing scheme in which for all 

98 
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possible values of parameters, one uses Kalman filters 

operating in parallel, each designed using a discrete 

value out of that possible parameter set. 

Evidently, the~e m~thods would greatly increase the 

computationai requirem~~tsand therefore not ,resorted to 

in this wprk who~e main purpose is to design easily imple-

mentable schemes. However, we shall bri~fly mention them 

here, first to indicate the pos~ibilities they present,in 

stochastic adaptive control and,second, to excite further 

research work in adaptive estimation, for adaptive estima

tion by itself stands as a v-ast area/for further research. 

I~ is demanded from the research workers to try to reduce 

the computational complexity of the adap~ive methods, so 

that they can be used more effectively in' a real situation, 

perhaps with small-size digital computing facilities. 

Another extension in stochastic adaptive control 

might be to estimate the characteristics of the random 

disturbances actihg on the system. Actually one idealizes 

the situation a bit saying that the characteristics of the 

noise acting' on the process is known exactly from the 

s ta rt . It may be that the disturbances are too obscure to 

yield to easy formulas and one may be obliged to estimate 

the characteristics as the process goes on. 
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In the first iection we deal with extended Kalman 

filtering for simultaneous ~n-line state and para~eter 

estimation. Recent convergence results of Ljung will 

also be included':' In ·the nex.t section, parallel proces

singmeth~ds~hat~ake use of parameter det~6tion ~rein~ 
, 

troduced. Lastly, some highlights fro~ among the techni-

ques of adapti~e ndise estimation. or of determining the 

filter gain without knowing the noise covariances are in-

eluded. 

7.2. SINULTANEOUS STATE AND_ PARAMETER ESTIMATION OF 

EXTENDED KALMAN FILTERING 

Let us suppose that the model of the system whose 

states and parameters are to b~ estimated, is as follows: 

where 

~(k+l)= A(8)x(k) + B(8)u(k) + v(k) 

y(k) = C(8)x(k) + w(k) 

T . 
E[v(k)v CO] = 

T 
E[v(k)w (oj = 

Q o(k,.O, 
v 

Q o(k,Q.), 
c 

E[w(k) wT CQ.)l = 

E [xC 0)] = 0, 

(7 .1) 

Q o(k,Q.) 
w 

( 7 .2) 

We assume differeriti~bility with respect to 8 of the 

parameter, dependent matrices. Notice that in the above 
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equations, we suppose that the noise covariances to be 

independent of the unknown 2arameters. In the last sec-

tion of this chapter, we will take up the converse approach 

t6at the o~ly'unknowns are th~ noise covariances. To 

sim~itarleously estimate-the states and .parameters of the 

system, we augment th~ par~me~ir vector to the state vec

tor, ~onsidering the parameters as constant states. Thepe-

fore, 

z( k) = 

r ., 
Ix(k)1 

10ek) I 
L _l 

( 7 .3) 

and 

z(](+l) = f[z(k),u(k)] + 

y(k) = h(z(k) + w(k) ( 7 .4) . 

where 

f[z(k),u(k)] = 
i A(0)x(k) +B(0)u(k) I 

! 
j 
.. 

( 7 .5) 

L o 

and 

h(z(k») = C(0)x(k) 

So now the p~oblem is to estimat~ the states of a non-

linear system. Applying the well~known extended Kalman 

filter equations~ we obtain, 
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Z 0: + 1) = f [z ( k ) , u ( k ) ] + N ( k) [y ( k) - h ( z ( k ) ) ], Z ( 0) = Z 0 

( 7 .6) 

, 

] 
T . -

Q" ~N (k), ~(o) = w 
p 

F[z(k),u(k)] = ~z fCZ,U)1 
. z=z(k) 

- a 
A( 81) X B (8) ~ I A(8(k) ) 

a8 + 
= ! ( 7 .7) , 0 I 1 L ..! 

Hlz(k)\ = a h(z)i 
az I z=z(k) 

= . [c ( 0 (k » ~ 8 C ( 8) x I _] 
8=8 

i r -
! Q

v 
0 ~, Q

c 
x , x( 8 ) 

0 
, 

0 Q
v 

= i Q = ! i Z = p = i 
! 

, - i c i 0 0 
i 0 0 i 0 , 8 I 0 -. 

' ~ 
, 

! 1 ·0 j - .J L i. !-

L is an arbitrarily assumed value for the initial parao 

meter uncertainty. 

Although it appears that the problem is posed in a 

good setting and ·the solution can be found in a straight 

o 

E 

0 i 
! 
i 

0 
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forward manner, in some cases and most often when the re-

siduals are large (which means that the uncertainty in 
. --. 

the parameter estimate is large) and/or the input to the 

system is small, the filter may diverge [241. This is 

attributed to the. independence of .the filter gain of the 

uncertainty in the parameter estimates. For deterministi6 

models, where the steady state filter gain does n~t involve. 

the unknown parameter in a natural fashion~ good conver-

gence is obtained. The convergence analysis of Ljung. [24] 

resulted in both an understanding ~f. the convergence pro-

perties of the filter and a remedial modification of the 

algorithm which involved the inclusion of a term in the 

algorithm to obtain global convergence. E xten de d Kalman 

filter is ~sedin conjunction with dynamic programming in 

control situations, for example, by Bar Shalom [31], and 

preserits a more exact answer than other suboptimal control-
.. -

lers, b~t it is so computationally complex that it can but 

be used with very,simple examples. 

7 . 3 . ADAPTIVE ESTIMATION BY COMBINED DETECTION/ 
ESTIMATION APPROACH 

In this approach, ~he unknown parameter vector 0 is 

assumed known to belong to a discrete set 0., which is 
r 1 

attached to an arbitrary probability distribution at the 

outset. Next, Kalman filters are built to estimate the 
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states of the system with parameters 0 .. 
1. 

i' _ ) 

They operate in 

parallel, each producing ou~puts xk l
0

' which are the con-

ditional state estimates based ~n their knowledge of the 

system parameters. The mean estimate of the state is 

found either as a Meight~d sum of the ~onditiona1 state 

estimates, the weights being the a-posteriori probabili-

ties of the parameters. Or the estimate can be found as 

ona that maximizes the a-posteriori probabilities. The 

update of parameter probabilities is based on a likeli~ 

hood ratio approach utilizing conditional Kalman filter 

innovations and their associatedcovariances. The a-

posteriori probabilities P(0iIYk)' after SOme simple ~ani

pulations, can be written in terms of likelihood functions 

p(Y, 10.) recursively as [5]: 
K 1. . 

m 
(,7.8) 

i=l 

where the choice of a-priori probabilities is immaterial 

and th~ denominator of the expression is just a normali-

zation const~mt. We assume, there are M different para-

meters in the set. For Gaussian signal models, using con-

ditional Kalman filter innovations ~.(k) and covariinces 
1. 

E [57. ( k ) y . T O~ )] = r.. ( k ) 
~ 1 1 
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( 7 .9) 

T.herefore,Kalman filters constructed" for all 0
i

, driven 

by yCk);produceat each stage:, the innovations sequences 

j.(k) which are not true ones if 01'=O that correspond to 
1 " 

the true signal model. So if O. "~ 0, the sequence is not 
1 

white. Notice th a t the covariances Q. (k) can be compute d " 1 

off-line. We will also mention .~ condition for distin~ 

r 

guishing the true one among others: For different para-

meters, either the innovations are not equal or their co-

variances are not equal or both as time processes. This 

prrivides a uniqueness condition of the true parameter 

"value as that which, provides the smallest covariance. If 

y(k) are the 60nvergence is almbst sure but the 

meThod is not constrained either ~y Gaussianity or "ergo-

dicityassumption. It is possible to include non-Gaussian, 

asymptoticallystatiofrary or some non-stationary situations. 

We assumed at the outset that the unknown parameter 

lS a member of a finite set. If the reality is that the 

unknown parameter is just a point in a compact region, 

then some repr~sentative points 0 i in that region are 

selected built on the compromise between finer approxima-

tion of the region and The complexity of the resulting cal-
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culation. The following theorem will illustrate the con-

vergence properties.of the scheme: 

THEOREM 7.1: 

Suppose that the innovaticms are asymptotically ergo-) 

dic in the autocorrelation function, n.(k) + n. > 0 as 
. '. 1 1 

k+oo and show that the limiting covariance of the filter 

innovations L. such that 
1 

2:. = Q,im 
1 n+oo 

1 
n 

k+n-l 
L 

j=k 
(7.10) 

Assume a-priori pseudo-pro~abilities for the parameters, 

and realize the upda~e of these probabilities by Equation 

7 . 8 • 

for 

When one has for some a 

s· 1 

B < a· . J 

-1 
= Q,n In. I + tr ( n. E.) 

1 1 1 

(7.11) 

( 7 . 12 ) 

then the probabili~y for the parameter which is closest, 

in the sense that it minimizes Kullback information measure 

to the true one, will approach 1 and the probabilities of 

other parameters will approach zero asymptotically. For 

an infinite measurement sequence, we have asymptotic per 

sample Kullback info~mation function as 
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:ice e ) s 'I' (7.13) 

Convergence of the scheme is expon~ntially fast. Such a 

scheme can also .be useful for time-varying parameters as 

well. Deshpande et;, a1. [43] .us ed this scheme toge the I' 

with dynamic programming in control situations. But both 

lithe curse of dimensionality"of dynamic programming and 

also of the method renders the overall scheme quite in~ 

volved from a computational st~ndpoint. 

7.~.· ADAPTIVE NOISE COVARIANCE AND FILTER GAIN 
DETE RMI NATION 

In some ~ractical situations, where the statistics 

of the noises acting on the system are not known before~ 

hand, the use of· Kalman filters for optimal st~te estima-

tion does not give good results, since Kalman filters need 

exact a-priori knowledge of .ihe noise statistics. Also 

it is possible to formulate the problem so that the errors 

associated with the modelling of the parameters occuring 

in the vario~s system matrices are considered as unknown 

additive disturbances. Then one has to resort to some 

special techniques Mhich help t6 find the unknown statis-

tics. In the following brief sketch, we will only consi-

deI', whenever possible, tec~niques to find the unknown gain 
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matrix of the filter without explicitly finding the un-

known noise covariances. 

1. Maxi~um Likelihood Appr~adh [~~ - 47]: 

The idea J.s to- estimat:ethe unknown parameters 

in such a way as to maximize either (a) the joint density 

of the states and the parameters conditional on the pre-

vious measurements or -(b) the marginal density of the_ 
, 

parameteres, or (c) the marginal density of the state, 

wh~ch resul;s in the techniques of Section 7.3. (a) an d 

(b) result in similar equations which we shall present 

below., Direct maximization of the densities leads to 

equations non-linear in the estimate of the unknown para-

meters and Newton-Raphson iterations can be used but the 

computation of the derivatives presents a major problem. 

For systems with: 

i-) time-invariant state transition and input 

matrices, ( 

ii) controllabiiity and observability conditions 

guaran tee d, 

iii) the steady state condition is reached so that 

the filte~ gain and the covariances associated 

with th~ uncertainty in the state estimate are 

constant, 
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iv) no a-priori information on the parameters is 

available it can be shown that [48J, the sub-' 

optimal maximum likelihood adaptive filter has 

the des cribi ng e quat ions: 

~ 

i(k+l) = Ai(k) + AK(k)e(k), i(o) chosen 

e(k) = y(k) - Ci(k) (7.14) 

ox(k+l) = A(I 

( 7 . 15 ) 

where j=l, ... ,n, n=l, ... ,r; and K(k) is updated according 

to 

J\(k+l) = J\(k) + tr 

g(k+l) ox(k+l) 
= g(k) + tr [~(k+l) 

-j m 
K '(k+l) = 

.(7.16) 

(7.17) 

(7.18) 

~jm(k+i) is the unique estimate of the filter gain 

based .on the measurements up to time k. Under steady state 

filtering conditions, the input and output noise covariance 

can be found easily. The details of relevant optimization 
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and subsequent approximation can be found in [~8]., 

2. Correlation Methods 

In the correlation methods, we utilize equations 

) th~t relate the unknown parameters and the autocorrelation 

function of observations. The unknown parameters are 

solved in terms of autocorrelations. Either the auto-

correlations of the output or the innovations can be used. 

We assume the system is completely controllable and ob-

servable. 

a) Output Autocorrelation Method: 

This method is only applicable in the cases where 

the output is a stationary process and the state transi-

tion matrix is stable. Assume that C(i) be the d'th lag 

autocorrelation of ~he output y(k): 

CCd) 
l' = E{y(k)y'Ck-d)} C 7 . 19 ) 

Since the output is station~ry, autocorrelation is only a 

function of the lag d. Estimate of CNCd) is obtained 

recursively. from 

C7.20) 
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where N is the sample size. Defining L as 

(7.21 ) 

which can be sh own to s atis-fy 

\~ 

r!~ 1 LC
T = (¢Tcp)-lcpT (7.22) 

L n_ 

where 

¢ = [ATC T , ... ,(AT)nc T ] (7.23) 

Using Equation 7.22, one can s.olve 

II _. A [II + O:-II)CTU:(o)-CIICT)-lC(L-II)]AT 
(7.24) 

\ 

and substitute in 

to find an Sstimate of the filter gain. Comple~e deriva-

tions are given in ~8J. 

b) Innovation ~Correlation Method: 

bptimal Kalman filtering requires that the inno-

vations sequence be a zero mean Gaussian white noise se-

quence. But for a suboptimal filter, this is not,so, and 



c 
Mehra in. [52] developed a scheme which makes use of this 

property. Namely, innovat-ions are tested for zero corre-

lation. Using M cT 
from 

1 

1 
I 

,CAKof (0) J 

T . 
w he r·e f ( d) = E { v (k) v ( k - d) } 

One solves for 8M in 

81-1 = A[8M 

C8M) K CMM CTX T _ K f(o)K T]AT +. + 01+ 10 0 0 

and then substitutes in the following equation ~o find K 

K = (1-1, C T + 8 M C T ) ( C ( 0 ) + C 01-1 C T ) - 1 

As can be 
I. . 

notlced, 

either by choosing 

'for starting. 

a K 
o 

one has to start the procedure 

or]use output correlation method 

Ohab and Sttibberud' [53J developed a method also based 

on uncorrelating the innovations. They first measure the 

correlation in the innovations. If the innovations are 
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correlated, then the gain matrix will be sp adjusted that 

the innovations are less co~related. This goes on until 

the innovations are uncorrelated. The method of steepest 

d~scent is used to find the filter.gain that secures the 

~n~ovationsbeing .uncorrel~ted~: 

3. tovariance Matching Techniques ~~,551: 

In this classification are. the ~echniques which. 

equate the measured and theoretical (as obtained from the 

Kalman filter) cov~riances of the innovations. As an ex-

ample, one may have the measured sample covariance be 

larger than that calculated by the filter, then increasing 

the input covariance which increases the uncertainty in 

the state estimate results 
.. /. 

in an increase ln lnnovatl0ns 

covariance. 

One case in which success has been achieved is when 

the input noise covariance is known but the 6utput noise 

covariance is not known. 

N 
~ 

N j=l 

It can then be estimated by 

where N is the sample size and P(k) is obtained from the 

Kalman filter. 
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7 . 5 . CONCLUDING REMARKS 

In this chapter, we have presented other ways of ob-

taining stochastic adaptive 6ontrollers which are based 

on adaptiv~ ~stl~ati~n and deterministic controller blocks 

used in series configuration. These techn~ques are not 

effectively used because of the computational load asso-

ciated ~ith them. So our proposed technique is evidently 

superior to them. In the last section of this chapter, 
\ 

we have mentioned the work on adaptively estimating the 

noise statistics and filter ~ains. 



APPENDIX A 

. CONTI NOOUS RgCEDJNG HORIZON 

CONTROLLER 

For the lineart1me-in~ariant continuous system 

o 
x = Ax + Bu, (A.I) 

the performance criterion 

J ( x 0 ,u( , )) = ; T 
U RudT , R > 0 (A.2) 

o 

and the equality constraint 

. (A, 3) . 

. if the system (A,B) is controllable. 

The optimal control minimizing Equation A.2 and satisfyirtg . 

Equation A.l and Equation A.3 is given by 

(A.4) 

where M is the solution at instant 0 of the equation 

115 
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I 

~ = AH + MAT (A.5) 

or in an explicit form 

M = A 1 T . _AT.,. 
e- TBR~ Be' dT (A.6) 

o 

And the application of this feedback re;sults in a system 

which is asymptotically stable. To prove what we have 

stated, let us apply variational calculus io form ~he . 

canonical equations: 

0 
Ax Bu, x(o) x = + = 

0 
-AT). A = X(T

l
) = 

u = _R-IB T \ 

where ~ and x are relate~ by 

with K being the solution of 

, 

x(k) has the solution 

x(t) 

'" f 

At 
= e x 

o 
o 

x 
0 

0 

(A.5 ) 

( A .6) 

(A. 7 ) 
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with x(T
1

) = 0, it gives 

x o = H A 
o 0 

If Ho is invertible,and using Equation A.6 

so 

Tl . T 
K(o) = (/ e-ATBR-IBTe-A TdT)-l 

o 

Next we prove that ~ is invertible. 
. , 

The term 

(A.9 ) 

(A. 10 ) 

(A.ll) 

T 
-ATBR-IBT -A T . e. e 1S at least positive semi-definite due to 

positive definiteness of R. So let us establish strict 

positiveness of M. If it were semi-definite there exists 

• T -At -1 T _ATt 
a constant vector xiO such that x e BR B e x=o for 

tE: [0,T
1
]. This is impossible since xTe-AtB=O for tE: [O,TIJ, 

which contradicts the hypothesis of the controllability 

of the pair (A,B). So H > O. 

Let us now prove that the resulting closed loop sys-

tern is asymptotically stable. Trat is, 

(A.12) 

is asymptotically stable: It is the same as proving the 
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asymptotic stability of the adjoint system 

o 
x = 

We first establish that 

vex) T= x Mx 

(A.13) 

(A.14) 

is a Lyapunov function for the system in Equation A.13. 

i) Vex) > 0 since!1 > 0 

after Equations A.10 and A.ll. 

and 

T 
1 

- T 
MA + A 11 

d = r 
J dT 

o 
Vex) 

0 

T 
A 1 '" = -e BB 1 

T 
-A T 1 

l' ATl T 
= - x·- [e BB 

e + 

T 
-A T 1 

e + 

(A. 15 ) 

(A. 16 ) 

(A.17) 

So Equation A.14 describes a Lyapunov function for the 

system in Equation A.13. For asymptotic stability, it is 

o 
sufficient to have V(x(t» ~ 0 for x(to ) ~ 0, Equation A.13 

gi ves 
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fA T ( t- to) 
x(t) =e x(t ) 

o (A.18) 

and 

T T 
o T fA ( t - t ) . AT 1 . -AT· T /A{ t - t ) 
V = -x(t )e 0 (e BBTe .1 + BB)e . 0 x(t ) 

o 0 

(A .19 ) 

By a similar reasoning to the one we have given for posi-
. _ . 0 

tive defiriiteness of M, to ha~e V~O would contradict the 

o 
hypothesis of contr~llability, so V t 0 and the system is 

asymptotically stable. 



APPENDIX B. 

SPECTRAL FACTORIZATION OF q> n 

We briefly indicate the main steps leaving aside the 

intermed{ate calculations. One has to first establish 

H ( z) L:H T ( z - 1) 

+ CPC T + Q (B • l) .. v 

Matrix Riccati equation can be used to show 

T 
+ CPC + Q v 

The first three terms are. collected to give 

120 

(B .2) 
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Factorizing the first term".gi';"es 

-1{ C(zI-A) Q 
w 

= <I> (z) 
n 

-1 T - (zI-A)P(z I-A)} 

(B .3) 

(B. 4) 



APPENDIX C 

, ~ROOF ,OF . CL~SED~LOOP 

IDENTIFIABILITY RESULT 

Let us neglect the initial value effects, so 

y(klk-l;M) 

Denoting 

-1 " - -1 G = GS(q ), G =,GMlq ), etc 

(I 
- 1 . H -1.~ F L. = H .-) T '" . 1 1 

- H:-1 ) H- 1GF. L. = ( 1 + 
1 1 

Then since 

y(k Ik-1,S) = [1 

= [ 1 -H - 1 + H - 1 G F . ] Y ( k) = L. Y ( k ) 
'. 1 1 

(C.l) 

(C. 2 ) 

(C. 3) 

(C. 4) 

the set when using direct identification with a prediction 

error method is 

122, 
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h 
~ 2 

Dr(S ,M) = {e,1 E y. E I (L. L.y(k) I = o} 
i=l 

.1. .1. .1. 

{elL. -= = Li' i=l, h} 
.1. 

... , (C. 5 ) 

Since yis fi1tered~whlte'noise~ coll~cting Equations C.3 . 

an d C. 5 , 

(C. 6) 

where Rh is 

(C. 7) 

rank Rh = dim y + dimu. 

So 

- 1 = 0, H -G ( C. 8) 

i . e . , 

Dr(S,M) = DT(S,M) and system identifiability is 

satisfied. Notice that it is only a condition on regula-

tors which implies that, it is a sufficient condition for. 

strong syst~m identifiability. A necessary condiTion is 

h dim dim dim 
dim y + dim u 

(C.9 ) Y > Y + u 0.)- h·> dim y 

if 

h 1 
- dim u h > h > + dim 

, 
0 y 0 
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so we can choose h to have strong system identifiability. o 
~-

If dim u = dim y, you choose two regulators_ (proportional 

ones will suffice) such that 

- (C. 10 ) 

-/ 



REFERENCES 

'1. M. Athans, "The Role 'and Use of the Stochastic Linear-
Quadr.a tic -Ga us sian Prob lem in Con tro 1 Systems Des ign", 
IEEE Trans. Aut. Cont., No.6, Dec. 1971. 

2. Y. Thomas, A. Barroud, "Commande Optimal a Ho-rizon 
Fuyant, Rev~-RAIRO, April 1977, pp. i46-150. 

3. A. Barraud, "Un Algorithme pour la Stabilisation des' 
Systemes Discrets, Annales ENSM, 2~ trimestre 1973, 
CRAS t. 278, January 1974. 

4. B. D.O. Anderson, "Se cond Order Con ve rgen t Algorithms 
for the Steady State Riccati Equation, Int. J. Con
trol, 1978, Vol. 28, No.2, pp. 295-306. 

5: B.D.O, Anderson)and J.B. Moore, Optimal Filtering, 
Prentice Hall, N.J·., 1979. 

6. D.L, Kleinman, "An Easy Way to Stablize a,Linear Con-
stant System, IEEE Trans. on Aut. Cont., 1970, 
Ad-IS, p. 692. ' 

7. H. Kwakernaak, R. Sivan, Linear Optimal ,Control Systems, 
Wiley, 1972.' 

8. A.J'. Koivo, "Microprocessor-based Controller for 
Pharmacodynamical Applications, IEEE Trans. Aut. 
Con t ., No.' 5,.. 0 ct. 19 8 1 . . 

9 . T. Pap pas, A . J . La ub, N. R • S an dell, Jr., " On the N u m e -
ri~al Solution of the Discrete-time Algebraic Riccati 
Equation, IEEE Trans. Aut~ Cont., AC-25, Aug. 1980, 
p. '631. ' 

10. Y~ Rozanov, Stationary Random Processes, Holden Day, 
San Francisco, 1967. 

11. G.C. Goodwin, R.L. Payne, Dynamic System Identification, 
Academic Press, 1977. 

125 



/ 

- 126 -

12. A.E. Bryson, Y.C. Ho, Applied Optimal Control, Halstead 
Press, 1975. 

13. L. Ljung, "Recursive Identification'~ Internal Report, 
Linkoping University, Sweden, 1980. 

14-. L. Ljung, T. Soderstrom, "Theory and Practice of Re
cursi ve Identi.fication",. MIT Press, Cambridge, Mass. 
1982. 

15. L. L j ung, "Freq ue~cy Domain vs. Time Domain Methods in 
System Iden,tification", Automatica, Vol. 17, pp- 71-
86~, 1981. 

16. T. Soderstom, "On Model Structure Testing in System 
Identificatiorl', Int. J. Cont., Vol. 26, pp. 1-18,. 
1977. 

17. R, Guidorzi, "Canonical Structures in the Identifica
tion of Multi-variable Sistem~~ Automatica, Vol. 
11 , . P p. 36 1- 374-, 19 75 . 

18. L. Lj ung and J. Rissanen '. "On Canonical Forms, Para
meter Identifiability and the Concept of Complexiti~ 
Proc. 4th IFAC Symp .• on Identification and System 
Parameter Estimation, Tbilisi, USSR, pp. 58-69. 

19. A.J.M, Overbeek, L. Ljung, "On-Line Structure Selec
tion for Multivariable State Space Models, 5th IFAC 
Symposium on Iden. and Sys. Paramo Est., Darms.tadt, 
pp. 387-396. 

o 
20. K.J. Astrom, P . .£ykhoff, "System Identification - a 

Survey", Automatica r, pp. 123-162. 

21. J. Gertler, C.S. Banyasz, "A Recursive (on~line) 
Maximum .Likelihood ·Identification Method", IEEE 
Trans. ~ AC-19, pp. 816-820. 

22. J.R. Hastings,'M.W. Sage, "Recursive Generalized Least 
Squares Procedure for On-line Identification of 
Process Parameters", I'EEPrC)c., 116, pp. 2057-2062. 

23. P.C .• Young, A. Jakeman, "_Refined Inst,rumental Variable 
Methods oL.Recursive Time-Series Analysis, Int.J. 
Control, Vol. '-24-, pp. 1-30. 

24-. L. Ljung, "The Extended K. Filter as a Parameter 
Estimator for Linear Systems, IEEE Trans., AC-24, 
pp. 36-50. 



- 127 -

25. P.C. Young, "The Use of Linear Regression and Related 
Procedure for the Identification of Dynamic Proces
ses", Proc. r 7th IEEE Symposium on Adaptive Processes, 
UCLA. 

26. V. Panuska, "A Stochastic Approximation Method for 
Identification of Linear Systems Using Adaptive 
Filtering.', Proc. JACC, 1968. 

27. J.L.Talmon, A.j.W;,; VandenBoom, "On the Estimation 
6f TransferFu~ctio~ Parameters of Process and Noise 
Dynamics' us ing a Single Stage Estimator', Proc. 3rd 
IFAC Symp. on Iden. and System Paramo Estim., The 
Hague/Delft. 

28. I.D, Landau, "Unbiased Recursive Identification Using 
BRAS Techniques", IEEE Trans., AC-21,pp. 194-202. 

29. T. Soderstrom, L. Ljung, 1. Gustavsson, "Identifiabi
lity Conditions for Linear Multivaria~le Systems 
Operating under Feedback", IEEE Trans. Aut. Cont., 
Dec. 1976. 

30. 1. Gustavsson, L~ Ljung. T. Sode.rstrom, "Identifica
tion of Processes 'in Closed-Loop - Identifiability 
and Accuracy Aspects", Automatica, Vol. 13, No.1, 
1977. 

31. Y. Bar Shalorn, E. Tse, "Dual Effect. Certainty Equi
valence, and Separation in Stochastic Control~. IEEE 
T ran s., A C - 19 ; No.5, 19 74 . 

32. B. Wittenmark, "Stochastic Adaptive Control Methods: 
a Survey'~ Int. J. Cont., Vol. 21, No. 5,pp. 705-
730. 

o 
33. K.J, Astrom, Introduction to S~ochastic Control Theory, 

Academic Press, 1970. 

34. L. Ljung, "Convergence of an Adaptive Filter Algorithm, 
Int. J. Cont., 1978, Vol. 27, No.5, pp. 673-693. 

35. G.N. Saridis, R.N. Lobbia, "Parameter Identification 
and Control of Linear Discrete-Time Systems, IEEE 
Trans. Aut. Cont., No.1, Feb. 1972. 

36. G. Alag, H. Kaufman,.IEEE Trans. Aut. Cont., No.5, 
Oct. 1977. 



37. \ 

38. 

39. 

40. 

- 128 -

G. Kreisselmeier, IEEE Trans. Aut. Cont., No.4, 
Aug. 1980.' 

Cao, ~A Simple Adaptive Concept for the Control of an 
Industrial Robot", Proc. of Ruhr Symposium On Adap
ti ve Sys tems, March 1980. 

A. Dvoretzky,'.'OnS1:ochastic Approximation", Proc. 3rd 
BerkeleySymp .• Mathematical Statistics, 1965, pp. 
35-55. 

T. Soderstrom, L. Ljung, I. Gustavsson, "A.Theoretical 
Analysis of Recursive Identification Methods", 
Automatica, Vol. 14, pp. 231-244. 

41. A. J. Koi vo, "An Aut ornate d Continuous Time -Blood Pres
sure Control in Dogs by Means of Hypotensive ~QG 
Injection~, IEEE Trans. Biom. Eng., Oct. 1980.·~ 

42. O.L.R, Jacobs, P. Saratchandran, "Comparison of Adap
tive Controllers", Automatica, Vol. 16, pp. 97. 

43. J.G. Despande, T.N. Upadhyay, D.G. Lainiotis, "Adap
tive Control of Linear Stochastic Systems", 
Atuomatica, Vol. 9,pp. 107-115. 

44. K.J. ~strom, S. Wenmark, "Numerical Identification of 
Stationary Time Series", 6th Int. Instruments and 
Meas.s Congr., Sept. 1964. 

45. R. L, Kashyap, "Maximum Likelihood Identification' of 
Stochastic Linear Systems", IEEE Trans., AC-15-, 
pp. 25-34, Feb. 1970. 

46. R.K. Mehra, "Identification of Systems Using Kalman 
Filter Representation", AIAA J., Oct. 1970. 

47. P, D. Abramson , "Simultaneous Estimation- of the State 
and Noise Statistics", MIT Rep. TE-2S-, May 10, 1968. 

48. R,K. Hehra, "Approaches to Adaptive Filtering", IEEE 
Trans. Aut. Cont., Oct. 1972. 

49. W.N. Anderson, et.al. "Consi~tent Estimates of the 
Parameters of._a Linear System", Ann. Math. Statist., 
Dec. 1969. 

50. R.K. Hehra, "On-Line Identification of Dynamic Systems 
with Applications to Kalman Filtering", IEEE Trans., 
AC-16, pp. 12-21, Feb. 1971. 



51. 

i( 

129-

P. Fa urre ,J • p. Ma umara t, "Une Algori thmede Reali za
tion Stochastique", C.R. Acad. Sci., Vol. 268, 
April 28, 1969. 

52. R.K. Mehra, IEEE Trans. Aut.Cont., pp. 175-184, 
April 1970 . 

. 53. R. Ohab, R. St.ubberud, Control and Dyna.mi c Sys tems, 
Vol.12~ 1976.· 

54. J.C. Shellenbarger, "Estimation of Covariance Para
meters for an Adaptive Kalman Filter", Proc. Nat. 
Electronics Conf., 1966, p. 698. 

'55. A.P. Sage, G.W. Husa, "Adaptive Filtering with Unknown 
Prior Statistics", 1969 Proc. JACC, pp. 760-769. 

56. E. Yaz;' Y. Istefanopulos, "Adaptive Receding Horizon 
Controllers for Discrete· Stochastic Systems'~ Prepr ints 
of Algarve Conf. on Nonlinear Stochastic Pr~blems, 
May 16/28, 1982. 

57. E. Yaz, "Two Fast Algorithms to Compute the Receding 
Horizon Control Gains~,~Electron. Lett., Vol. 18~ 
No. 12, June 1982. 


	Tez4136001
	Tez4136002
	Tez4136003
	Tez4136004
	Tez4136005
	Tez4136006
	Tez4136007
	Tez4136008
	Tez4137001
	Tez4137002
	Tez4137003
	Tez4137004
	Tez4137005
	Tez4137006
	Tez4137007
	Tez4137008
	Tez4137009
	Tez4137010
	Tez4137011
	Tez4137012
	Tez4137013
	Tez4137014
	Tez4137015
	Tez4137016
	Tez4137017
	Tez4137018
	Tez4137019
	Tez4137020
	Tez4137021
	Tez4137022
	Tez4137023
	Tez4137024
	Tez4137025
	Tez4137026
	Tez4137027
	Tez4137028
	Tez4137029
	Tez4137030
	Tez4137031
	Tez4137032
	Tez4137033
	Tez4137034
	Tez4137035
	Tez4137036
	Tez4137037
	Tez4137038
	Tez4137039
	Tez4137040
	Tez4137041
	Tez4137042
	Tez4137043
	Tez4137044
	Tez4137045
	Tez4137046
	Tez4137047
	Tez4137048
	Tez4137049
	Tez4137050
	Tez4137051
	Tez4137052
	Tez4137053
	Tez4137054
	Tez4137055
	Tez4137056
	Tez4137057
	Tez4137058
	Tez4137059
	Tez4137060
	Tez4137061
	Tez4137062
	Tez4137063
	Tez4137064
	Tez4137065
	Tez4137066
	Tez4137067
	Tez4137068
	Tez4137069
	Tez4137070
	Tez4137071
	Tez4137072
	Tez4137073
	Tez4137074
	Tez4137075
	Tez4137076
	Tez4137077
	Tez4137078
	Tez4137079
	Tez4137080
	Tez4137081
	Tez4137082
	Tez4137083
	Tez4137084
	Tez4137085
	Tez4137086
	Tez4137087
	Tez4137088
	Tez4137089
	Tez4137090
	Tez4137091
	Tez4137092
	Tez4137093
	Tez4137094
	Tez4137095
	Tez4137096
	Tez4137097
	Tez4137098
	Tez4137099
	Tez4137100
	Tez4137101
	Tez4137102
	Tez4137103
	Tez4137104
	Tez4137105
	Tez4137106
	Tez4137107
	Tez4137108
	Tez4137109
	Tez4137110
	Tez4137111
	Tez4137112
	Tez4137113
	Tez4137114
	Tez4137115
	Tez4137116
	Tez4137117
	Tez4137118
	Tez4137119
	Tez4137120
	Tez4137121
	Tez4137122
	Tez4137123
	Tez4137124
	Tez4137125
	Tez4137126
	Tez4137127
	Tez4137128

